

F 3088

Holger Falter, Volker Schmid Jonas Schmidt, Tobias Nettekoven

Entwicklung eines modularen Fachwerkträgers aus HPC-Fertigteilen und gezahnten Hochleistungs-Verbindungsdetails

Fraunhofer IRB Verlag

F 3088

Bei dieser Veröffentlichung handelt es sich um die Kopie des Abschlussberichtes einer vom Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR) im Bundesamt für Bauwesen und Raumordnung (BBR) im Rahmen der Forschungsinitiative »Zukunft Bau« geförderten Forschungsarbeit. Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

2019

ISBN 978-3-7388-0305-1

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon 07 11 9 70 - 25 00 Telefax 07 11 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

www.irb.fraunhofer.de/bauforschung

Fakultät Design – Studiengang Bauingenieurwesen Hochschule Coburg

Institut für Bauingenieurwesen Entwerfen und Konstruieren – Verbundstrukturen TU Berlin

Abschlussbericht

"Entwicklung eines modularen Fachwerkträgers aus HPC-Fertigteilen und gezahnten Hochleistungs-Verbindungsdetails"

Prof. Dr.-Ing. Holger Falter Prof. Dr.-Ing. Volker Schmid Jonas Schmidt M.Sc. Tobias Nettekoven M.Sc.

Coburg/Berlin, den 23.05.2018

Der Forschungsbericht wurde mit Mitteln der Forschungsinitiative "Zukunft Bau" des Bundesamtes für Bauwesen und Raumordnung gefördert. (Aktenzeichen:SWD-10.08.18.7-15.19) Die Verantwortung für den Inhalt des Berichts liegt bei den Autoren.

Verantwortlich:

Prof. Dr.-Ing. Holger Falter

Hochschule Coburg Fachgebiet Konstruktiver Ingenieurbau Fakultät Design Sekr. D1-210 Am Hofbräuhaus 1 96450 Coburg

Tel.: +49 9561 317 250 Fax: +49 9561 317 342 holger.falter@hs-coburg.de Prof. Dr.-Ing. Volker Schmid

TU Berlin Fachgebiet Entwerfen und Konstruieren – Verbundstrukturen Institut für Bauingenieurwesen Sekr. TIB1-B11 Gustav-Meyer-Allee 25 13355 Berlin

Tel. Sekr.: +49 30 314 72162 Fax Sekr.: +49 30 314 72160 sekretariat@ek-verbundstrukturen.tu-berlin.de

Danksagung

Das vorliegende Projekt wurde seitens des BBR begleitet durch:

Dr.-Ing. Dipl.-Wirt.-Ing. (FH) Michael Brüggemann

Fraunhofer-Informationszentrum Raum und Bau IRB Bundesinstitut für Bau- Stadt- und Raumforschung Deichmanns Aue 31-37 53179 Bonn

Als Mitglieder des wissenschaftlichen Beirats stellten sich zur Verfügung:

Dr.-Ing. Jürgen Burkardt

Knörnschild Ingenieure Coburg Ernstplatz 8 96450 Coburg

Dr.-Ing. Jens Tandler

DEGES, Deutsche Einheit Fernstraßenplanungs- und Bau GmbH, Berlin Zimmerstraße 54 10117 Berlin

Dipl.-Ing. Karsten Hein

Arup Deutschland GmbH Joachimsthaler Str. 41 10623 Berlin

Zusätzlich wurde die Arbeit durch die Firmen Benno Drössler, Otto Quast, Angermüller, Pfeifer Seil- und Hebetechnik, Dechant und Dyckerhoff in finanzieller und fachlicher Hinsicht unterstützt.

Dipl.-Ing. (FH) Michael Knörnschild

Knörnschild Ingenieure Coburg Ernstplatz 8 96450 Coburg

Dipl.-Ing. Andreas Schimanski/(vorher Dipl.-Ing. Christian Tigges) Otto Quast AG An der Autobahn 16-30

57258 Freudenberg, Westf.

Dipl.-Ing. Mathias Kintscher

Pfeifer Seil- und Hebetechnik GmbH Dr.-Karl-Lenz-Strasse 66, 87700 Memmingen

B. Eng. Maximilian Schultheiß Angermüller Bau GmbH

Bahnweg 8 96253 Untersiemau

Dipl.-Ing. Christian Drössler

Benno Drössler GmbH b& Co. Bauunternehmung KG Marienhütte 6 57080 Siegen

Dipl.-Ing. Peter Dechant

Dechant Hoch- und Ingenieurbau GmbH Abt-Knauer-Str. 3 96260 Weismain

Dipl.-Ing. Thomas Deuse

Dyckerhoff GmbH Biebricher Straße 68 65012 Wiesbaden

Die Autoren dieses Forschungsberichts bedanken sich bei Herrn Dr.-Ing. Brüggemann, sowie den Firmen Ingenieurgruppe Knörnschild, Benno Drössler, Otto Quast, Angermüller, Pfeifer Seil- und Hebetechnik und Dechant sowie Dyckerhoff für die Unterstützung bei diesem Projekt. Weiterer Dank gilt den Mitgliedern des wissenschaftlichen Beirats für die fachliche Unterstützung.

Ebenfalls gilt der Dank allen studentischen Mitarbeitern und Bearbeiter/innen von Abschlussarbeiten. In alphabetischer Reihenfolge: Peter Biadatz, Anna Glotz, Kai Hofmann, Sebastian Kießling, Theresa Körber, Robert Kull, Zhanghangzhi Luo, Philipp Müller, Björn Oertel, Ralf Pechtold, Hannes Riedelbauch, Frederik Schauberger, Christoph Schubert, Maximilian Schubert, Rafael Vogt, Lucas Vorderwülbecke, Sebastian Völkel, Christian Willacker, Sarah Wörner, Meiling Zheng.

Inhaltsverzeichnis

Danksagung	3
Inhaltsverzeichnis	5
1. Einleitung	10
1.1 Motivation	10
1.2 Fügekonzepte für modulare Fachwerkträger aus HPC	11
1.3 Ziel des Forschungsprojekts und Lösungsweg	13
2. Stand der Technik und Forschung	19
2.1 Historische Entwicklung von Betonfachwerken	19
2.2 Modularer Fachwerkträger aus Beton	23
2.3 Fügungsmethoden modularer Konstruktionen	32
2.4 Maschinenelemente als Grundlage für Stahlverzahnungen	35
3. Anforderungen an Tragelemente und Fügungsdetails für einen Referenzfachwerkträger aus HP	С-
Fertigteilen	38
3.1 Grundlagen	38
3.2 System und Berechnungen	39
3.3 Bemessung und Festlegungen	39
4. Entwurf und Konstruktion der gezahnten Verbindung	41
4.1 Anforderungen an die modulare Verbindung	41
4.2 Toleranzbetrachtung modularer Verbindungen	41
4.3 Kraftübertragung mittels Stahleinbauteil – Entwicklungsschritte	46
4.4 Kraftübertragung mittels Betonverzahnung	49
5. Theoretische und numerische Untersuchung der Zahngeometrie	52
5.1 Stahlverzahnung	52
5.2 Betonverzahnung	86
6. Untersuchungen zur Verzahnung an kleinformatigen Prüfkörpern mit gezahnter Kontaktfläche	. 100
6.1 Experimentelle Untersuchungen zur Stahlverzahnung an Stahlprismen	. 100
6.2 Numerische Untersuchungen zur Stahlverzahnung an Stahlprismen	. 108
6.2.1 Simulationsmodell	. 108
6.2.2 Simulationsergebnis	. 109
6.3 Experimentelle Untersuchungen zur Stahlverzahnung an Betonprismen mit Zahnleistenpaar	en
	112
6.3.1 Ziel und Vorgehensweise	112
6.3.2 Versuchskörper und Prüfeinrichtung.	112
6.4 Numerische Untersuchungen zur Stahlverzahnung an Betonprismen mit Zahnleistenpaaren.	122
6.5 Experimentelle Untersuchungen zur Betonverzahnung an Betonprismen	. 128
7. Untersuchungen am gezahnten Fachwerkknoten im Maßstab 1:1	. 143
7.1 Ziel und Vorgehensweise	. 143
7.2 Konzeption der Versuche	. 143
7.3 Versuche am Fachwerkknoten mit Stahlverzahnung	. 144

7	7.4 Numerische Untersuchung am Fachwerkknoten mit Stahlverzahnung	. 150
8. U	Untersuchungen an einer gezahnten Konsole im Maßstab 1:1	. 153
8	3.1 Ziel und Vorgehensweise	. 153
8	3.2 Konzeption der Versuche	. 153
8	3.3 Versuche an einer Konsole mit Stahlverzahnung	. 155
8	3.4 Numerische Untersuchung einer Konsole mit Stahlverzahnung	. 164
8	3.5 Versuche an einer Konsole mit Betonverzahnung	. 170
9. I	ngenieurmodell und Dimensionierung einer gezahnten Verbindung	. 178
ç	9.1 Ingenieurmodell zur Stahlverzahnung	. 178
ç	9.2 Ansatz zur Nachweisführung beim Knotenpunkt	. 189
ç	9.3 Ansatz zur Nachweisführung bei der Konsole	. 191
10.	Baubetriebliche Abwicklung und Wirtschaftlichkeitsbetrachtung	. 193
1	10.1 Baubetriebliche Abwicklung des Fachwerkträgers	. 193
1	10.2 Wirtschaftlichkeit der modularen Betonfachwerkkonstruktion	. 202
11.	Anwendungsgebiete der Entwicklung	. 203
1	11.1 Fachwerkträger	. 203
1	1.2 Hochbau/Ingenieurbau	. 203
12.	Zusammenfassung	. 205
Qu	ellenverzeichnis	. 209

Anhang F: Entwurf und Konstruktion des Referenz<u>f</u>achwerkträgers Anhang V: <u>V</u>ersuchsdokumentation

Abkürzungen

DMS	Elektrische Widerstands- Dehnungsmessstreifen	UHPC	Ultra high performance concrete
IWA UHFB	Induktiver Wegaufnehmer Ultra-hochfester Beton	HPC FEM	High performance concrete Finite-Element-Methode
Kleinbuc	hstaben		
a_c	Abstand Lasteinleitung zur Stütze bei Konsole	l_z	Länge des Zahngrund
a_2	Abstand Gewindestange zum Schwerpunkt obere Druckplatte	и	Elementlänge
a_1	Abstand Gewindestange zum Schwerpunkt Zahnleiste	r_{l}	Zahngrundradius
d_c	Statische Höhe Konsole	<i>r</i> ²	Zahnkopfausrundung
b_{ref}	Breite des Referenzkörpers	$\tilde{h_D}$	aktivierte Höhe der Druckstrebe
h_{-}	Zahnbreite	n. n7	Anzahl, Anzahl der aktivierten Zähne
b^2	Breite (Versuchskörper)	n,	Anzahl der Zahnreihen im Referenz-
0		··rej	körner
b_P	Breite des Prüfkörpers	<i>n</i> _{theor}	Anzahl der theoretisch vorhandenen
t	Tiefe (Versuchskörper)	<i>n</i> _{vorh}	Anzahl der tatsächlich vorhandenen
			Zahnreihen
t_P	Tiefe des Prüfkörpers	f_{cd}	Designwert der Betondruckfestigkeit
h_{Ko}	Höhe Konsole	$f_{c,cube,100}$	Würfeldruckfestigkeit Henze
t_{Ko}	Tiefe Konsole	t_F	Dicke der Mörtelfuge
b_{Ko}	Breite Konsole	f_{ct}	Betonzugfestigkeit
t_{St}	Tiefe Stütze	f_c	Betondruckfestigkeit
l	Länge (Versuchskörper)	f_{cm}	Mittlere Betondruckfestigkeit
h	Höhe (Versuchskörper)	f_{yk}	Charakteristische Streckgrenze bei Stahl
h_z	Zahnhöhe	f _{tk,cal}	Charakteristische Zugfestigkeit bei Stahl
$h_{z,a}$	Aktivierte Zahnhöhe	$f_{n0.1k}$	0,1% Dehngrenze bei Spannstahl
e	Hebelarm zwischen Krafteinleitung	f_{pk}	Charakteristische Zugfestigkeit bei
d	Durchmesser	147	Verformung [mm]
d_2	Flankendurchmesser des Gewindes	x	Anteil der aktivierten Zahnfläche [%], Hebelarm zwischen Gewindestange und unterster Verzahnung Stahl/Stahl, Verformung
d_k	wirksamer Reibungsdurchmesser	k _j	Faktor zur Berücksichtigung der
d_{Ko}	Statische Höhe (Schwerpunkte obere Stahlplatte zu Zahnleiste)	q_{SZ}	Aufnehmbare Last je Stahlzahn
x	Länge	$q_{w,k}$	Winddruck
k_{I}	Federsteifigkeit normal zur Oberflä-	v_f	Schubkraftverlauf
k_2	Faktor für D-D-D-Knoten Federsteifigkeit tangential zur Ober- fläche an oberer Stahlplatte	n _f	Normalkraftverlauf

<i>k</i> ₃	Federsteifigkeit normal zur Oberflä- che an Zahnleiste	т	Steigung
k_4	Federsteifigkeit tangential zur Ober- fläche an Zahnleiste	t	Achsenabschnitt
Großbuch	ıstaben	a, b, c	Koeffizienten der Funktion 2. Grades
A	Fläche	NEA	Bemessungsnormalkraft senkrecht zur
		- 'Eu	Fuge
A_{eff}	Effektive Fläche	F_{T}	Tangentialkraft
A_{VI}	Auflagerkraft Konsole obere Last-	F_N	Normalkraft in der Reibungsfuge
	platte vertikal		
A_{V2}	Auflagerkraft Konsole Zahnleiste vertikal	F_{Rd}	Schubkraft in der Fuge
W	Widerstandsmoment	V	Vertikalkraft
L	Länge (Zahnleistenlänge)	Н	Horizontalkraft
Т	Tiefe (Zahnleistentiefe)	P	Vorspannkraft
H_{I}	Zahnleistenhöhe	Т	Zugkraft im Stabwerkmodell
R	Radius	С	Druckkraft im Stabwerkmodell
A_S	Stahlquerschnitt	F_H	Horizontale Kraftkomponente auf Zahnleiste
F	Kraft	F_V	Vertikale Kraftkomponente auf Zahn- leiste
F_{PS}	Kraft der Verzahnung Beton - Stahl	F_{7}	Kraft auf linke Zahnflanke
F_{R}	Kraft des Betonguerschnitt	F_{ZR}	Reibkraft an der Zahnflanke
\tilde{F}_{SS}	Kraft der Verzahnung Stahl – Stahl	F_{ZN}^{ZR}	Normalkraft an der Zahnflanke
$F_{test,}$ F_{Pruch}	Bruchlast aus Versuch	F_{VM}	Montagevorspannkraft der Schraube
$F_{test,red}$	Reduzierte Bruchlast aus Versuch ohne Einfluss aus Reibung	$Q_{s,k}$	Charakteristische Schneelast
F_{Ed}	Einwirkende Bemessungskraft	V_1 bis V_6	Versuch 1/2/3/4/5/6
F_{res}	Resultierende Kraft	Ē	Elastizitätsmodul
F_{\perp}	Kraft senkrecht zur Zahnleiste	R_{eH}	Obere Streckgrenze
$F_{{\it L}+N}$	Kraft senkrecht zur Zahnleiste inkl.	R_{eL}	Untere Streckgrenze
	Der Vorspannung		-
$F_{ }$	Kraft parallel zur Zahnleiste	R_m	Zugfestigkeit Stahl
		A, A ₄₀	Bruchdehnung
M	Moment	A_g	Gleichmaßdehnung
M_A	Anziehmoment	A_t	Gesamte Dehnung bis Bruch
N	Normalkraft	$E_{T,Bruch}$	Tangentenmodul "Bruch"
$F_{p,C}^{*}$	Regelvorspannkraft	$E_{T,Zugfestigk.}$	Tangentenmodul "Zugfestigk."
F_{Zug}	Zugkraft in der Gewindestange	G	Schubmodul
F_{DI}	Auflagerkraft Konsole obere Last-	R	Widerstand
E	Auflagerkraft Kongolo Zahnlaisto	E	Finwirland
Γ_{D2}	horizontal	L	Elliwirkung
Griechisc	he Buchstaben		
α _z	Neigung der Zahnflanke	\varDelta_{bz}	Zusatzmaß der Zahnleiste in der Brei-
			te
α_{cc}	Faktor zur Berücksichtigung von Langzeiteinwirkungen bei Beton	ξ	Winkelspektrum der destabilisierenden Kraft
β	Kraftangriffswinkel an der Zahnleiste	ψ	Winkelspektrum der stabilisierenden Kraft

θ	Druckstrebenneigungswinkel, Win- kel unter dem die Kraft auf den Zahn trifft	μ	Reibungsbeiwert
Δ	Versatz, Differenz	V	Querdehnzahl und Abminderungs- beiwert für Betonfestigkeiten in Kno- ten
ΔF_z	Zusätzliche Kraft auf rechte Zahn- flanke	τ	Schubspannung
Δx	Teillänge	σ	Spannung
ρ	Dichte	σ_M	Spannung aus Moment
α_T	Temperaturausdehnungskoeffizient	σ_N	Spannung aus Normalkraft
γ_c	Teilsicherheitsbeiwert für Beton	σ_{Wahr}	Wahre Spannungen
γ_c'	Zusätzlicher Teilsicherheitsbeiwert für UHPC	σ_{Ing}	Ingenieurspannungen
γs	Teilsicherheitsbeiwert für Stahl	ε	Dehnung
Ω	Nennwiderstand	E _{Wahr}	Hencky-Dehnungen
		\mathcal{E}_{Ing}	Ingenieurdehnungen

1. Einleitung

1.1 Motivation

Fachwerkkonstruktionen sind leistungsfähige Tragwerke, deren aufgelöste Struktur ein relativ geringes Eigengewicht hat. Fachwerke ermöglichen große Spannweiten. Das ideale Fachwerk besteht aus einem Ober- und Untergurt, Pfosten und Diagonalen und wird in den Knotenpunkten belastet. Diese Knotenpunkte sind so ausgeführt, dass möglichst geringe nominelle Momente übertragen werden können. Deshalb werden sie bei der Berechnung bevorzugt als Gelenke idealisiert. Je nach Anordnung der Pfosten und Diagonalen werden diese als Zug- bzw. Druckstäbe beansprucht. Fachwerke werden aus Holz, Stahl oder Stahlbeton hergestellt. Holz- und Stahlfachwerke können in ihren Einzelteilen auf die Baustelle transportiert und dort montiert werden. Im Stahlbetonbau ist diese Art der modularen Bauweise noch nicht möglich. Große Betonfertigteile lassen sich entweder gar nicht oder nur mit großen Aufwand transportieren. Daher werden hochbeanspruchte Verbindungen im Stahlbetonbau noch monolithisch vor Ort betoniert. Dies ist mit einem großen Platzbedarf und einer aufwändigen Baustelleneinrichtung verbunden. Durch die Witterungseinflüsse (Hitze, Kälte, Feuchtigkeit) auf der Baustelle bedingt, ist die Sicherstellung der erforderlichen Qualität eine Herausforderung.

Im Rahmen des hier vorliegenden Forschungsvorhabens wird ein weitspannender, modularer Fachwerkträger aus Hochleistungsbeton (High Performance Concrete HPC) entwickelt (Abb. 1.1 und 1.2), dessen einzelne Elemente mit Hilfe einer innovativen Verbindungstechnologie einfach hergestellt und schnell und effizient gefügt werden können.

Abb. 1.1: Einzelelemente des modularen Fachwerkträgers und Detaildarstellung des Knotenpunktes

Die Kraftübertragung in den Kontaktflächen der Verbindungen geschieht durch eine definierbare, optimierte Verzahnung, welche Gegenstand des Forschungsvorhabens ist. Auf den Ansatz der schwer bestimmbaren und deshalb unsicheren Reibung wird bewusst verzichtet. Diese innovative Verbindungstechnologie ist für die Verwendung von Hochleistungsbeton (HPC) prädestiniert. Durch die Normalkraftbeanspruchung im Fachwerk kann der Beton ideal genutzt werden. Die Betonbauweise bietet im Gegensatz zum Stahl- und Holzbau zudem einen besseren Brandschutz. Ein weiterer Vorteil der modularen Bauweise liegt in der Demontierbarkeit der Konstruktion. Der Einsatzbereich von Massivkonstruktionen aus HPC kann somit auf schlanke, weitspannende Tragwerke, die bisher nur in Stahl wirtschaftlich herstellbar sind, erweitert werden. Darüber hinaus lässt sich die Verbindungstechnologie auf eine Vielzahl unterschiedlichster Anwendungen im Fertigteilbau adaptieren.

Abb. 1.2: Modell des Fachwerkträgers (Schmidt 2018)

1.2 Fügekonzepte für modulare Fachwerkträger aus HPC

Konstruktion

Die einzelnen Elemente des modularen Fachwerkträgers werden über eine Vorspannung der vertikalen Pfosten zusammengehalten (Abb. 1.3). Je nach Ausbildung der Fuge zwischen Gurt und Knotenelement wird die Größe der Vorspannung definiert.

Abb. 1.3: Kraftübertragung im Knotenelement

Nachfolgend werden die Fügekonzepte "Reibung" und "Verzahnung" kurz erläutert und ein erster Vergleich durchgeführt.

Kraftübertragung durch Reibung in vorgespannten Verbindungen

Die Kraftübertragung zwischen Stahlbetonbauteilen kann über eine trockene Lagerfuge als sogenannte "Verbindung zur Druckkraftübertragung" erfolgen. In der DIN EN 1992-1-1 Kapitel 10.9.4.3 Absatz (3) ist die Berechnung von trockenen Lagerfugen geregelt. Diese dürfen in der Regel nur dann verwendet werden, wenn die erforderliche Qualität der Bauausführung erreicht werden kann. Dabei ist die durchschnittliche Lagerpressung zwischen den ebenen Oberflächen auf maximal $0,4 \cdot f_{cd}$ zu begrenzen (DAfAtb Heft 600, 2012 und DIN EN 1992-1-1 10.9.5.2). "Trockene Lagerfugen mit gekrümmten (konvexen) Oberflächen sind in der Regel unter Berücksichtigung der Geometrie zu bemessen." (DIN EN 1992-1-1 Kapitel 10.9.4.3 Absatz (3)) Die Lagerfuge berechnet sich durch die durchschnittliche Lagerpressung somit zu:

$$\sigma_{Ed} = \frac{N_{Ed}}{A} \le 0.4 \cdot f_{cd} \tag{Gl.1.1}$$

mit: N_{Ed} Bemessungsnormalkraft senkrecht zur Fuge (z.B. Vorspannung)AAuflagerfläche der Pressung f_{cd} Bemessungswert der Betondruckfestigkeit

Eine planmäßige horizontale Kraftübertragung allein über Reibung ist normativ nicht geregelt. Es kann jedoch nach Coulomb eine aufnehmbare Tangentialkraft F_T in Folge einer Normalkraft F_N und dem Reibungsbeiwert μ bestimmt werden.

$\mu = \frac{F_T}{F_N}$			(Gl.1.2)
mit:	μ	Reibungsbeiwert	
	F_T	Tangentialkraft in der Reibungsfuge	
	F_N	Normalkraft in der Reibungsfuge	

Durch eine Vorspannung können somit Tangentialkräfte in der trockenen Fuge übertragen werden. Die Reibung ist über die gesamte Lebensdauer zu erbringen, welche bei einem Hochleistungsbeton über der Lebensdauer normaler Betone liegt. In der Literatur sind Reibbeiwerte zu Beton/Beton-Paarungen von μ = 0,40 bis 1,0 angegeben (Tab. 1.1).

Quelle/ Veröffentlicht	Reibungs- koeffizient	Beschreibung		
Jones 1959	0,45 - 0,62	Der Wertebereich entspricht den aus Versuchen ermittelten Er- gebnissen für Trockenfugen. Jones wählt dabei einen Versuchs- aufbau, den es durch ein Moment in der Reibungsfläche kritisch zu hinterfragen gilt.		
Zelger, Rüsch 1961	0,40 - 0,60	Die Versuche werden an Zementmörtel-, verzahnten Zementmö tel-, Kunstharzmörtel- und verzahnten Kunstharzmörtelfuge durchgeführt und der Reibungskoeffizient mittels einer Au gleichsrechnung ermittelt.		
Specker 2001	0,75	Der Wert wird zufällig anhand des Schlupfs während eines Ver- suches ermittelt.		
Turmo 2006	0,49 - 0,58	Der Wertebereich wird anhand von zwei Reibungspaarungen mit Trockenfugen durchgeführt.		
Henze 2009	0,70 - 0,80	Der Wertebereich entspricht den aus drei Reibungsversuc ermittelten Ergebnissen mit schalungsglatten Trockenfugen UHPC. Bei den Versuchen ist der Reibungskoeffizient mit gendem Schlupf angestiegen. Der Beton wird mit Stahlfa verstärkt.		
Schoening et al. 2013	0,75 - 0,90	Der Wertebereich entspricht den aus Versuchen ermittelten Er- gebnissen für eine Trockenfuge aus UHPC. Bei den Versuchen ist der Reibungskoeffizient mit steigenden Schlupf angestiegen. Der Beton wird mit Stahlfasern verstärkt.		
Schneider BT S.: 4.26	0,50 - 1,00	Wert für Gleitsicherheitsnachweis bei Traggerüsten, ermittelt im Rahmen eines Forschungsauftrags, durchgeführt von der Univer- sität Karlsruhe, 1977		
DIN EN 1992-1-1 2012	0,5 In der Bemessung einer Schubfuge nach DIN EN 1992-1- - 6.2.5 werden Reibungskoeffizienten für sehr glatte (0,5) (0,6), raue (0,7) und verzahnte (0,9) Fugen angegeben. Di nition für sehr glatte Fugen entspricht Oberflächen, die Stahl betoniert wurden. Zusätzlich ist nach DIN EN 19 2012 die Schubtragfähigkeit auf einen Maximalwert zu E zen. Dieser entspricht ungefähr 10% der Bemessungsdruck keit			

Tab. 1.1: Veröffentlichungen zur Reibung zwischen zwei Betonbauteilen (nach Kull 2017)

Kraftübertragung mittels Verzahnung

Die Kraftübertragung mittels Verzahnung kann genau definiert und quantifiziert werden. Die Vorspannung ist grundsätzlich zur Lagesicherung der Verzahnung angeordnet. Darüber hinaus kann mit der Vorspannung der Kraftneigungswinkel angepasst bzw. optimiert werden. Unter diesem Kraftneigungswinkel greift die Kraft an der Verzahnung an. Dies führt im Vergleich zur Kraftübertragung durch Reibung zu einer deutlich geringeren Vorspannung bei gleichzeitig höherer Traglast.

Vergleich

Die zu übertragende Schubkraft in der Fuge zwischen dem Knotenelement und dem Ober- bzw. Untergurt des in diesem Forschungsbericht näher untersuchten Referenzfachwerkträgers beträgt $F_{R,d} = 800 \ kN$.

Wird diese Kraft über Reibung übertragen, wird beim Ansatz der Coloumb'schen Reibung mit einem Reibbeiwert $\mu = 0.8$ (oberer Wert nach Henze) eine Vorspannung

$$P = \frac{F_{R,d}}{\mu} = \frac{800kN}{0.8} = 1000kN \tag{Gl.1.3}$$

erforderlich.

Diese erforderliche Vorspannung erhöht sich entsprechend, wenn der untere Wert der Haftreibung nach DIN EN 1992 $\mu = 0.5$ angesetzt wird:

$$P = \frac{F_{R,d}}{\mu} = \frac{800kN}{0.5} = 1600kN \tag{Gl.1.4}$$

um die Schubkraft zu übertragen.

Im Grenzzustand der Tragfähigkeit beträgt die maximale Pfostenzugkraft im Referenzfachwerkträger im maßgebenden Lastfall $F_{Pfosten} = 890 \ kN$. Die zur Übertragung der Schubkraft erforderliche Vorspannung *P* muss um diesen Betrag vergrößert werden. Die sich daraus ergebende erforderliche resultierende Vorspannkraft beträgt *P* = 1890 kN bzw. *P* 2490 kN.

Bei der Kraftübertragung mittels Verzahnung muss die Vorspannkraft lediglich die maximale Pfostenzugkraft überdrücken. Die erforderliche Vorspannung beträgt ca. 1000 kN und ist damit 40% bzw. 55 % geringer als bei der Kraftübertragung durch Reibung (Biadatz) (vgl. Kap. 7.3).

1.3 Ziel des Forschungsprojekts und Lösungsweg

Ziel des Forschungsprojekts ist es, einen modularen Referenzfachwerkträger zu entwickeln. Hieraus leitet sich die Notwendigkeit ab, eine Verbindung zu entwickeln, die hohe Kräfte sicher, robust und effizient übertragen kann und trotzdem eine einfache Herstellung im Werk und eine schnelle Monund Demontage auf der Baustelle erlaubt. Außerdem soll die Verbindung mit möglichst kleinen Abmessungen mit geringer Vorspannkraft ausgeführt werden können. Zur Erreichung dieser Ziele wird im Folgenden ein Lösungsweg beschrieben.

Referenzfachwerkträger

Es wird ein modularer Referenzfachwerkträger entwickelt, der eine Spannweite von 60m hat. Zunächst werden die Anforderungen und die Randbedingungen an den Referenzfachwerkträger beschrieben. Der Träger wird mit einer FE-Software (Sofistik) modelliert und hinsichtlich unterschiedlicher Einflüsse untersucht und optimiert. Die Studien sind nachfolgend aufgeführt:

- Studie zur Abhängigkeit des Tragverhaltens in Bezug auf die Systemhöhe
- Studie zur Art der Ausfachung
- Studie zur optimierten Fachwerkträgergeometrie
- Studie zu Segmentverbindungen
- Stabilitätsbetrachtung
- Untersuchung der Montagekonzepte/Bauzustände
- Betrachtung des konstruktiven Brandschutz
- Betrachtung zur Dauerhaftigkeit

Die Studien zum Referenzfachwerkträger sind Grundlage für dessen Umsetzung in einem realen Projekt. Für die Entwicklung der Hochleistungsverbindung werden hier die zu übertragenden Kräfte ermittelt sowie erforderliche Randbedingungen festgelegt.

Hochleistungsverbindung

Das hohe Innovationspotenzial der hier vorliegenden Arbeit besteht in der Entwicklung einer Verbindung um hohe Kräfte zwischen zwei modularen Stahlbetonfertigteilen zu übertragen. Hierbei soll der Winkel θ , unter dem die Kraft an der Verbindung angreift, möglichst flexibel sein (Abb. 1.4).

Abb. 1.4: Darstellung der Kraftübertragung am Fachwerkknoten (nach Hofmann 2015)

Neben dem Fachwerkträger soll die Verbindung bei unterschiedlichen Konstruktionen verwendet werden (Abb. 1.5).

Anschluss einer Fertigteildiagonale an eine Wand

Anschluss Fertigteilkonsole an Fertigteilstütze

Fachwerkknoten

Abb. 1.5: Beispiele für die Anwendung von Hochleistungsverbindungen mit Verzahnung

Für die Ausbildung der kraftübertragenden Grenzfläche, werden zwei grundsätzliche Varianten entwickelt: Ein gezahntes Stahleinbauteil und eine Betonverzahnung.

Gezahnte Prismen (Versuchsphase I) (Kap. 6.1 und 6.5)

In der ersten Versuchsphase werden in Prismenversuchen zwei Scherflächen unter einem Winkel θ beansprucht (Abb. 1.6). Es wird das Trag- und Verformungsverhalten von Prüfkörpern aus Stahl und aus Beton untersucht.

Abb. 1.6: Versuche an Prismen mit gezahnter Grenzfläche (Schmidt 2018)

Ziel dieser Entwicklungsphase ist die Optimierung der Grenzflächen in Verbindungsbereichen durch die Entwicklung einer definierten, gezahnten Grenzfläche mit konstanten, garantierbaren Eigenschaften. Zunächst werden geeignete Verzahnungsformen entwickelt und definiert und deren theoretische Tragfähigkeit bestimmt (Kap. 5) und in Kleinversuchen (Kap. 6) bestätigt. Die Variablen einer Verzahnung können in Abhängigkeit von den unterschiedlichen Randbedingungen in der Verbindung exakt definiert werden (Abb. 1.7). Der Kraftangriff erfolgt unter dem Kraftangriffswinkel β . Dieser wird bei der bekannten Kraftrichtung für einen Bereich von $0^{\circ} \leq \beta_1 \leq 90^{\circ}$ und bei der unbekannten Kraftrichtung für den Bereich $0^{\circ} \leq \beta_1 \leq 180^{\circ}$ angegeben. Der Winkel β_2 ergibt sich demzufolge zu $\beta_2 = 180 - \beta_1$. Eine genauere Definition dieses Bereiches erfolgt in Kapitel 9 dieser Forschungsarbeit.

Abb. 1.7a: Parameter einer Verzahnung; Kraftrichtung bekannt (Bereich: $0^{\circ} \leq \beta_1 \leq 90^{\circ}$ *)*

Abb. 1.7b: Parameter einer Verzahnung; Kraftrichtung unbekannt (Bereich: $0^{\circ} \leq \beta_1 \leq 180^{\circ}$ *)*

Eine grundlegende Überlegung zur gezahnten Grenzfläche ist die Abhängigkeit der Zahngeometrie von der Kraftrichtung. Dabei wird zwischen einer kraftaffinen Verzahnung bei der die Kraftrichtung bekannt ist unterschieden. Ist die Kraftrichtung bekannt (Abb. 1.7a), können die Zähne geometrisch effektiv (asymmetrisch) nach dieser Kraftrichtung ausgerichtet werden. Ist die Kraftrichtung unbekannt (Abb. 1.7b), muss die Geometrie für beide Kraftrichtungen und somit symmetrisch konstruiert sein.

Es gibt zwei Möglichkeiten um den Fugenbereich, an dem zwei Betonbauteile aufeinander treffen, auszuführen: eine Verbindung mit einem gezahnten Stahleinbauteil und eine Verbindung mit Betonverzahnung (ohne Einbauteil). In beiden Fällen kann die Verbindung trocken oder mit einem Fugenverguss ausgeführt werden (Tab. 1.2). Bei der Ausführung mit einer Betonverzahnung sollte die Kraftrichtung immer bekannt sein.

	Kraftrichtung bekannt		Kraftrichtung unbekannt
	Trockene Fuge	Mit Fugenverguss	
		Oder Fugenverklebung	
Ohne Ein- bauteil	Belon Belon Belon	Fertigteil-Beton Fertigteil-Beton Fertigteil-Beton	Fertigteil-Beton Fertigteil-Beton
Mit Ein- bauteil	Für Kraftrichtung beka und Kraftrichtung unbe einsetzbar (vgl. Abb. 1. b)	nnt Zahnleiste Fer ekannt aus Stahl 7a u. Zahnleiste aus Stahl	d tigteil-Beton Fertigteil-Beton d →→→

Tab. 1.2: Beispiele einiger prinzipieller Ausführungsvarianten mit und ohne Stahleinbauteile

Zahnleistenpaar im Betonprisma (Versuchsphase II) (Kap. 6.3)

Auf der Basis der in der Entwicklungsphase I entwickelten Verzahnung wird eine Zahnleiste konstruiert und eingebettet in einem Betonprisma getestet (Abb. 1.8).

Abb. 1.8: Phase II - Prüfkörper

Es werden folgende Varianten untersucht:

- Ein Zahnleistenpaar unter einer 30° Neigung zur Vertikalen
- Ein Zahnleistenpaar unter einer 70° Neigung zur Vertikalen
- Zwei Zahnleistenpaare unter einer 30° Neigung zur Vertikalen
- Zwei Zahnleistenpaare unter einer 70° Neigung zur Vertikalen

Gezahnte Konsolverbindung (Versuchsphase III) (Kap. 8)

In einem Konsolversuch (M = 1:1) wird das Last-/Verformungsverhalten der Zahnleiste sowie der Betonverzahnung in einer Verbindung untersucht (Abb. 1.9).

Abb. 1.9: Versuchsaufbau Phase III

Es werden folgende Varianten untersucht:

- Konsole mit Zahnleiste
 - o Variation der Konsolengeometrie (Konsolhöhe 68cm und 33cm)
 - Variation der Vorspannkraft
 - Variation der Stahlzahnanordnung
 - o Variation der Stahlzahngröße
- Konsole mit Betonverzahnung
 - o Variation der Betonzahngeometrie
 - o Referenzversuche ohne Betonverzahnung (Ansatz der Reibung)

Gezahnter Fachwerkknoten (Versuchsphase IV) (Kap. 7)

Am Beispiel eines Fachwerkknotens wird die Verzahnung im Maßstab 1:1 getestet (Abb. 1.10).

Abb. 1.10: Versuchsaufbau Phase IV

Es werden folgende Varianten untersucht:

- Knotenpunkt mit Zahnleiste
- Knotenpunkt mit Betonverzahnung

2. Stand der Technik und Forschung

2.1 Historische Entwicklung von Betonfachwerken

Um die Idee des modularen Fachwerkträgers besser einordnen zu können, wird zunächst die historische Entwicklung von Betonfachwerken betrachtet.

Bis Ende des 19. Jahrhunderts werden Fachwerke aus Holz und Stahl hergestellt. Nachdem Pioniere wie Francois Hennebique, Joseph Monier, Edmond Coignet und Emil Mörsch den "Eisenbeton" entwickelt haben, gibt es neben den genannten Materialien Holz und Stahl auch das Ansinnen Eisenbetonfachwerke herzustellen. Im Jahre 1903 erhält Franz Visintini von der Königlich Mechanischen Versuchsanstalt in Berlin ein Zeugnis über die Tragfähigkeit seiner "Beton-Eisen-Gitterträger" (Deinhard 1964). Eugene Freyssinet plant 1911 die Brücke über die Allier bei Le Veudre und verwendet ein Eisenbetonfachwerk (Abb. 2.1 links). Drei Bögen mit 68m, 72,5m und wieder 68m überspannten eine Gesamtlänge von 208,5m. Das mittlere Feld hat eine Höhe von 5,2m, das äußere Feld 4,6m, womit sich ein Bogenstich von 1/15 ergibt (Stiglat 1991). 1928 wird von Albert Caquot die Lafayettenbrücke über die Gleise des Gare de L`Èst in Paris gebaut (Deinhard 1964) und (Grattesat 1982).

Bis zu diesem Zeitpunkt werden die Fachwerkkonstruktionen vor Ort betoniert und schlaff bewehrt. In den 1930er Jahren wird der Spannbeton entwickelt, diese Technik wird auch für Fachwerke eingesetzt. In der Folge werden Konstruktionen mit kleineren Abmessungen in Hallen in Serie vorgefertigt. Hier wird der Grundstein für den Fertigteilbau gelegt und das Verfahren auch für kleine Betonfachwerkträger angewendet (Abb. 2.1 rechts).

Abb. 2.1: Brücke über die Allier bei Boutiron, Frankreich in Ortbetonbauweise (links) (Stiglat 1991) und Transport eines Visintini-Trägers für die Agerbrücke in Schwanenstadt, Österreich in Fertigteilbauweise (rechts) (Weller/Tasche 2006; S295)

Unter Federführung von Ulrich Finsterwalder werden Flugzeughallen mit etwa 80m spannenden Betonfachwerkträgern auf dem Gelände des Berliner Flughafens Tempelhof (zwischen 1925 und 1932) errichtet. Die Fachwerkträger werden dabei abschnittsweise betoniert. Zunächst werden nur die Bewehrungsstäbe in den Zugdiagonalen eingebaut, diese aber noch nicht betoniert. Anschließend folgt die Betonage der Gurte und Druckpfosten. Die Bewehrung in den Zugdiagonalen kann im Knotenbereich kleine Verdrehungen mitmachen. Durch das Eigengewicht verformte sich der Träger und erzeugte Zugspannungen in den Bewehrungsstäben der Zugdiagonalen, daraufhin werden diese betoniert. In den Knotenpunkten entstehen mit dieser von Finsterwalder als "eingeprägte Vorspannung" bezeichneten Bauweise nur Nebenspannungen aus Verkehrslast, Kriechen und Schwinden, nicht jedoch aus Eigenlast des Trägers (Abb. 2.2) (Finsterwalder 1937 u. 1938).

Abb. 2.2: Betonfachwerkträger mit "eingeprägter Vorspannung" (Finsterwalder 1938).

Doch diese von Finsterwalder als "selbsttätige Vorspannung" bezeichnete Bauweise kann sich nicht durchsetzen. Im Jahr 1959 wird die Mangfallbrücke, ebenfalls von Ulrich Finsterwalder, mit einer maximalen Spannweite von 108m und einer Gesamtlänge von 288m erbaut und hier bereits mit dem "System Freyssinet" vorgespannt. Das Tragwerk ist ein Parallelgurtfachwerk mit sich kreuzenden Diagonalen (Finsterwalder 1959). Es werden nur die Zugstäbe bewehrt (Abb.2.3).

Abb. 2.3: Fotografie der Mangfallbrücke links (Dicleli 2013, S. 11) und Brückenquerschnitt sowie Konstruktionsdarstellung mit Bewehrungsführung in den Zugstreben (Finsterwalder 1959).

In seinem 1966 veröffentlichten Werk fasst Halasz (1966) die in Typenprogrammen verwendeten Stahlbetonfertigteilkonstruktionen der damals führenden Unternehmen zusammen. Hierzu zählen auch die vorgefertigten Fachwerkelemente der Stahlbeton-Fertigbau GmbH in Düsseldorf Xanten (Abb. 2.4).

Abb. 2.4: Fachwerksegmente aus dem Typenprogramm der Stahlbeton-Fertigbau GmbH in Düsseldorf Xanten (Halasz 1966)

Die Firma Louis Rostan aus Friedrichshafen fertigt Stahlbetonfachwerkträger für den Industriehallenbau. Ein Beispiel dafür ist der Bau einer Weberei in Bretzingen (Abb. 2.5 links). Die Fertigung des vorgespannten Fachwerkträgers mit 32 m Spannweite erfolgt in einem Stück (Halasz 1966).

Die Rautenfachwerke der Firma Beton und Monierbau AG werden jedoch in Teilstücken hergestellt, die im Knotenbereich durch einen Verguss miteinander verbunden sind. Das Rautenfachwerk wird bei der Prüfhalle Berlin-Siemensstadt eingesetzt (Abb. 2.5 mitte u. rechts) (Halasz 1966).

Abb. 2.5: Links: Fachwerkkonstruktion der Fa. Rostan; Mitte u. rechts: Knotendetail und Bauphase der Prüfhalle Berlin-Siemensstadt (Halasz 1966)

Im Jahr 1980 werden Stahlbetonfachwerke beim Bau der Zahn- Mund- und Kieferklinik in Münster verwendet (Bomhard; Müller 1977). Die Fa. Bouygues entwickelt zwischen 1970 und 1990 Segment-fachwerkkonstruktionen aus Stahlbeton. Diese werden bei den Dachträgern des Nationalstadions in Teheran eingesetzt. Eine Weiterentwicklung kommt bei der "Pont de Bubiyat" in Kuwait und bei der Autobahnbrücke "Viaduct des Glacieres" und "Viaduct de Sylans" zur Anwendung (Richard 1984) und (Bruneau et al. 1984). Auch in China werden Segmentfachwerke im Brückenbau verwendet. Ein Trägerelement besteht aus zwei Fachwerksegmenten, die über ein vorgespanntes Betonelement miteinander verbunden werden. Die Ausfachungsart wird dabei in unterschiedlichen Varianten ausgeführt, wobei auf Zug beanspruchte Stäbe stets mit einer Vorspannung versehen werden (Tong-Hua 1987). Ein Beispiel dieser Brückenkonstruktion ist die 1981 für den Verkehr freigegebene 75 m lange Changyan Bridge in Guizhou Province (Abb. 2.6).

Abb. 2.6: Segmentfachwerke in China, Links: Fertiggestelltes Fachwerksegment; rechts oben: Beispiel einer Struktur der Brücke; rechts unten: Konstruktionsprinzip und Querschnitte (Tong-Hua 1987)

In den USA wird heutzutage im Hochbau das "ER-POST System" (Ericksen Roed – Prestressed Open Space Truss) angewendet. Dieses ist ein vorgefertigtes vorgespanntes Betonfachwerk, welches bis zu 24,40m überspannt und eine Bauhöhe zwischen 3,40m und 4,30m aufweist (Abb. 2.7 links) (Trygestad; De Sutter 2007).

Im Jahr 2010 wird die Fuß- und Radwegbrücke über die Alfenz in Österreich als monolithische Fachwerkbrücke fertiggestellt (Abb.2.7 rechts). Die Betonage erfolgt in unmittelbarer Nähe zur Baustelle (Hämmerle et al. 2012).

Abb. 2.7: Links: ER-POST System, Fa. Ericksen Roed & Associates (Ericksen) rechts: Fuß- und Radwegbrücke über die Alfenz in Österreich (Baunetzwissen)

Im Forschungsprojekt "Adaptive Tube in Tube Brücken" werden Stahlbetonfachwerke als nachträgliche Verstärkung von Hohlkastenbrücken vorgeschlagen. Hier bietet sich eine modulare Konstruktion an um eine effektive Montage zu ermöglichen (Abb. 2.8) (Empelmann et al. 2014).

Abb. 2.8: Möglichkeit der Fachwerkverstärkung (Empelmann et al. 2014.)

Schon bei den ersten Betonfachwerkträgern, zu Beginn des 19. Jahrhunderts, werden Berechnungsverfahren, Materialgüte und auch die konstruktive Durchbildung der monolithischen Knotenpunkte verändert, doch eine modulare Fügung wird bis heute nur in wenigen Forschungsprojekten behandelt. Nachfolgend werden Forschungsprojekte genannt, die sich mit der Fügung modularer Konstruktionen befasst haben.

- Rautenförmige Elemente (Wechsler 1986)

In den USA werden 1986 modulare Rautenelemente entwickelt (Abb. 2.9), die über einbetonierte Stahlplatten miteinander verbunden sind.

Abb. 2.9: Rautenförmige Stahlbetonelemente (Wechsler 1986)

Wabenrahmen (HTA Association) Im Forschungsprojekt "Honey comb Tube Architectur" werden in Japan bienenwabenförmige Be-

Abb. 2.10: Wabenrahmen (HTA Association 2009)

- Knotenelemente (Henze 2009)

In der 2009 veröffentlichen Dissertation "Entwicklung und Beschreibung des Tragverhaltens einer modularen Fachwerkkonstruktion aus Hochleistungsbeton" wird der klassische Fachwerkträger in

seine einzelnen Elemente aufgelöst. Es wird ein Knotenelement entworfen, über das alle Bauteile miteinander mittels verbundloser Vorspannung zusammengehalten werden.

Abb. 2.11: Fügung über Knotenelemente; Links: Darstellung der Elemente (Henze 2009); Mitte: Knotenelement im Versuchsaufbau (Henze 2009); rechts: Demonstrator (Tue 2013)

2.2 Modularer Fachwerkträger aus Beton

Die hier vorliegende Forschungsarbeit baut direkt auf die grundlegenden Überlegungen von Henze zur Konstruktion modularer Fachwerkträger auf. Die Innovation hierbei ist die Auflösung einer monolithischen Struktur mithilfe eines Knotenelementes, welches eine modulare Konstruktion ermöglicht.

2.2.1 Konstruktionsprinzip

Der modulare Fachwerkträger, bestehend aus Ober- und Untergurt, Stützen und Diagonalen sowie einem Knotenelement wird über eine vertikal in den Pfosten verlaufende Vorspannung zusammengehalten (Abb. 2.12 links). Die Geometrie des Knotenelements (Abb. 2.12 rechts) soll mit Hilfe der Schalung dergestalt angepasst werden können, dass unterschiedliche Strebenneigungen möglich sind. Hierdurch soll ein hohes Maß an Flexibilität bzgl. Strebenneigung und damit eine große Vielfalt an Strebenanordnungen ermöglicht werden.

Abb. 2.12: Kraftübertragung im Knotenelement (links); Querschnittswerte nach Henze (2009) (rechts)

2.2.2 Untersuchungen zum Trag- und Verformungsverhalten (Henze 2009)

Untersuchungen zum Reibungsverbund

Da die Kraftübertragung rein über Reibung funktioniert, werden als erstes Reibversuche an unterschiedlich ausgeführten Betonoberflächen durchgeführt (Abb. 2.13). Aufgrund der kostengünstigen und möglichst gut reproduzierbaren Ausführung werden die Oberflächen schalungsglatt sowie kugelgestrahlt hergestellt. Dabei werden ein grobkörniger UHPC für die schalungsglatte Oberfläche und ein grobkörniger sowie ein feinkörniger UHPC für die kugelgestrahlte Oberfläche verwendet.

Abb. 2.13: Darstellung des Reibungsversuches (Tue 2013)

Die Ergebnisse der Reibungsversuche sowie weitere Eigenschaften der Probekörper werden zusammengefasst (Tab. 2.1).

	Reibungsverbund	Reibungsverbund	Reibungsverbund	
	Serie 1	Serie 2	Serie 3	
UHPC	grobkörnig	grobkörnig	feinkörnig	
	schalungsglatt	kugelgestrahlt	kugelgestrahlt	
Oberfläche		Unterschied der Oberflächenrauigkeit ist gering, da keine Freilegung der groben Gesteinskörnun-		
		gen erfolgte		
Reibungsbeiwert µ	0,70 - 0,80	0,65 - 0,70	0,60 - 0,65	
Druckfestigkeit	162.7 N / mm ²	163.2 N / mm ²	163.5 N / mm ²	
f _{c,cube,100 (Kantenlänge)}		100,2117 1111	100,010,711111	
Max. Übertragbare	Ca. 420	Ca. 325	Ca. 325	

Tab. 2.1: Reibungsbeiwerte und Betondruckfestigkeiten der Versuchsreihen nach (Henze 2009)

Abb. 2.14: Kraft/Relativverschiebung im Bereich $\Delta v = 0$ *bis 20mm (links) und im Bereich* $\Delta v = 0$ *bis 1mm (rechts) (Henze 2009)*

Die Versuche zeigen, dass durch eine schalungsglatte Oberfläche höhere Lasten übertragen werden können. Dies wird auf eine Schmierschicht zurückgeführt, welche durch das Abreiben der rauen Oberflächen und somit der punktuellen Kontakte entsteht. Die Versuche der Serie 1 bis 3 zeigen, dass für das Erreichen der Maximallast unterschiedliche Relativverschiebungen notwendig sind (Abb. 2.14).

Untersuchungen zum Knotentragverhalten

Im Rahmen der Tests zum Knotentragverhalten werden der Einfluss der Betonagetechnologie (Betoneinfüllseite des Knotenelementes), die Anordnung einer Betonstahlbewehrung sowie der Stahlfasergehalt und die Diagonalenneigung untersucht (Abb. 2.15). Es wird als maximale Beanspruchungssituation der Fall einer Zugdiagonalen und eines Druckpfostens, das heißt eines Druck-Zugbeanspruchten Knotenelements gewählt.

Abb. 2.15: Knotenpunktversuch (Henze 2009)

Serie 1: Betonagetechnologie

Das Einfüllen des Betons bei der Betonage des Knotenelements kann von vier Seiten erfolgen. Hiervon sind sowohl optische sowie herstellungstechnische Auswirkungen sowie die Tragfähigkeit des Knotenelements abhängig. Letztgenannte Eigenschaft ist maßgeblich durch die Verwendung von Stahlfasern bestimmt. Zu den Technologien 1 bis 4 wird jeweils ein Versuch durchgeführt (Tab. 2.2).

	Technologie 1	Technologie 2	Technologie 3	Technologie 4
Darstellung Betonierte Oberseite = Einfüllseite Beton			€ Rüttlerposition	0
Neigung		45	0	
Verdichtung	Durch Fließfähigkeit	Durch Fließfähig-	Zusätzlich durch	Durch Fließfähig-
	des Betons	keit des Betons	Innenrüttler	keit des Betons
Beton	UHI	PC: Stahlfasergehalt 2,8	Vol% (UHPC Typ]	F1)
Vorteile	Gute Entlüftung	Keine Nachbehand-	keine Nachbehand-	Gute Entlüftung;
		lung der Kontaktflä-	lung der Kontakt-	schalungsglatte
		chen	flächen	Seitenflächen
Nachteile	Nachträgliches	Erschwertes Entlüf-		Nachträgliches
	Schleifen der Kon-	ten der unteren		Schleifen der Kon-
	taktfläche erforder-	Seitenfläche		taktfläche erforder-
	lich			lich
Knotentraglast	221	325	226	412
(Zug) [kN]		In den Traglasten der Technologie 2		
		und 3 zeigt sich di		
		kung der zusätzl		
		durch den Innenrütt		

Tab. 2.2: Überblick zur Serie 1

Das Versagen des Knotenpunktes (Abb. 2.15) tritt immer durch Rissbildung im Knotenelement auf (Abb. 2.16 rechts). Es kommt zu keinem Versagen des Reibungsverbundes und damit zu keiner Rela-

tivverschiebung zwischen Knotenelement und Gurt. Während des Versuchs wird das Last-/Verformungsverhalten des Knotenpunktes aufgezeichnet (Abb. 2.16).

Abb. 2.16: Arbeitslinien der Knotenpunktversuche; Links: Gegenüberstellung der Technologien; rechts: Gegenüberstellung der Rissöffnung und der Relativverschiebung zwischen Knotenelement und Gurt (Tue o.w.A.)

Serie 2: Zusätzliche Stabstahlbewehrung (1 Versuch)

Aus Serie 1 wird die Technologie 4 mit ebenfalls 45° geneigten Diagonalanschlussflächen verwendet. Anhand des Rissverlaufs aus Serie 1 wird die Stabstahlbewehrung für das Knotenelement abgeleitet (Abb. 2.17). Um den Einfluss des Stahlfasergehaltes im Zusammenhang mit der Stabstahlbewehrung zu prüfen, wird in Serie 2 mittels eines Versuchs ein niedriger Stahlfasergehalt mit 1,5 Vol.-% (UHPC Typ F2) und in einem zweiten Versuch ein hoher Stahlfasergehalt mit 2,8 Vol.-% (UHPC Typ F1) untersucht. Die 2,8 Vol.-% werden aufgrund der Vergleichbarkeit mit den Versuchen aus Serie 1 gewählt.

Abb. 2.17: Rissdarstellung und daraus abgeleitete Anordnung der Stabstahlbewehrung (Bügel)(Henze 2009)

Im Gegensatz zur Serie 1 versagt beim Knotenelement mit zusätzlicher Stabstahlbewehrung (Bügel) der Reibungsverbund in der Kontaktfuge, nicht aber das Knotenelement. Während der Versuchsdurchführung war eine deutliche Relativverschiebung zu beobachten, welche bei ca. 5 mm durch einen Stopp des Versuches abgebrochen wird. Es kann kein Einfluss des Stahlfasergehaltes auf das Tragverhalten des Knotenelements festgestellt werden. Bei UHPC Typ 1 wird ein Reibungskoeffizient μ =0,74 und bei UHPC Typ 2 von μ =0,61 erreicht. Die Unterschiede werden ausdrücklich nicht mit dem unterschiedlichen Stahlfasergehalt begründet.

Serie 3: Weitere drei Versuche mit zusätzlicher Stabstahlbewehrung

Hier werden, wie in Serie 2, drei weitere Versuche mit dem niedrigeren Stahlfasergehalt durchgeführt. Der niedrigere Stahlfasergehalt wird aus wirtschaftlichen Gründen gewählt, da die Versuche in Serie 2 zeigen, dass kein Einfluss hinsichtlich der Tragfähigkeit besteht. Das Tragverhalten in Serie 3 weist keine Unterschiede zur Serie 2 auf. Der Reibungsverbund wird bei einem Verschiebeweg von weniger als 1 mm erreicht. Die Reibungskoeffizienten können mit μ =0,55 bis μ =0,70 angegeben werden. Sie erreichen auch hier nicht die Werte aus Serie 1. Es wird vermutet, dass die mehrfach Verwendung des

Gurtes zu einem schlechteren Reibungsverbund führt. Um dies zu überprüfen wird für Serie 4 ein neuer Gurt angefertigt.

Serie 4: Knotenelement unter einem Neigungswinkel der Diagonale von 30°

Die Versuche in Serie 4 werden, analog Serie 3, jedoch mit auf 30° geänderter Anschlussfläche, für die Diagonalen durchgeführt. Das Tragverhalten weicht zu vorangegangenen Versuchen nicht ab, jedoch wird durch die Verwendung des neuen Gurtes ein höherer Reibungsverbund mit Werten μ =0,77 bis μ =0,86 und geringerer Streuung erreicht. Dadurch wird gezeigt, dass eine Mehrfachverwendung die Mikrostruktur der Betonoberflächen negativ beeinflusst.

Zusammenfassung zum Tragverhalten der Knotenpunkte (Henze 2009):

Die Untersuchungen zeigen, dass die Verwendung einer Betonstahlbewehrung erforderlich ist um das Knotenelement mit den notwendigen Eigenschaften sicher reproduzieren zu können. Ein Einfluss des Stahlfasergehaltes auf das Trag- und Verformungsverhalten wird nicht festgestellt, so dass aus wirtschaftlichen Gründen ein geringerer Stahlfasergehalt empfohlen wird. Zwischen einer Diagonalenneigung von 30° und 45° können keine Unterschiede festgestellt werden. Die Bewehrungsführung kann bei beiden Varianten gleich sein. Der vollständige Reibungsverbund wird bei maximal 1 mm Relativverschiebung erreicht. Die Reibungskoeffizienten können für das Knotenelement im Bereich von μ =0,75 bis μ =0,85 angesetzt werden. Eine Wechselbeanspruchung der Kraft ist für die Verbindung aufgrund der sich bildenden Schmierschicht und den dadurch verminderten Reibungskoeffizienten kritisch zu sehen.

Tragverhalten der modularen Fachwerkträgerkonstruktion

Henze konzipiert in seiner Arbeit einen Demonstrator für einen Großversuch (Abb. 2.18). Der über ein Feld verlaufende, parallelgurtige Fachwerkträger ist 24 m lang und hat eine Systemhöhe von 2,19 m. Dies entspricht einer Schlankheit L/H von 11. Diese Schlankheit gilt bei Stahlfachwerkkonstruktionen bei Stützweiten ab 20m und Schlankheiten zwischen L/H = 8 bis 12 als wirtschaftlich (Thiele, Lohse 1997). Die Diagonalen verlaufen unter 45° und sind als Druckstäbe ausgeführt. Die Zugpfosten werden mit Zugstangen vorgespannt und somit überdrückt. Durchgeführt wird dieser Versuch vom Projektpartner der Firma Max Bögl. Eine Veröffentlichung der Ergebnisse liegt nicht vor. In Tue (o.w.A.) werden jedoch Bilder der Versuchsdurchführung abgedruckt (Abb. 2.19).

Abb. 2.18: Darstellung des Großversuchs (Tue o.w.A.)

Der Fachwerkträger ist an den Auflagern über eine Gabellagerung gegen Kippen gesichert. Zusätzlich gibt es Horizontalhalterungen in den Drittelspunkten. Ebenfalls in den Drittelspunkten wird die Kraft über zwei Einzellasten aufgebracht.

Abb. 2.19: Bilder zum Großversuch (Tue o.w.A.)

Die Stöße des Ober- und Untergurtes werden durch eine Vorspannung zusammengehalten (Abb. 2.19). Während des Versuchs öffnen sich die Fugen zwischen Diagonale und Knotenelement (Abb. 2.20 rechts). Der Stoß im Obergurt ist geschlossen (Abb. 2.20 links), während der Stoß im Untergurt sich öffnet (Abb. 2.20mitte).

Abb. 2.20: Obergurt mit eingezeichneter Vorspannung und geschlossenen Kontaktstoß (links); geöffneter Kontaktstoß des Untergurtes mit sichtbarer Vorspannung (mitte); mittlerer Knotenpunkt mit Angabe der Kontaktstoßöffnung (rechts) (Tue o.w.A.)

2.2.3 Untersuchungen zum Tragverhalten der stumpf gestoßenen Verbindungen (Gruber 2011)

Darstellung Fachwerkträger und Lastfälle

In der Arbeit von Gruber wird die Übertragung der Reibkraft zwischen Knotenelement und Gurt und die Tragfähigkeit des Knotenelements untersucht. Es wird das Knotenelement von Henze verwendet. Die am Knotenpunkt U2 angreifenden Bemessungsschnittgrößen werden an einem etwa 65m langen modularen Fachwerkträger einer Multifunktionshalle am Standort Ulm (Abb. 2.21) ermittelt. Für dieses Projekt gibt es eine Bauwerksbeschreibung vom Institut für Konstruktions- und Werkstoffentwicklung in Magdeburg IWKa (2010) und eine Bemessungsgrundlage IWKb (2010).

Abb. 2.21: Untersuchter Fachwerkträger (Gruber 2011)

Die numerische Analyse erfolgt in einem ersten Schritt physikalisch linear und in einem zweiten Schritt physikalisch nichtlinear sowie in beiden Rechnungen geometrisch nichtlinear. Reibungsbehaftete Kontakte werden mit Interface-Elementen abgebildet. Es werden die Lastfälle "Pfostenvorspannung" und "Volllast" des Fachwerkträgers am herausgelösten Knoten "U2" in zwei separaten Berechnungen untersucht. Dabei wird die Bemessungsnormalkraft aus der Stabwerksberechnung, die Eigenlast, Verkehrslast und Vorspannung beinhaltet, als Lastfall "Volllast" bezeichnet.

Abb. 2.22: Untersuchter Fachwerkknoten (links) und Belastungshistorie (rechts) (Gruber 2011)

In der ersten Berechnung wird im Lastfall "Pfostenvorspannung" der Pfosten mit -1600 kN belastet. Die Last wird in 12 Lastschritten aufgebracht wobei die ersten 7 Schritte 12,5% und die Schritte 8 bis 12 mit 2,5% der Vorspannkraft des Pfostens betragen (Abb. 2.22 rechts oben).

In der zweiten Berechnung wird der Lastfall Volllast untersucht, dessen Schnittgrößen aus einer Stabwekberechnung auf Grundlagen der Bauwerksbeschreibung (IWKa 2010) und der Bemessungsvorgaben (IWKb 2010) ermittelt werden. Die Belastung des Lastfalls Volllast wird über 15 Lastschritte auf den Knotenpunkt aufgegeben (Abb. 2.22). Ausgehend von einer spannungsfreien Verbindung wird im ersten Lastschritt die gesamte Vorspannkraft mit -1600kN auf die Zugpfosten und 25% der Diagonalkraft aus dem Lastfall Volllast (-425kN) auf die Druckdiagonalen des untersuchten Fachwerkknoten (Abb. 2.22 links) angesetzt. Dadurch reduziert sich die im Betonquerschnitt des Zugpfostens wirkende Druckkraft im ersten Lastschritt auf 80% (Abb. 2.22 rechts unten). In weiteren 14 Lastschritten wird die Druckkraft in der Diagonale bis auf -1700kN gesteigert. Die Betondruckkraft in den vorgespannten Zugpfosten verringert sich schrittweise bis auf -400 kN. Während die Belastung im Pfosten direkt als Kraft berücksichtigt wird, erfolgt die Lastaufgabe auf die Diagonalen über eine aufgebrachte Verschiebung von 1,771mm bei der linear-elastischen Berechnung und 1,764 mm bei der nichtlinearen Berechnung.

Verwendete Bauteilabmessungen

Im Gegensatz zur Arbeit von Henze wird hier eine externe Vorspannung der Gurte verwendet (Abb. 2.23).

Abb. 2.23: Geometrie des Fachwerkträgers (Gruber 2011)

Die Vorspannung der Pfosten erfolgt über Gewindestangen. Beim Knotenelement gibt es eine Ursprungsgeometrie mit einer Breite des inneren Hohlraumes von 140 mm (Abb. 2.23). In einer Optimierung wird diese Breite auf 80 mm verkleinert (Abb. 2.24 rechts). Die übrige Geometrie bleibt gleich. Im Knotenelement wird eine Bügelbewehrung vorgesehen (Abb. 2.24 links).

Abb. 2.24: Anordnung der Bügelbewehrung im Knotenelement (links) Knotenelement Ausgangsgeometrie und optimierte Geometrie (rechts) (Gruber 2011)

Be rechnung sergebnisse-Spannung en

Die Spannungen in der Bewehrung bleiben in beiden Lastfällen deutlich unterhalb der Fließgrenze (Abb. 2.25 und 2.26).

Abb. 2.25: Hauptzugspannungen (links) und Spannungen in der Bewehrung (rechts) infolge Pfostenvorspannungen in den nichtlinearen Berechnungen mit Bügelbewehrung (Gruber 2011)

Abb. 2.26: Hauptzugspannungen (links) und Spannungen in der Bewehrung (rechts) infolge Vollast in den nichtlinearen Berechnungen mit Bügelbewehrung (Gruber 2011)

Berechnungsergebnisse – Verformungen

Abb. 2.27: Darstellung der Verformung im Lastfall Pfostenvorspannung: Ausgangsgeometrie Linearelastisch (links); optimierte Geometrie Linear- elastisch (mitte); optimierte Geometrie nichtlinear (rechts); (Gruber 2011)

Der von Gruber betrachtete Fachwerkträger ist sowohl von den äußeren Abmessungen als auch von der Strebenanordnung mit der in dieser Forschungsarbeit betrachteten Konstruktion vergleichbar. Das Knotenelement wird ebenfalls durch Druckkräfte aus vorgespannten Pfosten und Diagonale belastet. Obwohl die Kraftübertragung bei Gruber über Reibung und in dieser Arbeit über eine Verzahnung übertragen wird, sind die numerischen Untersuchungen zum Knotentragverhalten für beide Varianten der Kraftübertragung aufschlussreich.

Die Hauptzugspannungen im Knotenelement entstehen im Lasteinleitungsbereich infolge Querzug und überschreiten die aufnehmbaren Zugspannungen des Betons. Diese Zugspannungen können jedoch von der Bügelbewehrung problemlos aufgenommen werden. Die Verformungen des Knotenelements (Abb. 2.27) zeigen deutlich die höhere Steifigkeit des optimierten Querschnitts. Auch im Hinblick auf eine ebene Kontaktfläche zwischen Knotenelement und Pfosten bzw. Diagonale, ist ein möglichst kleiner Hohlraum im Knotenelement zu konstruieren.

2.3 Fügungsmethoden modularer Konstruktionen

2.3.1 Betonverzahnung

In seiner Veröffentlichung über Stahlbeton nennt Mörsch (1908) eine verzahnte Betonfuge als Widerstand gegen Abscheren (Abb. 2.28 links). Weitere Forschungen zu Betonverzahnungen führen in eine normierte Festlegung für Betonzähne. Betonverzahnungen (Schubnocken) sind im Abschnitt 6.2.5 der DIN EN 1992-1-1+NA: 2011 geregelt. Diese haben eine trapezförmige Geometrie (Abb. 2.28 rechts). Die Herstellung erfolgt in zwei Betonageschritten.

Abb. 2.28: Darstellung einer verzahnten Betonfuge als Widerstand gegen Abscheren nach (Mörsch 1908) links und nach (DIN EN 1992-1-1+NA: 2011) rechts

2.3.2 Klebeverbindungen

Mit Epoxidharz oder Reaktionspulverbeton (RPC- Reactive Powder Concrete = hochfester mineralischer Mörtel) können Klebeverbindungen hergestellt werden. Die Klebeverbindungen sind nichtmechanisch, erfordern große Sorgfalt und unterliegen sehr hohen Anforderungen auf der Baustelle. Aufgrund von Witterungseinflüssen sind sie fehleranfällig (Schöning et al. 2013).

Klebeverbindungen werden für die zu entwickelnde Verbindungslösung nicht weiter betrachtet, da sie nachträglich nicht lösbar sind.

2.3.3 Dübelleisten und Betondübel

Kopfbolzendübel werden in der Regel eingesetzt um Verbundkonstruktionen aus Stahl und Stahlbeton herzustellen. DieSchubkraftübertragung erfolgt über auf dem Stahlträger aufgeschweißte und einbetonierte Kopfbolzent. Kopfbolzendübel sind im Eurocode 4 normativ geregelt. Kopfbolzen benötigen Mindestabstände und werden für linienförmige Lasteinleitungen verwendet. Zudem besitzen Verbindungen mit Kopfbolzen eine relativ geringe Steifigkeit.

Neben den Kopfbolzen kann die Schubkraftübertragung zwischen Stahlbauteil und Beton über sogenannte Dübelleisten erfolgen. Dabei stützen sich Betondruckstreben im Steg des Stahlträgers ab (Abb. 2.29). Die kontinuierlichen Schubkraftübertragung wird durch Aussparungen im Steg erreicht.

Abb. 2.29: Verbundträger mit Betondübel (Mangerig et.al 2011)

Bemessungsmodelle für Betondübel:

- Dübelabschermodell nach Leonhard (1986)
- Betondübelmodell nach Wurzer (1997)
- Modell nach Zapfe (2001)
- Modifikationsfaktor nach PRECO-BEAM (Wagner 2010 u. Mangerig et al. 2011)
- Modell nach Reitz (2003)
- Modell nach Hauke (2007) und Gründel (2009)

2.3.4 Implantate

An der Universität Stuttgart werden sogenannte "Implantate" entwickelt um hohe Druckkräfte in dünnwandige Bauteile aus UHPC einleiten zu können (Abb. 2.30). Dabei wird die Kraft konzentriert in das Betonbauteil eingeleitet (Sobek 2011, Kobler 2013). Die dabei auftretenden Spannungsspitzen sollen reduziert werden, sodass die Spannungsverteilung im Anschlussbereich möglichst gleichmäßig ist. Das Implantat wird in Teilbereichen aus Titan mit einer verjüngten Geometrie hergestellt. Dadurch wird die Steifigkeit angepasst und dadurch eine möglichst konstante Lasteinleitung erreicht.

Abb. 2.30: Darstellung des Implantats und Druckstrebenneigungswinkel (Kobler 2013)

Durch das Verhältnis der E-Moduln zwischen Implantat und Bauteil, die Länge der Lasteinleitung sowie der Verjüngung des Leistenquerschnitts kann die Neigung der Druckstrebe beeinflusst werden. Der gewünschte Druckstrebenneigungswinkel kann eingestellt werden. Die Druckstrebenneigungswinkel werden in Richtung der Leistenspitze immer flacher. Senkrecht zu den Druckspannungen wirken die Zugspannungen, welche durch Finnen (mit Druckplatten) in den Beton eingeleitet werden. (Kobler 2013).

2.3.5 Verzahnungen (Schlaich, Schmid, Dehlinger, Tandler)

Ortbetonseitige Zahnleiste

Mit der von Schlaich (1992) entwickelten Zahnleiste können große Kräfte lokal in dünne Ortbetonplatten eingeleitet werden. Hierbei erfolgt die Kraftübertragung zwischen Zahnleiste und Beton über eine Stahlverzahnung. In dieser stützen sich die Betondruckstreben ab (Abb. 2.31).

Abb. 2.31: Anschlussmöglichkeiten Stahlelemente mit Zahnleisten nach (Schlaich et al. 2002)

Schmid (2000) analysiert diese Zahnleiste und optimiert die Zahngeometrie hinsichtlich einer effektiven Kraftübertragung durch umfangreiche numerische Berechnungen. Das Tragverhalten wird analytisch beschrieben (Abb. 2.32). Untersucht werden unterschiedliche Lastneigungswinkel. Das betrachtete Winkelspektrum des Lastangriffs wird zwischen 20° und 70° gemessen ab der horizontalen angegeben.

Abb. 2.32: Belastung der Verzahnung unter unterschiedlichen Lastneigungswinkeln nach (Schmid 2000)

Damit keine Lufteinschlüsse bzw. Fehlstellen im Beton entstehen ist die Zahngeometrie so konstruiert, dass das Größtkorn dazwischen Platz hat (Abb. 2.33).

Abb. 2.33: Optimierte Zahngeometrie nach (Schmid 2000)

Tandler (2013) untersucht die von Schmid optimierte Zahngeometrie experimentell und numerisch und bestätigt sowie erweitert das Vorbemessungskonzept.

Zahnleistenpaar mit Vergussmörtel

Dehlinger (2004) untersucht die Kraftübertragung zwischen zwei Stahlelementen mittels einer Vergussfuge. Die beiden Stahlelemente werden mit einer Verzahnung ausgeführt. Zwischen den gezahnten Stahlflächen ist eine Mörtelfuge. Über diese werden die Kräfte von einem Stahlelement zum anderen Stahlelement übertragen. Der Ausgleich von Toleranzen erfolgt über die Mörtelfuge. Die Herstellung der Mörtelfuge erfordert einen zusätzlichen Arbeitsgang auf der Baustelle. Dabei ist es schwierig immer eine gleichbleibende Qualität sicherzustellen.

2.4 Maschinenelemente als Grundlage für Stahlverzahnungen

Stahlverzahnungen werden beispielsweise für Zahnräder und Zahnstangen sowie in Gewinden eingesetzt. Diese bereits im Maschinenbau etablierten Elemente werden auf deren Anwendbarkeit und Adaption auf die Zahnleiste der Verbindung untersucht.

2.4.1 Zahnräder und Zahnstangen

Die Kenntnis um die Wirkweise von Zahnrädern wird erstmals im Jahr 330 v. Chr. von Aristoteles erwähnt. Durch Vitruv ist die Anwendung von Zahnrädern bei Heron von Alexandria (griech. Mathematiker u. Ingenieur) überliefert (Feldhaus 1914).

Abb. 2.34: Zahnrad

Zahnräder (Abb. 2.34) sind so konzipiert, dass immer nur ein Zahn je Element für die Kraftübertragung verantwortlich ist. Da hier immer ein punktueller bzw. linienförmiger Kontakt entsteht, liegt eine Hertz`sche Pressung vor. Die Nachweisführung der Zahnradhersteller erfolgt über die Zahnfußtragfähigkeit und die Grübchentragfähigkeit.

Abb. 2.35: Zähne gleiten aufeinander (Ettemeyer 2007; S. 3.02); Zahnrad (HolTech GmbH & Co. KG 2017)

Jeder Zahn besitzt eine Arbeits- und eine Rückflanke. Die Geometrie der Zähne muss ein Eingreifen des gegenüberliegenden Zahns ermöglichen, wobei sich die Zähne aufeinander abwälzen (Abb. 2.35). Alle Verzahnungen besitzen die beschriebene konvexe Form, weshalb eine direkte Adaption nicht als sinnvoll erachtet wird.

2.4.2 Hirth-Verzahnung

Die Hirt-Verzahnung (Abb. 2.36) ist eine axial wirksame, planseitige Verzahnung, sie gehört im Maschinenbau zu den formschlüssigen Verbindungen von Welle und Welle und dort weiterhin zu den festen aber lösbaren Kupplungen (Albers et al. 2007; S. 295). Durch die flach aneinander liegenden Zahnflanken sowie der Zahnneigung ist die Hirth-Verbindung mit der zu entwickelnden Stahl/Stahl-Verzahnung vergleichbar.

Abb. 2.36: Beispiele von Hirth – Verzahnungen (Voith GmbH: 2016)

2.4.3 Gewinde

Die Grundformen der Gewinde sind das metrische Gewinde, das metrische Feingewinde, das Whitworth-Rohrgewinde, das Trapez- und Sägegewinde sowie das Rundgewinde.

Abb. 2.37: metrische Gewinde, metrische Feingewinde, Whitworth-Rohrgewinde, Trapezgewinde, Sägegewinde, Rundgewinde (Muhs et. al. 2007; S.218)

Gewinde haben im Gegensatz zum klassischen Zahnrad ebene Flanken und entsprechen daher besser dem Anwendungsgebiet der statischen Verzahnung. Die effektivste Geometrie ist das Trapezgewinde und das Whitworthgewinde.

Differenzierung der Maschinenelemente				
Bezeichnung	Beanspruchungsart	Kontakt	Kraftabtragung	
Zahnräder	dynamisch	punktuell	über Einzelzahn	
Hirth Verzahnung	statisch	flächig	über mehrere Zähne	
Gewinde	statisch	flächig	über mehrere Zähne	
Zahnleiste	dynamisch	punktuell	über Einzelzahn	

Tab. 2.3: Differenzierung der Maschinenelemente (nach Vogt, Müller 2016)

3. Anforderungen an Tragelemente und Fügungsdetails für einen Referenzfachwerkträger aus HPC-Fertigteilen

3.1 Grundlagen

Allgemeines

Henze (2009) betrachtet in seiner Arbeit eine allgemeine Fachwerkkonstruktion, hingegen werden von Biadatz (2015) im weitergehenden Schritt konkrete Randbedingungen festgelegt. Dazu gehören in erster Linie der Lastansatz, Geometrie und Materialien des Fachwerkträgers. Mit diesen festgelegten Kenngrößen kann eine effektivere Betrachtung der Hochleistungsverbindung durchgeführt werden. Die Schnittgrößen aus der Stabwerksberechnung (vgl. Anhang F) dienen als Grundlage und Anforderung für die Entwicklung der Verbindung.

