French National Service Life Information Platform

Julien Hans
Julien Chorier
Jean-Luc Chevalier
Sonia Lupica

ABSTRACT

At the beginning of the 20th century, about 90% of the cost of a building was attributable to the structure and the envelope. According to the good durability of the component contributing to the structure, it is understandable that we were designing buildings for 70 or 100 years without the same need of knowing the service life of the components as knowing its mechanical resistance. New performances are today measured and taken into account during the design to fulfill among others, acoustic, fire safety or thermal insulation requirement. But new requirements have to be thought ahead. Today, up to 75% of the cost of a building is allocated to equipments and indoor fittings. Most of the time these components have to be replaced during the service life of the building, and the economical impact on the life cycle cost are significant: for 1 euros spent in the construction phase of an office building, 5 can be spend to maintain and manage it during 30 years! [Tupamaki, 2005]

The Environmental assessment of a building using Environmental Product Declaration is also required to estimate the service life of the components.

Thus, service life is on the point to become a very useful data for building design and facility management according to the sustainable development principles [ISO SC17, 2007]. The aim of this paper is to present a platform for service life planning. www.durée-de-vie-batiement.fr . It’s a French tool for the moment, but we intend to propose it at an international level to optimize its interest.

A collaboration between contracting authorities, architects, research offices, manufacturers and entrepreneurs has been established to develop this collaborative tool, a platform to collect Reference Service Life (compatible with the ISO series of standard 15686). It proposes an organization of knowledge in grids in which are stored and indexed the essential informations, to estimate the service life of construction components and to evaluate the factors impacting building durability (quality of materials, quality of the implementation, environment, users, maintenance…).

KEYWORDS

Reference Service life, Service life planning, database, Factor method, ISO 15686

1 CSTB / Scientific and Technical Centre for the Building Industry, Energy Health Environment Department, Grenoble, France, Phone +334.76.76.25.89, Fax +334.76.76.25.60, julien.hans@cstb.fr
2 Politecnico di Milano, BEST Department, Milan, Italy, 20133, piazza Leonardo Da Vinci, 32, Phone +39 0223996002, sonia.lupica@polimi.it
1 INTRODUCTION

Buildings have always been built to last "for a long time". Houses have a patrimonial value, while office buildings may acquire, sometimes, an historic value. Since actors have diversified, the building action has become the result of a relatively prompt transaction: an owner orders a work to a contractor in order to obtain function more or less precisely defined. The building’s owner is interested in its exploitation and therefore in the future stages of its history. The need addresses the perenity of the performances, materialized through the setting up of legal guarantees (decennial in France). A way to match the requirements related to these guarantees, can be to produce results of accelerated ageing tests applied to building materials and components. Moreover, the European Construction Product Directive underlines that the essential requirements which products must confer to the work must be satisfied "for an economically reasonable Working Life".

In the last few years, the need to respect the principles of this development, as well as the new economic models (life cycle cost, Private Finance Initiative (PFI) "Public-Private Partnerships" (PPP)) have changed the expectation related to the "durability" of construction works, and introduces the "service life planning" process. The whole life cycle of the building becomes a trading object, while protocols and consensual assessment ans decision aid tools (references, methodologies, databases, technical and economic guarantees) become essential.

Some more focused demands for service life data appear in different practical procedures.: typical service life are required in the environmental product declarations (EPD). The service life data of the components can be asked for in the contract in the frame of a private public partnership (PPP), which generally goes beyond legal decennial guarantee. Service life data should be attached to a performance in the energy diagnosis that will soon become compulsory for real estate transactions. In the energy saving certificates as well such data are needed These certificates allow validation of energy savings due to additional actions, such as reinforcement of insulation, change of energy supply product, …The energy unit used in the certificates is the kWh of final energy needed summed up and updated on the entire product's service life.

2 PRESENTATION

This plateform allows to organize and to share in a dynamic manner the knowledge concerning building components’ Service Life.

