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Abstract-This paper introduces an optimized multi-task novel 4 DOF pole climbing/manipulating robot for 
construction works. The robot can travel along poles with bends, branches and step changes in cross section. It is 
also able to perform manipulation, repair, testing and maintenance tasks after reaching the target point on the pole. 
A hybrid serial/parallel mechanism, providing 2 translations and 2 rotations, have been designed as the main part 
of the mechanism. Optimization of this robot contains workspace optimization of the proposed mechanism and 
decreasing the total time of reaching the target point, has been established with genetic algorithm method.  
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1. INTRODUCTION 
 

Climbing robots have received much attention in 
recent years due to their potential applications in the 
construction and tall building maintenance, 
agricultural harvesting, highways and bridge 
maintenance, shipyard production facilities and etc.  
Earlier research in this area has focused on 6-DOF U-
P-S (universal prismatic spherical) mechanisms. R 
Slattern has modeled and simulated a 6-DOF parallel 
robot with pneumatic actuators. [1] 
Later R Aracil et. al. fabricated a parallel robot for 
autonomous climbing along tubular structures. This 
robot uses the gough-stewart platform as a climbing 
robot. Their mechanism also uses 6 cylinders as the 
grippers (3 cylinders for each gripper) using a total of 
12 actuators not counting the actuators needed for the 
manipulator arm. The robot is able to climb along 
structures such as trees which are not straight structure 
[2]. 
But in recent years some industrial applications such 
as machine tools has resulted in more attention to 
parallel mechanisms with less than 6 degrees of 
freedom. Most of the research in recent years has 
focused on 3-DOF mechanisms [4, 7, and 8]. 
While in most applications 3-DOF may be 
insufficient, complexities and the heavy weight of the 
6-DOF mechanisms is also a forbidding factor. As a 
matter of fact for most pick and place applications at 
least four-DOF is required (3 translations and 1 
rotation to orient the object in its final location) [3]. 
Also traveling along a pole or tubular structures with 
bends and branches requires four degrees of freedom 
(2 translations and 2 rotations along and perpendicular 
to the tubular axis). These same degrees of freedom 

are also essential for most manipulation and repair 
tasks required in the pole climbing applications. 
Specific examples are fruit harvesting and street/ 
highway light bulb change operations. 
As most of structures made by human being are 
straight structures with bends and branches, there was 
a need for less complicated robot for climbing and 
manipulating along these kinds of structures. 
To the best knowledge of the authors, there is no 4-
DOF mechanism providing 2 translational and 2 
rotational degrees of freedom suitable for such 
operations. The mechanism proposed in this paper 
takes advantage of a parallel/serial mechanism 
providing 2 degrees of translation and 2 degrees of 
rotation along the desired axes. The mechanism also 
takes advantage of a novel gripper design, making it 
suitable for safe pole climbing operations. 
Although tasks accomplished by the proposed 
mechanism, can also be achieved using a 6-DOF 
Stewart mechanism [1,2], but the resulting mechanism 
becomes too heavy and complicated for most practical 
applications. Furthermore using a total of 2 actuators 
for grippers, the whole mechanism has only 6 
actuators. 
 
 

2. THE ROBOT DESIGN 
 

The proposed pole climbing robot consists of three 
main parts (Figure1) which are: the 3-DOF planar 
parallel mechanism, the serial z axis rotating 
mechanism and the grippers.  



 
 

Combining the 3-DOF planar parallel mechanism 
with a rotating mechanism around the pole axis 
provides two rotations and two translations, which is 
necessary to achieve the design objectives. 
Furthermore, the linear cylinders used in the parallel 
manipulator are arranged to encircle the pole and 
thus reduce the grasp moments on the gripper.  
One of the grippers is attached to manipulator, and the 
other one is attached to the base of the rotating 
platform. As a result, the grippers have four DOF with 
respect to each other, allowing for movements along 
the poles with different cross sections and geometric 
configurations. 
Figure 1 shows the robot model passing the bend 
section. Using this model we were able to examine 
the robot possible movements and the robot 
configurations in order to select the best mechanism 
and design the mechanical parts. A detail concept of 
the design and necessarily of these 4 dof has been 
presented in another paper from the authors [3]. 
 