Lastansatz

Es wird eine freistehende geschlossene Halle mit einer Breite von 60m und einer Länge von 100m angenommen. Es wird eine Schneelast $Q_{s,k}$ der Schneelastzone 2 bei einer Höhe von 400m.ü.NN berücksichtigt. Der Winddruck $q_{w,k}$ wird für den maßgebenden Bereich I und Anströmrichtung $\theta = 90^{\circ}$ in Windlastzone 2 und Geländekategorie "Mischprofil Binnenland" gewählt. Der Dachaufbau besteht aus einer Dachhaut und Pfetten, welche auf dem Fachwerkträger aufliegen.

Vorspannkraft der Pfosten wird als äußere Last angesetzt. Vorspannung des Untergurt wird mit vier Spanngliedern modelliert. Effekte von Rückstellkräften werden nicht berücksichtigt.

Geometrie und Parameteruntersuchungen

Ausgehend von einer Vordimensionierung wird in einer Parameterstudie die Abhängigkeit des Tragverhaltens von der Systemhöhe sowie von der Ausfachungsart untersucht. Dabei werden verschiedene Systemhöhen und Ausfachungsarten hinsichtlich der Schnittgrößen, Spannungen, Verformungen und der Kubatur und somit des Eigengewichts untersucht. Es zeigt sich, dass bei einer Systemhöhe von 3,75m die größte Abnahme dieser Parameter zu verzeichnen war (Abb. 3.1). Aus niedrigeren Systemhöhen (2,5m bis <3,75m) resultieren höhere Werte der betrachteten Parameter. Bei höheren Systemhöhen (>3,75m bis 7,5m) werden die Werte der betrachteten Parameter geringer. Da ein zu großer Fachwerkträger jedoch kein Optimum darstellt, wird die effektivste Höhe bei 3,75m festgelegt.

Abb. 3.1: Links: Normalkräfte im Ober- und Untergurt aus GZT1 in Abhängigkeit der Systemhöhe und Materialansatz-Variante (Biadatz 2015)

3. Anforderungen an Tragelemente und Fügungsdetails für einen Referenzfachwerkträger aus HPC-Fertigteilen

Material

Der Fachwerkträger wird aus Beton mit der Betongüte C100/115 geplant. Das verwendete Material für die Zahnleisten ist ein Stahl S235, für die Gewindestangen und die Spannlitzen wird auf den Anhang Tab. FA.13 verwiesen.

3.2 System und Berechnungen

Der Fachwerkträger wird am dreidimensionalen Einzelträger (Abb. 3.2) sowie einem 3D-Modell einer beispielhaften Halle untersucht. Die Stabwerksberechnungen werden mit dem Programm Sofistik durchgeführt.

Abb. 3.2: System des Fachwerkträgers

Die Schnittgrößenermittlung wird nach Theorie II.Ordnung unter Berücksichtigung der Vorverformungen durchgeführt. Neben dem Endzustand werden auch alle maßgebenden Bau- und Montagezustände untersucht.

3.3 Bemessung und Festlegungen

Die Bemessung der Bauteile (Abb. 3.3 u. 3.4) erfolgt nach DIN EN 1992 am herausgelösten Bauteil auf Grundlage der Schnittgrößen aus der Stabwerksberechnung.

Abb. 3.3: Abmessungen der Konstruktionselemente des Fachwerkträgers

Abb. 3.4: Abmessungen des Knotenelements

4. Entwurf und Konstruktion der gezahnten Verbindung

4.1 Anforderungen an die modulare Verbindung

Es wird ein Knotenpunkt entwickelt, an dem mehrere stabförmige Stahlbetonfertigteile zusammentreffen und große Kräfte übertragen können. An die Verbindung des Knotenpunktes werden technische und baubetriebliche Anforderungen gestellt.

Anforderungen an die Verbindung:

- Vielfältige Anschlusssituationen
- hoher Vorfertigungsgrad der Elemente
- einfache Herstellung
- platzsparender Transport der Fertigteile
- Effiziente Montage und Demontage der Elemente
- Trockene Fügung
- Übertragung von großen Kräften
- Dauerhaftigkeit
- Brandschutz
- Schlanke Tragwerke
- Toleranzausgleich

4.2 Toleranzbetrachtung modularer Verbindungen

Bei modularen Konstruktionen ist es entscheidend, mit welchen Fertigungstoleranzen diese hergestellt und montiert werden können. Die erforderliche Genauigkeit ist abhängig von der Art der Anschlusssituation. Bei Anschlüssen mit nachträglicher Höhenausgleichsmöglichkeit können größere Toleranzen zugelassen werden. Ist kein Ausgleich möglich, so müssen die Bauteile mit minimalen Toleranzen montiert werden. Um die erforderlichen Toleranzen für die Verbindung abschätzen zu können, werden als Referenzwerte die Toleranzen nach DIN 18202 für vergleichbare Konstruktionen betrachtet. Die Toleranz (Maßabweichung) ist die Maßdifferenz (Grenzabmaß) zwischen dem "Ist-Maß" und dem "Soll-Maß", also zwischen dem größten (Höchstmaß) bzw. kleinsten Maß (Mindestmaß) und dem Nennmaß. Unterschieden werden Maßabweichungen im Grund- und Aufriss (z.B. Längen, Breiten, Geschosshöhen, Achs- und Rastermaße) sowie lichte Maße in Grund- und Aufriss (z.B. lichte Maße zwischen Stützen). Für jede dieser Betrachtungen sind Grenzabweichungen in Abhängigkeit des Nennmaß festgelegt.

4.2.1 Konsole an Stütze

Abb. 4.1: Prinzipielle Darstellung des Anschluss Konsole an Stütze.

Anforderung an Toleranzen bei Konsolen

Für das Anschlussdetail einer Konsole an eine Stütze (Abb. 4.1) wird sowohl für den Grundriss (z.B. Achsmaße zwischen Stützen) als auch für den Aufriss (z.B. lichtes Maß zwischen OK Konsole und OK Fundament) ein Nennmaß von 3m betrachtet. Das liegt für den Grundriss auf der sicheren Seite, da die Rastermaße des üblichen Hoch- und Industriebaus i.d.R. größere Abmessungen haben und demnach entsprechend größere Toleranzen zugelassen sind. Bei der Betrachtung des Aufriss sind 3m ebenfalls ein Maß, welches i.d.R. bei den genannten Bauvorhaben nicht unterschritten wird. Somit würden gem. DIN 18202 Toleranzen im Grundriss von \pm 12mm und im Aufriss von \pm 16mm zulässig sein. Die zulässigen lichten Maße liegen mit \pm 16mm im Grundriss und \pm 20mm für den Aufriss über den bereits genannten Toleranzgrenzen, weshalb für die Toleranzbetrachtung nur die maßgebenden Werte angesetzt werden.

Für eine verzahnte Verbindung ist die Toleranzanforderung im Aufriss entscheidend. Nach DIN 18202 ist eine Toleranz von \pm 16mm zulässig.

Auswirkungen von Toleranzen bei Konsolen

Die Konsole dient als Auflager von Trägern/Bindern, auf denen meist weitere Elemente aufliegen. Beispielsweise ist der Träger Teil der darüber liegenden Deckenplatte oder Auflager für Nebenträger. Die Differenz, die durch die Toleranz entsteht, kann zum einen mit einem höheren Elastomerlager und zum anderen durch einen Ausgleich in einer der darüber liegenden Elemente ausgeglichen werden. Die Auswirkungen in technischer sowie wirtschaftlicher Hinsicht sind relativ gering zu bewerten.

Festlegung von Toleranzgrenzen für Verzahnungen bei Konsolen

In einem ersten Entwurf wird die Zahnhöhe mit 10mm und die Zahnneigung mit 70° festgelegt. Bei dieser Geometrie hat der Zahngrund eine Länge und gleichzeitig eine Toleranz von 7,3mm. Die Verzahnung wäre in diesem Fall in Abständen von 7,3mm zu versetzen. Das ist ausreichend, um die Anforderungen der DIN 18202 zu erfüllen. Darüber hinaus ist es möglich, erhöhte Anforderungen an die Genauigkeit zu vereinbaren.

4.2.2 Träger an Stütze

Abb. 4.2: Prinzipielle Darstellung des Anschluss Träger an Stütze (links); Nebenträger an Hauptträger (mitte); Träger an Stütze – Anschluss am Stützenkopf (rechts).

Anforderung an Toleranzen an Träger/Stützen-Anschlüsse (Abb. 4.2)

Da es sich beim Anschluss eines Trägers an eine Stütze um eine ähnliche Bauwerkskonstruktion handelt wie bei einer Konsole an eine Stütze, werden auch hier die Nennmaße mit 3m angesetzt.

Auswirkungen von Toleranzen an Träger/Stützen-Anschlüsse

Gegenüber dem Anschlussdetail "Konsole an Stütze" ist beim Anschluss "Träger an Stütze" kein Höhenausgleich über ein Elastomerlager gegeben. Ein Ausgleich kann nur in den darüber liegenden Aufbauten erreicht werden, wenn diese Konstruktion das zulässt. Deshalb sind hier höhere Toleranzanforderungen anzusetzen wie bei dem Konsolenanschluss.

Festlegung von Toleranzgrenzen für Verzahnungen an Träger/Stützen-Anschlüsse

Auch für diesen Anschluss erscheint eine Zahnhöhe von 10mm mit einem Zahngrund von 7,3mm als ausreichend. Eine Verkleinerung der Zahnhöhe bzw. des Zahngrundes verringert die Toleranz.

4.2.3 Modularer Fachwerkträger

Abb. 4.3: Links: Prinzipielle Darstellung des Knotenpunktes eines modularen Fachwerkträgers; Rechts: Ausschnitt eines modularen Fachwerkträgers (Biadatz 2015)

Anforderung an Toleranzen bei Fachwerkträgern (Abb. 4.3)

Die Pfostenlänge beträgt $l_{Pfosten} = 3,75m$ (inkl. Knotenelement) und die Diagonale hat eine Länge von $l_{Diagonale}=3,75m * \sqrt{2} = 5,303m$. Gemäß Schöwer (2013) werden die Pfosten- und Diagonallängen mit den Nennmaßen 3m bis 6m eingeordnet. Somit betragen die Grenzabweichungen für "Längen stabförmiger Bauteile" $\pm 10mm$.

Auswirkung von Überlänge und Unterlänge der Ausfachungsstäbe

Die in der DIN 18202 angegebenen Toleranzgrenzen für stabförmige Bauteile sind mit \pm 10mm für Fachwerkkonstruktionen viel zu groß. Es ist notwendig hier genauere Anforderungen zu definieren. Deshalb werden nachfolgend genauere Betrachtungen durchgeführt.

Der im Kapitel 2.2 beschriebene Demonstrator wird von Henze (2009) auch in einer FE-Rechnung als Scheibenmodell (Abbildung als halber Träger) mit linear elastischen Materialverhalten untersucht. Kontaktfugen werden mit nichtlinearen Federelementen simuliert. Dabei wird geprüft, wie sich das System bei Über- bzw. Unterlängen der Pfosten und Diagonalen verhält, um die in der Praxis unvermeidlichen Fertigungstoleranzen zu berücksichtigen. Die Vorspannung wird am System über äußere Lasten aufgegeben und beträgt (Angaben aus Henze 2009):

- in allen Pfosten: P = 660 kN
- im Anschluss Knotenelement an Diagonalen: P = 100kN vorgespannt.
- im Obergurt P = 944kN aus sofortigen Verbund
- im Untergurt P = 944kN aus sofortigen Verbund und P = 776kN aus nachträglichen Verbund.

Das System ist durch die Eigenlast der Konstruktion und durch zwei in den Drittelspunkten angreifenden Einzellasten F belastet. Die Einzellasten F werden in Lastschritten der Größe 50kN von 0kN (nur Konstruktionseigengewicht) bis 350kN am System angesetzt. Es stellen sich vier Varianten als maßgebend heraus (Abb. 4.4 und Abb. 4.5).

Abb. 4.4: Links: Kombination für maximale Zugbeanspruchung des Obergurtes; rechts: Kombination für die maximale Zugbeanspruchung des Untergurtes (Henze 2009)

Abb. 4.5: Links: Kombination für maximale Zugbeanspruchung der Pfosten; rechts: Kombination für die maximale Zugbeanspruchung der Diagonalen (Henze 2009)

Es werden Längenabweichungen mit $\pm 0,25$ mm und mit $\pm 0,50$ mm untersucht. Bei beiden untersuchten Toleranzen treten in den Diagonalen Biegezugspannungen auf die jedoch unterhalb des 5%-Fraktils der Betonzugfestigkeit liegen. Die Auswirkungen auf die Normalspannungen der Pfosten sind geringer als die bei den Gurten und Diagonalen. Die Pfosten bleiben bei den Bemessungsschnittgrößen frei von Zugspannungen. Henze (2009) legt die Toleranzgrenze mit $\pm 0,25$ mm fest, da die Fertigteile nach der Herstellung einer Wärmebehandlung unterzogen werden und nach dem Abklingen des Schwindvorganges ein Schleifprozess vorgesehen ist. Demnach ist ohnehin eine hohe Fertigungsgenauigkeit vorhanden.

Ausgleichsmöglichkeiten von Toleranzen mithilfe der Verzahnung

Um in Querrichtung Toleranzen auszugleichen, werden die Zahnleisten in Querrichtung verschoben (Abb. 4.6). Um die erforderliche Kraft übertragen zu können, muss auch im verschobenen Zustand eine ausreichende Kontaktfläche zur Verfügung stehen. Das ist bei der Konstruktion zu berücksichtigen.

Abb. 4.6: Toleranzausgleich in Querrichtung am Beispiel der Stahlverzahnung nach (Hofmann 2015)

Durch ein Versetzen der Verzahnung können Toleranzen in Längsrichtung ausgeglichen werden (Abb.4.7). Die miteinander zu verbindenden Bauteile können damit in die erforderliche Lage gebracht werden. Je kleiner die Verzahnung (Länge des Zahngrundes l_z) ist, desto exakter können die Bauteile platziert werden.

Abb. 4.7: Weit versetzt dargestellter Längsversatz zweier Verzahnungen am Beispiel der Stahlverzahnung nach (Hofmann 2015)

Die Genauigkeit bzw. das maximale Toleranzmaß beträgt $0,5 \cdot l_z$. Dieses entsteht aus der Betrachtung von zwei Fällen (Abb. 4.8). Im besten Fall werden die Verzahnungen in Längsrichtung so versetzt, dass beide Bauteile in der geplanten Lage platziert werden können. Im schlechtesten Fall werden die Verzahnungen soweit versetzt, dass die Zähne an der geplanten Lage genau mit den Zahnspitzen aufeinandertreffen. Hier müssen die Bauteile um einen halben Zahn in die eine oder andere Richtung versetzt werden.

Trotz der versetzten Zähne muss die volle Kraftübertragung stattfinden können. Dazu wird die Zahnleiste in Überlänge Δ_{bz} (Abb. 4.7) hergestellt. Damit sich die Verbindung duktil verhält, müssen die Zähne bei der Bemessung maßgebend werden. Um hier gleichzeitig ein Versetzen der Zähne durch die Überlänge zu ermöglichen, wird nur auf einer Seite eine durchgängige Verzahnung angebracht. Die Gegenseite wird mit der erforderlichen Zahnanzahl ausgeführt.

Abb. 4.8: Bester (links) und schlechtester (rechts) Fall der Zahnverbindung im Vergleich am Beispiel der Stahlverzahnung nach (Vorderwülbecke 2016)

Der Versatz in Längsrichtung führt zu einem Ausgleich von Diagonalen mit Über- oder Unterlänge. Bei zu kurzen Diagonalen kann das Knotenelement in Richtung dieser versetzt werden, bei zu langen Diagonalen entsprechend entgegen. Dies führt dazu, dass sich der Neigungswinkel der Diagonalen minimal verändert (Abb. 4.9).

Abb. 4.9: maximal geneigte Diagonale (links); maximal möglicher Versatz von 1,73cm der Hüllrohre (rechts) (Vorderwülbecke 2016)

Der maximal mögliche Versatz von 1,73cm resultiert aus der möglichen horizontalen Verschiebung der Bauteile gegeneinander von 20mm abzüglich des Abstands bis zur passgenauen Verzahnung (Abb. 4.10).

Abb. 4.10: Versetzte Zahnleiste bei Unterlänge der Diagonale (links) und bei Überlänge (rechts) (Vorderwülbecke 2016)

4.3 Kraftübertragung mittels Stahleinbauteil – Entwicklungsschritte

Die von Schlaich (1992) entworfene und von Schmid (2000) hinsichtlich der Geometrie optimierte Zahnleiste (Abb. 4.11) ist die Ausgangslage für die Entwicklung der modularen Zahnleistenverbindung. Für eine modulare Verbindungen zwischen Betonbauteilen muss diese weiterentwickelt werden.

Abb. 4.11: Im Ortbeton eingelassene Zahnleiste (Hofmann 2015)

Im zweiten Schritt werden zwei Zahnleisten verwendet. Diese haben zur Betonseite weiterhin die Stahlzähne mit einer Zahnhöhe von 30mm, zueinander jedoch Stahlzähne mit einer Zahnhöhe von

etwa 3 bis 10mm. Über diese Stahlzähne werden die Kräfte von einer zur anderen Zahnleiste übertragen können. Aufgrund der beiden Zahnleisten kann eine modulare Verbindung hergestellt werden. Zwischen den Zahnleisten ist eine Vergussfuge. Die Vergussfuge wird mit Mörtel ausgefüllt und ist somit eine Möglichkeit Toleranzen auszugleichen (Abb. 4.12).

Abb. 4.12: Zahnleisten mit Vergussfuge (Hofmann 2015)

Wenn der Vergussmörtel vor Ort gemischt wird, entsteht das Risiko, dass das Mischungsverhältnis nicht exakt eingehalten wird. Auch die Witterung spielt eine große Rolle, die die Qualität des gesamten Bauwerks ebenfalls reduzieren kann. Daher sind bei dieser Ausführungsvariante strenge Kontrollen während aller Arbeitsschritte notwendig, um die Schubkraftübertragung gewährleisten zu können. Da hier kein zerstörungsfreier Rückbau möglich ist, entspricht diese Fügungsmethode nicht vollständig einer modularen Verbindung. Ziel ist es auf eine Betonage bzw. Vergussfuge vor Ort zu verzichten und somit eine trockene Fuge ausführen zu können. Es wird im weiteren Schritt die Vergussfuge weggelassen und ein direkter Kontakt zwischen den Stahlzähnen hergestellt (Abb. 4.13). Die Zahnleisten schauen einseitig aus dem Stahlbetonfertigteil heraus und werden über eine Vorspannung zusammengehalten.

Abb. 4.13: Zahnleisten mit Stahl-Stahl-Verzahnung (Hofmann 2015)

Aus vorangegangenen Betrachtungen wird die Zahnleiste der modularen Verbindung entworfen (Abb. 4.12 u. 4.13). Betonseitig wird die Kraft über die große Stahlverzahnung in die Leiste eingeleitet und über die kleinen Stahlzähne auf die sich im angrenzenden Betonbauteil befindende Zahnleiste übertragen.

Abb. 4.14: Zahnleiste mit Bügel als Rückhängebewehrung (Schmidt 2018)

Abb.4.15: Zahnleiste mit Kopfbolzen als Rückhängebewehrung (Schmidt 2018)

4.4 Kraftübertragung mittels Betonverzahnung

Die Anforderungen an die neuartige Betonverzahnung können in zwei Kategorien unterteilt werden. Es können konstruktiv-statische und baupraktische Anforderungen an die Verzahnung definiert werden. Ein Hauptziel der konstruktiven Anforderungen besteht in der Steigerung der zu übertragenden Druck- und Schubkraft über die Fuge im Vergleich zur Normprofilierung. Eine weitere Anforderung besteht in der Unempfindlichkeit der Traglast der Verzahnungsgeometrie hinsichtlich variierender Druckstrebenneigungen.

Baupraktische Anforderungen an die Verzahnung sind zum einen die Vereinfachung des Bauablaufes, was über eine trockene Fugenausführung sichergestellt wird, und zum anderen die Möglichkeit eines Toleranzausgleiches in der Fuge, welcher über den Zahnabstand und somit das Versetzen der Zähne zueinander realisiert wird.

Die neuentwickelte lastaffine Verzahnung basiert prinzipiell auf zwei grundlegenden Änderungen in Bezug auf die Normverzahnung. Zum einen ist die Geometrie der Verzahnung nicht fest definiert, sondern bestimmt sich über die Druckfeldneigung θ der zu übertragenden Druckfelder. Zum anderen werden die einzelnen Zahnflanken näher zusammengerückt, sodass sich keine unnötigen, sich nicht am Lastabtrag beteiligenden, Zwischenbereiche Δa , in der Verzahnung ergeben. Das Ergebnis dieser beiden Änderungen kann der Abbildung 4.16 entnommen werden.

Abb. 4.16: Entwicklung der lastaffinen Beton-Beton-Verzahnung (Nettekoven 2018)

In der Abbildung 4.16 sind die beiden wesentlichen Änderungen in Bezug auf die Normverzahnung dargestellt. Die einzelnen Druckfelder mit der Spannung σ_n und der konstanten Neigung θ , welche sich unmittelbar vor der gezahnten Grenzfläche unter dem Ansatz eines geringen Reibungsbeiwertes ausbilden, sind in der Abbildung 4.16 dargestellt. Hierbei wird ersichtlich, dass die effektive, zur Lastübertragung ansetzbare Fugenlänge der Normverzahnung (Abbildung 4.16 a.) unter der angenommenen Druckstrebenneigung θ eine erhebliche Reduktion im Vergleich zur gesamten zur Verfü-

gung stehenden Fugenlänge aufweist. Demnach definiert sich die am Lastabtrag beteiligte Fugenfläche der Normverzahnung nach Gl. (4.16).

Die Normverzahnung nach Abbildung 4.16 a. ist lediglich dann in der Lage die Druckstreben mit $\theta < 90^{\circ} - \alpha_1$ über die Grenzfläche in das Material 2 zu übertragen, wenn Reibung an den Zahnflanken vorhanden ist. Gegenstand des Forschungsvorhabens soll es sein, planmäßig auf den Ansatz von Reibung verzichten zu können. Dies führt zu der Änderung der Normverzahnungsgeometrie mit der Bedingung, dass die Zahnflanke α_1 senkrecht zur Druckfeldneigung angeordnet wird, also $\alpha_2 = 90^{\circ} - \theta$, wie in der Abbildung 4.16 b. dargestellt. Somit können sich die ergebenden Druckfelder σ_n auf den Zahnflanken abstützen und an der Zahnflanke entstehen nur Normalkräfte und keine Reibungskräfte.

Die weitere Optimierung der Verzahnungsgeometrie gelingt über die Maximierung der Versagensfläche A_{Vers} der Fuge. Folglich müssen die der Last abgewandten Zahnflanken direkt an die lastzugewandten Zahnflanken grenzen. Diese Vorgehensweise führt allerdings zu einer Verschattung des dahinterliegenden Zahns, was in der Abbildung 4.17 a. über die dunklen Flächen hinter den Zähnen dargestellt ist.

Abb. 4.17: Reduktion der zur lastübertragenden Fugenlänge aufgrund Verschattungseffekten hinter den Einzelzähnen (Nettekoven 2018)

Damit der Effekt der Verschattung unmittelbar hinter den Zähnen behoben werden kann, muss die Neigung der der Last abgewandten Zähne der Neigung der Druckstreben entsprechen. Das Ergebnis dieses Optimierungsschrittes ist in der Abbildung 4.17 b. dargestellt.

Mit diesen geometrischen Änderungen der Normverzahnung kann die Versagensfläche nach Gl. (4.1) bei der entwickelten lastaffinen Verzahnung gleich der Fugenlänge gesetzt werden. Somit wird eine volle Ausnutzung der zur Lastübertragung zur Verfügung stehenden Fugenfläche erzielt. Die prognostizierte Traglast F_{prog} der lastaffinen Verzahnung, bezogen auf eine Einheitsbreite von $\overline{1}$, unter der Annahme der idealen Zahnflankenausrichtung rechtwinklig zur Druckstrebenneigung lässt sich somit über die Gl. (4.2) beschreiben. Zur Verdeutlichung der Bezugsbreite für die prognostizierte Traglast F_{prog} ist in der Abbildung 4.17 ein Ausschnitt aus einer gezahnten Grenzfläche dargestellt.

$$F_{prog} = f_{ck} \cdot \sum l_{z,n} \cdot \sin \theta \cdot \overline{1}$$
 Gl. (4.2)

Abb. 4.18: Betonzahn mit Lastangriff (Nettekoven 2018)

In dem Fugenbereich eines realen Bauteils variieren die Druckstrebenneigungen der zu übertragenden Hauptdruckspannungen über die Fugenlänge. Ein gutes Beispiel für den Verlauf der Druckstrebenneigung entlang einer Fuge ist eine monolithische Stahlbetonkonsole. Der Verlauf der Hauptspannungstrajektorien, der Schub- und Normalspannungsverlauf entlang der Fuge und der daraus resultierende ablesbare Winkel der Hauptdruckspannung ist in der Abbildung 4.19 dargestellt.

Abb. 4.19: Spannungstrajektorien einer monolithischen und einer modularen Stahlbetonkonsole (Schwitzke 2011)

Es ist ersichtlich, dass die Bedingung der idealen Zahnflankenausrichtung rechtwinklig zur Druckstrebenneigung dazu führt, dass entlang der Fuge jeder einzelne Zahn eine andere Neigung aufweisen müsste. Allerdings würde eine geringe Änderung des Beanspruchungszustandes in der Fuge zwangsläufig zu einer nicht optimalen Zahnflankenneigung führen. Diese Tatsache und die baupraktisch sehr ungünstige Handhabung mit jeweils unterschiedlichen Zahngeometrien innerhalb einer Fugenverzahnung führt zu den in Abschnitt 5.2. aufgeführten Untersuchungen hinsichtlich der Robustheit der Fugengeometrie bezüglich unterschiedlicher Druckstrebenneigungen bei gleichbleibenden Zahnflankenneigungen.

5. Theoretische und numerische Untersuchung der Zahngeometrie

5.1 Stahlverzahnung

5.1.1 Ziel und Vorgehensweise

Schmidt (2018) entwickelt eine Zahngeometrie, welche die in Kapitel 4 aufgeführten Anforderungen an die Verbindung erfüllt. Die Geometrie der Verzahnung ist unabhängig von der Kraftrichtung um ein großes Anwendungsgebiet abzudecken.

Vorgehen:

- Grundlegende Überlegungen zur Zahnhöhe und Neigung der Zahnflanken gemacht.
- Entwurf und Konstruktion verschiedener Zahngeometrien.
- Modellierung im FE-Programm Ansys.
- Simulation der Spannungsverteilung an einem Zahnleistenpaar mit der Finite-Element-Methode. (FEM) physikalisch linear sowie nichtlinear und geometrisch nichtlinear.
- Festlegung einer Geometrie auf Grundlage dieser Ergebnisse.
- Optimierung der Geometrie durch Parameteruntersuchungen am FE-Modell.
- Untersuchung der Geometrie in experimentellen Versuchen.

5.1.2 Grundlegende Überlegungen zur Stahlzahngeometrie

Überlegungen zur Zahnhöhe und Neigung

Es wird die Zahnhöhe h_z und die Neigung der Zahnflanken α_z festgelegt, woraus sich das Zahngrundmaß l_z ergibt (Abb. 5.1). Je kleiner das Zahngrundmaß, desto genauer kann die Verbindung ausgeführt werden. Gleichzeitig soll ein möglichst hoher Zahn, im Falle einer Fugenöffnung, die Kraftübertragung noch sicherstellen. Die Zahnhöhe des ersten Entwurfes (Kapitel 4) wird auf eine Zahnhöhe von 5mm reduziert, die Zahnneigung wird mit $\alpha_z = 70^\circ$ beibehalten (Abb. 5.1).

Abb. 5.1: Stahlverzahnung – Erste Überlegungen (Geometrie 1.1) (Schmidt 2018)

Zunächst wird weder die Zahnspitze noch der Zahngrund mit einem Radius versehen. Das birgt die Gefahr der Rissbildung im Zahngrund. Deshalb wird im zweiten Schritt eine Ausrundung vorgesehen, um Spannungsspitzen im Zahngrund zu minimieren.

Abb. 5.2: Stahlverzahnung mit kleinen Ausrundungen (Geometrie 1.2) (Schmidt 2018)

Die Kraft F_z trifft unter dem Winkel θ auf die Zahnflanke. Das Tragverhalten der Verzahnung ist von der Zahnflankenneigung abhängig und wird nachfolgend beschrieben (Abb. 5.3).

Abb. 5.3: Kraftangriff am Stahlzahn (Schmidt 2018)

Die Kraft Fz kann aufgeteilt werden zu

$$F_{zR} = \cos(\theta) \cdot F_z$$
 (Gl.5.1) und $F_{zN} = \sin(\theta) \cdot F_z$ (Gl.5.2)

Bei einem Winkel $\theta = 90^{\circ}$ wird der Anteil aus F_{zR} zu Null und die Kraft F_{zN} zu F_z . Der Winkel $\theta = 90^{\circ}$ stellt somit einen Grenzfall dar. Es wirkt weder eine stabilisierende noch eine destabilisierende Kraft.

Somit werden folgende Fälle betrachtet.

Stabilisierend (ψ bezeichnet das stabilisierende Winkelspektrum): $\theta > 90^{\circ} (-F_{zR})$ Grenzfall: $\theta = 90^{\circ} (F_{zR} = 0)$ Destabilisierend (ξ bezeichnet das destabilisierende Winkelspektrum): $\theta < 90^{\circ} (F_{zR})$

Der Winkel α_z soll möglichst groß gewählt werden um eine möglichst flexible Anwendung zu erreichen. Beim Winkel $\alpha_z = 90^{\circ}$ (Grenzbetrachtung) werden Schubkräfte ideal aufgenommen. Für eine kraftaffine Verzahnung ist das sinnvoll. Greifen die Kräfte jedoch aus beiden Richtungen an (Winkelspektrum 0° - 180°) würde das jedoch zu rechteckigen Zähnen und somit zu einer Erhöhung der mit der Verbindung möglichen Toleranzen führen.

Bei der Geometriefindung orientiert sich Schmidt an Gewinden (Abb. 5.4). Das Trapezgewinde nach (DIN 103) sowie das Whitworthgewinde nach (BS 84) werden als effektivste Geometrie gewählt (Schmidt 2018).

Abb. 5.4: Trapezgewinde nach DIN 103 (links) und Whitworth-Regelgewinde nach BS 84 (rechts) (Schmidt 2018)

Auf dieser Grundlage werden Zahngeometrien entworfen (Tab. 5.1).

Geometrie 1.1	Geometrie mit Zahr	nhöhe 5mm ohne Au	srundungen	
Zahnhöhe	Zahnneigung α_z	Zahngrund l_z	Ausrundung Zahnspitze	Ausrundung
5mm	70°	3 6mm		
Vorteile	70 5,0000 Geringe Toleranzen möglich Abdeckung eines stabilisierenden Kraftspektrums von 70°			
Nachteile	Gefahr der Kerbriss Geringe Robustheit Geometrie	sbildung durch schlanke	3.6	
Geometrie 1.2	Geometrie mit Zahr	nhöhe 5mm mit klein	en Ausrundungen	
Zahnhöhe	Zahnneigung α_z	Zahngrund l_z	Ausrundung Zahnspitze	Ausrundung Zahngrund
5mm	70°	5,0mm	0,5mm	0,2mm
Vorteile	Geringe Toleranzen möglich Abdeckung eines stabilisierenden Kraftspektrums von 70°			
Nachteile	Gefahr der Kerbriss Geringe Robustheit Geometrie	sbildung durch schlanke		

Tab. 5.1: Historie der Geometrieentwürfe (Schmidt 2018)

Geometrie 1.3	Geometrie mit Zahnhöhe 5mm auf Grundlage des Whitworth-Gewinde mit Zahnneigung 62 5°			
Zahnhöhe	Zahnneigung α_{π}	Zahngrund l_{π}	Ausrundung	Ausrundung
			Zahnspitze	Zahngrund
5mm	62,5°	7,7mm	1,0mm	1,0mm
Vorteile	Robustheit durch flachere Neigung, da somit der Zahn gedrungener ist.		20	
Nachteile	Größere Toleranz d Zahngrund Geringe Ausrundur	lurch größeren	*	6.0 7.7 7.7
Geometrie 1.4	Geometrie mit Zahr rundung	nhöhe 5mm und 70°	Zahnneigung und 1,0	0mm Radius Aus-
Zahnhöhe	Zahnneigung α_z	Zahngrund l_z	Ausrundung Zahnspitze	Ausrundung Zahngrund
5mm	70	6,4mm	1,0mm	1,0mm
	sowie die Robustheit der Zahngeomet- rie bilden in Geometrie 1.5 ein verträg- liches Mittel.			
Geometrie 1.5	Geometrie mit Zahr 1,5mm Radius Aus	nhöhe 5mm und Beib rundung	ehaltung der 70° Zał	nneigung und
Zahnhöhe	Zahnneigung α_z	Zahngrund <i>l_z</i>	Ausrundung Zahnspitze	Ausrundung Zahngrund
5mm	70°	7,8mm	1,5mm	1,5mm
Vorteile	Robustheit durch g Kerbgefahr durch g gering	roße Ausrundung große Ausrundung		
Nachteile Nachteile	Größere Toleranz d Zahngrund Größere Toleranz d Zahngrund	lurch größeren		
	Geringe Ausrundur	ng	7.8	3 *

Forts. Tab. 5.1: Historie der Geometrieentwürfe

Die Geometrie 4.1 hat Vorteile bei der Betrachtung der Toleranzen. Deshalb wird die Geometrie 1.4 *(vgl. Tab. 5.1)* favorisiert. Um Spannungsspitzen (Abb. 5.5 links) abzubauen, wird der Zahnkopf gekappt (Abb. 5.5 rechts) (Schmidt 2018).

Abb. 5.5: Stahlzahn - Auszug aus der FE-Rechnung und trapezförmige Geometrie (Schmidt 2018)

Aufbauend auf die Überlegungen zur Geometrie werden die in Tab. 5.2 aufgeführten Geometrien in FE-Rechnungen untersucht.

Bezeichnung der Zahngeometrien:

- der erste Buchstabe G steht für Geometrie,
- der zweite Buchstabe steht für die Art der Geometrie (D=Dreieck, T=Trapez, R=Rechteck)
- die Zahl steht für die Anzahl der Geometrien je Geometrieart.

Tab. 5.2: Zahngeometrien für die Parameterstudie (Schmidt 2018)

Bezeichnung	Grund- geometrie	Darstellung
GD3	Dreieck	
GD4	Dreieck	9,97 9,97 10 10
GR1	Rechteck	
GR2	Rechteck	10 5 78052 5 5 5
GT1	Trapez	9 2,91 6,74 2,26
GT2	Trapez	9,96 2,12 9,96

Forts. Tab. 5.2: Zahngeometrien für die Parameterstudie

Bezeichnung	Grund- geometrie	Darstellung
GT3	Trapez	6,92 1,53 5 0 0 0 0 0 0 0 0 0 0 0 0 0
GT4	Trapez	11,17 2,15 2,15 2,15 10,22 10,22 10,22 10,95 10,95
GT5	Trapez	3,46 0,76 0,76 0,76 0,76 0,76 0,76 0,76
GT6	Trapez	4,98 $4,98$
GT7	Trapez	

Forts. Tab. 5.2: Zahngeometrien für die Parameterstudie

5.1.3 Verwendete Werkstoffe und Werkstoffmodelle

Werkstoff Stahl

Die Zahnleisten werden aus Stahl S 235 oder höherwertig hergestellt. Für alle Versuchskörper wird die Stahlgüte S235 verwendet. Damit werden die Prüfkörper so konstruiert, dass die Maximallast der Prüfmaschine nicht überschritten wird. Die genauen Werkstoffdaten werden in Versuchen ermittelt. Aus den gleichen Stahlblechen der Prismenversuchskörper werden Stahlzugproben herausgearbeitet und daran die Materialkenndaten ermittelt (Abb. 5.6). Es werden zwei unterschiedliche Stahlbleche verwendet und daher auch zwei Stahlkennlinien ermittelt. Diese werden mit Charge 1 und Charge 2 bezeichnet (Tab. 5.3 bis 5.5). Die Ergebnisse der Materialkennwertbestimmung sind in Anhang VA1 ausführlich dargestellt. Bei der Anwendung der Materialkennlinie zur Versuchsnachrechnung wird zwischen einer Ingenieursspannung und einer wahren Spannung unterschieden (Abb. 5.6).

Abb. 5.6: Spannungs-/Dehnungsdiagramm eines warmgewalzten Stahl (Schmidt 2018)

Kennwerte für Charge 1					
E-Modul	E =197 GPa	E =197 GPa			
Streckgrenze	R _{eH} =308 MPa (R _{eF}	\mathbf{R}_{eH} =308 MPa (\mathbf{R}_{eH*} = manuell gemessene Werte)			
Zugfestigkeit	R _m =440 MPa				
Bruchdehnung	A ₄₀ =36,6 % (0,366	mm/mm)			
Gleichmaßdehnung	Ag=0,00156 % (0,1	56 mm/mm)			
Tangentenmodul "Bruch"	$E_{T,Bruch} = 152 \text{ N/mr}$	m ²			
Tangentenmodul "Zugfestigk."	$E_{T,Zugfestigk.} = 774 \text{ N}$	I/mm ²			
Normierung					
$F_{\rm Modul} E_{\rm s}/E_{\rm sr} = 197/210$	0 = 0.94				
Streckgrenze \mathbf{R} und \mathbf{R} up =	$\frac{1}{308/235} = 1.31$				
Zugfestigkeit $R_{mun}/R_{mun} = 4$	40/(360 bis 510 N/mn	n^2) = 1.22 bis 0.86			
Bruchdehnung A _{40 vorb} / A _{40 Norm}	= 36.6/26 = 1.41	(i) 1,22 010 0,00			
Plastischer Bereich der Stahl	kennlinie Charge 1 fü	ir FE-Simulation			
Ingenieur-Ken	nlinie	Wahre Ken	nlinie		
Dehnung	Spannung	Dehnung	Spannung		
[mm/mm]	[N/mm ⁻]	[mm/mm]			
0,000	285,0	0,000	285,0		
0,010	286,0	0,010	289,0		
0,020	295,0	0,015	299,0		
0,020	308,0	0,020	314,0		
0,030	328,0	0,030	337,0		
0,040	359,0	0,040	373,0		
0,050	381,0	0,050	400,0		
0,060	397,0	0,060	422,0		
0,070	410,0	0,070	440,0		
0,090	419,0	0,080	455,0		
0,100	426,0	0,090	468,0		
0,110	431,0	0,110	479,0		
0,130	434,0	0,120	489,0		
0,140	435,0	0,130	496,0		
0,150	435,0	0,140	502,0		
0,170	435,0	0,160	509,0		
0,190	435,0	0,170	516,0		
0,200	435,0	0,180	520,0		
0,280	435,0	0,250	557,0		
600 - IN (21	· · · · · · · · · · · · · · · · · · ·			
$\begin{array}{c} 550 \\ 550 \\ 500 \\ 450 \end{array}$	nm-]	 Wahre Ke	nnlinie		
400	1	Lucasian Kanalia	•		
350	Ingenieur-Kennlinie				
300					
100					
50		ε [mm]	/mm]		
	0.05 0.1 0.1	15 0.2 0.25			
	,0.5 0,1 0,1	1.5 0,2 0,25	0,5		

Tab.5.3: Materialkennwerte für Stahl-Charge 1 (Schmidt 2018)

Kennwerte für Charge 2							
E-Modul	E =186 GPa	E =186 GPa					
Streckgrenze	\mathbf{R}_{eH} =241 MPa (\mathbf{R}_{eH*}	\mathbf{R}_{eH} =241 MPa (\mathbf{R}_{eH*} = manuell gemessene Werte)					
Zugfestigkeit	R _m =387 MPa	R _m =387 MPa					
Bruchdehnung	A ₄₀ =37,5 % (0,375 n	nm/mm)					
Gleichmaßdehnung	A _g =0,00129 % (0,12	$A_{g}=0.00129\%(0.129 \text{ mm/mm})$					
Tangentenmodul "Bruch"	$E_{T,Bruch} = 217 \text{ N/mm}$	2					
Tangentenmodul "Zugfestigk	." $E_{T,Zugfestigk.} = 575 \text{ N/r}$	$E_{T,Zugfestigk} = 575 \text{ N/mm}^2$					
Normierung							
E-Modul $E_{vorh}/E_{Norm} = 186/2$	10 = 0,94						
Streckgrenze R _{eH,vorh} / R _{eH,Norm}	= 241/235 = 1,03						
Zugfestigkeit R _{m,vorh} /R _{m,Norm} =	387/(360 bis 510 N/mm ²	(2) = 1,08 bis 0,76					
Bruchdehnung A40,vorh/ A40,Nor	m = 37,5/26 = 1,44						
Plastischer Bereich der Stal	ılkennlinie Charge 2 für	· FE-Simulation					
Ingenieur-K	ennlinie	Wahre Keni	nlinie				
Dehnung	Spannung	Dehnung	Spannung				
[mm/mm]	$[N/mm^2]$	[mm/mm]	[N/mm ²]				
0,0000	241,0	0,0000	241,0				
0,0025	242,0	0,0025	243,0				
0,0050	243,0	0,0050	244,5				
0,0100	245,0	0,0100	248,0				
0,0270	264,0	0,0270	271,5				
0,0420	293,0	0,0420	305,6				
0,0500	305,0	0,0500	321,0				
0,0900	348,0	0,0870	380,0				
0,1300	370,0	0,1240	418,5				
0,1700	381,0	0,1600	446,5				
0,2100	386,0	0,1940	468,6				
0.2500	387.0	0.2300	487.1				
0.2650	387.0	0.2360	490.4				
		.,	/				
550,0 — σ[N/mm ²]						
500,0			— <u></u>				
450,0		Wahre Ker	nnlinie				
400,0							
350,0	350,0						
300,0		Ingenieur- Kennime					
250,0	·						
200,0							
150,0							
		s [mm /·	mml				
	0,05 0,10 0,11	5 0,20 0,25	0,30				
	,	/ - 2 -	·				

Tab.5.4: Materialkennwerte für Stahl-Charge 2 (Schmidt 2018)

Weitere normierte Werkstoffkennwerte:

Schubmodul	G = 81000 MPa
Querdehnzahl	v =0,30
Dichte	$\rho = 7850 \text{ kg/m}^3$
Temperaturausdehnungskoeffizient	$\alpha_{\rm T}=0,000012~{\rm K}^{-1}$

Versuchsphase (vgl. Kap. 1)	Versuch	Charge
Phase I	Stahlprisma	Charge 1
Phase I (zusätzliche Prüfkörper)	Stahlprisma	Charge 2
Phase II	Betonprisma mir Stahlzahnleiste	Charge 1
Phase III	Konsole	Charge 1
Phase III (zusätzliche Prüfkörper)	Konsole	Charge 2
Phase IV	Knoten	Charge 1

Tab. 5.5: Übersicht Versuche und Stahl-Charge (Schmidt 2018)

Lineares Werkstoffverhalten:

Im Bereich der Hooke`schen Gerade befindet sich der Stahl im linearelastischen Bereich. Die Bestimmung des E-Modul nach DIN EN ISO 6892-1 erfolgt in diesem Bereich und die FE-Analyse kann unterhalb der Streckgrenze einfach mit einer Handrechnung überprüft werden.

Nichtlineares Werkstoffverhalten:

 $\varepsilon_{Wahr} = \ln(1 + \varepsilon_{Ina})$

Die Spannungsdehnungslinie wird für weitere Betrachtungen sowohl Bilinear als auch Multilinear abgebildet (Abb. 5.7). Die bilineare Kurve wird durch das Tangentenmodul einmal bis zur Zugfestigkeit und einmal bis zum Bruch abgebildet. Die multilineare Kurve wird aus dem Mittelwert mehrerer Zugversuche abgeleitet. In Vergleichsrechnungen werden die Unterschiede aus der Berechnung mit "Ingenieurspannungen" sowie mit "Wahrer Spannungen" untersucht. Im Gegensatz zur "Ingenieurspannung", bei der der Ausgangsquerschnitt zu Grunde liegt, wird in der FE-Analyse die Spannungsberechnung infolge der Querschnittsänderung durchgeführt. Die aus der Querschnittsänderung resultierenden Cauchy-Spannungen und die logarithmischen Dehnungen (Hencky-Dehnungen) werden somit berücksichtigt und als "Wahre Spannungen" bezeichnet (Schmidt 2018).

 $\sigma_{Wahr} = \sigma (1 + \varepsilon_{Ina}) \quad (Gl. 5.4)$

Abb. 5.7: Materialkennlinie Charge 1 für die Simulation (Schmidt 2018)

(Gl. 5.3)

Um die in der Kennlinienermittlung erhaltenen Daten besser einschätzen zu können werden in einer Literaturrecherche Materialkennlinien aus anderen Veröffentlichungen ermittelt (Abb. 5.8).

Abb. 5.8: Wahre- und Ingenieur-Materialkennlinien für Stahlsorten S235, S335, S420, S460 (DNV 2013)

Es werden die wahren Kennlinien sowie die Ingenieurs-Kennlinien der Kennwertermittlung aus den Versuchen mit denen aus der Literatur verglichen (Abb. 5.9). Das verwendete Material liegt zwischen einem Stahl S235 und einem S355. In der FE-Analyse werden die Multilinearen Materialkennlinien der Ingenieursspannung und der wahren Spannung verwendet.

Abb. 5.9: Einordnung der Versuchskennlinien in die Kennlinien aus der Literatur (Schmidt 2018)

Werkstoff Beton

Das Verhalten der Zahnleisten im eingebetteten Beton, wird in Phase II (Zahnleisten in Betonprismen), in Phase III (Konsolen) und in Phase IV (Knoten) untersucht. Es wird der Beton Ultralith der Firma Drössler Bauunternehmung, Siegen verwendet. Dabei handelt es sich um einen selbstverdichtenden ultra-hochfesten Beton. Weiterhin werden drei zusätzliche Versuche mit geänderter Konsolengeometrie durchgeführt. Hier erfolgt die Betonage an der TU in Berlin mit dem selbstverdichtenden Hochleistungvergussbeton BETEC 180 der Firma GCP Germany GmbH, Essen.

Es werden die Materialkennwerte nach DIN EN 12390-13 an zylindrische Probekörper mit den Abmessungen d/h=150/300mm bestimmt (Tab. 5.6).

Es werden folgende Kennwerte angesetzt und in der Simulation der Versuche verwendet:

	Ultralith		BETEC 180	
		Charge ZY4	Charge ZY5	Charge ZY6+7
E-Modul E GPa	44,17	31,34	27,86	28,42
Druckfestigkeit f _{cm} MPa	121,35	80	82,73	87,35
Querdehnzahl v	0,20	0,20	0,20	0,20

Tab. 5.6: Kennwerte der verwendeten Betone (Schmidt 2018)

Die Spannung-Dehnungslinien der Prüfkörper werden mit denen aus der Literatur verglichen (Abb. 5.10). Zusätzlich werden Betonprismen ohne Zahnleisten als Referenzkörper getestet. Die Arbeitslinie des Referenzprüfkörpers (vgl. Kap. 6.4 und Abb. 6.29) liegt zur Simulation der Versuche ebenfalls vor (Schmidt 2018).

Einordnung des verwendeten Betons und Vergleich mit Kennlinien aus der Literatur:

Abb. 5.10: Einordnung des verwendeten Betons unter Druckbeanspruchung und Vergleich mit Kennlinien aus der Literatur (Schmidt 2018)

Weiterführende Angaben zur Kernwertermittlung sowie die Dokumentation der Versuche sind dem Anhang VA2 zu entnehmen.

5.1.4 Simulationsgrundlagen in Ansys

Elemente

Das Verhalten des finiten Elements wird mit Hilfe einer Ansatzfunktion numerisch angenähert (Tab. 5.7). Je nach Ansatzfunktion, Netz und Dimension (2D, 3D) werden Rechteck-, Dreieck-, Hexameteroder Tetraeder-Elemente verwendet.

Tab. 5.7: Kennwerte zu den verwendeten Elementen (Schmidt 2018)

	Lineare Ansatzfunktion	Quadratische Ansatzfunktion
IP=Integrationspunkt	Ergebnis (σ, ε) Ansatzfunktion IP IP Ergebnisverlauf über das Element I I Elementlänge u u_1 u_2	Ergebnis (σ, ε) IP IP IP IP IP IP IP IP IP IP
Grundnetz 2D	Rechteck mit 4 Knoten	Rechteck mit 8 Knoten
Verfeinerung 2D	Dreiecke mit 3 Knoten	Dreiecke mit 6 Knoten
Grundnetz 3D	Hexameter mit 8 Knoten	Hexameter mit 20 Knoten
	TED-Elemente	HEX-Elemente
Verfeinerung 3D	Tetraeder mit 4 Knoten	Dreiecke mit 10 Knoten

Netzgröße bei der Entwicklung der Zahngeometrie

In einer Vorstudie werden die Zahngeometrien GD1 bis GT5 (Tab. 5.2) in Abhängigkeit der Netzgröße, der Kontaktsteifigkeit sowie des Reibbeiwertes untersucht und dabei geprüft ob folgende Kriterien erfüllt sind:

- Kraftkonvergenz
- Netzkonvergenz indem die gemittelten Vergleichsspannungen bei iterativen Netzverfeinerungen um nicht mehr als 5% zur vorangegangenen Berechnung abweichen
- Gemittelte Spannungen und ungemittelte Spannungen weichen kleiner 20% voneinander ab
- Der Großteil (ca. 60-80%) der Elemente weisen ein Seitenverhältnis von 1 auf
- Das Jacobi-Verhältnis liegt bei den berechneten Systemen i.d.R. nahe der 1

Es werden folgende Parameter variiert:

-	Kontaktsteifigkeit	0,5 und 1,0	[-]
-	Reibbeiwert μ	0,0; 0,2	[-]
-	Netzgröße	0,6; 0,8; 1,0; 1,5; 2,0	[mm]

Die genannten Kriterien werden bei den Zahngeometrien GD1 bis GT5 mit einer Netzgröße von 0,8 mm bis 1mm und einer Verfeinerung an der Verzahnung von 0,2 mm eingehalten. Mit diesen Werten werden die weiteren Parameteruntersuchungen durchgeführt.

Berücksichtigung der Verformungen des Zahnes während des Berechnungslaufes

Die Last wird in mehreren Schritten am System aufgebracht. Nach jedem Schritt wird eine dazugehörige Verformung berechnet. Diese Verformung ist Ausgangsgeometrie für den nächsten Lastschritt. Die Kraft greift somit iterativ am verformten System an und berücksichtigt eine damit verbundene Steifigkeitsänderung der Verzahnung durch plastisches Verhalten.

Kontakt

Kontakt der Stahl/Stahlzähne:

Betrachtet wird sowohl ein reibungsfreier Kontakt als auch ein reibungsbehafteter Kontakt Die Kräfte werden im reibungsfreien Kontakt mit dem Augmented-Lagrange-Verfahren, im reibungsbehafteten Kontakt mit dem Pure-Penalty-Verfahren berechnet. Beide Kontakttypen stellen eine geometrische Nichtlinearität dar (Schmidt 2018).

Kontakt der betonseitigen Stahlzähne:

Der Kontakt der betonseitigen Stahlzähne inklusive des angrenzenden Betons wird als Verbund und als reibungsbehafteter Kontakt untersucht (Schmidt 2018).

5.2 Numerische Untersuchung der Stahlzahngeometrie

5.2.1 Abmessungen und Lagerung der Zahnleiste sowie Belastung

Schmidt (2018) untersucht an einer Zahnleistenverbindung (Abb. 5.11) unterschiedliche Zahngeometrien. Dabei werden die Vergleichsspannungen untersucht und verglichen.

Die Abmessungen der betrachteten Zahnleiste betragen:

- Verzahnungslänge L=290mm
- Zahnleistenhöhe H_1 =30mm
- Zahnleistentiefe T=20mm festgelegt.

Die Zahnleistenverbindung wird durch eine konstante Flächenlast, welche auf die obere Zahnleiste aufgegeben wird belastet (Abb. 5.11). Es werden zunächst die Lastkomponenten $F_H=F_V=100$ kN (Kraftneigung 45°) aufgebracht. Da die Zahnlänge L mit 290mm konstant gehalten wird, variiert die Anzahl der Zähne entsprechend der Zahngeometrie. Mit Geometrie DT5 können 84 Zähne auf der Länge L angeordnet werden, mit Geomerie GT4 nur 26 Zähne. Die Zahnanzahl der weiteren Geometrien liegt dazwischen.

Abb. 5.11: Zahnleiste mit Belastung und Bezeichnung (Schmidt 2018)

Die Oberseite der Zahnleiste ist gegen Verdrehen gehalten, horizontale und vertikale Verschiebungen werden hingegen nicht behindert (Abb. 5.12). Dies entspricht auch der Einbausituation der Zahnleiste in der Betonmatrix. Die Kraftübertragung von der oberen zur unteren Zahnleiste erfolgt über Kontakt zwischen den Stahlzähnen.

Es werden zwei Lagersituationen betrachtet:

Lagersituation 1:

Die Lagerung an der Unterseite und der Stirnseite ist gleitend (s. Abb. 5.12 links), wodurch die Vertikallast und die Horizontallast getrennt von den Auflagern aufgenommen werden. Ein Verdrehen der unteren Zahnleiste wird ebenfalls behindert.

Lagersituation 2:

Hier ist die untere Zahnleiste an der Unterseite eingespannt, sodass dort Horizontal- und Vertikallasten sowie Verdrehungen aufgenommen werden (Abb. 5.12 rechts). Die Lagersituation 2 ist in Anbetracht

der Einbettung in den Beton die realistischere Lagersituation. Die Lastgrößen der Vertikal- und Horizontalkomponente sowie der Winkel werden in den einzelnen Rechnungen angegeben (Schmidt 2018).

Abb. 5.12: System der FE-Berechnung eines belasteten Zahnleistenpaares, Lagersituation 1 (links) und Lagersituation 2 (rechts)(Schmidt 2018)

5.2.2 Aufbau der Studie mit FE-Berechnungen

Die in Kapitel 5.1 aufgeführten Geometrien werden mit Lagersituation 1 und 2 simuliert (Abb. 5.13). Dabei werden verschiedene Einflüsse untersucht (Abb. 5.13) und die Spannungsverteilung an jedem Zahn an vier Messstellen (Abb. 5.13) stichpunktartig abgelesen.

Messstelle 1: Vergleichsspannung, die als Spannungskonzentration im oberen Zahnflankenbereich auf das Phänomen der Hertz`schen Pressungen zurück zu führen ist.

Messstelle 2: Vergleichsspannung an der Zahnflanke

Messstelle 3: Vergleichsspannung, die als Spannungskonzentration im unteren Zahnflankenbereich auf das Phänomen der Hertz`schen Pressungen zurück zu führen ist.

Messstelle 4: Vergleichsspannung an der Zahnausrundung

Abb. 5.12: Ablesestellen der maßgebenden Spannungen am Zahn (Schmidt 2018)

Abb. 5.13: Übersicht zur Parameteruntersuchung nach (Schmidt 2018)

5.2.3 Spannungsverteilung in Abhängigkeit der Zahngeometrie bei Lagersituation 1

Die entworfenen Zahngeometrien (Tab. 5.2) werden mit der Lagersituation 1 hinsichtlich der Spannungsverteilung untersucht (Tab. 5.7).

Studie: Zahngeometrie mit gleitender Lagerung (Lagerung 1) (ZgL_1)						
Bezeichnung	Anzahl	Lager-	Last V	Last H	Lastneigung	Kontakt
	Zähne/	ung	[kN]	[kN]	[°]	μ/Steif
	Leistenlänge					faktor
	[mm]					[-]
Zgl_1_GD1	17/290	1	100	100	45	0,15/0,01
ZgL1_GD2	45/290	1	100	100	45	0,15/2
ZgL1_GD3	29/290	1	100	100	45	0,15/2
ZgL1_GD4	29/290	1	100	100	45	0,15/2
ZgL1_GR1	29/290	1	100	100	45	0,15/2
ZgL1_GR2	29/290	1	100	100	45	0,15/2
ZgL1_GT1	32/290	1	100	100	45	0,15/2
ZgL1_GT2	29/290	1	100	100	45	0,15/2
ZgL1_GT3	26/290	1	100	100	45	0,15/2
ZgL1_GT4	42/290	1	100	100	45	0,15/2
ZgL1_GT5	84/290	1	100	100	45	0,15/2
ZgL1_GT6	58/290	1	100	100	45	0,15/2
ZgL1 GT7	58/290	1	100	100	45	0,15/2

Tab. 5.7: Übersicht Studie: Zahngeometrie mit gleitender Lagerung (Lagerung 1) (ZgL_1)

Ergebnisse zu den Spannungen bei Lagersituation 1

Da die Horizontallast allein über die Stirnseite der Zahnleiste abgetragen wird, verhält sich diese analog einer Schraubverbindung. Die ersten drei bis sechs Zähne erhalten den Großteil der Last, während alle weiteren Zähne nur einen geringfügigen Lastanteil abtragen.

In einem ersten Schritt wird die Zahnleiste ohne Ausrundungen des Zahngrundes und der Zahnspitze in einer FE-Analyse untersucht (Abb. 5.14 links). Im Bereich des nicht ausgerundeten Zahngrundes entstehen Spannungsspitzen. In diesen Bereichen treten frühzeitig Plastifizierungen des Materials auf. Der Zahngrund wird in den Modellen GD2 bis DG4 ausgerundet (Abb. 5.14). Dadurch nimmt die Größe der Spannungen an der Singularitätsstelle ab. (Schmidt 2018).

Abb. 5.14: Spannungsspitzen am nicht ausgerundeten Zahngrund (links); Ausrundungen am Zahnkopf und Zahnfuβ (Schmidt 2018)

Das Dreieck und das Rechteck stellen zwei Extrembereiche für die Verzahnung dar. Deshalb wird neben der Dreiecksgeometrie eine Rechteck-Verzahnung ohne Ausrundungen und mit Ausrundungen untersucht. Die Vergleichsspannungen sind an den vertikal verlaufenden Flanken gering, in den Eckbereiche hingegen sehr groß. Die Begründung liegt in den an der Zahnflanke auftreffenden Spannungsvektoren, die unter dem Winkel $\theta > 90^{\circ}$ auftreffen und nur die Horizontalkomponente über die Zahnflanke übertragen wird. Dagegen können sich die Spannungsvektoren im Bereich der Zahnausrundungen im rechten Winkel abstützen. Das Trapez (GT1 bis GT7) besteht aus Komponenten der Rechteck- und der Dreieckgeometrie. Für die Lagersituation 1 zeigt sich bei der Trapezgeometrie kein nennenswerter Vorteil hinsichtlich der Spannungsverteilung. Dies liegt an der bereits angesprochenen Lastkonzentration im Bereich der horizontalen Lagerung (Schmidt 2018).

Abb. 5.15: Spannungsverteilung an den Zähnen in Abhängigkeit der Geometrie bei Lagersituation 1 an Messstelle 1 (Schmidt 2018)

Abb. 5.16: Spannungsverteilung an den Zähnen in Abhängigkeit der Geometrie bei Lagersituation 1 an Messstelle 2 (Schmidt 2018)

Abb. 5.17: Spannungsverteilung an den Zähnen in Abhängigkeit der Geometrie bei Lagersituation 1 an Messstelle 3 (Schmidt 2018)

Abb. 5.18: Spannungsverteilung an den Zähnen in Abhängigkeit der Geometrie bei Lagersituation 1 an Messstelle 4 (Schmidt 2018)

Einfluss des Zahngrundradius

Der Einfluss des Zahngrundradius wird mit der Geometrie GT1 untersucht. Dazu wird ein 2D-Modell mit einer Tiefe von 2cm und mit 17 Zähnen untersucht (Abb. 5.19 u. Tab. 5.8). Die Belastungen, mit

denen die Zahnleiste beansprucht wird sind 78 kN unter 45° und 55° sowie 55 kN unter 45°. Die Lastaufbringung erfolgt dabei als konstante Flächenlast auf die Oberkante der oberen Leiste. Die Lagerung erfolgt nach Lagersituation 1 (Schmidt 2018).

Abb. 5.19: Geometrie und Modell der Radienstudie nach (Vogt, Müller 2016)

Studie: Zahngrundradius										
Bezeichnung	Anzahl	Lager-	Last V	Last H	Last-	r1	r2	Kontakt		
	Zähne/	ung	[kN]	[kN]	neigung			μ/Steif		
	Leistenlänge				[°]			faktor		
	[mm]							[-]		
G8_ZG0,5	14/124	1	39/55/45	39/55/32	55	0,50	0,35	0,15/2		
G8_ZG0,7	14/124	1	39/55/45	39/55/32	55	0,70	0,49	0,15/2		
G8_ZG0,9	14/124	1	39/55/45	39/55/32	55	0,90	0,63	0,15/2		
G8_ZG1,1	14/124	1	39/55/45	39/55/32	55	1,10	0,77	0,15/2		
G8_ZG1,3	14/124	1	39/55/45	39/55/32	55	1,30	0,91	0,15/2		
G8_ZG1,5	14/124	1	39/55/45	39/55/32	55	1,50	1,05	0,15/2		
G8_ZG1,7	14/124	1	39/55/45	39/55/32	55	1,70	1,19	0,15/2		
G8_ZG1,9	14/124	1	39/55/45	39/55/32	55	1,90	1,33	0,15/2		

Tab. 5.8: Geometrie und Modell der Radienstudie

Die Radienänderung ist nicht proportional zur Spannungsabnahme (Abb. 5.20). Je größer der Radius wird, desto weniger große Spannungsänderungen sind zwischen den benachbarten Radien zu beobachten. Um einerseits die Spannungen im Zahngrund möglichst gering zu halten, andererseits den Zahnabstand und somit das Toleranzmaß nicht zu groß zu gestalten wird bei einer Zahnhöhe von 5 mm ein Zahngrundradius von etwa 1 mm gewählt. Da bei Lagersituation 1 die Vergleichsspannungen im Zahngrund zwischen dem ersten und dem zweiten Zahn maximal sind, wird diese Studie nicht mit Lagersituation 2 wiederholt sondern auf die vorhandenen Ergebnisse zurückgegriffen.

Abb. 5.20: Ergebnisse der Parameterstudie zu den Zahngrundradien (Schmidt 2018)

5.2.4 Spannungsverteilung in Abhängigkeit der Zahngeometrie bei Lagersituation 2

Analog zur Studie mit Lagersituation 1 wird nun die Lagersituation 2 untersucht. Dabei bleiben alle Parameter (Tab. 5.9) unverändert.

Studie: Zahngeometrie mit fixierter Lagerung (Lagerung 2) (ZfL_2)										
Bezeichnung	Anzahl	Lager-	Last V	Last H	Lastneigung	Kontakt				
	Zähne/	ung	[kN]	[kN]	[°]	μ/Steif				
	Leistenlänge					faktor				
	[mm]					[-]				
ZfL2_GD1	17/290	2	100	100	45	0,15/0,01				
ZfL2_GD2	45/290	2	100	100	45	0,15/2				
ZfL2_GD3	29/290	2	100	100	45	0,15/2				
ZfL2_GD4	29/290	2	100	100	45	0,15/2				
ZfL2_GR1	29/290	2	100	100	45	0,15/2				
ZfL2_GR2	29/290	2	100	100	45	0,15/2				
ZfL2_GT1	32/290	2	100	100	45	0,15/2				
ZfL2_GT2	29/290	2	100	100	45	0,15/2				
ZfL2_GT3	26/290	2	100	100	45	0,15/2				
ZfL2_GT4	42/290	2	100	100	45	0,15/2				
ZfL2_GT5	84/290	2	100	100	45	0,15/2				
ZfL2_GT6	58/290	2	100	100	45	0,15/2				
ZfL2 GT7	58/290	2	100	100	45	0,15/2				

Tab. 5.9: Übersicht Studie: Zahngeometrie mit fixierter Lagerung (Lagerung 2) (ZfL_1)

Einfluss der Lagersituation

Bei der Spannungsverteilung sind deutliche Unterschiede zwischen Lagersituation 1 und Lagersituation 2 zu erkennen (Abb. 5.21). Das unter 5.2.3 beschriebene Verhalten (Spannungsverteilung, Tragverhalten) der Lagersituation 1 analog zum Schraube-Mutter-Kontakt kann mit den Berechnungsergebnissen gezeigt werden. Die Lagersituation 1 ist für die eingebettete Zahnleiste und somit für die Verbindung keine realistische Lagerung. Der Einbau der Zahnleiste entspricht i.d.R. der Lagersituation 2 (Schmidt 2018).

Abb.5.21: Vergleich der Normalspannungen an der Zahnflanke zwischen Lagersituation 1 und 2 (Schmidt 2018)

Der Lastabtrag ist in Lagersituation deutlich gleichmäßiger. Das liegt an der gleichmäßigen Lastaufnahme des unteren Auflagers (Abb. 5.21). Die Stirnseite beteiligt sich nicht am Lastabtrag. Diese Studie zeigt, dass die Spannungsverteilung in der Zahnleiste von der Lagerung abhängt und das bei der verwendeten Lagerung (betonseitige Verzahnung entspr. Lagersituation 2) keine Spannungsspitzen wie beim Schraube-Mutter-Kontakt auftreten (Schmidt 2018).

Einfluss der Zahngeometrie und Zahnhöhe

Die Robustheit von Zähnen wird darüber definiert, wie schlank oder gedrungen die Zähne sind. Gedrungene Zähne werden als robust bezeichnet. Um robuste Zähne zu konstruieren ist das Verhältnis von Zahnhöhe zu Zahngrund möglichst 1:1 auszuführen. Um trotzdem Zahnflankenneigungen von $\alpha_z = 70^\circ$ beizubehalten, können trapezförmige Zähne verwendet werden.

Die Zahngeometrie und auch die Zahnhöhe haben Einfluss auf die mögliche Anzahl der Zähne die auf eine bestimmte Verzahnungslänge L angeordnet werden können. Bei definierter Verzahnungslänge L von 290 mm können mit der *Geometrie GT5* 84 Zähne verwendet werden. Geometrie GT3 bringt mit 26 Zähnen die geringste Zahnanzahl auf der Leiste unter. Dies hat Auswirkung auf die Spannungsverteilung. Das zeigt sich bei gleicher Geometrie mit skalierter Größe. GT5 hat dieselbe Geometrie wie GT3, wird jedoch in beide Richtungen mit dem Faktor 0,5 skaliert. D.h. die Abmessungen von GT5 sind halb so groß wie die von GT3. Demzufolge verteilt sich die Last bei GT 5 auf die doppelte Anzahl an Zähnen.

Bei den Messstellen 1 und 3 ist der Spannungsverlauf bei allen Geometrien weitgehend gleichmäßig. Bei den Spannungen am Zahngrund (Messstelle 4) zeigt sich, dass sich bei einer größeren Zahnanzahl ein gleichmäßigeres Spannungsbild einstellt (Abb. 5.21-5.24) (Schmidt 2018).

Abb. 5.21: Vergleichsspannung an Messstelle 1 in Abhängigkeit der Geometrie bei Lagersituation 2 (Schmidt 2018)

Abb. 5.22: Vergleichsspannung an Messstelle 2 in Abhängigkeit der Geometrie bei Lagersituation 2 (Schmidt 2018)

Abb. 5.23: Vergleichsspannung an Messstelle 3 in Abhängigkeit der Geometrie bei Lagersituation 2 (Schmidt 2018)

Abb. 5.24: Vergleichsspannung an Messtelle 4 in Abhängigkeit der Geometrie bei Lagersituation 2 (Schmidt 2018)

Die Geometrie GT5 zeigt neben einer günstigen Spannungsverteilung an allen vier Meßstellen auch gute Toleranzeigenschaften. Deshalb wird diese Geometrie für weitere FE-Untersuchungen verwendet.

Einfluss des Reibbeiwertes

Um den Einfluss der Reibung auf die Spannungsverteilung der Zahnleiste einschätzen zu können wird die Geometrie GT 5 mit den Reibbeiwerten $\mu = (0; 0,15; 0,2)$ untersucht (Tab. 5.10).

Studie: Zahngeometrie GT5 – Einfluss des Reibbeiwertes									
Bezeichnung	Anzahl	Lagerung	Last V	Last H	Lastneigung	Kontakt			
	Zähne/		[kN]	[kN]	[°]	μ/Steif			
	Leistenlänge					faktor			
	[mm]					[-]			
GT5_0,20	84/290	2	100	100	45	0,20/2			
GT5_0,15	84/290	2	100	100	45	0,15/2			
GT5_0,00	84/290	2	100	100	45	0,00/2			

Die Spannungen verteilt über die Zahnleisten nehmen mit zunehmendem Reibbeiwert ab. Das wird mit einer gleichmäßigeren Spannungsverteilung in der Zahnleiste und insbesondere im Bereich der Zähne begründet (Abb. 5.25 u. 5.26) (Schmidt 2018).

Abb. 5.25: Einfluss des Reibbeiwertes auf die Spannungen an Messstelle 4 (Schmidt 2018)

Abb. 5.26: Einfluss des Reibbeiwertes auf die Spannungen an Messstelle 2 (Schmidt 2018)

Hinsichtlich der Spannungskonzentrationen stellt der reibungsfreie Kontakt den ungünstigsten Fall dar. Durch Aktivierung von Reibung in der Kontaktfuge werden die Spannungen vergleichmäßigt, wodurch sich kleinere Spannungsspitzen ergeben.

Einfluss der Verzahnungslänge (der Zahnanzahl)

Ausgehend von einer konstanten Last wird untersucht wie sich die Spannungen bei verändernder Verzahnungslänge verhalten (Tab. 5.11).

Studie: Zahngeometrie GT5 – Einfluss der Zahnleistenlänge (Zahnanzahl)									
Bezeichnung	Anzahl	Lagerung	Last V	Last H	Lastneigung	Kontakt			
	Zähne/		[kN]	[kN]	[°]	μ/Steif			
	Leistenlänge					faktor			
	[mm]					[-]			
GT5_Z84	84/290	2	50	50	45	0,15/2			
GT5_Z42	42/154	2	50	50	45	0,15/2			
GT5_Z17	17/68	2	50	50	45	0,15/2			

Tab. 5.11: Einfluss der Verzahnungslänge (der Zahnanzahl)

Je länger die Verzahnungslänge, desto gleichmäßiger verteilt sich die Spannung (Abb. 5.26). Dieses Verhalten zeigt sich an jedem Messpunkt. Sieht man von der Unregelmäßigkeit der kürzeren Verzahnungen ab, ist die Spannung umgekehrt proportional zur Zahnanzahl. Die Spannungen verdoppeln sich bei Veränderung der Zahnanzahl von 84 Zähnen auf 42 Zähne. Ebenso erhöhen sich die Spannungen wiederum um den Faktor von etwa 2,5 bei Veränderung der Zahnanzahl von 42 Zähnen auf 17 Zähne (Abb. 5.20) (Schmidt 2018).

Abb. 5.27: Einfluss der Verzahnungslänge auf die Spannungen an Messstelle 2 (Schmidt 2018)

Abb. 5.28: Einfluss der Verzahnungslänge auf die Spannungen an Messstelle 4 (Schmidt 2018)

Studie: Zahngeometrie GT5 – Einfluss der Zahnleistenlänge (Zahnanzahl)									
Bezeichnung	Anzahl	Lagerung	Last V	Last H	Lastneigung	Kontakt			
	Zähne/		[kN]	[kN]	[°]	μ/Steif			
	Leistenlänge					faktor			
	[mm]					[-]			
GT5_Z84	84/290	2	50	50	45	0,15/2			
GT5_Z84	84/290	2	100	100	45	0,15/2			
GT5_Z84	84/290	2	500	500	45	0,15/2			
GT5_Z17	17/68	2	20	20	45	0,15/2			
GT5_Z17	17/68	2	40	40	45	0,15/2			
GT5_Z17	17/68	2	50	50	45	0,15/2			

Einfluss der Lastgröße

Tab. 5.13: Einfluss der Lastgröße

Die Spannung an allen 4 Messstellen ist proportional zur einwirkenden Last so lange der Stahl im elastischen Bereich ist. Durch Plastifizieren der Zähne vergleichmäßigen sich die Spannungen. Dieses Verhalten zeigt sich deutlich bei der Zahnleiste mit 84 Zähnen. Im elastischen Bereich verdoppeln sich die Spannungen bei doppelter Last. Bei fünffacher Last jedoch erhöhen sich die Spannungen nur um den Faktor 2,8 (Abb. 5.27 und 5.28).

Abb. 5.29: Einfluss der Lastgröße – Messstellen 1 (Schmidt 2018)

Abb. 5.30: Einfluss der Lastgröße – Messstellen 2 (Schmidt 2018)

Abb. 5.31: Einfluss der Lastgröße – Messstellen 3 (Schmidt 2018)

Abb. 5.32: Einfluss der Lastgröße – Messstellen 4 (Schmidt 2018)

Einfluss der Lastneigung

In den vorangegangenen Studien wird der Kraftneigungswinkel mit $\beta = 45^{\circ}$ angesetzt. Um diesen Einfluss abschätzen zu können, wird dieser nun variiert. Es wird die einwirkende Kraft 80 kN als Referenz unter $\beta = 45^{\circ}$ sowie ein unterer Wert mit $\beta = 20^{\circ}$ und ein oberer Wert mit $\beta = 70^{\circ}$ untersucht (Tab. 5.14).

Studie: Zahngeometrie GT5 – Einfluss der Zahnleistenlänge (Zahnanzahl)									
Bezeichnung	Anzahl	Lagerung	Last V	Last H	Lastneigung	Kontakt			
	Zähne/		[kN]	[kN]	[°]	μ/Steif			
	Leistenlänge					faktor			
	[mm]					[-]			
GT5_Z42	42/154	2	80	80	45	0,15/2			
GT5_Z42	42/154	2	80	0	90	0,15/2			
GT5_Z42	42/154	2	0	80	0	0,15/2			
GT5_Z42	42/154	2	80	28	70	0,15/2			
GT5_Z42	42/154	2	28	80	20	0,15/2			

Tab. 5.14: Einfluss der Lastneigung

Bei sehr flachem Lastangriff (hier β = 20°) erhöhen sich die Vergleichsspannungen im mittleren Bereich oberhalb der Verzahnung (Schnitt 1) (Abb. 5.33). Greift die Last unter einem Winkel β = 45° an, so sind die Vergleichsspannungen nahezu konstant entlang der Verzahnungslänge. Unter einem Lastangrifswinkel von β = 70° sind die Vergleichsspannungen ebenfalls konstant, steigen jedoch am Anfang und am Ende der Zahnreihe an. Die über die Zahnleiste gemittelten Vergleichsspannungen steigen mit kleiner werdenden Winkel β an. Auch im Schnitt durch den Zahngrundradius (Schnitt 2, Abb. 5.34) sind die Vergleichsspannungen beim flach geneigten Lastangriff am größten.

Unter einem sehr steilen Winkel (hier β =70°) zeigt sich eine homogene Spannungsverteilung im gesamten Zahnleistenbereich. Das zeigt sich auch in einem Schnitt direkt oberhalb der Verzahnungen

(Schnitt 1). An den Zähnen und insbesondere im Zahngrund zeigen sich Spannungserhöhungen am Anfang und am Ende der Zahnreihe bei allen drei Lastangriffswinkeln (Schmidt 2018).

