Development of an Industry Maturity Framework for Facilities Management

Maulidi A. Banyani ¹, Danny S. S. Then²
¹Maulidi.banyani@polyu.edu.hk, ²bessth@polyu.edu.hk

¹ & ²Department of the Building Services Engineering, Faculty of Construction and Land Use, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
¹ Tel.: +85234003889, Mobile: +85251270717
² Tel.: +85227664558, Mobile: +85294765782

ABSTRACT AND KEYWORDS

Purpose

This conceptual paper presents an Integrated Feeder Factors Framework (I3F) as a common yardstick in assessing maturity of Facilities Management (FM) industry.

Design/Methodology/approach

This paper is based on a critical analysis of existing literature with a focus on existing organisational maturity models, and identifying potential ‘feeder’ factors that impact on the development of any industry sector within an economy. Literature related to FM and maturity models have been evaluated, categorised and collated to provide thematic groups that are used in identifying feeder factors. The study also, used similar method in patterning critical success factors (CSFs) that are essential in establishing internal strength of the feeder factors.

Findings

The I3F framework provides a consistent basis for evaluating maturity of FM industry at national, sector-wise and organisational levels, unlike existing process-focused organisational maturity models.
Research limitation/implications

The proposed framework has to be validated for functionality before application.

Practical implications

The study introduces the framework that is aimed at assessing the state of maturity of facilities management as an industry.

Originality/Value

The study introduces the I3F framework as a potential yardstick for assessing the developmental levels of the FM industry within an economy. It aims to serve as a potential ‘road map’ for charting the growth of facilities management as an important economic activity from a ‘least developed’ to a ‘fully matured’ stage.

Keywords

Facilities management, Feeder factors, Industry development, Maturity model.

1. INTRODUCTION

As an industry, discipline and profession, Facilities Management (FM) has received a lot of attention from both academics and practitioners (Price, 2003a). A multitude of issues have been scrutinised and received lengthy discussions. Some of these included: FM in identity crisis (Tay and Ooi, 2001); nature or status of FM (Green and Price, 2000); and potential focus of the FM industry (Then 1999). However, despite these problems FM is by all factors growing and is now recognised in five continents (Then, 2004). FM, as an industry, provides support services to core businesses and is a global business measured in billions in terms of major international currencies. The International Facility Management Association (www.IFMA.org, 2009) estimates the global value of the FM market to be in the tune of US$ 100billion. In the UK alone, the British Institute of Facilities Management (www.BIFM.org.uk, 2009) estimated the FM sector is worth between 40b and 95b pounds. In Germany, the FM market is estimated to be in the region of 55 billion Euros (www.GEFMA.de, 2009). FM is the largest contributor to gross national product (Ballesty, 2008). The author
noted that FM in Australia in 2002-03 contributed about A$12.2 billion of value added, A$12.4 billion in GDP terms and employed 172,000 persons. Apart from direct contribution of the FM sector to the economy, it is entrusted with the crucial function of overseeing important buildings used to provide crucial services to society. The introduction of public-private partnerships (PPP) and private finance initiatives (PFI) have opened up the FM market and created direct relationship between the public sector and the FM sector. It is evident therefore that despite its relatively short history, the importance of the FM industry as an economic sector of the national economy and as a critical service sector is being acknowledged by governments and businesses alike. Nevertheless, in its current settings, FM as an industry is perceived in three ways as noted below.

- It is an emerging industry (Grimshaw, 1999; Price 2003a; and Ballesty, 2008).
- It is a growing industry (Price 2003b; Then, 2004; Noor and Khumpaisal, 2009).
- It is a mature industry (Then, 1999; Barret and Baldry, 2003; and Ventovuori et.al, 2007)

The analysis of the above studies reveals that there is no specific pattern of perception related to a particular timeline. For example, while some studies conducted in the late 1990s and early 2000s viewed FM as having indicators of maturity or being mature, some of those conducted in late 2000s regarded the industry as emergent. This is, in a way, an indicator of a lack of a common yardstick that can be used to measure the degree of its development. It can also be a result of diversity of functions that form FM. Other factors contributing to this dilemma can be unlimited horizontal expansion and the use of specific criteria such as market, function or country in assessing maturity. It is in the light of these shortcomings that this study aims to identify feeder factors and construct a framework that can be used in determining the level of development and maturity of the FM industry within an economy.

