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Abstract

This paper presents the design of second-order sliding mode controllers for semi-active control using
magneto-rheological (MR) dampers. The approach can be useful in applications involving shock absorbers
but here our main concern is the suppression of building vibrations induced by dynamic loadings such as
earthquakes or strong winds. The MR dampers have been of increasing interest in structural control as they
are inexpensive to manufacture and have attractive properties such as small energy requirements, reliability
and stability in operations, as well as a fast response of milliseconds. Challenges of MR damper structural
control rest with the system’s high nonlinearity due to the force-velocity hysteresis, and the constraint of the
magnetisation current, required to be between its zero and maximal values. A variety of control algorithms
have been applied, including the decentralized bangbang control, modulated homogeneous friction
algorithm, clipped optimal control, Lyapunov-based control, and also non model-based intelligent schemes.
In these techniques, the currents are usually obtained from the damping force indirectly rather than directly
from the controller output. For direct current control, in this paper we propose second-order sliding mode
controllers, which can satisty the control constraint, provide high accuracy, retain robustness and remove
chattering. The effectiveness of the proposed direct current control technique is verified, in simulations, on
a benchmark building model subject to excitation of various scaled earthquake records.

Introduction

Control devices and methodologies for suppression of high-rise building vibrations caused by a dynamic
loading source can be classified as passive dampers requiring no input power to operate, active dampers
requiring a great deal of power to generate counteracting forces, and semi-active combining features of
passive and active damping (Datta, 2003; Symans & Constaninou, 1999; Yoshida ez a/., 2004).

In structural control, active control devices require a certain amount of energy to drive the actuators to
accomplish the control objective. On the other hand, semi-active control needs a relatively small amount of
driving power and the actuators can also be operated in the passive mode. The philosophy adopted in these
approaches is to effectively absorb the vibration energy by modifying the control device physical
characteristics.

For semi-active structural control, the use of magneto-rheological (MR) dampers has been of increasing
interest in smart civil structures as they are inexpensive to manufacture, have reliable, stable and fail-safe
operations, small energy requirements, and a fast response of milliseconds.

Given the advantages of MR dampers and semi-active control strategies, a number of controller designs
have been proposed for the building control problem. In most of MR damper controllers developed so far,
the current supplied to the dampers is quite often derived, from the required damping force obtained as the
control signal, via a secondary current-control loop. In this paper, the direct current control approach for
MR-dampers is proposed using second-order sliding mode (SOSM) controllers. The idea is to control
directly the magnetisation current of the semi-active device in order to drive to zero not only the sliding
function of the state variables but also higher-order time derivatives of the sliding function. The SOSM
approach retains strong robustness of the system in the sliding mode, at the same time removes the
chattering effect, provides even higher accuracy in realisation, and is suitable for control signals subject to
constraints. These features make it ideal for direct current control of the MR damper used in the smart
structures.

The remainder of the paper is organized as follows. The system description and the design of the
proposed SOSM controller are included in Section 2. Simulation results are given in Section 3 to verify the
effectiveness of the proposed approach. Finally, a conclusion is drawn in Section 4.
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Control Design

Consider pairs of MR dampers, placed in a differential configuration on the 15t ,... k" ,-.. and n™ floors

. . . . . . . T . .
of a building, with the control current vector 1 =[i;+-+i, --1,]" whose entties are constrained between zero

and the maximal values. By defining the system state y = [x" x"]" eR?, the state-space equation for the

smart structure can be written as (Ha ez /., 2007):
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where A is the system matrix, B s the gain matrix and E is the disturbances (earthquake excitation and
model uncertainties) of appropriate dimensions with notation given in (Kwok et al., 2000).

To design a structural controller that can perform satisfactorily in the presence of disturbances and
uncertainty, different approaches have been proposed such as the linear-quadratic-Gaussian (LQG) control,
sliding mode control (SMC), or Lyapunov-based control. However, smart structures embedded with MR
dampers require the control currents to be constrained between zero and maximal magnetisation value,
which normally results in some quantisation scheme, and hence, would affect the system performance. In
this regard, it is attractive to use higher-order sliding mode controllers (Levant & Alelishvili, 2007) as they
allow for using rates of change of the current as the control signal while having the ability to remove
chattering and also to retain a wide range of robustness.

th
With differential dampers installed on the k floor, the motion equation for this floor is as below:
m i, +c X, +kx, =—ca, X, +kawx, +(cazXy +kazx, )i, +arz, ]+ mX, 2
X, X, . . U .
where "% and ¥ are respectively the storey velocity and acceleration, * is the current supplied to the

- . — .2 _ . H
. = z, =tanh(fx, + 6, sign(x,)),
pair of dampers, and where Gk = 0o + quly + a2l , (B, + 6, sign(x; ) and

O = %0 + Ol (11, 1 a1, 2007). From (2), we obtain:
X, = —m,;lzk)'ck - m,;l%kxk - m,;l(zdzxk +l_€d2xk)ik - m,;lakzdk + )'C'g , 3)
which has the general form of:
)'c'szk(xk,t)+Gk(xk,t,ik)‘ @

For this dynamic equation, let us define a sliding function
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o, =x, +A4x, 4, >0

©)
with time derivatives CF — Yk T A, and Ok =Nt A . Hence,
. dH, dG,
o, = + +A(H, +G,), 6
(=S (1, +G) ©
where
dH . AT e e
dtk =—m cik, —m kix, + X,
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_ m;;l [(_szfck + %dzxk + (511 + ZElzik)de +ax SeChZ(,Bxk +6; Sign(xk))'éklsign(xk)]%.

