

Institut für Holztechnologie Dresden gemeinnützige GmbH

Institut für Technische Gebäudeausrüstung Dresden Forschung und Anwendung GmbH Prof. Oschatz - Prof. Hartmann - Prof. Werdin

Passivhaus Institut Dr. Wolfgang Feist

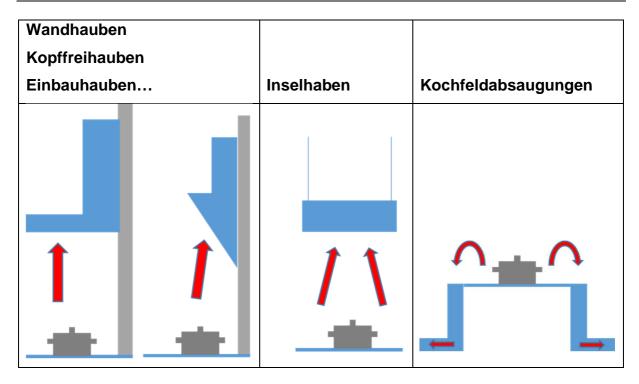
Anlage C

Leitfaden Dunstabzugshauben für Wohnküchen -Empfehlungen für Planer, Gutachter und Endkunden

(Stand Dezember 2018)

Inhaltsverzeichnis

1	Übersicht über verfügbare Dunstabzussysteme									
2	Allgemeine Planungshinweise									
3	Empfehlungen in	1	Abhängigkeit	des	Baustandards	und	der			
Gel	päudeausstattung						9			
4	Besonderheiten fü	r e	energieeffiziente	e Geb	äude		14			
We	itere Informationen						15			
Lite	_iteraturverzeichnis 16									


1 Übersicht über verfügbare Dunstabzussysteme

Die meisten Dunstabzugshauben können wahlweise als Umluft- oder Abluftgerät betrieben werden. Welche Betriebsart im Einzelfall zu empfehlen ist, hängt von verschiedenen Kriterien ab, auf die in den folgenden Abschnitten noch eingegangen wird.

Darüber hinaus lassen sich verschiedene Bauarten unterscheiden. Die Auswahl wird maßgeblich vom Platzangebot, aber auch von Designvorstellungen bestimmt.

2 Allgemeine Planungshinweise

Positionierung der Haube

- Die Unterkannte der Haube wird üblicherweise mit einem Abstand H von 50 – 60 cm (65 cm in Kombination mit Gaskochfeld) zur Oberkannte des Kochfeldes montiert. Größere Abstände sollten vermieden werden, da diese den erforderlichen Abluftvolumenstrom erhöhen. Bereits eine um 20 cm höhere Anordnung der Dunstabzugshaube kann den erforderlichen Erfassungsvolumenstrom um 20 % erhöhen *)
- An der Wand montierte Hauben sind nach Möglichkeit den Inselhauben vorzuziehen, da die Wrasenerfassung stabiler und effektiver ist. Bei gleicher Erfassung kann der Volumenstrom von Hauben, die an einer Wand montiert sind, um ca. 40% geringer gewählt werden *)
- Ein Abstand zu angrenzenden Möbeln entsprechend Herstellervorgaben wird empfohlen, um Feuchteschäden an angrenzendem Mobiliar vorzubeugen.
- Insel- bzw. Wandhauben sind nach Möglichkeit Kochfeldabsaugungen vorzuziehen, da die Wrasenerfassung oberhalb der Kochstelle deutlich stabiler ist.
- *) Abschätzung in Anlehnung an [VDI 2052]

Dimensionierung der Luftleistung

Üblicherweise wird die Luftmenge für die Dunstabzugshaube entsprechend der Grundfläche der Küche dimensioniert bzw. entsprechend dem Raumvolumen und dem daraus resultierenden Luftwechsel. vgl. Abbildung 1 [AMK]. Bei größeren Küchen mit großzügigem Essbereich oder offenen Küchen führt das Verfahren zwangsläufig zu sehr hohen Volumenströmen, da sich das Verfahren an der Geruchsreduzierung im Raum orientiert, wobei angenommen wird, dass durch das Kochen Geruchsstoffe in den Raum gelangen.

