Dynamic Thermal Networks. A Methodology to Account for
Time-dependent Heat Conduction

Johan Claesson
Chalmers University of Technology, Dept. of Building Physics, Gothenburg, Sweden

ABSTRACT. Thermal networks provide a handy and instructive way to represent steady-state heat flow
processes. Time-dependent thermal flow is much more difficult to handle. The paper outlines a general
methodology and theory for time-dependent thermal processes. The method requires that the heat flows
through the boundary surfaces are calculated for a unit step change at one surface and zero temperature
at the other surfaces. The relations between surface temperatures and heat flows for any time-dependent
process are obtained by superposition of the step responses. The theory provides nice insight into the
memory effects for time-dependent heat flow. The mathematically exact temperature-flow relations
between the surfaces are represented graphically as a dynamic thermal network. The heat flow between
two nodes is given by the steady-state conductance times a suitable mean value of the difference of
preceding node temperatures. A new conductance has to be added for each surface. This part involves
the difference between the actual node temperature and a mean value of preceding temperatures. There
are transmittive heat fluxes between all pairs of nodes, and an absorptive flow component at each node.

1 INTRODUCTION

Thermal networks provide a handy and instructive \
way to represent steady-state heat flow processes I3()

in cases when the (solid) heat flow region is

bounded by a moderate number of surfaces with T O
constant temperatures. Time-dependent thermal ! —>
flow is much more difficult to handle. An example Ty i&

is the time-variable heat flow out from a building
through walls, roof, foundation and surrounding s ; ) ; >
ground. The heat loss depends on actual indoor Figure 1.Heat flow problem for a building with

and outdoor temperatures, and on the preceding varying indoor, outdoor and attic temperatures.
sequences of values.

The boundary fluxes depend in general on the
temperature history of all the boundary surfaces
until the considered time. Figure 1 shows a three- S S,
surface problem. The indoor, outdoor and attic T T
(air) temperatures are time-dependent. The three 1 / 2
sequences of boundary temperatures determine the
heat flow process and in particular the three time- 011 (1)
dependent boundary heat fluxes. Figure 2 illus- /
trates a general heat conduction problem in solid 7\
regions bounded by three surfaces. Our main in- S l
terest is to determine the three boundary fluxes Os(1)
at any time. The fluxes will depend on the actual = Figure 2. General heat flow problem bounded by

boundary temperatures and on the preceding val-  three boundary surfaces.
ues.




The paper outlines the present state of devel-
opment of a general theory for time-dependent
thermal processes, (Claesson 2002a). The linear
heat flow process is prompted by the tempera-
tures at a few boundary surfaces (indoor, outdoor,
etc.). It will be shown that it is possible to extend
the concept of thermal networks to time-dependent
cases. A few new concepts are necessary, but the
representation is surprisingly straightforward. The
starting point is the wellknown technique of super-
position of step-response solutions.

An application concerning the heat loss dynam-
ics of walls is presented in a companion paper
(Wentzel, Claesson 2003) to this conference. An-
other application concerning the three-dimensional
heat loss dynamics for a whole building with ceil-
ing, walls and foundation is presented in (Wentzel
2002) and (Wentzel 2003). Here, we use the con-
venient term dynamic to signify a time-dependent
thermal process.

There is a vast literature with many publications
in this field of calculating and analyzing bound-
ary heat fluxes. The basic mathematics is found
in (Carslaw and Jaeger 1959). The response factor
method introduced by Mitalas in the late sixties
is summarized together with a large list of refer-
ences in (ASHREA 1997). Other important papers
are (Davies 1997), where the analysis is based on
ramp responses, and (Kossecka and Kosny 1998),
where so-called thermal structure factors for com-
posite walls are used.

2 HEAT CONDUCTION PROBLEM

The region of heat conduction is bounded by a few
boundary surfaces with prescribed temperatures.
Each temperature is constant over its surface, and
it may be any function of time. The thermal prop-
erties may vary in any way throughout the region.
A basic limitation is that the heat flow problem
is linear, so that the principle of superposition is
applicable.
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Figure 3. Linear heat flow problem (for the case of
two boundary surfaces).

The normal heat flux at surface S; equals
the temperature difference over the surface layer
times the surface heat transfer coefficient «;.