The web address is: http://www.duree-de-vie.batiment.fr

First of all, the aim of the platform is to established a bridge between durability specialist and final users of service life data. For this reason, it first gives the possibility to create specific grids for each family of building components:

The specific grids for every family of building components will be established in accordance with the ISO 15686-8 [ISO SC14, 2007], to associate a "script" of ageing to every defined service life data for each component.. The following factors will be taken into consideration :

- A- Quality of materials and components
- B- Design level
- C- Work execution level
- D- Indoor environment
- E- Outdoor environment
- F- in-user conditions
- G- Maintenance level
For every grid created, reference service life data can be stored, by using the range of parameters which is provided by the corresponding grid.
Of course all the gathered data can be read by all the user of the platform.

2.1 Creation of grids for factors conditioning Service Life

The first database’s function is to allow the creation of grid for any building components. In these grids it is possible to take into consideration all factors impacting on building components’ Service Life (materials, design level, inside and outside environment, in use condition, mechanical, thermal loading, etc.). The ISO 15686 part 8 standard developed within the ISO TC 59-SC14 “Building and constructed assets – Service life planning” [ISO SC17, 2007] suggests to use seven factors (from A to G), as listed in [Table 1].

The creation of grids takes place in the following way:

- The first step consists in defining the component to study and the materials it is made of (generic window, or more specifically window wood, PVC window, window Aluminium);
- The second stage consists in identifying the possible damaging scenarios for this kind of component which the grid must permit to characterize. That’s why it is necessary to lead a functional analysis and/or an analysis of the failure scenario of the component;
- The third stage has for object to define the grid of building component’s service life and to create the different influencing factors and the level of this influence.
Table 1. Conditions to take into consideration for evaluating Service Life.

<table>
<thead>
<tr>
<th>AGENTS</th>
<th>REMARKABLE FACTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent related to the inherent quality characteristics</td>
<td>A Quality of components: Manufacture, storage, transport, materials, protective coatings (factory-applied)</td>
</tr>
<tr>
<td></td>
<td>B Design level: Incorporation, sheltering by rest of structure</td>
</tr>
<tr>
<td></td>
<td>C Work execution level: Site management, level of workmanship, climatic conditions during execution of the work</td>
</tr>
<tr>
<td>Environment</td>
<td>D Indoor environment: Aggressiveness of environment, ventilation, condensation</td>
</tr>
<tr>
<td></td>
<td>E Outdoor environment: Elevation of the building, microenvironment conditions, traffic emissions, weathering factors</td>
</tr>
<tr>
<td>Operation conditions</td>
<td>F In-use conditions: Mechanical impact, category of users, wear and tear</td>
</tr>
<tr>
<td></td>
<td>G Maintenance level: Quality and frequency of maintenance, accessibility for maintenance</td>
</tr>
</tbody>
</table>

Figure 2. Illustration of possible grid for building components’ Service Life (ex: roof covered with small clay tiles)

2.2 Collection of building components’ Service Life data

Every Service Life data stored for a building component can be referenced while assigning it a range of values for determining each factors in the corresponding grid and for characterizing its specificities ‘Fig. 3’.

Other information are associated to Service Life data:

- The format of Service Life value distribution (deterministic, range, asymmetric range, Gaussian distribution, etc.), see ‘Fig. 4’.

- The quality of the data: this information allow to determine data’s reliability, important especially for merging all data. The quality of the data is related to the data source. If it acts of a test it is related to the type of test on which it is based, see ‘Tab. 2’

- Further information, such as :
Figure 3. Selection of factors level characterizing the ageing scenario of one reference service life

Data’s name

New data

Figure 4. Formats of Service Life data value

It is important to define the data benchmark.

The capitalized data will have to enable us to limit the component Service Life. It is indeed necessary to born Service Life boundary and to know that it lies between 20 years (the most unfavourable case)
and 50 years (the most favorable case) for a failure mode. Intermediate data we will allow us to approximate our case of study. For example to reduce the interval at 25-35 years.