3.1. The 3-DOF planar parallel 3-RPR manipulator 
 
A general planar three-legged platform with three-
degree-of freedom consists of a moving platform 
connected to a fixed base by three simple kinematics 
chains. Each chain is consists of three independent 
one DOF joints, one of which is active [4]. 

 
 
Since the displacements of the platform are confined 
to the plane, only R- and P-pairs are used. The 
possible combinations are therefore: RRR, RPR, 
RRP, RPP, PRR, PPR, PRP, and PPP. The last 
combination is excluded because no combination of 
pure planar translations can produce rotation of the 
moving platform. Thus, there are seven possible 
combinations of kinematics chains. These chains can 
be combined in either symmetric1 or asymmetric 
groups of three. The active joint in a leg is identified 
with underline. Since any of three joints, in any of 
the seven kinematics chain listed, can be actuated 
here are twenty-one possible leg architectures. On the 
basis of the following rule which is presented by 
Merlet [5]: "The chain obtained when locking the 
actuated joint is not of the PP type" the number of 
possible leg architectures reduces to eighteen, which 
are listed in Table 1. Hayes et al. [6] showed that 
there are 1653 distinct general planar three-legged 
platforms with three DOF. By neglecting the 
asymmetric manipulators and eliminating 
architectures in which the active joint is on the 
moving platform (these architectures have less 
rigidity than others), only 12 architectures remain. 
Since we want to use this mechanism in a hybrid pole 
climbing robot, the weight of this mechanism is a 
critical and decisive factor. Mechanisms having two 
prismatic joints are heavier than others due to the 
weight of the associated linear guides. The 
mechanisms with active revolute joints are also 
heavy because of their transmission systems. As a 
result, the PRR and RPR architectures are the only 
viable choice. Finally to minimize the manufacturing 
costs, the RPR architecture is selected as the more 
optimal mechanism for this application. 
 

3. KINEMATIC ANALYSIS 
 

The parallel part of the robot hybrid mechanism is a 
planar parallel robot with 3-RPR chain. The planar 
parallel 3-RPR manipulator consists of a fixed base 
plate, a moving platform and three RPR chains that 
connect these plates. The manipulator with the 

 

 
Figure 2. The robot model passing the bend 

          Figure 1. The pole climbing robot model 



relevant geometric parameters is shown in figure 3. 
Combining the 3-DOF planar parallel mechanism with 
a rotating mechanism around the pole axis provides 
two rotations and two translations, which is necessary 
to achieve the design objectives. The following 
equations are the result of inverse kinematic analysis 
of the proposed 3-DOF mechanism. 
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Since the negative solutions for haven't any 
geometric interpretation, there are only one inverse 
kinematics solutions for a given pose of the parallel 
manipulator (i.e. the positive solutions of (1), (2), 
(3)). 
Using inverse kinematic equations ((1), (2) and (3)), 
one can obtain following equations as forward 
kinematic equation of the 3-RPR mechanism.     
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Which result in two solutions for forward kinematic 
equations. 
 
3.1 VELOCITY EQUATION AND JACOBIAN 
MATRICES 

 
Equations (1), (2) and (3) can be differentiated with 
respect to time to obtain the velocity equations, 
which leads to : 
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Rearranging (7)-(9) leads to an equation of the form:  

θBxA && =         
                                                                  (10) 
And the vector of the input velocities, is defined as  
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And matrices A and B, respectively, the forward and 
inverse Jacobian matrices for the manipulator are 
expressed as: 
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Assuming B is nonsingular, the Jacobian matrix for 
the parallel manipulator can be written as 
 

Figure 3. The geometric parameters of the manipulator 
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Full kinematic analysis of the 4-DOF hybrid 
mechanism has been presented in another paper from 
the authors [9]. 
 