Abb. 5.33: Schnitte zum Ablesen des Spannungsverlaufs(links) und Farbskala für die Abb. 5.33 bis 5.36 (links)

Abb. 5.34: Vergleichsspannungen bei Lastneigungswinkel β =45°

Abb. 5.35: Vergleichsspannungen bei Lastneigungswinkel β =20°

Abb. 5.36: Vergleichsspannungen bei Lastneigungswinkel β =70°

Abb. 5.33: Spannungsverteilung in Schnitt 1 in Abhängigkeit der Kraftneigung (Schmidt 2018)

Abb. 5.34: Spannungsverteilung im Schnitt 2 in Abhängigkeit der Kraftneigung (Schmidt 2018)

5.2 Betonverzahnung

Nachfolgend soll auf die im Abschnitt 4.4 erläuterte Vorgehensweise zur Findung der optimalen lastaffinen Verzahnung detailliert eingegangen werden. Insbesondere soll zunächst mit Hilfe einfacher Stabwerkmodelle die zuvor getroffene Aussage zur Effizienz der Verzahnungsgeometrie rechnerisch nachgewiesen werden. Folgend wird näher auf das Tragverhalten der Verzahnung eingegangen, wenn die Druckstreben nicht senkrecht auf die Zahnflanken treffen. Die Besonderheiten bei der Lastübertragung in der Fuge werden in unterschiedliche Bereiche eingeteilt, für die anschließend Berechnungsansätze aufgestellt werden. Abschließend wird ein für alle Winkel gültiger Berechnungsansatz aufgestellt, welcher mit Hilfe der in Abschnitt 6.5. beschriebenen Versuche experimentell validiert wird.

5.2.1. Grundlegende Überlegungen zur Betonzahngeometrie

Die prinzipielle Vorgehensweise zur Optimierung einer gezahnten Fugenausführung aus Beton ausgehend von der Normprofilierung wurde bereits im Abschnitt 4.4. beschrieben. Nachfolgend soll das Tragverhalten der entwickelten Verzahnungsgeometrie detailliert erläutert und ein Berechnungsansatz für die Traglastbestimmung aufgestellt werden. Zunächst wird dabei auf die Kraftübertragung von einer Zahnleiste aus Stahl in eine Betonplatte eingegangen (vgl. Abbildung 5.35).

In der Arbeit von Schmid (2000) wurde die Weiterentwicklung der Zahngeometrie zunächst über eine geometrische Betrachtung an Einzelzähnen vorgenommen. Hierbei wurde in einem ersten Schritt der Lasteinleitungsbereich inklusive Zahnleiste aus dem Gesamtbauteil herausgetrennt und anschließend die resultierenden Beanspruchungen auf die Zahnleiste und die Betonplatte aufgebracht. Das Stabwerkmodell in Abbildung 5.35 zeigt die mit Hilfe der Elastizitätstheorie ermittelte Kräfteverteilung entlang der Zahnleiste (Schmid, 2000). Hierbei wird ersichtlich, dass die Neigungen θ der Hauptdruckspannung $C_{cw,i}$ entlang der Zahnleiste variieren. Nach Schmid (2000) ändert sich die Neigung θ in einem Bereich von ca. $20^{\circ} \le \theta \le 70^{\circ}$. Dabei stellt sich die flachste Neigung θ der Hauptdruckspannung $C_{cw,i}$ an der Zahnleistenspitze ein. Zu einer ähnlichen Erkenntnis ist auch Schlaich (1991) gekommen und hat daher die Neigung der Stahlzähne über die Zahnleistenlänge variiert, sodass jedes Hauptdruckspannungsfeld sich rechtwinklig auf den Stahlzähnen abstützt. Wie der Abbildung 5.1 entnommen werden kann, ist jeder Einzelzahn der Zahnleiste von Schlaich (1991) mit einer unterschiedlichen Zahnneigung $\alpha_z = (90^{\circ} - \theta)$ ausgeführt worden.

Schmid (2000) befasst sich in seiner Dissertation mit der Optimierung der von Schlaich (1991) gefundenen Zahnleistengeometrie . Hierbei legt er seinen Untersuchungen eine Variation der Betondruckstrebenneigung θ in einem Bereich von $20^{\circ} \le \theta \le 70^{\circ}$ zugrunde. In der Abbildung 5.36 sind exemplarisch drei Betondruckstrebenneigungen θ dargestellt. Aufgrund von vorangestellten Untersuchungen zu der idealen Zahnflankenneigung hat Schmid (2000) in seinen Untersuchungen einen beidseitigen Winkel der Zahnflanken und des Zahnrückens von $\beta = 70^{\circ}$ als Optimum bestimmt. Diese stählernen Zahnleisten können alle Druckstrebenwinkel zwischen 20° und 70° verlustfrei abstützen (vgl. Abbildung 5.36), ohne dass Reibungskräfte ausgenutzt werden müssen. Besonderer Vorteil dieser Stahl-Zahngeometrie ist, dass sie auch bei einem Lastrichtungswechsel voll wirksam bleit und damit gänzlich unabhängig von der Fugenbeanspruchung universal einsetzbar ist. Das ist natürlich nur möglich, weil die Zahlleiste aus Stahl viel höhere Beanspruchungen erträgt

Abb.5.35: Stabwerkmodell zum Kraftfluss in der Stahlbetonplatte und Kräfteverteilung entlang der Zahnleiste aus Stahl nach der Elastizitätstheorie nach (Schmid, 2000)

Wie die Abbildung 5.36 zeigt, tritt bei einer Neigung von $\theta = 20^{\circ}$ der Betondruckstrebe eine Verschattung der zur Lasteinleitung zur Verfügung stehenden Zahnfläche aufgrund des vorhergehenden Zahnes auf. Dadurch tragen die Zähne nur die wirksame Zahnfläche mit $h_{z,eff} = 0,32 \cdot l_z$. Trotzdem wird das Betondruckfeld vollflächig abgestützt.

Abb.5.36: Geometrie der einheitlichen Verzahnung und Funktionsweise unter Ausnutzung einer Betonfüllung angelehnt an (Schmid, 2000)

Die Dissertation von Tandler (2013) beschäftigte sich zu einem Großteil mit der experimentellen Verifikation der von Schmid (2000) gefundenen optimalen Zahnleistengeometrie. Die Geometrie für die Zahnleiste, welche in den Versuchen verwendet wurde, ist der Abbildung 5.37 zu entnehmen. Auch die Abbildung 5.37 zeigt, dass bei flachen Druckstrebenneigungen nur der obere Teil der Zähne trägt.

Abb. 5.37: Zahnleistengeometrie für Verzahnungsversuche nach (Tandler, 2013)

Aufbauend auf den Erkenntnissen von Schmid (2000) zu der Findung einer geometrischen Vereinheitlichung der von Schlaich (1991) entwickelten Zahnleiste, wird im nachfolgenden für die Beton-Beton-Verzahnung zunächst eine geometrische Studie zu der Zahngeometrie durchgeführt.

Bildung des Stabwerkmodells

In der Literatur werden Bemessungsansätze für die Druckstrebenfestigkeit von Stabwerksmodellen aufgeführt. Schlaich (2001) definiert den Bemessungswert der Druckstrebenfestigkeit in Abhängigkeit vom Winkel, unter welchem das Druckfeld die eventuell auftretenden Risse kreuzt. Dabei werden die in Gleichung (5.1) aufgeführten Werte als praxistauglich definiert:

$$f_{ck,eff} = \nu \cdot \alpha_{cc} \cdot f_{ck}$$
Gl. (5.1)

mit:

 $\nu = 1,0$ für ein ungestörtes Druckfeld ohne Risse

 $\nu = 0.8$ für ein Druckfeld das parallel zu den Rissen verläuft

 $\nu = 0,6$ für ein Druckfeld das schräg über Risse verläuft

 $\alpha_{cc} = 0.85$ Berücksichtigung von Langzeitauswirkungen und ungünstigen Auswirkungen durch die Art der Beanspruchung

Nach DIN EN 1992-1-1 (6.5.2) darf der Bemessungswert der Druckfestigkeit für Betonstreben in einem querdruckbeanspruchten Bereich nach der Gl. (5.1) bestimmt werden. Befindet sich die betrachtete Betondruckstrebe in einem mehraxial beanspruchten Bereich, ist es zulässig einen höheren Bemessungswert der Festigkeit anzusetzen.

$$\sigma_{Rd,max} = f_{cd}$$

Gl. (5.2)

Unterteilung der gezahnten Grenzfläche in unterschiedliche Beanspruchungszustände

Aus Übersichtsgründen und zur verständlicheren Herleitung der jeweiligen Traglasten für die Beton – Beton – Verzahnung wird im nachfolgenden die Verzahnung anhand von dem Winkel zwischen der Zahnrückenneigung (β) und Druckfeldneigung (θ) eingeteilt und in Fall 1 und Fall 2 unterschieden. In der Abbildung 5.38 sind die Konventionen für die nachfolgenden Untersuchungen zur Berechnung der Traglast der Beton – Beton – Verzahnung dargestellt. Die Hauptdruckspannung σ_{θ} kann zum einen auf die globale Druckfeldneigung (θ) bezogen werden und somit in ihre Normalspannungs- σ_{\perp} und

Schubspannungskomponente σ_{\parallel} zerlegt werden (vgl. Abbildung 5.38 links) und zum anderen kann die Hauptdruckspannungen σ_{θ} auf die lokale Zahngeometrie in die entsprechenden Anteile σ_{α} (Schubspannung) und σ_{β} (Normalspannung) zerlegt werden (vgl. Abbildung 5.38 rechts).

Abb. 5.38: Spannungskonvention für die Untersuchungen zur Traglast der Beton – Beton – Verzahnung (Nettekoven 2018)

Der Winkel θ , welcher in der Abbildung 5.38 definiert ist, beschreibt die Neigung der Hauptdruckspannung σ_{θ} bezüglich der globalen Fugenneigung. Demnach ergeben sich die Spannungsanteile wie folgt:

$$\sigma_{\alpha} = \sigma_{\theta} \cdot \sin(\theta - \beta)$$
 Gl. (5.5)

$$\sigma_{\beta} = \sigma_{\theta} \cdot \cos(\theta - \beta) \qquad \qquad \text{Gl.} (5.6)$$

In der Abbildung 5.39 sind die Bezeichnungen für die einzelnen Winkel und die zugehörigen Längen der Verzahnungsgeometrie beschrieben. Unter der Annahme, dass die Innenwinkel des Einzelzahns sich zu $180^\circ = 90^\circ + \alpha + \beta$ ergeben und der Zahnrücken senkrecht zur Zahnflanke verläuft, folgt:

$$l_z = h_z \cdot (\tan\beta + \cot\beta)$$
 Gl. (5.7)

$$b_z = h_z \cdot (\cos\beta)^{-1}$$
Gl. (5.8)

Abb. 5.39: Winkel- und Längenbezeichnungen am Einzelzahn (Nettekoven 2018)

FALL 1.) $\mathbf{0}^{\circ} \leq \boldsymbol{\theta} \leq \boldsymbol{\beta}$: Druckfeldneigung θ flacher als die Normale auf die Zahnflanke β

Für rechtwinklige Zähne ist β die Normale auf die Zahnflanke.

Aufgrund der trockenen Fugenausführung kann zwischen den gezahnten Grenzflächen keine Zugkraft übertragen werden. Aus der Abbildung 5.40 wird ersichtlich, dass für den Fall $0^{\circ} \le \theta \le \beta$ die angreifende Hauptdruckspannung σ_{θ} nur dann von der Verzahnung aufgenommen werden kann, wenn an der beanspruchten Zahnflanke Reibungskräfte aktiviert werden.

Abb. 5.40 Fugengeometrie für Fall 1.) unter variierenden Hauptdruckspannungsneigungen $\boldsymbol{\theta}$ (Nettekoven 2018)

Aus der Abbildung 5.40 wird ersichtlich, dass sich die einzelnen Betondruckstreben σ_{θ} kontinuierlich auf den Zahnflanken abstützen können. Dies trifft für den Belastungsfall 1 ($0^{\circ} \le \theta \le \beta$) zu. In der Abbildung 5.41 ist die effektiv zur Lastübertragung verfügbare Fläche der Zahnflanke dargestellt. Es ist ersichtlich, dass aufgrund der Zahngeometrie die Betondruckstrebe σ_{θ} sich nicht über die gesamte Zahnflankenlänge b_z verteilt, sondern dass sich aufgrund der Verschattung durch den vorhergehenden Zahn ein unbeanspruchter Zahnbereich ausbildet. Dieser ist in der Abbildung 5.41 durch eine rote Schraffur gekennzeichnet.

Abb. 5.41: Beschreibung für die effektive lastübertragende Zahnflankenfläche (Nettekoven 2018)

Die verschattete Zahnflankenhöhe $b_{z,1}$ und die verbleibende wirksame Zahnflakenhöhe $b_{z,2}$ ergibt sich aus geometrischen Überlegungen zu:

$$b_{z,1} = h_z \cdot \tan(\beta - \theta) \cdot (\sin\beta)^{-1}$$
Gl. (5.9)

aus Gl. (5.8) und Gl. (5.9) folgt:

$$b_{z,2} = h_z \cdot [(\cos\beta)^{-1} - \tan(\beta - \theta) \cdot (\sin\beta)^{-1}]$$
 Gl. (5.10)

Damit ergibt sich die Breite der Betondruckstrebe σ_{θ} je Einzelzahn zu:

$$l_{\theta} = \cos(\beta - \theta)^{-1} \cdot h_z \cdot \left[(\cos\beta)^{-1} - \tan(\beta - \theta) \cdot (\sin\beta)^{-1} \right]$$
Gl. (5.11)

Aus den zuvor aufgeführten Überlegungen zu der Festigkeit der Betondruckstreben im Druckfeld ist es möglich die maximale aufnehmbare Druckstrebenspannung σ_{θ} in Abhängigkeit von der Neigung der Risse zu der Druckstrebe zu bestimmen. Aufgrund von Beobachtungen während versuchstechnischen Untersuchungen zu der Betonverzahnung (vgl. Abschnitt 6.5) und aus der Betrachtung des zugehörigen Stabwerkmodells, auf welches nachfolgend noch näher eingegangen wird, wird ersichtlich, dass die Risse parallel zu den Betondruckstreben verlaufen. Demnach ergibt sich die maximale Druckstrebenkraft zu:

$$\max \sigma_{\theta} = v \cdot \alpha_{cc} \cdot f_{ck} = 0,80 \cdot 0,85 \cdot f_{ck} = 0,68 \cdot f_{ck}$$
Gl. (5.12)

Damit ergibt sich die auf einen Einzelzahn bezogene maximale Druckstrebenkraft F_{θ} zu:

$$\max F_{\theta} = \frac{0.68 \cdot f_{ck} \cdot h_z}{\cos(\beta - \theta)} \cdot \left[(\cos\beta)^{-1} - \tan(\beta - \theta) \cdot (\sin\beta)^{-1} \right]$$
Gl. (5.13)

In der Abbildung 5.42 ist die Zerlegung der auf einen Einzelzahn angreifenden maximalen Druckstrebenkraft F_{θ} in ihre Komponente $F_{\beta \perp}$, welche rechtwinklig zu der kraftzugewandten Zahnflanke angreift, und der Komponente $F_{\beta \parallel}$; welche parallel zu der kraftzugewandten Zahnflanke angreift dargestellt.

Abb. 5.42: Zerlegung der Druckstrebenkraft F_{θ} in ihre Komponenten $F_{\alpha \perp}$ und $F_{\alpha \parallel}$ (Nettekoven 2018)

Demnach ergeben sich die Komponenten von F_{θ} zu:

$$F_{\alpha\perp} = \max F_{\theta} \cdot \cos(\beta - \theta) \qquad \qquad \text{Gl.} (5.14)$$

Aus der Abbildung 5.42 wird ersichtlich, dass die beiden Kraftkomponenten am Einzelzahn nur solange sich im Gleichgewicht befinden, wie die Kraft $F_{\alpha \parallel}$ über die Aktivierung von Reibungskräften an der Zahnflanke übertragen werden kann.

Für die Bestimmung der maximal aufnehmbaren Kraft max $F_{\alpha\parallel}$ ist es notwendig die Reibbeiwerte der Grenzflächen zu kennen. Dafür sind in der DIN EN 1992-1-1 6.2.5 (2), bei fehlenden vorliegenden Informationen zu der Oberflächenbeschaffenheit der Grenzflächen, Kategorien zur Unterteilung von Oberflächen aufgeführt. Es wird zwischen sehr glatten, glatten, rauen und verzahnten Oberflächen unterschieden. Hierbei wird zum einen die verwendete Schalungsart und zum anderen die Herstellungsmethode als Einteilungskriterium herangezogen. Zusätzlich kann eine Nachbehandlung der Grenzfläche zu einer besseren Einstufung führen. In der Tabelle 5.15 sind die einzelnen Kategorien nach DIN EN 1992-1-1 6.2.5 (2) mit ihren Reibungsbeiwerten μ und ihren Rauhigkeitsbeiwerten c aufgeführt.

Kategorie	Reibungsbeiwert μ	Rauhigkeitsbeiwert c
Sehr glatt	0,50	$0,025 \le c \le 0,10$
Glatt	0,60	0,20
Rau	0,70	0,40
Verzahnt	0,90	0,50

Tab.5.15 Einteilung der Oberflächenbeschaffenheit nach DIN EN 1992-1-1

Die Begrenzung der maximalen aufnehmbaren Schubkraft max $F_{\alpha \parallel}$ kann somit über die Gl. (5.16) definiert werden.

$$\max F_{\alpha\parallel} = \max F_{\theta} \cdot \sin(\beta - \theta) \le \mu \cdot \max F_{\perp} = \mu \cdot \max F_{\theta} \cdot \cos(\beta - \theta)$$
Gl. (5.16)

Mit der Gl. (5.16) ist es möglich, einen Grenzwinkel $\varphi = \beta - \theta$ zu definieren, ab welchem die Reibung in der Fugengrenzfläche überschritten ist und somit die Fuge nicht mehr in der Lage ist, die angreifenden Kräfte zu übertragen. In der Gl. (5.17) ist der Grenzabscherwinkel φ bestimmt.

$$\varphi \leq \arctan(\mu)$$
 Gl. (5.17)

Aus der Gl. (5.17) wird ersichtlich, dass selbst bei einer sehr glatten Oberflächenbeschaffenheit nach DIN EN 1992-1-1 6.2.5 (2) mit einem Reibungsbeiwert von $\mu = 0,50$ bis zu einer Fugenneigung von $\beta = 26,5^{\circ}$ eine Druckstrebe mit einem Grenzneigungswinkel von $\theta = 0^{\circ}$ auf der Verzahnung abstützen kann. Fugenneigungen von $\beta < 26,5^{\circ}$ sind bei einem Reibungsbeiwert von $\mu = 0,50$ nicht mehr in der Lage die Druckstrebenkraft F_{θ} aufzunehmen. Die normal zur Fuge wirkende Kraft $F_{\alpha \perp}$ unterschreitet in diesem Fall die Hälfte der parallel zur Fuge wirkenden Kraft $F_{\alpha \parallel}$ und demnach genügt die Reibung zwischen den Grenzflächen nicht mehr.

Aus Vergleichbarkeitsgründen ist es hilfreich, die Traglast des Einzelzahns auf eine Traglast je Fugenlänge umzurechnen. Dafür wird die Traglast des Einzelzahns durch die zugehörige Länge des Einzelzahns l_z nach Gl. (5.7) dividiert.

$$\sigma_{\perp} = \frac{0.68 \cdot f_{ck} \cdot h_z \cdot [(\cos\beta)^{-1} - \tan(\beta - \theta) \cdot (\sin\beta)^{-1}] \cdot \sin\theta}{h_z \cdot (\tan\beta + \cot\beta)}$$
Gl. (5.18)

$$\sigma_{\parallel} = \frac{0.68 \cdot f_{ck} \cdot \tan(\beta - \theta) \cdot h_z \cdot [(\cos\beta)^{-1} - \tan(\beta - \theta) \cdot (\sin\beta)^{-1}] \cdot \cos\beta}{h_z \cdot (\tan\beta + \cot\beta)}$$
Gl. (5.19)

Demnach ergibt sich die maximal zu übertragenden Druckstrebenkraft je Fugenlänge wie folgt:

$$\max F_{\theta} = \frac{0.68 \cdot f_{ck} \cdot \cos(\beta - \theta)^{-1} \cdot h_z \cdot \left[(\cos\beta)^{-1} - \tan(\beta - \theta) \cdot (\sin\beta)^{-1}\right]}{h_z \cdot (\tan\beta + \cot\beta)} \qquad \qquad \text{Gl.} (5.20)$$

Aus den Gl. (5.18) - (5.20) wird ersichtlich, dass die Zahnhöhe h_z sich aus den Gleichungen rauskürzen lässt und demnach rechnerisch keinen Einfluss auf die Fugentragfähigkeit besitzt. Dennoch gibt es für die Zahnhöhe sowohl Unter- als auch Obergrenzen, welche zum einen aus der Schalungsgenauigkeit und zum anderen aus Gründen des Toleranzausgleiches entstehen.

FALL 2.) $\boldsymbol{\beta} < \boldsymbol{\theta} \leq 90^{\circ}$

In dem Fall, dass die Betondruckstrebe σ_{θ} in einem Winkel zwischen $\beta < \theta \le 90^{\circ}$ auf die gezahnte Grenzfläche auftrifft, weicht das Tragverhalten der Verzahnung stark von dem in dem Fall 1.) beschriebenen ab. Die Betondruckstrebe σ_{θ} stützt sich nun nicht mehr lediglich auf der ihr zugewandten Zahnflanke ab, sondern es bildet sich unmittelbar vor der Verzahnung ein Bereich mit einem mehraxialen Spannungszustand. Dieser ist in der Abbildung 5.43 durch einen schwarz schraffierten Bereich dargestellt.

Abb. 5.43: Beschreibung des Tragverhaltens der gezahnten Grenzfläche (Nettekoven 2018)

Die mehraxial beanspruchten Bereiche unmittelbar vor den Einzelzähnen lassen sich in Anlehnung an DIN EN 1992-1-1 Bild 6.26 zu Druckknoten ohne Verankerung von Zugstreben idealisieren. In der Abbildung 5.44 sind beispielhaft zwei resultierende Stabwerksmodelle für zwei Betonzähne unter einer Druckstrebenneigung θ dargestellt. Konservative Voraussetzung für das Stabwerkmodell ist, dass keine Reibkräfte übertragen werden können.

Abb. 5.44: Einschnürung der Betondruckstrebe unmittelbar vor der gezahnten Grenzfläche (Nette-koven 2018)

Aus der Abbildung 5.44 wird ersichtlich, dass die zur Verfügung stehende Fläche unmittelbar vor der Verzahnung im Vergleich zu dem ungestörten Druckfeld geringer ausfällt. Daraus resultiert eine Einschnürung der Betondruckstreben direkt vor der Verzahnung, welche zu einer Spannungserhöhung führt. Die betreffenden Bereiche sind in der Abbildung 5.44 dunkelgrau hinterlegt. Die erhöhte Spannung unmittelbar vor der Verzahnung lässt sich über die Gl. (5.21) ausdrücken.

$$\sigma_{\theta,1} = \sigma_{\theta} \cdot \frac{l_{\theta}}{l_{\theta,1}}$$
Gl. (5.21)

Aufgrund der Spannungserhöhung unmittelbar vor der Verzahnung muss überprüft werden, ob der Spannungszuwachs von dem Beton aufgenommen werden kann. Da in den betreffenden Bereichen zusätzlich zu der Spannungserhöhung noch ein zweiaxialer Spannungszustand herrscht (vgl. Stabwerksmodell aus Abbildung 5.44), kann die maximal aufnehmbare Spannung über die Gl. (5.1) beschrieben werden. Somit kann der Spannungszuwachs nach Gl. (5.21) unmittelbar vor der Verzahnung von dem Beton aufgrund des mehraxialen Beanspruchungszustandes aufgenommen werden.

$$\Delta \sigma_{max} = \left(\frac{1}{0.8} - 1\right) \cdot \alpha_{cc} \cdot f_{ck} = 0.25 \cdot \alpha_{cc} \cdot f_{ck} \qquad \text{Gl.} (5.22)$$

Demnach darf die Betondruckzonenlänge $l_{\theta,1}$ unmittelbar vor der Verzahnung um maximal 20% der ungestörten Betondruckzonenlänge l_{θ} verringert werden. Über die Gl. (5.21) und (5.22) lässt sich eine Ungleichung mit der Druckstrebenneigung θ und der Zahnneigung β aufstellen, welche für den Grenzwert der zulässigen Spannungserhöhung aus Gl. (5.22) steht. Diese Ungleichung ist in der Gl. (5.23) ausformuliert.

$$\sin\theta \cdot \cos(\theta - \beta) \le \frac{1,25}{\cos\beta \cdot (\tan\beta + \cot\beta)}$$
Gl. (5.23)

Über die Auswertung der Gl. (5.23) wird ersichtlich, dass ohne Reibung ab einer Zahnrückenneigung $\beta \ge 41,9^{\circ}$ die Fuge in der Lage ist, die maximalen Betondruckstrebenspannung max σ_{θ} unter jeder beliebigen Betondruckstrebenneigung θ ohne Reduktion zu übertragen. Bei Zahnneigungen von $\beta < 41,9^{\circ}$ muss die Betondruckstrebenspannung σ_{θ} in dem ungestörten Druckfeld unter bestimmten Betondruckstrebenneigungen θ reduziert werden, da ansonsten die Verzahnung in dem zweiaxialen Spannungszustand versagen würde. Somit wird in diesem Fall die Traglast der Verzahnung über die Tragfähigkeit des zweiaxial beanspruchten Betonzwickels definiert. Die maximal aufnehmbare Betondruckstrebenspannung max σ_{θ} in dem ungestörten Bereich lässt sich für diesen Fall über den in Gl. (5.24) aufgestellten Zusammenhang bestimmen.

$$\max \sigma_{\theta} = 1,25 \cdot 0,68 \cdot f_{ck} \cdot \frac{l_{\theta,1}}{l_{\theta}}$$
Gl. (5.24)

Die beiden Betondruckstreben $F_{cd,1l}$ und $F_{cd,1r}$ aus der Abbildung 5.10 sind gleichgroß, da sich die Betondruckstrebenbreite l_{θ} anhand der Dehnsteifigkeit zu zwei gleichgroßen Anteilen $a_{1,l}$ und $a_{1,r}$ aufteilt. Somit gilt der in der Gl. (5.25) aufgestellte Zusammenhang.

$$a_{1,l} = a_{1,r} = \frac{l_{\theta}}{2}$$
 Gl. (5.25)

Somit herrscht in den beiden Betondruckstreben eine gleich große Kraft woraus folgt, dass die beiden Einzelkräfte an den Zahnflanken gleichgroß sein müssen und sich nach den Gl. (5.26) und Gl. (5.27) bestimmen lassen.

$$F_{Ecd,3l} = F_{Ecd,3r} = \cos(\theta - \beta) \cdot F_{cd,1l} = \cos(\theta - \beta) \cdot \sigma_{cd} \cdot \frac{l_{\theta}}{2}$$
Gl. (5.26)

$$F_{Ecd,2l} = F_{Ecd,2r} = \sin(\theta - \beta) \cdot F_{cd,1l} = \sin(\theta - \beta) \cdot \sigma_{cd} \cdot \frac{l_{\theta}}{2}$$
Gl. (5.27)

Des Weiteren wird ersichtlich, dass die Einzelkräfte an den jeweiligen Zahnflanken sich zu einer Kraft zusammenfassen lassen, welche in dem jeweiligen Schwerpunkt der Zahnflanke wirkt und somit keine

zusätzlichen Versatzmomente resultieren. Somit berechnet sich die Spannung an der jeweiligen Zahnflanke über die Länge der beanspruchten Bereiche.

$$\sigma_{\alpha\perp} = \frac{2 \cdot F_{Ecd,3l}}{b_z} = \frac{\cos(\theta - \beta) \cdot \sigma_{cd} \cdot l_{\theta}}{h_z \cdot (\cos\beta)^{-1}}$$
Gl. (5.28)

$$\sigma_{\alpha\parallel} = \frac{2 \cdot F_{Ecd,2l}}{l_{\beta,1}} = \frac{\sin(\theta - \beta) \cdot \sigma_{cd} \cdot l_{\theta}}{l_{\beta,1}}$$
Gl. (5.29)

Hierbei lassen sich die in den Gl. (5.28) und Gl. (5.29) angegebenen Längen über die geometrischen Winkelbeziehungen wie folgt bestimmen:

$$l_{\theta} = \sin \theta \cdot l_{z} = \sin \theta \cdot h_{z} \cdot (\tan \beta + \cot \beta)$$
 Gl. (5.30)

$$l_{\beta,1} = \sqrt{l_{\theta,1}^2 - b_z^2} = \sqrt{(h_z \cdot (\cos\beta)^{-1} \cdot (\cos(\theta - \beta))^{-1})^2 - (h_z \cdot (\cos\beta)^2)} \qquad \text{Gl} (5.32)$$

Somit ergeben sich die Spannungen σ_{β} und σ_{α} , welche den betrachteten Einzelzahn beanspruchen zu:

$$\sigma_{\alpha\perp} = \frac{\cos(\theta - \beta) \cdot \sigma_{cd} \cdot \sin\theta \cdot h_z \cdot (\tan\beta + \cot\beta)}{h_z \cdot (\cos\beta)^{-1}}$$
Gl. (5.33)

$$\sigma_{\alpha\parallel} = \frac{\sin(\theta - \beta) \cdot \sigma_{cd} \cdot \sin\theta \cdot h_z \cdot (\tan\beta + \cot\beta)}{\sqrt{(h_z \cdot (\cos\beta)^{-1} \cdot (\cos(\theta - \beta))^{-1})^2 - (h_z \cdot (\cos\beta)^{-1})^2}}$$
Gl. (5.34)

Wie bereits zuvor für den Fall $0^{\circ} \le \theta \le \beta$ gezeigt werden konnte, kann auch für diesen Fall gezeigt werden, dass die Zahnhöhe h_z aus den Gleichungen zur Berechnung der Spannungen in der Fuge entfallen kann. Demnach ist auch hier die Spannung unabhängig von der Zahnhöhe.

Auch für diesen Fall wird aus Vergleichbarkeitsgründen, die Traglast des Einzelzahns auf eine Traglast je Fugenbreite umgerechnet. Dafür wird die Traglast des Einzelzahns durch die zugehörige Länge des Einzelzahns l_z nach Gl. (5.7) dividiert.

$$\sigma_{\perp} = \frac{0.68 \cdot f_{ck} \cdot \cos(\beta - \theta) \cdot h_z \cdot [(\cos\beta)^{-1} - \tan(\beta - \theta) \cdot (\sin\beta)^{-1}] \cdot \sin}{h_z \cdot (\tan\beta + \cot\beta)}$$
Gl. (5.35)

$$\sigma_{\parallel} = \frac{0.68 \cdot f_{ck} \cdot \cos(\beta - \theta) \cdot h_z \cdot [(\cos\beta)^{-1} - \tan(\beta - \theta) \cdot (\sin\beta)^{-1}] \cdot \cos\beta}{h_z \cdot (\tan\beta + \cot\beta)}$$
Gl. (5.36)

Demnach ergibt sich die maximal zu übertragenden Druckstrebenkraft je Fugenbreite wie folgt:

$$\max F_{\theta} = \frac{0.68 \cdot f_{ck} \cdot \cos(\beta - \theta) \cdot h_z \cdot [(\cos\beta)^{-1} - \tan(\beta - \theta) \cdot (\sin\beta)^{-1}]}{h_z \cdot (\tan\beta + \cot\beta)}$$
Gl. (5.37)

Aus den Gl. (5.36) - (5.37) wird ersichtlich, dass die Zahnhöhe h_z sich aus den Gleichungen rauskürzen lässt und demnach rechnerisch keinen Einfluss auf die Fugentragfähigkeit besitzt. Dennoch gibt es für die Zahnhöhe sowohl Unter- als auch Obergrenzen, welche zum einen aus der Schalungsgenauigkeit und zum anderen aus Gründen des Toleranzausgleiches entstehen.

5.2.2. Werkstoff und Werkstoffmodell

Da es sich bei dem Werkstoff Beton um einen inhomogenen Baustoff handelt, sollte im Rahmen des Forschungsvorhabens sichergestellt werden, dass bei allen Versuchen zu der Betonverzahnung die gleiche Betonrezeptur verwendet wird und somit die Variationen der Festbetoneigenschaften geringgehalten werden können. Für alle nachfolgenden durchgeführten Versuche wird daher die gleiche Betonrezeptur verwendet. Die Stoffraumrechnung ist der Tabelle 5.16 zu entnehmen. Als Zieldruckfestigkeit wird in der Stoffraumrechnung ein Beton der Druckfestigkeitsklasse C40/45 mit einer Zieldruckfestigkeit von $f_{c,dry,cube} = 50N/mm^2$ angestrebt. Zur Erzielung einer möglichst porenfreien Betonoberfläche ist eine Fließfähigkeitsklasse F3 vorgesehen.

	Menge in kg/m ³
Zement CEM I 52,5 R	196,00
Sand 0 – 0,25	162,49
Sand 0,25 – 0,5	139,27
Sand 0,5 – 1,0	139,27
Sand 1,0 – 2,0	108,32
Kies 2,0 – 4,0	108,32
Kies 4,0 – 8,0	116,06
Wasser	117,60
w/z-Wert	0,60

Tab. 5.16: Stoffraumrechnung des verwendeten Betons

In der Abbildung 5.45 ist die eingestellte Sieblinie infolge der gewählten Gesteinskörnungen im Vergleich mit der Normsieblinie C8 dargestellt. Es ist ersichtlich, dass es sich bei der Sieblinie um eine sehr fein abgestufte Gesteinskörnung ohne größere Sprünge handelt. Der geringe Größtkornanteil wurde bewusst gewählt, sodass sichergestellt werden kann, dass selbst in die feinsten Betonzähne noch ausreichend Zuschlagsstoffe gelangen.

Abb. 5.45: Sieblinie der gewählten Gesteinskörnungen im Vergleich zu der Normsieblinie C8 (Nettekoven 2018)

Für die Versuchsnachrechnung mit Hilfe eines FE-Modells wird für die Abbildung der nichtlinearen Materialeigenschaften des Werkstoffes Beton eine funktionale Beschreibung der Fließflächen benötigt. Die Beschreibung der Fließfläche erfolgt nach Menetrey-Willam. Die Implementierung der Fließbedingung nach Menetrey-Willam erfolgt in dem Finite-Elemente-Programm ANSYS über das Addon MultiPlas der Firma Dynardo. In der Gl. (5.38) ist die funktionale Beschreibung der Fließfläche gegeben.

$$F_{MW}(\rho, \theta, \xi) = c_2 \left[\sqrt{2} + r(\theta, e)\rho \right] + \frac{c_3}{\Omega(\sigma, \kappa, q)} \rho^2 - \Omega(\sigma, \kappa, q) \qquad \text{Gl. (5.38)}$$

mit:
$$c_2 = \frac{1}{\sqrt{6}} \left[\frac{1}{f_t} - \frac{1}{f_b} + \frac{f_b - f_t}{f_c^2} \right]$$

$$c_3 = \frac{3}{2f_c^2}$$

$$e = \frac{1 + \varepsilon}{2 - \varepsilon}$$

$$\varepsilon = \frac{f_t}{f_b} \cdot \frac{f_b^2 - f_c^2}{f_c^2 - f_t^2}$$

Das Materialmodell weist zehn frei definierbare, auf die realen Betoneigenschaften einstellbare, Eingangsparameter auf. Diese sind zum Teil mit Hilfe recht einfacher Materialprüfungen bestimmbar und teilweise nur über eine iterative Anpassung der FE-Berechnung an die Versuche ermittelbar. Diese Tatsache gestaltet die physikalisch nichtlineare Nachrechnung von Betonprobekörpern als sehr komplex und zeitaufwendig. Eine weitere große Fragestellung besteht in der Möglichkeit der Übertragbarkeit der gewonnen Eingangsparameter, welche anhand eines Referenzprobekörpers definiert werden, auf die weiteren Versuche. In dem Abschnitt 6.5.4 werden daher zunächst anhand eines Referenzkörpers die Eingangsparameter für das Materialmodell kalibriert und anschließend die Übertragbarkeit der gewonnen Materialparameter auf die Probekörper mit gezahnter Fugenausbildung gezeigt. In der Abbildung 5.46 ist unter anderem die in MultiPlas definierte Fließfläche nach Menetrey-Willam dargestellt. Zusätzlich sind noch die klassischen Fließflächen von Mohr-Coulomb und Drucker-Prager gezeigt.

Abb. 5.46: Verschiedene Fließflächen nach multiPlas Users Manual

5.2.3. Simulationsgrundlagen

Finite Elemente Simulationen unter Berücksichtigung von physikalisch nichtlinearen Werkstoffeigenschaften für Betonbauteile stellen nach wie vor eine komplexe Aufgabe dar und sind Gegenstand aktueller Forschungsvorhaben. Zu der physikalischen Nichtlinearität des FE-Modells müssen zudem aufgrund der Trockenfuge zwischen den Probekörperhälften Kontaktelemente eingeführt werden, welche mit einer geometrischen Nichtlinearität einhergehen. Dies führt zu einem sehr komplexen finiten Element Modell, welches die Nachrechnung der Versuche erschwert.

Die Finite Elemente Simulationen werden unter der Annahme von einem ebenen Spannungszustand in Tiefenrichtung an einem zweidimensionalem FE-Netz mit 8-knotigen Schalenelementen durchgeführt. In dem Fugenbereich wird zur detaillierteren Erfassung des Beanspruchungszustandes eine Elementverfeinerung durchgeführt. Der Kontakt zwischen den beiden Probekörperhälften wird mit Kontaktelementen entlang der Fugenlinie realisiert. Die Belastung der Probekörper erfolgt in dem FE-Modell, wie auch in den experimentellen Untersuchungen, infolge einer kontinuierlichen Verschiebungssteigerung an der Probekörperunterseite. Dies hat zur Folge, dass sowohl in den Experimenten als auch in den numerischen Simulationen ein Lastabfall während der Versuchsdurchführung bzw. Versuchsnachrechnung auftreten kann.

Die numerischen Simulationen werden mit dem FE-Programm ANSYS durchgeführt. Hierfür wurde ein parametrisiertes Eingabeskript in der Skriptsprache Ansys Parametric Design Language (APDL) entwickelt, welches eine freie Veränderung der Zahngeometrie, der Fugenneigung, der Probekörperabmessungen, der Materialparameter und der Verschiebungszustände ermöglicht. In der Abbildung 5.3. sind beispielhaft FE-Netze von zwei Probekörpern mit einer Fugenneigung von 60 ° und mit Zahninnenwinkeln von 45 °-90 °-45 ° und 70 °-90 °-20 ° dargestellt.

Abb. 5.46: Beispielhafte FE-Netze zweier Probekörper mit 60 ° Fugenneigung (Nettekoven 2018)

6. Untersuchungen zur Verzahnung an kleinformatigen Prüfkörpern mit gezahnter Kontaktfläche

6.1 Experimentelle Untersuchungen zur Stahlverzahnung an Stahlprismen

Ziel und Vorgehensweise

Ziel ist die lokale Untersuchung der Stahlverzahnung unter einem Kraftangriffswinkel θ . Es wird das Last- und Verformungsverhalten von Stahlprismen mit gezahnter schräger Grenzfläche untersucht.

6.1.1 Versuchskörper und Prüfeinrichtung

Versuchskörper und Versuchsprogramm

Anhand von gezahnten Stahlprismen untersucht Schmidt (2018) die entworfene Verzahnung (GT 5, vgl. Tab. 5.2) experimentell. Es werden die Winkel $\theta = 20^{\circ}$, 25° , 30° , 45° , 50° , 70° und 90° untersucht um den Einfluss der Lastneigung festzustellen. Die Zahnanzahl wird je Grenzfläche mit 17 Zähnen beibehalten. Damit verändert sich die Breite des Stahlprismas (Tab. 6.1). Damit ein Vergleich zu einer anderen Verzahnung vorliegt wird die Geometrie GT 7 mit ebenfalls zwei gleichen Prüfkörpern (I/P3 und I/P4) unter dem Winkel 30° getestet. Um eine Referenz zum ungestörten Prisma zu erhalten, wird ein Referenzprisma zu den 30° geneigten Prismen mit den gleichen Abmessungen jedoch ohne Fuge verwendet (Schmidt 2018).

Abb. 6.1: Referenzprüfkörper, 30° geneigter Prüfkörper (Schmidt 2018)

Phase I: Kleinversuche zur konzentrierten Kraftübertragung in der verzahnten Fuge - Stahl/Stahl								
Ver- suchs-nr.	Bezeichnung Neigung/Zahnhöhe/ Zahngrundlänge b/t/h	An- zahl	Art der Ver- zahnung *1	Art der vert. Lastauf- bringung	Prüfge- schwin- digkeit [mm/sec]	Material		
I/R	Stahlreferenzprisma 32/40/200mm	1	S/S	Monoton/Druck	0,6	S235 Charge 1		
I/P1/2	Stahlprisma 30°/2,8/3,5mm 32/40/200mm	2	S/S	Monoton/Druck	0,6	S235 Charge 1		
I/P3/4	Stahlprisma 30°/3/5mm 32/40/200mm	2	S/S	Monoton/Druck	0,6	S235 Charge 1		
I/P5/6	Stahlprisma 20°/2,8/3,5mm 32/40/200mm	2	S/S	Monoton/Druck	0,6	S235 Charge 2		
I/P7/8	Stahlprisma 25°/2,8/3,5mm 32/40/200mm	2	S/S	Monoton/Druck	0,6	S235 Charge 2		
I/P9/10	Stahlprisma 45°/2,8/3,5mm 43/40/200mm	2	S/S	Monoton/Druck	0,6	S235 Charge 2		
I/P11/12	Stahlprisma 50°/2,8/3,5mm 46/40/200mm	2	S/S	Monoton/Druck	0,6	S235 Charge 2		
I/P13	Stahlprisma 70°/2,8/3,5mm 56/40/200mm	1	S/S	Monoton/Druck	0,6	S235 Charge 2		
I/P14	Stahlprisma 90°/2,8/3,5mm 61/40/200mm	1	S/S	Monoton/Druck	0,6	S235 Charge 2		
*1) S/S = S	Stahl/Stahl-Verzahnung							

Tab. 6.1: Versuchsprogramm Phase I (Schmidt 2018)

Prüfeinrichtung und Messtechnik

Es wird eine Druckprüfmaschine der Bauform 2031 der Fa. Toni Technik GmbH mit einer maximalen Prüflast von 3,0 MN eingesetzt. Die Lastaufbringung erfolgt weggesteuert in Stufen mittels Rampengenerator. Die Lastpfade sind in Kap. 6.1.2 aufgezeigt. Ein computergesteuertes Messsystem zeichnet Messwerte der Kraftmessdose, jene der induktiven Wegaufnehmer sowie der Dehnmessstreifen im 0,4 Sekunden Takt auf. Durch die Belastung resultierende Wege werden durch induktive Wegaufnehmer (IWA) aufgezeichnet (Abb. 6.2).

Um zusätzliche Informationen über die Spannungen im Bauteil zu erhalten, werden folgende Dehnmesstreifen verwendet:

1-LY11-10/120 der Firma Tokyo Sokki Kenkyujo Co., Ltd.; k-Faktor $2,11 \pm 1\%$

1-LY11-2/120 der Firma Tokyo Sokki Kenkyujo Co., Ltd.; k-Faktor $2,2 \pm 1\%$

1-LY11-0,3/120 der Firma Hottinger Baldwin Messtechnik GmbH; k-Faktor 2,11 ± 1%

Die DMS besitzen einen Nennwiderstand von 120 Ω (Schmidt 2018).

Abb. 6.2: Lage der horizontalen Wegaufnehmer am Beispiel eines Prüfkörpers mit 30° geneigter Grenzfläche (Schmidt 2018)

6.1.2 Versuchsaufbau und - durchführung

Die gezahnten Stahlprismen werden mittig in der Prüfmaschine platziert. Oben und unten wird eine Stahlplatte mit den Abmessungen l/b/t=100/100/20mm aus S355 zur Lasteinleitung verwendet. Aus Sicherheitsgründen wird um das Stahlprisma herum ein Gehäuse aus Holz platziert, welches 2 cm tiefer als der Prüfkörper ist (Abb. 6.8).

Abb. 6.8: Darstellung Versuchsaufbau Phase I

Die Prüflast wird in 15 Laststufen mit einer Prüfgeschwindigkeit von 0,6 mm/sec. Auf den Prüfkörper aufgebracht. Die Lastpfade werden in Anlehnung an DIN EN 12390-13 definiert (Abb. 6.9).

Abb. 6.9: Laststufen-Diagramm – Referenzprüfkörper (oben) und gezahnte PK beispielhaft (unten) (Schmidt 2018)

100.0.2.Lusisinjen (Schnun 2010)

Rampe	1	2	3	4	5	6	7	8	9
Belastung [kN]	20	$0, 1F_{Bruch}$	$0,3F_{Bruch}$				$0,5F_{Bruch}$	F_{Bruch}	
Entlastung [kN]	-	20	20			20 20			

6.1.3 Versuchsergebnisse

Die Versuchsergebnisse werden nachfolgend zusammengefasst:

- a) Mikroskopaufnahme vor und nach dem Versuch
- Die Zähne der Geometrie GT5 gleiten beim unter 30° geneigten Kraftangriffswinkel übereinander hinweg.

Abb. 6.10: Links: Prüfkörper P1 in der Prüfmaschine und rechts: Mikroskopaufnahme der Stahlzähne vor dem Versuch (Schmidt 2018)

Abb. 6.11: Links: Prüfkörper P1 in der Prüfmaschine und rechts: Mikroskopaufnahme der Stahlzähne nach dem Versuch (Schmidt 2018)

b) Die Zahngeometrie GT 5 zeigt beim Prüfkörper I/P1 und I/P2 einen größeren Anfangsschlupf (Abb.6.12). Hier zeigen sich die direkten Auswirkungen aus der Fertigung, da die Fertigungsgenauigkeit mit den kleiner werdenden Zähnen abnimmt.

Abb. 6.12: Last-/Verformungskurve Anfangsschlupf Phase I: P1, P2, P3, P4, R (Schmidt 2018)

- c) Beim Prüfkörper mit 30° geneigten Lastangriff hat Zahngeometrie GT7 gegenüber GT5 eine um 16% höhere Traglast am Prüfkörper mit dem 30° geneigten Lastangriff.
- d) Die Zähne der GT5 verformen sich sehr stark und gleiten bei einer Vertikalverformung von etwa 8mm übereinander hinweg (Abb. 6.13, P2). Bei GT7 hingegen verkeilen sich die Zähne (Abb. 6.13, P4). Das führt zu einem zusätzlichen Widerstand, welcher sich in einem ausgeprägten Verfestigungsbereich ausdrückt (Abb. 6.13) (Schmidt 2018).

Abb. 6.13: Last-/Verformungskurve Phase I: P1, P2, P3, P4, R (Schmidt 2018)

e) Einfluss des Lastangriffswinkel

Auf Gleiten versagen die Prüfkörper mit den 20°, 25° und 30° geneigten gezahnten Fugenn. Dagegen versagen die Prüfkörpern mit einer Neigung von 50°, 70° und 90° auf Druck. Die Zähne werden soweit verformt, bis die beiden Stahlquerschnitte aufeinander stehen. Die Stahlquerschnitte können weiterhin Kräfte übertragen. Daher stellt dieser Zustand kein Versagen der Verbindung dar. Im Nachfol-

genden wird das Versagen der Zähne auf Druck als Druckbruch bezeichnet. Beim Prüfkörper mit 45° geneigter Fuge zeigt sich einmal ein Versagen auf Gleiten und einmal auf Druck. Dies lässt vermuten, dass die 45°-Neigung einen Grenzfall zwischen Gleiten und Druckbruch darstellt. Bei allen Prüfkörpern mit einer Neigung $\geq 45^{\circ}$ wird die rechnerische Bruchlast der Prüfkörper-Querschnittsfläche erreicht bzw. überschritten, obwohl die Verzahnung bereits verformt wist (Abb. 6.13 links). Hieraus kann geschlussfolgert werden, dass sich eine Verzahnung unter einer Lastneigung von größer 45° wie ein Stahlvollquerschnitt verhält (Schmidt 2018).

Abb.6.13: Versagensarten "Gleiten" und "Druckbruch" mit Angabe der Bruchlasten je Neigungswinkel (Schmidt 2018)

Die Bruchlasten werden auf 1 cm Zahnlänge bezogen (Tab. 6.4). Hier zeigt sich deutlich die Abhängigkeit der Traglast vom Kraftneigungswinkel.

	P1	P2	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14
q _{sz} in	6,4	6,4	3,7	3,6	5,8	6,9	14,2	17,3	17,6	16,7	20,5	23,1
kN/cm												
β in °	30	30	20	20	25	25	45	45	50	50	70	90

Tab.6.3: Bruchlasten bezogen auf einen Zentimeter Zahn je Neigungswinkel (Schmidt 2018)
Versagen	Druckversagen	Gleiten	Gleiten	Gleiten	Gleiten	Gleiten	Gleiten	Gleiten	Gleiten	Gleiten	Druckversagen	Druckversagen	Druckversagen	Druckversagen	Druckversagen
	rechn. Bruchlast>Versuchslast	rechn. Bruchlast>Versuchslast	rechn. Bruchlast>Versuchslast	rechn. Bruchlast>Versuchslast	rechn. Bruchlast>Versuchslast	rechn. Bruchlast>Versuchslast	rechn. Bruchlast>Versuchslast	rechn. Bruchlast>Versuchslast	rechn. Bruchlast>Versuchslast	Versuchslast > rechn. Bruchlast					
Rechnerische Bruchlast [kN	563,2	563,2	563,2	563,2	563,2	495,36	495,36	495,36	495,36	659,448	659,448	708,984	708,984	865,332	936,54
Zugfestigk. [N/mm2	440	440	440	440	440	387	387	387	387	387	387	387	387	387	387
Fläche [mm2]	1280	1280	1280	1280	1280	1280	1280	1280	1280	1704	1704	1832	1832	2236	2420
Tiefe [mm]	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
Breite [mm]	32	32	32	32	32	32	32	32	32	42,6	42,6	45,8	45,8	55,9	60,5
Versuchsspannung im Querschnitt [N/mm2]	402,4	339,8	337,5	372,1	416,1	197,7	192,0	218,8	257,8	399,1	486,5	460,2	437,2	440,1	459,1
Versuchslast pro cm Zahnlänge (Exp.)		6,4	6,4	9,9	11,1	3,7	3,6	4,1	4,9	10,0	12,2	12,4	11,8	14,5	16,3
Versuchslast Fres (Exp.)	515,13	434,94	432,01	476,32	532,65	253	245,8	280	330	680	829	843	801	984	1111
Versuchslastkomponent horiz. FH (Exp.)	0,00	376,67	374,13	412,51	461,29	237,74	230,98	253,77	299,08	480,83	586,19	541,87	514,87	336,55	0,00
Versuchslastkomponent Vertik. FV1 (Exp.)	515,13	217,47	216,01	238,16	266,33	86,53	84,07	118,33	139,46	480,83	586,19	645,78	613,60	924,66	1111,00
Kraftwinkel [°]	90	30	30	30	30	20	20	25	25	45	45	50	50	70	90
Breite Zähne [cm]		7 4,0	7 4,0	2 4,0	2,4,0	7 4,0	7 4,0	7 4,0	7 4,0	7 4,0	7 4,0	7 4,0	7 4,0	7 4,0	7 4,0
Anzahl Zähne	2	1.7	17	12	12	17	17	17	17	17	17	17	17	17	17
Bezei chnung	Stahlreferenzprisma R	Stahl/Stahlprisma Verz. sehr klein 30	Stahl/Stahlprisma Verz. sehr klein 30	Stahl/Stahlprisma Verz. klein 30°	Stahl/Stahlprisma Verz. klein 30°	Stahl/Stahlprisma Verz. sehr klein 20	Stahl/Stahlprisma Verz. sehr klein 20	Stahl/Stahlprisma Verz. sehr klein 25	Stahl/Stahlprisma Verz. sehr klein 25	Stahl/Stahlprisma Verz. sehr klein 45	Stahl/Stahlprisma Verz. sehr klein 45	Stahl/Stahlprisma Verz. sehr klein 50	Stahl/Stahlprisma Verz. sehr klein 50	Stahl/Stahlprisma Verz. sehr klein 70	Stahl/Stahlprisma Verz. sehr klein 90

<i>Tab.6.4</i> :	Versuchser	gebnisse	Phase.	I im	Überblick	(Schmidt	2018)
1 40.0.7.		50000000	1 110050		cocionen	Service	=010)

6.2 Numerische Untersuchungen zur Stahlverzahnung an Stahlprismen

6.2.1 Simulationsmodell

Simulationsmodell im Überblick (Schmidt 2018):

- Modell wird zwei- und dreidimensional mit der Finite-Element-Methode abgebildet.
- Es werden Kontaktbedingungen berücksichtigt (geometrisch nichtlineare Berechnung). Für den Kontakt Stahl/Stahl werden die Reibbeiwerte μ =0,0, 0,1, 0,15 und 0,2 angesetzt.
- Die Berechnung erfolgt physikalisch nichtlinear.
- Es werden die Werkstoffmodelle aus Kapitel 5.1.3 verwendet.
- Die Simulation erfolgt nach den Grundlagen aus Kapitel 5.1.4.
- Davon abweichende oder zusätzliche Parameter werden beschrieben. Da sich aufgrund der Druckkräfte im Versuch sowohl oben als auch unten an den Prüfkörperenden eine Einspannung einstellt, wird auch in der Simulation eine Rotation behindert.
- Am unteren Auflager wird die Horizontallast H, die Vertikallast V und das Momente M aufgenommen (Abb. 6.14).
- Am oberen Auflager werden die Horizontallast und das Moment aufgenommen, Vertikallasten werden übertragen.
- Die vertikale Lastaufbringung erfolgt als konstante Flächenlast auf die stirnseitige Fläche des Prüfkörpers.

Abb. 6.14: Simulationsmodell/Statisches System mit Prüfkörper und Simulationsergebnis (Schmidt 2018)

6.2.2 Simulationsergebnis

Einfluss Ingenieurkennlinie und wahre Kennlinie

Das Stahlprisma mit unter $\theta = 30^{\circ}$ geneigter Verzahnung wird sowohl mit der Materialkennlinie der Ingenieurspannung als auch mit der Materialkennlinie der wahren Spannung gerechnet. Die Versuchsnachrechnung mit der Ingenieurkennlinie bildet den Lüdersbereich gut ab und liegt im Bereich der maximalen Zugfestigkeit etwas unterhalb der Arbeitslinie des Versuchs. Bei Anwendung der Kennlinie der wahren Spannung, verläuft die Arbeitslinie der Versuchsnachrechnung im Lüdersbereich oberhalb der Arbeitslinie des Versuchs. Der Bereich der maximalen Zugfestigkeit stimmt gut überein (Abb. 6.15). Das Verhalten ist auch bei den Prüfkörpern mit Neigungen $\theta = 20^{\circ}$, 25° , 45° , 50° , 70° und 90° sowie dem Referenzprisma zu erkennen. Die Versuchsnachrechnungen werden mit der Kennlinie der wahren Spannungen sowie stichpunktartig mit der Ingenieurkennlinie durchgeführt. Dadurch können die Arbeitslinien der Versuche und die der Nachrechnungen gut interpretiert werden (Schmidt 2018).

Einfluss des Reibbeiwertes auf die Last/Verformungskurve

Die Berechnung mit Reibbeiwert μ =0 und μ =0,2 zeigt, dass der reibungsbehaftete Ansatz bei gleicher Verformung größere Kräfte aufnehmen kann. Das deckt sich auch mit den Aussagen aus Kapitel 9.3, dass die Spannungen beim Ansatz von Reibung um etwa 15% abnehmen (Schmidt 2018).

Globales Trag- und Verformungsverhalten

Die Prismen zeigen eine s-förmige Verformung.

Abb. 6.15: Last-/Verformungskurve IP1 und IP2, experimentell und simuliert (2D) (Schmidt 2018)

Abb. 6.16: Last-/Verformungskurve IP1,2,5,6,7,8,11,12,14 aus den FE-Simulationen (2D) (Schmidt 2018)

Lokales Verformungsverhalten

Das grundsätzliche Verformungsverhalten kann in der FE-Simulation sehr gut abgebildet werden. Dies betrifft insbesondere die Verformungen der einzelnen Zähne (Abb. 6.17).

Abb. 6.17: Lokale Verformungen (Schmidt 2018)

Die Prüfkörper werden mit DMS versehen, um an lokalen Stellen die Dehnungen zu messen und somit Rückschlüsse auf die Spannungsverteilung im Prüfkörper zuzulassen (Abb. 6.18).

Abb.6. 18: Vergleich DMS lu und ru mit FE-Rechnung (Schmidt 2018)

6.3 Experimentelle Untersuchungen zur Stahlverzahnung an Betonprismen mit Zahnleistenpaaren

6.3.1 Ziel und Vorgehensweise

Aufbauend auf die Untersuchungen der Stahl/Stahl-Verzahnung (Phase I), wird nun in einer zweiten Phase der Einfluss des umgebenden Betons mit einbezogen. Hierzu werden Zahnleistenpaare (Abb. 6.19 links) unter einem Winkel θ (Kraftangriffswinkel) von 30° und 70° zur Vertikalen in Betonprismen einbetoniert (Abb. 6.19 rechts). Diese Winkel stellen die untere und obere Grenze der praktischen Anwendung dar. Es werden Versuchskörper mit einem Zahnleistenpaar sowie Versuchskörper mit zwei Zahnleistenpaaren untersucht.

Abb. 6.19 Zahnleistenpaar ohne und mit Beton (Schmidt 2018)

Die Versuche sind so ausgelegt, dass ein duktiles Versagen durch Versagen der Stahlzähne angestrebt wird und kein sprödes Versagen des Betons. Hierzu wird die Zahnanzahl reduziert und in vier Zahngruppen zu je drei Zähnen über die Zahnleiste verteilt. Durch die Verteilung der Zahngruppen wird eine konstante Spannungsverteilung im Prüfkörper angestrebt. Die Zahngruppen werden von unten nach oben mit a, b, c und d bezeichnet. Es wird untersucht, welchen Einfluss der umliegende Beton auf das Trag- und Verformungsverhalten der Zähne hat. Ein besonderes Augenmerk liegt dabei auf den Unterschieden zur vorangegangenen Phase I und ob Schädigungen im Beton (Risse, Abplatzungen) eintreten, ob die Zahnleiste Biegeverformungen aufweist, Fugen sich im Bereich der Stahl/Stahlverzahnung oder der Stahl/Betonverzahnung (lösen der Zahnleiste vom Beton) öffnen oder abschnittsweise öffnen (Schmidt 2018).

6.3.2 Versuchskörper und Prüfeinrichtung

Versuchskörper und Versuchsprogramm

Die Versuchskörper bestehen aus Zahnleistenpaaren aus Stahl S235 und unbewehrtem Ultralith, einem ultra-hochfestem selbstverdichtenden Beton der Firma Drössler, Siegen. Die Prüfkörper werden liegend betoniert, sodass beide Betonteile gleichzeitig hergestellt werden konnten (Abb. 6.20 rechts). Es erfolgte lediglich eine kurze Nachbehandlung mit feuchten Rollen. Die Prüfkörper werden bis zur 28-Tage-Festigkeit an der Luft gelagert. Der ultra-hochfeste Beton schmiegt sich kraftschlüssig an die betonseitige Stahlverzahnung an. Alle Prüfkörper haben eine Höhe von 50 cm. Bei den Versuchen mit einem Zahnleistenpaar ist die Tiefe der Zahnleiste gleich der des Betons und beträgt 5 cm. Bei Versuchen mit zwei Zahnleistenpaaren beträgt die Tiefe der Zahnleisten 3,5 cm und der gesamte Prüfkörper 14 cm (Abb. 6.21). Die Abmessungen des Prüfkörpers sind so gewählt, dass zwischen den beiden Zahnleistenpaaren ein Hohlraum von 7cm entsteht, welcher auch bei Anschlusssituationen vorhanden ist. Da aufgrund des Hohlraums durch die Kraftumleitung Querzug entsteht, werden je Prüfkörper 4 Gewindestangen mit Unterlegscheibe und Mutter verwendet. Die Breite der Prüfkörper beträgt bei den 30° geneigten Zahnleistenpaaren 14 cm und bei den 70° geneigten Zahnleistenpaaren 26 cm. Für jeden Prüfkörpertyp wird ein Referenzprüfkörper aus Beton untersucht. Dabei werden ebenfalls Gewindestangen sowie der Hohlraum vorgesehen. Alle Abmessungen sowie die Anzahl der Prüfkörper sind in Tab. 6.7 aufgeführt (Schmidt 2018).

Abb. 6.20: Versuchsaufbau $\theta = 30^{\circ}$ *mit einem Zahnleistenpaar (30° zur Vertikalen)*

Abb. 6.21: *Versuchsaufbau* $\theta = 70^{\circ}$ *mit zwei Zahnleistenpaaren* (70° *zur Vertikalen*)

Lastabschätzung

Die Lastabschätzung der Stahl/Stahl-Verzahnung erfolgt anhand der Erfahrungen aus Phase I. Die aufnehmbare Last je Kraftneigungswinkel und Zentimeter Zahnbreite wird auf die Stahl/Stahl-Verzahnung der Versuchsphase II linear interpoliert bzw. extrapoliert.

Da die Bruchlast von 430kN der Phase I somit als Referenzwert dient, wird der Prüfkörper mit Referenzbreite $b_{Ref} = 40$ mm und die Zahnanzahl als $n_{Ref} = 17$ festgelegt. Die Traglast der Stahl/Stahl-Verzahnung wird abgeschätzt zu:

$$F_{SS} = F \cdot \frac{b_z}{b_{Ref}} \cdot \frac{n}{n_{Ref}}$$
(Gl.6.1)

Für die 50 mm breite Zahnleiste ergibt sich somit eine erwartete Bruchlast von 379,4kN und für die beiden 35 mm breiten Zahnleisten 531,2kN. Dabei ist der 30° Lastneigungswinkel der Prüfkörper aus Phase I berücksichtigt. Die Prüfkörper mit der 70° Lastneigung können größere Lasten übertragen. Die Tragfähigkeit des ungestörten Beton wird anhand der Betonfläche und der Druckfestigkeit f_{cm} =121 N/mm² berechnet zu:

$$F_B = t_P \cdot b_P \cdot f_{cm} \tag{Gl.6.2}$$

mit

 $t_P = Tiefe \ des \ Pr\u00fc f k\u00fcrpers$ $b_P = Breite \ des \ Pr\u00fc f k\u00fcrpers$ $f_{cm} = mittlere \ Druckfestigkeit \ des \ Betons (121,35N/mm^2)$

Im Bereich der betonseitigen Verzahnung wird die aufnehmbare Last anhand der Druckstreben (Abb. 6.23 links), die sich an der betonseitigen Stahlverzahnung abstützen, berechnet (Tab. 6.6). Dabei werden die für den Lastabtrag aktivierten Stahlzähne mit einer zweidimensionalen physikalisch linearen und geometrisch nichtlinearen FE-Rechnung abgeschätzt (Abb. 6.23 rechts).

Abb. 6.22: Links: Betondruckstreben an der betonseitigen Verzahnung (Tandler 2011); Rechts: Prüfkörper Phase II, Darstellung der Druckstreben durch Hauptspannungsvektoren in einer FE-Rechnung

Die von der betonseitigen Verzahnung aufnehmbare Last beträgt somit

 $F_{BS} = h_D \cdot b_z \cdot f_{cm} \cdot n \tag{Gl.6.3}$

mit $h_D = aktivierte Höhe der Druckstrebe$ $b_z = Zahnleisten Breite$ $f_{cm} = mittlere Druckfestigkeit des Betons (121,35N/mm²)$ n = Anzahl der aktivierten Zähne

Tab.6.6 Lastabschätzung der betonseitigen Verzahnung sowie des ungestörten Betonquerschnitts

Probekörper	a [°]	θ [°]	Aktivierte Zahnhöhe h _{z,a} [mm]	Breite b _z [mm]	Anzahl aktivierter Zähne n	Kraft F _{BS} [kN]	Kraft F _B [kN]
PhII - 70°-1ZL	20	70	26,7	50,0	5	810,0	1580
PhII – 30°-1ZL	60	30	13,5	50,0	8	655,3	850
$PhII - 70^{\circ}-2ZL$	20	70	26,7	2 x 35,0	5	1134,0	4430
PhII – 30°-2ZL	60	30	13,5	2 x 35,0	8	917,4	2380

Phase Fuge	Phase II: Kleinversuche zur konzentrierten Kraftübertragung in der verzahnten Fuge - Stahl/Stahl und Stahl/Beton										
Versuchsnr.	Bezeichnung	Art der Verzahnung *1	Art der Lastauf- bringung	Prüfge- schwindigkeit [mm/sec]	Stahl Einbauteil	Beton					
II/R1	Betonreferenzprisma 14/14/50cm	х	Monoton/Druck	0,6	Х	C100/115					
II/R2	Betonreferenzprisma 261/14/50cm	х	Monoton/Druck	0,6	Х	C100/115					
II/R3	Betonreferenzprisma 14/5/50cm	x	Monoton/Druck	0,6	Х	C100/115					
II/R4	Betonreferenzprisma 261/5/50cm	x	Monoton/Druck	0,6	Х	C100/115					
II/P1	St/St/Bet_2ZL 30°; 14/14/50cm	S/B_S/S	Monoton/Druck	0,6	S235	C100/115					
II/P2	St/St/Bet_2ZL 70°; 261/14/50cm	S/B_S/S	Monoton/Druck	0,6	S235	C100/115					
II/P3	St/St/Bet_1ZL 30°; 14/5/50cm	S/B_S/S	Monoton/Druck	0,6	S235	C100/115					
II/P4	St/St/Bet_1ZL 30°; 14/5/50cm	S/B_S/S	Monoton/Druck	0,6	S235	C100/115					
II/P5	St/St/Bet_1ZL 70°; 261/5/50cm	S/B_S/S	Monoton/Druck	0,6	S235	C100/115					
*1) S/	S = Stahl/Stahl-Verzahnung; S/B = B	Betonseitig	ge Stahlverzahnung	5							

Tab.6.7: Versuchsprogramm Phase II – Betonprismen mit Stahlzahnleistenpaaren

Prüfeinrichtung

Prüfmaschine, Messsystem und Messtechnik:

Es werden dieselbe Prüfmaschine, das Messsystem und die Messtechnik, wie im Kapitel 6.1.1 beschrieben verwendet. Die Versuchsdurchführung erfolgt in neun Lastrampen (Tab.6.8).

Tab. 6.8: Laststufen für Prüfkörper mit einer und zwei Zahnleisten

Rampe		1	2	3	4	5	6	7	8	9
1 ZL	Belastung	20	50		100			200		F _{Bruch}
	Entlastung	-	20		20			20		-
2 ZL	Belastung	20	50		150			250		F _{Bruch}
	Entlastung	-	20		20			20		-

Induktive Wegaufnehmer (IWA):

Durch IWA werden die vertikalen Wege an der Lasteinleitungsplatte gemessen (Abb. 6.23). Die horizontalen Wege werden analog der Stahlprismen auf der spitz zulaufenden Seite der Prüfkörperhälften aufgenommen. Dazu werden Stahlbleche an den aus dem Beton hervortretenden Zahnleisten aufgeklebt. Damit war für die IWA eine saubere und ebene Fläche vorhanden (Abb. 6.23). Die horizontale Wegaufnahme des oberen Prüfkörpers wird mit "IWA-rechts", die des unteren mit "IWA links" bezeichnet. Zusätzlich werden noch die Wege parallel zur Fuge (axial) gemessen. Hier wird auf einer Zahnleiste der IWA auf einem aufgeklebten Blech befestigt und auf der gegenüberliegenden Zahnleiste ein Stahlblech (Winkel) aufgeklebt, gegen das der IWA die Wege gemessen hat. Der IWA war dabei mittig über der Fuge platziert (Schmidt 2018).

Abb. 6.23: Links: Lage der induktiven Wegaufnehmer (IWA) an den Prismenhälften nach Hofmann (2017); Rechts: Probekörper mit IWA horizontal und axial in der Prüfmaschine (Schmidt 2018)

Dehnmessstreifen (DMS):

An vier Stahl/Stahlzähnen der Zahngruppen a und d werden je zwei DMS 1-LY11-0,3/120 im Zahngrund angebracht. Aufgrund der beengten Platzverhältnisse am Zahn werden auch hier je Zahngrund ein DMS auf der Vorderseite und ein DMS auf der Rückseite des Prüfkörpers angebracht (Abb. 6.24).

Abb. 6.24: Lage der Dehnmessstreifen nach Hofmann (2017)

6.3.3 Versuchsaufbau und - durchführung

Die Prüfkörper werden mittig in der Prüfmaschine platziert und ausgerichtet. Beim Erreichen von 20 kN wird nochmals die Ausrichtung des Prüfkörpers kontrolliert, da sich ab dieser Last die Kalotte feststellt. Der Prüfkörper wird mit neun Lastrampen belastet (Tab. 6.8).

6.3.4 Versuchsergebnisse und Auswertung

Versuchsbeobachtungen

Prüfkörper 30° mit 2 Zahnleistenpaaren:

Die Abmessungen des Versuchskörpers sowie des Referenzkörpers betragen b/t/h=14/14/50cm. Es werden zwei Zahnleistenpaare mit je 4 × 3 Zahnreihen und einer Breite von 35 mm verwendet. Der Hohlraum zwischen den Zahnleisten, der auch in einer Verbindung vorhanden ist, wird ebenfalls im Referenzkörper dargestellt. Der durch den Hohlraum entstehende Querzug wird durch die Gewindestangen mit Unterlegscheiben aufgenommen bzw. reduziert (Abb. 6.25 links und mitte). Die Dimensionierung der Gewindestange erfolgt anhand eines Stabwerkmodells. Der Spannungsverlauf wird zusätzlich in einer linear elastischen zweidimensionalen FE-Rechnung gezeigt (Abb. 6.27 links).

Abb.6.25: Prüfkörper II/P1 (links) und II/R1 (mitte) und Bruchbild der Stahlzähne (rechts) (Schmidt 2018)

Bei der Prüfkörperherstellung ist ausversehen eine der beiden Zahnleisten um einen Zahn versetzt. Somit werden auf einer Seite 4x3 Zahnreihen und auf der anderen Seite 4x2 Zahnreihen aktiviert. Auf der einen Seite versagen daher 4x2 Zahnreihen (oberer Zahn unbelastet), auf der anderen Seite 4x3 Zahnreihen (alle Zähne) (Abb. 6.25 rechts). Die Bruchlast beträgt 398,6 kN. Unter Berücksichtigung der aktivierten Zahnreihen beträgt die erwartete Bruchlast 443 kN. Damit liegt die tatsächliche Bruchlast etwa 11 % unterhalb der erwarteten Bruchlast. Der Grund hierfür kann die unterschiedliche Steifigkeit der beiden Zahnleisten, aufgrund der unterschiedlich aktivierten Zahnreihenanzahl, sein. Die übertragbare Kraft kann hier je Zentimeter Zahnlänge mit q_{sz} =5,7 kN/cm angegeben werden (Schmidt 2018).

Prüfkörper 70° mit 2 Zahnleistenpaaren:

Der Prüfkörper hat die Abmessungen b/t/h=260/14/50cm. Analog zum Prüfkörper 30° wird auch hier der Hohlraum zwischen den beiden Zahnleistenpaaren hergestellt. Die Zahnleistenpaare haben ebenfalls je 4 × 3 Zahnreihen und eine Breite von 35 mm (Abb. 6.26).

Abb.6.26: Prüfkörper II/P2(links) und II/R 2 (Schmidt 2018)

Durch den Hohlraum zwischen den Zahnleisten werden die Kräfte oberhalb und unterhalb der Zahnleiste umgeleitet, sodass Querzug entsteht. Aufgrund der großen Lasten zeigen sich in diesem Prüfkörper, sowohl in der oberen als auch der unteren Betonhälfte, Querzugrisse (Abb. 6.27 rechts). Neben den Querzugrissen verformen sich auch die Zähne sehr stark. Die maximale Last beträgt 1577,1kN. Die Last-/Verformungskurve fällt nach Erreichen der Maximallast ab, da die Gewindestangen fließen und somit die Rissbildung voranschreitet. Die Bruchlast des Referenzkörpers -ohne Zahnleisten- liegt bei 1663,9 kN und ist somit etwa 6,4 % höher als der Prüfkörper mit Zahnleisten. Bei reiner Betrachtung der "Betonstege" mit den Abmessungen von zweimal 260x35mm, ergibt sich eine Betondruckspannung von etwa 90 N/mm² (Schmidt 2018).

Abb.6.27: Hauptspannungsvektoren am Prüfkörper mit Stabwerksmodell (links) Risse aus Querzug (rechts) (Schmidt 2018)

Die übertragbare Kraft kann hier je Zentimeter Zahnlänge mit q_{sz}=18,8 kN/cm angegeben werden.

Prüfkörper 30° mit einem Zahnleistenpaar:

Es werden zwei identische Prüfkörper mit den Abmessungen b/t/h=14/5/50cm und jenen eines Referenzkörpers mit den gleichen Abmessungen hergestellt. Es wird ein 50 mm breites Zahnleistenpaar mit 4×3 Zahnreihen verwendet (Abb. 6.28).

Abb.6.28: Prüfkörper II/P3 (links) und II/P 4 mit DMS in der Prüfmaschine (mitte) und Bruchbild (rechts) (Schmidt 2018)

Die Bruchlasten der beiden Prüfkörper betragen 383,8 kN und 373,2 kN. Das Versagen zeigt sich in der Stahl/Stahl-Verzahnung. Die Zähne verformen (Biegung) sich (Wassereintrittsseite) und scheren teilweise ab (Wasseraustrittsseite), so dass die beiden Zahnleisten letztendlich übereinander hinweggleiten (Abb. 6.28). Die erwartete Prüflast liegt bei 379,4 kN. Die Abweichung zwischen der erwarteten Prüflast und dem Mittelwert aus den Versuchen beträgt unter einem Prozent. Die übertragbare Kraft kann hier je Zentimeter Zahnlänge mit q_{sz} =6,4 kN/cm angegeben werden (Schmidt 2018).

Prüfkörper 70° mit 1 Zahnleistenpaar:

Der Versuchskörper mit den Abmessungen b/t/h=26/5/50cm wird zweimal identisch hergestellt (Abb. 6.29). Dabei wird ein 50 mm breites Zahnleistenpaar mit 4 × 3 Zahnreihen verwendet. An einem werden die in Kapitel 6.3.1 beschriebenen Dehnmessstreifen verwendet. Mit denselben Abmessungen wird ein Referenzprüfkörper rein aus Beton hergestellt und getestet (Abb. 6.25 rechts).

Abb. 6.29: Prüfkörper II/P6 mit DMS in der Prüfmaschine (links) und Bruchbild (mitte); Bruchbild Referenzprisma II/R4 (rechts) (Schmidt 2018)

Die Bruchlast des Referenzkörpers liegt bei 1168,8 kN, was einer Bruchspannung von 88,2 N/mm² entspricht. Die Versuchskörper versagen durch Betonbruch bei 1030,3 kN und 1058,6 kN (Abb. 6.29). Das entspricht einer Betonspannung von etwa 88 N/mm². Die Bruchlasten liegen nicht weit auseinander (10-15%). Das Versagen tritt bei beiden Versuchskörpern mit Zahnleiste an einer Prüfkörperseite im Bereich der Lasteinleitung auf. Das zeigt, dass der Beton durch die eingebaute Zahnleiste, und insbesondere der betonseitigen Stahlverzahnung, keine Schwächung oder negativen Einflüsse auf das Tragverhalten erhält. Die Stahl/Stahl-Verzahnung verformt sich sichtbar, jedoch wäre in den Zähnen eine weitere Laststeigerung möglich. Der Spalt zwischen den Zahnleisten ist weiterhin vorhanden und parallel. Die Zahnleisten haben in diesem Bereich keine merklichen Biegeverformungen erhalten (Abb. 6.30).

Abb. 6.30: Verformte Zähne Stahl – Stahl nach dem Versuch unter $\theta = 70^\circ$; links ist die Austrittsseite und rechts die Eintrittsseite des Wasserstrahls (Schmidt 2018)

Durch die Herstellung der Zahnleisten mittels Wasserstrahlschneiden ist die Fertigungsgenauigkeit auf der Wassereintrittsseite größer als auf der Wasseraustrittseite. Die Eintrittsseite und die Austrittsseite des Wasserstrahls sind an den Prüfkörpern deutlich zu erkennen (Abb. 6.30). Die Wassereintrittsseite ist die steifere Seite von beiden, was sich auch im Last-/Verformung-Diagramm zeigt (vgl. Anhang VB2). Die übertragbare Kraft kann hier je Zentimeter Zahnlänge mit q_{sz} =6,4 kN/cm angegeben werden (Schmidt 2018).