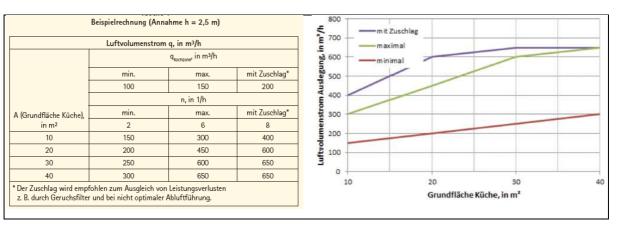


Abbildung 1: Ermittlung des Luftvolumenstroms von Dunstabzugshauben nach AMK-008, Entwurf 04/2018

Ziel ist jedoch eine gute Erfassung des Kochwrasens, um eine Ausbreitung der Geruchsstoffe in den Raum weitestgehend zu minimieren. Die Wrasenerfassung ist von der Grundfläche der Küche weitestgehend unabhängig, wird jedoch durch Raumluftströmungen signifikant beeinflußt. Der erforderliche Volumenstrom für eine gute Wrasenerfassung wird vielmehr von der Positionierung der Dunstabzugshaube im Raum sowie der Bauform der Dunstabzugshaube bestimmt.

Tabelle 1: Relative Abschätzung bezüglich des erforderlichen Erfassungsvolumenstroms in Abhängigkeit der Anordnung der Haube im Raum und des Kochfeldes in Anlehnung an [VDI 2052]

Kochfeld	A					
	Höhe H	Wandhängend	Frei hängend	Erforderlicher		
	über		(Insellösung)	Erfassungsluftstrom		
	Kochfeld			in Prozentanteilen		
	[cm]			vom Referenzwert ¹⁾		
		H 1	/\ =			
Gas/ Elektro	80		X	100%		
	60		X	80%		
	80	X		65%		
	60	х		50%		
1) Referenzwert	für den	erforderlichen E	rfassungsvolumenstro	ı m = 350 m³/h für		

¹⁾ Referenzwert für den erforderlichen Erfassungsvolumenstrom = 350 m³/h für Gasherd: 2 Kochfelder in Betrieb mit 2 x 2kW Leistung, Höhe H über Kochfeld 80 cm, frei hängend, vollständige Erfassung des Thermikstroms, keine Querströmung

Überschlägige Berechnungen (vgl. Tabelle 1) zeigen, dass der tatsächlich erforderliche Erfassungsvolumenstrom für Haubensysteme mit einer guten Erfassung deutlich geringer ausfallen kann als in Abbildung 1 beschrieben. Die Erfassung wird hier vor allem von der Anordnung der Haube im Raum und der sensiblen Wärmeabgabe des Kochfeldes beeinflusst.

Hinweise für den Umluftbetrieb

Zusätzlich	Im Umluftbetrieb werden keine Feuchtelasten abgeführt.								
erforderlicher	Zur Vorbeugung von Feuchteschäden wird ein								
hygienischer	Grundluftwechsel in der Küche von ≥ 0,5/h empfohlen,								
Luftwechsel	velcher mit einem dauerhaften Abluftvolumenstrom von								
	45 m ³ /h [DIN 1946-6] erreicht wird. Dieser wird durch eine								
	zentrale oder dezentrale Lüftungsanlage sichergestellt.								
	Falls eine solche Anlage nicht vorhanden ist, muss der								
	Grundwechsel über manuelles Öffnen der Fenster								
	erfolgen.								
Besonderheiten	Bei der Kochfeldabsaugung wird der Wrasen								
Kochfeldabsaugung	systembedingt nach unten abgesaugt und in den								
	Sockelbereich des Unterschrankes geführt.								
	Zur Vorbeugung von Feuchteschäden wird								
	empfohlen, die Umluft im Kanal aus dem								
	Sockelbereich herauszuführen. Die Umluftauslässe								
	(Gitter) dürfen nicht verbaut oder zugestellt werden.								
	Bei Umluftführung in den Sockelbereich ohne Kanal								
	(diese Variante wird hier aufgrund potentieller								
	Feuchteschäden ausdrücklich nicht empfohlen)								
	muss folgendes beachtet werden:								
	o Die Luftauslässe müssen nach								
	Herstellerangaben ausreichend groß								
	dimensioniert werden, so dass auch ein								
	freier Luftaustritt ohne Kanalführung möglich								
	ist								