The paper introduces a framework to be known as an “Integrated Feeder Factors Framework (I3F)” that can be used in measuring maturity of FM industry in developed and developing economies. In more specific terms, it intends to achieve the following objectives:

- To identify factors and parameters to be included as ‘Feeder Factors’ for the continuous development of the FM industry; and
- To construct an ‘Integrated Feeder Factors Framework’ (I3F) based on the identified feeder factors and parameters.
2. FACILITIES MANAGEMENT IN THE 21ST CENTURY

Facilities Management (FM) is a business of managing work space (McGregor and Then, 1999). The work space in this context is not considered in its narrow view of physical space but rather as a resource capable of influencing production as is the case for other factors of production i.e. information, labour, capital and technology (Stallworth and Ward, 1996). The management of work space in modern businesses has become increasingly complex, both at organisation and country level. At an organisational level, workplace is no more defined by four walls of a building. Technological advancement has made it possible for a work to be conducted from outside of the headquarters building. Unlike in the past where the functions of the Facilities Manager were to ensure availability of workspace; today’s challenges lie in the provision and management of strategic infrastructure and support services that enable business continuity. The Facilities Manager is required to anticipate change in demand and act swiftly while considering adding value to the core business. At country level, Facilities Management is an economic activity that contributes to GDP and which accounts for a significant proportion of government’s expenditure. Prudence will dictate that diligence is at the fore and only professional companies are engaged in managing and running long term projects. It is therefore apparent that the Facilities Manager has to be vigilant, astute, competent, ethical and knowledgeable in order to effectively provide the required range of services. One of the striking features of FM according to Atkin and Brooks (2001) is the lack of a universal approach to managing facilities and that each organisation, even within the same sector, will have different needs. Also, it is multifaceted and formed by diverse functions and core competencies. FM practice is a case-specific endeavour dealing with a diversity of facilities, organisation, business sector, surrounding environment, context and circumstances (Barret and Baldry, 2003). Due to this diversity it is indeed difficult to construct a framework based on the internal processes alone.

In its simplest form, FM deals mainly with technical and operational aspects of providing services necessary to support the core business. The focus at this stage is to minimise operational costs associated with the provision and management of work space. At the highest level, it is concerned with the management of work space at strategic level and abilities to cope up with the rapid changes in business environment. The focus of the industry at this level is to add value through effective management of facilities provision and support services (Then, 2004).
Available literature suggests that over the last 30 years FM has evolved from operational focused to strategic orientation. Then, (2004) noted “FM has grown from managing and maintaining corporate property (operational buildings) with a deliberate slant towards meeting stakeholders’ expectations”. The evolution of FM from operational based functions to strategic orientation is a prime indicator of the industry maturity.

Based on literature review, the high performance FM practice today is strategy-driven in the provision and management of support services. It is at the strategic level where the FM industry can forecast and match supply to existing demand with the highest efficiency by influencing high level decisions and add value to corporate performance. Businesses and country both aspire to attain this level, which is an immediate maturity level. This study looks at the contribution of feeder factors into enabling an organisation or a country to reach this level.

3. ANALYSIS OF THE EXISTING MATURITY MODELS

According to Cookie-Davies (2004) the term “maturity” has a number of usages; but when used in conjunction with organisation or industry development signifies full development or perfection. According to Lahti et.al (2009), maturity conveys the idea of evolution from some initial state to some advanced state. Generally, a maturity framework is a measure to aid organisation in gauging their performance relative to industry best practice. According to Fraser et.al (2002), all maturity models share the common property of defining a number of dimensions at several maturity stages, with a description of characteristics performance at various levels of granularity. The basic components of the models are number of levels, descriptors, generic description of each level, a number of dimensions (such as process areas or critical factors) and element or activities to be performed.