3 DYNAMIC THERMAL NETWORK; TWO
SURFACES

We consider first a heat flow problem with two
boundary surfaces. Our main interest is the dy-
namic relations between the boundary heat fluxes
and temperatures. In Section 4 we will consider
certain step-response solutions. By suitable super-
position, where the boundary temperatures are
considered as integrals of infinitesimal step, we
get integral formulas for the boundary fluxes, (9).
These relations may be rewritten in the following
general way:

(t) = K4 [T1(t) - Tla(t)} +Ko {Tlt — T (t }

Qa(t) = Ky |Ty(t) = Tau(t)|+ Kz [Tault) = Tui(t }

The (steady-state) thermal conductance between
the two surfaces is K5 (W/K). The inverse Rio
=1/K;5 is the thermal resistance between the
boundary surfaces. The factor K; (W/K) is the
surface thermal conductance for surface S;. It is
equal to the surface area A; times the surface heat
transfer coefficient: K1 = A; - o.

The right-hand terms of the dynamic relations
involve thermal conductances multiplied by tem-
perature differences. The following notations are
used:

Tia(t) = /0 " kialr) - Tu(t — 1) dr,

Tou(t) = /0 Y o(7) - Tu(t — 1) dr,

Tou(t) = /0 ~ koa(7) - To(t — 1) dr,
Tonlt) = /0 T k(1) Dot — 1) dr. (2

The integrals are average values of the boundary
temperatures backward in time. The weight func-
tions K1a(T), K12(7) and ke, (7) are defined below.

Let us first discuss the structure of these rela-
tions. The boundary fluxes (1) may be divided into
two parts:

Q(t) + Qs (1),

2 (1) — QY,(0). (3)

(t) =
Qo(t) =

Here, we define

QP°(t) = K - [Tl(t) - Tla(t)} :



(1) = Ks - [To(t) = Taalt)]

¥ () = Ko [Tun(t) — Tau(1)]

sa(t) = —Q1,(1). (4)

We will call them absorptive and transmittive heat
fluxes.

Figure 4 illustrates this division of the boundary
fluxes. The absorptive component of the heat flux
through S; is equal to the surface conductance K;
multiplied by the difference between the present
temperature 77 (¢) and an average T'1,(t) backward
in time of the same surface temperature. There
is a corresponding absorptive component for sur-
face S9. The transmittive flux is the same for both
boundary fluxes with opposite signs. It is equal to
the steady-state conductance K15 between S; and
So multiplied by an average temperature difference
between the surfaces, (4).
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Figure 4. Division of the boundary fluxes into
absorptive and transmittive parts in the two-surface
case.

The absorptive flux Q3*(¢) depends on 7} (t) but
not on the other surface temperature Ty(t). It is
equal to the total heat influx (at both sides) when
Ti(t) acts at Sy, while the temperature is zero at
the other surface. See Figure 5, left. This follows
from (1) with 7% = 0 by adding the two equations.
There is a corresponding interpretation for Q3°(t).
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Figure 5. Interpretation of the two absorptive fluxes.

The transmittive flux depends only on the differ-
ence 1'14(t) — Tt (t) between the boundary temper-
atures. It is obtained as the flux out from Sy, when
the temperature difference T} (t) — T5(t) acts at S;
and T' = 0 at Sy. See Figure 6. This follows from
the equation for Q9(¢) in (1) by putting 75 = 0
and replacing T by T, — T7.

Ty(1)-Ty(1) 0
O o)
Figure 6. Interpretation of the the transmittive flux.

The basic relations (1) with the temperature av-
erages (2) may be interpreted as a dynamic thermal
network. Figure 7 shows a suggested graphical rep-
resentation of these dynamic (or time-dependent)
relations.
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Figure 7. Graphical representation of the relations
(1)-(2) as a dynamic thermal network for a two-
surface problem.

The transmittive component is represented by
the conventional resistance symbol with the ther-
mal conductance K;5 = 1/Rjy written above it.
To the resistance or conductance symbol, we add
summation signs on both sides. The signs signify
that we take an average of the node temperatures
according to (2). The left-hand summation sign is
reversed to indicate the symmetric character of the
flux and that summation concerns the values at the
left-hand node. The weight function x15(7) may be
written below the resistance symbol. The symbol
represents graphically the following equation for
the heat flux:

Q(t) = Kis - /0 " ko) [Tu(t = 7) = To(t — 7] dr

T1(» Kip TH(1)
. AN .