Messergebnisse

Für den Kraftneigungswinkel θ =30° kann eine Kraft je Zentimeter Zahnlänge von q_{sz}=6,0kN/cm und für den Kraftneigungswinkel θ =70° eine Kraft q_{sz}=17,0kN/cm aufgenommen werden.

Die Einflüsse der Kraftneigungswinkel, des angrenzenden Betons und des Zwischenraums zwischen den Zahnleisten werden in Schmidt (2018) aufgezeigt.

Versagen	Betonversagen	Betonversagen	Betonversagen	Betonversagen	Gleiten der Stahlzähne	Betonversagen	Gleiten der Stahlzähne	Gleiten der Stahlzähne	Betonversagen	Betonversagen
max Drucklast [kN] (Rechnerisch)	2352	43680	840	15600	1176	43680	840	840	15600	15600
Druckfestigk. [N/mm2]	120	120	120	120	120	120	120	120	120	120
Fläche [cm2]	196	3640	10 <i>L</i>	1300	98	3640	70	70	1300	1300
Tiefe [cm]	14	14	5	5	7	14	5	5	5	5
Breite [cm]	14	260	14	260	14	260	14	14	260	260
Bruchspannung im Querschnitt [N/mm2]			6732,7	899,1	4067,8	433,3	5331,4	5483,4	792,5	814,3
Bruchlast pro cm Zahnlänge (Exp.)					4,7	18,8	6,2	6,4	17,2	17,6
Bruchlast Fres (Exp.)	792,4	1663,93	471,29	1168,81	398,64	1577,08	373,2	383,84	1030,29	1058,63
Kraft horiz. FH (Exp.)					345,23	539,39	323,20	332,42	352,38	362,07
Kraft vertik. FV1 (Exp.)					199,32	1481,97	186,60	191,92	968,16	994,79
Kraftwinkel	k.A.	k.A.	k.A.	k.A.	30	0 <i>L</i>	30	30	70	70
Breite Zähne	k.A.	k.A.	k.A.	k.A.	3,5	3,5	5,0	5,0	5,0	5,0
Anzahl Zähne	k.A.	k.A.	k.A	k.A	24	24	12	12	12	12
Bezeichnung	3etonreferenzprisma 14/14/50cm	3etonreferenzprisma 261/14/50cm	3etonreferenzprisma 14/5/50cm	3etonreferenzprisma 260/5/50cm	t/St/Bet_2ZL 30°; 14/14/50cm	kt/St/Bet_2ZL 70°; 260/14/50cm	tt/St/Bet 1ZL 30°; 14/5/50cm	tt/St/Bet_1ZL 30°; 14/5/50cm	kt/St/Bet_1ZL 70°; 260/5/50cm	t/St/Bet_1ZL 70°; 260/5/50cm

Tab.6.10: Versuchsergebnisse im Überblick (Schmidt 2018)

k. A. = keine Angabe

6.4 Numerische Untersuchungen zur Stahlverzahnung an Betonprismen mit Zahnleistenpaaren

6.4.1 Simulationsmodell

Die Versuche an den Betonprismen mit Zahnleistenpaaren werden dreidimensional mit der Finite-Element-Methode geometrisch nichtlinear sowie physikalisch nichtlinear simuliert. Es werden dabei die Werkstoffmodelle aus Kapitel 5.1.3 sowie die Simulationsgrundlagen aus Kapitel 5.1.4 angewendet. Analog zu Kapitel 4 wird der Versuchskörper auf der Unterseite eingespannt (M, H, V ist fixiert) und auf der Lasteinleitungsseite bezüglich der Kraft H und des Moments M fixiert. Die Lastaufbringung erfolgt als konstante Flächenlast auf die Stirnseite des Prüfkörpers (Abb. 6.31) (Schmidt 2018).

Abb. 6.31: Simulationsmodell/Statisches System Phase II (links) und FE-Netz (rechts) (Schmidt 2018)

Lastaufbringung:

Die Lastaufbringung erfolgt in Lastschritten über eine konstante Flächenlast, die auf die Oberseite des oberen Prüfkörpers aufgegeben wird.

Kontakte:

Die Berührflächen der einzelnen Elemente zueinander werden als Kontakte definiert. Es können sowohl Druckkräfte als auch Reibkräfte übertragen werden. Dazu werden Kontaktbedingungen definiert. Der Beton wird zur betonseitigen Stahlverzahnung über einen unverschieblichen Verbund definiert. Die Stahl/Stahl-Verzahnung wird mit einem Reibbeiwert von 0,2 simuliert (Schmidt 2018).

6.4.2 Verwendetes Materialmodell

Für jeden Prüfkörpertyp mit Stahlzahnleistenpaar wird ein Referenzprüfkörper mit identischer Geometrie, jedoch ohne Zahnleisten, getestet. Diese Materialkennlinien (Abb. 6.32) werden für das Materialmodell verwendet.

Abb. 6.32: Last-/Verformungskurve der Referenzprüfkörper (Schmidt 2018)

6.4.3 Simulationsergebnisse

Versuchsnachrechnungen - Arbeitslinien

Die Nachrechnungen der Versuche zeigen bis auf den Prüfkörper II/P1 eine gute Übereinstimmung mit den Graphen der experimentellen Versuchsdurchführungen (Abb. 6.33).

Abb. 6.33: Last-/Verformungskurve der FE-Rechnungen und Versuche (Schmidt 2018)

Versuchsnachrechnungen - Vergleichsspannungen

Die Vergleichsspannungen sind im Betonprüfkörper weitgehend konstant, sodass alle Zahngruppen der Stahl/Stahlverzahnung gleich belastet werden (Abb. 6.34a bis d).

Abb. 6.34a: Spannungsverlauf im Bereich der Stahlverzahnung IIP1 (30°, 2ZL)

Abb. 6.34b: Spannungsverlauf im Bereich der Stahlverzahnung IIP2 (70°, 2ZL)

Abb. 6.34c: Spannungsverlauf im Bereich der Stahlverzahnung IIP3 und IIP4 (30°, 1ZL)

Abb. 6.34d: Spannungsverlauf im Bereich der Stahlverzahnung IIP5 und IIP6 (70°, 1ZL)

Auch bei den Betonprismen mit Zahnleistenpaaren zeigt sich die S-förmige Ausprägung des Prüfkörpers (Abb. 6.35).

Abb. 6.35: Verformung des Prüfkörpers 80-fach überhöht (Schmidt 2018)

Die im Versuch IIP2 (70°, 2ZL) vorhandenen Querzugrisse können auch im dreidimensionalen FE-Modell durch Vektoren der Hauptzugspannungen gezeigt werden (Abb. 6.36).

Abb. 6.36: Prüfkörper IIP2mit Hauptvektoren

6.5 Experimentelle Untersuchungen zur Betonverzahnung an Betonprismen

Gegenstand der nachfolgenden Untersuchung ist es, die Effizienz der theoretisch hergeleiteten Betonverzahnungsgeometrien experimentell zu bestätigen und das Tragverhalten der Betonzähne nachzuvollziehen. Da nicht nur die Wirksamkeit der Verzahnung unter idealen Bedingungen, sprich perfekte Abstützung der Hauptdruckspannungen und vollkommende Passgenauigkeit, experimentell nachgewiesen werden soll, sondern auch unter abweichenden Parametern, wurde eine spezielle Stahlschalung zur Herstellung der Probekörper entwickelt. Die Schalung ermöglicht eine stufenlose Verstellung des Fugenwinkels in einem Bereich zwischen 0° und 70° gegenüber der Horizontalen. Abb. 6.37 zeigt die linke Seite der Stahlschalung und auf der rechten Seite den prinzipiellen Aufbau der Schalung.

Abb. 6.37: Stufenlos verstellbare Stahlschalung zur Herstellung der Probekörper (Nettekoven 2018)

6.5.1 Versuchskörper

Da zusätzlich zu der Abhängigkeit zwischen der Fugenneigung und der Traglast der Probekörper auch Aussagen zu unterschiedlichen Zahngeometrien und Zahnhöhen getroffen werden sollen, werden vier unterschiedliche Arten von Stahlzwischenbretter verwendet. Hierbei werden zwei verschiedene Zahngeometrien, mit den Innenwinkeln von 45 °-90 °-45 ° und 70 °-90 °-20°, und zwei unterschiedliche Zahnhöhen mit 3 mm und 6 mm verwendet. In der Abbildung 6.38 sind die vier Zwischenbretter in der Drauf- und Ansicht dargestellt.

Insgesamt umfasst die Versuchsreihe 120 gezahnte Betonprobekörper, 60 Zylinder zur Bestimmung der Betoneigenschaften und 40 Referenzkörper zur Bewertung der Size-Effekte der gezahnten Probekörper. Aufgrund der sechs gefertigten Spezialstahlschalungen für die Herstellung der gezahnten Betonprobekörper wurden deshalb 20 Betoniertage benötigt, um alle Versuchskörper herzustellen.

Abb. 6.38: Unterschiedliche Zwischenbretter in der Drauf- und Ansicht (Nettekoven 2018)

Exemplarisch werden drei frisch betonierte gezahnte Probekörper in der speziell hierfür angefertigten Stahlschalung dargestellt (Abb. 6.39). Der verwendete Beton ist der Konsistenzklasse F3 zuzuordnen, deshalb wird dieser mit einem Innenrüttler verdichtet. Nach dem Glätten der freien Betonoberfläche werden die Probekörper bis zum Ausschalen mit Folien abgedeckt. Die Proben werden nach mindestens 6 Stunden ausgeschalt und anschließend 28 Tage lang im Wasserbad unter Normbedingungen gelagert.

Abb. 6.39: Frisch betonierte gezahnte Probekörper in Stahlschalung (Nettekoven 2018)

6.5.2 Versuchsaufbau und - durchführung

Alle prismatischen Druckversuche werden an einer hydraulischen Vier-Säulen-Druckprüfmaschine mit einer maximalen Prüflast von 3000 kN durchgeführt. Die Prüfvorschrift orientiert sich an der DIN EN 12390-13:2013, welche die Bestimmung des Elastizitätsmoduls unter Druckbelastung regelt. Die einzelnen Prüfzyklen sind der Abbildung 6.41 zu entnehmen. Bei der verwendeten Prüfvorschrift handelt es sich um das Verfahren B der DIN EN 12390-13, in dem auf die Bestimmung des anfänglichen Elastizitätsmoduls verzichtet wird und lediglich drei Belastungszyklen gefahren werden. Das stabilisierte E-Modul wird in der letzten Rampe vor der Bestimmung der Druckfestigkeit berechnet.

Legende

```
_____Belastungszyklus für die Bestimmung des stabilisierten Elastizitätsmoduls – Verfahren B
```

- σ aufgebrachte Spannung in MPa
- $\sigma_{\rm a}$ obere Prüfspannung: $f_{\rm c}/3$
- $\sigma_{\rm b}$ untere Prüfspannung: $0,10 \times f_{\rm c} \le \sigma_{\rm b} \le 0,15 \times f_{\rm c}$
- $\sigma_{\rm p}$ Vorbelastungsspannung: 0,5 MPA $\leq \sigma_{\rm p} \leq \sigma_{\rm b}^{\rm N1}$

t Zeit in Sekunden

Abb. 6.40: Verwendete Prüfvorschrift in Anlehnung an die DIN EN 12390-13

Die Belastungsart erfolgt abweichend zu der DIN EN 12390-13 nicht durch eine konstante Laststeigerung, sondern wird weggesteuert aufgebracht. Bei der Berechnung der Verschiebungsgeschwindigkeit wird der in der Norm empfohlene Bereich von $(0,6 \pm 0,2)N/mm^2$ zunächst in eine äquivalente Dehnung umgerechnet und anschließend über die Probenhöhe zu einer Verschiebungsgeschwindigkeit je Sekunde umgeformt. Demnach ergibt sich für die Zylinder eine Belastungsgeschwindigkeit von 0,3 mm/s und für die prismatischen Prüfkörper eine Geschwindigkeit von 0,5 mm/s. Aufgrund der zu erwartenden Unterschiede in den Traglasten der einzelnen Prüfkörper werden die jeweiligen unteren und oberen Prüfspannungen für die Bestimmung des stabilisierten E-Moduls entsprechend der nach Abschnitt 5.2.1 bestimmten Prüflasten berechnet.

Vor der Druckprüfung werden die Lasteinleitungsflächen der Zylinder plan geschliffen und alle Probekörper vermessen, auf Unversehrtheit überprüft und fotografiert. Bei den gezahnten Probekörpern wird zudem die Fuge visuell auf ihre Passgenauigkeit überprüft. Es kann bei keiner Fuge ein Fugenspalt oder eine unplanmäßige Schiefstellung festgestellt werden. Somit kann davon ausgegangen werden, dass die gesamte Fugenfläche während der Druckprüfung aktiviert wird. Die Tabelle 6.11 zeigt die unterschiedlichen Fugenneigungen mit den zugehörigen erwarteten Prüflasten und den daraus nach DIN EN 12390-12 resultierenden unteren und oberen Prüflasten für die Belastungsrampen.

Probekörper	Fugenneigung	Abmessun	ıgen		Erwartete Druckfes- tigkeit	Prüflasten für die Rampen		
		Höhe	Breite	Tiefe		untere	obere	
[-]	[°]	[mm]	[mm]	[mm]	[N/mm ²]	[kN]	[kN]	
Zylinder	-	300	150		50,0		300,0	
Referenzkörper	-				50,0		166,5	
	20, 30, 40, 45,50				50,0		166,5	

100

100

492

Tab. 6.11: Verwendete Prüfvorschrift mit den erwarteten Prüflasten und den unten und oberen Prüfkräften für die Belastungsrampen (Nettekoven 2018)

Für die Aufzeichnung der Versuche werde der Messverstärker AUTOLOG 3000 der Firma Peekel Instruments verwendet. Es werden insgesamt drei Kanäle mit einer Messrate von 25 Hz aufgezeichnet. Für die vertikale Prüfkörperstauchung werden zwei induktive Wegaufnehmer mit einem Messbereich von $\pm 5,0mm$ und einer Tastspitze verwendet. Die Aufzeichnung der Prüflast wird über einen digitalen A/V-Wandler realisiert.

Als Prüfungsende wird zum einen ein Lastabfall von mehr als 20% der maximalen Prüflast und zum anderen ein Zylinderweg größer gleich 2,0 mm definiert. Nach Prüfungsende werden die Prüfkörper ausgebaut und fotografiert.

6.5.3 Versuchsergebnisse und Auswertung

55

60

65

70

Gezahnte Prüf-

körper

Bei der Versuchsauswertung werden drei wesentliche Parameter für die Beurteilung des Trag- und Verformungsverhaltens der gezahnten Fugenausführung näher betrachtet. Hierzu zählen das stabilisierte Elastizitätsmodul, die maximale Prüflast und die Betonstauchung bei Erreichen der maximalen Prüflast. Da es aufgrund der Vielzahl der Probekörper und der begrenzten Anzahl an Schalungen nicht möglich ist, alle Betonkörper auf einmal zu fertigen, müssen die eventuell variierenden Betonfestigkeiten bei der Auswertung berücksichtigt werden. Dies geschieht über eine Skalierung der Traglasten der gezahnten Probekörper auf den Mittelwert der jeweiligen Referenzkörper. In der Tab. 6.12 sind die Mittelwerte der Materialeigenschaften der Prüfzylinder und der Referenzkörper inklusive der zugehörigen Standardabweichung angegeben. Es ist ersichtlich, dass trotz der unterschiedlichen Betonalter bei Durchführung der Druckversuche und unterschiedlichen Betonagen die Standardabweichung sowohl bei den Zylindern als auch bei den Referenzkörpern sehr gering ausfällt. Dies kann auf die sehr genaue Abmessung aller Ausgangsstoffe bei der Herstellung des Betons und die eigene Herstellung der Sieblinie der Gesteinskörnung zurückgeführt werden.

18.0

39.0

30.2

20,8

11.8

130.0

100,0

70,0

40,0

Probekörper	Elastizitätsmodu [N/mm ²]	1	Druckfestigkeit [N/mm ²]				
	Mittelwert	Standardabweichung	Mittelwert	Standardabweichung			
Zylinder	29.500	295	54,30	1,73			
Referenzkörper	28.300	268	47,28	1,94			

Tab. 6.12: Mittelwerte und zugehörige Standardabweichungen der Referenzproben (Nettekoven 2018)

Da es sich bei den geprüften Betonzylindern um mehr als 35 handelt, darf der Beton nach der DIN EN 206-1 einer stetigen Herstellung für das Konformitätskriterium für die Druckfestigkeit zugeordnet werden. Nach Anwendung des Kriteriums 1 und 2 der DIN EN 206-1 kann der geprüfte Beton der Druckfestigkeitsklasse C50/60 zugeordnet werden.

Es ist festzustellen, dass das Elastizitätsmodul nach der DIN EN 1992-1-1 für die Festigkeitsklasse C50/60 mit $E_{cm} = 37.000 N/mm^2$ angegeben ist und das experimentell ermittelte mit $E_{cm} = 29.500 N/mm^2$. Die große Abweichung zwischen den beiden E-Modulen könnte unter anderem auf eine geringe Druckfestigkeit der verwendeten Gesteinskörnung zurückgeführt werden.

Die Tabelle 6.13 zeigt die Mittelwerte und die Standardabweichung der Druckfestigkeiten f_{cm} der gezahnten Prüfkörper und die Mittelwerte der Normal- und Schubspannungen bezogen auf die Fuge. In der Tab. 6.13 wird zwischen den neun geprüften Fugenneigungen, den zwei Zahngeometrien und den zwei Zahnhöhen differenziert.

Aus der Tabelle ist ersichtlich, dass bis auf die Probekörper mit einer Fugenneigung von 30° bei einer Zahngeometrie mit 70°-Zähnen und einer Zahnhöhe von 6 mm, alle anderen Proben zwischen den Fugenneigungswinkel von 20° und 40° gleichgroße oder höhere Prüflasten erreichen als die Referenzkörper. Des Weiteren lässt sich feststellen, dass die Proben mit einer Zahnflankenneigung von 45° unabhängig von der Zahnhöhe ab einer Fugenneigung von 50° kontinuierlich an Druckfestigkeit verlieren. Zum einen kann dies auf die Notwendigkeit der Aktivierung von Reibungskräften für den Lastabtrag über die Fuge erklärt werden, zum anderen resultiert aus dem Anstieg der in der Fuge wirkenden Schubkraft eine geringere Betonfestigkeit. Es sei angemerkt, dass bei dem 45°-Zahn mit einer Zahnhöhe von 3 mm unter 70° Fugenneigung keine Versuchsdurchführung möglich war, da es bei dem bloßen Aufeinanderstellen der beiden Probekörperhälften zu einem Gleiten der Fuge und somit zu einer Überschreitung der Haftreibung gekommen ist. Aus diesem Grund konnten diese Proben nicht geprüft werden.

Außerdem zeigt die Tab. 6.13, dass bei den 70 °-Zähnen die Reduktion der Traglasten bei zunehmender Fugenneigung nicht vergleichbar mit jenen bei den 45 °-Zähnen ausfällt. Anhand der Mittelwerte der Druckfestigkeiten für die 70 °-Zähne zeigt sich, dass die in dem Abschnitt 5.2.1 aufgestellten Rechenansätze für die reibungsfreie Kraftübertragung über die Fuge richtige Ergebnisse liefern. Bei dieser Variante der Kraftübertragung können die angreifenden Druckstreben besser über die Fuge übertragen werden, somit fällt die Traglastreduktion bei steileren Fugenneigungswinkeln geringer aus.

Fugen- nei- gung	Zahn- geo- metrie	Zahn höhe	Mittelwert der Druckfestigkeit f_{cm}	Standardabwei- chung	Mittelwert der Normalspannung	Mittelwert der Schubspannung
[°]	[-]	[mm]	[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]
	70 °-	3	52,47	1,89	46,33	16,86
20	Zahn	6	46,80	1,34	41,33	15,04
20	45 °-	3	53,71	2,12	47,43	17,26
	Zahn	6	54,06	2,31	47,74	17,37
	70 °-	3	50,96	2,32	38,22	22,07
20	Zahn	6	34,63	2,11	25,97	15,00
30	45 °-	3	54,13	1,87	40,60	23,44
	Zahn	6	53,65	1,67	40,23	23,23
10	70 °-	3	52,18	1,35	30,62	25,69
	Zahn	6	45,10	1,56	26,47	22,21
40	45 °-	3	54,49	2,25	31,98	26,83
	Zahn	6	57,04	2,32	33,47	28,09
	70 °-	3	42,25	1,47	21,12	21,12
45	Zahn	6	39,52	0,25	19,76	19,76
	45 °-	3	51,25	2,55	25,63	25,63
	Zahn	6	51,48	0,91	25,74	25,74
	70 °-	3	48,79	0,19	20,15	24,02
50	Zahn	6	41,74	1,94	17,24	20,55
50	45 °- Zahn	3	26,71	2,11	11,04	13,15
		6	51,49	1,58	21,27	25,35
	70 °-	3	48,07	1,07	15,81	22,59
	Zahn	6	40,49	1,78	13,32	19,03
55	45 °-	3	29,71	2,88	9,77	13,96
	Zahn	6	42,43	6,78	13,96	19,94
	70 °-	3	37,98	1,68	9,50	16,45
<i>(</i> 0	Zahn	6	35,2	0,39	8,80	15,24
60	45 °-	3	14,59	1,52	3,65	6,32
	Zahn	6	20,86	0,48	5,22	9,03
	70 °-	3	43,27	1,31	7,73	16,57
<i></i>	Zahn	6	43,80	2,32	7,82	16,78
65	45 °-	3	3,25	3,41	0,58	1,24
	Zahn	6	12,08	1,14	2,16	4,63
	70 °-	3	28,09	5,94	3,29	9,03
70	Zahn	6	39,62	3,67	4,63	12,73
70	45 °-	3	-	-	-	-
	Zahn	6	7,29	1,57	0,85	2,34

Tab. 6.13: Mittelwerte und zugehörige Standardabw. der gezahnten Fugenkörper (Nettekoven 2018)

■ Mittelwert der Druckfestigkeit × Standardabweichung

Abb. 6.41: Mittelwerte der Druckfestigkeiten und zugehörige Standardabweichungen der gezahnten Fugenkörper (Nettekoven 2018)

Es ist ersichtlich, dass in den Fugenneigungsbereichen von 20 ° bis 50 ° die Standardabweichung die einzelnen Probekörper sehr gering ausfällt. Allerdings zeigen sich auch in diesem Bereich einige markante Einbrüche in den Mittelwerten der Druckfestigkeiten. Ab einer Fugenneigung von größer gleich 55 ° ist bei den 45 °-Zähnen der Rückgang der Traglast und eine damit einhergehende Vergrößerung der Standardabweichung festzustellen. Zudem zeigt sich, dass die Probekörper mit den 70 °-Zähnen in diesem Bereich keine so hohen Schwankungen der Prüflasten und geringe Standardabweichungen aufweisen.

In allen durchgeführten Druckversuchen an prismatischen Betonprismen mit gezahnter Fugenausführung können vergleichbare Bruchbilder und ähnliche Erstrissbildungen festgestellt werden. Die Proben mit Fugenneigungen kleiner gleich 50 ° versagten infolge von Rissen parallel zu den Hauptdruckspannungen. Deren Versagen kündigte sich durch das Wegbrechen der äußersten beiden Betonzähne an. Demnach ähnelt ihr Versagen dem der Referenzprobekörper, welches mit einem Druckversagen getrieben durch Querzugkräfte gleichzustellen ist. Die Abb. 6.42 zeigt exemplarisch einen belasteten Prüfkörper mit 70 °-Zähnen, 6 mm Zahnhöhe und 40 °-Fugenneigung, kurz vor dem Erstriss sowie das abgeschlossene Rissbild.

Abb. 6.42: Druckversagen eines Probekörpers mit gezahnter Fugenausführung (Nettekoven 2018)

Das Versagen der Probekörper mit Fugenneigungen größer 50 ° ist stets ein sprödes schlagartiges Betonversagen. Hierbei blieb der Probekörper in weiten Teilen rissfrei, lediglich der Verzahnungsbereich versagte durch ein Abscheren der Betonzähne. Die Abbildung 6.43 zeigt exemplarisch einen Probekörper mit 70 °-Zähnen, einer Zahnhöhe von 6 mm und einer Fugenneigung von 70 °. Während der Versuche kommt es zu keiner visuell wahrnehmbaren Rissbildung an den Oberflächen der Probekörper. Das Versagen des Betons tritt ausschließlich in der gezahnten Fuge durch ein Abscheren der Zähne auf. In dem rechten Bild der Abb. 6.43 ist das Nachbruchbild der gezahnten Fugenausführung dargestellt. Es ist ersichtlich, dass alle Betonzähne entlang der Fuge entweder auf der oberen oder der unteren Probekörperhälfte abscheren.

Abb. 6.43: gezahnter Probekörper mit 70 ° Fugenneigung und 70 ° Zahngeometrie vor und nach der Druckprüfung (Nettekoven 2018)

Aufgrund der beobachteten Versagensarten der gezahnten Probekörper werden diese in die zwei Versagensarten Druck- und Schubbruch unterteilt. Hierbei kann als Grenzfugenwinkel für die Unterteilung in die beiden Versagensarten ein Winkel von 50 ° festgestellt werden. Dieser Winkel kann nicht nur durch die während der Versuche beobachteten Versagensarten bestimmt werden, sondern kann auch mit Hilfe von normierten Schub-Druckdiagrammen rechnerisch ermittelt werden.

Für den grafischen Vergleich zwischen den einzelnen Probekörpern mit den variierenden Fugenausführungen und Fugenneigungen ist es hilfreich, die Prüflasten in Normal- und Schubspannungen bezogen auf die Fugenneigung umzurechnen. In der Abbildung 6.44. ist der schematische Versuchsaufbau der zweiteiligen prismatischen Prüfkörper mit der Fugenneigung α dargestellt. Die maximale Prüflast wird mit der Querschnittfläche der Probekörper zunächst in die maximale Spannung σ_0 umgerechnet. Aus der maximalen Spannung wird mit den Gleichungen $\sigma_n = \cos^2 \alpha \cdot \sigma_0$ und $\tau = 0,5 \cdot \sin(2\alpha) \cdot \sigma_0$ die auf die Fugenneigung bezogenen Spannungen berechnet. Die so erhaltenen Spannungen werden abschließend durch die mittlere Druckfestigkeit der Referenzkörper dividiert, um eine normierte Spannung zu erhalten. Somit wird dem Einfluss unterschiedlicher Betondruckfestigkeiten aufgrund der unterschiedlichen Betonagezeitpunkten Rechnung getragen. In den Abb. 6.45 – 6.48 sind die einzelnen Diagramme für die jeweilige Prüfkörperkonstellation zusammengestellt.

Abb. 6.44: Schematischer Versuchsaufbau (Nettekoven 2018)

Abb. 6.45: Normiertes Schub-Druckdiagramm für die 45°-Zähne mit 3 mm Zahnhöhe (Nettekoven 2018)

Abb. 6.46: Normiertes Schub-Druckdiagramm für die 45°-Zähne mit 6 mm Zahnhöhe (Nettekoven 2018)

45°-Zähne mit 3mm Zahnhöhe

In den einzelnen normierten Schub-Druckdiagrammen ist für die bessere Interpretation der Ergebnisse der Mohrsche Spannungskreis eingezeichnet. Die einzelnen Versuche sind mit blauen Punkten in den Diagrammen dargestellt. Versuche, welche auf oder nahe dem Mohrschen Spannungskreis liegen, sprechen für eine ideale Ausnutzung der Materialfestigkeit.

In der Abbildung 6.45 und 6.46 sind die Ergebnisse aus den Versuchen zu den 45°-Zähnen mit 3 mm und 6 mm Zahnhöhen dargestellt. Es wird deutlich, dass beide Zahnhöhen in den Fugenneigungsbereichen kleiner gleich 45° sehr gute Ergebnisse erzielen. Alle bis auf einen Versuch liegen oberhalb des Mohrschen Spannungskreises. Dies bedeutet, dass die Probekörper eine höhere Festigkeit als die Referenzkörper aufweisen. Die 3 mm hohen Zähne zeigen bei einer Fugenneigung von 50° einen starken Festigkeitsabfall und Prüflasten deutlich unterhalb des Spannungskreises. Diese Fugenneigung wird bereits in der experimentellen Versuchsdurchführung als kritische Fugenneigung identifiziert, welche die Abgrenzung zwischen einem Druck- und einem Schubversagen kennzeichnet. Alle Probekörper mit steileren Fugenwinkeln liegen unterhalb des Spannungskreises auf einer Geraden. Diese Gerade kann über die Coulombsche Bruchgerade in der Form $\tau_{scher} = \sigma \cdot \tan \varphi + c$ beschrieben werden. Die Bruchgerade lässt sich anhand des normierten Schub-Druckdiagramms für die 45°-Zähne mit 3 mm Zahnhöhe über eine lineare Regressionsgerade zu $\tau_{scher} = \sigma \cdot \tan 51,4° + 0,01$ bestimmen.

Bei den 45°-Zähnen mit 6 mm Zahnhöhe liegen im Unterschied dazu bis auf einen Ausreißer alle Versuche bis zu einem Fugenwinkel kleiner gleich 55° oberhalb des Mohrschen Grenzspannungskreises. Die Schergeradengleichung für Fugenneigungen größer 55° ergibt sich für diese Zahngeometrie zu $\tau_{scher} = \sigma \cdot \tan 56,7^\circ + 0,03$. Es ist ersichtlich, dass der Kohäsionsanteil für die beiden Zahngeometrien annähernd null ist und der innere Reibungswinkel zwischen 51,4° und 56,7° liegt.

70°-Zähne mit 3mm Zahnhöhe

Abb. 6.47: Normiertes Schub-Druckdiagramm für die 70°-Zähne mit 3 mm Zahnhöhe (Nettekoven 2018)

Bei den 70°-Zähnen lässt sich abweichend zu den 45°-Zähnen feststellen, dass diese insgesamt näher an dem Mohrschen Grenzspannungskreis liegen. Zudem wird deutlich, dass die Traglasten in den steileren Fugenneigungswinkeln größer gleich 60° deutlich höher ausfallen. Die Zähne mit einer Zahnhöhe von 3 mm liegen größtenteils am, beziehungsweise über dem Spannungskreis. Lediglich bei einer Fugenneigung von 45° fallen die Traglasten etwas geringer aus. Da bei dieser Zahngeometrie die Traglasten so nahe dem Grenzspannungskreis sind, bedarf es keinem weiteren Bruchkriterium über die Coloumbsche Schergerade wie bei den 45°-Zähnen. Das Tragverhalten der Zahngeometrie kann somit hinreichend genau über den Mohrschen Grenzspannungskreis beschrieben werden.

Anderes verhält es sich bei den 6 mm hohen 70°-Zähnen, für welche in der Abb. 6.48 das normierte Schub-Druckdiagramm dargestellt ist. Die Traglasten liegen zwar in den steileren Fugenneigungswinkeln über denen der 3 mm hohen Zähne, allerdings gibt es bei den flachen Winkeln starke Traglastverluste. Zudem gibt es bei 60°-Fugenneigung einen Einbruch der Traglasten. Insgesamt lässt sich feststellen, dass die Streuung der Traglasten innerhalb gleicher Probenrandbedingungen größer ausfällt als bei den 3 mm hohen Zähnen.

Zusammenfassend kann festgestellt werden, dass die 45°-Zahngeometrie in einem Fugenneigungsbereich zwischen 20° und 50° beziehungsweise 55°, je nach Zahnhöhe, sehr gute Traglasten erzielt. Diese liegen größtenteils über dem des Mohrschen Grenzspannungskreis und bestätigen somit die Wirksamkeit der entwickelten Verzahnungsgeometrie. Allerdings kann die Traglast nicht bei allen Fugenneigungswinkeln in der Nähe des Spannungskreises erreicht werden, sondern es musste ein zusätzliches Schubbruchkriterium über die Columbsche Bruchgerade eingeführt werden.

70°-Zähne mit 6mm Zahnhöhe

Abb. 6.48: Normiertes Schub-Druckdiagramm für die 70°-Zähne mit 6 mm Zahnhöhe (Nettekoven 2018)

Die Tatsache, dass bei den 45°-Zähnen eine Reduktion der Traglast im Vergleich zum Mohrschen Grenzspannungskreis, respektive die Einführung eines weiteren Bruchkriteriums, vorgenommen werden muss, führt zu den 70°-Zähnen. Diese zeigten in den durchgeführten Versuchen wesentlich höhere Traglasten. Eine mögliche Ursache hierfür könnte in der reibungsfreien Übertragung der Kräfte über die Fuge liegen. Aufgrund der Zahngeometrie ist es möglich, die angreifenden Druckstreben für Fugenneigungswinkel bis 70° gegenüber der Horizontalen reibungsfrei abzustützen. Interessant ist das Verhalten der 70°-Zähne in flachen Fugenneigungsbereich zwischen 20° und 45°. In diesem Bereich liegen die Traglasten der 3 mm hohen Zähne oberhalb des Spannungskreises und bei den 6 mm hohen Zähnen weit unterhalb. Insgesamt kann das Tragverhalten der kleineren Zähne sehr gut über den Mohrschen Grenzspannungskreis abgebildet werden. Für die großen Zähne bedarf es in dem flachen Fugenneigungsbreich weitergehende Untersuchungen, um die Versagensmechanismen besser verstehen und abbilden zu können.

6.6 Numerische Untersuchung der Betonzahngeometrie

Ausgehend von den zuvor beschriebenen experimentellen Ergebnissen zu der Betonzahngeometrie ist Gegenstand der nachfolgenden Ausführung die Nachrechnung der Versuche mit Hilfe eines geometrisch und physikalisch nichtlinearen FE-Modells. Das den Berechnungen zugrundeliegende Materialmodell werde bereits in dem Abschnitt 5.2.2. beschrieben. Die Randbedingungen für das Finite-Elemente-Modell sind in dem Abschnitt 5.2.3. erläutert. Die Skalierung der Eingangsparameter des Materialmodells erfolgt anhand eines beliebigen Referenzkörpers aus der zuvor beschriebenen Versuchsreihe. Da die mittlere Druckfestigkeit der Referenzkörper von allen Betonagen bei 47,28 N/mm² mit einer Standardabweichung von 1,94 N/mm² liegt, besteht nicht die Notwendigkeit der Anpassung der Materialparameter für einzelne Betonagen. Ziel ist es, die so gewonnen Materialparameter konstant für alle Versuche zu definieren und lediglich die gezahnte Fugengeometrie und die Fugenneigung in den anschließenden FE-Nachrechnungen zu variieren.

In der Abbildung 6.49 ist exemplarisch ein Spannungs-Dehnungs-Verlauf für einen getesteten Referenzkörper dargestellt. Zudem sind in dem Diagramm unterschiedliche Ergebnisse der Nachrechnung mit dem FE-Modell eingetragen. Es ist ersichtlich, dass zwischen den experimentellen Verläufen und dem FE-Verlauf mit einem Dilatanzwinkel von 20° eine sehr gute Übereinstimmung existiert.

Abb. 6.49: Gegenüberstellung der experimentellen Spannungs-Dehnungsbeziehung eines Referenzkörpers mit einer FE-Rechnung (Nettekoven 2018)

Die verwendeten Materialparameter für das Menetrey-Willam-Materialmodell können der Tabelle 6.14 entnommen werden. Die in der Tabelle 6.14 aufgeführten Materialkennwerte werden über eine Vielzahl von Parameterstudien bestimmt.

Uniaxialer Druck f.	Uniaxiler	Plastische Dehnung κ_{cm}	Relatives Span-	Verbl. Spannungsniveau			
[N/mm ²]	$[N/mm^2]$	bei f _c [%]		Druck Ω _{cr} [-]	Zug Ω_{tr} [-]		
47,28	3,62	0,06	0,33	0,05	0,01		
Biaxialer	Bruche	energie	Dilatanzwinkel Ψ	angestrebte Elementgröße [mm]			
$[N/mm^2]$	Druck G _{fc} [Nm/m ²]	Zug G _{ft} [Nm/m ²]	[°]				
54,84	1,50	0,10	20	5,0			

Tab. 6.14: Verwendete Materialparameter für die Nachrechnung des Referenzprismas (Nettekoven 2018)

Mit den über das Referenzprisma definierten Eingangsparametern für das Materialmodell soll nachfolgend exemplarisch die Übertragbarkeit auf zwei gezahnte Betonprismen überprüft werden. In den Versuchen können bereits zwei unterschiedliche Versagensarten, der Druckbruch und das Schubversagen, definiert werden. Zur Validierung des FE-Modells wird daher zum einen die Nachrechnung an einem gezahnten Probekörper mit einer Fugenneigung von 35° gegenüber der Horizontalen und zum anderen mit einer Fugenneigung von 65° durchgeführt. In der Abb. 6.50 ist zunächst der experimentelle Spannungs-Dehnungs-Verlauf des Probekörpers mit einer Fugenneigung von 40° dem Ergebnis der FE-Rechnung gegenübergestellt.

Abb. 6.50: Gegenüberstellung der experimentellen Spannungs-Dehnungsbeziehung eines gezahnten Probekörpers mit 35° Fugenneigung mit einer FE-Rechnung (Nettekoven 2018)

Abb. 6.48 zeigt zwei experimentell ermittelte Spannungs-Dehnungs-Verläufe von Probekörpern mit einer Fugenneigung von 35° und 45°-Zähnen sowie den Verlauf aus einer FE-Rechnung. Der Nachrechnung mit finiten Elementen liegen die zuvor bestimmten, in Tab. 6.14 aufgeführten, Materialparameter zugrunde. Im direkten Vergleich mit den Versuchen zeigt sich, dass der Verlauf aus der FE-Rechnung sehr gut mit den experimentellen Verläufen übereinstimmt. Lediglich die Spannung bei dem Erreichen des Versagens des Probekörpers wird von dem FE-Modell leicht überschätzt. In der FE-Rechnung wird eine maximale Spannung von $44,0N/mm^2$ erreicht, wohingegen die Versuche bei einer Spannung von $41,0N/mm^2$ versagen. Demnach wird die Traglast um circa 7 % von der FE-Rechnung überschätzt, was in etwa in dem Bereich der natürlichen Streuung der Versuchsergebnisse liegt.

In der Abb. 6.51 ist das Spannungs-Dehnungs-Diagramm für einen Probekörper mit einer Fugenneigung von 65° gegenüber der Horizontalen mit 45 -Zähnen dargestellt. Hierbei sind die schwarze und die rote Linie versuchstechnisch bestimmte Spannungs-Dehnungs-Beziehungen. Die schwarz gestrichelte Linie mit den Kreuzen an den Wertepunkten zeigt das Ergebnis der FE-Berechnung. Dieser Berechnung liegen dieselben Materialparameter nach Tab. 6.14 zugrunde wie den vorhergehenden. Demnach werden die berechneten Traglasten ohne Anpassung der Materialparameter in der FE-Rechnung um mehr als $15,0N/mm^2$ überschätzt. Dies entspricht in etwa einer Abweichung von 50 % gegenüber den experimentell bestimmten Traglasten. Folglich müssen für die exakte Nachrechnung der Versuche die Materialparameter des zugrunde liegenden Materialgesetzes angepasst werden.

Abb. 6.51: Gegenüberstellung der experimentellen Spannungs-Dehnungsbeziehung eines gezahnten Probekörpers mit 65° Fugenneigung mit einer FE-Rechnung (Nettekoven 2018)

Die Anpassung der Materialparameter erfolgt, wie auch schon bei der ersten Bestimmung für den Referenzkörper, anhand einer Parameterstudie. Als Ergebnis der Parameterstudie werden zwei Materialparameter als maßgebend bestimmt. Zum einen war das eine Reduktion der Bruchenergie von $G_{fc} = 1,50Nm/m^2$ auf $G_{fc} = 1,30Nm/m^2$ und zum anderen musste der Dilatanzwinkel von $\Psi = 20^\circ$ auf $\Psi = 15^{\circ}$ geändert werden. Diese beiden Änderungen der Eingangsparameter des Materialmodells führten zu dem in der Abb. 6.51 mit Sternen rot gekennzeichneten Verlauf der Spannungs-Dehnungs-Beziehung. Die Bruchlast und der Verlauf werden nun über die FE-Rechnung sehr gut für einen Probekörper beschrieben. Somit stellt das bestimmte FE-Modell eine zufriedenstellende Lösung dar. Aus den vorhergehenden Erläuterungen hinsichtlich der Versuchsnachrechnung mit der Methode der finiten Elemente wird erkenntlich, dass es nicht möglich ist, ein FE-Modell aufzustellen, welches alle Versuchskonfigurationen hinreichend genau abbilden kann. Zur Nachrechnung der Versuche müssen vielmehr zwei Materialmodelle mit unterschiedlichen Eingangsparametern bestimmt werden. Als Grenze zwischen den beiden Eingangsparametern kann der bereits in den Versuchen beobachtete Fugenneigungswinkel von 55° bestimmt werden. Offensichtlich müssen die Materialparameter abhängig des Hauptversagensmechanismus angepasst werden. Folglich ist es nicht möglich, mittels des zuvor beschriebenen FE-Modells eine Parameterstudie zur Zahngeometrie oder ähnlichem durchzuführen.
7. Untersuchungen am gezahnten Fachwerkknoten im Maßstab 1:1

7.1 Ziel und Vorgehensweise

Mit der experimentellen Untersuchung eines Fachwerkknotens im Maßstab 1:1 wird das Trag- und Verformungsverhalten der gesamten Verbindung untersucht. Das in den vorherigen Kleinversuchen abgebildete lokal isolierte Tragverhalten der Stahl/Stahlzähne, wird nun in einer komplexen Verbindung mit der Interaktion zu den angrenzenden Bauteilen abgebildet.

7.2 Konzeption der Versuche

Die Versuche werden in der Peter-Behrens-Halle, Versuchshalle der TU Berlin durchgeführt. Die Versuchsdurchführung erfolgt am Prüfportal der Firma "Zwick/Roell". Dieses besteht aus zwei Rahmen, die über Träger miteinander verbunden sind. Auf diesen Trägern ist ein Hydraulikzylinder befestigt, der vertikale Kräfte (Druck und Zug) von 2,5 MN auf den Prüfkörper aufbringen kann. In der Decke unterhalb des Aufspannfeldes sind Verankerungspunkte im Raster von 1 m vorhanden, sodass der Prüfkörper an diesen Punkten gelagert (mit der Decke verspannt) werden kann (Abb. 7.1). Mit diesen Randbedingungen wird ein Versuchsaufbau entwickelt. Dabei wird der Fachwerkknoten um 45° gedreht, sodass die Kraft vertikal auf die Diagonale aufgebracht werden kann. Der Fachwerkknoten wird auf einem Stahlbetonwiderlager platziert. Dieses Widerlager wird an sechs Punkten mit der darunterliegenden Hallendecke verspannt (Schmidt 2018).

Abb. 7.1: Prüfportal mit eingebauten Widerlagern (links) und Prüfzylinder (rechts) (Schmidt 2018)

7.3 Versuche am Fachwerkknoten mit Stahlverzahnung

7.3.1 Versuchskörper und Prüfeinrichtung

Versuchskörper und Versuchsprogramm

Der Knotenpunkt wird im Maßstab 1:1 hergestellt. Er besteht aus dem Untergurt, dem Knotenelement, der Stütze und der Diagonale (Abb. 7.2). Der Untergurt wird als Ausschnitt mit einer Länge von 166 cm abgebildet. Die Stütze und die Diagonale werden mit einer Länge von 30 cm abgebildet (Tab. 7.1).

Abb. 7.2: Prüfkörper Phase IV (Schmidt 2018)

Die getesteten Stahl/Stahlzähne werden in vier Zahngruppen mit 2×5 Zähnen (dazwischen) und 2×6 Zähnen (am Rand) angeordnet. Die Zahngruppen werden mit einem Abstand zueinander konstruiert (Abb. 7.2).

Tab. 7.1: Abmessungen und Beton der einzelnen Elemente des Versuchskörpers in Phase IV (Schmidt 2018)

Element	Abmes	Beton						
	b/t [cm]	l [cm]						
Pfosten	22/22	30	Ultralith					
Diagonale	22/22	30	Ultralith					
Knotenelement	23,5/35	63	Ultralith					
Gurt	31/35	166	Ultralith					
b=Breite (vgl. Abb. 7.2); t= Tiefe; l=Länge								

Phase VI: Versuche am Knotenpunkt										
Versuchsnr.	Bezeichnung	Art der Verzahnung	Art der Lastaufbrin- gung	Prüfge- schwindigkeit [mm/sec]	Stahl Einbauteil	Beton				
III/V4	Knotenpunkt	S/B_S/S	Monoton/Druck	0,01	S235	Ultralith				
III/V5	Knotenpunkt	S/B_S/S	Monoton/Druck	0,01	S235	Ultralith				
III/V6	Knotenpunkt	S/B_S/S	Monoton/Druck	0,01	S235	Ultralith				

Tab. 7.2: Versuchsprogramm Phase IV – Stahl/Stahl (Schmidt 2018)

Prüfmaschine und Messtechnik

Es wird ein Zwick Roell-Prüfrahmen mit 2,5 MN Hydraulikzylinder auf dem Aufspannfeld der TU Berlin (Peter-Behrens-Halle) verwendet.

Computergesteuertes Messsystem

Das computergesteuerte Messsystem wird analog Kapitel 6.1.1 eingesetzt.

Induktive Wegaufnehmer (IWA)

Es werden induktive Wegaufnehmer verwendet, um während des Versuchs die Verschiebungen des Pfostens in vertikaler Richtung, des Knotenelements in axialer Richtung (parallele Verschiebung der Stahl/Stahlzähne) sowie die Verformung senkrecht zur Schubfuge zu messen (Abb. 7.3).

Abb. 7.3: Lage der Wegaufnehmer (Hofmann 2017)

7.3.2 Versuchsaufbau und -durchführung

Versuchsaufbau

Der gesamte Fachwerkknoten wird auf einem massiven Stahlbetonwiderlager unter einem Winkel von 45° platziert. Der Prüfstempel der Hydraulikpresse kann somit die Last vertikal auf die Diagonale aufbringen. Die Diagonale ist dabei auf das Knotenelement aufgesetzt und überträgt die Kräfte rein über Druckkontakt. Die Diagonale ist dabei mittig auf dem Knotenelement platziert. Das Pfostenelement wird mit einer Gewindestange M22-10.9 mit dem Knotenelement und dem Gurt vorgespannt. Sowohl an Oberkante des Gurtes als auch am Pfosten werden die Vorspannkräfte über Lastplatten in den Beton eingetragen. Die Vorspannung wird mit einem Drehmomentschlüssel aufgebracht. Das Drehmoment beträgt 460Nm. Das entspricht nach DIN EN 1993-1-8/NA:2010, Tabelle NA.A.2, einer Vorspannkraft von etwa 135 kN. Die Schubfuge mit der Stahl/Stahlverzahnung zwischen Knotenelement und Gurt wird mit einem etwa 1 cm großen Spalt ausgeführt, so dass die Zähne während des Versuchs einzusehen sind. Der Gurt liegt auf dem Widerlager sowohl stirnseitig als auch mit der Gurt-unterseite auf Stahlplatten gelagert auf (Abb. 7.4) (Schmidt 2018).

Abb. 7.4: Versuchsaufbau Phase IV (links)(Hofmann 2017)und Explosionszeichnung (rechts)

Der Prüfstempel liegt mittig oberhalb der Diagonalen. Die Verzahnung wird somit über eine Kraftkomponente aus vertikal eingeleiteter Prüflast sowie dem Anteil aus dem vorgespannten Pfosten belastet. Während des Versuchs werden die Prüflast sowie der Zylinderweg und die Wege, welche in Kapitel 7.3.1 beschrieben sind, gemessen. Zusätzlich wird die Verzahnung während des Versuchs gefilmt und fotografiert. Um die Wege in der Fuge auf den Fotos nachvollziehen zu können, wird an der Fuge eine Bemaßung angebracht.

Versuchsdurchführung

Die Prüflast wird in sieben Belastungs- und Entlastungsrampen auf die Diagonale des Knotenpunktes aufgebracht. Die Last wird auf 50 kN erhöht, sodass die Zähne in Kontakt kommen und der erste Schlupf minimiert wird. Es folgt eine Entlastung auf 20 kN. Im Anschluss werden 3 Zyklen bis 200 kN und 3 weitere Zyklen bis 300 kN im elastischen Bereich gefahren (Tab.7.3). Es werden alle drei Versuche identisch durchgeführt (Schmidt 2018).

Tab. 7.3: Laststufen Knotenpunkt (Schmidt 2018)

Rampe		1	2	3 4 5		6 7 8		8	9	
1 ZL	Belastung	20	50	200			300			F _{Bruch}
	Entlastung	-	20	20		20			-	

7.3.3 Versuchsergebnisse

Versuchsbeobachtungen

Die Kraft-/Verformungsverläufe aller drei Versuche sind fast gleich. Auch die Bruchlasten liegen nur max. 3 % auseinander. Ferner ist beim Knotenpunkt zu beobachten, dass die Zähne unterschiedlich genau gefertigt sind. Die linke Seite verformt sich bei allen drei Versuchen stärker als die rechte Seite. Die vier Zahngruppen je Zahnleistenpaar sind in unterschiedlichem Abstand zur Lasteinleitung des Pfostens. Dies führt zu einer unterschiedlichen Beanspruchung der Zähne bzw. der einzelnen Zahngruppen. Die lastnahen Zahngruppen versagen auf Druck (Abb. 7.5 links), die lastfernen Zahngruppen verformen sich stark (Biegung) (Abb. 7.5 rechts).

Abb. 7.5: Stark zerdrückte Zähne nahe der Krafteinleitung (V1) (links) und aufgebogene Zähne fern der Lasteinleitung (V3) (rechts) (Schmidt 2018)

Aus der vertikalen Prüflast $F_{Prüf. vertikal}$ wird eine Kraftkomponente senkrecht zur Zahnleiste F_{\perp} und eine Kraftkomponente parallel zur Zahnleiste F_{\parallel} berechnet (Abb. 7.6).

$$F_{\perp} + F_{\parallel} = \frac{F_{Pr\ddot{u}f.vertikal}}{\sqrt{2}} \tag{Gl.7.1}$$

Unter Berücksichtigung der Vorspannkraft FP wirkt die resultierende Kraft

$$F_{Result} = \sqrt{(F_{\perp} + F_{P})^{2} + F_{\parallel}^{2}}$$
(Gl.7.2)

auf die Zahnleiste (Abb.7.6).

Abb.7.6: Kräfte an der Zahnleiste

Die Kraft greift unter dem Winkel θ an. Dieser berechnet sich zu

$$\theta = tan^{-1} \left(\frac{F_{\perp} + F_P}{F_{\parallel}}\right) \tag{G1.7.3}$$

Die resultierende Kraft beträgt etwa 1400kN bei einem Kraftneigungswinkel von 49° (Tab. 7.2).

Versuch	F _{Prüf. vertikal} [kN]	F _P [kN]	F _{Result} [kN]	θ [°]
V1	1401,8	135	1500,3	49
V2	1414,1	135	1512,6	49
V3	1448,3	135	1546,7	49

Tab. 7.2: Bruchlasten der Knotenpunktversuche

In den Betonbauteilen zeigt sich bis auf einen Riss (Abb. 8.20) im Knotenelement keine Schädigung. Eine Auswirkung dieses Risses auf die Tragfähigkeit der Stahl/Stahlverzahnung ist nicht zu erkennen. Trotz der komplexen Verbindungssituation gibt es keine nennenswerten Abweichungen zum Verhalten der Stahlstahlzähne in den Phasen I und II.

Die übertragbare Kraft für einen Kraftneigungswinkel θ von etwa 50° kann hier je Zentimeter Zahnlänge mit q_{sz}=10 kN/cm angegeben werden. Das Verhalten der Verbindung ist duktil (Abb. 7.7) (Schmidt 2018).

Messergebnisse

Last-/Verformungskurve IWA Vertikal. Die Messpunkte sind in Abb. 7.3 dargestellt.

Abb. 7.7: Kraft-/Verformungskurve axial (links) und vertikal (rechts) (Schmidt 2018)

	Bezeichnung	Anzahl Zähne	Breite Zähne	Kraftwinkel	Kraft aus Diagonale D	Vertikalkomponente FV1 aus Diagonale	Vertikalkomponente FV2 aus Vorspannung	Kraft vertik. Ges.	Kraft horiz. FH	Bruchlast FRes	Bruchlast pro cm Zahnlänge	Erwartete Bruchlast in kN	Erreichte Bruchlast in %
IV/FWK_V1	Knotenpunkt	44	3,5	48,6	1401,8	991,2	135	1126,2	991,2	1500,3	9,7	974	154
IV/FWK_V2	Knotenpunkt	44	3,5	48,6	1414,1	999,9	135	1134,9	999,9	1512,6	9,8	974	155
IV/FWK_V3	Knotenpunkt	44	3,5	48,5	1448,3	1024,1	135	1159,1	1024,1	1546,7	10,0	974	159

Tab. 7.3: Versuchsdaten der Knotenpunktversuche (Schmidt 2018)

7.4 Numerische Untersuchung am Fachwerkknoten mit Stahlverzahnung

Simulationsmodell

Simulationsgrundlagen:

Die Versuche an den Stahlprismen werden sowohl zwei- als auch dreidimensional mit der Finite Element-Methode geometrisch sowie physikalisch nichtlinear simuliert. Es werden dabei die Werkstoffmodelle aus Kapitel 5.1.3 sowie die Simulation Grundlagen aus Kapitel 5.1.4 angewendet.

Halbmodell:

Das Simulationsmodell wird als Halbmodell abgebildet und gerechnet. Dabei wird eine Symmetrieachse definiert und in der Berechnung das Verhalten des Gesamtmodells berücksichtigt. Durch die Teilung des Systems in der Symmetrieachse (x-y-Ebene) werden für die Berechnung nur die Hälfte der Knoten und entsprechenden Elemente benötigt. Das vereinfacht die Berechnung und verkürzt die Berechnungszeit.

Symmetrieachse:

- Verschiebung in z-Richtung = 0
- Rotation um x- und y-Achse = 0

Abb. 7.8: FEM-Modell des Knotenpunkt (Schmidt 2018)

Lagerung:

Die Lagerung des Gurts erfolgt über ein Gleitlager an der Gurtstirnseite sowie ein Gleitlager an der Gurtlängsseite (Abb. 7.8).

Vorspannung:

Es wird eine Gewindestange mit einem Durchmesser von 22mm, verbunden mit zwei Stahlplatten, modelliert (Abb. 7.9). Diese Gewindestange wird mit der Vorspannkraft P vorgespannt (Tab. 7.2 u. 7.3). Die Lasten aus Vorspannung werden über die Stahlplatten in den Betonquerschnitt eingeleitet.

Abb.7.9: Vorspannung mit Lasteinleitungsplatten mit Materialmodell

Das Materialverhalten der Gewindestange wird mit einem bilinearen Materialmodell in Anlehnung an einen gehärteten Stahl S355 abgebildet.

Lastaufbringung:

Die Lastaufbringung erfolgt in Lastschritten über eine flächige Belastung, die auf die Oberseite der Diagonale aufgegeben wird.

Kontakte:

Die Berührflächen der einzelnen Elemente zueinander werden als Kontakte definiert. Es können sowohl Druckkräfte als auch Reibkräfte übertragen werden. Dazu werden Kontaktbedingungen definiert. Die Vertikallast wird als konstante Flächenlast auf die stirnseitige Fläche der Diagonale, die Vorspannkraft wird als gleichmäßige Kraft auf die Fläche der Lasteinleitungsplatte aufgegeben.

Tab.7.4: Kontaktbedingungen Knotensimulation Ansys

Bauteile	Kontakt	Reibbeiwert
Lastplatte der Vorspannung mit Betonquerschnitt Dia-	Reibungsbehaftet	0,35
gonale		
Lastplatte der Vorspannung mit Betonquerschnitt Gurt		
Betondiagonale an Betonknotenpunkt	Reibungsbehaftet	0,35
Betonstütze an Betonknotenpunkt	Verbunden	-
Zahnleiste an Beton	Reibungsbehaftet	0,35
Zahnleisten an Zahnleiste	Reibungsbehaftet	0,2

Simulationsergebnis

Globales Last-/Verformungsverhalten (Ansys):

Abb.7.10: Kraft-/Verformungskurve des Knotenpunktversuchs, Vergleich Versuch und FEM Weiterführende Simulationsergebnisse zum Knotenpunkt sind in (Schmidt 2018) ersichtlich.

8. Untersuchungen an einer gezahnten Konsole im Maßstab 1:1

8.1 Ziel und Vorgehensweise

Neben der Anwendung im Fachwerkträger kann die Verbindung immer dort eingesetzt werden, wo zwei Stahlbetonbauteile miteinander verbunden werden müssen. Ein klassisches Beispiel dafür ist die Konsole (Abb. 8.7). Diese wird im Maßstab 1:1 experimentell untersucht. Das Tragverhalten der modularen Konsole folgt der Stabwerksanalogie, bei der die Last über ein Zugelement sowie einen Druckpunkt in das anschließende Bauteil eingeleitet wird. Die Zugkräfte werden über zwei Gewindestangen M30-10.9 an der Stütze rückverankert. Die Druckkräfte werden über ein gezahntes Stahleinbauteil sowie über eine Betonverzahnung in die Stütze eingeleitet.

Zunächst wird eine Konsole mit den Abmessungen b/t/h=30/40/68cm getestet. Die Höhe mit 68 cm ist relativ groß, sodass hier ein flacher Kraftneigungswinkel entsteht. Es werden drei Versuche mit Stahleinbauteilen durchgeführt (Abb. 8.9).

In einer weiteren Versuchsreihe werden die Konsolabmessungen geändert, so dass ein steilerer Kraftneigungswinkel entsteht. Zudem wird die Verzahnung variiert. Zum Stahleinbauteil werden drei Konsolen (Kap. 8.3) und zur Betonverzahnung werden acht Konsolen (Kap. 8.5) getestet (Schmidt 2018).

8.2 Konzeption der Versuche

Um Konsolen zu testen, werden in der Literatur im Allgemeinen drei Versuchsstände angewandt. Beim asymmetrischen Prüfkörper wird ein Anschluss "Konsole an Stütze" an einer Widerlagerkonstruktion rückverankert. Die dabei verwendeten Widerlager sind in der Regel Stahlkonstruktionen (Abb. 8.1).

Abb. 8.1: Versuchsstände anderer Forscher aus der Literaturnach Schwitzke (2011)

(Schwitzke 2011)

Beispiele hierfür werden von Niedenhoff (1961) und Schürmann (1985) verwendet. Beim symmetrischen Prüfkörper wird eine symmetrische Konsole (Doppelkonsole) umgedreht platziert, sodass die Lasteinleitung der Vertikallast über die Stütze erfolgt und die Konsolen beidseitig auf Auflagern liegen. Damit erhält jede Konsole die halbe Prüflast. Die Ergebnisse sind hier immer eine Interaktion aus beiden Konsolen. Versuche mit diesem Versuchsstand werden beispielsweise von Birkle et al. (2001), Hegger et al. (2004) und (Schwitzke 2011) durchgeführt. Beim horizontal platzierten Prüfkörper wird eine Stützen/Konsolen-Konstruktion nach unten hin (Bodenplatte, Gründung) verankert und mit einer horizontalen Hydraulikpresse gezogen oder gedrückt. Dieser Versuchsstand wird von Schwitzke (2011) bei Vorversuchen verwendet.

Um Aussagen über eine Einzelkonsole treffen zu können, wird für die hier durchgeführten Versuche der asymmetrische Versuchsstand verwendet. Um die Verformungen aus dem Widerlager möglichst gering zu halten, wird ein massives Stahlbetonwiderlager entworfen, berechnet und konstruiert (Abb. 8.2).

Abb. 8.2: Konsolwiderlager links ohne und rechts mit Prüfkörper (Stütze mit Konsole)

8.3 Versuche an einer Konsole mit Stahlverzahnung

8.3.1 Versuchskörper und Prüfeinrichtung

Versuchskörper und Versuchsprogramm

Die Versuchskörper bestehen aus einer Stütze mit den Abmessungen h/b/t = 130/45/40 cm sowie einer Konsole (Abb. 8.3). Die Konsolen der Versuche V1 bis V3 haben die Abmessungen h/b/t = 68/30,5/40 cm und die Konsolen der Versuche V4 bis V6 haben Abmessungen von h/b/t = 33/30,5/40 cm. Sowohl in der Stütze als auch in der Konsole sind gezahnte Stahleinbauteile vorgesehen (Abb. 8.3). An dieser Verzahnung wird die Konsole an die Stütze gesetzt und mit Gewindestangen M30-10.9 vorgespannt. Die Vorspannung wird mit einem Drehmomentschlüssel aufgebracht. Es werden die Vorspannkraft, die Anzahl der Zähne sowie die Anordnung der Zähne verteilt über die Leiste (Zahngruppen oder Konzentration der Zähne auf einen Zahnabschnitt) und die Zahngeometrie variiert (Tab. 8.1) (Schmidt 2018).

Abb. 8.3: Versuchskörper – Stütze und Konsole (links) und Darstellung des Stahleinbauteils nach Hofmann (2017) (rechts)

Phase I	Phase III: Konsole										
Versuchsnr.	Bezeichnung	Art der Verzahnung	Art der Lastaufbringung	Prüfge- schwindigkeit [mm/sec]	Anzahl der Zähne	Zahngeometrie	Anordnung der Zähne	Stahl Einbauteil	Beton		
III/V1	Konsole h=68cm	S/B_S/S	Monoton/ Druck	0,01	36	GT5	Gruppen	S235	Ultralith		
III/V2	Konsole h=68cm	S/B_S/S	Monoton/ Druck	0,01	36	GT5	Gruppen	S235	Ultralith		
III/V3	Konsole h=68cm	S/B_S/S	Monoton/ Druck	0,01	36	GT5	Gruppen	S235	Ultralith		
III/V4	Konsole h=33cm	S/B_S/S	Monoton/ Druck	0,01	24	GT5	Gruppen	S235	Betec Z4		
III/V5	Konsole h=33cm	S/B_S/S	Monoton/ Druck	0,01	24	GT5	Kon- zentration	S235	Betec Z5		
III/V6	Konsole h=33cm	S/B_S/S	Monoton/ Druck	0,01	10	GT3	Kon- zentration	S235	Betec Z6,7		

Tab. 8.1: Versuchsprogramm Phase III – Stahl/Stahl (Schmidt 2018)

Prüfmaschine und Messtechnik

Es wird der Zwick Roell-Prüfrahmen mit 2,5 MN Hydraulikzylinder auf dem Aufspannfeld der TU Berlin (Peter-Behrens-Halle) verwendet.

Computergesteuertes Messsystem

Das computergesteuerte Messsystem wird analog Kapitel 6.1.1 eingesetzt.

Induktive Wegaufnehmer (IWA)

Während des Versuchs werden die vertikalen Wege rechts und links unterhalb der Konsole im Abstand von 5 cm von der Stütze sowie seitlich 5 cm von der Konsolaußenkante nach innen über IWA gemessen (Abb. 8.4). Die horizontalen Wege werden an der Konsolenvorderkante in Höhe der Gewindestangen auf der rechten und der linken Seite sowie die horizontalen Wege der Stütze gemessen. Dadurch kann die Wegdifferenz zwischen Konsole und Stütze bestimmt werden. Bei den Konsolversuchen V1 bis V3 werden die IWA an der Stütze auf Höhe der Gewindestangen der Stütze angebracht. Bei den Konsolversuchen V4 bis V6 werden die IWA's auf Höhe der Gewindestangen der Konsole platziert.

Abb. 8.4: Lage der induktiven Wegaufnehmer am Konsolenversuch (Hofmann 2017)

Dehnmessstreifen (DMS) und Kraftmessdose

Es werden Dehnmessstreifen 1-LY11-10/120 der Firma Tokyo Sokki Kenkyujo Co., Ltd und zwei Kraftmessdosen der Firma HBM verwendet.

8.3.2 Versuchsaufbau und - durchführung

Versuchsaufbau

Der Versuchsaufbau besteht aus Widerlager, Stütze und Konsole (Abb. 8.7). Das Widerlager ist auf dem Aufspannfeld mit der darunterliegenden Deckenplatte verspannt. Außerhalb des Widerlagers wird die Konsole mit zwei Gewindestangen M30-10.9 an die Stütze geschraubt. Die Vorspannkräfte werden in den einzelnen Versuchen variiert (Tab. 8.3). Die Stahleinbauteile werden mit einem Überstand in die Stütze und Konsole eingebaut, sodass im zusammengebauten Zustand ein Spalt von 12,5 mm vorhanden ist. Der Spalt dient der Einsicht der Zähne während des Versuchs sowie dem Ausschluss undefinierter Kontakte zwischen den Bauteilen. Damit die Konsole beim Vorspannen nicht an die Stütze herangezogen wird, wird an der Konsolenoberkante mittig oberhalb der Gewindestangen eine Stahlplatte eingelegt (Abb. 8.9). Nachdem die Konsole vollständig an der Stütze montiert ist, werden beide Elemente in das Widerlager eingebaut, ausgerichtet und mit zwei Gewindestangen M36-10.9 an das Widerlager verschraubt. Dabei werden die Gewindestangen mit 1200 Nm alternierend vorgespannt (Schmidt 2018).

Abb. 8.7: Versuchsaufbau Phase III mit Belastungsstempel (Schmidt 2018)

Der hydraulische Prüfstempel wird mittig über der Konsole platziert. Die Lasten werden über eine Auflagerplatte in die Konsole eingeleitet.

Abb. 8.8: Versuchsaufbau Phase III mit Belastungsstempel und einzelnen Elementen (Hofmann 2017)

Reibung zwischen Stahlplatte und Beton

Durch den Spalt zwischen Konsole und Stütze kann die Passgenauigkeit der Stahlzähne kontrolliert werden. Diese überträgt Vertikallasten über Reibung in Abhängigkeit der Vorspannkraft P. Die Vorspannkraft F_P wird durch die zunehmende Vertikallast V abgebaut (Abb. 8.9).

Abb. 8.9: Kräfte am Konsolversuch in Schnitt und Grundriss (links); Detail der Stahlplatten (rechts) (Schmidt 2018)

In der Literatur werden Reibbeiwerte zwischen den Reibpartnern Beton und Stahl zwischen μ =0,2 und 0,75 angegeben (Tab. 8.2).

Literatur	Reibbeiwert µ	Reibpartner
Schneider Zusammenfassung "alte Literatur"	0,30 - 0,45	Beton/Stahl
FP Univ. Karlsruhe 1977	0,20 - 0,40	Beton/Stahl
Juhart 2011; TU Graz	0,70	UHPC/Stahl
Roik/Bürkner	0,75	Beton/Stahl ohne Schalöl
Roik/Bürkner	0,63	Beton/Stahl mit Schalöl
Eurocode 4	0,50	Beton/Stahl mit
		$10 \le t_{Stahl} < 15 mm$:
Eurocode 4	0,55	Beton/Stahl mit
		>15 mm
DIN 18800-1	0,50	Beton/Stahl

Tab. 8.2: Reibungsversuche aus der Literatur (Schmidt 2018)

In einem Reibungsversuch zwischen einer Stahlplatte und dem Beton Betec180 wird ein Reibbeiwert von etwa μ =0,3 gemessen (Abb. 8.10).

Abb. 8.10: Graph der Beziehung aus Reibbeiwert und Verformung (unveröffentlicht TU Berlin)

Vorspannkräfte an den Gewindestangen

Um die Größe der Vorspannkraft abschätzen zu können, wird diese anhand des Drehmoments berechnet und mit einer zwischengeschalteten Kraftmessdose sowie Dehnmessstreifen auf der Gewindestange gemessen. Die Berechnungen und Messungen werden nachfolgend kurz erläutert.

Bezug zwischen Drehmoment und Vorspannkraft:	
Schätzformel nach Roloff/Matek	
$M_A = 0.17 \cdot d \cdot F_{p,c}^*$	(Gl.8.3)
Genaue Berechnung nach Roloff/Matek	

$$M_{A} = F_{VM} \cdot \left[0,159 \cdot P + \mu_{ges} \cdot \left(0,577 \cdot d_{2} + \frac{d_{k}}{2} \right) \right]$$
(Gl.8.4)

mit:

M_A Anziehdrehmoment

 F_{VM} Montagevorspannkraft der Schraube

P Gewindesteigung, hier P = 3,5 mm für M30

 μ_{ges} Gesamtreibungszahl, $\mu_{ges} \approx 0,12$ im Normalfall

 d_2 Flankendurchmesser des Gewindes, hier $d_2 = 27,727$ mm für M30

 d_k wirksamer Reibungsdurchmesser, $d_k \approx 2 \cdot 0.65 \cdot d = 39$ mm für M30

d Schraubennenndurchmesser

Damit ergibt sich für die Ermittlung der Montagevorspannkraft folgende Formel:

$$F_{VM} = \frac{M_A}{\left[0,159 \cdot P + \mu_{ges} \cdot \left(0,577 \cdot d_2 + \frac{d_k}{2}\right)\right]} \tag{Gl.8.5}$$

Regelvorspannkraft F_{p,C}* und Anziehdrehmoment M_A nach DIN EN 1993-1-8/NA:2010:

In DIN EN 1993-1-8/NA:2010 sind Montagevorspannkräfte und Anziehdrehmomente für Gewindestangen nach DIN 976-1 vertafelt. In den Versuchen werden Gewindestangen M30-10.9 und M36-10.9 verwendet (Tab.8.3).

Tab. 8.3: Regelvorspannkraft $F_{p,C}^*$ und Anziehdrehmoment M_A nach DIN EN 1993-1-8/NA:2010 für die verwendeten Gewindestangen

Gewindestange	Vorhindung	$F_{p,C}^*$	M_A	A_S	
	Verbindung	[kN]	[Nm]	cm^2	Norm der Gewindestange
<i>M30 - 10.9</i>	Konsole an Stütze	350	1650	5,61	Gewindestange nach DIN 976-1
M36 - 10.9	Stütze an Widerlager	510	2800	8,17	Gewindestange nach DIN 976-1

Kraftmessdose:

Es wird eine HBM- Kraftmessdose zwischen der Lasteinleitungsplatte und der Mutter mit Unterlegscheibe je Gewindestange platziert (Abb. 8.11). Beide Gewindestangen werden alternierend in Kraftschritten von etwa 10 kN bis auf ca. 200 kN vorgespannt.

Abb. 8.11: Angebrachte Kraftmessdosen

Dehnmessstreifen an der Gewindestange:

An den Gewindestangen wird das Gewinde abgetragen und ein DMS 1-LY11-10/120 je Gewindestange aufgeklebt (Abb. 8.12). Die Lage dieser DMS auf der Gewindestange befindet sich in der Stütze und somit möglichst mittig.

Abb. 8.12: DMS an den Gewindestangen (Schmidt 2018)

Die Vorspannkräfte werden somit berechnet, mit Kraftmessdosen gemessen und die Dehnungen in den Gewindestangen mit DMS gemessen (Abb. 8.13 u. 8.14) und daraus Spannungen und Kräfte berechnet (Tab. 8.4).

Tab. 8.4: Ermittlung der Vorspannkräfte,	Versuchslasten und	daraus i	resultierende .	Auflager-
komponenten (Schmidt 2018)				

Ermittlung der Vorspannkräfte in [kN] nach											
Versuchsnr.	Drehmoment M _A in Nm	KMD Gewinde	DMS [kN]	Interpoliert nach DIN EN 1993-1- 8/NA:2010	Roloff/Matek Genau	Roloff/Matek Vereinfacht	Angesetzte Vor- spannkraft P [kN]	Beton	Vertikale Versuchs- last [kN]	F _{D1} [kN]	F _{D2} [kN]
III/V1	Hand- fest, etwa 2x45	k.M.	-	2 x 46,7	2 x 45,7	2 x 43,1	80	Ultralith	260,4	0	138,9
III/V2	2x 300	k.M.	-	2 x 63,6	2 x 62,3	2 x 58,8	120	Ultralith	375,4	0	200,2
III/V3	2x 1200	k.M.	-					Ultralith	493,5	61,6	263,2
III/V4	2x 1200	2x 190	2x 222	2 x	2 x	2 x		Betec	471	0	502,4
III/V5	2x 1200	2x 202	2x 234	254,5	249,2	235,3	400	Betec	521	0	555,7
III/V6	2x 1200	2x 199	2x 216					Betec	705	0	752
k.M. = k	eine Messur	ng									

Abb. 8.13: Verlauf der Vorspannkräfte in den Gewindestangen an der Kraftmessdose und den Dehnmessstreifen in Abhängigkeit der Versuchslast, Konsolversuche 4 und 5 (Schmidt 2018)

Abb. 8.14: Verlauf der Vorspannkräfte in den Gewindestangen an der Kraftmessdose und den Dehnmessstreifen in Abhängigkeit der Versuchslast, Konsolversuch 6 (Schmidt 2018)

Versuchsdurchführung

Die Prüflast wird analog zum Knotenpunkt in sieben Belastungs- und Entlastungsrampen aufgebracht. Es wird eine Rampe auf 50 kN gefahren und danach auf 20 kN entlastet. Damit wird die Verzahnung in Kontakt gebracht und der Schlupf minimiert. Es folgten drei Zyklen bis 200 kN und weitere drei Zyklen bis 300 kN (Tab. 8.5).

Rampe		1	2	3	4	5	6	7	8	9
1 ZL	Belastung	20	50	200		300			F _{Bruch}	
	Entlastung	-	20		20			20		-

8.3.3 Versuchsergebnisse

Tab. 8.6: Versuchsergebnisse der Konsolversuche (Phase II)

Ereichte Bruchlast in %	50	82	85	100	100	100
Erwartete Bruchlast aus Rückrechnung qsz aus Bruchlast FRes und berücks. Aktiv. Fläche	576,97	505,94	650,18	673,09	738,18	978,04
Bruchkraft pro cm qsz aus Bruchlast Fres	2,29	3,30	4,37	8,01	8,79	27,94
Bruchkraft pro em gsz aus Vertikallast ohne Reibung	2,07	2,98	3,67	5,61	6.20	20,14
Aktivierte Zahnfläche in %/100	0.500	0,823	0,846	1,000	1,000	1,000
Vertikallast mit Berücksichtigung der Reibung (Av2)	260,4	375,4	462,72	471	521	705
FD2 (unteres Auflager)	124,16	180,16	297,4	480.84	522.95	677,89
FD1 (oberes Auflager)	41.5	-60.2	1.02.15	-80.8	-123	-2.78
Reibkraft FR (Av1)	õ	o	30,78	o	0	°
Reibbeiwert	0,3	0,3	0.3	0,3	e.o	0,3
Vorspannkraft FN	80	120	004	00 1	9 1	ŝ
Мав а2	0.1	0,1	0,1	0,04	0,04	0,04
Maß al	0.3	0,3	0,3	0,15	0,15	0,15
Мав е	0,16	0,16	0,16	0,16	0,16	0,16
Erreichte Bruchlast in % bzgl. red. Stahlzähne	69	100	132	9.1	100	318
Erwartere Bruchlast mit red. Stahlzähnen	416	416	416	738	738	308
Erreichte Bruchlast in % bzgl. red. Stahlzähne	72	63	82	84	93	123
Erwartere Bruchlast mit red. Stahlzähnen	5 395	2 656	9 674	4 797	3 797	3 797
Erreichte Bruchlast in %	7 3	7 5.	7 6	7 8	7 9.	7 12
Erwartete Bruchlast in kN	3 79	3 79	4 79	0 79	8 79	9 79
Bruchlast pro cm Zahnlänge	5	4 3,	1 4,	1 8,	2 8,	0 27;
Bruchlast FRes	288,	416,	550,	673,	738,	978,
Kraft Vertik. FV1	260,4	375,4	493,5	471	521	705
Kraftwinke	25,49	25,64	32,73	45,59	45.11	43,88
Breite Zähne	3,5	3,5	3,5	3,5	3,5	3,5
Anzahl Zähne	36	36	36	2	2	10
Bezeichnung	Konsolanschluss	Konsolanschluss	Konsolanschluss	Konsolanschluss	Konsolanschluss	Konsolanschluss
	III/Kon_V1	III/Kon_V2	III/Kon_V3	III/Kon_V4	III/Kon_V5	III/Kon_V6

Die Einflüsse aus der Vorspannung, der Konsolenhöhe, die Zahnanordnung über die Leiste und der Zahnhöhe wird in Schmidt (2018) gezeigt.