3.1 An Overview of Maturity Models from other Disciplines

Maturity models are popular in Project Management (PM), Knowledge Management, Information Systems (IS) and Supply Chain Management (SCM) industries. In these industries there are plenty and elaborate literature on maturity models and their application. Nevertheless, some of maturity models have had influence beyond the sphere of their intended application and worth a mention. The most popular maturity model in use is the Capability Maturity Model (CMM). This model is based in the work of
software engineering pioneer Watts Humphrey (Cookie-Davies, 2004). The model addresses problems that arose from organisation inability to manage the software development "process" (Paulk, et.al. 1993). The Capability Maturity Model is a five levels model starting from 'initial stage' being least developed to 'optimising' which is the highest level. In between these levels there are 'repeatable', 'defined' and 'managed' stages in ascending order. The model has received significant application in human resources, project management and information system (Lahti et.al. 2009). Another maturity model in use is the Organisational Project Management Maturity Model (OPM3) developed by the Project Management Institute (PMI). This model looks into the best practices achieved within the project, program and portfolio domain. Also in application is a concept by Vaidyanathan and Howells (2007) of the Construction Supply Chain Maturity Model (CSCMM). The objective of CSCM model is to provide a roadmap for members to realise their operational excellence, so that collectively the construction project can realise the benefits of improved performance (Lahti et.al. 2009). Standardised Process Improvement for Construction Enterprises (SPICE) is another maturity model in construction industry based on CMM. SPICE addresses challenges inherent in the construction industry that was not dealt with in CMM (Sarshar et.al. 2000).

3.2 Facilities Management Maturity Models

The influence of process and/or project-based maturity models has also been extended into the FM industry. Literature survey and internet search reveal that there are two FM maturity models in existence. These models are Facilities Management Organisation Model (FMO) developed in the United States and SPICE FM which in the United Kingdom. These models are discussed below in order to assess their potentiality of being used in this research.

3.2.1 Facilities Management Organisation Model (FMO)

Internet search reveals that IWMSNews.com in America has been hosting a series of articles in Facilities Management Organisation (FMO) maturity model. The model is based on concepts similar to that of the Project Management Institute process model. The FMO model is developed by James Turner and is formed around 11 competencies that are organised in five levels (http://www.iwmsnews.com/fmo-maturity-model). The model looks into five questions that are important to identify the competencies required to deal with them (Table 3.1). The identified areas in the questions are size of portfolio, access to management information, focus and
improvement, budget allocation and budget justification. Each of the questions corresponds to FM maturity level attained by the FM organisation. Unlike common maturity models, FMO does not use identifiers in labelling maturity levels, instead number 1 signifies the lowest level 5 (the highest) have been used.

<table>
<thead>
<tr>
<th>FMO Maturity Model level</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Management Question Answered</td>
<td>What am I responsible for managing?</td>
<td>How can I access the management information I need</td>
<td>What improvement should I be focused on now (short term improvements)?</td>
<td>What is the best allocation of my budget?</td>
<td>How can I justify a request for a budget increase (long term improvements)?</td>
</tr>
<tr>
<td>Core Competencies</td>
<td>Organisation, policy, inventory</td>
<td>Process, systems</td>
<td>Metrics and assessment</td>
<td>Short term planning performance improvement</td>
<td>Mission validation and long term planning</td>
</tr>
</tbody>
</table>

3.2.2. Standardised Process Improvement for Construction Enterprises (SPICE-FM) model

In a more recent development, Standardised Process Improvement for Construction Enterprises model (SPICE) has been used to assess FM process capabilities in the UK. The model is known as SPICE FM and is primarily concerned with management processes and its philosophy is that if the management processes are well performed, they will have an impact on the performance of the core processes (Amaratunga, et.al. 2008). The model is organised in five tiers beginning from ‘initial’, ‘service delivery management’, ‘knowledge management’, ‘quantitatively controlled’ and the highest ‘continuously improving’ (Table 3.2). These maturity levels are determined based on seven key processes which are service requirement management, service planning, service performance monitoring, supplier and contractor management, health and safety management, risk management and services coordination.
Table 3.2: Standardised Process Improvement for Construction Enterprises (SPICE-FM) model