	 Die Luftauslässe dürfen nicht verbaut oder 								
	zugestellt werden								
	 Eine Nachlaufzeit der Dunstabzugshauben 								
	nach dem Kochbetrieb von mindestens 15								
	Minuten wird dringend empfohlen.								
	 Der Nutzer sollte über das erhöhte Risiko für 								
	Feuchteschäden aufgeklärt werden.								
Nachlaufzeit	Eine kurze Nachlaufzeit von 5 – 10 Minuten zur Trocknung								
	des Haubensystems (vor allem des Aktivkohlefilters) wird								
	generell empfohlen. Für Kochfeldabsaugungen wird eine								
	Nachlaufzeit von 15 – 20 Minuten empfohlen.								
Druckverluste und	Umluftfilter stellen einen großen Strömungswiderstand dar								
Geräuschemission	und führen daher zu einem erhöhten Druckverlust.								
	Dadurch kann der am Kochfeld wirksame								
	Luftvolumenstrom reduziert werden und die								
	Geräuschemission zunehmen. Bei hohen Druckverlusten								
	werden ausgewiesene Volumenströme nicht erreicht.								
Wartung	Um die Funktion der Umluftfilter zu gewährleisten, müssen								
	sie in regelmäßigen Abständen regeneriert bzw. getauscht								
	werden.								

Hinweise für den Abluftbetrieb

Nachströmung	Ausreichende Luftnachströmung muss sichergestellt									
	verden, da sonst ein unzulässiger Unterdruck in der Küche									
	entstehen kann. Die Luftnachströmung kann realisiert									
	werden durch:									
	Geöffnetes Fenster (manuell geöffnet oder									
	automatisch per Fensterkontakt gekoppelt an									
	Dunstabzugshaube)									
	Steuerbare Außenluftdurchlässe (sALD)									
	Zuluftmauerkasten									
	Abluft-Zuluft-Mauerkasten									

	Luftnachströmung aus benachbarten Räumen sollte zur Vermeidung von Geruchsübertragungen vermieden werden (z.B. Luft aus Bad/WC).
Kanallänge und Druckverluste	Der Strömungsquerschnitt und die Länge des Kanals haben Einfluss auf die Druckverluste und damit auf den wirksamen Luftvolumenstrom. Bei hohen Druckverlusten werden ausgewiesene Volumenströme nicht erreicht. Folgende Punkte sind zu beachten: • Verbau eines 150er Querschnitts (ø150mm oder gleichwertiger Rechteckquerschnitt) • Kanallänge möglichst kurz mit weniger Richtungsänderungen • Mauerkasten/Außenluftdurchlässe mit einem großen freien Strömungsquerschnitt
Mauerkästen/ Außenluftdurchlässe	Mauerkasten/Außenluftdurchlässe sollten bei nicht- aktivem Betrieb der Dunstabzugshaube dicht schließen und zu keinem Leckage-Volumenstrom führen. Des
Gemeinsamer Betrieb mit Feuerstätten	Weiteren ist eine zusätzliche Isolierung vorteilhaft. Der gemeinsame Betrieb einer Abluft-Dunstabzugshaube und einer Feuerstätte (insbesondere raumluftabhängig) ist sicherheitsrelevant, da es durch einen unzulässig hohen Unterdruck im Aufstellraum der Feuerstätte zu einem Austritt von Rauchgasen in den Raum kommen kann. DIN 1946-6 Bbl.3 und Bbl.4 fordert für den gemeinsamen Betrieb von Lüftungsanlagen bzw. Abluft-Dunstabzugshauben mit raumluftabhängigen Feuerstätten einen maximal zulässigen Unterdruck von 4 Pa und den Einbau geeigneter Sicherheitseinrichtungen: • Sicherstellung eines ausschließlich wechselseitigen Betriebs • Gemeinsamer Betrieb mit Differenzdrucküberwachung oder Positionsüberwachung der Zuluftöffnung