8.4 Numerische Untersuchung einer Konsole mit Stahlverzahnung

8.4.1 Simulationsmodell

Simulationsgrundlagen:

Die Versuche am Knotenpunkt werden dreidimensional mit der Finite-Element-Methode in Ansys geometrisch nichtlinear sowie physikalisch nichtlinear simuliert. Es werden dabei die Werkstoffmodelle aus Kapitel 5.1.3 sowie die Simulationgrundlagen aus Kapitel 5.1.4 angewendet.

Halbmodell:

Analog zum Knotenpunkt wird auch bei der Konsole ein Halbmodell verwendet (Abb. 8.18 links). Das Halbmodell wird an der Symmetrieachse gespiegelt, sodass das Gesamtmodell (Abb. 8.18 rechts) wie der Prüfkörper konstruiert ist.

Die Randbedingungen in der Symmetrieachse sind:

- Verschiebung in z-Richtung = 0
- Rotation um x- und y-Achse = 0

Fixierte Lagerung

Abb. 8.19: Simulationsmodell (Schmidt 2018)

Im Simulationsmodell werden alle wesentlichen Komponenten des Prüfaufbaus modelliert (Abb. 8.20).

Abb. 8.20: Einzelkomponenten des Modells (Mittlerer Stützenbereich und Konsole sind zur besseren Übersicht ausgeblendet)

Lagerung:

Die Lagerung der Stütze erfolgt über eine Einspannung am Fußpunkt (Fixierte Lagerung). Da die Relativverschiebung zwischen Stütze und Konsole maßgebend ist, ist diese Vereinfachung akzeptabel.

Vorspannung:

Es werden zwei Gewindestangen mit je einem Durchmesser von 30mm, verbunden mit zwei Stahlplatten modelliert (Abb.8.21 links). Diese Gewindestangen werden mit der Vorspannkraft P vorgespannt (Tab.8.3). Die Lasten aus Vorspannung werden über die Stahlplatten in den Betonquerschnitt eingeleitet. Durch die Interaktion mit der Konsollast erhöhen sich die Zugkräfte in der Gewindestange mit zunehmender Versuchslast. Dies sowie die damit verbundene Lasterhöhung auf den Betonquerschnitt werden im Modell berücksichtigt.

Abb. 8.21: Vorspannung mit Lasteinleitungsplatten mit Materialmodell

Das Materialverhalten der Gewindestange wird mit einem bilinearen Materialmodell in Anlehnung an einen gehärteten Stahl S355 abgebildet (Abb. 8.21 rechts).

Lastaufbringung:

Die Lastaufbringung erfolgt in Lastschritten über eine konstante Flächenlast, die auf der Oberseite der Konsole aufgegeben wird. Kontakte: Die Berührflächen der einzelnen Elemente zueinander werden als Kontakte definiert. Es können sowohl Druckkräfte als auch Reibkräfte übertragen werden. Dazu werden Kontaktbedingungen definiert (Tab. 8.6).

Tab. 8.6: Kontaktbedingungen Konsolsimulation Ansys

Bauteile	Kontakt	Reibbeiwert µ
Lastplatte der Vorspannung mit Betonquerschnitt Stütze	Reibungsbehaftet	0,35
bzw. Konsole		
Konsole an Stahlplatte	Reibungsbehaftet	0,35
Metallplatte an Stütze	Verbunden	-
Zahnleiste an Beton	Reibungsbehaftet	0,35
Zahnleisten an Zahnleiste	Reibungsbehaftet	0,2

Simulationsergebnis

Globales Last-/Verformungsverhalten (Ansys):

Die Versuche V1 bis V3 verhalten sich aufgrund des flachen Lastneigungswinkel frühzeitig plastisch. In der FE-Rechnung verläuft die Kraft/Verformungskurve länger im elastischen Bereich (Abb. 8.22).

Abb. 8.22: Last/Verformungskurve VI bis V3 aus Ansysrechnung

Globales Last-/Verformungsverhalten (Sofistik):

Zusätzlich werden die Versuche V1 bis V3 mit einem ebenen Scheibenmodell in Sofistik abgebildet (Abb. 8.23). Die zusätzliche Berechnung in Sofistik ist ein vereinfachtes Modell, dient als Vergleichsrechnung und lässt Aussagen zu den Federsteifigkeiten der Verbindung zu. Die Verbindung der einzelnen Elemente erfolgt dabei nicht über Kontakt sondern über Federn. Dazu werden für die Stahlplatte oberhalb der Gewindestangen zugausfallgesteuerte Federn modelliert, welche normal (k_1) und tangential (k₂) zur Oberfläche wirken. Um sicherzustellen, dass an der Zahnleiste immer der maßgebliche Anteil der Last ankommt, wird die an der Stahlplatte aufnehmbare Kraft auf etwa 20% des Reibbeiwertes aus dem Versuch (vgl. Kapitel 8.3.2) begrenzt. Das entspricht einer aufnehmbaren Kraft von $0.06 \cdot F_{x \text{ Platte.}}$ Die Zahnleisten werden ebenfalls über Federn modelliert, die normal und tangential zur Oberfläche Kräfte aufnehmen können. Die Tangentialkräfte entsprechen dem an der Zahnleiste ankommenden vertikalen Kraftanteil, der über die Verzahnung aufgenommen wird. Da die Verzahnung mit zunehmender Belastung plastiziert, muss auch die Federsteifigkeit während der Versuchsnachrechnung modifiziert werden (Tab. 8.7). Das wird über abschnittsweise Berechnungsgänge mit unterschiedlichen Federsteifigkeiten realisiert. Hierbei wird die Federsteifigkeit bei Versuch V2 und V3 einmal angepasst, bei Versuch V1 wird keine Anpassung vorgenommen. Die Federsteifigkeiten werden über die Kraft/Verformungskurve der experimentellen Versuche abgeleitet.

Die Gewindestangen werden als Fachwerkstab abgebildet, der nur Normalkräfte aufnehmen kann. Die Vorspannkräfte werden als Zugnormalkraft auf den Fachwerkstab mit der Größe $P_{V1} = 90$ kN ; $P_{V2} = 120$ kN und $P_{V3} = 480$ kN aufgegeben (Abb. 8.23). Mit den Vorspannkräften kann der Kraftneigungswinkel θ beeinflusst werden und somit auch die Tragfähigkeit der Verbindung (Abb. 8.24).

Abb. 8.23: Simulationsmodell (Sofistik) mit Federn (links) und Last/Verformungskurve V1 bis V3 aus Sofistikrechnung (rechts) nach (Schubert 2017)

Abb. 8.24: Simulationsmodell Konsole an Stütze (links) und Parameterstudie zum Einfluss der Vorspannkraft auf den Druckstrebenneigungswinkel in der Konsole (rechts) (Schubert 2017)

Eingangswerte:	V1	V2	V3						
Reibungsbeiwert: µ=	0,06	0,06	0,06						
Federsteifigkeit $k_1 =$	8	00	∞						
Federsteifigkeit $k_2 =$	x	œ	∞						
Federsteifigkeit k ₃ =	77.000 kN/m	20.000 kN/m	610.000 kN/m						
Federsteifigkeit k ₄ =		105.000 kN/m	240.000 kN/m						
Federsteifigkeit k ₅ =		90.000 kN/m							
Versuchslast: $F_V =$	260,4 kN	375,4 kN	493,5 kN						
Vorspannkraft: P =	90 kN	120 kN	480 kN						

Tab. 8.6: Simulationsparameter Konsolsimulation Sofistik

Ergebniswerte:

F_x	res. Auflagerkraft in Zahnleiste in X-Richtung (horizontal)
Fy	res. Auflagerkraft in Zahnleiste in Y-Richtung (vertikal)
Theta	Druckstrebenneigungswinkel resultierend aus Fx und Fy
N _x	Normalkraft im Gewindestab
F _{y,platte}	Reibkraft zwischen Stahlplatte und Konsole (vertikal)
F _{x,platte}	res. Auflagerkraft in Stahlplatte in X-Richtung (horizontal)
u _x	horiz. Verschiebung der Konsole auf Höhe der Gewindestangen
u _x	vertikale Verschiebung der Konsole 5 cm von Stütze entfernt

Tab. 8.7: Ergebnisse Konsolsimulation Sofistik

Versuch	$\mathbf{F}_{\text{Prüfmaschine}}$	F _x	$\mathbf{F}_{\mathbf{v}}$	Theta	N _x	\mathbf{F}_{r}	$\mathbf{F}_{x,platte}$	ux	uy
V1	0,00	27,60	0,10	89,79	78,30	0,10	50,70	0,000	0,000
	260,40	91,40	260,40	19,34	91,40	0,00	294,10	0,281	3,500
V2	0,00	36,80	0,50	89,22	104,40	-0,50	67,60	-0,035	-0,010
	20,00	44,80	16,40	69,89	104,80	3,60	60,00	-0,015	0,825
	300,00	113,10	300,00	20,66	113,10	0,00	0,00	0,296	3,000
	375,40	129,40	375,40	19,02	129,40	0,00	0,00	0,431	4,360
V3	0,00	156,70	3,62	88,68	432,10	-3,62	275,30	-0,095	-0,005
	200,00	213,80	186,78	48,86	434,20	13,22	220,40	-0,047	0,376
	400,00	256,00	389,19	33,34	436,10	10,81	180,20	-0,033	0,785
	493,50	275,30	483,80	29,64	437,00	9,70	161,70	-0,026	2,190

Bei den Versuchen V4 bis V6 wird ein steiferes Verhalten im Verbindungsbereich erreicht. In der FE-Rechnung lässt sich dieses gut über Kontaktformulierungen abbilden (Abb. 8.25).

Abb. 8.25: Last/Verformungskurve V4 bis V6 aus Ansys (Schmidt 2018)

Weiterführende Simulationsergebnisse zur Konsole sind in (Schmidt 2018) ersichtlich.

8.5 Versuche an einer Konsole mit Betonverzahnung

Die Wirksamkeit der im Abschnitt 5.2. theoretisch hergeleiteten und im Abschnitt 6.5. experimentell nachgewiesenen Betonverzahnung wird im nachfolgendem an einem realen Bauteilversuch gezeigt. Hierfür werden acht Versuche an modularen Konsolen mit gezahnten Trockenfugen durchgeführt. Zwei der getesteten Konsolen werden ohne Verzahnung ausgeführt und sind somit als reine Reibungskonsolen anzusehen, welche als Referenz dienen. Im Rahmen der Untersuchungen sollte zum einen der Einfluss der Druckfeldneigung und zum anderen der Einfluss der Verzahnugsgeometrie geprüft werden. Die Neigung der an der Verzahnung auftreffenden Druckstreben werden über die zwei verschiedenen Konsolgeometrien beeinflusst. In der Abbildung 8.31 sind die zwei Konsolgeometrien mit samt den Lasteinleitungsbereichen dargestellt. Außerdem kann der Abbildung 8.31 die zwei getesteten Verzahnungsgeometrien entnommen werden. Die Zahnhöhe wird bei allen gezahnten Fugenausführungen mit 6 mm konstant gehalten.

Abb. 8.31: Getestete Konsolgeometrien und Fugenverzahnungen (Nettekoven 2018)

8.5.1. Probekörperherstellung

Zur Probekörperherstellung wird für die zwei Stützen eine vierseitig geschlossene Holzschalung mit eingelegten Verzahnungsbrettern und für die acht Konsolen eine einseitig offene Holzschalung verwendet. An jedem Stützenbauteil können durch Drehen der Stütze vier modulare Konsolen getestet werden. Zur Sicherstellung der Unversehrtheit der Stützenbauteile nach dem Prüfungsdurchlauf an einer Konsole werden diese Stützen aus einem höherfesten Spezialbeton mit einer Druckfestigkeit $\geq 60N/mm^2$ gefertigt. Bei dem verwendeten Beton handelt es sich um einen Vergussbeton der Firma Grace Betec 180. Der Abbildung 8.32 kann zum einen die zusammengesetzte Stützenschalung mit der schlaffen Baustahlbewehrung, zum anderen die offene Schalung mit den Verzahnungsbrettern und der Lage der Reibungskonsole entnommen werden.

Abb. 8.32: Holzschalung für die Stütze der Konsolversuche mit vierfachem Konsolanschluss (Nette-koven 2018)

Zur Sicherstellung einer hohen Passgenauigkeit zwischen den anzuschließenden Betonverzahnungen werden die Konsolen direkt an die ausgehärteten Stützenbauteile betoniert. Die Herstellung im Match-Cast-Verfahren ermöglicht eine hohe Passgenauigkeit der im Versuch im Kontakt stehenden Betonoberflächen mit vergleichsweise einfachen Mitteln. Dazu wird die eine Seite der Konsolschalung offen ausgeführt und bei der Betonage direkt an die ausgehärtete Stützenoberfläche gestellt. Zur Gewährleistung, dass zwischen den Alt- und dem Frischbeton kein Zementtransport und somit keine Adhäsionskräfte auftreten, wird die Betonoberfläche der Stütze vor der Betonage großflächig mit Schalwachs behandelt.

Die Abbildung 8.33 zeigt links die einseitig offene Konsolschalung mit der schlaffen Baustahlbewehrung und auf der rechten Seite die zusammengefügte Schalung mit dem ausgehärteten Beton der Stütze. Damit sich die Konsolschalungen während der Betonage nicht von der Stütze lösen werden diese mit langen Schraubzwingen festgespannt.

Abb. 8.33: Konsolschalung für Match-Cast-Betonage mit Konsolbewehrung (Nettekoven 2018)

Die Abbildung 8.34 zeigt eine Stütze mit vier frisch betonierten Konsolen nach dem Glätten der Betonierseiten. Diese Abbildung zeigt die vier späteren Einbausituationen der Stütze für die Konsoltests. Die Lasteinleitung erfolgt während der Versuche immer auf die nicht abgeschrägte Fläche der Konsolen. Somit muss die Stütze insgesamt viermal gedreht werden, um alle Konsolen testen zu können.

Abb. 8.34: Frisch betonierte Konsolen im Match-Cast-Verfahren (Nettekoven 2018)

Die Abbildung 8.35 zeigt exemplarisch die frisch ausgeschalte gezahnte Kontaktfläche einer Konsole mit Rückständen von Schalwachs. Hierbei handelt es sich um eine Konsole mit 70°-Zähnen.

Abb. 8.35: Ausgeschalte Konsole mit gezahnter Fugenausführung (Nettekoven 2018)

Zusätzlich zu den acht Konsolen mit den zugehörigen Stützenbauteilen werden insgesamt 12 Zylinder zur Bestimmung der Betoneigenschaften hergestellt. Dabei werden jeweils drei Zylinder von dem Beton der Stützenbauteile und drei Zylinder direkt am Anfang der Betonage der Konsolen und drei Zylinder am Ende der Betonage der Konsolen hergestellt. Dies ermöglicht für die beiden Stützenbauteile eine mittlere Druckfestigkeit und auch einen mittleren Elastizitätsmodul zu bestimmen und zudem eine Aussage über den Einfluss des Betonalters zwischen der Herstellung der ersten Konsole und dem Befüllen der letzten Konsolschalung treffen zu können.

Bei dem verwendeten Beton der Stützenbauteile handelt es sich um einen sehr fließfähigen selbstverdichtenden Beton, daher musste dieser nicht verdichtet werden und die Betonierseite wird lediglich nach dem Betonieren mit einer Glättkelle bearbeitet. Der Beton für die Konsolbauteile ist identisch zu dem bei den Prismenversuchen verwendeten Beton. Somit wird der in die Konsolschalung eingebrachte Beton abschnittsweise mit einem Innenrüttler verdichtet und anschließen auf der Betonierseite geglättet.

8.5.2. Versuchsdurchführung

Getestet werden insgesamt acht Konsolbauteile mit zwei unterschiedlichen Konsolgeometrien und drei verschiedenen Fugenausführungen. Die untersuchten Geometrien können der Abbildung 8.31 entnommen werden. Als Vergleich und zur Verifizierung der Effizienz der gezahnten Fugenausführung bei modularen Konsolbauteilen wird für die zwei getesteten Konsolgeometrien zusätzlich jeweils eine Reibungskonsole geprüft. Somit werden insgesamt sechs Konsolversuche mit gezahnter Fugenausführung durchgeführt. Dabei werden zum einen zwei Konsolen mit einer 45°-Zahngeometrie und eine Konsolen mit einer 70°-Zahngeometrie und einem a_c/h_c – Verhältnis von 0,8 und zum anderen drei Konsolen mit einer 70°-Zahngeometrie und einem a_c/h_c – Verhältnis von 0,5 getestet. Die Konsolen mit einem a_c/h_c – Verhältnis von 0,5 getestet. Die Konsolen mit einem Traglast über die Verzahnung von 45° gegenüber der horizontalen auf den Verzahnungsbereich. Demnach kann davon ausgegangen werden, dass bei den 45°-Zähnen mit keiner reduzierten Traglast über die Verzahnung zu rechnen ist. Das Verhalten der 70°-Zähne unter dieser Druckstrebenneigung werde bereits bei den Prismenversuchen in Abschnitt 6.5.3. erläutert und lässt eine Reduktion der Traglast zu erwarten.

Abb. 8.36 zeigt auf der linken Seite die Einbausituation der Stütze im Widerlager sowie der Prüfzylinder mit seinen zwei Gelenken zur Sicherstellung der freien Verdrehmöglichkeit des Konsolbauteils während der Versuchsdurchführung.

Abb. 8.36: Konsolversuch im Einbauzustand und Versagen der Betondruckstrebe mit druckstreben parallelen Rissen (Nettekoven 2018)

Im rechten Bild der Abbildung 8.36 ist exemplarisch eine Konsole im Versagenszustand mit druckstreben parallelen Rissen dargestellt. Auf die Versagensmechanismen wird im nachfolgendem Abschnitt 8.5.3. näher eingegangen.

Die Konsolversuche werden, wie auch schon die Prismenversuche, weggesteuert mit einer Geschwindigkeit von 0,01 mm/s gefahren. Der Versuchsablauf wird ähnlich wie bei den Prismenversuchen gewählt. Vor der eigentlichen Rampe bis zum Versagen der Konsole werden drei Vorbelastungsrampen weggesteuert in einem Lastbereich zwischen 18 kN und 75 kN gefahren. Diese Vorgehensweise sollte Aufschluss über das Verformungsverhalten der Konsole und insbesondere Rückschlüsse über die Passtoleranzen in der Verzahnung geben.

Zur Prüfung der Materialeigenschaften des verwendeten Betons der Konsolen und der Stützen, werden die betonierten Zylinder hinsichtlich ihrer Druckfestigkeit und ihres Elastizitätsmoduls untersucht. Für die Prüfung der Zylinder wird das gleiche Versuchsprogramm wie bei den Prismenversuchen verwendet.

8.5.3. Versuchsauswertung

Zur Beurteilung der Effizienz der entwickelten Betonverzahnung werden zunächst die Mittelwerte der Druckfestigkeiten der Betonzylinder mit den zugehörigen Standardabweichungen bestimmt. In der Tabelle 8.8 sind die Ergebnisse der Versuche zur Bestimmung der Festbetoneigenschaften an den Zylindern zusammengestellt. Es ist ersichtlich, dass die Druckfestigkeiten des Betons für die Konsolbauteile zwischen den beiden Zeitpunkten sehr gering voneinander abweichen. Somit kann für die weiteren Untersuchungen davon ausgegangen werden, dass der Betonagezeitpunkt keinen Einfluss auf die Konsoltragfähigkeit besitzt. Die Druckfestigkeiten des verwendeten Betons für die Stützenbauteile weichen stärker voneinander ab. Deshalb wird in den nachfolgenden Untersuchungen der Einfluss der Druckfestigkeit näher betrachtet.

Probekörper	Druckfestigkeit [N/mm ²]	
	Mittelwert	Standardabweichung
Zylinder-Stütze 1	84,30	2,42
Zylinder-Stütze 2	74,11	5,17
Konsolen - Betonageanfang	44,60	1,89
Konsolen - Be- tonageende	45,16	0,45

Tab. 8.8: Mittelwerte und zugehörige Standardabweichungen der Betonzylinder (Nettekoven 2018)

Die Bestimmung der zu erwartenden Prüflasten in den einzelnen Konsolversuchen erfolgte über eine Stabwerkmodellbetrachtung. Hierfür wird das Druckfeld, welches sich zwischen der vertikalen Lasteinleitung und der Kraft aus der Gewindestange einstellt, in ebenso viele Bereiche, wie es Zähne in der Konsole gibt, eingeteilt. Anschließend werden die resultierenden Druckstrebenneigungen über eine lineare Verbindung zwischen dem Schwerpunk der jeweiligen Zahnflanke mit dem zugehörigen Schwerpunkt des Spannungsblockes bestimmt. Somit ergibt sich unmittelbar vor der gezahnten Fugenausbildung ein Druckfächer mit Druckstrebenneigungen zwischen 48° und 64° bei den 70°-Zähnen und bei den 45°-Zähnen ein Bereich zwischen 35° und 48°. Über die Druckstrebenneigung auf den Einzelzahn lässt sich die erwartete Versagenslast des Zahns nach dem Abschnitt 6.5. bestimmen. Diese Berechnung erfolgt für jeden Einzelzahn der Konsole und die gewonnen Ergebnisse werden abschließend aufsummiert. Aufgrund der Interaktion zwischen der vertikal aufgebrachten Prüflast auf dem Konsolbauteil und der Verdrehung der Konsole und der damit einhergehenden Kraftsteigerung in den horizontalen Gewindestangen, muss diese Berechnung Iterativ erfolgen. Es zeigt sich, dass die Kräfteverteilung innerhalb der Konsole nach etwa dem zehnten Iterationsschritt sich nicht mehr stark zu dem vorhergehenden Iterationsschritt unterscheidet. Aus diesem Grund werden für alle Berechnungen der Prüflasten zehn Iterationsschritte durchgeführt. Die so berechnete Last ist die voraussichtliche Versagenslast der Konsole.

Für die Konsolen mit einem a_c/h_c – Verhältnis von 0,8 ergibt sich somit eine berechnete Prüflast von circa 540 kN und die Konsolen mit einem a_c/h_c – Verhältnis von 0,5 liefern eine Prüflast von circa 330 kN.

Der Tabelle 8.9 können für die einzelnen Konsolgeometrien mit den jeweiligen Zahnausführungen die experimentell bestimmten Traglasten mit den zugehörigen Mittelwerten entnommen werden.

Tab. 8.	9: Gegenül	perstellung	der	Traglasten	der	beiden	Konso	lgeometr	rien	mit	untersc	chiedli	chen.	Fu-
genaus	führungen	(Nettekover	n 20	18)										

Konsolgeometrie	Zahngeometrie	Zugehörige Z druckfestigke [N/mm ²]	Zylinder- eit	Prüflast [kN]	Mittelwert der Prüf- lasten [kN]	
		Konsole	Stütze			
	Reibungskonsole			68,0	-	
	70grad-Zähne	44.99	74.11	330,0		
$a_{c}/n_{c} = 0,50$		44,88	/4,11	400,0	370	
				380,0		
	Reibungskonsole			93,0	-	
$a_{c}/h_{c} = 0,80$	15grad Zähne	11 88	84 30	545,0	574	
	45grad-Zainie	44,00	04,50	602,0	3/4	
	70grad-Zähne			602,0	-	

Es zeigt sich, dass die zuvor berechneten Traglasten mit Hilfe eines Stabwerksmodells in der Konsole im Vergleich zu den tatsächlichen Traglasten eine gute Näherung darstellen. Alle Versuchsergebnisse liefern höhere Prüflasten als die berechneten. Somit liegt der einfache Berechnungsansatz mit Hilfe eines Stabwerksmodells auf der sicheren Seite.

Konsolen mit $a_c/h_c = 0,50$

Abb. 8.37: Kraft-Weg-Diagramm für die Konsolen mit einem a_c/h_c – Verhältnis von 0,50 (Nettekoven 2018)

Alle getesteten Konsolen, mit Ausnahme der beiden Reibungskonsolen, versagten infolge von Rissen parallel zur Druckstrebe in der Konsole und einem Druckversagen der Betonzähne. In der Abbildung 8.37 sind die Kraft-Weg-Diagramme für die Konsolversuche mit einem a_c/h_c – Verhältnis von 0,5 dargestellt. Das Diagramm zeigt hohe vertikale Anfangsverschiebungen der Konsolbauteile bei relativ geringen Lastniveaus. Dies lässt sich über das Ineinanderschieben der Zähne zwischen der Konsole und dem Stützenbauteil erklären. Zudem ist in der Abbildung 8.37 der Verlauf der Reibungskonsole dargestellt. Hierbei wird deutlich, dass nach dem Erreichen der Haftreibungskraft ein geringer Kraftabfall eintritt und die Konsole sich bei einer annährend gleichbleibenden Gleitreibungskraft vertikal verschiebt.

Abb. 8.38: *Kraft-Weg-Diagramm für die Konsolen mit einem* $a_c/h_c - Verhältnis von 0,80$ (Nettekoven 2018)

In der Abbildung 8.38 sind die Kraft-Weg-Diagramme für die Konsolen mit einem a_c/h_c – Verhältnis von 0,80 dargestellt. Hierbei liegen die beiden Verläufe der Konsolen mit den 45°-Zähnen sehr gut übereinander, lediglich die Konsole mit den 70°-Zähnen weist wieder die hohen Anfangsverschiebungen bei einem geringen Lastniveau auf. Außerdem ist festzustellen, dass die Traglast der Konsole mit den 45°-Zähnen und den 70°-Zähnen nahezu identisch ist. Auch hier zeigt sich bei der Reibungskonsole ein ähnliches Verhalten wie bei der zuvor beschriebenen Konsole. Zur Überprüfung der Haft-Gleitreibungsgesetze wurden bei dieser Reibungskonsole insgesamt drei Be- und Entlastungszyklen gefahren. Es zeigt sich, dass die Konsole in jedem einzelnen Zyklus die maximale Haftreibungskraft erreicht und danach keine weitere Laststeigerung mehr möglich ist.

9. Ingenieurmodell und Dimensionierung einer gezahnten Verbindung

9.1 Ingenieurmodell zur Stahlverzahnung

FE-Parameterstudie zum Lastfluss und der Spannungsverteilung in der Zahnleiste und an der Zahnflanke

In Schmidt (2018) wird der Kraftfluss in der Zahnleiste mithilfe von Stabwerkmodellen beschrieben. Dazu wird zunächst ein FE-Modell (Abb. 9.1) erstellt und daran Parameterstudien (Tab. 9.1) durchgeführt. Die Lagerung der Zahnleiste erfolgt mit Lagersituation 2. Die Last wird, wie in Kapitel 5.2 gleichmäßig auf die gesamte Oberkante der oberen Zahnleiste aufgebracht (Abb. 9.1). Zwischen den Stahl/Stahlzähnen sind Kontaktbedingungen definiert (Schmidt 2018).

Abb. 9.1: Zahnleiste mit Belastung und Bezeichnung (Schmidt 2018)

In der Parameteruntersuchung werden geometrische und mechanische Einflüsse auf die Spannungen in der Zahnleiste betrachtet (Tab. 9.1 u. 9.2).

Untersuchter Einfluss	Anzahl	L _{ges}	L _{verz} .	Über-	H_1	Kraft	Kraft	Fβ
	Zähne			stand		V	Н	
		[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[°]
Ausgangssystem	34	117,6	117,6	0	20	170	170	45
verringerte Zahnanzahl	17	58,8	58,8	0	20	170	170	45
erhöhten Zahnanzahl	51	176,5	176,5	0	20	170	170	45
verringerten Kraft	34	117,6	117,6	0	20	17	17	45
Zahnleistenhöhe	34	117,6	117,6	0	30	170	170	45
Verlängerung der Leiste	34	117,6	117,6	5	20	170	170	45
über die Zähne hinaus								
reine Vertikallast	34	117,6	117,6	0	20	170	0	90
Horizontallast	34	117,6	117,6	0	20	61,88	170	20

Tab. 9.1: Studie zum allgemeinen Verhalten der Spannungen in der Zahnleiste (Schmidt 2018)

Tab. 9.2: Studie zum Einfluss der Kraft und des Kraftneigungswinkels β auf die Spannungen (Schmidt 2018)

Studie	System	Kraft	Kraftneigungswinkel β
Einfluss der Kraft	Ausgangssystem	10 Lastschritte von $U = V = 2000$ big 2000 big	45°
Einfluss des Kraftnei- gungswinkels	Ausgangssystem	$\frac{H - V - 20 \text{KN bis } 200 \text{KN}}{F_{\text{res}} = 150 \text{kN}}$	30, 40, 50, 60, 70, 80, 90
Die Berechnung erfolgt für ein linearelastisches Materialmodell. Die Betrachtung ist geometrisch nichtlinear. Der Kraftfluss in der Zahnleiste verläuft beim reibungsfreien Kontakt s-förmig (Abb. 9.2).

Abb. 9.2: Kraftverlauf in der Zahnleiste in einer physikalisch und geometrisch nichtlinearen FE-Rechnung mit reibungsfreien Kontakt (Schmidt 2018)

Die Grundlage der Betrachtung ist das mögliche Spektrum der Kraftangriffsrichtung, welches in Schmid (2000) dargestellt ist (Abb. 9.3).

Abb. 9.3: Spektrum der möglichen Lastangriffsrichtungen sowie Schubkraftverlauf v_f *und Normalkraftverlauf* n_f *nach Schmid (2000)*

Ansatz: reibungsfreier Kontakt:

Schmidt (2018) geht von einer gleichmäßigen Lastaufteilung auf die einzelnen Zähne aus (Abb.9.4).

Abb. 9.4: Aufteilung der Kräfte auf die Verzahnung (Schmidt 2018)

Der Kraftneigungswinkel β kann zwischen 0° und 90° an der Zahnleistenoberkante angreifen. Unabhängig davon trifft die Kraft bei einem reibungsfreien Kontakt unter 90° auf die Zahnflanke. Demzufolge verläuft die Kraft s-förmig in der Zahnleiste um entsprechende Winkeländerungen berücksichtigen zu können. Nachfolgend werden die Ergebnisse des Kraftflusses aufgeführt. Die Herleitung ist Schmidt (2018) zu entnehmen.

Abb. 9.5: Darstellung von ΔF_z (Schmidt 2018)

Zur Ermittlung der Kraftanteile F_z und ΔF_z werden zwei Fälle unterschieden: Fall 1: Der Kraftangriffswinkel β liegt zwischen $90^\circ > \beta \ge 0^\circ$. Daraus folgen die Spannungen an den Zahnflanken zu

$$\sigma_{links} = \frac{F_{ges} \cdot sin(\alpha_z)}{l_{ges} \cdot tan(\alpha_z) \cdot sin(90 - \alpha_z) \cdot b_z} \cdot (sin(\beta) + cos(\beta) \cdot tan(90 - \alpha_z))$$
(Gl.9.1)

$$\sigma_{rechts} = \frac{F_{ges} \cdot sin(\alpha_z)}{l_{ges} \cdot tan(\alpha_z) \cdot sin(90 - \alpha_z) \cdot b_z} \cdot (sin(\beta) - cos(\beta) \cdot tan(90 - \alpha_z))$$
(Gl.9.2)

Fall 2: Für den Kraftangriffswinkel $\beta = 90^{\circ}$ (Abb. 9.5 rechts) gilt:

$$\sigma_{links} = \sigma_{rechts} = \frac{F_{ges} \cdot 4 \cdot \sin(90 - \alpha_z) \cdot \sin(\alpha_z)}{l_{ges} \cdot \tan(\alpha_z) \cdot b_z}$$
(Gl.9.3)

Abb. 9.5: Darstellung für den Fall $90^{\circ} > \beta \ge 0^{\circ}$ (links); Darstellung für den Fall $\beta = 90^{\circ}$ (rechts) (Schmidt 2018)

Ansatz: reibungsbehafteter Kontakt:

Der Kraftangriff an der Zahnflanke weicht vom 90°-Winkel ab. Der Druckstrebenneigungswinkel beträgt $\theta_{reib.} > 90 - \alpha_z$. Damit nähert sich der Winkel $\theta_{reib.}$ dem Winkel β an. Es stellt sich weiterhin ein s-förmiger Verlauf der Kräfte ein, jedoch ist dieser nicht mehr so ausgeprägt wie beim reibungsfreien Kontakt.

Spannungen über die Zahnleiste verteilt

Ansatz: Reibungsfreier Kontakt:

Ausgehend von der allgemeinen Form

$$\sigma_{bz,ges} = \frac{F_z}{l_{ZF} \cdot b_z} \tag{Gl.9.4}$$

entwickelt Wörner (2017) ein Ingenieurmodell zur analytischen Berechnung der Spannungen an der Zahnflanke. Das Kapitel 9 gibt einen Überblick zum Ingenieurmodell und zeigt die Ergebnisse. Die Ausführliche Darstellung ist Schmidt (2018) zu entnehmen.

Mithilfe der durchgeführten FE-Parameterstudie (Kapitel 9.1) wird für die angegebenen Einflüsse je eine prozentuale Spannungsverteilung (Abb. 9.6 und 9.7) über die gesamten Zähne der Zahnleiste für die linke Zahnflanke sowie für die rechte Zahnflanke erstellt. Die Spannungsverteilung wird in die Bereiche "steigend", "konstant" und "fallend" eingeteilt.

Abb. 9.6: Prozentuale Spannungsverteilung über die Zahnanzahl der Leiste, linke Zahnseite, Ausgangssystem (Schmidt 2018)

Abb. 9.7: Prozentuale Spannungsverteilung über die Zahnanzahl der Leiste, rechte Zahnseite, Ausgangssystem (Schmidt 2018)

Die Gesamtkraft F_{Ges} wird prozentual auf diese drei Bereiche aufgeteilt. Die prozentuale Verteilung der Spannungen bzw. der Kraft F_{ges} wird über den Faktor k berücksichtigt.

$$F_{zj} = k_j \cdot F_{ges} \tag{Gl.9.5}$$

Untersuchter Einfluss	Steigender Bereich		Konstanter Bereich		Fallender Bereich	
	[%]		[%]		[%]	
	Links	Rechts	Links	Rechts	Links	Rechts
Ausgangssystem	8,63	9,54	83,03	82,95	8,35	7,51
verringerte Zahnanzahl	13,58	14,4	73,02	74,01	13,40	11,6
Erhöhte	5,51	6,03	88,66	88,87	5,84	5,1
Zahnanzahl						
verringerte Kraft	8,71	9,40	82,58	81,83	8,71	8,67
Zahnleistenhöhe	7,99	8,86	84,15	83,88	7,86	7,27
Verlängerung der Leiste über	10,59	10,53	77,70	77,5	11,7	11,98
die Zähne hinaus						
reine Vertikallast	9,39	10,97	80,97	81,23	9,64	7,80
Horizontallast	7,23	7,04	85,15	85,04	7,62	7,92
Mittelwert	9,0	9,6	81,9	81,9	9,1	8,5

Tab. 9.4: Prozentuale Spannungsverteilung in Abhängigkeit der untersuchten Einflüsse bei reibungsfreiem Kontakt (Wörner 2017)

Der steigende und fallende Bereich wird unabhängig von den betrachteten Einflüssen auf jeweils vier Zähne begrenzt. Alle dazwischenliegenden Zähne werden dem konstanten Bereich zugeordnet. Es wird empfohlen, bei einer erhöhten Zahnanzahl (größer 34 Zähne) den Wert von 82 % im konstanten Bereich leicht anzuheben.

Ansatz: reibungsbehafteter Kontakt

Die Berechnung der Modelle mit einem Reibbeiwerte von μ =0,15 zeigen, dass der prozentuale Spannungsverlauf über die Leiste durch die Reibung nicht beeinflusst wird (Abb. 9.8 u. 9.9). Jedoch verringert sich die Vergleichsspannung an den betrachteten Punkten um etwa 15%. Durch die Reibung findet eine Vergleichmäßigung der Spannungen statt.

Abb. 9.8: Prozentuale Spannungsverteilung über die Zahnanzahl der Leiste, linke Zahnseite, Ausgangssystem (Schmidt 2018)

Abb. 9.9: Prozentuale Spannungsverteilung über die Zahnanzahl der Leiste, rechte Zahnseite, Ausgangssystem (Schmidt 2018)

Spannungen am Zahnkontakt bei reibungsfreiem Ansatz

Spannungsverteilung am Zahnkontakt:

Die Spannungsverteilung entlang der Zahnleiste wird im Folgenden lokal am Einzelzahn untersucht. Für jeden untersuchten Einfluss wird ein Spannungsverlauf an einer exemplarischen Zahnflanke (Abb. 9.10) für jeden der drei Bereiche (steigend, konstant, fallend) betrachtet.

Abb. 9.10: Zahnflanke linke Seite und rechte Seite (Schmidt 2018)

Für das Ausgangssystem wird der Spannungsverlauf über die gesamte Flanke eines linken Zahnkontaktes im konstanten Bereich exemplarisch dargestellt (Abb. 9.11). Die Vergleichsspannungen entlang der Zahnflanke zeigen wiederum drei Bereiche. Diese werden als Flankenkopf, Flanke und Flankenfuß bezeichnet. Die Spannungsspitzen am Flankenkopf und am Flankenfuß können auf das Phänomen der Hertz`schen Pressungen zurückgeführt werden. Das Integral unter dem Spannungsverlauf ist gleich der gesamten Spannung an der Zahnflanke.

$$\sigma_{lZF,ges} = \int_0^{l_{ZF}} \sigma_{LZ,ges(x)} \cdot dx \tag{Gl.9.6}$$

Vereinfacht kann jeder der drei Bereiche über ein Trapez abgebildet werden (Abb. 9.12).

$$A_{\sigma,Trapez} = \sigma_i \cdot x + \frac{1}{2} \cdot (\sigma_{i+1} - \sigma_i) \cdot x$$
(Gl.9.7)

Abb. 9.11: Spannungsverlauf über die gesamte Flanke eines linken Zahnkontaktes am Ausgangssystem im konstanten Bereich nach (Wörner 2017)

Abb. 9.12: Darstellung $\sigma_{Flanke,Trapez}$ (links) (Schmidt 2018)

Mithilfe dieses Ansatzes wird ein Ingenieurmodell hergeleitet, mit dem es möglich ist, Spannungen entlang der Zahnflanke zu berechnen. Auf die Herleitung wird an dieser Stelle verzichtet und auf Schmidt (2018) verwiesen.

Allgemein wird die Spannung an der Stelle i berechnet zu

$$\sigma_i = \frac{F_{z,i}}{x \cdot b_z} - \frac{1}{2} \cdot m \cdot x \tag{Gl.9.8}$$

Weiterhin kann die Spannung an einer beliebigen Stelle x berechnet werden zu

$$\sigma_x = (x - x_W) \cdot (a \cdot \beta^2 + b \cdot \beta + c) + m_F \cdot F_{res} + t_F \tag{Gl.9.9}$$

Mit

 t_F = y-Achsenabschnitt der Vergleichsspannung mit $t = \sigma_i - (m \cdot x_i)$ β = Druckstrebenneigungswinkel m_F = Steigung in Abhängigkeit der Kraft

185

 F_{res} = Kraftangriff auf Oberkante Zahnleiste a, b, c = Koeffizienten der quadratischen Regression nach Tab. 9.4

Tab. 9.5: Ergebnisse der Polynomregression zur Darstellung des Steigungsverhältnisses (Wörner 2017)

Ergebnisse der quadratischen Regression				
Koeffizient	а	b	с	
Flankenkopf	0,310	-53,117	-278,557	
Flanke	0,020	-3,157	123,598	
Flankenfuß	-0,166	30,570	-428,456	

Spannungen am Zahnkontakt bei reibungsbehaftetem Ansatz

Analog zum reibungsfreien Ansatz werden auch beim reibungsbehafteten Ansatz die Bereiche "Flankenkopf, Flanke und Flankenfuß festgelegt. Die Spannungen sind niedriger wie beim reibungsfreien Kontakt, das grundsätzliche Verhalten ist gleich.

Spannungen am Zahnfuß

Lastangriffspunkt: $h_{ze} = 1,25$ mm aufgebracht.

Abb. 9.13: *Kraft* F_Z *am Zahn und daraus resultierende Spannungen (Schmidt 2018)*

Biegespannung:

$$\sigma_{\text{Ek,B}} = \frac{M}{W} = \frac{F_{\text{zj,H}} \cdot e \cdot 6}{I_{\text{z,eff}}^2 \cdot b_{\text{z}}}$$
(Gl.9.10)

Druckspannung:

$$\sigma_{\rm Ek,D} = \frac{F_{\rm zj,V}}{b_{\rm z} \cdot l_{\rm z,eff}} \tag{Gl.9.11}$$

Schubspannung:

$$\tau_{\rm Ek} = \frac{F_{\rm zj,H}}{b_{\rm z} \cdot l_{\rm z,eff}} \tag{Gl.9.12}$$

Vergleichsspannungen:

$$\sigma_{\rm v} = \sqrt{\sigma_{\rm Ek,B}^2 + \sigma_{\rm Ek,D}^2 - \sigma_{\rm Ek,B} \cdot \sigma_{\rm Ek,D} + 3 \cdot \tau_{\rm Ek}^2} \tag{Gl.9.13}$$

Bemessungsansatz

Der Bemessungsansatz erfolgt nach den Gleichungen Gl. (6.10), (6.11b) und (6.12b) der EN 1990.

Grenzzustand der Tragfähigkeit:

$$E_{d} = E\left[\sum_{\substack{j \ge 1 \\ r}} \gamma_{G,j} \cdot G_{k,j} \oplus \gamma_{P} \cdot P_{k} \oplus \gamma_{Q,1} \cdot Q_{k,1} \oplus \sum_{i>1} \gamma_{Q,i} \cdot \psi_{0,i} \cdot G_{k,i}\right]$$
(Gl. 9.14)

$$E_{dA} = E\left[\sum_{j\geq 1} \gamma_{GA,j} \cdot G_{k,j} \oplus \gamma_{PA} \cdot P_k \oplus A_d \oplus \psi_{1,1} \cdot Q_{k,1} \oplus \sum_{i>1} \psi_{2,i} \cdot G_{k,i}\right]$$
(Gl. 9.15)

Grenzzustand der Gebrauchstauglichkeit:

$$E_{d,rare} = E\left[\sum_{j\geq 1} G_{k,j} \oplus P_k \oplus Q_{k,1} \oplus \sum_{i>1} \psi_{0,i} \cdot G_{k,i}\right]$$
(Gl. 9.16)

$$E_{d,frequ} = E\left[\sum_{j\geq 1} G_{k,j} \oplus P_k \oplus \psi_{1,1} \cdot Q_{k,1} \oplus \sum_{i>1} \psi_{2,i} \cdot G_{k,i}\right]$$
(Gl. 9.17)

$$E_{d,perm} = E\left[\sum_{j\geq 1} G_{k,j} \oplus P_k \oplus \sum_{i>1} \psi_{2,i} \cdot G_{k,i}\right]$$
(Gl. 9.18)

Materialgesetze:

$$R_{d} = R\left[\alpha_{cc} \cdot \frac{f_{ck}}{\gamma_{c}}; \alpha_{cc} \cdot \frac{f_{ck}}{\gamma_{c} \cdot \gamma_{c}'}; \frac{f_{yk}}{\gamma_{s}}; \frac{f_{tk,cal}}{\gamma_{s}}; \frac{f_{p0,1k}}{\gamma_{s}}; \frac{f_{pk}}{\gamma_{s}}\right]$$
(Gl. 9.19)

Mit dem nach DAfStb Sachstandsbericht UHFB (2008) empfohlenen zusätzlichen Sicherheitsbeiwert für ultrahochfesten Beton

$\gamma_{\rm c}' = \frac{1}{1.1 - \frac{f_{\rm ck}}{500}}$	(Gl. 9.20)
sowie der Berücksichtigung von Langzeiteinwirkungen durch $\alpha_{cc} = 0.85$.	
Nachweisführung	
Allgemein gilt:	
$E_d/R_d \le 1$	(Gl.9.21)
Widerstände:	
$ au_{Rd} = \sigma_{Rd} / \sqrt{3}$	(Gl.9.22)
$\sigma_{Rd} = f_y / \gamma_{Mo}$	(Gl.9.23)
Es werden folgende Nachweise geführt:	
Nachweis am Zahnkontakt: Druckkraft am Zahnkontakt <u>(</u> Abb. 9.30)	
$\sigma_{D,Ed} = \frac{F_{zj,Ed}}{A_{Zahnflanke,eff.}}$	(Gl.9.24)
$\sigma_{D,Ed}/\sigma_{Rd} \leq 1$	(Gl.9.25)
Nachweis am Zahngrund:	
- Abscheren am Zahngrund (Abb. 9.30)	
$\tau_{\rm Ed} = \frac{1}{A_{\rm Zahngrund}}$	(Gl.9.26)
$\tau_{Rd} = \frac{f_y}{\sqrt{3} \cdot \gamma_{m0}}$	(Gl.9.27)
$ au_{Ed}/ au_{Rd} \leq 1$	(Gl.9.28)
- Biegung am Zahngrund (Abb. 9.30)	
$\sigma_{B,Ed} = \frac{M}{W} = \frac{F_{zj,H,Ed} \cdot e}{W_{Zahngrund}}$	(Gl.9.29)
$W_{el} = \frac{b \cdot d^2}{6}$	<i>(Gl.</i> 9.30 <i>)</i>
$W_{pl} = \frac{b \cdot d^2}{4}$	<i>(Gl.</i> 9.31 <i>)</i>
$\sigma_{B,Ed}/\sigma_{Rd} \leq 1$	(Gl.9.32)
- Druckkraft am Zahngrund (Abb. 9.30)	
$\sigma_{D,Ed} = \frac{F_{zj,V,Ed}}{A_{Zahngrund}}$	(Gl.9.33)
$\sigma_{D,Ed}/\sigma_{Rd} \leq 1$	<i>(Gl.</i> 9.34 <i>)</i>

- Vergleichsspannung am Zahngrund

$$\sigma_{V,Ed} = \sqrt{\sigma_x^2 + \sigma_y^2 + \sigma_z^2 - \sigma_x \cdot \sigma_y - \sigma_x \cdot \sigma_z - \sigma_y \cdot \sigma_z + 3 \cdot (\tau_{xy}^2 + \tau_{xz}^2 + \tau_{yz}^2)}$$
(Gl.9.35)

$$\sigma_{V,Ed} = \sqrt{\sigma_{B,Ed}^2 + \sigma_{D,Ed}^2 - \sigma_{B,Ed} \cdot \sigma_{D,Ed} + 3 \cdot (\tau_{Ed}^2)}$$
(Gl.9.36)

$$\sigma_{\rm V,Ed}/\sigma_{Rd} \le 1 \tag{Gl.9.37}$$

9.2 Ansatz zur Nachweisführung beim Knotenpunkt

Statisches System

Abb. 9.14: Statisches System des Knotenpunktes (Schmidt 2018)

Nachweis Lasteinleitung

Beim Nachweis der Lasteinleitung wird die Lagerpressung unterhalb des Lagers und der Lasteinleitungsplatte der Vorspannung nachgewiesen.

$\sigma_{Ed} = \frac{D_{Ed}}{A_{Diagonale}}$	(Gl.9.38)
$\sigma_{Rd} = f_{cd}$	(Gl.9.39)
$\sigma_{Ed}/\sigma_{Rd} \leq 1$	(Gl.9.40)
Nachweis der Gewindestange	
$F_{\rm tEd} = F_{\rm P} + F_{\rm V,Ed}$	(Gl.9.41)
$\sigma_{Ed} = \frac{F_{tEd}}{A_{Gewindestab}}$	(Gl.9.42)
$\sigma_{Rd} = \frac{f_{yd}}{\gamma_{M0}} \qquad \qquad \gamma_{M0} = 1,0$	(Gl.9.43)
$A_{\rm s}=rac{F_{ m tEd}}{\sigma_{Rd}}$	(Gl.9.44)

 $\sigma_{Ed}/\sigma_{Rd} \le 1 \tag{Gl.9.45}$

Nachweis Druckstrebe

Die Druckstrebe kann als dreidimensionales Prisma betrachtet werden, das im Lasteinleitungsbereich durch den Pfosten und die Diagonale begrenzt wird und sich im Druckpunkt (Zahnleiste bzw. Betonverzahnung) abstützt. Die Druckstrebe ist nicht maßgebend und gilt als nachgewiesen, wenn der Druckpunkt und der Lasteinleitungsbereich nachgewiesen sind.

Dimensionierung der Bügel

In Anlehnung an Henze (2009) und Gruber (2011) wird der Knotenpunkt mit vier geschlossene vertikal angeordnete Bügel ø 14 bewehrt, welche rechts und links neben jeder Zahnleiste platziert werden. Zusätzlich werden drei horizontale geschlossene Bügel ø 14 angeordnet.

Nachweis Druckpunkt

An den betonseitigen Stahlzähnen kann je nach aktivierter Angriffsfläche auf dem Stahlzahn die übertragbare Kraft berechnet werden zu:

$$F_{SB} = h_{z,a} \cdot b_z \cdot f_c \cdot n \tag{Gl.9.46}$$

Festigkeit im Betonzwickel nach DIN EN 1992-1-1:

$$\mathbf{f}_{c} = \mathbf{v} \cdot \mathbf{k}_{1} \cdot \mathbf{f}_{cd} \tag{Gl.9.47}$$

Die Tragfähigkeit der betonseitigen Stahlzähne wird nicht maßgebend, da der Beton die schwächere Komponente ist.

Die Tragfähigkeit der Stahl/Stahl-Verzahnung wird nach Kapitel 9.1 bestimmt.

9.3 Ansatz zur Nachweisführung bei der Konsole

Statisches System

$$F_{D1} = \frac{F_p \cdot a_1 + F_v \cdot e}{a_1 + a_2} \qquad (Gl.\,9.48)$$

$$F_{D2} = \frac{F_p \cdot a_2 - F_v \cdot e}{a_1 + a_2} \qquad (Gl.\,9.49)$$

Die obere Stahlplatte an der Stelle der Kraft F_{D1} ist in Abb. 8.9 dargestellt.

Abb. 9.15: System und Kräfte an der Konsole

Nachweis Lasteinleitung

Beim Nachweis der Lasteinleitung wird die Lagerpressung unterhalb des Lagers und der Lasteinleitungsplatte der Vorspannung nachgewiesen.

$$\sigma_{Ed} = \frac{F_{Ed}}{A_{Platte}} \tag{Gl.9.50}$$

$$\sigma_{Rd} = 0.75 \cdot f_{cd} \tag{Gl.9.51}$$

$$\sigma_{Ed}/\sigma_{Rd} \le 1 \tag{Gl.9.52}$$

Nachweis Zugstrebe

$$F_{\rm tEd} = F_{\rm P} + \frac{F_{\rm Ed} \cdot e}{a_1} \tag{Gl.9.53}$$

$$\sigma_{Ed} = \frac{F_{tEd}}{\sum A_{Gewindestab}} \tag{Gl.9.54}$$

$$\sigma_{Rd} = \frac{f_{yd}}{\gamma_{M0}} \qquad \gamma_{M0} = 1,0 \qquad (Gl.9.55)$$

$$A_{\rm s} = \frac{F_{\rm tEd}}{\sigma_{Rd}} \tag{Gl.9.56}$$

$$\sigma_{Ed}/\sigma_{Rd} \le 1 \tag{Gl.9.57}$$

Nachweis Druckstrebe

Die Druckstrebe kann als dreidimensionales Prisma betrachtet werden, das im Lasteinleitungsbereich durch die beiden Lasteinleitungsplatten begrenzt wird und sich im Druckpunkt (Zahnleiste bzw. Betonverzahnung) abstützt. Die Druckstrebe ist nicht maßgebend und gilt als nachgewiesen, wenn der Druckpunkt und der Lasteinleitungsbereich nachgewiesen ist.

Dimensionierung der Bügel

In Anlehnung an Schwitzke (2011) wird für für Konsolen mit einem Verhältnis $a_c/d_c < 0.90$ eine horizontale Bügelbewehrung $d_{B\ddot{u},hor.} = 0.6 \cdot F_{Ed}$ angeordnet. Für ein Verhältnis $a_c/d_c \ge 0.90$ ist eine vertikale Bügelbewehrung $d_{B\ddot{u},vert.} = 0.8 \cdot F_{Ed}$ vorzusehen. Zusätzlich ist in den Randbereichen der Konsole konstruktive Bewehrung vorzusehen.

Nachweis Druckpunkt

An den betonseitigen Stahlzähnen kann je nach aktivierter Angriffsfläche auf dem Stahlzahn die übertragbare Kraft berechnet werden zu:

$$F_{SB} = h_{z,a} \cdot b_z \cdot f_c \cdot n \tag{Gl.9.58}$$

Festigkeit im Betonzwickel nach DIN EN 1992-1-1:

$$\mathbf{f}_{c} = \mathbf{v} \cdot \mathbf{k}_{1} \cdot \mathbf{f}_{cd} \tag{Gl.9.59}$$

Die Tragfähigkeit der betonseitigen Stahlzähne wird nicht maßgebend, da der Beton die schwächere Komponente ist.

Die Tragfähigkeit der Stahl/Stahl-Verzahnung wird nach Kapitel 9.1 bestimmt.

10. Baubetriebliche Abwicklung und Wirtschaftlichkeitsbetrachtung

10.1 Baubetriebliche Abwicklung des Fachwerkträgers nach (Vorderwülbecke 2016)

Grundlagen und Annahmen

Neben den statisch konstruktiven Anforderungen ist die baubetriebliche Abwicklung des modularen Fachwerkträgers ebenfalls ein wichtiger Aspekt. Um Aussagen zu den Kosten für die Herstellung, dem Transport und der Montage des modularen Fachwerkträgers treffen zu können, werden nachfolgende Annahmen vorausgesetzt:

- Bei einem 60m langen Fachwerkträger wird von einer Bauwerkslänge von mindestens 100m ausgegangen. Bei einem Bindeabstand von 8m werden je Bauvorhaben mindestens 11 Fachwerkträger verwendet.
- Es werden jährlich 45 derartige Bauvorhaben abgewickelt. Aufgrund der modularen Bauweise ist der Fachwerkträger in seinen Abmessungen variabel. Die genannten Abmessungen sowie die Anzahl der jährlichen Bauvorhaben sind somit gemittelte Annahmen.
- Das Fertigteilwerk hat sich mit einer Fertigungshalle auf den modularen Fachwerkträger spezialisiert, indem jährlich etwa 500 Fachwerkträger hergestellt werden können.
- Das Fertigteilwerk beliefert mehrere Bauunternehmen.

Bei den Überlegungen zur baubetrieblichen Abwicklung des modularen Fachwerkträgers wird auf bekannte Elemente zurückgegriffen (Tab.10.1). Das betrifft insbesondere die Herstellung, aber auch den Transport und die Montage.

Bauteil im Fachwerkträger	Bekanntes Bauteil
Gurt	Stütze/Balken
Pfosten	Stütze
Diagonale	Stütze
Knotenelement	Konsole

Tab. 10.1: Analogie der Elemente des Fachwerkträgers zu bekannten Bauteilen

Herstellung

Die Herstellung der einzelnen Elemente erfolgt in 4 bekannten Herstellungsschritten:

- Schalungsbau
- Einbau der Bewehrung und Einbauteile
- Betonage
- Ausschalen und Nachbehandlung

Schalung:

Die Schalung wird auf die Elemente des modularen Fachwerkträgers ausgelegt. Dabei werden für jeden Elementtyp (Gurte, Pfosten und Diagonalen, Knotenelement) standardisierte Stahlschalungen verwendet. Bis 40cm Betonierhöhe können diese aufgrund des geringen Frischbetondrucks als Magnetschalungen ausgeführt werden. Mittels derer kann eine hohe Genauigkeit erzielt werden. Die Arbeitsabläufe werden effektiver, da kein zimmermannsmäßiger Schalungsbau notwendig ist. Pfosten, Diagonalen und Gurte können als "Endlosstrang" produziert werden. Im Nachgang kann das Ablängen mithilfe einer Säge erfolgen. Damit ist beim Ablängen der Schwindprozess des Frühverschwindens abgeklungen. Alternativ können Stirnschalungselemente verwendet werden, die mithilfe eines Magneten in die Stützenschalung montiert werden. Die Stahlschalung ist so gekennzeichnet, dass die Zahnleisten bzw. die Einlagen für die Betonzähne exakt platziert werden können. In Schultheiß et al. (2016) werden die Kosten für die Stahlschalungen abgeschätzt (Tab. 10.2).

Betoniertisch für Bauteil	Kapazität pro Betonage	Anschaffungskosten
	[Stck.]	[€]
Obergurt	10	70.000
Untergurt	10	70.000
Pfosten	42	70.000
Diagonale	32	70.000
Knotenelement (normal)	40	35.000
Knotenelement (verkürzt)	40	35.000

Tab. 10.2: Abschätzung der Anschaffungskosten der Stahlschalungen nach (Schultheis et. al. 2016)

Die Stahlschalungen sitzen jeweils auf einem Betoniertisch, an dem zur Verdichtung Außenrüttler angebracht sind. Die Verdichtung muss auf den verwendeten Beton abgestimmt werden. Hochfester und ultrahochferster Beton ist i.d.R. selbstverdichtend und darf nicht zusätzlich verdichtet werden.

Einbau der Bewehrung und Einbauteile:

Die Herstellung der Bewehrung erfolgt in einer separaten Halle. Die Bewehrung wird mithilfe von Abstandhaltern in die Schalung eingebaut. Es wird ein Kran verwendet. Im Anschluss werden die Hüllrohre platziert (Tab. 10.3).

Tab. 10.3: Überblick zu den verwendeten Hüllrohren (Vorderwülbecke 2016)

Bauteil	Hüllrohr
Obergurt	Kein Hüllrohr vorhanden
Untergurt	4x d = 72mm in Längsrichtung
	1x d = 60mm im Raster von 3,75m
Diagonale	4x d = 30mm mittig in Längsrichtung
Pfosten	4x d = 60mm mittig in Längsrichtung
Knotenpunkt	1x d = 30mm zum Anschluss an eine Diagonale
	2x d = 30mm zum Anschluss an zwei Diagonalen
	1x d = 60mm zum Anschluss an den Pfosten

Um die Betonelemente im Werk und auf der Baustelle zu versetzen, werden Abhebeanker verwendet (Tab. 10.4). In jedem Bauteil werden Abhebeanker vorgesehen (Abb. 10.1).

Abb. 10.1: Lage der Abhebeanker (Schultheis et. al. 2016)

Bauteil	Gewicht	Last	Verwendetes	Zulässige	Benötigte	Vorhandene
			Einbauteil	Belastung	Einbindetiefe	Einbindetiefe
[-]	[t]	[kN]	[-]	[kN/Stck.]	[cm]	[cm]
Obergurt 15,26 m	4,14	40,61	Wellenanker kurz RD 24	25	25	31
Untergurt 15,26 m	3,64	35,67	Wellenanker kurz RD 20	20	19,2	31
Obergurt 11,51 m	3,12	30,63	Wellenanker kurz RD 18	16	17,5	31
Untergurt 11,51 m	2,74	26,91	Wellenanker kurz RD 18	16	17,5	31
Pfosten	0,36	3,49	Hülse RD 12	5	4	8
Diagonale	0,56	5,47	Hülse RD 12	5	4	9,5

Tab. 10.4: Überblick zu den verwendeten Abhebeankern der Fa. Pfeifer (Vorderwülbecke 2016)

Betonage:

Der Beton wird in der eigenen Betonmischanlage hergestellt und mittels Betoncontainer (Betonkübel) zur Schalung gebracht (Tab. 10.5).

Bauteil	Betonmenge je Teil	Anzahl Teile [Stck.]	Betonmenge ge-
	[m ³]		samt [m ³]
Obergurt 15,26 m	1,66	1	1,66
Untergurt 15,26 m	1,45	1	1,45
Obergurt 11,51 m	1,25	4	5,00
Untergurt 11,51 m	1,10	4	4,39
Pfosten 3,122 m	0,14	21	2,99
Diagonale 4,676 m	0,22	16	3,57
Knotenelement	0,03	22	0,70
Knotenelement verkürzt	0,02	20	0,49
Gesamt	-	89	20,25

Tab. 10.5: Betonmenge der Einzelteile je Fachwerkträger (Vorderwülbecke 2016)

Ausschalen und Nachbehandlung:

Bauteile aus normalfesten und hochfesten Betonen werden nach einem Tag ausgeschalt, ultrahochfeste Betone nach etwa 1,5 Tagen. Der Grund für die längere Ausschalfrist ist, dass ultrahochfeste Betone zunächst sehr langsam abbinden, bevor die Abbindegeschwindigkeit stark ansteigt (Fa. Quast 2016). Die Betonbauteile sind vor extremen Temperaturen, Temperaturschwankungen und zu schnellem Austrockenen zu schützen. Es wird empfohlen, die Bauteile mit Folie abzudecken, diese kontinuierlich mit Wasser zu besprühen und möglichst lange in der Schalung zu belassen.

Transport

Innerbetrieblicher Transport und Logistik:

Innerbetriebliche Transporte der Betonelemente, z. B. zur Zwischenlagerung oder dem Verladen der Bauteile, werden mit einem Portalkran durchgeführt. Das schwerste Element ist der mit etwa 4,16to schwere und 15,26m lange Obergurt. Dieser und somit auch alle weiteren können mit einem 2-Strang Kettengehänge der Güteklasse 8 mit 13mm Kettendurchmesser transportiert werden. Beim Transport von "Endlossträngen" müssen Rollen oder je nach Länge Traversen und/oder zwei Kräne eingesetzt werden.

Transport zur Baustelle:

Für Transporte wird in Deutschland am häufigsten die Straße genutzt (Abb. 10.2) (Statista 2016). Beim Transport von Fertigteilen ist das ähnlich, da die Nutzung von Bahn und Binnenschifffahrt immer eine Anbindung des Werkes und der Baustelle an die Schiene bzw. einen Hafen notwendig macht.

Abb. 10.2: Transporte in Deutschland nach (Statista 2016)

Für diese Betrachtung wird der Transport mit LKW's auf der Straße betrachtet. Dabei ist hinsichtlich der zu transportierenden Bauteilabmessungen die Straßenverkehrs-Zulassungs-Ordnung (StVZO), welche die maximalen Abmessungen eines Fahrzeugs regelt, sowie die Straßenverkehrsordnung (STVO), welche die maximalen Abmessungen einer Kombination aus Fahrzeug und Ladung regelt, zu beachten (Tab. 10.6) (Berufsförderungswerk der Südbadischen Bauwirtschaft GmbH, 2011).

Richtung/Gewicht	Max. zulässige Abmessung	Verordnung		
Breite	2,55m	§ 32 StVZO und StVO § 22		
Höhe	4,00m	§ 32 StVZO und StVO § 22		
Länge	12,00m	§ 32 StVZO		
	16,50m	§ 32 StVZO für Sattel-Kfz		
	20,75m, inkl. Überstand	§ 32 StVZO		
Überstand vorne	0,50m ab Höhe von 2,50m	StVO § 22		
Überstand hinten	1,50m ab Höhe von 2,50m	StVO § 22		
Gesamtgewicht	40 to	§ 32 StVZO und StVO § 22		
Größere und schwerere Bauteile werden als Schwertransporte bezeichnet. Hierfür haben Transport-				
unternehmen in der Regel Dauergenehmigungen.				

Tab. 10.6: Zulässige Transportabmessungen

Bauteile, die die maximal zulässigen Abmessungen und das maximal zulässige Gesamtgewicht überschreiten, werden als Schwertransporte bezeichnet. Hierfür sind Ausnahmegenehmigungen erforderlich, welche den Transportunternehmen in der Regel als Dauergenehmigungen vorliegen.

Es werden zwei Varianten untersucht. Es wird jeweils ein Transport von Einzelteilen und ein Transport von Segmenten untersucht. Dabei werden LKW's mit einer Nutzlast von 26to zugrunde gelegt.

Transportvariante "Einzelteile":

Beim Transport von Einzelteilen (Tab. 10.5) kann der Platz auf dem Lkw effektiv genutzt werden. Es ist sinnvoll für die Diagonalen und Pfosten extra Transportboxen (Transporterleichterung) (Abb. 10.3) einzusetzen.

Transporterleichterung für Diagonalen

Abb. 10.3: Transportboxen (Transporterleichterung) für Diagonalen und Pfosten (Schultheis et al. 2016)

Die einzelnen Betonelemente werden auf die LKW's so aufgeteilt, dass die zulässigen Abmessungen und das zulässige Gesamtgewicht bzw. die zulässige Nutzlast (Annahme 26to) nicht überschritten wird (Tab. 10.7).

Bauteil	Länge	Querschnitt	Gewicht	Anzahl	Gesamtgewicht
	[m]	[cm x cm]	[t]	[Stck.]	[t]
Obergurt	15,26	35 x 31	4,139	1	4,139
Untergurt	15,26	36 x 31	3,636	1	3,636
Obergurt	11,51	35 x 31	3,122	4	12,488
Untergurt	11,51	36 x 31	2,743	4	10,971
Pfosten	3,122	22 x 22	0,356	21	7,470
Diagonale	4,676	22 x 22	0,557	16	8,920
Knotenelement	0,627	-	0,079	22	1,742
Knotenelement verkürzt	0,444	-	0,061	20	1,214
Gesamt	61,30	-	-	89	50,581

Tab. 10.7: Abmessungen und Gewicht der Einzelteile je Fachwerkträger (Vorderwülbecke 2016)

Um einen Fachwerkträger in seinen Einzelteilen auf die Baustelle zu transportieren, sind drei LKWs mit einer Nutzlast von 26to notwendig. Einer dieser LKWs benötigt aufgrund der Überlänge (Gurtlänge von 15,26 m) eine Ausnahmegenehmigung (Tab. 10.8). Da ein Bauvorhaben aus mehreren Fachwerkträgern besteht, stellt diese Betrachtung die obere Grenze dar. D.h. effektiv werden weniger als drei LKWs je Fachwerkträger benötigt, da auch einzelne Elemente verschiedener Fachwerkträger auf einem LKW transportiert werden können.

Tab. 10.8: Übersicht zur Variante "Einzelteile"

Durchführung der Transporte	Bemerkung
LKW 1: Nutzlast 26to	Keine Ausnahmegenehmigung erforder-
4x Obergurt 11,51 m	lich.
4x Untergurt 11,51 m	Gewicht Transport: 26to
1x Transportbox mit 16 Knotenelementen	
LKW 2: Nutzlast 26to	Keine Ausnahmegenehmigung erforder-
2 x Transportbox mit jeweils 8 Diagonalen	lich.
1 x Transportbox mit jeweils 21 Pfosten	Gewicht Transport: 21,1to
1 x Transportbox mit 16 verkürzten Knotenelementen	
1 x Transportbox mit 4 verkürzten und 6 normalen	
Knotenelementen	
LKW 3: Nutzlast 26to	Ausnahmegenehmigung ist erforderlich.
1 x Untergurt 15,26 m	Gewicht Transport: 7,8to
1 x Obergurt 15,26 m	_

Transportvariante "Segmente":

Der Fachwerkträger kann in 5 Segmenten vorgefertigt werden. Der Vorteil liegt darin, witterungsunabhängig einen hohen Vorfertigungsgrad zu erreichen. Jedoch muss im Fertigteilwerk ein entsprechender Platz dafür vorgehalten werden. Der Transport erfolgt mit einem Schräglader mit hydraulischem Schrägbock oder mit horizontal liegenden Segmenten auf einem offenen Sattelzug (Tab. 10.9 und Tab. 10.10).

Segmentlänge	Segmenthöhe	Gewicht je Segment	Anzahl	Gesamtgewicht
[m]	[m]	[t]	[Stck.]	[t]
15,26	4,22	12,502	1	12,502
11,51	4,22	9,520	4	38,079

Tab. 10.9: Abmessungen und Gewicht der Einzelteile je Fachwerkträger nach (Vorderwülbecke 2016)

Tab. 10.10: Übersicht zur Variante "Segmente"

Durchführung der Transporte	Bemerkung
Transport mit hydraulischen Schrägbock unter 45° mit	Ausnahmegenehmigung ist erforderlich.
Transportbreie von 3,0m.	Gewicht je Transport: 12,5to
LKW: Nutzlast 26to	
5x LKW mit je einem Segment	
Transport horizontaler Segmente auf offenen Sattel-	Ausnahmegenehmigung ist erforderlich.
zug. Transportbreite von 4,22m.	Gewicht je Transport: 25to
LKW: Nutzlast 26to	
2x LKW mit je zwei Segmenten	
1x LKW mit einem Segment	

Montage

Analog zum Transport werden auch für die Montage die Varianten "Montage des Fachwerkträgers aus Einzelteilen" sowie die Variante "Montage" des Fachwerkträgers aus Segmenten" betrachtet. In beiden Varianten wird der Fachwerkträger liegend montiert.

Montagefeld:

Für beide Varianten wird von einem tragfähigen und ebenen Baufeld ausgegangen, auf dem die Montagefläche errichtet werden kann. Das Montagefeld hat eine Fläche von 64×6 m (Abb. 10.4). Es wird eine Montagefläche auf Montageböcken errichtet. Diese Montageböcke werden aus geschweißten Gitterrahmengestellen gefertigt. Darauf wird eine Arbeitsfläche aus Plattenwerkstoffen (Multiplexplatten) errichtet. Die Arbeitsfläche befindet sich auf einer Höhe von 60 cm, sodass ausreichend Platz für den Vorspannvorgang ist. Da nicht alle Elemente des Fachwerkträgers die gleichen Abmessungen haben, wird die Montagefläche an den erforderlichen Bereichen aufgedoppelt.

Abb. 10.4: Montagefläche (Vorderwülbecke 2016)

Zusammenbau des Fachwerkträgers aus Einzelteilen auf der Baustelle:

Die Einzelteile werden auf der Baustelle angeliefert und mit einem Krahn oder Teleskoplader abgeladen, transportiert und auf dem Montagefeld ausgerichtet. Der Zusammenbau des Fachwerkträgers kann im Wesentlichen in neun Schritten beschrieben werden (Tab. 10.11).

Montageschritt	Beschreibung		
1	Ober- und Untergurte werden parallel und im korrekten Abstand zueinander auf		
	der Montagefläche platziert (Unterlegstücke benutzen).		
2	Das Knotenelemente am Untergurt über den Gewindestab mit der Diagonale ver-		
	binden. Bei den Diagonalen, die keine konstruktive Vorspannung benötigen, ist an		
	den Enden ein kurzer Gewindestab einbetoniert.		
3	Knotenelement mit Diagonale aus Schritt 2 am Untergurt so platzieren, dass die		
	Zahnleisten des Untergurts und des Knotenelements exakt mittig ineinandergrei-		
	fen.		
4	Knotenelement am Obergurt so platzieren, dass die Zähne korrekt ineinandergrei-		
	fen und entweder gar kein oder ein minimaler Spalt zwischen Knotenelement und		
	Diagonale aus Schritt 2 entsteht. Das Knotenelement darf maximal 5 Zähne in eine		
	Richtung verschoben werden, sollte eine größere Verschiebung notwendig sein,		
	muss das Knotenelement am Untergurt zusätzlich verschoben werden.		
5	Wenn ein Spalt zwischen Knotenelement und Diagonale vorhanden ist, muss die		
	Diagonale so weit verdreht werden, bis sie sich vollständig mit den Knotenele-		
	menten verkeilt. Ist kein Spalt vorhanden, so entfällt dieser Schritt.		
6	Die Diagonale mit dem Knotenelement am Obergurt verspannen. Dazu ist es er-		
	forderlich, dass der Gewindestab aus Schritt 2 auch am oberen Knotenelement mit		
	einer Mutter festgezogen wird. Um an den Hohlraum der Knotenelemente zu		
	kommen, ist es erforderlich, den Obergurt wieder ein Stück von den Knotenele-		
	menten wegzuschieben. Nach der Verbindung der Knotenelemente mit der Diago-		
	nale kann der Obergurt wieder an die Konstruktion heran geschoben werden. Es		
	handelt sich hierbei um eine Montagehilfe und nicht um eine statisch notwendige		
	Vorspannung. Eine statisch notwendige Vorspannung ist nur an den vier Diagona-		
	len des mittleren Segments notwendig.		
7	Einsetzen der Pfosten.		
8	Vorspannen der Pfosten (wenn alle Pfosten eines Segments platziert wurden) mit		
	der zugehörigen DSI Spannpresse (Typ 110 Mp Serie 01). Die maximale Vor-		
	spannung beträgt 815 kN. (DYWIDAG-Systems International, 2016)		
9	Vorspannen des Untergurts mithilfe einer Bündelspannpresse, die an einen Tele-		
	skoplader oder Kran gehängt wird. Die Vorspannkraft in den Untergurten beträgt		
	insgesamt 3.660 kN. Es sind vier SUSPA Monolitzen (bestehend aus 5 Litzen, die		
	wiederum aus 7 Einzeldrähten bestehen) im Untergurt vorhanden. Gemäß der		
	berechneten erforderlichen Vorspannung kann eine Bündelspannpresse vom Typ		
	TENSA M-PV von der Firma PAUL Maschinenfabrik GmbH & Co. KG verwen-		
	det werden. Die gewählte Bündelspannpresse hat eine maximale Spannkraft von		
	4.800 kN, sie kann 22 Litzen aufnehmen und wiegt 645 kg. (PAUL		
	Maschinenfabrik GmbH & Co. KG, 2016)		

Tab. 10.11: Übersicht zur Variante "Segmente" nach (Vorderwülbecke 2016, S.49, 50)

Zusammenbau des Fachwerkträgers aus Segmenten auf der Baustelle:

Die Segmente werden auf der Baustelle mit einem Kran und Transportschlaufen zum Montagefeld gehoben und dort platziert. Die Untergurte werden mit einer Bündelspannpresse vorgespannt.

Einheben in die Endlage:

Der zusammengefügte Fachwerkträger wird von der horizontalen Montagefläche aufgerichtet und mit zwei Autokränen in die Endposition (Gabellagerung der Stützen) gehoben und ausgerichtet. Das Gewicht des Trägers wiegt etwa 50 to. Die Transportschlaufen werden auflagernah platziert (Abb.10.5). Die Transportschlaufe besteht aus einer Wanne, die den Untergurt umschlingt und über ein 2-Strang-Kettengehänge am Haken des Krans befestigt wird. Die Ketten werden über zwei beidseitig am Obergurt angebrachte Stahlrundprofile geführt. Über den Umlenkwinkel entsteht eine Horizontalkraft, die stabilisierend auf den Obergurt des Trägers wirkt.

Abb. 10.5: Transportschlaufen und Platzierung der Autokräne (Vorderwülbecke 2016)

Es werden immer drei Fachwerkträger auf der Montagefläche übereinander vormontiert und dann in die Endlage gehoben. Der erste Fachwerkträger muss im Montagezustand gegen ein seitliches Ausweichen gesichert werden. Sobald der zweite Fachwerkträger platziert ist, werden der Dachverband und die Koppelpfetten angebracht. Alle weiteren Fachwerkträger werden analog platziert und über die Koppelpfetten im Feld horizontal gehalten.