<table>
<thead>
<tr>
<th>Maturity levels</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifiers</td>
<td>Initial</td>
<td>Services delivery management</td>
<td>Knowledge Management</td>
<td>Quantitatively improved</td>
<td>Continuously improving</td>
</tr>
<tr>
<td>5 Process enablers</td>
<td>Commitment</td>
<td>Ability</td>
<td>Verification</td>
<td>Evaluation</td>
<td>Activities</td>
</tr>
<tr>
<td>7 Process areas</td>
<td>Service requirements, Service planning,</td>
<td>Service performing monitoring,</td>
<td>Supplier and contractor management</td>
<td>Risk management</td>
<td>Service coordination</td>
</tr>
</tbody>
</table>

Source: Amaratunga et.al (2008)

3.3 Suitability of the Existing Maturity Models to this Research

The FMO and SPICE FM models like other maturity models such as CMM, OPM3 and CSMCMM are process, project, object or activity based models. These models are useful in addressing processes within a particular organisation and/or terminable projects. Terminable projects, tasks or activities are objective specific, carried out within stipulated time and budget. They are not life long endeavour. Progress of a project and a task can be determined by the efforts by individuals within the team. On the other hand, FM, as an economic activity, is a continuous on-going process and its progress is not determined by internal factors alone. There are external factors that have direct influence in its development and maturity. It is therefore opined that existing maturity models within and from other disciplines and specifically terminable projects, cannot be directly applied to FM industry, defined in its widest meaning to include not only processes but also external factors (Figure 4.1). In order to assess the degree of maturity of the FM industry, measures that incorporate and integrate external factors should be adopted. It is evident that process based models concentrates on practice only which is one of the six factors identified in Figure 4.1. Concentration of these models into practice (internal provision of services) limits their application in assessing industry maturity especially in a unique industry like FM.
4. DEVELOPMENT OF FACILITIES MANAGEMENT INDUSTRY MATURITY FRAMEWORK

As mentioned above, FM is highly localised in terms of solutions to be used in solving a particular problem. There is no one ‘fit all solution’ to FM issues (Atkin and Brooks, 2001). This situation and the fact that it is an amalgamation of various competencies make FM unique when compared to many industries. While understanding of the general principles and global perceptions of management issues may be crucial, it is a local knowledge that may prove to be an important asset. Knowledge about economic climate, market volume, regulatory frameworks, institutional culture, innovation, industry acceptance and availability of trained personnel may provide a highlight of FM developmental status within a country. The question at this moment is; how can FM developmental status be assessed? It has been shown in item 3.3 above that existing maturity models are biased towards processes and projects may not be used in this study. In responding to the question, this study introduces an *Integrated Feeder Factors Framework* (I3F) that can be used in assessing maturity levels of FM industry. I3F is a gauge against which FM industries can be compared internally and externally. It is a metric that countries can use to evaluate themselves within the FM development ladder. It is a decision support tool for countries and business that require or offer FM services. It starts by identifying key factors (feeder factors) from the literature related to facilities management.

4.1 Identification of Feeder Factors

Studies related to FM discipline and profession development are receiving increasing attention in recent years (Ventovuori *et.al*, 2007). Review of these studies has identified two modalities through which FM industry has developed. In the first modality, the FM industry grows organically (Price, 2004) purely responding to market forces of demand and supply. In this modality government plays a passive role. In the second, apart from market forces, the government and stakeholders joined forces and created initiatives within which the industry is encouraged to grow (Ballesty, 2008). FM development studies have also shade light in identifying the factors that are referred to in this work as ‘feeder factors’.