	Grundsätzlich ist - insbesondere in modernen, hoch-								
	dichten Gebäuden - der Einsatz von raumluftunab-								
	hängigen Feuerstätten zu empfehlen, die über eine								
	parate Verbrennungsluftversorgung verfügen und								
	deshalb weniger empfindlich für Unterdrücke im Raum								
	sind (maximal 8 Pa Unterdruck zulässig).								
Gemeinsamer Betrieb	Die Einbindung der Dunstabzugshaube in die								
mit Lüftungsanlagen	Wohnungslüftungsanlage kann aus den folgenden								
	Gründen nicht empfohlen werden:								
	Brandschutz: mögliche Übertragung von Feuer und								
	Rauch, geltende brandschutztechnische								
	Regelungen sind zu beachten								
	Hygiene: Fettablagerungen in Luftkanälen								
	Auslegung: Wohnungslüftungsanlagen werden								
	üblicherweise für Luftvolumenströme in der								
	Größenordnung von 100 bis 200 m³/h ausgelegt, für								
	Dunstabzugshauben sind Luftvolumenströme bis								
	zu 650 m³/h zulässig und üblich.								
	Wird die Abluft-Dunstabzugshaube ohne								
	Luftnachströmung gleichzeitig mit der Zu-								
	/Abluftanlage betrieben, dann verschlechtert sich								
	die Wärmerückgewinnung.								

3 Empfehlungen in Abhängigkeit des Baustandards und der Gebäudeausstattung

→ Um welches Gebäude handelt es sich?

- Neubau nach geltendem Energiesparrecht (EnEV, GEG)
- o Neubau als Energieeffizienz- oder Passivhaus
- Bestand

Tendenz: Beide Typen der Dunstabzugshaube sind prinzipiell bei allen Gebäudestandards zulässig. Es liegen keine gesetzlichen Einschränkungen in Abhängigkeit des Gebäudestandards vor, die den Einsatz eines bestimmten Dunstabzugshaubentyps vorschreiben.

Für Gebäuden mit sehr geringem Heizwärmebedarf (wie z.B. Passivhaus und Effizienzhaus 40) wird dennoch empfohlen, Umluft-Dunstabzugshauben zu bevorzugen, da der energetische Einfluss von Abluft-Dunstabzugssystemen, gerade für kleine Wohneinheiten, relevant ist. Unter welchen Randbedingungen Abluft-Dunstabzugshauben möglich sind, wird im nächsten Abschnitt aufgezeigt.

→ Ist eine raumluftabhängige Feuerstätte vorhanden bzw. geplant (Kamin, Gastherme)?

- o Ja
- o Nein

Tendenz: Ist eine raumluftabhängige Feuerstätte vorhanden, dann ist sicherzustellen, dass kein Unterdruck im Aufstellraum der Feuerstätte erzeugt wird, der das Austreten giftiger Rauchgase ermöglicht. Da eine Umluft-Dunstabzugshaube keine Druckveränderungen im Gebäude bewirkt, kann Sie ohne weiteres im Gebäude installiert werden. Bei einer Abluft-Dunstabzugshaube muss durch zusätzliche technische Maßnahmen die Begrenzung des Unterdrucks auf 4 Pa sichergestellt werden. Dies sind z.B.:

- Differenzdruckwächter bei gemeinsamem Betrieb
- Automatische Zuluftöffnung (Positionswächter) bei gemeinsamem Betrieb
- Wechselweiser Betrieb (Sicherer Betrieb durch Abschaltung oder Nicht-Einschalt-Möglichkeit, wenn die raumluftabhängige Feuerstätte in Betrieb ist.)

→ Ist ein Lüftungsgerät vorhanden?