NS (5)
o1 xi(9) O

The two absorptive components are represented
by the resistance symbol with the surface ther-
mal conductance (K; and K5) written above. The
weight functions k1,(7) and kg.(7) may be writ-
ten below the resistance symbols. A summation
sign is added at the free end after the surface con-
ductance. There is not any summation sign on the
node side, since the present node temperature is to



be used at this side. This new symbol represents
graphically the following equation for the heat flux:

QW) = Ku+ [Ti(t) = [ ma(r)Tale — ) dr

Tl(t) Kl (6)
——AND
Q(t) Kla(r)

4 BASIC STEP-RESPONSE SOLUTIONS

We will use certain basic dynamic solutions from
which general solutions are obtained by superposi-
tion. The boundary temperatures 77 (t), T»(t), etc.,
are the input in our thermal processes. The basic
output is the boundary heat fluxes Q,,(t).

The simplest possible time-dependent input is a
unit temperature step at a certain time. We will
here consider the very basic solutions for a unit
step in the air immediately outside one boundary
surface. All temperatures are zero for 7 < 0. At
this time one boundary temperature is changed
to 1 and kept at this value for all times 7 > 0.
All other boundary temperatures are zero (for all
times). The initial temperature in V (at 7 = 0) is
zero. The solutions for these boundary steps will
be called the basic step-response solutions. We use
7 and not ¢ as time variable in the step-response
solutions. Then the weight functions have 7 as in-
dependent variable, while the backward boundary
temperatures are taken for ¢t — 7.

Figure 8§ illustrates the basic step-response prob-
lems with the solutions Uy (r, 7) and Us(r, 7) for a
two-surface problem. For each problem there are
two boundary fluxes as shown in the figure.
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Figure 8 The two basic step-response problems and
the definition of boundary fluxes in the two-surface
case.

4.1 Basic step-response boundary fluzes

The two cross-fluxes Q12(7) and Q91(7) are equal
(for all times) due to a wellknown general symme-
try principle (see Claesson 2002a). In a case with
two boundary surfaces, there are three response
functions:

Qll(T): Q22(T), Q12(7):Q21(7')- (7)

At the time 7 = 0, we impose the temperature
1 outside the surface layer. The temperature dif-
ference over the surface heat transfer coefficient
is 1 — 0. This means that the first two fluxes,
the admittive step-response fluxes, start from their
respective surface thermal conductivity (K; and
K,). These fluxes decrease monotonously to the
steady-state flux K7, between the surfaces after
long time. The cross-flux, or transmittive flux,
Q12(7) = Q91 (7) starts from zero and increases
to Ki9. See figure 9. We will also, in accordance
with figures 5 and 8, use the following absorptive
step-response fluxes

Q1a(7) = Qn(T) - Q12(T),
Qza(T) = Q22(7) - Q12(T)o (8)

The absorptive fluxes start from K; and K, for
7 = 0 and decrease monotonously to zero for large
T.

> ¢

Figure 9. Character of the basic step-response bound-
ary fluxes for a step at S, top, and at So, bottom.



4.2 Superposition formula. Weight functions

We may obtain the solution for any boundary
temperatures 77(t) and Ty(t) by a suitable su-
perposition of the basic step-response solutions,
(Carslaw and Jaeger 1959). The Duhamel super-
position formulas may be written in different ways.
We have the following general, mathematically ex-
act equations, (Claesson 2002a), which are partic-
ularly suited for our purposes:

d

Qm~ﬂ@—7ﬂ%%
=

@@—K?ﬂ®+éwd

/0 A - )

dr
dQQa
dr

Q2(t) = Ky - To(t) + /000 -To(t — 1)dr+

/0 - dgf Tyt — 1) = Tu(t — )] dr. (9)

We now define weight functions in the following
way:

%i(ﬂ =-K;- Kfla(T)’
%j@ = Kis - K12(7),
%E;_(T) =—K5- Kan(T)' (10)

Insertion of these expressions in (9) gives the basic
equations (1).