Therefore, by denoting u, = di, / dt, we can obtain the form:

o ..
u, =01 8k zﬁka" #0 )

G, =h(t,x,,i,)+g,(t,x.,i)u, h =6,

where hy, (£, X, ,i,) = % + A, (H, +G,)—m*sech® (B, +6, sign(x, ))ark, —m;*(cazk, +kao%, )i,

g0 (t,x,,i,) = —m [eark, +kaox, +(an + 2ai, )z, +are sech® (B, +6, sign(x, )).8,, sign(x, )]
Now, if we impose two conditions:
0<k,, <g.(t,x,.i,)<k, , and |k (t,x,.i,)|<C,, ®)

then according to (Levant, 2007), there exists a SOSM controller for u (1) to drive %% and
asymptotically to zero.

Assume now that (7) holds globally. Then (7) and (8) imply the differential inclusion
é;k € [_Ck’ck]+[K KMk ]uk (9)

where Ci K, and Ky, are constants depending on the damper-embedded structure parameters defined in
(7). Most SOSM controllers, for example (Levant, 2007; Polyakov & Poznyak, 2008; Levant & Pavlov, 2008,

my

and Boiko et al., 2007), may be considered to steer %% to 0 in finite time, which is essential for mitigation
of quake-induced vibrations in structural control. Since inclusion (9) is not explicitly related to system (3),
such controllers are obviously robust with respect to any perturbations, preserving (7). Hence, the problem is
now to find a feedback control

Uy =¢7k(o-kid-k), (10)

such that all the trajectories of (9), (10) converge in finite time to the origin 0, =0, =0 of the phase plane.
Differential inclusions (9), (10) are understood here in the Filippov sense (Filippov, 1988), which means

that the right-hand set is enlarged in certain convexity and semi-continuity conditions. The function Pe is
assumed to be a locally bounded Borel-measurable function, which is physically true due to inertia of the
magneto-rheological fluid. Indeed, in the smart structure control system, it represents the time rate of change
of the magnetisation current to the MR dampers. A solution can therefore take any absolutely continuous

vector function (0,().6,(1)) satisfying (9), (10) for almost all 7.
Design of SOSM controllers is greatly facilitated in the 2-dimensional phase plane with coordinates

Ok Ok by the simple geometry of any smooth curve that locally divides the plane into two regions. A

number of known SOSM controllers may be considered as particular cases of a generalized 2-sliding
homogeneous controller (Levant & Pavlov, 2008):
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Drawing the two switching lines MO lk| k

,U12k+lu22k >0, ﬂ’fk—i_ﬂ;k >0

, in the phase plane, and considering various possible cases, one can readily
. . 1ot . o
check that it is always possible to choose "%’ 2k such that controller (11) yields finite-time stable responses.

Indeed, if, for example, Hyr Aoy > 0, then a 1-sliding mode can easily be induced on the line

. 1/2 .
o, + |0' | signo, =0 ; oo -
O+ Al S . If for each ! one of the coefficients is zero, the twisting controller

u, =—n, sign (O'k)_rszig” (64) (12)
is obtained with its convergence condition (Polyakov & Poznyak, 2008):

(rlk +I’2k)Kmk _Ck > (rlk _rzk)KMk + Ck’ (rlk —I’Zk)Kmk > Ck. (13>

Controller (11) may be considered as a generalization of the twisting controller, when the switching takes

. 12 .
place on parabolas Fu O+ /11"|O-k| signo, =0 instead of the coordinate axes.

An important class of SOSM controllers comprises the so-called quasi-continuous controllers, featuring
control continuous everywhere except the SOSM 0y =0, =0 itself. Since the 2-sliding condition is of
dimension 2, the trajectory in general never hits the 2-sliding manifold. Hence, the control signal, or the time
derivative of the damper magnetisation current in (7), remains a time-continuous function all the time. As a
result, chattering is significantly reduced. In this paper, we select the following SOSM controller from such a
family, as given in (Levant, 2007):

o, + ﬁk|0'k |1/2signak
. 1/2
CARYACA (14)

This controller is continuous everywhere except of the origin and vanishes on the parabola

U, =—-o;

: 12 .
o, + B o, signo, =0 : . a,
P k| k| &Ny . With sufficientdy large % there are such numbers P%'P2' where

. 2 .
0<py <hBi<pu , that all the trajectoties enter the region between the curves Tkt Py |ak| signo, =0
and remain there.
As described in (7), since the SOSM control is the derivative of the damper current, the current itself is
obtained by integration:

_ o, +,3k|0'k|1lzsign0'k
i, = J.ukdt = J.—ak |d |+ﬂ |0' |1,2 dt
k k|~ k

(15)

Simulation Results

For illustration, a 3-storey structure is considered in which differential dampers are placed on the first
floor. A block diagram of the structure is depicted in Fig. 1. The parameters for the smart structure are as
below

983 0 0 175 -50 0
M=l 0 983 0 |(kg), C=|-50 100 —50 |(Ns/m),
0 0 983 0 -50 50

1200 -684 0
K=|-684 13.80 -6.84|x10°(N/m)
0 -684 684
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ii=i, i,=i,=0 ai=64+1836i—488i%, a»=a3=0

>

z4; = 1anh(100.i, +(0.58 +0.301) sign(x,)), z,, =24, =0

A. Controlled responses

Firstly, a number of excitations including step, random, sinusoidal and square waveforms are considered.
The responses of the structure, for example to random and sinusoidal excitations are illustrated in Figs. 2
and 3, respectively. According to the figures, the proposed controller can mitigate effectively the affect of the
external disturbances by directly controlling the damper current.

Distrubances

2-sliding mode | | ,[ A i) 3-storey MR Displacement
controller =L damper-embedded structure

Uncertainty

Figure 1. Second order sliding mode controlled 3-storey MR damper-embedded structure
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Figure 2. Random excitation responses: (a) 15t floor Acceleration, (b) 1+t floor Velocity, (c) 1%t floor
Displacement, and (d) Damper Current
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Figure 3. Sinusoidal excitation responses: (a) 15t floor Acceleration, (b) 15t floor Velocity, (c) 1% floor
Displacement, and (d) Damper Current.

We consider next responses to the scaled records of known earthquakes. The first-storey time responses
for the Kobe earthquake are shown in Fig. 4. The responses display significant reductions in displacement,
velocity and acceleration. Similar responses can be obtained for scaled records of the El-Centro, Northridge,
and Hachinohe. The SOSM controller indicates the system stability in most of earthquake period except
where the magnitude is too large. However, the derivative returns to negative and the building structure
under control becomes stable.

Performance Evaluation

Apart from six performance criteria given in (Ha et al., 2007), we consider here with reference to
(Spencer et al., 1999) further four evaluation criteria, two for peak responses and two for RMS responses.
They are:

Peak inter-storey drift ratio

J, =
; (16)
whereby the maximum drifts are normalized with respect to the uncontrolled peak displacement,
subscript k=1..3 stands for the storey index and subscripts U denote controlled and uncontrolled
cases.
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Figure 4. Kobe Earthquake Responses: (a) Excitation, (b) Damper Cutrent, (c) 1%t floor Displacement, (d)
1st floor Velocity, (e) 1+t floor Acceleration, and (f) 3 floor Displacement

Peak storey acceleration ratio

Jg =
; (17)
whereby the accelerations are normalized by the peak uncontrolled acceleration.
Maxcimum RMS inter-storey drift ratio
Jy = max f"(t)
X (t) ’ (18)
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which evaluates the ability of minimizing the maximum RMS inter-storey drift due to all admissible

) X =1/T_1Z%§tx,f(t)} ) S .
ground motions. The notation is for the root-mean-square (RMS) values, ! is the

sampling time, and T i the total excitation duration.

Mascimum RMS storey acceleration ratio

~

%, (¢)

J;p = Maxs =
° jék,u(t) (19)

that is given in terms of the maximum RMS absolute acceleration with respect to the uncontrolled case.

Table I below summarizes all the criteria evaluated using the simulated responses with the proposed
SOSM controller, typically, for the second floor. As can be seen, all the corresponding ratios using the
SOSM controller are much smaller than those obtained in the uncontrolled case and further improved from
the Lyapunov-based method (Ha et al., 2007).

Table I. Response ratios:

Floizd J, J, Js J, J, Js J7 Jy Jy Jio
C;i; 0148 0.132 0.145 0.040 0.069 0.076 0068 0.078 0.126 0.555
Kobe 0152 0.127 0146 0.043 00620 0.079 0.061 0081 0.127 0.454
OheHaChm 0103 0.061 0.099 0.026 0041 0.051 0042 0.055 0.059 0.334
dgeNorth“ 0130 0.103 0.125 0.032 0.047 0.060 0.047 0.070 0.101 0.307
Conclusions

We have presented an effective scheme for semi-active control of smart structures embedded with pairs
of MR dampers. Using the proposed control system, the building structures are shown to be capable of
effectively suppressing vibrations due to earthquakes by directly controlling the damper magnetization
currents. Differential configuration for the dampers is used to remove the problem arising from damper
offset forces. For this semi-active structural control system, a second-order sliding mode controller is
proposed to obtain the time rate of change of the supplied currents to the dampers. These magnetisation
currents, after integration, can efficiently control the fluid to yield required damping forces for the structures
with provident power consumption and improved control performance. Simulation results for a three-floor
building model are evaluated using a set of performance criteria. The results obtained demonstrate the
effectiveness of the proposed scheme under constraints of the control signals in mitigation of seismic
vibrations of MR damper embedded smart structures.
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