 

4. OPTIMIZATION 
 
Even though the most significant optimization in 
robotic applications is designing the robot with 
minimum required DOFs, but workspace and path 
planning optimization can result in using smaller 
actuators and lower weight of the whole system. As 
the robot has the ability of doing different construction 
works with a little change in design, the optimization 
process should be done with respect to the application. 
As the workspace area of the robot does not have a 
close form equation, the best way of optimization of 
the workspace is using the global search approaches. 
One of the most efficient methods of global search is 
genetic algorithm method. Using this method, one can 
find the best design parameters of the robot, which 
leads to the optimum system. 
 Using kinematic equations, some design parameters 
of the proposed mechanism has been optimized with 
genetic algorithm method. These parameters include: 
Lmin, the length of the cylinders at the zero stroke, 
Lmax, the length of the cylinders at the maximum 
stroke, R3, r3 and h as it has been shown in figure  
3.So the parameters vector will be: 
K= [Lmin,Lmax,R3,r3,h].For all objective functions, 
following parameters have been used for GA 
algorithm: 
Number of generations: 100 
Number of individuals in a population: 50 
Crossover probability: 0.85 
Mutation probability: 0.05 
 
4.1. Genetic algorithm 
 
Genetic algorithms, as powerful and broadly 
applicable stochastic search and optimization 
techniques, are perhaps the most widely known types 
of evolutionary computation methods today. As a 
matter of fact, genetic algorithm is an optimized 
global search method. 
Genetic operators such as selection, crossover, and 
mutation are applied to individuals of a population 
for many generations as the method converges 
towards the desired solution. A genetic algorithm has 
the following structure: 
 
Create an initial population. 
Repeat the following steps: 
Evaluate the fitness of each individual based on an 
objective function. 

Determine the frequency of reproduction of the 
individuals. 
If a probability of crossover is attained, perform a 
crossover operation (combination of two parents to 
produce two offspring). 
If a probability of mutation is attained, perform a 
mutation operation (change one of the genes of the 
chromosome of an individual). 
Continue until the maximum number of generations 
has been attained [10]. 
 
Every individual is a possible solution to the problem 
to be solved. Following above steps, each generation 
individuals have better fitness value than the previous 
generations. 
 
4.2 Workspace optimization 
 
The aim of workspace optimization in this problem is 
not to maximize the reachable workspace of the 
manipulator. As mentioned earlier optimization 
process should be done with respect to the application 
of the robot. Here maximizing the movement of the 
robot along x-axis is a good objective function. This is 
due to need for long movements along x direction, for 
the time that the robot has been received to the target 
point and need to manipulate along the radial direction 
of the pole. For this aim, we consider objfun1 in a 
manner that the program maximizes possible 
movement along x-direction in constant orientation of 
the manipulator. This could be done for a specific θ, in 
which the manipulability of robot along x-axis is 
important. Here θ depends on the application of the 
robot. So we have objfun 1=δx  
 
4.2 DEXTERITY OPTIMIZATION: 
 
In some applications optimization of kinematic 
properties is an important factor. The global dexterity 
index (GDI) of a manipulator is a measure of its 
precision over its actual workspace [10]. 
Gosselin and Angeles defined and computed the GDI 
based on condition number of the Jacobian matrices 
[11].One can obtain GDI factor using following 
equations: 
It is well known that the Jacobian matrix is obtained 
with following equation: 
 

ABJ 1−−=                                                               (15) 
In which A and B is obtained from kinematic 
equation: 
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The condition number of the Jacobian matrix J is: 
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In which  
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Where W=w1, w=1/n, n is the dimension the matrix, 1 
is the identity matrix, and “tr” indicates the trace of 
the matrix. 
 k may has a value from 1 to ∞.So using ŋ=1/k is a 
good solution to bound the k value. So ŋ has a value 
between 0 and 1. ŋ=1 shows a perfect isotropic 
dexterity and ŋ=0 shows a singular condition. ŋ is a 
local property of the manipulator and should be 
integrated over the entire manipulator’s workspace in 
order to get the GDI[10]. 
  
GDI=A/B                                                                 (19) 
 
Where: 
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And B is the area of workspace. 
If we take constant orientation workspace, the formula 
will be: 
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The mechanism with an average dexterity of about 1 
has a good dexterity. So objfun2 = GDI. 
 