The weight functions are positive (or zero). The
integrals of the weight functions are equal to 1,
since Q1,(7) varies from Kj to zero and Qq5(7)
from zero to Ki5. We have

I =1a, 12, 2a.

(11)
The absorptive weight functions k1,(7) and Ko, (7)
decrease steadily from large values at small 7 to
zero at infinity. The transmittive weight function
k12(T) increases from zero to a maximum and then
decreases to zero at infinity. It has a bell-shaped
form. See Figure 10.

An important application of the response the-
ory is composite walls with time-dependent one-
dimensional heat flow. A new method for rapid and
very exact calculation of the step-response solu-
tions is presented in Claesson (2002b). Laplace and
generalized Fourier techniques are used in com-
bination. The response and weight functions are

/0°° ki(Ddr =1 ki(r) >0

quite readily obtained for any composite wall with
very high accuracy.

Kla (T) K-12 (T)

T T

Figure 10. Character of absorptive and transmittive
weight functions.

5 DYNAMIC THERMAL NETWORK; THREE
SURFACES

It is straight-forward to generalize the above rela-
tions to cases with any number of surfaces. How-
ever, the theory is most useful for problems with a
moderate number of boundary surfaces, each hav-
ing a prescribed time-dependent temperature.
Figure 2 illustrates the general three-surface
problem. The corresponding dynamic thermal net-
work for a three-surface problem is shown in Fig-
ure 11. There are three surface conductances K7,
K, and K3, and three (steady-state) thermal con-
ductances K9, K13 and Ks3 between the bound-
ary surfaces. For constant boundary temperatures,
the network becomes identical with the ordinary
steady-state network, since the absorptive parts
and the summations backward in time vanish.

0,0 1) 2 0,1

O3(1)

Figure 11. Dynamic thermal network for a three-
surface problem.

The two basic step-response problems for the
two-surface case are illustrated in Figure 8.
We have now three step-response problems with
the solutions U (r,7), Us(r,7) and Us(r,7). The
boundary temperature for U;(r,7) is zero outside
Sy and Sz, while there is a unit step H(7) out-



side S;. The admittive response influx at S; is
()11(7), and the response cross-fluxes out through
Sy and S3 are (Qq2(7) and Q13(7), respectively.
There are corresponding response fluxes Qoa(7),
le(T) and Qgg(T) for UQ, and Qgg(T), le(T) and
(Q)32(7) for Us. There are in this case 3+3 basic re-
sponse fluxes due to the symmetry of the cross-
fluxes (Q12(7) = Qai(7), Qu3(T) = @a1(7) and
Q23(7) = Q23(7)). The absorptive fluxes are de-
fined as

Qla(T) = Qn(T) - Q12(T) - Q13(T)- (12)

We have six weight functions defined as in (10).
We have for example:

dQsa(T)

dr = —K3 . K',3a(7'). (13)
dle(T) .
i K3 - ky3(7). (14)

There are three absorptive weight functions k1,(7),
Koa(T) and ks,(7), and three transmittive weight
functions k15(7), k13(7) and ko3(7). They are all
positive (or zero), and their integrals are all equal
to 1 in accordance with (11).

The general formulas (9), which relate the
boundary fluxes to the boundary temperatures are
readily extended to the three-surface case. For ex-
ample, we have for Q;(t)

d

ia Ty (t — 7)dr+
=

Ou(t) = Ky - Tu(t) + /0°° :

/0 = dff (Tu(t = 7) = Tolt — 7)] dr+

| W3 11t 7) — To(t — 7)) dr.

dr
(15)
The heat flux through surface S; may now be
written

Qu(t) = Ky [Ty(t) — Toa(t)] +

Ky {Tm(t) — Toa (t)} +

Kis [Tus(t) = Tsa(t)] . (16)

There are corresponding equations for Q»(t) and
(Q)3(t). The corresponding thermal network is
shown in Figure 11. The six average temperatures

Tmime (M’ # m) are defined in the same way as in
(2). We have for example

Tieo(t) = /0 " kio(7) - Tu(t — 1) dr,

Tou(t) = /0 Y k() Dot —1)dr. (17

Here, we use the index mtm’ to denote the mean of
temperature T,,,(t—7) with the transmittive weight
function Ky (7) (m #£ m').