Feeder factors are defined as *interdependent and interrelated*
factors crucial for the existence, development and maturity of the FM industry within any national economy. However, the presence of these factors alone will not ensure development of the FM industry. It is the internal strength of each individual factor and their absolute contribution to the industry that is of importance. These factors can also be used in any other industry of similar nature to FM. Feeder factors were identified by collating and categorizing information from published FM literary works. Table 4.1 provides a summary of this analysis.

Table 4.1: Identification of Feeder Factors by categorization/collation

<table>
<thead>
<tr>
<th>Author and Year</th>
<th>Original content</th>
<th>Collated content (key variables)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Then, S. S. and Akhlaghi, F., 1992.</td>
<td>The focus of facilities management skills and techniques should be in the areas that contribute to the overall management of a business by relating accommodation and support infrastructure issues to business, financial and personnel criteria.</td>
<td>Research, practice and education</td>
</tr>
<tr>
<td>Lomas, 1999</td>
<td>In analysing FM development in Hong Kong used three of the factors practice, research and education and identified the role played by IFMA Hong Kong chapter in organising the first workshop to discuss facilities management practices in Asian region in 1995.</td>
<td>Practice, research, education and professional bodies</td>
</tr>
<tr>
<td>Nutt and McLennan (2000)</td>
<td>To promote the FM discipline the practice and the research should be linked closely.</td>
<td>Practice and research</td>
</tr>
<tr>
<td>Warren and Heng, 2005</td>
<td>In trying to establish the relevance of the tertiary education had used three other factors i.e. practice, professional bodies and environment.</td>
<td>Education, practice, professional bodies and environment</td>
</tr>
<tr>
<td>Yiu, 2008</td>
<td>Management related disciplines have the capacity to become accepted professionally acknowledged, if only the business need (market conditions or organisational development) is there for them to evolve.</td>
<td>Professional bodies, market, and environment</td>
</tr>
</tbody>
</table>

Source: Authors’ construct, 2009

Past studies summarised in Table 4.1 gave a historical account of the existence of feeder factors either as an individual factor or a group of factors. These studies did not map the link between the feeder factors or means to be used to ensure their co-existence, dependence and...
development. Furthermore, no measure has been introduced to try and assess the contribution of individual factor. They had looked into the historical past of the factors and not at the present or into the future. This study intends to take already established history into the future by analysing the contribution of each individual factor and their potential impact when considered as a ‘feeder chain’ in the developmental growth of FM.

Table 4.1 identifies six feeder factors derived from the literature reviewed above which are considered to be essential in the development of FM industry. These factors are depicted in Figure 4.1 (i.e. rectangular boxes). Figure 4.1 also illustrates the potential interactions, and inter-relationships between and amongst the factors that are likely to influence and impact on the developmental potential of the FM industry within any national economy.

![Figure 4.1: An illustration of Dependencies and Linkages of Feeder Factors](image)

Figure 4.1 illustrates *Market* as a feeder factor that is been fed by *Professional Bodies, Education, Environment, Practice and Research* (in dotted lines) in order to exist and develop. This implies that in order for the FM market to develop from the lowest stage, it requires to be served by people from the practice, operate within conducive environment, employ educated professionals to cope with constant changes and apply innovations resulting from research. In case these other factors are not active, there is likelihood that the market will also be inactive. This in turn indicates dependence of market as a feeder to the existence of other feeders. Conversely, each of the five factors that feeds into market tend to exist in response to availability of the market. The practice, professional...
bodies, FM education, FM research and regulations related to FM will not exist and develop if there is no market. It is indeed, this link between these factors that integrated feeder factors framework (I3F) is built upon.

4.3 Construction of the Integrated Feeder Factors Framework (I3F)

The proposed Integrated Feeder Factors Framework (I3F) is a framework of intertwined, interdependent and interrelated factors necessary for existence, development and maturity of any industry. Unlike other maturity models, I3F takes into consideration external factors that feed into the development of the industry at organisational, sector, national and regional levels. It transcends the common norm of looking into the internal processes of the practice alone. The rationale behind this framework is hinged on the fact that evolution of FM as an industry from one level to the next depends on the development of each one of these factors. Maturity of the industry is dependent on simultaneous growth of each of the feeder factors. Any one of the factors that lags behind hinder the development of the industry into the next stage of maturity level.