4.3 Path planning optimization 
 
As mentioned earlier, the robot has the ability of 
traveling along poles with bends and branches. For the 
robot, it takes several steps to travel along bends. 
Number of these steps depends on the bend angle and 
the robot workspace. This means that the robot 
workspace should be optimized due to bends angle of 
the structure in a manner that the robot can pass the 
bends with minimum number of steps. For this 
purpose we should maximize ∆z and ∆x of the 
workspace in constant orientation of “θ =180- α” in a 
way that the equation ∆z=tag θ*∆x is satisfied. 
In which α is the bend angle and θ is the manipulator 
angle. ∆z is the maximum movement in z direction 
and ∆x is the maximum movement along x direction. 
The above equation should be satisfied because 
traveling along bend section of the pole needs a 
movement of ∆z and ∆x in which ∆z=tag θ*∆x. With 
larger amount of ∆z and ∆x in bend angle, the robot 
can overtake the bend section of the pole with lower 
number of steps (figures 2&3).So the aim of objfun3 is 
minimizing the number of steps when the robot is 
overtaking the bend section of the pole and we 
consider objfun3=δx in a specific θ with respect to 
equation: ∆z=tag θ*∆x. 
 

 
5. RESULTS 

 
Above analysis has been done for a typical application 
of the pole climbing robot. One may use the robot for 
highways light bulb changing. For this application 
path planning optimization and optimization of 
maximum movement along x-direction is considered. 
Also dexterity optimization has been done for better 
dynamic properties. 
The results have been obtained for a set of typical 
dimensions. We considered below constraints: 
 
100 mm< Lmin < 300 mm 
70 mm< R3 < 400 mm 
70 mm< r3 < 400 mm 
5 mm< h < R3 
1 < α < 5 
In which α is Lmax/Lmin. 
Then optimization for objfun1, objfun2 and objfun3 
has been accomplished and K= [Lmin, Lmax, R3, r3, 
h] for each objfun has been obtained. (Dimensions are 
in mm). 
 
The results for objfun1 are: 
 
K= [300 mm, 494.8 mm, 130 mm, 400 mm, 83.3 mm]. 
In this case dexterity after 10 generation was: 0.2683 
and after 100 generation was: 0.2872. 
 
The results for objfun2 are: 
K= [300 mm, 1200 mm, 310 mm, 261 mm, 302 mm]. 
In this case δx after 10 generation was: 2236 mm and 
after 100 generation was: 2351 mm. 
As it was mentioned before, objfun3=δx in a specific 
θ with respect to equation: ∆z=tag θ*∆x. 
The GA optimization for objfun3 was performed with 
bend angle of π/4. It means that θ=π/4. 
 
The results for objfun3 are: 
K= [300 mm, 1200mm, 150 mm, 72.7 mm, 140.6 
mm]. 
In this case δx after 10 generation was: 558.6 mm and 
after 100 generation was: 609.6 mm. 
Also objfun4 has been defined as a linear combination 
of objfun1 and objfun2 and objfun3 it means that: 
 
objfun4= α1w1objfun1+ α2w2objfun2+ α3w3objfun3. 
 
In which w1, w2 and w3 are weight factors and α1, α2, 
and α3 are factors for mapping all objective functions 
into one range. 
In this example using α1= 8000, α2=1 and α3 =4 and 
weight factors of w1=1, w2=4 and w3=1 following 
results has been obtained: 
 
K= [300 mm, 973.2 mm, 190.8 mm, 240.6 mm, 209.6 
mm]. 
 



6. CONCLUSION 
 

In this paper a solution to autonomous robot pole 
climbing problem is presented. Some of the 
advantages of the proposed robotic mechanism over 
similar fully parallel 6-DOF robots are smaller 
number of actuators, lighter weight and a less 
complex mechanism. Also, a unique multi-fingered 
gripper with the ability to adapt to various poles cross 
sections and dimensions with only a single actuator is 
presented. Finally the optimization of the 4-Dof 
mechanism for a typical application has been studied. 
Future works include prototyping and control of the 
proposed pole climbing robot. 
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