- o Ja, ein Zuluftsystem
- Ja, ein Abluftsystem oder eine Entlüftungsanlage im Bad
- o Ja, ein Zu-/Abluftsystem
- o Nein

Tendenz: Die Nachströmung der Zuluft für die Abluft-Dunstabzugshaube muss unabhängig vom Vorhandensein einer Lüftungsanlage erfolgen. Eine Einbindung der über die Abluft-Dunstabzugshaube abgesaugte Küchenabluft in eine vorhandene Abluftleitung sollte aus brandschutztechnischen und hygienischen Gründen nicht Unterdruck-erzeugenden erfolgen. Bei Systemen (Abluftanlage oder Entlüftungsanlage im Bad oder Abluft-Dunstabzugshaube) muss der sicherheitsrelevante Aspekt in Kombination mit einer raumluftabhängigen Feuerstätte unbedingt beachtet werden.

→ Wie stark erhöhen sich die jährlichen Lüftungswärmeverluste durch den Einsatz von Abluft-Dunstabzugsanlagen?

Unter typischen Einsatzbedingungen werden zur Abschätzung der energetischen Auswirkungen des Betriebs einer Abluft-Dunstabzugshaube die resultierenden tagesmittleren Luftvolumenströme bestimmt. Wird die Abluft-Dunstabzugshaube pro Tag eine halbe bis eine ganze Stunde betrieben, ergibt sich gegenüber einer Wohnung ohne Abluft-Dunstabzugshaube je nach Wohnungsgröße und Betriebsdauer eine Erhöhung des Luftvolumenstroms um 2% bis zu 84 %.

Daraus können überschlägig die Lüftungswärmeverluste ermittelt werden. Für die Wohnungslüftung wird zwischen einem Betrieb mit und ohne Wärmerückgewinnung (Rückwärmzahl 80% oder 0%) unterschieden. Bei Lüftungsanlagen Wärmerückgewinnung fällt die relative Erhöhung der jährlichen Lüftungswärmeverluste durch den Betrieb der Abluft-Dunstabzugshaube deutlich größer aus. Absolut erhöhen sich die jährlichen Lüftungswärmeverluste durch den Betrieb einer Abluft-Dunstabzugshaube unabhängig von der Größe der Wohnung und vom Vorhandensein von Wärmerückgewinnung um 156 kWh/a bis zu 657 kWh/a.

Tabelle 2: Jährliche Lüftungswärmeverluste für tagesmittlere Luftvolumenströme in Kombination aus Wohnungslüftung und Dunstabzugshaube (Randbedingungen: ganzjähriger Betrieb, jahresmittlere Außentemperatur für Potsdam 9,5°C, Raumtemperatur 20°C, 3 verschiedene betrachtete Wohnungsgrößen 20 m² (V=50 m³, 100 m² (V=250 m³), 200 m² (V=500 m³))

Dunstabzug	shaube	ohne Haube	Abluft-Dunstabzugshaube						
		Offile Flaube	250	m³/h	500 m³/h				
Wohnungslüftung		0 h/d	0,5 h/d 1,0 h/d		0,5 h/d	1,0 h/d			
		Lüftungsanlage	e ohne Wärmerückgewinnung						
V=50 m³, n=0,5h-1		782 kWh/a	938 kWh/a	1095 kWh/a	1095 kWh/a	1439 kWh/a			
$\rightarrow q_V = 25 \text{ m}^3/\text{h}$	24 h/d	100 %	120 %	140 %	140 %	184 %			
7 q		-	+ 156 kWh/a	+ 313 kWh/a	+ 313 kWh/a	+ 657 kWh/a			
V=250 m³, n=0,5h-1		3909 kWh/a	4066 kWh/a	4222 kWh/a	4222 kWh/a	4566 kWh/a			
$\rightarrow q_V = 125 \text{ m}^3/\text{h}$	24 h/d	100 %	104 %	108 %	108 %	117 %			
→ q _V − 125 111 /11		-	+ 157 kWh/a	+ 313 kWh/a	+ 313 kWh/a	+ 657 kWh/a			
V=500 m³, n=0,5h-1		7818 kWh/a	7975 kWh/a	8131 kWh/a	8131 kWh/a	8475 kWh/a			
\rightarrow q _V = 250 m ³ /h	24 h/d	100 %	102 %	102 % 104 %		108 %			
→ q _V = 250 iii /ii		-	+ 157 kWh/a	+ 313 kWh/a	+ 313 kWh/a	+ 657 kWh/a			
	L	üftungsanlage	mit Wärmerück	nit Wärmerückgewinnung 80%					
V=50 m³, n=0,5h-1		156 kWh/a	313 kWh/a	469 kWh/a	469 kWh/a	813 kWh/a			
\rightarrow q _V = 25 m³/h	24 h/d	100 %	200 %	300 %	300 %	520 %			
→ q _V – 25 m /m		-	+ 157 kWh/a	+ 313 kWh/a	+ 313 kWh/a	+ 657 kWh/a			
V=250 m³, n=0,5h ⁻¹		782 kWh/a	938 kWh/a	1095 kWh/a	1095 kWh/a	1439 kWh/a			
\rightarrow q _V = 125 m ³ /h	24 h/d	100 %	120 %	140 %	140 %	184 %			
→ qv - 125 III /II		-	+ 156 kWh/a	+ 313 kWh/a	+ 313 kWh/a	+ 657 kWh/a			
V-500 m ³ n=0 5h-1	24 h/d	1564 kWh/a	1720 kWh/a	1876 kWh/a	1876 kWh/a	2220 kWh/a			
V=500 m ³ , n=0,5h ⁻¹ \rightarrow q _V = 250 m ³ /h		100 %	110 %	120 %	120 %	142 %			
ı → yv – 250 III7/II		-	+ 156 kWh/a	+ 312 kWh/a	+ 312 kWh/a	+ 656 kWh/a			