The above theory is applicable for any number of
boundary surfaces M. For M = 1 we have a single
boundary surface. There is a single step-response
function Q11(7) = Q1a.(7), and a corresponding
absorptive weight factor x1,(7). There is not any
transmittive part. The thermal network consists of
an absorptive component only as shown in (6).

In the general case with M boundary sur-
faces, there are M step-response problems and
M - M step-response fluxes @ (7). The cross-
fluxes Q. (7) and Qi (7) are equal (m # m’).
We get M absorptive and M - (M —1)/2 transmit-
tive step-response fluxes. These fluxes give M ab-
sorptive weight functions k. (7) and M- (M —1)/2
transmittive weight functions K, (7) as in (10)

and (13)-(14).

6 DISCRETE APPROXIMATION

In a numerical solution, we must use a discrete ap-
proximation. Let h > 0 be the time step. The time
interval under consideration, nh —h <t < nh, has
index n. The preceding intervals, nh — vh — h <
t < nh — vh, are enumerated backwards in time
(v =1, 2, ...). We may consider a linear tem-
perature variation during each time step with the
temperature T4 ,,_, = T1(nh—vh) at the righthand
end point of interval n — v. The heat flux at the
considered time is Q1 , = Q1(nh).

The relations between boundary temperatures
and boundary heat fluxes become in the considered
discrete approximation, (Claesson 2002a):

QQ,n - KQ {TQ,n - TQa,n} +K12[72t,n _Tlt,n]- (18)

In the discrete form of (2), we get the following
average values of the boundary temperatures:

Vs Vs
Tla,n - Z K/la,I/Tl,TL—l/) TZa,n - Z Kan,I/TQ,TL—l/ )

v=1 v=1

Tlt,n - T2t,n - Z Ri2,v [Tl,n—ll - TQ,n—u] . (19)
v=0
The relations (18) and (19) are the discrete form
of (1) for the dynamic thermal network of Figure 2.
The surface conductances are replaced by modified
surface conductances and the weight functions by
weight factors for each time step. The integration
to infinity in the temperature averages (2) must



be limited to a finite value 7, at which time the
weight functions are zero with a sufficient accuracy.
Then steady-state conditions are attained within
the considered accuracy. The summations are per-
formed up to a large v = vy with vy >~ 7,/h.

We use a time-step average Qr(7) of the response
functions Qr(7):

_ 1 T+h
Q1(r) = ﬁ/ Qi(r")dr', 1I=1la, 12, 2a.

_ ~ (20)
The modified surface conductances K; and K, are:

K1 =Qun(0),  Ky=Q(0).  (21)
From (2) with piece-wise linear boundary tem-

peratures, we get the weight factors (Claesson
2002a):

Qla(Vh - h) - Qla(Vh)

Riapy = Kl .
_ QlQ(Vh) - Qu(Vh — h)
Ri2p = )
K12
2a(Vh — h) — Qaa(vh
R2ay = Q2 (V —) QQ (V ) (22)
) K2

The equations (18)-(22) are ezact for the consid-
ered piece-wise linear boundary temperatures.

These equations are the same as the ones ob-
tained with the response factor method (Mitalas
1978 and others, ASHREA Handbook of Funda-
mentals, 1985). The difference is that we start
from the response for a unit step, while the other
method considers the response for a triangular
pulse with a fixed width (2-h). An advantage with
the presented approach is that the basic response
is independent of any time step. We use and store
the basic response functions for the particular heat
flow problem. The response factors for any discrete
approximation are obtained from formulas of the
above type (Claesson 2002a). The integral of the
step response gives the response for a ramp tem-
perature (77(7) = 7). The triangular pulse may be
obtained from three superimposed ramps (Davies
1997, Claesson 2002a). This means that the re-
sponse for a triangular pulse is obtained from in-
tegrals of three step responses. It is easier to rep-
resent the step-response functions than the more
complex triangular-response functions with a given
accuracy.

7 THERMAL NETWORKS. EXAMPLES

The use of dynamic thermal networks are illus-
trated by two examples. The first examples con-
cerns the heat balance for the indoor temperature.
The second example is a heat balance for a crawl
space.