4.4 Research Propositions

In constructing the framework the study makes two propositions. These propositions are fundamental in the understanding and analysing the framework.

1. It is proposed that I3F can be a useful tool for analysis of existing industries which are at different levels of development and not non-existing ones. An industry is considered to be in existence when at least one of the feeder factors is in place. For countries that intend to evaluate its FM industry as an economic sector, the framework provides a consistent basis for indentifying and assessing key relevant factors that impact on the development of the industry.

2. Secondly, it is proposed that in order for FM industry to exist and effectively develop, all the identified feeder factors should co-exist and mutually develop into maturity. The simultaneous growth of each of the feeder factors is essential in resisting ‘industry maturity’ effect. It has been observed from literature that after maturity, industries will tend to decline in performance. For example, Hill and Jones (1998) noted that industries will go through embryonic/fragmentation, growth, shake-out,
maturity and then decline. It is postulated in this study that if all of the feeder factors attain maturity status at the same time then the industry maturity effect will not be felt or will have less impact. Since each one of the feeder factors will continue feeding into others and sustain the maturity. It is envisaged that if evaluation of the level of development, adoption and application of each individual feeder factors is conducted, the proposed framework can provide a picture of developmental stage and maturity status of the FM industry as a whole.

4.5 Establishing the Link

The study intends to establish the causal linkages between the identified feeder factors shown in Figure 4.1. The link between the feeders is expected to be analysed based on the strength of their relationship i.e. strong or weak. Strong relationship is a situation when the five active feeder factors feed into one active feeder factor at any given time. In this situation the industry is said to be at Full Maturity Stage (FMS). However, there are three more situations that can exist. In a situation where inactive feeder factors feed into active feeder factors, then the relationship is construed to be at Developmental Transition Stage (DTS). At this stage some feeder factors are active enough to influence the development of others. In the second situation, inactive feeder factors feed into another or other inactive feeder(s); the relationship is regarded as weak and the stage is known as a Formative Transition Stage (FTS). Lastly, is a situation where inactive feeder factor(s) feeds into non-existing feeder factor or factors, then the industry is said to be at the Least Mature Stage (LMS).

Two assessments are carried out to determine the maturity level of the FM industry. Assessment level one involves verifying the existence of the feeder. This is a straight forward and simple assessment when an assessor is required to only verify the existence of the feeder factors to ascertain their presence. It is suggested that a yes or no parameters can be used, it is however suggested that the assessor should establish reasons for non-existence of the other factors. The second assessment is a detailed treatise of the factors after the “yes answer” in the first assessment. This assessment has two levels. Level one, deals with evaluation of individual feeder factors based on the identified critical success factors that define the strength (Table 4.2). It is expected that each of the parameter will be assigned a unit score of 1 point. The more the factor scores indicate the more active it is. The results of the analysis will be classified as active or in-active. Factors with a score of more than 60% of the parameters will be considered active. Level two of the assessment
looks into the integrated contribution of individual factors into the overall development of the FM industry. In this assessment, the factors will be evaluated based on five attributes. These attributes are *dependability, influence, stability, consistency and trustworthiness (DISC-T)*. The attributes will reveal a situation to be technically referred to as *relational feeder capabilities interface* which shows a bonding between feeder factors. The Integrated Feeder Factors Framework (I3F) assessment is depicted in Figure 4.2.