Table 2. A life tests comparison of the constructive entities. [Talon, 2006]

<table>
<thead>
<tr>
<th>Tests</th>
<th>Scale</th>
<th>Interests</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure on the ground (long duration)</td>
<td>Material Products</td>
<td>real climatic Conditions</td>
<td>(1) Uncertainties on the climatic conditions (nature, intensity, frequency). (2) Extrapolation with other products or other sites difficult.</td>
</tr>
<tr>
<td>Inspection of the buildings (long duration)</td>
<td>Materials products buildings</td>
<td>(1) Material/Producers/real Building (2) Weaker experimentation cost</td>
<td>(1) climatic conditions and of use not measured. (2) Problems of censure. (3) Extrapolation with other constructive entities or other sites difficult. (4) Conditions of maintenance sometimes badly known.</td>
</tr>
<tr>
<td>Exposition in experimental buildings (long duration)</td>
<td>Materials products buildings</td>
<td>(1) real climatic conditions. (2) Knowledge of the total behavior.</td>
<td>(1) Uncertainties on the climatic conditions. (2) Extrapolation with other constructive entities or other sites difficult.</td>
</tr>
<tr>
<td>Exposure in service (long duration)</td>
<td>products buildings</td>
<td>(1) Produced/real Building. (2) climatic conditions and of use real (3) Knowledge of the total behavior. (4) weaker experimentation cost.</td>
<td>(1) Many uncertainties on the climatic conditions and of use. (2) Extrapolation with other constructive entities or other sites difficult.</td>
</tr>
<tr>
<td>Exposure of short accelerated duration</td>
<td>Materials products</td>
<td>(1) Control of the climatic conditions. (2) Time and reduced cost of experimentation.</td>
<td>Possible inaccuracy at the time of the passage to the real time.</td>
</tr>
<tr>
<td>Exposure in service of short duration</td>
<td>Products</td>
<td>(1) climatic Conditions and of use real. (2) Time and reduced cost of experimentation.</td>
<td>(1) Many uncertainties on the climatic conditions and of use. (2) Extrapolation with other constructive entities or other sites difficult.</td>
</tr>
</tbody>
</table>

For that it is necessary to determine:

- a number of relevant data per failure mode,
- The number of data capitalized by failure mode will be related two parameters:
 - homogeneity of the Service Life to reach the failure. More they will be near, less there will need data to obtain our kit of reference;
 - More the failure mode is frequent more we will retain data.

It is necessary to study the impact of the various factors over the Service Life per failure mode. Indeed, if the impact of the factor is weak it will not be essential to vary the factor in the benchmark data. On the contrary if the impact of the factor is important over the Service Life it will be necessary to vary the factor.
• a relevant choice of factors level selection to identify the representative extreme cases, see ‘Fig. 5’.
The representative extreme cases are not case where all the factors are at the maximum or the least. Indeed, these extreme cases do not represent reality (red line on the ‘Fig. 5’). It is necessary to make a small preliminary study to determine which case would be most unfavourable while remaining possible. This case is represented in green on the ‘Fig. 5’.

• an identification of available data sources.

![Identification of the representative extreme cases](image)

Figure 5. Identification of the representative extreme cases

To help us to make this study it can be interesting to set up an experimental plan.

2.3 Consultation of reference Service Life

Once these data capitalized in the platform, the originators will find there the Service Life which the investors could ask them. The managers of works will be able to draw information relating to maintenance there. The platform will be able for example to make it possible to check that the foreseeable Service Life of a constructive solution is adapted to the destination of the work, with its economic model.

The database allows the consultation of Service Life stored, in order to estimate Service Life of a component in similar conditions.

Three types of possible studies:

- Systems of prediction starting from the play of factors of the study;
- Decision-making aid starting from the play of some factors and the DDV concerned;
- Information starting from the play of factors of the study.

CONCLUSION

Components Service Life is an essential data to conceive and manage buildings. Creating a tool to capitalize and share information is needed for the knowledge of construction products Service Life. It
is required by the "French national service life information platform", financed by the French ministry for housing and carried out by the CSTB.

To go further in the capitalization of the data, an international extension of the platform is in project. It is carried out by Politecnico di Milano which works on Service Life Estimation using Reference Service Life Databases and Enhanced Factor Method [DANIOTTI, 2008].

REFERENCES

Hans J., 2006, French Guide for taking into account of service life in building industry, FFB report

Talon A., 2006, Évaluation des scénarii de dégradation des produits de construction, UNIVERSITE BLAISE PASCAL – CLERMONT II - CSTB