→ Wie groß muss die Nachströmöffnung bei Abluftanlagen sein, damit im Raum keine kritischen Unterdrücke entstehen können?

Dunstabzugshauben im Abluftbetrieb machen eine Luftnachströmung erforderlich, da sonst Unterdruck in der Küche entsteht, der im Zusammenspiel mit einer raumluftabhängigen Feuerstätte unzulässig ist und auch ohne Feuerstätten zu kritischen Situationen, z.B. durch nicht mehr öffenbare Fluchttüren, führen kann.

Tabelle 3 zeigt den benötigten Durchmesser der freien Öffnungsfläche zur Luftnachströmung zur Einhaltung des zulässigen Unterdrucks zum Öffnen von Fluchttüren bei unterschiedlichen Randbedingungen.

Tabelle 3: Durchmesser der freien Öffnungsfläche zur Luftnachströmung bei unterschiedlichen Randbedingungen, Berechnung nach Abschnitt A.2.2 der DIN 1946-6 Beiblatt 3 (2017)

Randbedingungen, Berechnung nach Abschnitt A.2.2 der DIN 1946-6 Beiblatt 3 (2017)													
				mehrgeschossige NE bei dauerhaftem Luftverbund der Räume					eingeschossige NE bei dauerhaftem Luftverbund der Räume				
				Gebäudedichtheit					Gebäudedichtheit				
	Volumen			n _{so} in h ⁻¹					n ₅₀ in h ⁻¹				
	des Raums	Abluft-	zulässiger Unterdruck	0,5	1	1,5	2	4,5	0,5	1	1,5	2	4,5
Variante	bzw. der	Dunstab-	zum Öffnen von	Gebäudeausführung				Gebäudeausführung					
	Nutzungs- einheit	zugssystem	Fluchttüren	Passivhaus	Neubau Lüftung sanlage	Neubau Freie Lüftung sanlage	Bestandsmoder- nisierung EFH	Gebäudebestand	Passivhaus	Neubau Lüftungsanlage	Neubau Freie Lüftung sanlage	Bestandsmoder- nisierung EFH	Gebäudebestand
				P	Lüft	Freie Li	Best	Gebä	Ь	Lüft	Freie Li	Best	Gebä
		250m³/h	50Pa	ca. 14	ca. 13	ca. 12	ca. 12	ca. 7	ca. 14	ca. 14	ca. 13	ca. 13	ca. 9
	50m³	250/11*/11	75Pa	ca. 12	ca. 11	ca. 10	ca. 9	ca. 3	ca. 13	ca. 12	ca. 11	ca. 10	ca. 5
		500m³/h	50Pa	ca. 20	ca. 19	ca. 19	ca. 18	ca. 16	ca. 21	ca. 20	ca. 20	ca. 20	ca. 18
			75Pa	ca. 17	ca. 16	ca. 16	ca. 15	ca. 13	ca. 18	ca. 18	ca. 17	ca. 17	ca. 14
		650m³/h	50Pa	ca. 22	ca. 22	ca. 22	ca. 21	ca. 19	ca. 24	ca. 24	ca. 23	ca. 23	ca. 21
			75Pa	ca. 19	ca. 19	ca. 19	ca. 18	ca. 16	ca. 21	ca. 20	ca. 20	ca. 20	ca. 17