10.2 Wirtschaftlichkeit der modularen Betonfachwerkkonstruktion

Kosten des Fachwerkträgers

Vorderwülbecke (2016) stellt in seiner Arbeit eine Kostenschätzung der Bearbeitungsschritte Herstellung, Transport und Montage für den modularen Fachwerkträger auf. Es wird die Variante mit Einzelteilen als auch die Variante mit Segmenten betrachtet. Dabei wird von folgenden Grundlagen ausgegangen:

- Es handelt sich um den in Kapitel 10.1 betrachteten Fachwerkträger, der für den Transport auf einer gut erreichbaren Baustelle platziert wird.
- Quellen der Materialpreise sind Herstellerangaben (Stand 2016).
- Quellen für Aufwandswerte von Arbeiten in Fertigteilwerken liegen nicht vor. Es werden die Aufwandswerte von Ortbetonbaustellen nach Plümecke (2008) verwendet und diese angepasst.
- In Schultheis et. al. (2016) wird ein fiktives Fertigteilwerk zur Herstellung des modularen Fachwerkträgers entworfen.
- Allgemeine Geschäftskosten, Wagnis und Gewinn werden nicht berücksichtigt.
- Die Streckenführung des Transports wird als unproblematisch (keine Engpässe, Tunnel etc.) angenommen.
- Transportkosten bestehen aus einer Art "Bereitstellungsgebühr" und dem Transportweg, wobei die Wegstrecke einen untergeordneten Teil der Kosten ausmacht. Pauschale Kosten können nicht genannt werden. Die STL Logistik AG (2016) gibt folgende Kosten an:
 - Haiger Köln (110 km)
- 1.290€ (ohne Ausnahmegenehmigung)
- Haiger Würzburg (215 km) Haiger – München (490 km)
- 1.490€ (ohne Ausnahmegenehmigung) 2.200€ (ohne Ausnahmegenehmigung)
- Ausnahmegenehmigungen Kosten einmalig 250€ und können für alle Fahrten verwendet werden.
- Ein Schräglader kostet einen Aufpreis von etwa 800€.
- Materialpreise für die Spannsysteme wurden angefragt bei (DYWIDAG-Systems International, 2016)
- Angefragte Mietpreise für Hubsteiger bei Wagert (2016) und Kräne bei Steckmann (2016).
- Aufwandwerte für die Montage werden in Schultheis et. al. (2016) abgeschätzt.

Es wird eine Wegstrecke von etwa 215km angenommen. Daraus folgen für den Transport von Einzelteilen Kosten von 4.720€, den Transport von Segmenten auf liegenden Sattelzügen 5.220€ und für den Transport von Segmenten auf Schrägladern 12.700€ je Fachwerkträger. Da das Auf- und Abladen der Segmente schneller geht als bei der Variante mit Einzelteilen, ist der Transport mit horizontal liegenden Segmenten dann am wirtschaftlichsten, wenn die Wegstrecke den Transport mit 4,22m Breite zulässt. Ansonsten wird der Transport von Einzelteilen empfohlen.

Die Nettogesamtkosten von der Herstellung bis zum Einbau auf der Baustelle stellen sich für einen einzelnen Fachwerkträger wie folgt zusammen:

Herstellung:	20.000€
Transport:	5.000€
Endmontage:	20.000 €
Gesamt:	45.000 €

11. Anwendungsgebiete der Entwicklung

11.1 Fachwerkträger

Die modulare Fügung von Fachwerkträgern bietet vielfältige Einsatzmöglichkeiten. Fachwerkträger verschiedener Konstruktionsarten und unterschiedlicher Spannweiten im Hochbau sind denkbar. Dabei reicht das Anwendungsgebiet vom Logistikzentrum über Messe- Sport- und Veranstaltungshallen bis hin zu Stadiendächern sowie Dachkonstruktionen von Bahnstadionen und Flughäfen. Immer dort, wo eine stützenfreie Konstruktion gewünscht ist, ist der Fachwerkträger prädestiniert. Zusätzlich wird auch noch der Brandschutz bedient. In einem weiteren Schritt könnte das Fachwerk auch im Brückenbau eingesetzt werden.

Abb. 11.1: Darstellung Fachwerkträger und Knotenpunktdetail (Schubert 2017)

11.2 Hochbau/Ingenieurbau

Im Hoch- und Ingenieurbau finden sich sehr viele Möglichkeiten stabförmige Bauteile miteinander modular zu fügen. Immer dann, wenn zwei Stahlbetonbauteile an einer Verbindung aneinander treffen ist eine Verbindung notwendig. Diese wird aktuell meist monolithisch hergestellt. Aktuell auf der Baustelle verwendete Systeme für einen nachträglichen Anschluss der Bauteile sind aufgrund von Problemen wie Sicherstellung des Brandschutz und geringer Tragfähigkeit eher die Ausnahme.

Abb. 11.2: Anwendungsbeispiel Hochbau (Knörnschild Ingenieure)

Abb. 11.3: Anwendungsmöglichkeiten für Fertigteile im Hoch- und Ingenieurbau: Anschluss Riegel an Stütze (links); Haupt- an Nebenträger (mitte); Binder an Stütze (rechts)

Konsole an Stütze

Bei einem Konsolenanschluss müssen folgende Punkte beachtet werden:

- Für die Konsole muss die Regelschalung unterbrochen und die Konsole aufwendig eingeschalt werden.
- Beim Transport wird aufgrund der Konsolen ein größerer Platzbedarf benötigt.

Die ideale Ausnutzung der Regelschalung lässt sich mit einer nachträglich anzuschließenden modularen Konsole sowie mit einer in einem zweiten Schritt monolithisch betonierten Konsole oder einer nachträglich über Verguss angebrachten Konsole erreichen.

Die modulare Konsole hat den Vorteil, dass Stütze und Konsole getrennt und zum gleichen Zeitpunkt betoniert werden können. Der Anschluss mit Stahlzahnleiste und der Anschluss mit Betonverzahnung lässt eine komplette modulare, auch nachträglich demontierbare Konstruktion zu. Auch der Transport wäre hiermit sehr einfach.

12. Zusammenfassung

Allgemeines

Verbindungsteile, die große Kräfte übertragen, werden im Stahlbetonbau derzeit noch monolithisch und vor Ort betoniert. Zudem lassen sich große Betonfertigteile entweder gar nicht oder nur mit großen Aufwand transportieren. Im Rahmen dieses Forschungsvorhabens wird ein weitspannender, modularer Referenzfachwerkträger (Abb. 1.2) aus Hochleistungsbeton (High Performance Concrete HPC) entwickelt, dessen einzelne Elemente mit Hilfe einer innovativen Verbindungstechnologie einfach hergestellt und schnell und sicher gefügt werden können. Die Kraftübertragung in den Kontaktflächen der Verbindungen geschieht mit Hilfe einer zu definierenden, optimierten Verzahnung. Auf den Ansatz der unsicheren und nur sehr schwer bestimmbaren Reibung wird aus Sicherheitsgründen bewusst verzichtet.

Diese Verbindungstechnologie ist für die Verwendung von Hochleistungsbeton HPC prädestiniert und lässt sich für eine Vielzahl unterschiedlichster Verbindungsprobleme im Fertigteilbau adaptieren. Auf diese Weise wird der Einsatzbereich von Massivkonstruktionen aus HPC auf schlanke, weitspannende Tragwerke erweitert, die bisher nur in Stahl wirtschaftlich herstellbar sind.

Entwurf des modularen Referenzfachwerkträgers

Exemplarisch wird eine freistehende geschlossene Halle mit einer Breite von 60m und einer Länge von 100m Schneelastzone 2 sowie der Windlastzone 2 angenommen.

Ausgehend von einer Vordimensionierung wird in einer Parameterstudie die Abhängigkeit des Tragverhaltens von der Systemhöhe sowie von der Ausfachungsart untersucht. Dabei werden verschiedene Systemhöhen und Ausfachungsarten hinsichtlich der Schnittgrößen, Spannungen, Verformungen und der Kubatur und somit des Eigengewichts untersucht. Die Systemhöhe von 3,75m stellt für den betrachteten Referenzfachwerkträger ein Optimum dar.

Der Fachwerkträger wird aus Beton mit der Betongüte C100/115 geplant. Das verwendete Material für die Zahnleisten ist ein Stahl S235, für die Gewindestangen und die Spannlitzen wird auf den Anhang Tab. FA.13 verwiesen.

Berechnung der Schnittgrößen und Bemessung der Bauteile des Fachwerkträgers

Der Fachwerkträger wird am dreidimensionalen Einzelträger (Abb. 3.2) sowie einem 3D-Modell einer beispielhaften Halle untersucht. Die Stabwerksberechnungen werden mit dem Programm Sofistik durchgeführt.

Die Schnittgrößenermittlung wird nach Theorie II. Ordnung unter Berücksichtigung der Vorverformungen durchgeführt. Neben dem Endzustand werden auch alle maßgebenden Bau- und Montagezustände untersucht.

Die Bemessung der Bauteile (Abb. 3.3 u. 3.4) erfolgt nach DIN EN 1992 am herausgelösten Bauteil auf Grundlage der Schnittgrößen aus der Stabwerksberechnung.

Es werden folgende Betrachtungen zum modularen Fachwerkträger gemacht:

- Untersuchung und Festlegung zu Segmentverbindungen
- Dauerhaftigkeit der Anschlüsse
- Brandschutz Anforderungen und Einordnung der Konstruktion
- Bauzustände von der Herstellung bis zur Montage

Modularer Referenzfachwerkträger aus baubetrieblicher Sicht

Die baubetriebliche Abwicklung des modularen Fachwerkträgers wird in einer Studie analysiert. Dabei liegt die Überlegung zu Grunde, den Fachwerkträger in seinen einzelnen Elementen im Fertigteilwerk als "Endlostrang" zu produzieren. Dieser kann nach der Erhärtungszeit in die gewünschte Länge gesägt und bei Bedarf noch nachbearbeitet (z. B. geschliffen) werden. Somit ist der Schwindvorgang teilweise abgeklungen. Die Bauteile können durchgängig produziert werden, wodurch eine kontinuierliche Auslastung der Produktion erreicht wird. Bei Auftragseingang werden die Elemente entsprechend abgelängt.

Es werden die drei Hauptbereiche, die Herstellung, der Transport und die Montage betrachtet und dabei auf einzelne Arbeitsschritte eingegangen. Weiterhin werden die Kosten für einen Fachwerkträger ermittelt.

Funktionsweise der Hochleistungsverbindung

Die neue Verbindung besteht aus zwei gezahnten Stahleinbauteilen, die in die Schalung der zu fügenden Bauteile eingelegt werden. Die Stahleinbauteile befinden sich an den beiden Verbindungsflächen der Betonfertigteile. Das Stahleinbauteil hat auf der Betonseite eine Stahlverzahnung mit großmassstäblichen Zähnen, um die Kräfte aus dem Betonbauteil in das Stahleinbauteil einzuleiten. Auf der gegenüberliegenden Seite hat das Stahleinbauteil kleinmassstäbliche Zähne, mit der die Kräfte von einem Stahleinbauteil zum anderen übertragen werden. Die Kraftübertragung zwischen den Fertigteilen erfolgt durch das formschlüssige Ineinandergreifen der kleinmassstäblichen Zähne der Stahlleisten. Der Formschluss wird durch eine senkrecht zur Zahnleiste verlaufende und ohne Verbund vorgespannte Gewindestange gewährleistet (Schmidt 2018).

Eigenschaften und Einsatzmöglichkeiten der neuen Verbindung

Die modulare Verbindung ist in vielfältigen Anschlusssituationen im Stahlbetonfertigteilbau einsetzbar und lässt eine trockene Fügung der Elemente zu. Die Fertigteile werden separat gefertigt und auf der Baustelle montiert. Die Verbindung kann große Kräfte übertragen, ist robust und duktil. Eine effiziente Herstellung und Montage ist möglich. Der Toleranzausgleich funktioniert, indem die Stahleinbauteile bei Bedarf um einen oder mehrere der Stahl/Stahlzähne versetzt werden. So kann die Lage der Einbauteile innerhalb der üblichen Hochbautoleranzen bis auf eine halbe Zahnbreite (= 1,8mm) exakt platziert werden (Schmidt 2018).

Das Anforderungsprofil an die Verbindung im Überblick:

- Vielfältige Anschlusssituationen
- hoher Vorfertigungsgrad der Elemente
- einfache Herstellung
- platzsparender Transport der Fertigteile
- Effiziente Montage und Demontage der Elemente
- Trockene Fügung
- Übertragung von großen Kräften
- Dauerhaftigkeit
- Brandschutz
- Schlanke Tragwerke
- Toleranzausgleich

Vorgehensweise bei der Entwicklung

Auf Grundlage des Anforderungsprofils und bereits bekannten modularen Verbindungen wird das Verbindungskonzept entworfen. Die darin enthaltene Stahl/Stahlverzahnung wird unter Einbezug einer Analyse von Maschinenelementen und darauffolgenden numerischen Parameterstudien entwickelt und optimiert. Das erfolgt in folgenden Schritten:

- Grundlegende Überlegungen zur Zahnhöhe und Neigung der Zahnflanken gemacht.
- Entwurf und Konstruktion verschiedener Zahngeometrien.
- Modellierung im FE-Programm Ansys.
- Simulation der Spannungsverteilung an einem Zahnleistenpaar mit der Finite-Element-Methode. (FEM) physikalisch linear sowie nichtlinear und geometrisch nichtlinear.
- Festlegung einer Geometrie auf Grundlage dieser Ergebnisse.
- Optimierung der Geometrie durch Parameteruntersuchungen am FE-Modell.
- Untersuchung der Geometrie in experimentellen Versuchen.

Diese Stahl/Stahlverzahnung wird in vier Versuchsphasen experimentell und numerisch untersucht. Zunächst erfolgt die Betrachtung isoliert an kleinformatigen Stahlprismen mit schräger gezahnter Grenzfläche. In einem zweiten Schritt werden Stahleinbauteile - eingebettet in ein Betonprisma - getestet. In den beiden letzten Phasen werden Konsolen und Fachwerkknoten im Maßstab 1:1 untersucht. Zur Bemessung wird sowohl für das Stahleinbauteil als auch für die Verbindung ein Ingenieurmodell entwickelt (Schmidt 2018).

Werkstoff Stahl und Materialmodell

Die Zahnleisten werden aus Stahl S 235 oder höherwertig hergestellt. Für alle Versuchskörper wird die Stahlgüte S235 verwendet. Die Geometrie der Prüfkörper orientiert sich an der maximalen Prüfkraft der Prüfmaschine. Die für die numerische Simulation verwendeten mechanischen Werkstoffkennwerte werden in Versuchen ermittelt.

Die Spannungsdehnungslinie wird für weitere Betrachtungen sowohl Bilinear als auch Multilinear abgebildet. Die bilineare Kurve wird durch das Tangentenmodul einmal bis zur Zugfestigkeit und einmal bis zum Bruch abgebildet. Die multilineare Kurve wird aus dem Mittelwert mehrerer Zugversuche abgeleitet. In Vergleichsrechnungen werden die Unterschiede aus der Berechnung mit "Ingenieurspannungen" sowie mit "Wahrer Spannungen" untersucht.

Werkstoff Beton und Materialmodell

Es wird der Beton Ultralith der Firma Drössler Bauunternehmung, Siegen sowie selbstverdichtender Hochleistungvergussbeton BETEC 180 der Firma GCP Germany GmbH, Essen verwendet. Das Werkstoffverhalten verläuft weitegehend linear bis zu Bruch. Aus Versuchen an Zylindern bzw. an Referenzprismen werden die Materialkennlinien bestimmt und im Materialmodell als linearer Verlauf abgebildet.

Durchgeführte Versuche und Schlussfolgerungen

- a) Entwurf Geometrie: Es werden unterschiedliche Zahngeometrien entworfen und in FE-Rechnungen untersucht. Dabei werden die Vergleichsspannungen am Zahn und verteilt über die gesamte Zahnleiste verglichen. Die Geometrie GT5 (vgl. Tab. 5.2) zeigt hier ein gutes Verhalten. Da GT5 aufgrund der Zahngröße auch bei der Kompensation von Toleranzen gut eingesetzt werden kann, wird diese Geometrie für die weitere Entwicklung gewählt.
- b) Fertigung: Die Verzahnungen der verwendeten Stahlbauteile werden durch Wasserstrahlschneiden hergestellt. Es wird ein Prototyp mit der Geometrie GT3, die Prüfkörper mit der Geometrie GT5 und GT7 hergestellt. Die drei Verzahnungen sind unterschiedlich groß, was zu unterschiedlichen Fertigungsgenauigkeiten führt. Je kleiner die Zähne sind, desto ungenauer können sie gefertigt werden.
- c) **Phase I:** An Stahlprismen mit einer schrägen, gezahnten Grenzfläche, werden die Lastangriffswinkel $\theta = 20^{\circ}, 25^{\circ}, 30^{\circ}, 45^{\circ}, 50^{\circ}, 70^{\circ}$ und 90° getestet. Dabei wird die Geometrie GT5 verwendet. Zusätzlich wird an zwei Versuchskörpern die Geometrie GT7 untersucht um die Geometrien vergleichen bzw. die Geometrie GT5 einordnen zu können.
- d) Phase II: Das Trag-und Verformungsverhalten der Stahl/Stahl-Zähne verhält sich ähnlich wie die Stahl/Stahl-Prismen in Phase I, da sich auch hier bei der 30° Neigung ein gleitendes Versagen einstellt. Bei der 70° geneigten Zahnleiste verformen sich die Zähne, jedoch findet hier das maßgebende Versagen im Beton statt. Trotzdem verformen sich auch hier die Zähne sehr stark. Die Stahl/Stahl-Verzahnung der eingebetteten Zahnleisten verhält sich während des Versuchs bis zum Betonversagen wie die Stahl/Stahl-Verzahnung in Phase I. Für den Kraftneigungswinkel θ=30° kann eine Kraft je Zentimeter Zahnlänge von q_{sz}=6,0kN/cm und für den Kraftneigungswinkel θ=70° eine Kraft q_{sz}=17,0kN/cm aufgenommen werden.
- e) **Phase III:** Die Prüflasten der Versuche an den Konsolen sind bei identischen Kraftneigungswinkel geringer als die während der Phase I gemessenen Lasten. Das ist mit der komplexeren Verbindungssituation zu erklären.
- f) Phase IV: Für den Kraftneigungswinkel von etwa θ =50° kann eine Kraft je Zentimeter Zahnlänge von q_{sz}=10,0kN/cm aufgenommen werden. Diese Kraft liegt etwas unterhalb der aufnehmbaren

Last aus Phase I (12,4 und 11,8 kN/cm Zahnlänge). Der geringe Unterschied kann jedoch auf die komplexere Verbindungssituation zurückgeführt werden.

Ingenieurmodell

In einem Modell, bei dem zwei Zahnleisten aufeinander liegen und die Kräfte über Kontakt von einer Zahnleiste zur anderen weiterleiten, werden anhand von linear-elastischen FE-Berechnungen die Spannungsvektoren abgebildet (Abb. 9.2). Daraus wird mithilfe eines Stabwerkmodells der Lastfluss in der Zahnleiste interpretiert (Abb. 9.5). Dieser Lastfluss beruht auf einem reibungsfreien Kontakt zwischen den Zahnleisten. Weiter wird betrachtet, wie groß die Spannungen an jedem Stahlzahn entlang der Zahnleiste sind (Abb. 9.6 u. 9.7). Die Zahnleiste kann in drei Bereiche aufgeteilt werden. Am Leistenanfang steigen die Spannungen an. Dieser Anstieg zeigt sich innerhalb der ersten vier Zähne. Dieser Bereich wird als "Steigender Bereich" bezeichnet. Es folgt der "Konstante Bereich", indem die Spannungen konstant sind. Am Leistenende nehmen die Spannungen wieder über vier Zähne ab. Dieser Bereich wird als "Fallender Bereich" bezeichnet. Damit kann die Spannungsverteilung innerhalb der Zähne Prozentual gewichtet werden. Zuletzt werden die Spannungen am Zahn bzw. an der Zahnflanke betrachtet (Abb. 9.11). Es zeigen sich zwei Bereiche mit Spannungskonzentrationen, die auf das Phänomen der Hertz`schen Pressungen zurückzuführen ist. Zwischen diesen Spannungsspitzen sind die Spannungen niedriger. Der Spannungsverlauf kann integriert werden. Die Gesamtspannung entspricht dem Anteil der Gesamtkraft am einzelnen Zahn. Vereinfacht kann der Spannungsverlauf an der Zahnflanke über drei Trapeze abgebildet werden (Abb. 9.12). Es wird eine Formel hergeleitet und die Spannungen an der Zahnflanke analytisch zu berechnen. Dabei ist es möglich die Spannungen an einem Punkt oder für beliebige Bereiche integriert zu berechnen. Das Ingenieurmodell beruht auf einen reibungsfreien Ansatz und unter Annahme eines linear-elastischen Werkstoffverhaltens (Schmidt 2018). Der Berechnungsansatz liegt auf der sicheren Seite. FE-Berechnung zeigen, dass der Ansatz der Reibung, die Vergleichsspannungen im Bereich der Zahnflanken um etwa 15% mindert. Auch durch die Berücksichtigung der Verfestigung der Stahlzähne im plastischen Bereich der Spannungs-Dehnungslinie können beträchtliche weitere Tragreserven aktiviert werden. Das in diesem Forschungsbericht gezeigte Bemessungskonzept verzichtet auf den laststeigernden Ansatz dieser Reserven. Weitere Erläuterungen sind Schmidt (2018) zu entnehmen.

Ausblick auf weiteren Forschungsbedarf

Weiterer Forschungsbedarf:

- Untersuchungen zur Ermüdung der Stahlzahnleiste um den Anwendungsbereich auf den Brückenbau zu erweitern.
- Untersuchung, wie sich die Verformungen der gesamten Konsole über die Zeit entwickeln. Sowohl die Gewindestange als auch die Lasteinleitungsbereiche und der Druckknoten (Betondruckstrebe an der Zahnleiste) können Kriechverformungen erfahren und dadurch das Last-/Verformungsverhalten beeinflussen.
- Untersuchungen an kragarmartigen Konsolen sowie an Träger/Stützen-Anschlüssen sind wünschenswert um auch zu weiteren Anwendungen fundierte Erkenntnisse zu bekommen (Schmidt 2018).

Quellenverzeichnis

Abdul-Wahab 1989 Abdul-Wahab, H. M. S.: Strength of Reignforced Concrete Corbels with Fibres. ACI Structural Journal, 1987, vol. 86, Nr. 1, S. 60-66

AquaContour GmbH 2017 AquaContour GmbH, Usingen; Bild: Fertigungsprozess Zahnleisten; zugesandt am 29.08.2017

Andrä 1985 Andrä H.-P.: Neuartige Verbindungsmittel für den Anschluss von Ortbetonplatten an Stahlträger. Beton- und Stahlbetonbau. Band 80. Heft 12, 1985. S. 325-328

Bauschinger 1976 Bauschinger, J.: Versuche mit Quadern aus Naturstein. In: Mitteilungen des Mech.-Tech. Laboratorium der TH München (1876), Nr. 6

Betonkalender 2013 Bergmeister, K. Fingerloss, F., Wörner, J.-D.: UHPC

Birkle et al. 2001 Birkle, G.; Dilger, W.; Ghali, A.; Schäfer, K.: Doppelkopfstäbe in Konsolen. Laborversuche und Bemessung. Beton- und Stahlbetonbau 96,2 1001, Heft 2, S. 82 - 89.

Bomhard; Müller 1977 Bomhard, H.; Müller P.: Fachwerkträger aus Beton für hochnutzungsflexible Gebäude am Beispiel der ZMK-Klinik in Münster. Beton- und Stahlbetonbau 72 (1977); S.101-107

Bruneau et. Al. 1984 Bruneau, J.; Raspaud, B; Causse, G; Radiguet, B: Experimentation d'une structure treillis en beton. In: IABSE (Hrsg.): 12th Congress, Vancouver, 3.-7. September 1984, Zürich: IABSE, 1984

Chakrabarti et al. 1987 Chakrabarti, P. R.; Farahani, D. J.; Kashou, S. I.: Reinforced and Precompressed Concrete Corbels – An Experimental Study. ACI Structural Journal, 1989, vol. 86, Nr. 4, S. 405-412.

Curbach et al. 2011

M. Curbach, T. Hampel, S. Scheerer und K. Speck, "Experimentelle Analyse des Tragverhaltens von Hochleistungsbeton unter mehraxialer Beanspruchung," Deutscher Ausschuss für Stahlbeton, Heft 578, 2011.

Dallard 1998 Dallard, Pat: Buckling. An Approach Based On Geometric Stiffness and Eigen Analysis. Unveröffentlichtes Dokument. ARUP, June 1998.

DAfStB. Heft 240 Deutscher Ausschuss für Stahlbeton, Heft 240 - Erläuterungen zu DIN 1045-1, 2., überarbeitete Aufl.; Beuth, Berlin, 1991.

DAfStb. Heft 525, 2010 Deutscher Ausschuss für Stahlbeton, Heft 525 - Erläuterungen zu DIN 1045-1, 2., überarbeitete Aufl.; Beuth, Berlin, 2010. DAfStb. Heft 600, 2012

Deutscher Ausschuss für Stahlbeton, Heft 600 - Erläuterungen zu DIN EN 1992-1-1 und DIN EN 1992-1-1/NA (Eurocode 2), 1. Aufl.; Beuth Verlag, Berlin, 2012

Dehlinger 2004

Dehlinger, C; Stählerne Verzahnungen für Stahlbetonkonstruktionen; Fakultät Bau- und Umweltingenieurwissenschaften der Univ. Stuttgart; 2004

Dicleli 2013

Dicleli, C.: Ulrich Finsterwalder – Ein Leben für den Betonbau; Sonderdruck aus: Beton- und Stahlbetonbau 108 (2013); Ernst & Sohn; S. 11

Deinhard 1964

Deinhard J.-M.: Massivbrücken gestern und heute. Vom Caementum zum Spannbeton; Wiesbaden; Bauverlag; 1964

DNV 2013

Det Norske Veritas AS: Determination of Structural Capacity by Non linear FE analysis Methods; Norway 2013

Eibl 1990

Eibl, J.; Bachmann, H.; Nachträgliche Verstärkung von Stahlbetonbauteilen mit Spritzbeton. Betonund Stahlbetonbau 85 (1990), H.1, S. 1-4. H.2, S.39-44

Eibl/Zeller 1983

Eibl, J.; Zeller, W.: Bruchversuche an Stahlbetonkonsolen bei Veränderung des Bewehrungsgrades. Abschlussbericht, Universität Karlsruhe, 1983.

Eibl/Zeller 1993

Eibl, J.; Zeller, W.: Untersuchungen zur Traglast der Druckdiagonalen in Konsolen. Beton- und Stahlbetonbau 88,19 193, Heft 1, S. 23-26.

Empelmann et al.

Empelmann, M; Busse, D.; Hamm, S.; Zedler, T.; Girmscheid, M.: Adaptive ,Tube-in-Tube'-Brücken; Berichte der Bundesanstalt für Straßenwesen, Brücken und Ingenieurbau, Heft B 102

Fattuhi et al. 1989

Fattuhi, N.I., Hughes, B. P.: Ductility of Reinforced Concrete Corbels Containing either Steel Fibres or Stirrups. ACI Structural Journal, 1989, vol. 86, Nr. 6, S. 644-651.

Fattuhi 1990

Fattuhi, N. I.: Strength of SFRC Corbels Subjected to Vertical Load. Journal of Structural Engineering ASCE 1990, vol. 116, Nr. 3, S. 701-718.

Feldhaus 1914

Franz M. Feldhaus: Die Technik der Vorzeit, der geschichtlichen Zeit und der Naturvölker. Ein Handbuch für Archäologen und Historiker, Museen und Sammler, Kunsthändler und Antiquare. Wilhelm Engelmann, Leipzig u. a. 1914, Sp. 1341

Fehling et. al. 2005 FEHLING. E.; SCHMIDT, M.: Entwicklung, Dauerhaftigkeit und Berechnung Ultrahochfester Betone (UHPC) – Forschungsbericht DFG FE 497/1-1;Schriftenreihe der Universität Kassel. 2005

Finsterwalder 1937

Finsterwalder, U.: Die Anwendung von hochwertigem Stahl im Eisenbeton; IABSE Publications 5; 1937; S. 123-132

Finsterwalder 1938 Finsterwalder, U.: Eisenbetonträger mit selbsttätiger Vorspannung; Bauingenieur 19; 1938; S. 495-499

Finsterwalder 1959 Finsterwalder, U.: Die neue Mangfallbrücke. In: Deutscher Beton-Verein (Hrsg.): Vorträge auf dem Betontag, München, 13.-15. Mai 1959; Berlin; Deutscher Beton-Verein

Fischer 2014 et. al. Fischer, O.; Lechner, T.; Mensinger, M.; Ndogm J.; Seidl G.; Stambuk M.: Entwicklung dünnwandiger, flächenhafter Konstruktionselemente aus UHPC und geeigneter Verbindungstechniken zum Einsatz im Hoch- und Industriebau; Abschlussbericht F 2912; 2014

Foster/Powell/Selim 1996 Foster, S. J.: Powell, R. E.; Selim, H. S.: Performance of High-Strength Concrete Corbels. ACI Structural Journal, 1996, vol. 93, Nr. 5, S. 555-563.

Grattesat 1982 Grattesat, G.: Ponts de France. Paris: Presses de l'Ecole nationale des ponts et chaussees; 1982

Gründel 2009

Gündel, M.; Dürr, A.; Hauke, B.; Hechler, O.: Zur Bemessung von Lochleisten als duktile Verbundmittel in Verbundträgern aus höherfesten Materialien. Stahlbau, Ernst und Sohn Verlag, 2009, S. 916-924

Halasz 1966

Halasz, R. von: Industrialisierung der Bautechnik: Bauen und Bauten mit Stahlbetonfertigteilen. Düsseldorf: Werner, 1966

Hauke 2007

Hauke, B.: Aperture plates as ductile shear connectors for high performance composite members. Symposium on Connections between steel and concrete, Stuttgart 2007

Hämmerle et.al. 2012 Hämmerle, M.; Braza, B.; Stutzka, C.: Die Radwegbrücke über die Alfenz. Filigrane Fachwerkkonstruktion in Beton. Zement und beton (2012), S. 11-15.

Hegger et al. 2004

Hegger, J; Roeser, W.; Lotze, D.: Kurze Verankerungslängen mit Rechteckankern. Beton- und Stahlbetonbau 99,2 1004, Heft 1, S. 1 - 9.

Henze 2009

Henze, S.: Entwicklung und Beschreibung des Tragverhaltens einer modularen Fachwerkkonstruktion aus Hochleistungsbeton, Dissertation, Universität Leipzig, 2009

HolTech GmbH & Co. KG 2017 HolTech Antriebstechnik GmbH & Co. KG, Schloß Holte-Stukenbrock; Bild: Zahnräder; zugesandt am 14.08.2017

HTA Association 2009 HTA Association: Honeycomb tube architecture technology. Tokio: Shinkenchiku-Sha, 2009

IWKa 2010

Institut für Werkstoff- und Konstruktionsentwicklung: Bauwerksbeschreibung MFH Ulm. 2010

IWKb 2010 Institut für Werkstoff- und Konstruktionsentwicklung: Bemessungsgrundlagen für Statik MFH Ulm. 2010 Jones 1959 Jones, L.: Shear Tests on Joints between Precast Post-Tensioned Units, Magazine of Concrete Research, Vol. 11, No. 31, S. 25-30, März 1959 Kobler 2013 Kobler M.: Ein Implantat zur Einleitung konzentrierter Lasten in Bauteile aus ultra-hochfestem Beton; Dissertation, Institut für Werkstoffe Univ. Stuttgart; 2013 Kritz/Raths 1965 Kriz, L. B.; Raths, C. H.: Connections in Precast Concrete Structures - Strenght of Corbels. PCI Journal, 1965, S. 16 - 61. Leonhard et al. 1987 Leonhardt, F.; Andrä, W.; Andrä, H.-P.: Neues vorteilhaftes Verbundmittel für Stahlverbundbau-Tragwerke mit hoher Dauerhaftigkeit. Beton- und Stahlbetonbau. Band 82. Heft 12, 1987. S. 325-331. Leonhardt Mönnig 1975 Leonhardt, F., Mönnig, E: Vorlesungen über Massivbau. Zweiter Teil: Sonderfälle der Bemessung im Stahlbetonbau; Springer-Verlag Berlin, Heidelberg, New York, 1975 Mangerig 2000 Mangerig, I. und Zapfe, C.: Ermüdungsfestigkeit von Betondübeln. Beitrag in: "Theorie und Praxis" im Konstruktiven Ingenieurbau. Festschrift zu Ehren von Prof. Dr.-Ing. H. Bode. Ibidem Verlag Stuttgart. 2000 Mangerig et.al 2011 Mangering, I.; Burger, S.; Wagner, R.; Wurzer, O.; Zapfe, C.: Zum Einsatz von Betondübeln im Verbundbau (Teil 1) - Ruhende Beanspruchung; Stahlbau, 80(12);2011; S. 885-893 McKechnie et. al. 2002 McKechnie, Steve; Ian Feldham; Pat Dallard: Buckling Analysis using the Dallard Method in GSA. Unveröffentlichtes Dokument. ARUP, July 2002 Mehmel/Freitag 1967 Mehmel, A.; Freitag, W.: Tragfähigkeitsversuche an Stahlbetonkonsolen. Der Bauingenieur 42,1967, Heft 10, S. 362 - 369. Muhs et al 2011 Muhs, D., Wittel, H., Jannasch, D., Voßiek, J.: Roloff/Matek: Maschinenelemente: Normung, Berechnung, Gestaltung; 20. Auflage Vieweg+Teubner Verlag, 2011 Mörsch 1908 Mörsch, Emil: Der Eisenbetonbau, seine Theorie und Anwendung mit Versuchen und Bauausführungen der Firma Wayss & Freitag; 3. neu bearbeitete u.vermehrte Auflage; Verlag von Konrad Wittwer; Stuttgart 1908 Nettekoven 2018 Nettekoven, Tobias: Dissertation i. V.; TU Berlin; 2018

Niedenhoff 1961 Niedenhoff, H.: Untersuchungen über das Tragverhalten von Konsolen und kurzen Kragarmen. Dissertation, Universität Karlsruhe, 1961. Nissen 1987

Nissen, I.: Rissverzahnung des Betons – gegenseitige Rissuferverschiebungen und übertragende Kräfte. TU München, Dissertation, Lehrstuhl für Massivbau, 1987

Oettel 2013

Oettel, V; Empelmann, M.:: Feinprofilierte UHPFRC-Trockenfugen für Segmentbauteile. Beton- und Stahlbetonbau 108 (2013), Heft 7

Pohle 1957

Pohle, W.: Konzentrierte Lasteintragung in Beton. Berlin : Ernst & Sohn, 1957 (DAfStb-Heft 122)

Preco-Beam 2010

Mangerig, I.; Seidl, G.; et al.: Preco-Beam – Prefabricated Enduring Composite Beams based on Innovative Shear Transmission. Abschlussbericht RFSR-CT-2006-00030, 2010

Reitz 2003

Reitz, D.: Grundlagen zur Bemessung der Perfobondleiste als duktiles Verbundmittel. Dissertation, TU Darmstadt, 2003

Richard 1984

Richard, P.: Structures triangelees en beton. Annales de IÌnstitut Technique du Batiment et des Travaux Publics – Beton 37 (1984), S. 26-30

Rombach 2010 Rombach, G.: Spannbetonbau, 2. Auflage Hrsg., Berlin: Ernst&Sohn, 2010

Roik 1978

Roik K.; Brückner, K.-E.: Reibwert zwischen Stahlgurten und aufgespannten Betonfertigteilen. Bauingenieur 53 (1978), S.37-41

Rust 2011

Rust, W.: Nichtlineare Finite-Elemente-Berechnungen - Kontakt, Geometrie, Material; Vieweg+Teuber; 1. Auflage, 2009

Ruth 1993 Ruth, J; Werkstoffverhalten in Grenzflächenbereichen der Tragelemente von Bauwerken; Institut für Tragwerksentwurf- und konstruktion der Univ. Stuttgart; Juli 1993

Schlaich et al. 2002 Schlaich, J.; Schlaich, M.; Schmid, V.: Stahlverbundbrücken – neue Erfahrungen. Die Entwicklung von Verbindungen mit Zahnleisten, In: Bauingenieur, 77 (2002), H. 3, S. 95-107, Berlin: Ernst & Sohn

Schmid 2000 Schmid, V; Hochbelastete Verbindungen mit Zahnleisten in Hybridtragwerken aus Konstruktionsbeton und Stahl; Institut für Tragwerksentwurf und -konstruktion der Univ. Stuttgart; 2000

Schmidt/Stranghöner 2011 Schmidt, H., Stranghöner, N.: Ausführung geschraubter Verbindungen nach DIN EN 1090-2, In: Stahlbau Kalender 2011, Eurocode 3 – Grundnorm, Verbindungen, S. 283 – 340, Berlin: Ernst & Sohn

Schmidt 2018

Schmidt, Jonas: Neue Verbindungen mit gezahnten Hochleistungs-Grenzflächen aus Stahl zur hocheffizienten und duktilen Kraftübertragung zwischen Fertigteilen aus HPC, Dissertation, TU Berlin, 2018 Schmidt, 2016 Schmidt, K.-P. Fa. STL Logistik AG (L. Vorderwülbecke, Interview vom 22.08.2016)

Schöwer 2013

Schöwer R.; Das Baustellenhandbuch der Maßtoleranzen; 7. Auflage; Forum Verlag Herkert GmbH; 2013; S. 79

Schöning et.al. 2013 Schöning, J.; Della Pietra, R.; Hegger, J.; Tue, N. V.: Verbindungen von Fertigteilen aus UHPC. In: Bautechnik (2013) Bautechnik 90, S. 304–13.

Schürmann 1985

Schürmann, U.: Vorgespannte Schraubverbindung zur Befestigung von Stahlbetonkonsolen. Dissertation, Universität Dortmund, 1985

Sobek 2011

Sobek, W.; Mittelstädr, J; Kobler, M.: Fügung schlanker Bauteile. Beton- und Stahlbetonbau. Band 106. Heft 11, 2011. S. 779-784

Specker 2001

SPECKER, A.: Der Einfluss der Fuge auf die Querkraft- und Torsionstragfähigkeit extern vorgespannter Segmentbrücken. Dissertation TU Hamburg-Harburg, 2001

Spieth 1959

Spieth, H.P.: Das Verhalten von Beton unter hoher örtlicher Pressung und Teilbelastung unter Berücksichtigung von Spannbetonverankerungen, Universität Stuttgart, Diss., 1959

Stiglat 1991

Stiglat, K: Beispiele aus der Ingenieurbaukunst: Stahlbeton-Fachwerk-Bogenbrücke über die Allier bei Boutiron/Vichy; Beton- und Stahlbetonbau 86; 1991; S. 17-18

Tandler 2013

Tandler, J.M.; Experimentelle und nummerische Untersuchungen an Hochleistungsverbindungen mit Zahnleisten; Fakultät - IV Planen Bauen Umwelt - TU Berlin; 2013

Tauscher 2013

Tauscher, F.: Erfahrungen mit selbstverdichtendem und hochfestem Beton im Brücken- und Ingenieurbau an Bundesfernstraßen; 2013; S. 9

Thiele, Lohse 1997 Thiele, A.; Lohse, W.: Stahlhochbau; 18. Auflage; Stuttgart; Teuber; 1997

Tong-Hua 1987 Tong-Hua, Y: Concrete Trussed arch bridges in China; Canadian journal of civil engineering; Heft 14; S. 820-827; 1987

Tue/Schneider 2003

Tue, V.; Schneider, H.: Besonderheiten bei der Bemessung und der konstruktiven Ausbildung von Bauteilen aus UHPC im Rahmen der Zulassung im Einzelfall. In der Schriftenreihe Baustoffe und Massivbau, Heft 2, Universität Kassel, 2003.
TUE 2004

TUE, N.V.; SCHNEIDER, H.; SCHMIDT, D.; SIMSCH, G.: (2004) "Bearing Capacity of Stub Columns made of NSC, HSC and UHPC confined by a Steel Tube"; International Symposium on Ultra High Performance Concrete; Schriftenreihe Baustoffe und Massivbau, Heft 3; Kassel, Germany 2004; S.339 – 350

Tue 2013

Tue, N.V.: Modular Constructions made of UHPC, Conference paper Hokkaido University, Japan, 2013

Tue, o.w.A. Tue, N.V.: Precast Elements Made of UHPC – From Research to Application, Leibzig University u. TU Graz, ohne weitere Angaben.

Turmo 2006

Turmo, J. et al.: Shear strength of dry joints of concrete panels with and without steel fibres Application to precast segmental bridges, Engineering Structures 28, S. 23-33, 2006

Trygestad, De Suttler 2007 Trygestad, A.; De Sutter, M: Bookmen Stacks, Cobald Condos Use ER-POST for Column-Free Space. PCI Journal 52 (2007), S. 58-71

Wagner 2010

Wagner, R.: Untersuchungen zum Verbundverhalten von Beton-dübeln in vorwiegend ruhend und nicht ruhend beanspruchten Konstruktionen. Stahlbau, Ernst und Sohn Verlag, 2011, S. 250-255

Walraven 1978

Walraven, J.: Mechanisms of shear transfer in cracks in concrete. A survey of literature. TU Delft Report 5-78-12, 1978

Wechsler 1986 Wechsler, M. B.: Precast Concrete Trusses. Concrete International 8 (1986), . 49-54.

Weller/Tasche 2006

Weller, B.; Tasche, M.: Massive Brücken in Mitteldeutschland. Beton- und Stahlbetonbau 101 (2006) Zelger, Rüsch 1961

Wurzer 1997

Wurzer, O.: Zur Tragfähigkeit von Betondübeln. Dissertation, Universität der Bundeswehr München, 1997

Zapfe 2001

Zapfe, C.: Trag- und Verformungsverhalten von Verbundträgern mit Betondübeln zur Übertragung der Längsschubkräfte. Dissertation, Universität der Bundeswehr München, 2001

Zelger, C.; Rüsch, H.: Der Einfluss von Fugen auf die Festigkeit von Fertigteilschalen, Beton- und Stahlbetonbau 56, Heft 10, S. 234-237, 1961

Zilch; Zehetmaier 2010

K. Zilch und G. Zehetmaier: Bemessung im konstruktiven Betonbau, 2. Auflage, Berlin: Springer Verlag, 2010

Normen

AFGC

AFGC: Interim Recommendations on "Ultra High Performance Fibre-Reinforced Concretes", AFGC (Association Francaise de Genie Civil) / SETRA.

DIN EN 1990 Eurocode 0: Grundlagen der Tragwerksplanung; Deutsche Fassung EN 1990:2002 + A1:2005 + A1:2005/AC:2010

DIN EN 1991-1-1 Eurocode 1: Einwirkungen auf Tragwerke - Teil 1-1: Allgemeine Einwirkungen auf Tragwerke -Wichten, Eigengewicht und Nutzlasten im Hochbau; Deutsche Fassung EN 1991-1-1:2002 + AC:2009

DIN EN 1991-1-1/NA

Eurocode 1: Nationaler Anhang - National festgelegte Parameter - Eurocode 1: Einwirkungen auf Tragwerke - Teil 1-1: Allgemeine Einwirkungen auf Tragwerke - Wichten, Eigengewicht und Nutzlasten im Hochbau

DIN EN 1991-1-1/NA/A1

Nationaler Anhang - National festgelegte Parameter - Eurocode 1: Einwirkungen auf Tragwerke - Teil 1-1: Allgemeine Einwirkungen auf Tragwerke - Wichten, Eigengewicht und Nutzlasten im Hochbau; Änderung A1

DIN EN 1991-1-3 Eurocode 1: Einwirkungen auf Tragwerke - Teil 1-3: Allgemeine Einwirkungen, Schneelasten; Deutsche Fassung EN 1991-1-3:2003 + AC:2009

DIN EN 1991-1-3/A1 Eurocode 1 - Einwirkungen auf Tragwerke - Teil 1-3: Allgemeine Einwirkungen - Schneelasten; Deutsche Fassung EN 1991-1-3:2003/A1:2015

DIN EN 1992-1-1 Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau

DIN EN 1992-1-2

Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-2: Allgemeine Regeln - Tragwerksbemessung für den Brandfall; Deutsche Fassung EN 1992-1-2:2004 + AC:2008 (2010) DIN EN 1992-1-2

DIN EN 1992-1-2/NA Eurocode 2: Nationaler Anhang – National festgelegte Parameter – Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau (2010) DIN EN 1992-1-2/NA.

DIN EN 1994-1-1:2010-12 Eurocode 4: Bemessung und Konstruktion von Verbundtragwerken aus Stahl und Beton - Teil 1-1: Allgemeine Bemessungsregeln und Anwendungsregeln für den Hochbau; Deutsche Fassung EN 1994-1-1:2004 + AC:2009

DIN EN 1994-1-2:2010-12

Eurocode 4: Bemessung und Konstruktion von Verbundtragwerken aus Stahl und Beton - Teil 1-2: Allgemeine Regeln - Tragwerksbemessung für den Brandfall; Deutsche Fassung EN 1994-1-2:2005 + AC:2008

DIN 1045-1 DIN 1045-1: Tragwerke aus Beton, Stahlbeton und Spannbeton. Teil 1: Bemessung und Konstruktion. 2000

DIN 4102, Teil 4, Tab.5 Brandverhalten von Baustoffen und Bauteilen - Teil 4: Zusammenstellung und Anwendung klassifizierter Baustoffe, Bauteile und Sonderbauteile, 05/2016

DIN 103-1 Metrisches ISO-Trapezgewinde, 1977

BS 84 Zylindrische Schraubgewinde vom Typ Whitworth, Spezifikation, British Standard 84, 2007

DIN 3990-1:1987-12 Tragfähigkeitsberechnung von Stirnrädern; Einführung und allgemeine Einflußfaktoren

DIN 4102-4:2016-05 Brandverhalten von Baustoffen und Bauteilen - Teil 4: Zusammenstellung und Anwendung klassifizierter Baustoffe, Bauteile und Sonderbauteile

DIN 18202:2012-06 Toleranzen im Hochbau - Bauwerke

DIN 976-1 Gewindestangen:2016-09 Mechanische Verbindungselemente - Gewindebolzen - Teil 1: Metrisches Gewinde

Verwendungsnachweise

Z-13.72-30036 bzw. ETA-03/0036 SUSPA DSI Monolitzen-Spannverfahren ohne Verbund mit 1 bis 5 Monolitzen

Z-12.3-107 Spannstahllitzen ST 1570/1770

Z-13.72-50123 bzw. ETA-05/0123 DYWIDAG Stabspannsystem

Verwendete Merkblätter zum Stand der Technik

FDB MB2 2011 Fachvereinigung Deutscher Betonfertigteilbau E. V.: Merkblatt Nr. 2: "Korrosionsschutz von Verbindungsmitteln für Betonfertigteile; Fassung 06/2011

FDB MB2 2012 Fachvereinigung Deutscher Betonfertigteilbau E. V.: Merkblatt Nr. 7 über Brandschutzanforderungen von Betonfertigteilen (11/2012), 2012

ZMB/10/2002 Zement-Merkblatt Betontechnik B16 Nr. 10; 2002

Internetquellen

Baunetzwissen http://www.baunetzwissen.de; eingesehen am 30.03.2016

Berufsförderungswerk der Südbadischen Bauwirtschaft GmbH, 2011 Transport von Bauteilen; http://vh.bauwirtschaftbw.de/files/3/73/74/1.4.2_TransportvonBauelementen.pdf (Zuletzt abgerufen am 22.08.2016)

DYWIDAG-Systems International, 2016 DYWIDAG Stabspannsysteme; https://www.dywidagsystems.de/uploads/media/DSI_DYWIDAG_Stabspannsysteme_GER_02.pdf (Zuletzt abgerufen am 02.06.2016)

Ericksen ER-POST System, Fa. Ericksen Roed & Associates: <u>http://eraeng.com/er-post/er-post-system/;</u> eingesehen am 30.03.2016

PAUL Maschinenfabrik GmbH & Co. KG., 2016 Spannen auf der Baustelle; http://www.paul.eu/produkte/spannbeton-technik/spannen-baustelle.html (Zuletzt abgerufen am 04.06.2016)

Statista 2016 Transportleistung im Güterverkehr in Deutschland im Jahr 2015 nach Verkehrszweigen http://de.statista.com/statistik/daten/studie/75784/umfrage/gueterverkehr-in-deutschland-nachverkehrszweigen/ (Zuletzt abgerufen am 25.05.2016)

STL Logistik AG, 2016 www.stl-speziallogistik.de; <u>http://www.stl-speziallogistik.de/</u>; (Zuletzt abgerufen am 29.05.2016)

Interviewquellen/Angebote

Quast 2016 Vorderwülbecke Interview 08.04.2016

Steckmann, 2016 Steckmann, F. Fa. Paul Grimm GmbH: Angebot-Nr.: 7107 vom 25.08.2016

Wagert 2016 Vorderwülbecke, Interview vom 22.08.2016

Abschlussarbeiten im Forschungsprojekt

Biadatz 2015 Biadatz, P.: Fachwerkträger – Untersuchung unterschiedlicher Materialien hinsichtlich Trag- und Verformungsverhalten sowie Wirtschaftlichkeit; Bachelorthesis; Coburg 2015, unveröffentlicht

Biadatz 2017 Biadatz, P.: Berechnungen am Gesamtsystem eines räumlichen modularen Fachwerkträgers aus Stahlund Spannbeton; Masterthesis; Coburg 2017, unveröffentlicht

Glotz/ Zhanghangzhi 2015

unveröffentlicht

Glotz, A.; Zhanghangzhi, L.: Vergleichende Untersuchungen an normalfestem hochfestem und ultrahochfestem Beton - Teil 1; Bachelorthesis; Coburg 2015, unveröffentlicht Hofmann 2015 Hofmann, K.: Schubkraftübertragung durch Verzahnung; Bachelorthesis; Coburg 2015, unveröffentlicht Hofmann 2017 Hofmann, K.: Experimentelle Versuchsdurchführung an Hochleistungsverbindungsdetails im Stahlbetonfertigteilbau; Masterthesis; Koblenz 2017, unveröffentlicht Kießling 2017 Kießling, S.: Entwicklung nicht genormter Detailpunkte/Detailnachweise am Fachwerkträger: Bachelorthesis; Coburg 2017, unveröffentlicht Körber/Zheng 2015 Körber, T.; Zheng, M.: Vorspannung von Hochfesten - und Ultrahochfesten Beton; Bachelorthesis; Coburg 2015, unveröffentlicht Oertel 2015 Oertel, B.: Schubkraftübertragung durch Reibung; Bachelorthesis; Coburg 2015, unveröffentlicht Pechtold 2016 Pechtold, R.: Technische Detailuntersuchungen an Hochleistungsverbindungen zwischen Stahlbetonfertigteilen; Bachelorthesis; Coburg 2016, unveröffentlicht Schauberger 2016 Schauberger, F.: Entwicklung von Segmentverbindungen für modulare Fachwerkträger aus Stahlbetonfertigteilen; Bachelorthesis; Coburg 2016, unveröffentlicht Schubert 2015 Schubert, C.: Fachwerkträger: Knotenpunkte im Stahlbetonbau; Bachelorthesis; Coburg 2015, unveröffentlicht Schubert 2017 Schubert, C.: Theoretische und experimentelle Entwicklung von modularen Hochleistungsverbindungen im Stahlbetonbau; Masterthesis; Coburg 2017, unveröffentlicht Schultheiß et al., 2016 Schultheiß, M.; Chorbadzhiyski, K.; Ullein, F.: Baubetrieb eines Modularen Fachwerkträgers aus Stahlbeton, 2016 Vogt/Müller 2016 Vogt, R.; Müller, P.: Numerische Simulation von Stahlverzahnungen für Hochleistungsverbindungen im konstruktiven Ingenieurbau; Bachelorthesis; Coburg 2016, unveröffentlicht Vogt/Müller 2018 Vogt, R.; Müller, P.: Numerische Simulation; Masterthesis; Coburg 2018, unveröffentlicht Vorderwülbecke 2016 Vorderwühlbecke, L.: Baubetriebliche Abwicklung beim Bau eines modularen Fachwerkträgers -Herstellung, Transport, Montage, Bauzustände; Bachelorthesis; Coburg 2016, unveröffentlicht Völkel 2016 Völkel, S.: Hochleistungsverbindungen für modulare Windkrafttürme; Bachelorthesis; Coburg 2016,

219

Wörner 2017 Wörner, S.: Entwicklung eines Ingenieurmodells für eine Stahlverzahnung; Bachelorthesis; Coburg 2017, unveröffentlicht

Verwendete Computer-Programme

Ansys Ansys Workbench Version 16.2 Ansys Inc, Canonsburg, Pennsylvania, USA

FriLo Version 4.2016 Friedrich und Lochner Software GmbH, Stuttgart, Deutschland

Sofistik Sofoplus x 2016 Sofistik AG, Bruckmanning, Deutschland

AutoCAD AutoCad 2015 Autodesk AG, San Rafael, Kalifornien, USA

Allplan Allplan 2015 Allplan Deutschland GmbH, München, Deutschland

Anhang F: Entwurf und Konstruktion des Referenzfachwerkträgers

Anhang FA: Rechnerische Abbildung des Referenzfachwerkträgers	
Anhang FA1: Anforderungen an Tragelemente und Fügedetails für einen Referenzfachwerkt HPC-Fertigteilen	räger aus 3
FA1.1 Definieren von Standardparametern	
FA.1.2 Rechnerische Abbildung und Parameterstudien am Endsystem	5
FA.1.2.1 Modellierungsschritt 1 - 3D am Einzelträger (Einfaches Modell)	5
FA.1.2.2 Modellierungsschritt 2 - 3D am Einzelträger (verfeinertes Modell)	
FA.1.3 Segmentverbindungen modularer Fachwerkträger	
FA.1.4 Montagekonzepte und daraus resultierende Beanspruchungen	
FA.1.5 Konstruktiver Brandschutz	40
FA.1.6 Dauerhaftigkeit (Korrosionsschutz)	
Anhang FA2: Vorspannkräfte	47
Anhang FA3: Lastannahmen und Lastfallkombinationen	
Anhang FA4: Bauzustände	51
Anhang FA5: Brandschutz	55
Anhang FB: Baubetriebliche Aspekte	56
Anhang FB1: Massenermittlung und Zusammenstellung für einen FWT	56
Anhang FB2: Kalkulation Herstellung	63
Anhang FB3: Zusammenstellung Kalkulationsgrundlagen zur Herstellung	72
Anhang FB4: Kalkulation Montage	75
Anhang FB5: Zusammenstellung Kalkulationsgrundlagen zur Montage	
Anhang FC: Zeichnungen zum Fachwerkträger	77
Anhang FC1: Gesamtträger Segmentverbindung "Doppelpfosten"	77
Anhang FC2: Gesamtträger Segmentverbindung "Diagonale"	
Anhang FC3: Konstruktionsdetails	79

Anhang FA: Rechnerische Abbildung des Referenzfachwerkträgers

Anhang FA1: Anforderungen an Tragelemente und Fügedetails für einen Referenzfachwerkträger aus HPC-Fertigteilen

FA1.1 Definieren von Standardparametern

Lastansatz

Für die weitere Betrachtung des Fachwerkträgers werden Lastannahmen für die Schneelast, Windlast, Eigenlast der Dachhaut sowie Pfetten und der Anhängelast getroffen (Tab. FA.1). Randbedingungen:

- freistehende geschlossene Halle (1/b/h = 100m/60m/25m)
- Schneelastzone 2
- Höhe von 400m.ü.NN
- Winddruck $q_{w,k}$ wird für den maßgebenden Bereich I und Anströmrichtung $\theta = 90^{\circ}$
- Windlastzone 2 und Geländekategorie "Mischprofil Binnenland"
- Dachaufbau besteht aus einer Dachhaut und Pfetten, welche auf dem Fachwerkträger aufliegen.

Bauteil/Einwirkung	Bezeichnung	Art der Einwirkung	Last in kN/m ²
Dachhaut	$g_{D,k}$	ständig	0,30
Pfetten	$g_{P,k}$	ständig	0,15
Anhängelast	$g_{A,k}$	ständig	0,15
Schneelast	$q_{s,k}$	veränderlich	0,97
Windlast	$q_{w,k}$	veränderlich	0,18

Tab. FA.1: Lastzusammenstellung(Biadatz 2015)

Die Lasten greifen in den Knotenpunkten an. Dachlasten werden auf dem Obergurt (F), Anhängelasten.

Abb. FA.1: Anordnung der Lasten und Statisches System (halber Träger) (Biadatz 2015)

Geometrie und Modellbildung

Der Fachwerkträger wird als Einfeldsystem mit einer Stützweite von 60m und einer Höhe von 4 m betrachtet. Daraus ergibt sich eine Schlankheit von 1/15. Der Abstand zwischen den Fachwerkträgern beträgt 8m und der Winkel der Diagonalen 45°. Auf der einen Seite ist die Lagerung in alle

Richtungen unverschieblich, auf der anderen Seite in Trägerrichtung verschieblich. Der Untergurt ist somit statisch bestimmt gelagert. Der Obergurt ist beidseitig senkrecht zur Trägerebene gehalten, wodurch eine Gabellagerung simuliert wird (Abb.FA.2). Die Berechnung erfolgt mit dem Computerprogramm SOFISTIK an einem dreidimensional modellierten Fachwerkträger nach der Theorie I Ordnung unter Ansatz einer linearen Spannungs-Dehnungs-Beziehung. Der Träger wird aus Balkenelementen generiert. Es wird davon ausgegangen, dass der Beton stets im ungerissenen Zustand (Zustand I) bleibt. Dies soll durch Überdrücken aller Stäbe mittels Vorspannung erreicht werden. Es soll eine Kombination aus Vorspannung ohne Verbund sowie Vorspannung mit sofortigem Verbund eingesetzt werden. Die Vorspannung ohne Verbund im Untergurt wird an den Gurtenden als äußere Einzellasten zentrisch am Querschnitt angesetzt. Die Vorspannung mit sofortigem Verbund wird im Modell nicht berücksichtigt sondern im Nachgang auf die Berechnungsergebnisse aufaddiert. Auf die Pfosten werden zunächst keine Vorspannkräfte aufgebracht, da sich gem. Henze "für die Beschreibung des globalen Tragverhaltens keine entscheidenden Auswirkungen ergeben" (Henze 2009, S. 144).

Abb. FA.2	: System	des	Fachwerkträgers
-----------	----------	-----	-----------------

Es wird ein Beton C100/115 modelliert und in zwei Varianten betrachtet (Tab. FA.2). Bei Materialansatz-Variante 1 treten keine oder nur vernachlässigbar kleine Betonzugspannungen $f_{ct,var1} = ~ 0 \text{ N/mm}^2$ auf. Die zulässigen Betondruckspannungen, $f_{c,var1} = ~ 40,00 \text{ N/mm}^2$, halten das Spannungsverhältnis $\sigma_{cd} / f_{cmd} \le 0,4$ ein. In diesem Bereich zeigt Beton ein nahezu linear-elastisches Verhalten zwischen Spannungen und Dehnungen und ein lineares Kriechverhalten (Zilch, Zehetmaier 2010, S. 62, 74). In Materialansatz-Variante 2 werden für die zulässigen Druck- und Zugspannungen der Bemessungswert der Betonzugfestigkeit $f_{ct,var2} = f_{ctd} = 2,10 \text{ N/mm}^2$ und der Bemessungswert der Betondruckfestigkeit $f_{ct,var2} = f_{cd} = 56,67 \text{ N/mm}^2$ nach DIN EN 1992-1-1 als Grenzen festgelegt (Zilch, Zehetmaier 2010, S. 68, 72). Dies stellt die Obergrenzen der Belastbarkeit des Betons C100/115 dar. Es wird der Unterschied beider Varianten betrachtet, um festzustellen, inwieweit sich eine höhere Betongüte bzw. die volle Ausnutzung des C100/115 auswirkt.

Tab.	FA.2: M	aterialei	genschaften	der	Materialansatz-	Varianten l	und 2	(Biadatz	2015)
I uo.	1 11.2. 111		Sensenajien	uci .	maier initionia	, ai taitteit i	$unu \Delta$	Dianai	20101

Materialansatz	Druckfestigkeit f _{cd} [N/mm²]	Druckfestigkeit f _{cd} [N/mm ²] Zugfestigkeit f _{ctd} [N/mm ²]		Querdehnzahl v
Variante 1	~ 40,00	~ 0,00	45000	0,2
Variante 2	56,67	2,1	45000	0,2

Durch Vorspannen der Querschnitte werden die genannten Grenzen der Zugfestigkeit eingehalten bzw. je nach Lastfallkombination (Tab. FA.3) nur geringfügig überschritten.

Kurzbe- zeichnung	Lastfall/ -kombination	Einwirkung / Kombination
LF 1	Eigenlast Fachwerkträger	G _{F,k}
LF 2	Vorspannung (ohne Verbund)	P_k
LF 3	Eigenlast Dachaufbau	$G_{D,k} + G_{P,k}$
LF 4	Anhängelast	G _{A,k}
LF 5	Schneelast	Q _{S,k}
LF 6	Windlast	Q _{W,k}
LF 7	Pfostenvorspannung	P _{Pf,k}
GZT_1	Volllast (Schnee)	$1,35 \bullet (G_{F,k} + G_{D,k} + G_{P,k} + G_{A,k}) + 1,0 \bullet (P_k + P_{Pf,k}) + 1,5 \bullet Q_{S,k} + 1,5 \bullet 0,6 \bullet Q_{W,k}$
GZT_2	Volllast (Wind)	$1,35 \bullet (G_{F,k} + G_{D,k} + G_{P,k} + G_{A,k}) + 1,0 \bullet (P_k + P_{Pf,k}) + 0,75 \bullet Q_{S,k} + 1,5 \bullet Q_{W,k}$
GZG_char_1	seltene Kombination (Schnee)	$1,0\bullet(G_{F,k}+G_{D,k}+G_{P,k}+G_{A,k})+1,0\bullet P_k+P_{Pf,k})+1,0\bullet Q_{S,k}+0,6\bullet Q_{W,k}$
GZG_char_2	seltene Kombination (Wind)	$1,0\bullet(G_{F,k}+G_{D,k}+G_{P,k}+G_{A,k})+1,0\bullet P_k+P_{Pf,k})+0,5\bullet Q_{S,k}+1,0\bullet Q_{W,k}$
GZG_perm	Gebrauchslast	$1,0\bullet(G_{F,k}+G_{D,k}+G_{P,k}+G_{A,k})+1,0\bullet(P_k+P_{Pf,k})$

Tab. FA.3: Überblick Lastfälle und Lastfallkombinationen (Biadatz 2015)

FA.1.2 Rechnerische Abbildung und Parameterstudien am Endsystem

FA.1.2.1 Modellierungsschritt 1 - 3D am Einzelträger (Einfaches Modell)

Vordimensionierung der Querschnitte

Die Querschnitte des zu betrachtenden Fachwerkträgers werden zunächst überschlägig von Hand vorbemessen. Dabei werden die Querschnitte abgeschätzt und mit den in Kapitel FA.1 angegebenen Lasten und Randbedingungen das Feldmoment und daraus die Normalkraft in den Gurten berechnet.

$$M_{y,d,Feld} = \frac{q_{Ed,GZT1} \cdot e_{FW-Träger} \cdot l_{FW-Träger}^2}{8}$$
(Gl.FA.2)

$$N_{d,Gurt} = \frac{M_{y,d,Feld}}{h_{FW-Träger}}$$
(Gl.FA.2)

Dabei wird der Bemessungswert der einwirkenden Flächenlast in kN/m^2 für Lastfallkombination GZT1, der Abstand zwischen den Trägern $e_{FW-Träger}$ sowie die Länge $l_{FW-Träger}$ und Höhe $h_{FW-Träger}$ des Fachwerkträgers berücksichtigt. Des Weiteren wird die Druckkraft in den maßgebenden Diagonalen (Randdiagonalen) berechnet.

$$D_{d,Rand} = \frac{\sqrt{2}}{2} \cdot q_{Ed,GZT1} \cdot e_{FW-Tr\ddot{a}ger} \cdot (l_{FW-Tr\ddot{a}ger} - h_{FW-Tr\ddot{a}ger})$$
(Gl.FA.3)

Schließlich wird aus der Druckkraft in Gurt und Diagonale die Querschnittsfläche überschlägig aus reiner Druckbeanspruchung ohne Knicken berechnet.

$$A_{Gurt} = \frac{N_{d,Gurt}}{1000 \cdot f_{cd}} \rightarrow a_{Gurt} = \sqrt{A_{Gurt}}$$
(Gl. FA. 4)

$$A_{Stäbe} = \frac{D_{d,Rand}}{1000 \cdot f_{cd}} \rightarrow a_{Stäbe} = \sqrt{A_{Stäbe}}$$
(Gl.FA.5)

Der Fachwerkträger wird in SOFiSTiK gemäß den Angaben aus Kapitel 3.1 modelliert und daran Parameterstudien durchgeführt.

Studie: Abhängigkeit des Tragverhaltens von der Systemhöhe

In nachfolgend aufgeführter Parameteruntersuchung wird das Tragverhalten in Abhängigkeit einer variierenden Systemhöhe untersucht. Das Eigengewicht und die Kubatur des Fachwerkträgers nehmen mit zunehmender Systemhöhe ab (Abb.FA.3). Die Kubatur bezeichnet das Gesamtvolumen aller Bauteile. Insbesondere bei Materialansatz-Variante 1 kann eine Trägerhöhe von 3,75 m als besonders geeignet angesehen werden, da das Eigengewicht und die Kubatur (in m³) bei kleineren Systemhöhen überproportional ansteigt. Größere Trägerhöhen hingegen bringen unter Berücksichtigung der unverhältnismäßig hohen Träger keine sinnvollen Materialeinsparungen.

Mit zunehmender Systemhöhe reduzieren sich die Bauteilquerschnitte und auch die Verformungen in Eigengewichtsrichtung nehmen ab. Auch hier ist die größte Verformungsabnahme im Bereich zwischen 2,5 und 4 m zu verzeichnen (Abb. FA.4).

Abb. FA.3: Links: Eigengewicht des Fachwerkträgers in Abhängigkeit der Systemhöhe und Materialansatz-Variante; Rechts: Kubatur des Fachwerkträgers in Abhängigkeit der Systemhöhe und Materialansatz-Variante (Biadatz 2015)

Mit zunehmender Systemhöhe reduzieren sich die Bauteilquerschnitte und auch die Verformungen in Eigengewichtsrichtung nehmen ab. Auch hier ist die größte Verformungsabnahme im Bereich zwischen 2,5 und 4 m zu verzeichnen (Abb. FA.4).

Abb.FA.4: Links: Kantenlänge des quadratischen Querschnittes in Abhängigkeit der Systemhöhe und Materialansatz-Variante; Rechts: Verformung des Fachwerkträgers in Feldmitte aus LF1 und GZG1 in Abhängigkeit der Systemhöhe und Materialansatz-Variante (Biadatz 2015)

Abb. FA.5: Links: Verformung des Fachwerkträgers in Feldmitte aus LF2 und GZG2 in Abhängigkeit der Systemhöhe und Materialansatz-Variante; Rechts: Verformung des Fachwerkträgers in Feldmitte aus LF3 bis LF6 in Abhängigkeit der Systemhohe und Materialansatz-Variante (Biadatz 2015)

Eine Betrachtung der Vorspannkräfte und der Normalkräfte im Ober- und Untergurt und des maximalen Biegemoments im GZT 1 zeigen ein analoges Verhalten (Abb. FA.6 u. FA.7 links). Bei den Normalspannungen im Untergurt aus GZT 1 ist dieses Verhalten jedoch nicht ersichtlich (Abb. FA.7 rechts).

Abb. FA.6: Links: Vorspannkraft im Ober- (mit Verbund) und Untergurt (ohne Verbund) in Abhängigkeit der Systemhöhe und Materialansatz-Variante; Rechts: maximales Biegemoment aus GZT1 in Abhängigkeit der Systemhohe und Materialansatz-Variante (Biadatz 2015)

Abb. FA.7: Links: Normalkräfte im Ober- und Untergurt aus GZT1 in Abhängigkeit der Systemhöhe und Materialansatz-Variante; Rechts: Normalspannungen im Untergurt aus GZT1 in Abhängigkeit der Systemhöhe und Materialansatz-Variante (Biadatz 2015)

Abb. FA.8: Rechts: minimale Normalspannungen im Obergurt aus GZT1 mit Vorspannung des Obergurtes (sofortiger Verbund) in Abhängigkeit der Systemhöhe und Materialansatz-Variante; Rechts: maximale Normalspannungen im Obergurt aus GZT1 mit Vorspannung des Obergurtes (sofortiger Verbund) in Abhängigkeit der Systemhöhe und Materialansatz-Variante (Biadatz 2015)

Abb. FA.9: Links: Normalspannungen in der äußersten Diagonale aus GZT1 in Abhängigkeit der Systemhöhe und Materialansatz-Variante; Rechts: Normalspannungen im Pfosten (Achse B) aus GZT1 in Abhängigkeit der Systemhöhe und Materialansatz-Variante (Biadatz 2015)

Im Bereich der Systemhöhe von 2,5 m bis 4,0 m erfahren die untersuchten Parameter ihre größte Abnahme. Gerade bei den Schnittgrößen, den Verformungen, dem Eigengewicht und der Kubatur ist dies eine wichtige Information um beim Entwurf des Trägers eine optimierte Konstruktion zu erhalten. Deshalb wird für die weiteren Betrachtungen eine Systemhöhe von 3,75 m gewählt. Materialansatz-Variante 1verhält sich bei den Verformungen günstiger als Materialansatz-Variante 2, bei allen anderen Betrachtungen werden in Variante 2 die günstigeren Werte erreicht.

Studie: Abhängigkeit des Tragverhaltens von der Ausfachungsart

Der Fachwerkträger wird mit einer Systemhöhe von 3,75m modelliert und daran alle weiteren Untersuchungen durchgeführt. Eine weitere wichtige Frage bei der Konstruktion des Fachwerkträgers ist die Ausfachungsart. Deshalb werden in einem nächsten Schritt folgende Ausführungsarten untersucht:

- Ständerfachwerk mit zur Trägermitte steigenden Diagonalen
- Ständerfachwerk mit zur Trägermitte fallenden Diagonalen
- Strebenfachwerk mit steigender erster Diagonale
- Strebenfachwerk mit fallender erster Diagonale

Abb. FA.10: Darstellung der Ausfachungsarten (Biadatz 2015)

Abb. FA.11: Eigengewicht des Fachwerkträgers in Abhängigkeit der Ausfachungsart und Materialansatz-Variante (Biadatz 2015)

Abb. FA.12: Links: Verformung des Fachwerkträgers in Feldmitte aus LF1 und GZG1 in Abhängigkeit der Ausfachungsart und Materialansatz-Variante; Rechts: Verformung des Fachwerkträgers in Feldmitte aus LF2 und GZG2 in Abhängigkeit der Ausfachungsart und Materialansatz-Variante (Biadatz 2015)

Abb. FA.13: Links: Verformung des Fachwerkträgers in Feldmitte aus LF3 bis LF6 in Abhängigkeit der Ausfachungsart und Materialansatz-Variante; Rechts: Maximales positives und negatives Biegemoment aus GZT1 in Abhängigkeit der Ausfachungsart und Materialansatz-Variante (Biadatz 2015)

Abb. FA.14: Links: Normalkräfte im Ober-und Untergurt aus GZT1 in Abhängigkeit der Ausfachungsart und Materialansatz-Variante; Rechts: Minimale und maximale Zug- bzw. Druckspannungen im Untergurt aus GZT1 in Abhängigkeit der Ausfachungsart und Materialansatz-Variante (Biadatz 2015)

Abb. FA.15: Links: Minimale und maximale Zug- bzw. Druckspannungen im Obergurt aus GZT1 mit Vorspannung des Obergurtes (sofortiger Verbund) in Abhängigkeit der Ausfachungsart und Materialansatz-Variante; Rechts: Maximale Zug- bzw. Druckspannungen in den Diagonalen aus GZT1 in Abhängigkeit der Ausfachungsart und Materialansatz-Variante (Biadatz 2015)

Abb. FA.16: Maximale Zug- bzw. Druckspannungen in den Pfosten aus GZT1 in Abhängigkeit der Ausfachungsart und Materialansatz-Variante (Biadatz 2015)

Fachwerkkonstruktion auf Grundlage der Studien

Systemhöhe:

Der Fachwerkträger wird mit Systemhöhen zwischen 2,50m und 7,50m untersucht. Die untersuchten Parameter sind das Eigengewicht, die Kubatur, die Schnittgrößen, die Spannungen und die Verformungen. Die Tragfähigkeit nimmt von der kleinen Systemhöhe hin zur großen Systemhöhe zu. Anders herum nehmen die Schnittgrößen, die Spannungen und die Verformungen von der kleinen Systemhöhe hin zur großen Systemhöhe ab. Bei gleichen Trag- und Verformungsverhalten muss der niedrigere Fachwerkträger mit größeren Querschnitten ausgeführt werden als der große Fachwerkträger. Das hat Auswirkungen auf das Eigengewicht und die Kubatur.

Aufgrund der durchgeführten Studien zum modularen Fachwerkträger wird für die weitere Bearbeitung eine Systemhöhe von 3,75 m berücksichtigt. Bei dieser Höhe zeigen die untersuchten Parameter (Schnittgrößen, Spannungen, Verformungen, Kubatur) die größte Abnahme (s. beispielhaft Abb. FA.3).

Ausfachungsart:

Es werden die Ausfachungsarten

- Ständerfachwerk mit zur Trägermitte steigenden Diagonalen
- Ständerfachwerk mit zur Trägermitte fallenden Diagonalen
- Strebenfachwerk mit steigender erster Diagonale
- Strebenfachwerk mit fallender erster Diagonale
- untersucht.

Das Eigengewicht, die Kubatur und die Normalkräfte in den Gurten unterscheiden sich bei den betrachteten Ausfachungsarten nur unwesentlich. Bei den Verformungen zeigt das Ständerfachwerk mit steigenden Diagonalen das günstigste verhalten. Weiter sind die Biegemomente und die Spannungen in den Bauteilen bei dieser Ausfachungsart am geringsten.

Ein entscheidender Vorteil ist, dass beim Ständerfachwerk mit steigenden Diagonalen nur die Pfosten vorgespannt werden müssen.

Aufgrund dieser Eigenschaften wird das Fachwerk als Ständerfachwerk mit unter 45° steigenden Diagonalen ausgeführt.

Materialansatz-Variante:

Es wird der Materialansatz der Variante 1 berücksichtigt, wodurch ein lineares Kriechverhalten und durch die nicht vollständige Ausnutzung der Bemessungswerte der Druck- bzw. Zugfestigkeit eine zusätzliche Sicherheit gegeben ist.

FA.1.2.2 Modellierungsschritt 2 - 3D am Einzelträger (verfeinertes Modell)

Modellbildung

Das einfache Modell des Modellierungsschritt 1 wird um die Berücksichtigung der Fehlflächen der Hüllrohre in den Gurten, der Exzentrizität des Knotenelements (modelliert durch Hilfsstab) und der Pfostenvorspannung erweitert. Die Pfostenvorspannung wird durch äußere Lasten abgebildet (Abb. FA.17).

Abb. FA.17: Links: Knotenelement nach Henze; rechts: exzentrischer Stabanschluss (Biadatz 2015)

Der Obergurt wird mit einer Vorspannung im sofortigen Verbund, der Untergurt mit einer Kombination aus Vorspannung im sofortigen Verbund und Vorspannung ohne Verbund berücksichtigt. Die Pfosten werden mit Gewindestäben ohne Verbund vorgespannt. Die Diagonalen erhalten als Druckdiagonalen keine Vorspannung (Tab. FA.4). Die inneren 17 Füllstäbe (Diagonalen und Pfosten) werden mit einem Querschnitt von 14x14cm, die restlichen 16 Füllstäbe mit 18 × 18 cm ausgeführt (Abb. FA.18).