7.1 Indoor temperature

We consider a building with an indoor tempera-
ture 77(t) and a given outdoor temperature T5(?).
There is a given heat input Qy(¢) (W) and a given
heat gain from solar radiation @, (t). The heat in-
put from ventilation is given by a prescribed time-
dependent ventilation conductance K, (t) (W/K).
The sum of these heat inputs is equal to the heat
flux @Q1(t) at the inside boundary of the building.
Using (1), we have the heat balance

Qi(t) = Ky [Ta(t) = Tra(t)] + K12 [Tws(t) — T (8)]

= Qu(t) + Q:(1) + K (1) [T2(t) = Ta()] - (23)

The corresponding dynamic thermal network is
shown in Figure 12. The absorptive part at the
outdoor side S, in the general Figure 7 is omitted.
We do not need this part for the balance on the
inside.

On(t) @—
Ti(y

Ql(t) Kl

Qr(t) O—

- Th(1)
Figure 12 Dynamic thermal network for the indoor

temperature with heating, solar radiation and venti-
lation.

The indoor temperature 77(¢) is readily solved
from the heat balance (23):

Qn(t) + Q.(t) + K, (t) To(t) + Qa
Ky + K, (t) ’

Ti(t) =

Qa =K1 T(t) + K {TQt(t) - Tlt(t)} . (29)

The indoor temperature is equal to the heat influx
to the indoor node from heating, solar radiation,
ventilation with the outdoor temperature, absorp-
tive influx with absorptive temperature 7'1,(t) and
a transmittive influx with the temperature differ-
ence Ty (t) — T14(t), all divided by the sum of con-
ductances K; + K, (t).

The absorptive and transmittive average tem-
peratures are discretized in accordance with (18)-
(22). The temperature T} ,, at time step n is ob-
tained from (24). In the sums, we use preceeding
values 11 ,_, and Ty,_, for v = 1, ..., v,. These
previous values have to be stored.



The above very simple case with prescribed
heating may readily be extended to more complex
regimes for Q,(t), and to more complex networks.
The dynamic thermal networks for heat flow in
solid regions may in the above way be added and
incorporated within the conceptual framework of
steady-state networks.

7.2 Crawl-space temperature

We consider the heat balance in a ventilated crawl
space under a building with constant indoor tem-
perature T7. The outdoor temperature T)(t) is
given. The heat input from ventilation is given by
a prescribed ventilation conductance K, (t).

The heat input from the ventilation is equal to
the flux Q3(t) from the crawl space. Here, we ne-
glect the small heat capacity of the air in the crawl
space. There is an absorptive flux and transmittive
fluxes to the indoor surface with the temperature
T1 and to the outdoor surface with the tempera-
ture T5(t). We have in accordance with (16)

Qs(t) = Ky [Ts(t) — Taa(t)] +

K23 [TSQ(t) - ng(t)} + K13 {Tgtl(t) — Tl} B
= K.(1) [To(t) — T3(1)] - (25)

The average temperature 113(t) is equal to the
constant value T7.

The corresponding dynamic thermal network is
shown in Figure 13. The absorptive components for
the indoor and outdoor nodes, and the transmit-
tive component between them, are omitted from
the general Figure 11. We do not need these parts
for the crawl-space balance. We also omit the
sigma sign towards 73 in K3 since no summation
is needed here.

K1)
Ty (t)s— A

T3 Kj
Ky3
—}’\/\/‘{—'Tz(f)

Figure 13 Dynamic thermal network for a ventilated
crawl-space temperature. The indoor temperature T}
is constant.

The indoor temperature T7(¢) is readily solved
from the heat balance (25)

_ K3 [Tl — T3t1(t)} + K3 T34(t) + Qs

Ts(t) K+ Kol) ;

Qp = Kos [Tas(t) — Taa(t)| + K (£) To(t). (26)

It is straightforward to implement the dynamic
thermal networks is a computer code or in any
mathematical program. The level of complexity is
somewhat higher than that of the corresponding
steady-state networks. We have to add an absorp-
tive component at each node, and store and use
preceding values in the sums for the absorptive
and transmittive components.

8 CONCLUDING REMARKS

The paper outlines the a general theory for time-
dependent thermal processes where the relations
between boundary temperatures and heat fluxes
may be represented as a dynamic thermal network.
The linear heat flow process is prompted by the
temperatures at a few boundary surfaces.