<table>
<thead>
<tr>
<th>Factors</th>
<th>Internal Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practice</td>
<td>Innovation, Flexibility and response to changes and demands, strategies, Functions, Organisation, Focus, FM roles, FM position, Professionalism (association and knowledge), consistency and standards, business continuity</td>
</tr>
<tr>
<td>Education</td>
<td>Innovation, Catalyst for development, Localisation, Interaction with the practice, adoption of research results, adaptability, number of courses offered, take up rates and enrollments, level of courses</td>
</tr>
<tr>
<td>Professional Bodies</td>
<td>Setting of codes of conduct, Initiating and conducting research, Mobilisation and lobbying for recognition, Number of active members, Conduct of Meetings, Transparency within the organisation, Internal democracy and elections, Financial strength, Coordination and regulation of education, monitoring of core competencies</td>
</tr>
<tr>
<td>Research</td>
<td>Identify new areas for development, innovation, finding solutions for conceptual and functional issues, quantity of studies, quality of studies, adoptability, validity, reliability</td>
</tr>
<tr>
<td>Market</td>
<td>Nature of the services required, nature of clients (local/international and private/public), level of services required, Volume of business, contribution to GDP, Risks, diversity</td>
</tr>
<tr>
<td>Environment</td>
<td>Existing legal framework, recognition, trading information and data, competition, Financial commitment, Business relationship, Environmental considerations</td>
</tr>
</tbody>
</table>

Source: Authors’ construct, 2009
4.6 Determination of Maturity Levels using Integrated Feeder Framework (I3F)

4.6.1 Level 1: Least Mature Stage (LMS)

Least Mature Stage (LMS) is the lowest maturity level of the FM industry in which only one or two underdeveloped feeders exists. At this level, the FM industry is characterised by the existence of uncoordinated functions, lack of proper understanding of FM concept, unregulated education and knowledge, misunderstanding between pressure groups or existing professional bodies. Dominant FM functions at this stage are operational-related functions. In order for the FM industry to move one step further,
there is a need to harmonise the pressures between existing pressure groups, set regulated education system, and streamline the industry into a proper order. This stage is denoted by Level 1 in maturity axis in Figure 4.3.

4.6.2 Level 2: Formative Transition Stage (FTS)

The second stage in the framework is Formative Transition Stage (FTS). This is a formative stage of the essential feeder factors. At this stage the linkages between the six identified factors start to take shape and each of the feeders starts to develop its working procedures and identify a need to cooperate with others for overall development of the industry. The industry is dominated by both operational and tactical functions. Short term relationships are common and trust between service providers and customers is at a minimum. This stage is represented by Level 2 in Figure 4.3.

4.6.3 Level 3: Developmental Transition Stage (DTS)

The third stage of FM industry maturity is Developmental Transition Stage (DTS). It is expected that after formation of the feeder factors, the industry will strive to align and develop them into useful tools for its development. The dependence on each other at this stage is high. The industry prosperity is entirely dependent on the development of each of the factors. The industry is dominated by knowledge customers and professionalism is of paramount importance. The market is characterised by a mixture of operation, tactical and strategic functions. This stage is shown as Level 3 in Figure 4.3.

4.6.4 Level 4: Full Maturity Stage (FMS)

The last stage is the Full Maturity Stage (FMS). At this stage, the FM industry is characterised by quality FM services and efficiency that are responsive to changes. Professionalism and knowledge base are prerequisites in entering into the market. The feeding between the feeders is effective. The feeding chain continues to sustain the industry. This stage is dominated by quality research, stable market, professional and ethical personnel, enabling environment, developed education and knowledge base and high standard practices. At this stage, each of the factors is required to be in a mature stage to continue to uphold its position within the
feeder chain. The industry is characterised by strategic FM personnel delivering world class services at a very high rate of efficiency. Relationships are of long term nature and alliances between service providers and clients are common. This stage is represented by Level 4 in Figure 4.3.

Figure 4.3: Maturity Levels using Integrated Feeder Framework (I3F)

Source: Authors’ construct, 2009

5. CONCLUSION

This paper presents a new perspective of a yardstick that can be used to measure the maturity of the FM industry within a country. The paper uses a maturity framework in indentifying the pathway that the FM industry would evolve and its levels of development. It is an evolution from the existing maturity models as it does not look into the internal processes. The paper argues that existence and development of FM are dependent on the availability of six interdependent and interrelated factors known as feeder factors. These factors feed into each other to promote development and ensure the continuous growth of the FM industry in its widest context. The framework can be used by countries to evaluate and assess its FM industry as road map for their continuous development to maturity.
6. REFERENCES