Abb. FA.18: Querschnitte Modellierungsschritt 2 (Biadatz 2015)

Bauteil	Spannverfahren	Spannsystem	Vorspannkraft [kN]
Linto recurt	sofortiger Verbund	0,5"-Litze ¹	12•105 (1260)
Untergurt	ohne Verbund	0,6"-Litze ²	2•1080 (2160)
Obergurt	sofortiger Verbund	0,5"-Litze ¹	8 • 80 (640)
Pfosten	ohne Verbund	Gewindestab 40WR ³	30 bis 800

Tab. FA.4: Überblick zu den vorgespannt Bauteilen (Biadatz 2015)

¹ Spannstahllitze St 1570/1770 aus sieben kaltgezogenen, glatten Einzeldrähten (Z-12.3-107) ² SUSPA / DSI Monolitzenspannsystem ohne Verbund, Typ 6-5 (Z-13.72-30036)

³ DYWIDAG Stabspannsystem, Gewindestab 40WR (Z-13-71-50123)

Einfluss aus Schwinden

Der Schwindprozess des Betons kann in die Komponenten Kapillarschwinden, Schrumpfen, Trocknungsschwinden und Karbonatisierungsschwinden eingeteilt werden. Das Kapillarschwinden soll durch die Betonrezeptur und die Nachbehandlung vermieden werden. Es darf zu keinem oberflächennahen Wasserverlust kommen. Das Schrumpfen entsteht durch die Volumenabnahme aus der Reaktion des Wassers und des Zement (chemisches Schwinden) sowie der inneren Austrocknung der Zementsteinmatrix (autogene Schwinden). Die Abgabe der Bauteilfeuchtigkeit an die Umgebungsluft wird als Trocknungsschwinden bezeichnet. Das Trocknungsschwinden kann durch den verwendeten Zementtyp, den Schutz der betonierten Oberflächen sowie der relativen Luftfeuchtigkeit der Umgebung beeinflusst werden. Beim Karbonatisierungsschwinden reagieren Teile des erhärteten Zementsteins mit dem CO2 der Luft. Das führt zu einer Umbildung des kristallinen Gefüges der Betonoberfläche wodurch bereits molekular gebundenes Wasser wieder frei wird. Für den Fertigungsprozess sind jedoch das Schrumpfen und das Trocknungsschwinden maßgeblich. Neben den genannten Maßnahmen werden die Bauteile des modularen Fachwerkträgers als Endlosstränge produziert. Im Nachgang erfolgt das Ablängen der einzelnen Elemente mit einer Säge. Dadurch ist der Schwindprozess der Bauteile weitestgehend abgeklungen, wenn das Ablängen für ein Projekt erfolgt. Die einzelnen Elemente können exakt auf Länge geschnitten und, wenn nötig, noch geschliffen werden. Daher wird im Montagezustand und auch in der Berechnung kein Einfluss aus Schwinden berücksichtigt.

Einfluss aus Kriechen

Der Einfluss aus Kriechen auf die Verformung des modularen Fachwerkträgers wird aus dem Lastfall GZG 2 abgeschätzt. Die kriecherzeugenden Spannungen führen zu keiner Überschreitung des Wertes $\sigma_c = 0.45 \cdot f_{ck}$. Die mittlere Bauwerkstemperatur befindet sich im Bereich zwischen -40 °C und +40 °C und die relative Umgebungsfeuchte (RH Wert) liegt zwischen 40 % und 100 %. Somit sind die Bedingungen erfüllt um die Kriechverformungen nach DIN EN 1992-1-1, Abschnitt 3.1.4 zu ermitteln. Weiterhin darf angenommen werden, dass das Kriechen und Schwinden voneinander unabhängig ist, dass ein linearer Zusammenhang zwischen Kriechverformungen und kriecherzeugenden Spannungen besteht, dass das Superpositionsprinzip auch für Einflüsse aus verschiedenen Altersstufen gilt und die Einflüsse aus ungleichmäßigen Temperatur- und Feuchtigkeitsverläufen vernachlässigbar sind.

Die Kriechverformung wird in der Simulation mit einem wirksamen Elastizitätsmodul abgebildet. $E_{c,eff} = E_{cm}/(1+\varphi(t,t_0))$ (Gl.FA.6)

mit:

wirksamer Elastizitätsmodul in MN/m² $E_{c,eff}$ mittlerer Elastizitätsmodul (Sekantenwert) in MN/m² E_{cm} $\varphi(t, t_0, t_\infty)$ Kriechzahl

Die Endkriechzahl wird unter Annahme einer Belastung bei 20 Tagen sowie trockener Umgebungsbedingungen im Einbauzustand für einen Beton C100/115 mit dem Nomogramm für trockene Innenräume und relative Luftfeuchte = 50 % zu $\varphi(t_{\infty}) = 0,9$ bestimmt. Dabei ist für jeden Querschnitt die wirksame Bauteildicke h_0 zu bestimmen.

$$h_0 = 2 \cdot A_c / u \tag{Gl.FA.7}$$

mit: A_c Betonquerschnittsfläche in cm²uLuft ausgesetzte Querschnittsumfang in cm

Der Wert h_0 liegt für die Gurte, Pfosten und Diagonalen zwischen 6 und 16,3 cm, wodurch geringfügig unterschiedliche Endkriechzahlen resultieren. Der daraus errechnete wirksame Elastizitätsmodul wird in der Simulation als neuer Elastizitätsmodul des Betons mit

$$E_{c,eff} = 23684 \, MN/m^2$$
 (Gl.FA.8)

für die Berechnung der Verformung verwendet. Der reduzierte Elastizitätsmodul führt zu einer Vergrößerung der negativen Verformungen (Verformungen entgegen der Eigengewichtsrichtung).

Zusätzlich erfährt das System Kriechverformungen durch die Spannungen aus dem sofortigen Verbund der Gurte. Um dies zu berücksichtigen werden die Dehnungen (Stauchungen) am ideellen Querschnitt berechnet und am System als Lastfall (äußere Kräfte) berücksichtigt. Die negativen Dehnungen betragen für den Obergurt 0,0001088 mm/mm und für den Untergurt 0,0002102 mm/mm. Im weiteren Schritt werden die Spannkraftverluste für den Ober- und Untergurt berechnet. Dabei wird sowohl die Vorspannung mit sofortigem Verbund als auch die Vorspannung ohne Verbund berücksichtigt. Die Spannkraftverluste betragen im Untergurt ca. 20 % und im Obergurt ca. 5 %. Die Vorspannkräfte des Fachwerkträgers werden prozentual abgemindert und die Verformungen berechnet (Biadatz 2015).

In Tab.FA.5 sind die Verformungen des Fachwerkträgers in den Einzelkomponenten dargestellt, wobei die positiven Werte in Eigengewichts Richtung und die negativen Werte entsprechend dagegen zu betrachten sind.

Phase	Einfluss auf Verfor	rmung	Anteil an Gesamt- verformung [mm]	Gesamt- verformung in Eigengewichts Richtung [mm]
Einbau Fachwerkträger	Eigenlast Fachwerk Vorspannung	träger,	-30,8	-30,8
Fertigstellung Dach (GZG, Gebrauchslast)	Dachaufbau, Anhän	egelast	27,7	-3,1
Zeitabhängiges Verhalten	Kriechen ohne Ante sofortigem Verbi	eil aus ınd	-2,9	-6,0
(Endzustand, $t = \infty$)	Kriechen mit Anteil	für A _{cn}	-17,8	-23,8
	aus sojoriigem Verbund	für A _i	-15,8	-21,8

Tab. FA.5 Entwicklung der Verformungen des Fachwerkträgers in Feldmitte (Biadatz 2015)

Einfluss Umlenkkräfte aus Vorspannung

Der Einfluss aus Umlenkkräften aus Vorspannung ist gering und wird nicht weiter verfolgt (Biadatz 2015).

Knicken der Einzelstäbe

In einem weiteren Schritt werden die Druckglieder des Fachwerkträgers hinsichtlich der Knicksicherheit untersucht. Dabei werden die Schnittgrößen aus der FE-Rechnung übernommen (Tab. FA.6). Die Hüllrohre in den Querschnitten werden nicht berücksichtigt. Die daraus resultierende Differenz beträgt beim Trägheitsradius 3% und beim Flächenträgheitsmoment 9%. Es wird eine Pendelstütze abgebildet. In Wirklichkeit wird sich am Fachwerkknoten durch den Druckkontakt eine Drehfeder einstellen. Der betrachtete Querschnitt und die Knicklänge liegen auf der sicheren Seite.

Element	N _{2,G,k}	N _{2,Q,k}	M _{y,2,G,k}	M _{y,2,Q,k}	M _{y,1,G,k}	M _{y,1,Q,k}	↓ ^N _{2,k}
	[kN]	[kN]	[kNm]	[kNm]	[kNm]	[kNm]	M _{y,2,k} (²
Obergurt	1904	953	-6,01	5,50	-0,03	-2,60	
Untergurt	1345	-	9,40	-	24,90	-	L
Diagonale	490	319	-1,99	-2,05	-7,09	-2,45	M ₁₁ 7 6 1
Pfosten	890	-	-3,75	-	-4,30	-	y, i, n

Tab. FA.6: Charakteristische Schnittgrößen mit Systemskizze (Biadatz 2017)

Diagonalen:

Aus dieser Berechnung folgt eine Erhöhung des Querschnitts der Diagonalen von 14 x 14cm bzw. 18 x 18cm auf 22 x 22cm, um den erforderliche Bewehrungsgrad zu senken. Aufgrund einer einheitlichen Fertigung werden im Folgenden auch die Pfosten mit diesem Querschnitt ausgeführt. Um die Konstruktion dennoch möglichst wirtschaftlich zu gestalten, wird in einer Studie die erforderliche Längsbewehrung der Diagonalen in Abhängigkeit der Bewehrungslage, des Berechnungsverfahrens und der Bewehrungsverteilung untersucht (Abb. FA.19).

Abb. FA.19: Erforderliche Längsbewehrung der Diagonalen in Abhängigkeit der Bewehrungslage, des Berechnungsverfahrens und der Bewehrungsverteilung nach Biadatz (2017)

Je nach Produktionsanforderung werden 2 Varianten der Bewehrungsanordnung vorgeschlagen. Zum einen wird eine Längsbewehrung ø25 mm in den Ecken gewählt, was eine schnellere Herstellung ermöglicht. Zum anderen wird eine umfangsverteilte Längsbewehrung mit ø16 mm in den Ecken und dazwischen 3ø14 mm je Seite angeordnet. Diese Variante macht nur dann Sinn, wenn möglichst geringe Stahlquerschnitte gefordert sind. Die Querkraftbewehrung wird in beiden Varianten über Bügel ø8/22cm erreicht. An den Enden der Diagonalen ist ein zusätzlicher Bügel erforderlich (40 % der größeren Querschnittsabmessungen). Bei Serienfertigung und damit ggf. einer Produktion der Diagonalen als Endlosstrang ist der reduzierte Bügelabstand über die gesamte Länge vorzusehen. Dies bedeutet bei einer Stablänge von 5,3 m eine Erhöhung der Bügelanzahl um 52 % (41 statt 27 Bügel).

Abb. FA.20: Querschnitte der Diagonalen mit Bewehrungsanordnung; (a) Diagonale - Bewehrung in den Ecken (b) Diagonale - Bewehrung umfangsverteilt (Maße in mm) (Biadatz 2017)

In der Mitte der Diagonalen ist ein Hüllrohr ø30 mm vorgesehen und bei Bedarf eine Vorspannung zu erzielen.

Pfosten:

Die Pfosten werden im Bauzustand während der Vorspannung maximal belastet, im späteren Tragwerk erfahren sie aufgrund der Zugkräfte eine Entlastung. Es ist die Mindestbewehrung erforderlich. Die Längsbewehrung wird konstruktiv mit ø25 je Eck gewählt und die Bügelbewehrung mit ø8/16cm vorgesehen. Der zusätzliche Bügel an den Enden des Pfostens sowie die Überlegungen bezüglich einer Serienfertigung sind beim Pfosten analog zu den Diagonalen zu betrachten (Abb. FA.21).

Abb. FA.21: Querschnitte der Pfosten (Bewehrung in den Ecken) mit Bewehrungsanordnung; (Maße in mm) (Biadatz 2017)

Gurte:

In Fachwerkebene sind die Gurte im Bereich der Stützen gehalten. Rechtwinklig zur Fachwerkebene ist der Obergurt durch die Koppelpfetten gehalten wodurch keine Knickgefahr besteht. Der Untergurt hingegen wird nicht bzw. nur punktuell gehalten. Die Berechnung dazu erfolgt unter Berücksichtigung der Eigenform und entsprechenden Vorverformung nach Theorie 2. Ordnung am Gesamtsystem.

Abb. FA.22: Querschnitte Obergurt links und Untergurt rechts (Maße in mm) (Biadatz 2017)

Im Ober- und Untergurt wird eine Längsbewehrung mit 4 Stäben ø25, welche die Mindestbewehrung abdeckt und eine Bügelbewehrung von ø10/30cm gewählt. Die Bügelbewehrung wird auf die maximale Querkraft von 43,3 kN im GZT 1 (Bereich Untergurt A-B) bemessen. Grundsätzlich wäre eine Anpassung des Obergurtquerschnittes auf eine Breite von ebenfalls 36 cm möglich um eine einheitliche Schalung zu verwenden (Abb. FA.21). Dies würde eine zu vernachlässigende Zunahme des Eigengewichts von 4,7 kN für den gesamten Träger bedeuten. Da die Gurte als Fertigteile nicht über die gesamte Trägerlänge hergestellt werden können, müssen diese gestoßen werden. Um eine aufwändige Kopplung dieser Stöße zu umgehen wird die Kombination aus Vorspannung mit Verbund und Vorspannung ohne Verbund durch eine reine Vorspannung ohne Verbund ersetzt (Abb. FA.21). Die Vorspannung erfolgt mit 4 Hüllrohren ø72 mm in denen je 5 Monolitzen ø15,7 mm (Z-13.72-30036) vorgesehen werden.

Beanspruchungen aus unterschiedlichen Laststellungen

Es wird geprüft, wie der Fachwerkträger auf eine kurzzeitige asymmetrische Belastung reagiert. Dazu werden 3 asymmetrische Fälle einer Schneelast simuliert (Abb. FA.22).

Abb. FA.23: Darstellung der 3 asymmetrischen Fälle einer Schneelast (Biadatz 2017)

Des Weiteren wird der Havariefall einer Wasserlast abgebildet. Hierbei steigt der Wasserpegel bis auf die Höhe der Notabläufe und erreicht in Achse A und Q eine Höhe von 50 cm. Bei einer angenommenen Dachneigung von 2° füllt sich das Dach bis zur Achse E bzw. M mit Wasser und bildet einen dreiecksförmigen Lastkeil aus (Abb.FA.23). Die Wasserlast beträgt an den Trägerenden $q_{Wa,k} = 40kN/m$.

Abb. FA.24: Darstellung der Wasserlasten im Havariefall (Biadatz 2017)

Aus diesen zusätzlichen Betrachtungen ergeben sich neue Lastfallkombinationen (Tab. FA.6). Die Eigen- und Windlasten wirken sich aufgrund ihrer gleichmäßigen Verteilung teilweise günstig auf die Normalspannungen aus. Deshalb wird für die günstig wirkende Eigenlast ein Teilsicherheitsbeiwert von $\gamma_{G,inf} = 1,0$ berücksichtigt, die Windlast bleibt unberücksichtigt ($\gamma_{Q,W,inf} = 0$). Die Lasten werden als Einzellasten an den Knotenpunkten eingeleitet.

Abb. FA.25: Systemsskizze Fachwerkträger (Biadatz 2017)

Auswirkungen auf die Pfosten:

Die Untersuchung der unterschiedlichen Laststellung zeigt Überschreitungen der Zugspannungen in den Pfosten. In einem iterativen Prozess werden die Vorspannkräfte der betroffenen Pfosten erhöht, sodass die Bemessungszugspannungen eingehalten sind. Dabei werden die symmetrisch liegenden Pfosten gleichermaßen berücksichtigt.

Auswirkungen auf den Obergurt:

Die Druckspannungen betragen im Obergurt zwischen den Achsen G und H sowie J und K -38,89 MN/m^2 . Im Bereich der Hüllrohre für die Pfostenvorspannung (kritischer Querschnitt) erhöhen sich die Druckspannungen auf 46,93 MN/m^2 . Diese Spannungen treten im GZT 1 auf und liegen unterhalb der Grenzen.

Auswirkungen auf den Untergurt:

Am Untergurt liegen die maximalen Druckspannungen von -46,14 MN/m² zwischen den Achsen A und B sowie P und Q. Der kritische Querschnitt erfährt Druckspannungen von -57,08 MN/m² direkt über den Auflagern. Durch eine Reduzierung der Vorspannkraft um 100 kN auf 3560 kN werden die Bemessungsdruckspannungen eingehalten. Alternativ könnte der Untergurt auch im Auflagebereich verbreitert werden.

Auswirkungen auf die Diagonale:

Im Lastfall S5_Ginf erfährt die Diagonale zwischen den Achsen D und H eine Zugspannung von 0,36 MN/m². Um diese zu überdrücken wird in den Diagonalen der Achsen G und H sowie J und K eine Vorspannkraft von 35 kN aufgebracht. In der Diagonale zwischen den Achsen H und I entsteht im Lastfall S8_Ginf eine Zugspannung von 3,62MN/m², welche durch eine Vorspannkraft von 170 kN überdrückt wird. Eine analoge Vorspannung wird an der symmetrischen Diagonale zwischen den Achsen I und J eingebaut.

Alle erforderlichen Vorspannkräfte der Pfosten und Diagonalen sowie des Ober- und Untergurtes sind im Anhang FA2 dargestellt.

Unsymmetrische Belastungen wirken sich ungünstig auf den Fachwerkträger aus. Durch die Anpassung der Vorspannkräfte werden die Bemessungsfestigkeiten jedoch eingehalten.

Kurzbe- zeichnung	Lastfall/ -kombination	Einwirkung / Kombination
LF 8	Schnee fünffeldrig	$Q_{S,5,k}$
LF 9	Schnee halbseitig	Q _{S,8,k}
LF 10	Schnee zwölffeldrig	Q _{S,12,k}
LF 11	Wasseransammlung Attika	Q _{Wa,k}
GZT_Ginf_1	Volllast (Schnee), G günstig	$1,0\bullet(G_{F,k}+G_{D,k}+G_{P,k}+G_{A,k})+1,0\bullet(P_k+P_{Pf,k})+1,5\bullet Q_{S,k}+1,5\bullet 0,6\bullet Q_{W,k}$
GZT_Ginf_2	Volllast (Wind), G günstig	$1,0\bullet(G_{F,k}+G_{D,k}+G_{P,k}+G_{A,k})+1,0\bullet(P_k+P_{Pf,k})+0,75\bullet Q_{S,k}+1,5\bullet Q_{W,k}$
S5	Schnee fünffeldrig	$1,35 \bullet (G_{F,k} + G_{D,k} + G_{P,k} + G_{A,k}) + 1,0 \bullet (P_k + P_{Pf,k}) + 1,5 \bullet Q_{S,5,k} + 1,5 \bullet 0,6 \bullet Q_{W,k}$
S5_Ginf	Schnee fünffeldrig, G günstig	$1,0 \bullet (G_{F,k} + G_{D,k} + G_{P,k} + G_{A,k}) + 1,0 \bullet (P_k + P_{Pf,k}) + 1,5 \bullet Q_{S,5,k} + 0 \bullet 0,6 \bullet Q_{W,k}$
S8	Schnee halbseitig	$1,35 \bullet (G_{F,k} + G_{D,k} + G_{P,k} + G_{A,k}) + 1,0 \bullet (P_k + P_{Pf,k}) + 1,5 \bullet Q_{S,8,k} + 1,5 \bullet 0,6 \bullet Q_{W,k}$
S8_Ginf	Schnee halbseitig, G günstig	$1,0 \bullet (G_{F,k} + G_{D,k} + G_{P,k} + G_{A,k}) + 1,0 \bullet (P_k + P_{Pf,k}) + 1,5 \bullet Q_{S,8,k} + 0 \bullet 0,6 \bullet Q_{W,k}$
S12	Schnee zwölffeldrig	$1,35 \bullet (G_{F,k} + G_{D,k} + G_{P,k} + G_{A,k}) + 1,0 \bullet (P_k + P_{Pf,k}) + 1,5 \bullet Q_{S,12,k} + 1,5 \bullet 0,6 \bullet Q_{W,k}$
S12_Ginf	Schnee zwölffeldrig, G günstig	$1,0\bullet(G_{F,k}+G_{D,k}+G_{P,k}+G_{A,k})+1,0\bullet(P_{k}+P_{Pf,k})+1,5\bullet Q_{S,12,k}+0\bullet0,6\bullet Q_{W,k}$
WaA	Wasseransammlung Attika	$1,35 \bullet (G_{F,k} + G_{D,k} + G_{P,k} + G_{A,k}) + 1,0 \bullet (P_k + P_{Pf,k}) + 1,0 \bullet Q_{Wa,k} + 1,5 \bullet 0,6 \bullet Q_{W,k}$
WaA_Ginf	Wasseransammlung Attika, G günstig	$1,0 \bullet (G_{F,k} + G_{D,k} + G_{P,k} + G_{A,k}) + 1,0 \bullet (P_k + P_{Pf,k}) + 1,0 \bullet Q_{Wa,k} + 0 \bullet 0,6 \bullet Q_{W,k}$

Tab. FA.7: Lastfälle und Kombinationen für die Betrachtung unterschiedlicher Laststellungen (Biadatz 2017)

Endgültige Bemessung:

Die endgültige Bemessung erfolgt mit den Schnittgrößen aus Theorie II. Ordnung unter Berücksichtigung der Vorverformung. Die Pfosten und der Obergurt erfahren bei annähernd gleicher Geometrie geringere Schnittgrößen als die Diagonale und der Untergurt. Es erfolgt eine erneute Bemessung der maßgebenden Diagonale und des Untergurtes.

Die maßgebende Diagonale liegt zwischen den Achsen A und B des Fachwerkträgers und folgt aus der 3. Eigenform der Lastfallkombination GZT_1. Zusätzlich zu den Biegemomenten in Fachwerkebene, die sich nur geringfügig ändern, werden die Biegemomente senkrecht zur Fachwerkebene berücksichtigt. Da die Vorverformung der 3. Eigenformen nicht in der Diagonale angetragen sind, muss zusätzlich eine lokale Imperfektion der Diagonale berücksichtigt werden. Die Bewehrung erhöht sich von 19 cm² auf 29,85 cm², welche durch 8 Stäben \emptyset 25 (39,3 cm²) (in den Ecken angeordnet) abgedeckt ist. Alternativ könnte die Randdiagonale auch in einem Querschnitt von 23 x 23 cm ausgeführt werden. Dabei wäre ein Betonstahlquerschnitt von 17,98 cm² notwendig. Diese ist mit den vorgesehenen 4 Stäben \emptyset 25 (19,63 cm²) vorhanden. Die genannten Erhöhungen sind nur in den Randdiagonalen notwendig.

Für die Bemessung des Untergurtes werden 2 Lastfallkombinationen maßgebend. Zum einen die 1. Eigenform der Lastfallkombination BZ_vDm, zum anderen die 2. Eigenformen der Lastfallkombination GZT_hW90_2. Die aus vorangegangener Berechnung im Untergurt vorhandene Mindestbewehrung ist weiterhin ausreichend (Biadatz 2017).

FA.1.2.3 Definition und Konstruktion des Referenzfachwerkträgers

Abmessungen und Querschnitte:

Die Abmessungen und Querschnitte des entwickelten Fachwerkträgers sind nachfolgend zusammengefasst.

Abb. FA.26: Elemente des Fachwerkträgers (Oertel 2015)

Vorspannung der Pfosten:

Die Pfosten werden über eine Vorspannung (Gewindestabspannverfahren von DYWIDAG mit einem Gewindestabdurchmesser von 47mm) mit den Knotenelementen und den Ober- bzw. Untergurt befestigt. Im Ober- bzw. Untergurt müssen somit die Vorspannkräfte eingeleitet werden. Die größte erforderliche Vorspannkraft beträgt $P_{t=\infty} = 800 \ kN$. Zunächst werden die Spannkraftverluste ermittelt um die notwendige aufzubringende Vorspannung zu erhalten. Für diese Kraft wird das Spannsystem inkl. Hüllrohr festgelegt und der Lasteinleitungsbereich konzipiert. Um die Krafteinleitung zu simulieren wird ein Ausschnitt des Fachwerkträgers numerisch abgebildet. Dieser beschränkt sich auf einen Gurtabschnitt mit angeschlossenen Pfosten. Das Modell wird mit Volumenelementen (Brics) erstellt (Abb. FA.29).

Abb. FA.27 FEM-Modell (SOFiSTiK) des Anschluss "Pfosten an Gurt" (Knotenelement wurde vernachlässigt) (Körber/Zheng 2015)

Am Modell werden die Lasteinleitung und der Verlauf der Kräfte im Gurt und die Stütze untersucht. Anhand dieses Verlaufs wurde die effektive Querschnittsfläche der Gurte für die Berechnung der Federkonstante des Gurtes bestimmt (Abb. FA.29).

Spannkraftverluste:

Aufgrund der geringen Binderhöhe wird ein Gewindespannverfahren gewählt, da dieses einen geringen Schlupf aufweist und dadurch Spannkraftverluste minimiert werden. Aus Reibung resultieren keine Verluste, da die Spanngliedführung verbundlos und geradlinig ist. Bei dem vorliegenden System handelt es sich um einen Zusammenschluss aus Pfosten und Gurten, für die eine Reihenschaltung von drei Federn aufgestellt wird. Diese Federkonstante ist in der Lage, die Kriechverformungen am System ausreichend gut zu beschreiben. In nachfolgender Berechnung wird zunächst eine Vorspannkraft P_0 abgeschätzt und anschließend überprüft, ob diese mit der errechneten Vorspannkraft P_0 übereinstimmt. Da es sich hier um ein linear- elastisches Verhalten handelt, d.h., die elastische Verformung des Fachwerkträgers proportional zur Vorspannkraft P_0 ist, wird die gesamte elastische Verkürzung Δl_{el} nach dem Hooke`schen Gesetz berechnet:

$$\Delta l_{el} = \frac{P_0}{C_{ges,elastisch}} \tag{Gl. FA.19}$$

mit:

C_{ges,elastisch}: die gesamte Federkonstante vom Fachwerkträger.

Es wird eine Reihenschaltung von drei Federn (Obergurt, Pfosten, Untergurt) aufgestellt. Diese Reihenschaltung ergibt die Federkonstante der Gesamtschaltung, die sogenannte Ersatzfederkonstante, aus:

$$\frac{1}{C_{ges,elastisch}} = \sum_{i=1}^{3} \frac{1}{c_i} = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3} = \frac{c_2 c_3 + c_1 c_3 + c_1 c_2}{c_1 c_2 c_3}$$
(Gl.FA.20)

Dabei sind:

 C_1 : die Federkonstante von Obergurt; C_2 : die Federkonstante von Pfosten; C_3 : die Federkonstante von Untergurt

 C_3 : die Federkonstante von Untergurt.

Die Federkonstante hängt sowohl von Material und Form der Feder als auch von der Belastungsrichtung ab und wird wie folgt bestimmt:

 $C_i = \frac{E_i \cdot A_i}{l_i} \tag{Gl.FA.21}$

Dabei bezeichnet

 E_i : die Elastizitätsmodul vom Material des Bauteils *i*; A_i : die Querschnittsfläche des Bauteils *i*, hier die Ausbreitungsfläche; l_i : die Bauteillänge.

Für die Ermittlung der Federkonstante müssen die Querschnittsflächen A_i der einzelnen Federn bekannt sein. Da sich Obergurt und Untergurt über das gesamte Fachwerk erstrecken, wird eine Ausbreitungsfläche $A_1 = A_3$ für die beiden Gurte eingeführt, welcher aus der FE-Rechnung abgeleitet wird (Abb.FA.30). Die Ausbreitungsfläche gibt Ausdruck darüber, inwieweit sich die eingeleitete Vorspannkraft P_0 in den Gurten ausbreitet und dementsprechend eine elastische Verformung auf die Gurte ausübt.

Abb. FA.28: Ausbreitungsbereich der Spannungen (Körber/Zheng 2015)

Die Federkonstanten werden für einen Beton C100/115 errechnet (Tab. FA.13).

Bauteil	E-Modul [kN/mm ²]	Fläche [mm ²]	Länge [m]	Federkonstante Ci [kN/m]
Obergurt	45,2	$0,96.0,3 = 0,288 \cdot 10^6$	0,30	$4,339 \cdot 10^{7}$
Pfosten	45,2	$0,22.0,22 = 0,0484 \cdot 10^6$	3,45	$0,0424 \cdot 10^{7}$
Untergurt	45,2	$0,96.0,3 = 0,288 \cdot 10^6$	0,30	$4,339 \cdot 10^{7}$

Tab. FA.9: Federkonstanten für die Bauteile des Fachwerkträgers für einen Beton C100/115

Aus den einzelnen Federkonstanten folgt eine gesamte Federkonstante von

$$C_{ges,elastisch} = \frac{c_1 c_2 c_3}{c_2 c_3 + c_1 c_3 + c_1 c_2} = 6,159 \cdot 10^5 \ kN/m \ . \tag{Gl.FA.22}$$

Mit einer angenommenen Vorspannkraft_ $P_0 = 1258,1 kN$ ergibt sich eine elastische Verkürzung des Betons Δl am Gesamtsystem von

$$\Delta l_{el} = \frac{P_0}{C_{ges,elastisch}} = \frac{1258,1 \, kN}{6,159 \cdot 10^5 \, kN/m} = 2,04 \cdot 10^{-3} \, m = 2,04 \, mm. \tag{Gl.FA.23}$$

Die Kriechzahl $\varphi = 0,55$ wird nach DIN 1992-1-1 für ein Innenbauteil und RH 0 = 50% sowie $t_0 = 30$ Tage bei Belastungsbeginn ermittelt. Die wirksame Bauteildicke ergibt sich mit $h_0 = \frac{2 \cdot A_c}{U} = 232mm$. A_c ist dabei die Querschnittsfläche des gesamten Bauteils, U der Umfang des gesamten Bauteils. Es folgt die gesamte Federkonstante aus Kriechen und elastische Verkürzung zu

$$C_{ges,Kriechen+elastisch} = C_{ges,elastisch} \cdot \frac{1}{1+\varphi}$$

$$= 6,159 \cdot 10^5 \ kN/m \cdot \frac{1}{1+0,55} = 3,97 \cdot 10^5 \ kN/m$$
(Gl.FA.24)

Daraus erfolgt eine Verkürzung von

$$\Delta l_{ges,Kriechen+elastisch} = \frac{P_0}{C_{ges,Kriechen+elastisch}}$$

$$= \frac{1258,1 \, kN}{3,97 \cdot 10^5 \, kN/m} = 3,17 \cdot 10^{-3} \, m = 3,17 \, mm.$$
(Gl.FA.25)

Das Gewindestabspannverfahren von DYWIDAG (Zulassung ETA-05/0123) mit einem Gewindestabdurchmesser von 47mm, gibt einen Keilschlupf $\Delta l_{schlupf} = 1,7 mm$ bei der Lastübertragung von der Spannpresse auf die Verankerung an.

Die Relaxationsverluste des Spannstahls werden berechnet zu

$$\frac{\Delta\sigma_{pr}}{\sigma_{pi}} = 1,98 \cdot \rho_{1000} e^{8\mu} (\frac{t}{1000})^{0,75(1-\mu)} 10^{-5} \tag{Gl.FA.26}$$

Dabei sind:

 $\sigma_{pi}: = \sigma_{pm0} \text{ bei der Vorspannung ohne Verbund, und } \sigma_{pm0} \le \min \left\{ \begin{array}{l} 0.75 \cdot f_{pk} \\ 0.85 \cdot f_{p0,1k} \end{array} \right\};$

$$\sigma_{pm0} \le \min \begin{cases} 0.75 \cdot f_{pk} = 0.75 \cdot 1050 \, N/mm^2 = 787.5 \frac{N}{mm^2} (ma\&gebend) \\ 0.85 \cdot f_{p0,1k} = 0.85 \cdot 950 \, N/mm^2 = 807.5 \, N/mm^2 \end{cases}$$

 ρ_{1000} : der Wert der Relaxationsverluste (in %) 1000 Stunden nach dem Vorspannen bei einer Durchschnittstemperatur von 20 °C; Aus der Zulassung ETA-05/0123 wird die $\rho_{1000} = 3\%$ gewählt;

$$\mu: = \sigma_{pi}/f_{pk};$$

t: 30 Tage (Annahme)

Daraus ergeben sich der Relaxationsverlust $\Delta \sigma_{pr}$:

$$\frac{\Delta \sigma_{pr}}{\sigma_{pi}} = 1.98 \cdot \rho_{1000} e^{8\mu} \left(\frac{t}{1000}\right)^{0.75(1-\mu)} 10^{-5} = 1.98 \cdot 3 \cdot e^{8 \cdot 0.75} \left(\frac{30 \cdot 24}{1000}\right)^{0.75(1-0.75)} 10^{-5} = 0.02253$$

Anhang F Seite 26

$$\Delta \sigma_{nr} = 0.02253 \cdot 787.5 \, N/mm^2 = 17.74 \, N/mm^2$$

$$\varepsilon = \frac{\Delta \sigma_{pr}}{E} = \frac{17,74 \, N/mm^2}{205000 \, N/mm^2} = 8,65 \cdot 10^{-5} \tag{Gl.FA.27}$$

 $\Delta l_{Relaxation} = \varepsilon \cdot l_0 = 8,65 \cdot 10^{-5} \cdot 4,05 \ m = 0,350 \ mm$

Die Verkürzung aus Relaxation beträgt somit:

 $\Delta l_{Relaxation} = 0,350 mm$

Die gesamten Verformungen aus Kriechen, elastischer Verkürzung, Relaxation und Schlupf errechnet sich aus:

$$\Delta l = \Delta l_{ges,Kriechen+elastisch} + \Delta l_{Schlupf} + \Delta l_{Relaxation}$$
(Gl.FA.28)
= 3,217 mm + 1,7 mm + 0,350 mm = 5,22 mm

Daraus ergibt sich ein gesamter Spannkraftverlust von:

$$\Delta P = \frac{E_p \cdot A_p \cdot \Delta l}{l} = \frac{205000 \, N/mm^2 \cdot 1735 \, mm^2 \cdot 5,22 \, mm}{4050 \, mm} = 458,1 \, kN \tag{Gl.FA.29}$$

Mit:

 $A_p = 1735 mm^2$ aus der Zulassung ETA-05/0123 sowie der Vorspannkraft P_0 zum Zeitpunkt t_0 von:

$$P_0 = P_{t=\infty} + \Delta P = 800 \ kN + 458,1 \ kN = 1258,1 \ kN \tag{Gl.FA.30}$$

Die Annahme $P_0 = 1258,1 kN$ ist damit bestätigt. Zum Zeitpunkt t_{∞} herrscht eine Vorspannkraft $P_{t=\infty} = 800 kN$ im Pfosten. Die nach ETA-05/0123 maximal zugelassenen Vorspannkraft von 1457 kN ist eingehalten, wobei 149 kN sofortige Spannkraftverluste aus Keilschlupf ($\Delta l_{schlupf}$) sind.

$$P_0^* = P_0 - \frac{E_p \cdot A_p \cdot \Delta l_{Schlupf}}{l} \tag{Gl.FA.31}$$

$$P_0^* = 1258,1 \ kN - 149 \ kN = 1109,1 \ kN$$

 $P_0^* = 1109,1 \ kN < 0.8 \ \cdot S_n \ \cdot f_{pk} = 0.8 \ \cdot 1735 \ mm^2 \ \cdot 1050 \ N/mm^2 = 1457,4 \ kN$, womit das Stabilisierungskriterium bei Lastübertragung erfüllt ist. S_n ist dabei die Nennquerschnittsfläche des Gewindestabes.

Spannsystem:

In einer Recherche werden mögliche Vorspannsysteme untersucht. Für die Vorspannung des Fachwerkträgerpfosten wird ein Stabspannverfahren ohne Verbund (intern) verwendet, da dieses einen geringen Schlupf hat. Grundsätzlich stehen die Verfahren Macalloy-Stabspannverfahren (Z-13.72-700462), der Fa. Macalloy und das DYWIDAG-Stabspannverfahren der Fa. DYWIDAG-System Int. GmbH zu Verfügung. Das DYWIDAG Stabspannverfahren wird aufgrund der höheren zugelassenen Vorspannkraft verwendet.

Spannweg:

Der Spannweg setzt sich aus der Verlängerung (Dehnung) des Spannstahls Δl_p und der Verkürzung des Betons Δl_{cp} zusammen. Des Weiteren ist ein Verankerungsschlupf Δl_{sl} bei der Verankerung des Spannstahls zu berücksichtigen.

$$\Delta l = \Delta l_p - \Delta l_{cp} + |\Delta l_{sl}| \tag{Gl.FA.32}$$

Mit:

 Δl : Spannweg

 Δl_p : Verlängerung des Spannstahls infolge der Spannkraft P

 Δl_{cp} : Verkürzung des Betons infolge der Spannkraft P

Die 0,1%-Dehngrenze und die Zugfestigkeit werden gemäß ETA-05/0123 angesetzt. Der erforderliche Spannweg zum Erreichen der Kraft P errechnet sich zu

$$\Delta l_p = \frac{P}{E_p \cdot A_p} \cdot l = \frac{1258,1 \, kN}{205000 \, N/mm^2 \cdot 1735 \, mm^2} \cdot 10^3 \cdot 4,05 \, m \cdot 10^2 = 1,43 \, cm. \tag{Gl.FA.33}$$

Dabei ist A_s die Querschnittsfläche des Stabspanngliedes und $A_s = 1735 mm^2$ gemäß ETA-05/0123. Die Betonverkürzung beträgt $\Delta l_{cp} = \Delta l_{el} = 2,04 mm$ und der Verankerungsschlupf $\Delta l_{sl} = 1,0 mm + 2,7 mm = 3,7 mm$. Somit folgt ein Spannweg $\Delta l = 1,43 cm + 0,37 cm - (-0,204 cm) = 2,0 cm$. Für Stabspannverfahren ergibt sich der Spannweg aus der Anzahl der Umdrehungen der Mutter an der Spannpresse. Während des Vorspannens wird die Mutter fortlaufend nachgedreht, bis der Spannweg und die zugehörige Vorspannkraft voll aufgebracht sind. Die Vorspannkraft $P_0 = 1258,1 kN$ wird mit einer Spannpresse DSI HOZ 200 Mp aufgebracht. Diese besitzt eine Kapazität von 2168 kN und ist für den Anker eines 47WR Gewindestabes geeignet.

Für den Stab 47 WR ergibt sich eine Gewindesteigung (Rippenhöhe) c = 2,1 mm und damit eine Anzahl der Umdrehungen der Mutter von $n = \frac{\Delta l}{c} = \frac{2,0 \text{ mm}}{2,1 \text{ mm}} = 0,95 \approx 1,00 \text{ Umdrehungen}.$

Hüllrohr

Gemäß ETA-05/0123 wird ein Hüllrohr mit Schrumpfschlauch 70/26, Anschlussrohr $D_a=76,1mm$; $D_i=68,5mm$ und PE-Rohr $D_a=63mm$; $D_i=57mm$ verwendet.

Lasteinleitungsbereich

Der Lasteinleitungsbereich besteht aus einer Stahlplatte und dem Bauteil in das die Kräfte eingeleitet werden (Abb.FA.31). Durch die Vorspannung in vertikaler und die Normalkraft im Obergurt in horizontaler Richtung handelt es sich im Lasteinleitungsbereich um eine zweiaxiale Druckbeanspruchung. Ausgehend von der quadratischen Ankerplatte mit $26cm \times 26cm$ aus der Zulassung wird die Auswirkung einer Verkleinerung der Ankerplatte auf $18cm \times 18cm$ und $12cm \times 12m$ untersucht.

Abb. FA.29: Druckspannungsverlauf unterhalb einer weichen Ankerplatte nach (Rombach 2010)

Bei einer Obergurtbreite von 30cm wird für die Ankerplatten $26cm \times 26cm$ und $18cm \times 18cm$ keine Erhöhung der Druckfestigkeit unterhalb der Ankerplatte berücksichtigt, da hier keine Teilflächenbelastung vorliegt. Der Nachweis wird über einen ebenen Spannungszustand mit einer aufnehmbaren Druckspannung von $\sigma_{Rd,max} = \kappa_1 \cdot \nu' \cdot f_{cd}$ mit $\kappa_1 = 1,1$ (nach DIN EN 1992-1-1,NPD) und dem Abminderungsbeiwert der Druckfestigkeit $\nu' = 1,0$ geführt. Mit Hilfe des Anhang F Seite 28 erzeugten FEM-Modells (Abb.FA.29) werden die Spannungen unterhalb der Ankerplatte dargestellt. Die Ankerplattendicke t = 50 mm bleibt dabei gleich. Es muss die Tragfähigkeit der Spanngliedverankerung während der Lastübertragung beim Vorspannen gewährleistet werden, um ein Versagen des Verankerungsbereiches auszuschließen. Im Folgenden wird die Berechnung der Bruchkurve (Abb.3.32) mittels einer Ellipsengleichung (vgl. Curbach et al. 2011) durchgeführt:

$$\frac{\left(\frac{\sigma_1}{f_c'} + \frac{\sigma_2}{f_c'} - 2c\right)^2}{2 \cdot a^2} + \frac{\left(\frac{\sigma_2}{f_c'} - \frac{\sigma_1}{f_c'}\right)^2}{2 \cdot b^2} = 1$$
(Gl. FA. 34)

Dabei sind:

$$a = 1,150 \cdot 10^{-4} \cdot |f_c'|^2 - 2,493 \cdot 10^{-2} \cdot |f_c'| + 1,996$$
(Gl.FA.35)

$$b = 0,173 \cdot 10^{-4} \cdot |f_c'|^2 - 0,259 \cdot 10^{-2} \cdot |f_c'| + 0,810$$
 (Gl.FA.36)

$$c = -1,169 \cdot 10^{-4} \cdot |f_c'|^2 + 2,007 \cdot 10^{-2} \cdot |f_c'| - 0,239 \qquad (Gl.FA.37)$$

$$f'_c \approx 0.9 \cdot f_{cm} \text{ mit } f_{cm} = f_{ck} + 8 \qquad f_{ck} \text{ in } N/mm^2$$
 (Gl.FA.38)

Die Spannung σ_1 aus Pfostenvorspannung $P_{0,Pfosten}$ folgt aus der konzentrierten Lasteinleitung über die Fläche der Ankerplatte A_{Ankerplatte}.

$$\sigma_1 = \frac{P_{0,Pfosten}}{A_{Ankerplatte}} \tag{Gl.FA.39}$$

Die Spannung σ_2 folgt aus den Schnittgrößen im Obergurt im Grenzzustand der Tragfähigkeit (GZT)

$$\sigma_2 = \frac{N_{Gurt,GZT}}{A_{Gurt}} \pm \frac{M_{Gurt,GZT}}{W_{Gurt}} \tag{Gl.FA.40}$$

Dabei wird die Vorspannkraft $P_{0,Pfosten}$ mit -1258,1kN, die Normalkraft im Gurt aus GZT mit $N_{Gurt,GZT} = -752kN$ und das Moment $M_{Gurt,GZT}$ im Gurt mit -62kNm berücksichtigt.

Studie: Ankerplattengröße						
	Ankerplatte 26x26	Ankerplatte 18x18	Ankerplatte 12x12	Bemerkung		
σ_1 (N/mm^2)	18,61	38,83	87,37	Spannung aus Pfostenvorspannung		
σ_2 (N/mm^2)	17,99	17,99	17,99	Spannung im Gurt aus GZT		
$\frac{\sigma_2}{\sigma_1}$	0,97	0,46	0,21	Spannungsverhältnis		
$\frac{\sigma_1}{f_c'}$	106%	127%	130%	Erhöhung und Bezug auf einaxiale Festigkeit aus Bruchkurve		
$\frac{f_{cd}^*}{(N/mm^2)}$	60,07	72,69	75,14	Mit dem Festigkeitszuwachs aus zweiaxialer Druckbeanspruchung, darf die Betondruckfestigkeit gesteigert werden $f_{cd}^* = f_{cd} \cdot \frac{\sigma_1}{f_{cl}}$		
$\frac{\sigma_{Rd,max}}{(N/mm^2)}$	66,07	79,95	82,65	Erhöhte aufnehmbare Druckspannung nach (DIN EN 1992- 1-1) $\sigma_{Pd} \max = \kappa_1 \cdot \nu' \cdot f_{cd}^*$		
$\frac{\sigma_z}{(N/mm^2)}$	51,8	52,4	96,7	Spannung in z-Richtung aus konzentrierter Lasteinleitung aus FE- Rechnung		
$\frac{\sigma_x}{(N/mm^2)}$	31,4	31,4	63,9	Spannung in x-Richtung aus konzentrierter Lasteinleitung aus FE- Rechnung		
$\eta_{\sigma z}$	0,78	0,66	1,17	Ausnutzungsgrad σ_z		
$\eta_{\sigma x}$	0,48	0,39	0,77	Ausnutzungsgrad σ_x		
	Nein	Nein	Ja	Berücksichtigung Teilflächenpressung		
σ _{Rdu} (N/mm ²)			103,9	Aufnehmbare Druckspannung unter Berücksichtigung der Teilflächenbelastung nach (DIN 1045-1) $\sigma_{Rdu} = f_{cd} \cdot \sqrt{\frac{A_{c1}}{A_{c0}}} = 56,67 \cdot \sqrt{\frac{257^2}{144^2}}$ Vgl. auch DIN EN 1992-1-1 und für weitere Informationen Bauschinger (1876), Pohle (1957), Spieth (1959). Es wird eine Lastverteilungsfläche bis zur Betondeckung der Längsbewehrung angesetzt. $A_{c1} = \left(a + 2 \cdot \frac{d_1}{tan(60)}\right)^2$ $= \left(12 + 2 \cdot \frac{3,5}{tan(60)}\right)^2 = 257 cm^2$		
η			61,1	Ausnutzungsgrad unter Berücksichtigung der Teilflächenbelastung		

Tab.FA.10: Ergebnisse der Spannungen unter der Lasteinleitungsplatte in Abhängigkeit der Lastplattengröße

Abb.FA.30: Bruchkurve für die Lastplatten 12 x 12, 18 x 18, 22 x 22[cm]

Nachweis der Zugspannungen

Nach DAfStB Heft 240 lässt sich die Spaltzugkraft F_{sd} für eine mittig angreifende Längsdruckkraft näherungsweise errechnen (Abb. 3.33).

$$F_{sd} = 0.25 \cdot F_{Ed} \cdot \left(1 - \frac{h_0}{h_1}\right) = 0.25 \cdot 1258.1 \cdot \left(1 - \frac{18}{22}\right) = 57.2kN$$
(Gl.3.41)
Es wird eine Spaltzugbewehrung von $erf.A_s = \frac{F_{sd}}{f_{yd}} = \frac{57.2 \text{ kN}}{43.5 \text{ kN/cm}^2} = 1.31cm^2$ eingebaut.

Abb.FA.31: Links: Pfade der Zug- u. Druckspannungen; Mitte: Spannungsverlauf; Rechts: Idealisierter Verlauf (nach Leonhardt 1974 und DAfStB. Heft 240)

Vorspannung des Untergurtes und Ausbildung des Auflagerpunktes

Spannsystem:

Der Untergurt wird mit dem Spannsystem SUSPA DSI Monolitzen-Spannverfahren ohne Verbund (Z-13.72-3003 bzw. ETA-03/0036) (vgl. Tab.FA.4) vorgespannt. Die 4 Spannglieder im Untergurt müssen an den Stirnseiten des Untergurtes mit vier Ankerplatten ausgeführt werden. Da die in der Zulassung vorgeschriebenen Mindestabstände im Lasteinleitung Bereich des modularen Fachwerkträgers nicht eingehalten werden können, muss dieser Bereich gesondert untersucht werden.

Längsstoßausbildung des Untergurtes: Ausgangssituation und grundsätzliche Möglichkeiten:

Im Bereich der Segmentstöße (s. Kapitel 3.5) ist es notwendig die Gurte zu stoßen. Während der Obergurt durch die Koppelpfetten in horizontaler Richtung gehalten ist und deshalb nicht oder lediglich durch eine konstruktive Verdollung in der Lage gesichert wird, muss für den Untergurt eine Verbindung geschaffen werden, die ein Ausweichen in horizontaler Richtung verhindert. Diese Verbindung muss aus der Stabwerksberechnung im GZT Druckkräfte von 3238,8 kN, Biegemomente um die Eigengewichtsrichtung von 20,5 kNm, Querkräfte in Eigengewichtsrichtung von 19,0 kN und Querkräfte senkrecht zur Fachwerkebene von 13,2 kN übertragen können (Abb.FA.32). Dazu gibt es folgende Möglichkeiten:

- Nachträglicher Stoß der Bewehrung mittels Schweißen
- Nachträglicher Stoß der Bewehrung mittels Stahleinbauteil und Verschraubung

Draufsicht

Abb.FA.32: Ausgangssituation mit Angabe der Vorspannungskräfte sowie des einwirkenden Momentes

Nachträglicher Stoß der Bewehrung mittels Schweißen:

Neben der Variante durch zusätzliche Elemente eine Verbindung zu schaffen, ist es auch möglich die Untergurte so auszubilden, dass durch Koppelung der vorhandenen Längsbewehrung eine biegesteife Ausbildung erfolgt. Dafür wird die Längsbewehrung im Stoßbereich der Gurte auf eine Länge von ca. 50cm je Seite zugänglich gelassen. D.h. die Längsbewehrung schaut aus dem Untergurt heraus und kann miteinander gekoppelt werden, der Beton ist in diesen Bereichen ausgespart (Abb. 3.43). Denkbar ist, diese Koppelung durch ein separates Bewehrungselement zu schaffen, welches auf einer Seite in einen dafür vorgesehenen Gewindeanschluss befestigt und auf der anderen Seite an der herausragenden Bewehrung angeschweißt wird. Da im Bereich der Längsbewehrung der Beton ausgespart ist, erfolgt nach der Bewehrungskoppelung ein nachträglicher Verguss.

Abb.FA.33: Prinzipsskizze des nachträglichen Stoßes der Bewehrung mittels Schweißen

Nachträglicher Stoß der Bewehrung mittels Stahleinbauteil und Verschraubung:

In einer weiteren Variante wird für die Koppelung ein Stahleinbauteil genutzt. Dieses wird im Stoßbereich an allen vier Eckseiten des Untergurtes eingebaut und ist mit der Längsbewehrung dieses Gurtes verschweißt. Das Stahleinbauteil ist so konstruiert, dass die Bewehrung des anzufließenden Untergurtes über eine Verschraubung daran befestigt werden kann. Die Längsbewehrung beider Untergurte kann in einer Achse verlaufen, wodurch sich an der Grundkonstruktion nichts ändert (Abb. 3.45).

Abb.FA.34: Prinzipskizze des nachträglichen Stoßes der Bewehrung mittels Stahleinbauteil und Verschraubung

Wahl einer Variante:

Im Folgenden wird der nachträgliche Stoß der Bewehrung mittels eines Stahleinbauteil und Verschraubung der Bewehrung mit dem Stahleinbauteil betrachtet, da hierbei eine weitgehend trockene Fügung möglich und aufgrund des Brandschutzes lediglich ein kleiner Bereich nachträglich zu vergießen ist.

Detailbetrachtung des Stahleinbauteils:

Die Stahleinbauteile werden in den Eckbereichen der Gurte platziert (Abb. 3.35). Die Hüllrohre der Vorspannung erfahren keine geometrische Beeinträchtigung. Die Längsbewehrung bleibt in beiden Gurtelementen an der vorgesehenen Stelle.

Abb.FA.35: Querschnitt des Untergurtes

Das Stahleinbauteil wird mit der Längsbewehrung über eine Schweißnaht am durchgesteckten Stab verbunden. Auf der Baustelle wird das Gegenstück mit herausragender Längsbewehrung mit Gewinde in das Stahleinbauteil eingefädelt und dort verschraubt. Der Stoß der Untergurte erfolgt über eine trockene Fuge (Abb.FA.36). Die Bügelbewehrung des Untergurtes ist mit 2 cm Abstand direkt hinter dem Stahleinbauteil zu platzieren.

Abb.FA.36: Horizontalschnitt (links) und Längsschnitt (rechts) des Anschlussdetails

Das Stahleinbauteil selbst besteht aus verschweißten Stahlplatten (Abb.FA.36). Die Stirnseiten haben Bohrungen, durch die die Bewehrung anschließt (Abb.FA.37). Die Zugkräfte aus der Längsbewehrung

müssen über das Stahleinbauteil übertragen werden. Zwei Seiten des Stahleinbauteils sind offen, so dass die Montage erfolgen kann.

Abb.FA.37: Detail des Stahleinbauteils

Damit die Mutter auf der Längsbewehrung dauerhaft fest angezogen ist, kann diese durch einen Schweißpunkt oder durch eine Kontermutter gesichert werden. Die nach der Montage noch offenen Bereiche werden auf der Baustelle durch einen Vergussmörtel geschlossen.

Abb.FA.38: Foto eines eingebauten Stützenschuhs mit 8 Verschraubungen

FA.1.3 Segmentverbindungen modularer Fachwerkträger

Ein wesentliches Element in der Entwicklung des neuen Trägersystems stellt die Fügung einzelner Segmente dar. Der modulare Träger wird entweder komplett auf der Baustelle zusammengebaut oder im Werk teilvorgefertigt und in einzelnen Segmenten auf die Baustelle transportiert. In beiden Fällen begrenzen Herstellung und Transport die Länge des Ober- und Untergurt. Es wird also notwendig den Träger an geeigneter Stelle zu verbinden. Eine Recherche hat gezeigt, dass die von Henze (2009) vorgeschlagenen Segmentverbindungen am praktikabelsten sind. Diese werden vertieft betrachtet und geprüft welchen Einfluss die Segmentstöße auf das Trag- und Verformungsverhalten haben und wie die Fügung ausgebildet werden kann. Dazu wird der Fachwerkträger mit den Segmentverbindungen modelliert. Aufgrund der Gesamtlänge des Trägers von 60 m sind für den Transport der Elemente, im Besonderen der Gurte, mehrere Montagestöße notwendig. Die Längen der einzelnen Segmente zwischen den Stößen werden deshalb auf maximal 15 m begrenzt.

Segmentverbindung mit "Doppelpfosten"

Abb.FA.39: Montagestöße in Segmentverbindung 1(Schauberger 2016)

Bei der Segmentverbindung mit "Doppelpfosten" entsteht die Fügung der Segmente über einen Doppelpfosten am Ende eines Segmentes. Die Vorspannung ohne Verbund im Untergurt ist so gewählt, dass im GZT die Fugen zwischen den Segmenten überdrückt bleiben. Der Obergurt überträgt die Druckspannungen über Kontaktpressung. Die Querkraft wird über 4 angeordnete Zahnleistenpaare (2x oben u. 2x unten) übertragen. Um die optimale Lage der Zahnleisten zu ermitteln wurden die vertikalen Abstände zwischen den Leisten mit $x_1 = 3,75$ m, $x_2 = 2,75$ m, $x_3 = 1,75$ m und $x_4 = 0,75$ m (Abb.FA.44) hinsichtlich der Schnittgrößen und Verformungen untersucht. Dabei wurde das Ausgangssystem, welches ohne Segmentverbindungen modelliert wurde als Grundmodell verwendet. In dieses Modell wurden an den Verbindungsstellen je ein Querkraftgelenk modelliert. Die Stöße befinden sich dabei in Achse D, G, K und N (Abb.FA.50). Um die Grenzen des Systems zu betrachten werden Segmentverbindungen in jedem Feld sowie ausschließlich in Feldmitte untersucht. Die Segmentverbindungen wurden dabei über Gelenke abgebildet, die in den Gurten Normal- und Querkräfte, im Bereich der Doppelpfosten ausschließlich Querkräfte (Schubkräfte) übertragen können.

Es werden die Lastfälle "Eigenlast", "Schneelast" sowie die Lastfallkombination GZT 1 untersucht und die Ergebnisse dieser Segmentstudie mit dem Ausgangssystem verglichen. Es werden die Auflagerkräfte, die Normalkraft in der äußersten Diagonale, die Querkraft und das Moment im Obergurt bei Achse B sowie das Moment im Pfosten aus der eingeleiteten Querkraft der Segmentverbindung in Achse D bzw. N betrachtet. Es zeigt sich, dass sowohl die Schnittgrößen als auch die Verformungen nicht nennenswert voneinander abweichen. Die Segmentverbindungen haben somit keinen negativen Einfluss auf das Trag- und Verformungsverhalten des Fachwerkträgers. Aus konstruktiven Gründen wird der Abstand der Verbindung bei $x_1 = 3,75$ m gewählt (Schauberger 2016).

Abb.FA.40: Doppelpfosten Segmentverbindung als 3D-Darstellung und Detail nach (Schauberger 2016)

Segmentverbindung "Diagonale"

Bei der Segmentverbindung "Diagonale" befindet sich die Verbindung der Gurte mittig zwischen 2 Stützen. Die Diagonale zwischen diesen Stützen muss vor Ort montiert werden.

Abb.FA.41: Montagestöße in Segmentverbindung 2 (Schauberger 2016)

Die Segmentstöße werden zwischen den Achsen D und E (D`), G und H (G`), J und K (J`) sowie M und N (M`) angeordnet. Die Randfelder haben eine Länge von 13,23 m, die 3 inneren Felder von 11,25 m. In den Ober- und Untergurten werden Gelenke eingefügt um die Verbindungen zu simulieren. Diese Gelenke können Normalkräfte und Querkräfte übertragen.

Abb.FA.42: Diagonalen Segmentverbindung 2 (Schauberger 2016)

Auch dieses System unterscheidet sich nicht signifikant gegenüber dem Ursprungssystem ohne Gelenke.

Vergleich der Segmentverbindungen

Da im Trag- und Verformungsverhalten keine nennenswerten Unterschiede vorliegen, ist aufgrund von wirtschaftlichen Gesichtspunkten die Segmentverbindung "Diagonale" zu bevorzugen (Abb.FA.54). Hierbei kann Material und somit auch Eigengewicht, die Anzahl an Pfosten und die Verbindungselemente (Zahnleisten Verbindungen) der Pfostenverbindungen eingespart werden. Dennoch bietet auch Segmentverbindung "Doppelpfosten" die Möglichkeit der Ausführung, gegebenenfalls wenn eine Sonderlösung erforderlich ist.

Abb.FA.43: Statisches System der Segmentverbindung 2 (Biadatz 2017)

FA.1.4 Montagekonzepte und daraus resultierende Beanspruchungen

Von der Fertigung im Werk bis hin zur Baustelle und dann bei der Montage in die Endlage werden die einzelnen Elemente unterschiedlich beansprucht. Grundsätzlich kann in eine Anlieferung der Einzelteile oder eine Anlieferung ganzer Segmente unterschieden werden. Im weiteren Schritt wird der Fachwerkträger auf der Baustelle zusammengebaut. Die Montage der einzelnen Elemente erfolgt segmentweise und liegend auf einer Montagefläche. In beiden Fällen der Anlieferung können die fertigen Segmente liegend auf der Montagefläche oder in die Senkrechte aufgerichtet vorgespannt werden. Danach erfolgt das Einheben des Fachwerkträgers in die Endlage und die Montage der Dachverbände und Dachhaut. Die im Ablaufschema weiß hinterlegten Bauzustände wurden rechnerisch untersucht (Abb.FA.44).

Abb.FA.44: Ablaufschema beim Bau eines Daches mit modularem Fachwerkträger nach (Biadatz 2017)

In den Rechenmodellen werden folgende Bauzustände untersucht:

- Abladen der liegenden Segmente
- Stehende Segmente vor dem Vorspannen des Untergurtes
- Vorspannen des Untergurtes im stehenden Zustand
- Vorspannen des Untergurtes im liegenden Zustand
- Einheben des Fachwerkträgers mit Traversen
- Dachmontage

In diesen Bauzuständen wiederum werden mehrere Varianten bzw. Parameter untersucht. Ziel der Untersuchung ist, durchführbare Ablaufschemata für die Fachwerkträgermontage zu entwickeln. Die statischen Systeme, Belastungen und Berechnungsergebnisse der untersuchten Bauzustände können der Anlage FA2 entnommen werden. Die Bemessungsdruckfestigkeit von $f_{c,var2} = f_{cd} = 56,67 \text{ N/mm}^2$ ist in den meisten Fällen eingehalten. Die Bemessungszugfestigkeit von $f_{c,var2} = f_{cd} = 2,10 \text{ N/mm}^2$ wird öfter bis zu 1,00 MN/m² und in manchen Fällen um mehr als 2,00 MN/m² im Bereich der Diagonalen überschritten. Die Betonkennwerte werden nach DIN EN 1992-1-1(s. Kap. FA.1) angesetzt. Die charakteristische Betonzugfestigkeit $f_{ctk;0,05} = 3,70 \text{ MN/m}^2$, welche theoretisch in 95 % der Fälle nicht überschritten wird, wird somit nur in den seltenen Fällen bei einer Überschreitung um 2,00 MN/m² überschritten. In diesen Fällen kommt es zu einer lokalen Rissbildung und somit zu einem lokalen Steifigkeitsabfall. Die eingelegte Bewehrung verhindert eine Vergrößerung der Risse. Im Endzustand sind die Diagonalen unter der Gebrauchslast überdrückt und die Risse wieder geschlossen. Unter diesen Gesichtspunkten werden die Spannungsüberschreitungen akzeptiert. Aus den vorangegangenen Betrachtungen können zwei Ablaufschemata mit entsprechenden statischen Systemen und Lastansätzen abgeleitet werden (Tab.FA.15 u. FA.16) (Biadatz 2017).

Abla	ufschema 1	
Nr.	Arbeitsschritt/Bauzustand	Rechenmodell
1a	Abladen der liegenden Segmente	erwM_v4_A2
1b	Montieren der einzelnen Elemente zu Segmenten	
2	Aufrichten der Segmente	erwM_v4_A2 oder
		erwM_v4_A4
3	Positionieren der stehenden Segmente	erwM_v4_B1 oder
		erwM_v4_B2
4	Vorspannen des Untergurtes mit stehenden Segmenten	erwM_v4_C
5	Einheben des Fachwerkträgers in die Endlage mit Traversen	erwM_v4_E4
6	Herstellen des Dachverbandes, Einheben der restlichen	
	Fachwerkträger	
7	Montage der Dachhaut	erwM v4. alle Varianten

 Tab.FA.11: Ablaufschema 1 beim Bau eines Daches mit modularen Fachwerkträgern (Biadatz 2017)

 Tab.FA.11: Ablaufschema 2 beim Bau eines Daches mit modularen Fachwerkträgern (Biadatz 2017)

 Ablaufschema 2

Abla	utschema 2	
Nr.	Arbeitsschritt/Bauzustand	Rechenmodell
1a	Abladen der liegenden Segmente	erwM_v4_A2
1b	Montieren der einzelnen Elemente zu Segmenten	
2	Platzieren und Ausrichten der Segmente liegend auf der	erwM_v4_A2
	Montagefläche	
3	Vorspannen des Untergurtes der liegenden Segmenten auf	erwM_v4_D1 ohne
	der Montagefläche	Eigengewicht
4	Aufrichten des Fachwerkträgers	erwM_v4_D2 oder
		erwM_v4_D4
5	Einheben des Fachwerkträgers in die Endlage mit Traversen	erwM_v4_E4
6	Herstellen des Dachverbandes, Einheben der restlichen	
	Fachwerkträger	
7	Montage der Dachhaut	erwM_v4, alle Varianten

Der grundsätzliche Unterschied der Ablaufschemata liegt im Vorspannen des Untergurtes, das bei Ablaufschema 1 im stehenden Zustand und bei Ablaufschema 2 liegend auf der Montagefläche erfolgt. Um die Zugspannungen bei Bedarf zu verringern, könnte die Größe der Segmente auf zwei Felder begrenzt werden, wobei die Verbindung mittig zwischen zwei Achsen bleibt. Weiter kann eine geringe Vorspannung mit sofortigem Verbund im Untergurt eingesetzt werden und alle Diagonalen eine Vorspannung ohne Verbund erhalten.

In beiden Fällen entstehen Zugspannungen im Obergurt aus Vorspannung des Untergurt. Die maßgebende Zugkraft beträgt 15 kN beim liegenden Vorspannen (Ablaufschema 2), da hier das Eigengewicht des Fachwerkträgers zunächst nicht aktiviert wird. Die Zugkraft von 15 kN wird im Montagezustand durch eine konstruktive Verschraubung übertragen.

FA.1.5 Konstruktiver Brandschutz

Anders als bei Stahl- oder Holzfachwerken ermöglicht die Betonbauweise einen Schutz gegen Brandeinwirkung. Die einzelnen Bauteile des modularen Fachwerkträgers werden auf Grundlage der Verwendung der tabellierten Daten beurteilt. Dabei werden die Gurte, Pfosten und Diagonalen sowie Stützen nach DIN EN 1992-1-2 betrachtet. Da es sich um hochfesten Beton handelt, werden die zusätzlichen Vorschriften der Klasse 3 berücksichtigt. Diese sind in DIN EN 1992-1-2 + NA; Kap. 6 für Betone der Festigkeitsklasse C 90/105 geregelt. Die Problematik bei Betonen mit dieser hohen Festigkeitsklasse und darüber hinaus insbesondere für ultrahochfeste Betone ist das dichte Gefüge der Betonmatrix. Das im Bauteil enthaltene Wasser hat keinen Raum (Luftporen) um sich im Brandfall ausdehnen zu können. Dies führt zu Abplatzungen am Beton, der die Bewehrung dann nicht mehr vor der Brandeinwirkung schützen kann. Um diese Abplatzungen zu vermeiden, kann gemäß DIN EN 1992-1-2 bei Methode A ein dichtes konstruktives Bewehrungsnetz mit 15 mm Betondeckung vorgesehen werden. Methode B sieht Betontypen (Betonzusammensetzungen) vor, bei denen erwiesenermaßen keine Abplatzungen auftreten. Ein weiterer Schutz vor Abplatzungen ist das Anbringen einer Schutzschicht (Methode C) sowie das Beimischen von mehr als 2 kg/m³ Polyprobylenfasern. Diese sollen bei hohen Temperaturen schmelzen und somit einen Hohlraum für das sich ausdehnende Wasser bilden. Bei Betonen C100/115 sowie höheren Festigkeitsklassen wird vorgeschlagen eine Kombination aus 2 Methoden vorzunehmen. Beispielsweise könnten Polyprobylenfasern in Kombination mit einer oberflächennahen Netzbewehrung eingesetzt werden (vgl. ZMB/10/2002).

Die Bauteilabmessungen von hochfesten Betonen müssen gegenüber den Normalbetonen um den Wert $2 \cdot (k-1) \cdot a$ erhöht werden. Der Achsabstand a und der Wert k, der die Festigkeitsreduzierung des Betons bei hohen Temperaturen berücksichtigt, werden nachfolgend angegeben.

k = 1,1 für Betone der Klasse 1 k = 1,3 für Betone der Klasse 2

Für Betone der Klasse 3 wird empfohlen das genauere Berechnungsverfahren anzuwenden. Obwohl hier ein Beton der Klasse 3 vorliegt, soll die brandschutztechnische Betrachtung anhand der Tabellen durchgeführt werden. Unter Beachtung der Kombination aus zwei konstruktiven Methoden der Sicherung gegen Betonabplatzungen wird für die Bemessung der Wert k = 1,3 angesetzt.

Der Wert a ist der Achsenabstand gem. DIN EN 1992-1-2 + NA; Kap. 5 und in Abhängigkeit der erforderlichen Feuerwiderstandsklasse und des Ausnutzungsgrades zu ermitteln.

Der Ausnutzungsgrad wird wie folgt berechnet:

$$\mu_{fi} = \frac{N_{Ed,fi}}{N_{Ed}}$$
(Gl.3.54)

mit

 $N_{Ed,fi}$ Bemessungswert der Normalkraft im Brandfall N_{Ed} Maximaler Bemessungswert der Normalkraft im GZT bei Normaltemperatur, anstelle
des Bemessungswertes der Tragfähigkeit der Stütze bei Normaltemperatur N_{Rd}
(vereinfachte Annahme auf der sicheren Seite)

Die Berechnung des Fachwerkträgers erfolgt mit außergewöhnlichen Einwirkungskombinationen nach DIN EN 1990. Die untersuchten Lastfälle, verwendeten Teilsicherheits-und Kombinationsbeiwerte sowie die Lastfallkombinationen sind in Anhang FA4 aufgeführt. Die Kriterien zur Anwendung der DIN EN 1992-1-2 + NA Tab. 5.2a sind erfüllt. Die Ersatzlänge der Stütze im Brandfall beträgt $l_{0,fi} \leq 3,0$ m und der Bewehrungsgehalt $A_s < 0,04 \cdot A_c$. Dabei wird der Untergurt nur zwischen den Pfosten betrachtet. Es wird eine mehrseitige Brandbeanspruchung angesetzt.

Das Knotenelement weist eine Analogie zu Konsolen auf und wird deshalb nach DIN 4102, Teil 4, Tab.5 dimensioniert. Dabei werden die Bauteilabmessungen und Mindeststababstände unabhängig vom Ausnutzungsgrad festgelegt. Die Betondeckung der Zahnleiste wird aufgrund der ähnlichen Einbausituation wie Verbundstützen behandelt. In beiden Fällen wird ein Stahlbauteil einbetoniert und damit vor Brand geschützt. Die Dimensionierung erfolgt nach DIN EN 1994-1-2, Tabelle 4.4 – Zeile 2.2. Auch bei der Konsole wird analog der Gurte, Diagonalen und Pfosten eine Querschnittserhöhung wegen des hochfesten Betons vorgenommen (Tab.FA.16).

Die Mindestabstände und Bauteilabmessungen sind so gewählt, dass gilt:

$$\frac{E_{d,fi}}{R_{d,fi}} \le 1,0$$
 (Gl.3.55)

mit: $E_{d,fi}$ Bemessungswert der Schnittgröße im Brandfall

$R_{d,fi}$ Bemessungswert der Tragfähigkeit im Brandfall

Die Bemessung mit Tabellen zeigt eine Anwendbarkeit des Fachwerkträgers bis zu einer Feuerwiderstandsklasse R60. Mit größeren Querschnittsabmessungen können auch höhere Feuerwiderstandsklassen erreicht werden (Tab.FA.17). Da es aus Montagegründen eine Fuge zwischen Knotenelement und Gurt gibt, ist diese entsprechend der Brandschutzanforderungen mit einem Fugendichtstoff (Fugendichtband) zu schließen (vgl. MB7, FDB,11/2012).

Bauteil	Feuerwider- standsklasse	erforderliche Abmessungen	Grundlagen	Beschreibung	gewählte Abmessungen	Begründung
Ober- / Untergurt	R60	b ≥ 30,9 cm as _{chlaff} ≥ 3,1 cm a _{Spanndraht} ≥ 4,6 cm	DIN EN 1992-1-2 + NA, Tabellarische Daten nach Kapitel 5.3.2, Methode A, Tabelle 5.2a	Bemessungssituation für Schnittgrößenermittlung: Außergewöhnlich (Brandfall); Annahme zur Ermittlung des Ausnutzungsfaktors µ:	b/h = 35/31 cm a _{Schlaff} = 3,5 cm a _{Spanndraht} = 5,0 cm	Minimale Unterschreitung der erforderlichen Abmessungen werden durch folgende Aspekte begründet: N _{Rd} auf der sicheren Seite liedend dadurch undrinstiderer
Diagonale	R60	b ≥ 22,1 cm as _{chlaff} ≥ 3,5 cm as _{panndraht} ≥ 5,5 cm	DIN EN 1992-1-2 + NA, Tabellarische Daten nach Kapitel 5.3.2, Methode A, Tabelle 5.2a	aufnehmbare Normalkraft der Stütze N _{Rd} ≈ N _{Ed} Normalkraft der Stütze im GZT; Verwendung der Tabellarischen Daten für Stützen, da Momentenbeanspruchung der Bauteile im Fachwerkträger	b/h = 22/22 cm as _{chlaff} = 3,5 cm as _{panndraht} = 11,0 cm	Ausnutzungsfaktor µ; Ausnutzungsfaktor µ; Verwendung von C100/115, jedoch mögliche Anwendung mehrerer Methoden gleichzeitig zur Verhinderung von Betonabplatzungen nach Kapitel 6.2;
Pfosten	R60	b ≥ 22 cm as _{chlaff} ≥ 3,3 cm a _{Spanndraht} ≥ 4,8 cm	DIN EN 1992-1-2 + NA, Tabellarische Daten nach Kapitel 5.3.2, Methode A, Tabelle 5.2a	gering ist; Berücksichtigung der Querschnittserhöhungen bei Verwendung von HFB nach Kap. 6.4.3	b/h = 22/22 cm as _{chlaff} = 3,5 cm as _{panndraht} = 11,0 cm	Tabellarische Daten liegen im Allgemeinen auf der sicheren Seite und resultieren in größeren Querschnittsabmessungen als genaue Berechnungsmethoden
uctor X	US D	b ≥ 23,5 cm a _{Schlaff} ≥ 3,0 cm	DIN 4102 Teil 4, Tabelle 5	Mindestabmessungen unabhängig von Ausnutzungsfaktor des Bauteils; Bemessung analog zu Stahlbeton-Konsolen	b/h = 35/24 cm a _{Schlaff} = 3,5 cm	Geometrie von Stahlbeton- Konsolen ähnlich zum Knotenpunkt
		a _{Zahnlei} ste ≥ 4,0 cm	DIN EN 1994-1-2 + NA, Tabelle 4.4, Zeile 2.2	Mindestabstand des Stahleinbauteils nach Vorgaben für Verbundstützen ermittelt	a _{Zahnleiste} = 6,5 cm	Stahlverbundstütze mit vollständig einbetoniertem Stahlquerschnitt gewählt, da dies der Einbausituation der Zahnleiste am ähnlichsten ist

Tab.FA.12: Ergebnisse der brandschutztechnischen Betrachtung (Schubert 2017)

Abb.FA.45: Diagramm mit Mindestabmessungen je Feuerwiderstandsklasse (Schubert 2017)

FA.1.6 Dauerhaftigkeit (Korrosionsschutz)

Allgemeines zum Korrosionsschutz

Der Fachwerkträger ist analog der Expositionsklasse in eine Korrosivitätskategorie einzuteilen. Es wird die Korrosivitätskategorie C1 für Innenräume mit üblicher Luftfeuchte angesetzt. Hierfür ist für die genannten Stahlteile des Fachwerkträgers die Korrosionsschutzart "a", der Schutz durch eine Betondeckung ausreichend. Die Betondeckung ist analog der Expositionsklasse zu wählen.

Korrosionsschutz von Spannsystemen

Beim modularen Fachwerkträger wird zur Vorspannung der Obergurtelemente eine Vorspannung im Verbund mit Spannstahllitzen St 1570/1770 verwendet. Die einbetonierten Spannstahllitzen werden durch die Betondeckung und die Rissbreitenbeschränkung geschützt.

Der Untergurt wird ohne Verbund mit dem SUSPA DSI Monolitzen-Spannverfahren vorgespannt. Dabei werden 7-drähtige Spannstahllitzen mit einem 1,5mm dicken PE-Mantel umhüllt. Der Zwischenraum wird mit einem dauerelastischen Korrosionsmittel ausgefüllt. Der Korrosionsschutz erfüllt alle Expositionsklassen. Ankerbauteile und Kopplungen sind mit einer Korrosionsschutzmasse (Nontribos MP2 oder Vaseline COX GX) zu schützen. Die Enden der Monolitzen werden mit PE-Kappen versehen. Die PE-Kappen enthalten eine Korrosionsschutzmasse, eine Korrosionsschutzbinde oder sind mit Einpressmörtel verfüllt.

Für die Pfostenvorspannung wird ein verbundloses Stabspannsystem (DYWIDAG) angewandt. Der dafür verwendete Gewindestab verläuft in einem Hüllrohr und erfordert somit einen Dauerkorrosionsschutz. Hier kann zum Korrosionsschutz generell ein Verpressmörtel, ein Strumpfschlauch, eine Korrosionsschutzmasse oder eine Korrosionsschutzbinde zum Einsatz kommen.

Korrosionsschutz von Stahleinbauteilen

Der Korrosionsschutz der Stahlzahnleiste sowie der Ankerplatten für die Vorspannungen und das Auflagerdetail wird auf Grundlage von (FDB MB2 2011) bewertet. Gefährdet sind die Vorspannelemente und hier insbesondere die Ankerplatten der Pfosten- sowie der Untergurtvorspannung. Des Weiteren ist das Auflager (Gabellager) vor Korrosion zu schützen.

Da die Zahnleiste zum Teil einbetoniert ist, wird diese durch die Betondeckung geschützt. Der aus dem Beton herausstehende Bereich ist nach Korrosivitätskategorie C1 nicht zu schützen.

Für die Auflagerplatte sowie die Stahlplatten zur Kippsicherung der Gabellagerung müssen nach Korrosivitätskategorie C1 keine Korrosionsschutzmaßnahmen vorgesehen werden.

Die Einbauteile der Spannsysteme sind gemäß der jeweiligen Zulassungen gegen Korrosion zu schützen.