	250m³	250m³/h	50Pa	ca. 11	ca. 6	Ø	Ø	\$	ca. 12	ca. 8	Ø	Ø	Ø
Durch-			75Pa	ca. 9	\$	\$	\$	\$	ca. 10	ca. 4	\$	\$	\$
messer der freien		500m³/h	50Pa	ca. 18	ca. 15	ca. 13	ca. 9	4	ca. 19	ca. 17	ca. 15	ca. 12	\$
Öffnungs- fläche			75Pa	ca. 15	ca. 12	ca. 8	\$	4	ca. 16	ca. 14	ca. 10	ca. 5	₽
in cm		650m³/h	50Pa	ca. 21	ca. 19	ca. 17	ca. 14	4	ca. 23	ca. 21	ca. 19	ca. 16	₽
			75Pa	ca. 18	ca. 15	ca. 12	ca. 9	4	ca. 19	ca. 17	ca. 14	ca. 11	Ø
		250m³/h	50Pa	ca. 11	ca. 6	\$	\$	\$	ca. 12	ca. 8	\$	\$	\$
			75Pa	ca. 9	\$	\$	\$	4	ca. 10	ca. 4	\$	6	6
			50Pa	ca. 18	ca. 15	ca. 13	ca. 9	&	ca. 19	ca. 17	ca. 15	ca. 12	\$
			75Pa	ca. 15	ca. 12	ca. 8	\$	\$	ca. 16	ca. 14	ca. 10	ca. 5	\$
			50Pa	ca. 21	ca. 19	ca. 17	ca. 14	\$	ca. 23	ca. 21	ca. 19	ca. 16	\$
			75Pa	ca. 18	ca. 15	ca. 12	ca. 9	\$	ca. 19	ca. 17	ca. 14	ca. 11	\$
6	- ohne Feuerstätte keine Nachströmung erforderlich												

→ Bestand: Ist das Gebäude denkmalgeschützt bzw. liegen örtliche Bauvorschriften vor?

- o Ja
- o Nein

Tendenz: Bei denkmalgeschützten Gebäuden (Denkmalschutz Außenfassade) oder örtlichen Bauvorschriften, die die Änderung der Fassaden ausdrücklich untersagen (Genehmigung erforderlich), kann ohne weitere Schritte ein Umluft-Dunstabzugshaube eingebaut werden. Die Montage einer Abluft-Dunstabzugshaube ist bei den entsprechenden Behörden genehmigen zu lassen.

→ Bestand: Sind im Gebäude bereits Feuchte- oder Schimmelschäden aufgetreten?

- o Ja
- o Nein

Tendenz: Zur Reduzierung des Feuchtegehalts in der Raumluft durch Kochvorgänge wird eine Abluft-Dunstabzugshaube empfohlen, da diese die angesaugte feuchte Luft nach außen transportiert. Umluft-Hauben hingegen entfernen durch den Umluftfilter zwar Geruchsstoffe, die Feuchtigkeit verbleibt aber im Raum.

Fazit:

In der aktuellen Fassung der Energieeinsparverordnung und des Erneuerbaren Energien-Wärmegesetz finden sich keine Hinweise, die ein Verbot von Dunstabzugshauben insbesondere in hochwärmegedämmten Neubauten betreffen. Ebenso erfolgt gegenwärtig keine Berücksichtigung des Strombedarfs der Dunstabzugshauben bei der Energiebilanzierung für die Erstellung eines Energieausweises.