The method requires that the heat flows through
these surfaces are calculated for a unit step change
at one surface while keeping zero temperature
at the other surfaces. The relations between sur-
face temperatures and heat flows for any time-
dependent process are obtained by superposition
of the basic step responses. This means that step-
response flows contain all information required for
any particular case.

The mathematically exact temperature-flow re-
lations between the surfaces are represented graph-
ically as a dynamic thermal network. The num-
ber of nodes is equal to the number of surfaces. It
turns out to be possible to retain the steady-state
thermal conductances (or resistances) between the
nodes. The heat flow between two nodes is given
by the conductance times a suitable mean value
of the difference of preceding node temperatures.
This mean value over preceding time is determined
by a weight function that is proportional to the
time-derivative of the corresponding step-response
flux.

The other main difference compared to a steady-
state network is that a new conductance has to be
added at each surface in order to account for the
total flux to the node. This part involves the differ-
ence between the actual node temperature and a
mean value of preceding temperatures at the same
node. The weight function for the mean value is de-
termined from a corresponding response function.

We get transmittive heat fluxes between the
nodes just as in the steady-state case. At each sur-
face we get a new absorptive heat flux involving the
surface conductance. The absorptive flux may be
regarded as the heat uptake (from all surfaces) for
the given boundary temperature when the other
boundary temperatures are zero.

The dynamic networks have the same accuracy
as the full (three-dimensional) models used to cal-



culate the step responses, but they will typically be
100 times faster or more on a computer. An exam-
ple is presented in Svensson and Claesson (1999).
The theory provides nice insight into the memory
effects for time-dependent heat flow.

REFERENCES

ASHRAFE Handbook of Fundamentals. 1997. Am. Soc.
of Heating, Refrigeration, and Air Conditioning Engi-
neers, Atlanta, GA. Chs. 28 and 30.

Carslaw and Jaeger, 1959. Conduction of Heat in
Solids. Clarendon Press, Oxford.

Claesson, J. 2002a. Dynamic Thermal Networks.
Background studies I: Elements of a mathematical the-
ory of thermal responses. Report, Dept. of Building
Physics, Chalmers Technical University, Gothenburg,
Sweden.

Claesson, J. 2002b. Heat Conduction in Compos-
ite Walls. Rapid Solutions Combining Fourier and
Laplace Techniques. In Proceedings of the 6th Sym-
positum on Building Physics in the Nordic Countries,
Trondheim, Norway.

Davies, M.G. 1997. Wall Transient Heat Flow using
Time-Domain Analysis. J. of Building and Environ-
ment. Vol 32, pp. 427-446.

Kossecka E. and Kosny J. Effect of Insulation and
Mass Distribution in Exterior Walls on Dynamic Ther-
mal Performance of Whole Buildings. Proc. Thermal
Performance of Exterior Envelopes of Buildings VII,
Dec. 1998, Clearwater, Florida.

Mitalas, G. P. 1978. Comments on the Z-transfer
Function Method for Calculating Heat Transfer in
Buildings. ASHREA Transactions 1978, Vol. 84, Part
I.

Svensson, C. and Claesson, J. 1999. A Model to Es-
timate the Temperature and Moisture Conditions in
Crawl-spaces. Simulations of a Crawl-space. In Proc.
of the 5th Symposium for Building Physics in the
Nordic Countries, Gothenburg, August 1999, Sweden.

Wentzel, E-L. 2002a. Application of the Theory of Dy-
namic Thermal Networks for a Building. In Proceed-
ings of the 6th Symposium on Building Physics in the
Nordic Countries, Trondheim, Norway.

Wentzel, E-L J. 2003. Application of the Theory of
Dynamic Thermal Networks for Energy Balances of
a Building with Three-dimensional Heat Conduction.
Companion paper to this conference.

Wentzel, E-L and Claesson, J. 2003. Heat Loss Dy-
namics of Walls. Analysis and Optimization Based on
the Theory of Dynamic Thermal Networks. Compan-
ion paper to this conference.






	SIBPC 2003
	++++++++++++++++++++++
	HOME
	PREFACE
	COMMITTEES
	LIST AUTHORS
	PAPERS
	++++++++++++++++++++++