Welcher Dunstabzugshaubentyp besser geeignet ist, hängt im Wesentlichen sowohl von den baulichen Randbedingungen als auch vom Nutzerverhalten selbst ab.

4 Besonderheiten für energieeffiziente Gebäude

In Gebäuden mit sehr geringem Heizwärmebedarf wie z.B. Passivhäuser und Effizienzhaus 40 kann der Einsatz einer Abluft-Dunstabzugshaube Heizwärmebedarf der Nutzungseinheit nennenswert erhöhen. Die Erhöhung des Heizwärmebedarfs ergibt sich dabei nicht nur aus den Lüftungswärmeverlusten während des Betriebs der Dunstabzugshaube: vor allem Nachströmklappen können, wenn sie nicht luftdicht ausgeführt werden, signifikante Infiltrationsverluste aufweisen.

Empfehlungen für Gebäude mit sehr geringem Heizwärmebedarf (wie z.B. Passivhaus und Effizienzhaus 40)

- Umluft-Dunstabzugssystemen sind zu bevorzugen.
- Abluft-Dunstabzugssysteme sind möglich. Die folgenden Punkte müssen beachtet werden:
 - Lösungen für die Nachströmung sind vorzusehen. Die Abluftöffnung bzw. Nachströmöffnung muss mit <u>dichtschließenden</u> Abschlüssen versehen werden. Rückschlagklappen sind in der Regel nicht ausreichend.
 - Komfort-Beeinträchtigungen sind nicht auszuschließen. Anzustreben sind Lösungen, die eine Einbringung der nachströmenden Außenluft in direkter Nähe zum Kochfeld ermöglichen.
 - Es sollten Systeme verwendet werden, die die Laufzeit begrenzen und den max. F\u00f6rderstrom nach einem Zeitintervall zur\u00fccksetzen (Automatik)
 - Es sind Systeme zu bevorzugen, die mit moderaten Abluftvolumenströmen eine ausreichende Erfassung sicherstellen. Wie Untersuchungen der Wrasenerfassung zeigten [BewDunst], bestehen zwischen den einzelnen Produkten erhebliche Unterschiede. Die erforderlichen Luftströme zur Erfassung einer definierten Wrasenmenge unterschieden sich bei den untersuchten Systemen um bis zu 60%.
 - In kleinen Wohnungen erhöht der zusätzliche Lüftungswärmeverlust den Heizwärmebedarf und auch die Heizlast signifikant. Abluft-Dunstabzugssystemen sollten daher nicht verwendet werden, wenn die mittlere Wohnungsgröße weniger als 90 m² beträgt.

Weitere Informationen

Produktinformationen sowie Wartungs- und Pflegeanweisungen der Hersteller

Bundesverband des Schornsteinfegerhandwertks Zentralinnungsverband ZIV www.shornsteinfeger.de

Landesbauordnungen der Länder

http://www.bauordnungen.de/html/deutschland.html

AMK Arbeitsgemeinschaft die Moderne Küche e.V.

www.amk.de

Literaturverzeichnis

- [VDI 2052] Verein Deutscher Ingenieure: VDI 2052, Raumlufttechnische Anlagen für Küchen. Beuth Verlag Berlin, April 2006.
- [AMK] AMK-Merkblatt Küchenmöbel Kochumfeld und Raumbelüftung (AMK-MB-008). Februar 2014, Mannheim: Arbeitsgemeinschaft Die Moderne Küche e.V.
- [DIN 1946-6] Deutsches Institut für Normung e.V.: DIN 1946-6: Raumlufttechnik Teil 6: Lüftung von Wohnungen Allgemeine Anforderungen, Anforderungen zur Bemessung, Ausführung und Kennzeichnung, Übergabe/Übernahme (Abnahme) und Instandhaltung. 2009. Beuth Verlag GmbH, Berlin
- [BewDunst] Endbericht der "Studie zur technischen, energetischen und wirtschaftlichen Bewertung von Abluft- und Umluft-Dunstabzugshauben in Wohnküchen in energieeffizienten Gebäuden", Dezember 2018