Zusammenfassung zum Korrosionsschutz

Bauteil	Spannsystem/Verfahren	Stahleinbauteil	Korrosionsschutzmaßnahme
Untergurt	SUSPA DSI Monolitzen- Spannverfahren ohne Verbund mit 1 bis 5 Monolitzen	Spannglied	Betondeckung $C_{\min} = 30 \text{ mm}$ PE-Mantel mit Korrosionsschutzmittel
	(ohne Verbund) Z-13.72-30036 bzw. ETA-03/0036	Verankerung	vollständiges verfüllen mit Korrosionsschutzmasse Schutzsystem nach EN ISO 12944 PE-Kappen gefüllt mit Korrosionsschutzmasse
		Kopplungen	Korrosionsschutzmasse
		Auflager- Stahlplatte	ohne Korrosions- schutzmaßnahme im Einzelfall Grundierung
Obergurt	Spannstahllitze ST 1570/1770 (sofortiger Verbund) Z-12.3-107	Spannglied	Betondeckung $C_{\min} = 43 \text{ mm}$
Pfosten/ Diagonale	DYWIDAG Stabspannsystem (ohne Verbund) Z-13.72-50123 bzw.	Spannglied	Betondeckung C_{\min} = 30 mm Schrumpfschlauch bzw. Korrosionsschutzbinde
	ETA-05/0123	Verankerung	Beschichtungssystem nach DIN EN ISO 12944-5 PE-Kappen gefüllt mit Korrosionsschutzmasse
		Kopplungen	Korrosionsschutzmasse
Knotenelement	-	Zahnleiste	Korrosionsschutzbeschichtung auf Epoxidharzbasis Beschichtungssystem nach DIN EN ISO 12944-5

Tab.FA.13: Übersicht der Korrosionsschutzmaßnahmen nach (Kießling 2017)

Anhang FA2: Vorspannkräfte

Vorspannkräfte (Biadatz 2016)

				Vors	pann	kraft	[kN] in				
Modell		Ob	ergurt				Untergurt				
	ohne \	/erbund	m	nit Verbund	ł		ohne \	/erbund	mit	/erbund	
erwM_final		-		640			2'	160	1	1260	
erwM_v1		-		640			2	160	1	1500	
erwM_v2		-		640			30	660		-	
erwM_v3		-		640			3	560		-	
erwM_v4		-		640			3	560		-	
				Vorspanr	kraft	[kN] i	n Pfos	ten			
Modell	A	в	С	D	6	:	F	G	н	1	
	Q	Р	0	N	N	1	L	к	J		
erwM_final	200	800	700	600	45	50	350	210	80	30	
erwM_v1	210	800	700	600	00 45		350	240	180	40	
erwM_v2	210	800	700	600	00 45		350	240	180	40	
erwM_v3	210	815	700	600	00 53		430	290	350	155	
erwM_v4	210	815	700	600	53	30	430	290	350	155	
	Vorspannkraft [ki						N] in Diagonale				
Modell	A-B	B-C	C-D	D-	E	E	-F	F-G	G-H	H-I	
	P-Q	O-P	N-O	• M-	N	Ŀ	-M	K-L	J-K	I-J	
erwM_final	-	-	-	-			-	-	-	-	
erwM_v1	-	-	-	-			-	-	-	-	
erwM_v2	-	-	-	-			-	-	-	-	
erwM_v3	-	-	-	-			-	-	35	170	
erwM_v4	-	-	-	-			-	-	35	170	

Anhang FA3: Lastannahmen und Lastfallkombinationen

	Justumnumen (Blue			
_	Bauteil/Einwirkung	Bezeichnung	Art der Einwirkung	Last in kN/m ²
	Dachhaut	g _{D,k}	ständig	0,30
	Pfetten	<i>G</i> ₽,ĸ	ständig	0,15
	Anhängelast	g _{A,k}	ständig	0,15
	Schneelast	qs,k	veränderlich	0,97
-	Windlast	q _{w,k}	veränderlich	0,18
		-		-

Lastannahmen (Biadatz 2015)

Lastfälle und Kombinationen (Biadatz 2015)

Kurzbe- zeichnung	Lastfall	Einwirkung / Kombination
LF1	Eigenlast Fachwerkträger	G _{F,k}
LF2	Vorspannung (ohne Verbund)	P_k
LF3	Eigenlast Dachaufbau	$G_{D,k} + G_{P,k}$
LF4	Anhängelast	G _{A,k}
LF5	Schneelast	Q _{S,k}
LF6	Windlast	Q _{W,k}
GZT1	Volllast	$1,35 \bullet (G_{F,k} + G_{D,k} + G_{P,k} + G_{A,k}) + 1,0 \bullet P_k + 1,5 \bullet Q_{S,k} + 1,5 \bullet 0,6 \bullet Q_{W,k}$
GZG1	seltene Kombination	1,0•(G _{F,k} +G _{D,k} +G _{P,k} +G _{A,k})+1,0•P _k +1,0•Q _{S,k} +0,6•Q _{W,k}
GZG2	Gebrauchslast	1,0•(G _{F,k} +G _{D,k} +G _{P,k} +G _{A,k})+1,0•P _k

Erweiterung der Lastfälle und Kombinationen für verschiedene Laststellungen (Biadatz 2016)

Kurzbe- zeichnung	Lastfall/ -kombination	Einwirkung / Kombination
LF 8	Schnee fünffeldrig	Q _{S,5,k}
LF 9	Schnee halbseitig	Q _{S,8,k}
LF 10	Schnee zwölffeldrig	$Q_{S,12,k}$
LF 11	Wasseransammlung Atlika	Q _{We,k}
GZT_Ginf_1	Volllast (Schnee), G günstig	$1,0^{\bullet}(G_{F,k}+G_{D,k}+G_{P,k}+G_{A,k})+1,0^{\bullet}(P_{k}+P_{PI,k})+1,5^{\bullet}Q_{S,k}+1,5^{\bullet}0,6^{\bullet}Q_{W,k}$
GZT_Ginf_2	Volllast (Wind), G günstig	$1,0^{\bullet}(G_{F,k}+G_{D,k}+G_{P,k}+G_{A,k})+1,0^{\bullet}(P_{k}+P_{PI,k})+0.75^{\bullet}Q_{S,k}+1,5^{\bullet}Q_{W,k}$
S5	Schnee fünffeldrig	$1,35*(G_{F,k}*G_{D,k}*G_{P,k}+G_{A,k})*1,0*(P_k*P_{Pf,k})+1,5*Q_{S,5,k}*1,5*0,6*Q_{W,k}$
S5_Ginf	Schnee fünffeldrig, G günstig	$1,0*(G_{F,k}+G_{D,k}+G_{P,k}+G_{A,k})+1,0*(P_k+P_{Pf,k})+1,5*Q_{S,5,k}+0*0,6*Q_{W,k}$
S8	Schnee halbseitig	$1,35*(G_{F,k}*G_{D,k}*G_{P,k}*G_{A,k})*1,0*(P_k*P_{Pf,k})*1,5*Q_{S,8,k}*1,5*0,6*Q_{W,k}$
S8_Ginf	Schnee halbseitig, G günstig	$1,0^{\bullet}(G_{F,k}+G_{D,k}+G_{P,k}+G_{A,k})+1,0^{\bullet}(P_{k}+P_{Pl,k})+1,5^{\bullet}Q_{S,8,k}+0^{\bullet}0,6^{\bullet}Q_{W,k}$
S12	Schnee zwölffeldrig	$1,35*(G_{F,k}+G_{D,k}+G_{P,k}+G_{A,k})*1,0*(P_k+P_{Pf,k})+1,5*Q_{S,12,k}+1,5*0,6*Q_{W,k}$
S12_Ginf	Schnee zwölffeldrig, G günstig	$1,0*(G_{F,k}+G_{D,k}+G_{P,k}+G_{A,k})+1,0*(P_k+P_{Pf,k})+1,5*Q_{S,12,k}+0*0,6*Q_{W,k}$
WaA	Wasseransammlung Atlika	$1,35*(G_{F,k}*G_{D,k}*G_{P,k}*G_{A,k})*1,0*(P_k*P_{Pf,k})+1,0*Q_{Wa,k}*1,5*0,6*Q_{W,k}$
WaA_Ginf	Wasseransammlung Attika, G günstig	$1,0 \cdot (G_{F,k} + G_{D,k} + G_{P,k} + G_{A,k}) + 1,0 \cdot (P_k + P_{P,k}) + 1,0 \cdot Q_{W_{\theta,k}} + 0 \cdot 0,6 \cdot Q_{W,k}$

Wind-	Winddruck w _e (Außendruck) in kN/m ²									
einwirkungs-		für \	Nandabsch	nitt*	_					
richtung	А	В	С	D	E					
0°	-1,04	-0,69	-0,43	0,62	-0,28					
90°	-1,04	-0,69	-0,43	0,61	-0,26					
180°	-1,04	-0,69	-0,43	0,62	-0,28					

Winddruck auf Wandabschnitte am Gesamtsystem (Biadatz 2016)

Erweiterung der Lastfälle und Lastfallkombinationen auf das Gesamtsystem (Biadatz 2016)

Kurzbe- zeichnung	Lastfall/ -kombination	Einwirkung / Kombination
LF 12	horiz. Windlast 0°	Q _W ,0°,k
LF 13	horiz. Windlast 90°	QW,90°,k
LF 14	horiz. Windlast 180°	QW, 180°, k
GZT_1	Vollast (Schnee)	1,35•(GF,k+GD,k+GP,k+GA,k)+1,0•(Pk+PPf,k) +1,5•QS,k+1,5•0,8•QW,k
GZT_2	Volllast (Wind)	1,35•(G _{F,k} +G _{D,k} +G _{P,k} +G _{A,k})+1,0•(P _k +P _{Pf,k}) +0,75•Q _{S,k} +1,5•Q _{W,k}
GZG_perm	Gebrauchslast	1,0•(GF,k+ <i>GD,k</i> + <i>GP,k</i> + <i>GA,k</i>)+1,0•(<i>Pk+PPf,k</i>)
GZT_Ginf_1	Volllast (Schnee), G günstig	1,0•(<i>GF_{,k}+GD,k+GP,k+GA,k</i>)+1,0•(<i>P_k+PP_{f,k}</i>) +1,5•Q _{5,k} +1,5•0,8•Q _{W,k}
GZT_Ginf_2	Volllast (Wind), G günstig	1,0•(GF,k+GD,k+GP,k+GA,k)+1,0•(Pk+PPf,k) +0,75•QS,k+1,5•QW,k
BZ_vDm	Bauzustand vor Dachmontage	1,0*GF,k+1,0*(<i>Pk+PPf,k</i>)
GZT_hW0_1	Volllast (Schnee) mit horlzontalem Wind 0°	1,35•(GF,k+GD,k+GP,k+GA,k)+1,0•(Pk+PPf,k) +1,5•QS,k+1,5•0,6•(QW,k+QW,0°,k)
GZT_hW0_2	Volllast (Wind) mit horizontalem Wind 0°	1,35•(G _{F,k} +G _{D,k} +G _{P,k} +G _{A,k})+1,0•(P _k +P _{Pf,k}) +0,75•Q _{S,k} +1,5•(Q _{W,k} +Q _{W,0} °,k)
GZG_hW0_perm	Gebrauchslast mit horizontalem Wind 0°	1.0•(GF,k+ <i>GD,k</i> + <i>GP,k</i> + <i>GA,k</i>)+1.0•(<i>Pk</i> + <i>PPf,k</i>) +1,5• <i>QW,0°,k</i>
GZT_hW0_Ginf_1	Volllast (Schnee), G günstig mit horlzontalem Wind 0°	1,0•(G _{F,k} +G _{D,k} +G _{P,k} +G _{A,k})+1,0•(P _k +P _{Pf,k}) +1,5•Q _{S,k} +1,5•0,6•(Q _{W,k} +Q _{W,0} °,k)
GZT_hW0_Girrf_2	Volllast (Wind), G günstig mit horlzontalem Wind 0°	1,0•(<i>GF,k</i> + <i>GD,k</i> + <i>GP,k</i> + <i>GA,k</i>)+1,0•(<i>Pk</i> + <i>PPf,k</i>) +0,75•Q <i>S,k</i> +1,5•(<i>QW,k</i> + <i>QW,0</i> °, <i>k</i>)
GZT_hW90_1	Volllast (Schnee) mit horizontalem Wind 90°	1,35•(G _{F,k} +G _{D,k} +G _{P,k} +G _{A,k})+1,0•(P _k +P _{Pf,k}) +1,5•Q _{S,k} +1,5•0,6•(Q _{W,k} +Q _{W,90} °,k)
GZT_hW90_2	Volllast (Wind) mit horizontalem Wind 90°	1,35•(G _{F,k} +G _{D,k} +G _{P,k} +G _{A,k})+1,0•(P _k +P _{Pf,k}) +0,75•Q _{S,k} +1,5•(Q _{W,k} +Q _{W,90°,k})
GZG_hW90_perm	Gebrauchslast mit horizontalem Wind 90°	1,0•(GF,k+ <i>GD,k</i> + <i>GP,k</i> + <i>GA,k</i>)+1,0•(<i>Pk</i> + <i>PPI,k</i>) +1,5•QW,90°,k
GZT_hW90_Ginf_1	Volllast (Schnee), G günstig mit horizontalem Wind 90°	1.0•(<i>GF,</i> k+ <i>GD,</i> k+ <i>GP,</i> k+ <i>GA,</i> k)+1.0•(<i>P</i> k+ <i>PPt,</i> k) +1,5•QS,k+1,5•0,6•(Q <i>W,</i> k+Q <i>W,</i> 90°,k)
GZT_hW90_Ginf_2	Volllast (Wind), G günstig mit horizontalem Wind 90°	1,0•(<i>G_{F,k}+G_{D,k}+G_{P,k}+G_{A,k}</i>)+1,0•(<i>P_k+P_{Pf,k}</i>) +0,75•Q <i>S,k</i> +1,5•(Q <i>W,k</i> +Q <i>W,90°,k</i>)
GZT_hW180_1	Volllast (Schnee) mit horizontalem Wind 180°	1,35•(G _{F,k} +G _{D,k} +G _{P,k} +G _{A,k})+1,0•(P _k +P _{Pf,k}) +1,5•Q _{S,k} +1,5•0,6•(Q _{W,k} +Q _{W,180°,k})
GZT_hW180_2	Volllast (Wind) mit horizontalem Wind 180°	1,35•(GF,k+GD,k+GP,k+GA,k)+1,0•(Pk+PPf,k) +0,75•QS,k+1,5•(QW,k+QW,180°,k)
GZG_hW180_perm	Gebrauchslast mit horizontalem Wind 180°	1,0•(GF,k+GD,k+GP,k+GA,k)+1,0•(Pk+PPf,k) +1,5•QW,180°,k
GZT_hW180_Ginf_1	Volllast (Schnee), G günstig mit horizontalem Wind 180°	1,0•(<i>GF,k</i> + <i>GD,k</i> + <i>GP,k</i> + <i>GA,k</i>)+1,0•(<i>Pk</i> + <i>PP1,k</i>) +1,5• <i>QS,k</i> +1,5•0,6•(<i>QW,k</i> + <i>QW,180°,k</i>)
GZT_hW180_Ginf_2	Volllast (Wind), G günstig mit horizontalem Wind 180°	1,0•(<i>GF_k</i> + <i>GD,k</i> + <i>GP,k</i> + <i>GA,k</i>)+1,0•(<i>Pk</i> + <i>PPt,k</i>) +0,75•Q _{S,k} +1,5•(Q _{W,k} +Q _{W,180°,k})

Anhang FA4: Bauzustände

Überblick über	er die betrachteten Bauzustände											
Arbeitsschritt	Abladen d	ler lieg	enden S	Segmei	nte							
Rechenmodell	erwM v4	A1 (si	ehe Syst	tem)								
	erwM v4	A2 (La	agerung	OG un	ld UG i	n allen	Achsei	1)				
	erwM v4	A3 (A	1, jedoc	h UG v	ollstän	dig auf	gelager	t, Linie	nlager)			
	erwM v4	A4 (A	$\frac{1}{2}$, jedoc	h UG v	ollstän	dig auf	gelager	t. Linie	nlager)			
System		_	,			0	00-	- ,				
~) ~ ~ ~ ~	K	11										
		-				1						
				-				\leq				
Belastung	Eigengewi	cht wir	kt senk	recht zu	ır Fach	werkeb	ene.					
Fraebnisse		1		New			1 2					
Eigeomsse	Modell	Obe	raurt	Pfor	maispannu		/m-	Unte	raurt			
	modell Obergurt Prosten Diagonale Untergurt max min max min max min max min											
	erwM v4 A1 4,15 -15,91 -1,78 -20,30 4,42 -5.71 9,89 -9,89 Spannungen											
	an Element B-C; O-P B-C; O-P I B, P B-C, O-P H-I, I-J A-B, P-Q A-B, P-Q überschritten											
	an Element B-C, O-P B-C, O-P I B-C, O-P B-C, O-P H-I, I-J A-B, P-Q A-B, P-Q											
	erwM_v4_A1 -5.32 -8.88 -3.09 -19.91 1.82 -3.77 1.25 -1.26 Spannungen											
	ohne Eigeng.	an Element B-C; O-P B-C; O-P A, Q B, P B-C, O-P H-I, I-J A-B, P-Q A-B, P-Q eingehalten										
		ervM_v4_A3 1,12 -14,43 3,62 -23,92 5,54 -5,77 2,88 -2,88 Spannungen										
	an Element	1,12 B-C O-P	-14,43 B.C. O.P.	3,62	-23,92 B.P	5,54 B-C O-P	-5,77 B-C O-P	2,00	-2,00	überschritten		
	erwM v4 A4	-4.52	-9.68	-1.68	-20.60	2.65	-5.15	1.55	-1.55	Spannungen		
	an Element	B-C, O-P	B-C, O-P	1	B, P	B-C, O-P	H-I, I-J	A-B, P-Q	A-B, P-Q	überschritten		
	Remessungefestlichkeiten des Retons: Druck eingehelten: Zug überschritten											
A whaitagahwitt	Bemessungsfestlichkeiten des Betons: Druck eingehalten; Zug überschritten											
Rashanmadall	stellellue	D1 (ai	he Segi	ment st	enena	or aem	vorsp	annen c	ies Onierg	guries		
Kechennoden	$\frac{\text{erw}}{\text{v}}$	$\frac{D1}{D2}$ (vo	rtikolo l		ng om l	IC in a	llon A	hean)				
		$\underline{D2}(ve)$		Lageru	ng am ($\frac{100 \text{ m a}}{20 \text{ c}}$	1. Tree	insen)	-1-1	-1 <i>t</i>		
	erwivi_v4	_B3(2	x verti	Kallage	er am (JG, Iai	is ira	nsports	chlauten	dort		
	befestigt)			_								
	erwM_v4	_B3(V	ertikal	lager a	ım OG	in alle	s Achs	sen, fal	ls Transp	ortschlaufen		
	dort befes	stigt)										
System				-			-					
	VV	V			//	T		ΤΛ				
							-					
						-						
Belastung	Eigengewi	cht wir	kt in Fa	chwerk	cebene.	Die Vo	orspann	ung de	r Füllstäbe	e ist		
	aufgebrach	nt.								_		
Ergebnisse				N	ormalspan	nungen in N	/IN/m²					
_	Modell	Ob	ergurt	Pf	osten	Dia	agonale	i	Intergurt			
		max	min	max	min	max	min	max	c min			
	erwM_v4_B1	-5,03	-9,81	-3,18	-19,66	2,91	-5,19	2,20	6 -1,83	Spannungen		
	an Element	C-D, N-O	C-D, N-O	1	B, P	C-D, N-	0 н-і, і-	J B-C, C	PP C-D, N-O	überschritten		
	erwM_v4_B2	-5,12	-9,57	-3,93	-19,75	2,88	-3,85	5 2,18	3 -1,79	Spannungen		
	an Element	C-D, N-O	C-D, N-O	A, Q	B, P	B-C, O-	P H-I, I	J B-C, C	P-P C-D, N-O	überschritten		
	erwM_v4_B3	-5,06	-9,78	-2,99	-19,63	2,87	-5,19	2,3	5 -1,77	Spannungen		
	an Element	C-D, N-O	C-D, N-O	A, Q	B, P	C-D, N-	о н-і, і-	J B-C, C	D-P C-D, N-O	überschritten		
	erwM_v4_B4	-4,95	-9,27	-3,16	-18,69	3,48	-5,26	3 2,10	6 -4,14	Spannungen		
	an Element	A-B, P-Q	A-B, P-Q	1	B, P	A-B, P-6	Q B-C, C	-P A-B, F	P-Q A-B, P-Q	überschritten		
	Bemessur	ngsfest	lichkei	ten des	s Betor	ns: Dru	ck ein	gehalte	n; Zug ül	berschritten		

Fortsetzung Üb	erblick über die betrachteten Bauzustände									
Arbeitsschritt	Vorspann	en des	Unterg	urtes in	n stehe	nden Zu	ustand			
Rechenmodell	erwM_v4_	C (sieh	e Syster	m)Vors	pannen	des UG	r		_	
System		VV			N					
					* <u>}</u>					
Belastung	Eigengewi aufgebrach	cht in E nt (10 %	ligengev 5, 20 %,	wichts I 40 %, 3	Richtun 80 %, 1	g. Die V 00 %).	orspan	nung w	ird schrit	tweise
Ich komme				. No	rmalspannu	ingen in MN	l/m²			
gleich	Modell	Obe	rgurt	Pfo	sten	Diag	onale	Unte	ergurt	
		max	min	max	min	max	min	max	min	
	10% Vorsp.	-4,75	-12,39	-3,18	-17,86	1,25	-6,33	1,26	-4,72	Spannungen
	an Element	A-B, P-Q	H-I, I-J	1	B, P	E-F, L-M	A-B, P-Q	G-H, J-K	A-B, P-Q	emgenation
	erwM_v4_C 20% Vorsp4,66 -14,55 -3,16 -16,97 0,84 -8,02 -0,55 -10,00 Spannungen singebalten								Spannungen	
	an Element A-B, P-Q H-I, I-J I B, P F-G, K-L A-B, P-Q G-H, J-K A-B, P-Q									eingehalten
	erwM_v4_C 40% Vorsp4,65 -18,27 -3,14 -16,14 -0,43 -10,10 -4,30 -20,04 Spannungen									
	an Element A-B, P-Q G-H, J-K I B, P G-H, J-K A-B, P-Q G-H, J-K A-B, P-Q									
	erwM_v4_C 80% Vorsp4,50 -20,20 -1,95 -17,47 -0,18 -10,14 -18,26 -38,48 Spannungen									
	an Element B-C, O-P H-I, I-J G, K B, P G-H, J-K A-B, P-Q H-I, I-J A-B, P-Q eingehalten									eingehalten
	erwM_v4_C	-4,20	-21,25	-1,18	-18,14	-0,06	-10,16	-24,84	-47,70	Spannungen
	an Element	B-C, O-P	H-I, I-J	G, K	B, P	G-H, J-K	A-B, P-Q	H-I, I-J	A-B, P-Q	eingehalten
	Bemessungsfestlichkeiten des Betons: Druck eingehalten; Zug eingehalten									
Arbeitsschritt	Vorspannen des Untergurtes im liegenden Zustand									
Rechenmodell	erwM v4 D1 (siehe System)									
	erwM_v4	D2 (La	gerung	des OG	und U	G in alle	en Achs	sen)		
	erwM_v4	_D3(U	G volls	ständig	aufgel	agert (I	Linienl	ager); (OG in de	en Achsen
	A, F, L ur	nd Q ge	elagert,	Lage d	ler Abł	nebepui	nkte)			
	erwM_v4	_D4(U	G volls	ständig	aufgel	agert; (DG in j	eder A	chse gel	agert, Lage
	der Abhel	bepunk	te)							
System	RA	120								
Belastung	Eigengewi	cht wirl	kt senkr	echt zu	r Fachw	rkeber	ne. Die	Vorspa	nnung de	er Füllstäbe ist
Fraebnisse	aurgeoraer	ιι. Ι		No	malanannu	ngon in MN	/m2			
Ligeomsse	Modell	Obe	raurt		sten		onale	Unte	eraurt	
	mouon	max	min	max	min	max	min	max	min	
	erwM_v4_D1	-1,15	-12,50	-1,37	-23,13	2,21	-5,84	-33,66	-51,00	Spannungen
	an Element	H-I, I-J	H-I, I-J	G, K	B, P	B-C, O-P	H-I, I-J	H-I, I-J	H-I, I-J	überschritten
	erwM_v4_D1	71,57	-85,47	6,68	-25,32	19,96	-27,84	29,28	-114,21	Spannungen
	an Element	H-I, I-J	H-I, I-J	A, Q	B, P	H-I, I-J	H-I, I-J	H-I, I-J	H-I, I-J	überschritten
	erwM_v4_D2	-0,71	-12,94	-0,73	-23,69	3,09	-6,69	-33,15	-51,51	Spannungen
	an Element	H-I, I-J	H-I, I-J	G, K	B, P	B-C, O-P	H-I, I-J	H-I, I-J	H-I, I-J	überschritten
	erwM_v4_D3	17,38	-30,57	15,48	-29,78	10,44	-10,88	-32,57	-51,80	Spannungen
	erwM v4 D4	-0.71	-12.94	-0.73	-23.71	3.05	-6.69	-33.64	-51.01	Gran
	an Element	H-I, I-J	H-I, I-J	G, K	B, P	B-C, O-P	H-I, I-J	H-I, I-J	H-I, I-J	Spannungen überschritten
	Bemessun	osfestlia	hkeiter	des Be	tons. D	ruck üb	erschrit	ten: Zu	g ühersel	hritten

Anhang F Seite 52

Fortsetzung Überblick über die betrachteten Bauzustände										
Arbeitsschritt	Einheben des Fachwerkträgers mit Traversen									
Rechenmodell	erwM_v4_E1 (siehe System)									
	erwM_v4_E2 (Horizontallager am OG u. UG in Achse F u. L werden durch Federn									
	ersetzt) erwM v4 E3 (Horizontallager am OG u LIG in Achea E u L u im OG in Achea A u									
	erwM_v4_E3 (Horizontallager am OG u. UG in Achse F u. L u. im OG in Achse A u.									
	erwM v4 F4 (Horizontallager werden durch Federn ersetzt)									
	In Allen Mo	dellen werde	n die	e Federn	mit fo	lgender	1 Feder	• Steif	figkeiten in	
	Kilonewton pro Meter untersucht: 100.000, 50.000, 10.000, 5.000, 1.500,									
	1.000 und 5	00.								
System										
	V V V	V Λ	7							
	~					$\overline{\Lambda}$	$ \rangle$	$\backslash \land$		
									=	
	Transporteo	hlaufan sind i	n da	n Achse	nΛF	Lund	0 sim	iliort	Am UG in	
	Achse A un	d O wird ein V	li uc Vert	ikallager	$\Gamma A, \Gamma,$ r in Δc	bse F i	und Le	ine h	altende Kraft	
	von 80kN (e	entspricht 1/6	des	Gesamt	pewich	ts) als l	Halteru	ng an	gesetzt	
Belastung	Eigengewich	t in Eigengewie	chts	Richtung	<u>.</u>	(b) u ib 1	1410010	<u>9</u> u	19000121.	
U	5 5	8 8)					
Ergebnisse			N	lormalspannu	ngen in MN	/m²				
	Modell	Obergurt	Ρ	fosten	Diag	onale	Unte	ergurt		
		max min	max	min	max	min	max	min		
	an Element B-	-4,62 -16,86	-0,88 G K	-20,53	1,74 D-F M-N	-7,03 H-1, I-1	-29,24 H-LI-J	-47,33	o Spannungen eingehalten	
	Remessings	estlichkeiten d	es R	etons: Dr	uck ein	σehalte	n· 7μσ ε	pingeh	alten	
	Demessungsi	estiteliketten d	C3 D	ctons. Di		genane	n, Zug (mgen	laiteii	
	Für die Moo	delle erwM_v4	4_E2	2 bis E4	ändern	sich d	lie Nor	malsp	annungen nicht,	
	jedoch liefe	ert die Eige	enwe	ertanalyse	unter	rschiedl	iche l	Lastfa	ktoren, welche	
	nachfolgend	aufgeführt sind								
	Feder-				Eige	enwert				
	steifigkeit	erwM_v4_E1		erwM_v	/4_E2	erw	M_v4_E3		erwM_v4_E4	
	[[0,0,11]]	(keine Federn))	(4 Fed	lern)	(6	Federn)		(8 Federn)	
	starr	2,95		2,9	5		2,95		2,95	
	100000	2,95		2,9	4		2,93		2,92	
	50000	2,95		2,9	4		2,91		2,89	
	10000	2,95		2,8	3		2,70		2,58	
	5000	2,95		2,4	2,47 2,30		2,13			
	1500	2,95		1,3	8		1,20		1,04	
	1000	2,95		1,1	1	i	nstabil		instabil	
	500	2,95		insta	bil	i	nstabil		instabil	

Arbeitsschritt	Dachmontage										
Rechenmodell	erwM_v4 (siehe System)										
System											
	Montage Dachhaut: Variante 1										
	1. 2.	3.	45	6.	7. 8.	9.	10. 1	1. 12.	13.	14. 15.	16.
	Montag	e Dach	haut: Va	riante 2	2						
	15. 13.	11.	9. 7.	5.	3. 1.	2.	4	.6 8.	10.	12. 14.	16.
	Montag	e Dach	haut: Va	riante 3	3						
	8. 7.	6.	5. 4.	3.	2. 1.	9.	10. 1	1. 12.	13.	14. 15.	16.
	q _{D,K,A-B} q _{D,K,B}	q _{D,k,C-D}	q _{D,k,D-E} q _{D,k,E}	q _{D,k,F-G} q	о _{,к,G-} н q _{о,к,}	HI q _{D,k,I-J}	q _{D,k,J-K} q	D,K,K-L q _{D,k,L-M}	q _{D,k,M-N} q	q _{D,k,N-0} q _{D,k,O-P}	q _{D,K,P-Q}
	$\bullet \bullet \bullet \bullet$	\downarrow \downarrow \downarrow		• • •		+ + +	• •	• • • •		+ + +	
		1/1	Λ	1/1	λ	\wedge	$\langle \rangle$	$\backslash \backslash$	\mathbf{i}	$\backslash \land$	\mathbb{N}
	QAKAB QAKBC QAKCO QAKCO QAKCF QAKEF QAKFG QAKGH QALHI QAKH QAKH QAKKI QAKKL QALLI QAKKN QAKNO QAKOP QAKOP										
	(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L) (M) (N) (O) (P) (Q)										
	Die Varianten 1 bis 3 stellen die untersuchten Möglichkeiten der Dachmontage										
	(Semittweit		ugeuore	150) du	1.						
Belastung	Figengewi	bt FW	T Vor	nannur	ng des	Unterm	irtee u	ind der	Fülletë	äha sohi	ritturaisa
Delastung	Belastung	der Dac	chhaut u	nd Anh	ängelas	t. In dei	Praxi	s wird di	ie Dac	hhaut i.d	.R. über
	mehrere F	elder 1	montiert	Die	Anhäng	elast v	vird i.	.d.R. ers	st nac	h Dach	nontage
	aufgebrach	t. Der l	nier Unte	ersuchte	e Ansatz	z stellt e	einen a	auf der si	cherer	n Seite li	egenden
	Grenzfall	dar. S	Somit k	ann di	e Dac	nmonta	ge un	d Anhä	ingelas	st sehr	flexibel
Erzahnigaa	aufgebrach	t werde	en.								
Eigeomsse	Modell	0		No	rmalspann	ungen in M	N/m²	1			
	erwM_v4	max		max	min	max		max		n	
	Variante 1	-3,71	-26,39	-0,69	-18,18	0,44	-14,78	8 -19,79	-49,4	40 Spar	nnungen
	in Element	0-P	H-I, I-J	К	B, P	G-H	A-B, P	-Q H-I, I-J	A-B, F	P-Q eing	ehalten
	Variante 2	-3,71	-26,39	-0,85	-17,99	-0,29	-14,78	8 -19,79	-49,4	40 Spar	nnungen
	in Element	0-P	H-I, I-J	К	B, P	G-H, J-K	A-B, P	-Q H-I, I-J	A-B, F	P-Q eing	ehalten
	Variante 3	-3,71	-26,39	-0,69	-17,99	0,11	-14,78	8 -19,79	-49,4	40 Spar	nungen
	in Element	0-P	H-I, I-J	К	B, P	G-H	A-B, P	-Q H-I, I-J	A-B, F	P-Q eing	ehalten
	Bemessungsfestlichkeiten des Betons: Druck eingehalten; Zug eingehalten										

Anhang FA5: Brandschutz

Lastfälle zur Ermittlung der Schnittkräfte des Fachwerkträgers (Schubert 2016)

Lastfall	Bezeichnung	Einwirkung	$\gamma_{ m G;inf/sup}$	$\gamma_{ m Q;inf/sup}$	Ψ_1	Ψ_2
1	Eigengewicht	G _k	1,0/1,0	-	-	-
2	Vorspannung	P_k	1,0/1,0	-	-	-
3	Dach	G _k	1,0/1,0	-	-	-
4	Ausbau	G _k	1,0/1,0	-	-	-
5	Schneelast	$Q_{k,S}$	-	0/1,0	0,2	0
6	Windlast	$Q_{k,W}$	-	0/1,0	0,2	0
7	Pfostenvorspannung	P _k	1,0/1,0	-	-	-

Das Berechnungsmodell wird um die außergewöhnlichen Bemessungskombinationen erweitert. Diese lassen sich auf drei Kombinationen reduzieren und lauten wie folgt:

 $E_{d,fi,1} = 1,0 \cdot (G_k + P_k) + 0 \cdot (Q_S + Q_W) = 1,0 \cdot (LF1 + LF2 + LF3 + LF4 + LF7)$ Gl. FA4-1: Kombination 1, ohne Schnee- und Windeinwirkung

 $E_{d,fi,2} = 1,0 \cdot (G_k + P_k) + 1,0 \cdot \Psi_1 \cdot Q_S = 1,0 \cdot (LF1 + LF2 + LF3 + LF4 + LF7) + 1,0 \cdot 0,2 \cdot LF5$ Gl. FA4-2: Kombination 2, nur Schneeeinwirkung

 $E_{d,fi,3} = 1,0 \cdot (G_k + P_k) + 1,0 \cdot \Psi_1 \cdot Q_W = 1,0 \cdot (LF1 + LF2 + LF3 + LF4 + LF7) + 1,0 \cdot 0,2 \cdot LF6$ Gl. FA4-3: Kombination 3, nur Windeinwirkung

Der gleichzeitige Ansatz von Schnee- und Windlasten ergibt keine neuen Einwirkungskombinationen, da der Kombinationsfaktor bei beiden Einwirkungen $\Psi_2 = 0$ ist.

Anhang FB: Baubetriebliche Aspekte

Anhang FB1: Massenermittlung und Zusammenstellung für einen FWT

Massenermittlung Bewehrung

Dichte [kg/cm³] 0,00785

Obergurt 15,26			
Länge (m)	15,19		
Längsbewehrung			
Anzahl [Stck.]	4,00		
Durchmesser [mm]	25,00		
Gewicht [kg]	234,10		
Bügelbewehrung			
Verlegeabstand [cm]	30,00		
Anzahl [Stck.]	51,63		
Durchmesser [mm]	10,00		
Länge [cm]	116,00		
Gewicht [kg]	36,90		
Gesamtgewicht [kg]	271,00		

Untergurt 15,26			
Länge [m]	15,19		
Längsbewehrung			
Anzahl [Stck.]	4,00		
Durchmesser [mm]	25,00		
Gewicht [kg]	234,10		
Bügelbewehrung			
Verlegeabstand [cm]	30,00		
Anzahl [Stck.]	51,63		
Durchmesser [mm]	10,00		
Länge [cm]	118,00		
Gewicht [kg]	37,60		
Cocomtaowicht [ka]	271 70		

Obergurt 11,	51
Länge (m)	11,44
Längsbewehrung	
Anzahl [Stck.]	4,00
Durchmesser [mm]	25,00
Gewicht [kg]	176,30
Bügelbewehrung	
Verlegeabstand [cm]	30,00
Anzahl [Stck.]	39,13
Durchmesser [mm]	10,00
Länge [cm]	116,00
Gewicht [kg]	28,00
Gesamtgewicht [kg]	204,30

Untergurt 11,51				
Länge (m)	11,44			
Längsbewehrung				
Anzahl [Stck.]	4,00			
Durchmesser [mm]	25,00			
Gewicht [kg]	176,30			
Bügelbewehrung				
Verlegeabstand [cm]	30,00			
Anzahl [Stck.]	39,13			
Durchmesser [mm]	10,00			
Länge [cm]	118,00			
Gewicht [kg]	28,50			
Gesamtgewicht [kg]	204,80			

Massenermittlung Bewehrung

Dichte [kg/cm³]

0,00785

Г

Pfosten	
Länge (m)	3,05
Längsbewehrung	
Anzahl [Stck.]	4,00
Durchmesser (mm)	14,00
Gewicht [kg]	14,80
Bügelbewehrung	
Verlegeabstand (cm)	16,00
Anzahl [Stck.]	20,08
Durchmesser [mm]	8,00
Länge (cm)	71,20
Gewicht [kg]	5,60
Gesamtgewicht (kg)	20,40

Knotenelement nomal			
Bügel / Befestigung Z	ahnleiste		
Anzahl (Stck.)	2,00		
Durchmesser (mm)	8,00		
Länge (m)	0,43		
Gewicht [kg]	0,30		
Bügel / Schlau	ıfe		
Anzahl (Stck.)	1,00		
Durchmesser (mm)	14,00		
Länge [m]	1,20		
Gewicht [kg]	1,50		
Bügel / Hake	n		
Anzahl (Stck.)	2,00		
Durchmesser (mm)	14,00		
Länge (m)	0,95		
Gewicht [kg]	2,30		
Gesamtgewicht (kg)	4,10		

Diagonale	
Länge (m)	4,61
Längsbewehrung	
Anzahl (Stck.)	4,00
Durchmesser [mm]	25,00
Gewicht [kg]	71,00
Bügelbewehrung	
Verlegeabstand (cm)	22,00
Anzahl [Stck.]	21,93
Durchmesser [mm]	8,00
Länge (cm)	68, 0 0
Gewicht [kg]	5,90
Gesamtgewicht (kg)	76,90

٦

Knotenelement verkürzt			
Bügel / Befestigung Z	ahnleiste		
Anzahl (Stck.)	2,00		
Durchmesser (mm)	8,00		
Länge (m)	0,43		
Gewicht [kg]	0,30		
Bügel / Schlau	ıfe		
Anzahl (Stck.)	1,00		
Durchmesser [mm]	14,00		
Länge (m)	0,85		
Gewicht [kg]	1,00		
Bügel / Hake	n		
Anzahl (Stck.)	2,00		
Durchmesser (mm)	14,00		
Länge (m)	0,75		
Gewicht [kg]	1,80		
Gesamtgewicht [kg]	3,10		

Massenermittlung Betonage

Obergurt 15,26				
Länge (m)	15,26			
h [cm]	31,00			
b [cm]	35,00			
Abrutto [cm ²]	1085,00			
dHüll (mm) Ahüll [cm²]	0,00 0,00			
Anetto [cm ²]	1085,00			
Volumen netto [m ³]	1,66			
Gewicht [t]	4,14			

Untergurt 15,26				
Länge (m)	15,26			
h [cm]	31,00			
b [cm]	36,00			
Abrutto [cm ²]	1116,00			
dHüll [mm]	72,00			
Ahüll [cm ²]	162,86			
Anetto [cm ²]	953,14			
Volumen netto [m ³]	1,45			
Gewicht [t]	3,64			

Obergurt 11,51				
Länge [m]	11,51			
h [cm]	31,00			
b [cm]	35,00			
Abrutto [cm ²]	1085,00			
dHüll [mm] Ahüll [cm²]	0,00 0,00			
Anetto [cm ²]	1085,00			
Volumen netto [m ³]	1,25			
Gewicht [t]	3,12			

Untergurt 11,51				
Länge [m]	11,51			
h [cm]	31,00			
b [cm]	36,00			
Abrutto [cm ²]	1116,00			
dHüll [mm] Ahüll [cm²]	72,00 162,86			
Anetto [cm ²]	953,14			
Volumen netto [m ³]	1,10			
Gewicht [t]	2,74			

Massenermittlung Betonage

Pfosten	
Länge (m)	3,12
h [cm]	22,00
b (cm)	22,00
Abrutto (cm²)	484,00
dHüll (mm) Ahüll (cm²)	60,00 28,27
Anetto [cm²]	455,73
Volumen netto (m ³)	0,14
Gewicht <mark>(</mark> t)	0,36

Diagonale			
Länge (m)	4,68		
h [cm]	22,00		
b [cm]	22,00		
Abrutto (cm²)	484,00		
dHüll (mm) Ahüll (cm²)	30,00 7,07		
Anetto [cm²]	476,93		
Volumen netto (m³)	0,22		
Gewicht (t)	0,56		

Massenermittlung Betonage

Knotenelement normal					
Länge [m]	0,6277				
Teilflächen [cm	2]	Stärke [cm]	Volumen [cm ³]		
Fläche oben Dreiecke unten (beide) Rechteck unten	321,07 338,01 478,01	30,00 30,00 30,00	9632,06 10140,25 14340,30		
Aussparung oben Dreiecke beide Rechteck	110,25 218,09	-6,00 -6,00	-661,50 -1308,51		
Hüllrohr Mitte	28,27	-13,00	-367,57		
Hüllrohr Seite	7,07	-13,20	-93,31		
		Vol., ges [cm ³] Vol., ges [m ³] Gewicht [t]	31681,72 0,03 0,08		

Knotenelement verkürzt					
Länge (m)	0,44385				
Teilflächen [cm ²]		Stärke [cm]	Volumen [cm ³]		
Fläche oben Dreieck unten Rechteck unten	227,03 169,00 478,01	30,00 30,00 30,00	6810,88 5070,12 14340,30		
Aussparung oben Dreieck Rechteck	55,13 193,04	-6,00 -6,00	-330,75 -1158,26		
Hüllrohr Mitte	28,27	-13,00	-367,57		
Hüllrohr Seite	7,07	-13,20	-93,31		
		Vol., ges [cm ³] Vol., ges [m ³] Gewicht [t]	24271,42 0,02 0,06		

Bauteil	Netto Volumen	Betonfestig- keitsklasse	Anzahl für einen Fachwerkträger	Netto Volumen für einen Fachwerkträger
[-]	(m³)	[-]	[Stck.]	[m ³]
Obergurt 15,26 m	1,66	C 100/115	1	1,66
Untergurt 15,26 m	1,45	C 100/115	1	1,45
Obergurt 11,51 m	1,25	C 100/115	4	5,00
Untergurt 11,51 m	1,10	C 100/115	4	4,39
Pfosten 3,12 m	0,14	C 100/115	21	2,99
Diagonale 4,675 m	0,22	C 100/115	16	3,57
Knotenelement normal	0,03	>C 150	22	0,70
Knotenelement verkürzt	0,02	> C 150	20	0,49
Gesamt			89	20,23

Zusammenstellung der Betonbauteile für einen Fachwerkträger

Zusammenstellung der Bewehrung und der Einbauteile für einen Fachwerkträger

Konstruktiv erforderlich

	Rowohrung		Einba	uteile			Anzahl Taila für ainan	Powebrung für einen
Bauteil	io Toil	Hüllrohr	Hüllrohr	Hüllrohr	Zahnleiste	Zahnleiste	Fachworkträger	Eachworkträger
	Je ren	D=72	D=60	D=30	normal	verkürzt	Fachwerktrager	rachwerkulager
[-]	[kg]	[lfm]	[lfm]	[lfm]	[Stck.]	[Stck.]	[Stck.]	(t)
Obergurt 15,26 m	271,00	0,00	1,55	0	3	2	1	0,27
Untergurt 15,26 m	271,70	61,04	1,55	0	3	2	1	0,27
Obergurt 11,51 m	204,30	0,00	1,24	0	2	2	4	0,82
Untergurt 11,51 m	204,80	46,04	1,24	0	2	2	4	0,82
Pfosten 3,12 m	20,40	0,00	3,12	0	0	0	21	0,43
Diagonale 4,675 m	76,90	0,00	0	4,68	0	0	16	1,23
Knotenelement normal	4,10	0,00	0,13	0,11	1	0	22	0,09
Knotenelement verkürzt	3,10	0,00	0,13	0,11	0	1	20	0,06
Gesamt							89	3,99

Transporteinbauteile

Bauteil	Pfeifer Wellenanker kurz	Pfeifer Wellenanker kurz	Pfeifer Wellenanker kurz PD 24	Pfeifer Hülse	Anzahl für einen
[-]	[Stck.]	[Stck.]	[Stck.]	[Stck.]	[Stck.]
Obergurt 15,26 m	2	0	0	0	2
Untergurt 15,26 m	0	2	0	0	2
Obergurt 11,51 m	0	0	2	0	8
Untergurt 11,51 m	0	0	2	0	8
Pfosten 3,12 m	0	0	0	2	42
Diagonale 4,675 m	0	0	0	2	32
Knotenelement normal	0	0	0	0	0
Knotenelement verkürzt	0	0	0	0	0
Gesamt	2	2	4	4	94

Zusammenstellung des Transports für einen Fachwerkträger In Einzelteilen:

Bauteil	Länge	Querschnitt	Gewicht	Anzahl	Gesamtgewicht
	[m]	[cm x cm]	[t]	[Stck.]	[t]
Obergurt	15,26	35 x 31	4,139	1	4,139
Untergurt	15,26	36 x 31	3,636	1	3,636
Obergurt	11,51	35 x 31	3,122	4	12,488
Untergurt	11,51	36 x 31	2,743	4	10,971
Pfosten	3,12	22 x 22	0,356	21	7,470
Diagonale	4,68	22 x 22	0,557	16	8,920
Knotenelement	0,63	-	0,079	22	1,742
Knotenelement verkürzt	0,44	-	0,061	20	1,214
Gesamt	76,6	-		89	50,581

Transportbox für Knotenelemente (normal)			
Länge (m)	1,75		
Breite (m)	1,5		
Höhe (stapelbar) [m]	0,7		
Kapazitāt [Stck.]	16		
Gewicht (voll) [t]	1,522		

Transportbox für Pfosten	
Länge (m)	3,5
Breite [m]	2,8
Höhe (stapelbar) [m]	0,9
Kapazitāt [Stck.]	21
Gewicht (voll) [t]	8,661

Transportbox für Knotenelement	te (verkürzt)
Länge (m)	1,75
Breite [m]	1,5
Höhe (stapelbar) [m]	0,7
Kapazität [Stck.]	16
Gewicht (voll) [t]	1,226

Transportbox für Diagonalen	
Länge (m)	5,05
Breite [m]	1,7
Höhe (stapelbar) [m]	0,55
Kapazität [Stck.]	8
Gewicht (voll) <mark>[</mark> t]	5,111

In Einzelteilen:

Transportteile für einen kompletten Fachwerkträger

Teil	Gewicht	Anzahl	Gesamtgewicht
[-]	[t]	[Stck.]	[t]
Obergurt 15,26 m	4,139	1	4,139
Untergurt 15,26 m	3,636	1	3,636
Obergurt 11,51 m	3,122	4	12,488
Untergurt 11,51 m	2,743	4	10,971
Transportbox Pfosten 21	8,661	1	8,661
Transportbox Diagonalen 8	5,111	2	10,222
Transportbox Knotenelemente normal 16	1,522	1	1,522
Transportbox Knotenelemente verkürzt 16	1,226	1	1,226
Transportbox Knotenelemente gemischt n6 v4	0,973	1	0,973
Gesamt			53,839

In Segmenten

Segment	Höhe	Länge	Breite	Gewicht	Anzahl
[-]	[m]	[m]	[m]	[t]	[Stck.]
Тур А	4,22	11,51	0,36	9,52	2
Тур В	4,22	15,26	0,36	12,50	1
Typ C	4,22	11,51	0,36	9,52	2

Entwick	lung des .	Ange	botspreises über die Kalkulationsendsum	ume				S	hundenverrec	hmungssatz:	30,00	€/Std	Ange	bot
					je Einheit			Menge x Einhe	ii		je Einheit		Angebots-	Angebots-
			Kurzbeschreibung der Leilleistungen	0	hne Zuschl	äge		ohne Zuschläg	9	mi	t Zuschläge	H	preis je	preis je
Poe	Menue E	inheit	Kalkulationsansätze	Lohn	SoKo	Fremd1.	Lohn	SoKo	Fremdl.	Lohn	SoKo	Fremd1.	Einheit (EP)	Teilleistung
	menice i m			Std.	e	e	Std.	e	e	6	e	e	e	ŧ
1.0	1 Ste	ck.	Obergurt 15,26 m herstellen. Länge = 15,26 m, rechteckiger Querschnitt 31 x 35 cm. Geometrie siehe Plan Nr. 2. Kalkulation siehe extra Formblatt										1.265,45	1.265,45
2.0	1 Ste	ck.	Untergurt 15,26 m herstellen. Länge = 15,26 m, rechteckiger Querschnitt 31 x 36 cm. Geometrie siehe Plan Nr. 2. Kalkulation siehe extra Formblatt										1.494,89	1.494,89
ſ														
3.0	4 Ste	ck.	Obergurt 11,51 m herstellen. Länge = 11,51 m, rechteckiger Querschnitt 31 x 35 cm. Geometrie siehe Plan Nr. 2. Kalkulation siehe extra Formblatt										1.002,19	4.008,78
4.0	4 Ste	ck.	Untergurt 11,51 m herstellen. Länge = 11,51 m, rechteckiger Querschnitt 31 x 36 cm. Geometrie siehe Plan Nr. 2. Kalkulation siehe extra Formblatt										1.177,46	4.709,85
5.0	21 Stu	ck.	Pfosten 3,12 m herstellen. Länge = 3,12 m, rechteckiger Querschnift 22 x 22 cm. Geometrie siehe Plan Nr. 2. Kalkulation siehe extra Formblatt										92,81	1.949,01
6.0	16 Stu	ick.	Diagonale 4,675 m herstellen. Länge = 4,675 m, rechteckiger Querschnift 22 x 22 cm. Geometrie siehe Plan Nr. 2. Kalkulation siehe extra Formblatt										164,58	2.633,31
7.0	22 Stu	ick.	Knotenelement normal, Länge 63 cm herstellen. Geometrie siehe Plan Nr. 3. Kalkulation siehe extra Formblatt										134,69	2.963,14
08	20 64	<u>د</u> ۶	Knotenelement verkürzt, Länge 44 cm herstellen. Geometrie siehe Plan Nr. 3. Kalkulation siehe extra Formhlatt										NO C11	00 UFC C
				l							l		10,211	00,017.7
Gesamt	┢			ſ								L		21.265.32

Anhang FB2: Kalkulation Herstellung

Anhang FB2: Kalkulation Herstellung

	-hunz da	And a	hotennetees ähen die Vellenlationeen deun					0	the damenter		30.00	5,043	V	has
	an Simu	s Auge	oorsprenses uper the Mathuauousentasuu	2							nine	E/30	- Aller - Alle	
			Kurzbeschreibung der Teilleistungen	0	je Embert hne Zuschlä	a	4	Menge x Enhe ohne Zuschläg	a H	B	je Embert it Zuschläger	-	Angebots-	Angebots- preis je
4	1	1 T T	una. Kalkulationsusätze	Lohn	SoKo	Frendl.	Lohn	SoKo	Fremdl	Iohn	SoKo	Fremdl	Einheit (EP)	Teilleistung
ġ	admanu			Std	ŧ	£	Std	e	e	£	9	ŧ	ę	ŧ
1.0	18	ttck	Obergurt 15,26 m herstellen. Länge = 15,26 m, rechteckiger Querschnift 31 x 35 cm. Geometrie siehe Plan Nr. 2										1.265,45	1.265,45
11	15,02 m	1	Stahlschalung für Obergurt Pos. 1.0. einschalen und ausschalen. Vor- und Nachbereiten der Schalung z.B. einölen.										3,62	54,39
			Lohn: Schahung Material: 70.000 €/(10 Teile/Schahung +250 Einsätze/Jah+3 Jahre*15,02 m?)	0,1000	0,6214		1,50	9,33		3,00	0,62			
1	0,271 ¢		Bewehrung für Obergurt Pox. 1.0 schneiden, biegen und verlegen. B500B Längsbewährung D= 25 mm, Bügel D= 10 mm. Inkluzive Kleinteile wie z.B. Draht										1.260,00	341,46
			Lohn Schneiden und Biegen: Lohn Verlegen und Einbauen: Material B500B:	20,0000	600,000		0,54 5,42	162,60		60,00 600,00	600,00			
1.3	1,66	2	Betonieren Obergurt aus Pos. 1.0 Transportbeton C100/115 mit Kran und Kübel										115,00	190,90
			Lohn: Material Beton C100/115:	0,5000	100,0000		0,83	166,00		15,00	100,00			
1.4		tck	Transporteinbauteil Pfeifer Wellenanker kurz RD 24 inklusive Schrägzugbewehrung einbauen. Gewinde vor Beton schüftzen										8,20	16,40
			Lohn: Material Wellenanker kurz RD 24: Material Schrägzugbewehrung:	0001*0	4,7000		0,20	9,40 1,00		3,00	4,70 0,50			
1.5		tck	Hüllrohr D= 60 mm, l= 0,31 m passgenau zuschneiden und senkrecht in Obergurt einbauen und gegen Betoneindringen schützen										4,15	20,74
			Loh m : Material: 3,70 €∕m * 0,31 m	0,1000	1,1470		0,50	5,74		3,00	21,15			
1.6		ltck	Zahnieuste (verkürzt) enbauen mkhusive Rückbewehrung	0,1500	80,0000		0;30	160,00		4,50	80,00		84,50	169,00
T		T	/a brajanska (massana), ann hannan, mi phranna											
1.7	3	tck	сапиензе (погида) ещоацеп пилизме Rückbewehrung	0,1500	100,0000		0,45	300,00		4,50	100,00		104,50	313,50
		Γ	für Betonage und Litzen nach Betonage											
1.8	4	Stek	schneiden	1,0000	9,7664		4,00	39,07		30,00	9,77		39,77	159,07
1														

Entwick	dung des A	Angel	botspreises über die Kalkulationsendsum	me				ŝ	tundenverrec	hnungssatz:	30,00	€/Std	aguð	bot
			Kurzbeschreibung der Teilleistungen		je Einheit			Vienge x Einhe	ų,		je Einheit		Angebots-	Angebots-
,			und Velkelerioneeneëree	Lohn	SoKo	Fremdl.	Lohn	SoKo	Frendl.	Lohn	SoKo	Fremdl.	Einheit (EP)	Teilleistung
Pos.	Menge Eu	cinheit		Std.	•	é	Std.	į	é	į	•	e e	e	e
2.0	1 Std	tck	Untergurt 15,26 m herstellen. Länge = 15,26 m, rechteckiger Querschnitt 31 x 36 cm. Geometrie siehe Plan Nr. 2										1.494,89	1.494,89
				Γ										
2.1	15,18 m²		Stahlschahung für Untergurt Pos. 1.0 einschalen und ausschalen. Inklusive Vor- und Machbereiten der Schalung z.B. einölen										3,61	54,87
			Lohm: Schalung Material: 70.000 €/(10 Teile/Schalung *250 Einsätze/Jahr*3 Jahre*15,18 m²)	0,1000	0,6148		1,52	9,33		3,00	0,61			
22	0,2717 t		Bewehrung für Untergurt Pos. 1.0 schneiden, blegen und verlegen. B.300B Längsbewährung D= 25 mm, Bügel D= 10 mm. Inklusive Kleinteile wie z.B. Draht										1.260,00	342,34
			Lohn Schneiden und Biegea: Lohn Verlegen und Einbauen: Material B500B:	20,0000	000009		0,54 5,43	163,02		60,00 600,003	600,009			
2.3	1,45 m ²	2	Betonieren Untergurt aus Pos. 1.0 Transportbeton C100/115 mit Kran und Kübel										115,00	166,75
			Lohm: Material Beton C100/115:	0,5000	100,0000		0,73	145,00		15,00	100,00			
2.4	2 Std	ck	Transporteinbauteil Pfeifer Wellenanker hurz RD 20 inkinsitve Schrägzugbewehrung einbauen. Gewinde vor Beton schützen										7,35	14,70
			Lohm: Material Wellenanker kurz RD 20: Material Schrägzugbewehrung:	0,1000	3,8500		0,20	7,70 1,00		3,00	3,85 0,50			
2.5	5 Stcl	ck	Hülfrohr D= 60 mm, = 0,31 m passgenau zuschneiden und senkrecht in Untergurt einbanen und gegen Betoneindringen schützen										4,15	20,74
			Lohm: Material: 3,70 €/m*0,31 m	0,1000	1,1470		05'0	5,74		3,00	21,15			
2.6	2 Stcl	ck	Zahnleiste (verkürzt) einbauen inklusive Rückbewehrung	0,1500	80,0000		0,30	160,00		4,50	80,00		84,50	169,00
2.7	3 Stc	tck	Zahnleite (normal) einbauen inklusite Rückbewehrung	0,1500	100,0000		0,45	300,00		4,50	100,00		104,50	313,50
2.8	4 St		Hüllrohr D= 72 mm, l= 15,26 m passgenau zuschneiden und waagrecht in Untergurt einbauen und gegen Betoneindringen schützen										103,25	412,99
			Lohn: Material: 4,80 €/m*15,26 m	1,0000	73,2480		4,00	292,99		30'00	73,25			
		Π											••••	

Entwic	klung d	es Ange	botspreises über die Kalkulationsendsun	an e				S	hundenverrec	hmmgssatz:	30,00	E/Std	Ang	ebot
			Kurzbeschreibung der Teilleistungen	Ŭ	je Einheit hne Zuschlä	až	4	vienge x Einhe ohne Zuschläg	, ti s		je Einheit it Zuschläger		Angebots- preis je	Angebots- preis je
Pose	Mana	Finheit	Kalkulationsansätze	Lohn	SoKo	Fremdl.	Lohn	SoKo	Fremdl	Lohn	SoKo	Fremdl.	Embeit (EP)	Teilleistung
	-			Std		e	Std	•	€	9	9	۵	2	B
3.0	I	Stek	Obergurt 11,51 m herstellen. Länge = 11,51 m, rechteckiger Querschnitt 31 x 35 cm. Geometrie siehe Plan Nr. 2										1.002,19	1.002,19
3.1	11,38	Ĩ	Stahlschalung für Obergurt Pos. 1.0 einschalen und ausschalen. Vor- und Nachbereiten der Schahung z.B. einöllen										3,82	43,47
			Lohn: Schahung Material: 70.000 €/(10 Teile/Schahung *250 Einsätze/Jahr*3 Jahre*11,38 m ⁵)	0,1000	0,8202		1,14	9,33		3,00	0,82			
3.2	0,2043	t	Bewehrung für Obergurt Pos. 1.0 schneiden, biegen und verlegen. B500B Längsbewährung D= 25 nam, Bögel D= 10 mm. Inklusive Kleinteile wie z.B. Draht										1.260,00	257,42
			Lohn Schneiden und Biegen: Lohn Verlegen und Einbauen: Material B500B:	20,000	600,000		0,41 4,09	122,58		00'009 00'09	600,00			
3.3	1,25	сш,	Betonieren Obergurt aus Pos. 1.0 Transportbeton C100/115 mit Kran und Kübel										115,00	143,75
			Lohn: Material Beton C100/115:	0,5000	100,000		0,63	125,00		15,00	100,00			
3.4	2	Stek	Transporteinbauteil Pfeitler Weilenanker kurz RD 18 inklusive Schrägzugbewehrung einbauen. Gewinde vor Beton schüftzen										6,75	13,50
			Loh m : Material Wellenanker kurz RD 18: Material Schrägzugbewehrung:	0,1000	3,2500 0,5000		0,20	6,50 1,00		3,00	3,25 0,50			
3.6		Stek	Hüllrohr D= 60 mm, = 0,31 m passgenau zuschneiden und senbracht in Osergurt einbauen und gegen Betoneindringen schützen										4.15	16.59
			Lohn: Material: 3,70 €/m*0,31 m	0,1000	1,1470		0,40	4,59		3,00	1,15			
3.6		Stck	Zahnieuste (verkürzt) embauen mkhustve Kückbewehrung	0,1500	80,0000		05,0	160,00		4,50	80,00		84,50	169,00
			Zahnleiste (normal) einbauen mktusive											
3.7	-	Stek	Rückbewehrung	0,1500	100,0000		0,30	200,00		4,50	100,00		104,50	209,00
3.8	4	Stek	für Betonage und Litzen nach Betonage schneiden	1,0000	7,3664		4,00	29,47		30,00	7,37		37,37	149,47
Entwic	klung de	s Angel	botspreises über die Kalkulationsendsum	Be				S	nudenverrec	hnungssatz:	30,00	E/Srd	Ang	bot
--------	----------	----------	---	---------	---------------------------	---------	--------------	---------------------------------	-------------	-------------	-----------------------------	---------	-----------------------	-----------------------
			Kurzbischreibung der Teilleistungen	0	je Einheit Ine Zuschlä	ŝe		vienge x Einhe ohne Zuschläg	it e	m	je Einheit it Zuschlägen	-	Angebots- preis je	Angebots- preis je
Pos.	Menze	Einheit	und Kalkulationsansätze	Lohn	SoKo	Frendl.	Lohn	SoKo	Frendl	Lohn	SoKo	Fremdl.	Einheit (EP)	Teilleistung
				Std		w	Std.		•	w	w	w		
4.0		Stck	Untergut 11,51 m herstellen. Länge = 11,51 m, rechteckiger Querschnitt 31 x 36 cm. Geometrie siehe Plan Nr. 2										1.177,46	1.177,46
4.1	11,5	ä	Stahlschahung für Untergurt Pos. 1.0 einschalen und ausschalen. Inklusive Vor- und Nachbereiten der Schaltung z.B. einölen										3,81	43,83
			Lohn: Schahmg Material: 70.000 €/(10 Teile/Schahmg	0,1000			21,15			3,00				
		Τ	*250 Eursatze/Jahr*3 Jahre*11,50 m ^c)	1	0,8116			9,33			0,81			
4.2	0,2048 t		Bewehrung für Untergurt Pos. 1.0 schneiden, blegen und verlegen. B500B Längsbewährung D= 25 mm, Bügel D=10 mm. Inkinsive Kleinteile wie z.B. Draht										1.260,00	258,05
			Lohn Schneiden und Biegen: Lohn Verlegen und Einbauen: Material B500B:	20,0000	600,000		0,41 4,10	122,88		60°09	00,008			
	Ī			ſ										
4.3	1'1	ja I	Betonieren Untergurt aus Pos. 1.0 Transportbeton C100/115 mit Kran und Kübel										115,00	126,50
			Lohn: Material Beton C100/115:	0,5000	100,0000		0,55	110,00		15,00	100,00			
4.4	2	Stele	Transporteinbauteil Pfeifer Wellenanker kurz RD 18 inklusive Schrägzugbewehrung einbauen. Gewinde vor Beton schützen										6,75	13,50
			Lohn: Material Wellenanker kurz RD 18: Material Schrägzugbewehrung:	0,1000	3,2500		0,20	6,50 1,00		3,00	3,25 0,50			
4.5	4	Stele	Hüllrohr D= 60 mm, = 0,3 l m passgenau zuschneiden und senkrecht in Untergurt einbauen und gegen Betoneindringen schützen										4,15	16,59
			Lohn: Material: 3,70 €/m*0,31 m	0,1000	1,1470		0,40	4,59		3,00	1,15			
T		T	Zahalaista (suddien) ainkanan inkhaita									T		
4.6	2	Stck	zamueuse (veranzz) emoauen manueive Rückbewehrung	0,1500	80,0000		0,30	160,00		4,50	80 [,] 00		84,50	169,00
T	T	T		1	Ī									
4.7	2	Stck	Zahnleiste (normal) einbauen inklusive Rückbewehrung	0,1500	100,0000		05,0	200,00		4,50	100,00		104,50	209,00
T		T		Ī										
4.8		<u>م</u>	Hauroor D= 12 mm, J= 11, 21 m passgenau zuschneiden und wusgrecht in Untergurt einbauen und gegen Betoneindringen schützen										85,25	340,99
			Lohn: Material: 4,80 €/m*11,51 m	1,0000	55,2480		4,00	220,99		30,00	55,25			

Entwic	klung	des Ange	ebotspreises über die Kalkulationsendsun	ome				S	tundenverreci	hmmgssatz:	30,00	€/Std	Ang	ebot
			Kurzbeschreibung der Teilleistungen und	J	je Einheit hne Zuschläg	ae	4	Vienge x Einhe ohne Zuschläg	ait e	B	je Einheit t Zuschläge	-	Angebots- preis je	Angebots- preis je
Pos.	Menge	Einheit	Kalkulationsansätze	Lohn	SoKo	Fremdi.	Lohn	SoKo	Fremdl.	Lohn	SoKo	Fremdl.	Einheit (EP) 6	Teilleistung 6
5.0		1 Stck	Prosten 3,12 m herstellen Länge = 3,12 m, rechteckiger Querschnitt 22 x 22 cm. Geometrie siehe Plan Nr. 2				j.))			92.81	92,81
5.1	2,16	2007	Stahlschaltung für Pfosten Pos. 3.0 aus einschalen und ausschalen. Inkfusive Vor- und Nachbereiten der Schaltung z.B. einölen										4,03	8,70
			Lohn: Schalung Material: 70.000 €/(42 Teile/Schaltung *250 Einsätze\Jahr*3 Jahre*2,16 m²)	0,1000	1,0288		0,22	2,22		3,00	1,03			
52	0,0204	ŧ	Bewehrung für Pfosten Pos. 5.0 schneiden, biegen und verlegen. B500B Längsbewährung D= 14 mm, Bügel D= 8 mm. Inklusive Kleinteile wie z.B. Draht										1.260,00	25,70
			Lohn Schneiden und Biegen: Lohn Verlegen und Einbauen: Material B500B:	20,0000	600,0000		0,04 0,41	12,24		60,00 600,00	600,009			
5.3	0,14	еп.,	Betomeren Plosten aus Pos. 5.0 Transportbeton C100/115 mit Kran und Kübel										115,00	16,10
			Lohn: Material Beton C100/115:	0,5000	100,0000		0,07	14,00		15,00	100,00			
5.4		2 Stck.	1 transportembauteu Přetřer Hůlse KU 12 inkhusive Schrägzug- und Rückbewehrung einbauen. Gewinde vor Beton schützen										10,88	21,76
			Lohn: Material Hülse RD 12: Material Schrägzug- und Rückbewehrung:	0,1000	1,4400		0,20	2,88 2,00		6,00	2,88 2,00			
5.5		1 Stck	Hüllrohr D= 60 mm, ⊨ 3,12 m passgenau zuschneiden und mittig in Pfosten einbauen und gegen Betoneindringen schützen										20,54	20,54
			Lohn: Material: 2,00 €/m*3,12 m	0,3000	11,5440		0;30	11,54		6,00	11,54			

ot	Angebots- preis je	Teilleistung	e	164,58	12,46			96,89			25,30			10,88		19,05		
Anget	Angebots- preis je	Einheit (EP)	e	164,58	3,92			1.260,00			115,00		•	5,44		 19,05		
€/Std		Fremdl.	e															ſ
30,00	e Einheit Zuschlägen	SoKo	e			0,92			600,000			100,00	••••		1,44		10,05	
mngssatz:	Ē	Lohn	e			3,00			60,00 600,00	••••		15,00	••••		3,00	 	00'6	
ndenverrech		Fremdl.	e															
Stu	enge x Einheit hne Zuschläge	SoKo	e		 	2,92	••••		46,14			22,00	••••		2,88 2,00		10.05	
	Χo	Lohn	Std.			0,32			0,15			0,11	•		0,20	 	05'0	
	ige	Fremdl.	e															
	je Einheit hne Zuschlä	SoKo	e			0,9172			600,000			100,000			1,4400		10,0513	
mme	0	Lohn	Std			0,1000			2,0000 20,0000			0,5000			0,1000		0005'0	
botspreises über die Kalkulationsendsur	Kurzbeschreibung der Teilleistungen	Kaltrulationsansätze		Diagonale 4,6/5 m herstellen. Länge = 4,6/5 m, rechteckiger Querschnitt 22 x 22 cm. Geometrie siehe Plan Nr. 2	Stahlschahung für Diagonale Pos. 6.0 emiscitalen und ausschalen. Inklusive Vor- und Nachbereiten der Schalung z.B. einölen	Lohn: Schahung Material: 70.000 €/(32 Teile/Schahung *250 Einsätze/Jahr*3 Jahre*3,18 m²)		Bewehrung für Diagonale Pos. 6.0 schneiden, biegen und verlegen. B500B Längsbewährung D= 25 mm, Bügel D= 8 mm. Inklusive Kleinteile wie z.B. Draht	Lohn Schneiden und Biegen: Lohn Verlegen und Einbauen: Material B500B:		Betomeren Diagonale aus Pos. 6.0 Transportbeton C100/115 mit Kran und Kübel	Lohn: Material Beton C100/115:		Iransportembauted Pfecter Hülse KD 12 inklusive Schrägzug- und Rückbewehrung einbauen. Gewinde vor Beton schützen	Lohn: Material Hülse RD 12: Material Schrägzug- und Rückbewehrung:	Hüllrohr D= 30 mm, ⊨ 4,673 m passgenau zuschneiden und mittig in Diagonale einbauen und gegen Betoneindringen schüftzen	Lohn: Material: 2,00 €/m*4,675 m	
es Angel		i	Finheit	Stck	Ĩ			ţ			E II			Stek		Stck		
klung d			Menge	I	3,18			0,0769			0,22			3		I		
Entwic		F	Fos.	6.0	6.1			6.2			6.3			6.4		6.5		

ngebot	Angebots- preis je) Teilleistung	ŧ	69 134,69	2,06		 96,96		 00 6,45		 24 3,24		 48 3,48		 50 104,50	
A	Angebots- preis je	Einheit (EP	ŧ	134,	ŕL		5 6		215,0		3,5		3'		104,5	
E/Std	a	Fremdl.	e												 	
30,00	je Einheit t Zuschläge	SoKo	e			1,06		2,46		200,00		0,24		0,48		00.001
hnungssatz:	mi	Lohn	9			6,00		7,50		15,00		3,00		3,00		4,50
tundenverrec	eit ge	Fremdl.	E													
S	Aenge x Einh ohne Zuschläg	SoKo	e			1,06		2,46		6.00		0,24		0,48		
	v ,	Lohn	Std			0,20		0,25		0,02	 	0,10		0,10		0,15
	ige	Fremdl.	e													
	je Einheit hne Zuschlä	SoKo	e			1,0606		2,4600		200,0000		0,2365		0,4810		
mme	0	Lohn	Std.			0,2000		0,2500		0,5000		0,1000		0,1000		0,1500
botspreises über die Kalkulationsendsu	Kurzbeschreibung der Teilleistungen und	Kalkulationsansätze		Knotenelement normal, Långe 63 cm herstellen. Geometrie siehe Plan Nr. 3	Stahlschalung für Knotenelement Pos. 1.0 einschalen und ausschalen. InklusiveVor- und Nachbereiten der Schalung z.B. einölen	Lohn: Schahung Material: 35.000 €/(40 Teile/Schahung *275 Einsätze/Jahr*3 Jahre)	Bewehrung für Knotenelement Pos. 1.0 schneiden, biegen und verlegen. B500B . Inklusive Kleinteile wie z.B. Draht	Lohn: Material B500B: 600 €/t*0,0041 t	I ransportbeton UHPC > C 150 mut Kran und Kübel	Lohn: Material Beton C100/115:	Hitlitrohr D= 30 mm, J= 0,11 m passgenau zuschneiden und passgenau in Knotenelement einbauen und gegen Betoneindringen schützen	Lohn: Material: 2,00 €/m*0,11 m	Hüllrohr D= 60 mm, = 0,13 m passgenau zuschneiden und passgenau in Knotenelement einbauen und gegen Betoneindringen schützen	Lohn: Material: 2,00 €/m*0,13 m	Zahnleiste (normal) einbauen inklusive Rückbewehrung	Lohn:
es Ange		Einhait	Eliment	Stck	Stck		Stck		ш,		Stek.		 Stck.		 Stek	
klung d		Man	ALCING	1	I		I		0,03		1		I		1	
Entwic		Doc	LOS.	7.0	1.7		7.2		7.3		7.4		7.5		7.6	

bot	Angebots- preis je	Teilleistung	€	112,04	7,17		9,36		4,30		3,24		3,48			84,50		•
Ange	Angebots- preis je	Einheit (EP)	6	112,04	 71,7		 9,36		 215,00		 3,24		 3,48			84,50		•
€/Std		Fremdl	e															
30,00	e Einheit Zuschlägen	SoKo	6			1,17		1,86		200,00		0,24		0,48			80,00	
nungssatz:	mit	Lohn	9		 	6,00	 	7,50	 	15,00	 	3,00	 	3,00			4,50	
undenverrech		Fremdl.	e															
Str	enge x Einhei hne Zuschläge	SoKo	e		 	1,17	 	1,86		4,00	 	0,24	 	0,48			80,00	
	M	Lohn	Std.		 	0,20	 	0,25	 	0,01	 	0,10	 	0,10	••••		0,15	
	ge	Fremdl.	e															
	je Einheit hne Zuschlä	SoKo	6			1,1667		1,8600		200,0000		0,2365		0,4810			80,0000	
mme	o	Lohn	Std.			0,2000		0,2500		0,5000		0,1000	 	0,1000			0,1500	
botspreises über die Kalkulationsendsu	Kurzbeschreibung der Teilleistungen und	Kalkulationsansātze		Knotenelement verkürzt, Länge 44 cm Herstellen. Geometrie siehe Plan Nr. 3	Stahlschalung für Knotenelement Pos. 8.0 Einschalen und Ausschalen. InklusiveVor- und Nachbereiten der Schalung z.B. einölen	Lohn: Schahung Material: 35.000 €/(40 Teile/Schahung *250 Einsätze/Jahr*3 Jahre)	Bewehrung für Knotenelement Pos. 8.0 schneiden, biegen und verlegen. B500B . Inklusive Kleinteile wie z.B. Draht	Lohn: Material B500B: 600 €/t*0,0031 t	I ransportbeton UHPC > C 150 mut Kran und Kübel	Lohn: Material Beton C100/115:	Hüllrohr D= 50 mm, [= 0,11 m passgenau zuschneiden und passgenau in Knotenelement einbauen und gegen Betoneindringen schützen	Lohn: Material: 2,00 €/m*0,11 m	Hüllrohr D= 60 mm, [= 0,13 m passgenau zuschneiden und passgenau in Knotenelement einbauen und gegen Betoneindringen schützen	Lohn: Material: 2,00 €/m*0,13 m		Zahnleiste (verkürzt) einbauen inklusive Rückbewehrung	Lohn: Material:	
les Ange		Einhait		Stck	Stck.		 Stck.		m,		Stek.		 Stek.			Stck.		
cklung d		Mana	MICHER						9,02							1		
Entwi		DAS	F 05.	8.0	8.1		8.2		8.3		8.4		8.5			8.6		

Anhang FB3: Zusammenstellung Kalkulationsgrundlagen zur Herstellung

Stahlschalung			
			Erfahrungswert für Stahlschalungen in Fertigteilwerken
Lohn	0,1	Std/m ²	[Keßler, 2016]
			Erfahrungswerte: 8 Stunden für eine komplette
Knotenelemente	0,2	Std/Stck.	Stahlschalung, Kapazität 40 Teile [Keßler, 2016]
			70.000 € für Stahlschalung [Schultheiß et al., 2016],
			Kapazität für 10 Teile, 500 Binder pro Jahr -> 250
Material Obergurt	70000	€	Einsätze/Jahr, Schalung hält 3 Jahre
			70.000 € für Stahlschalung [Schultheiß et al., 2016],
			Kapazität für 10 Teile, 500 Binder pro Jahr -> 250
Material Untergurt	70000	€	Einsätze/Jahr, Schalung hält 3 Jahre
			70.000 € für Stahlschalung [Schultheiß et al., 2016],
			Kapazität für 42 Teile, 500 Binder pro Jahr -> 250
Material Pfosten	70000	€	Einsätze/Jahr, Schalung hält 3 Jahre
			70.000 € für Stahlschalung [Schultheiß et al., 2016],
			Kapazität für 32 Teile, 500 Binder pro Jahr -> 250
Material Diagonale	70000	€	Einsätze/Jahr, Schalung hält 3 Jahre
			35.000 € für Stahlschalung [Schultheiß et al., 2016],
			Kapazität für 40 Teile, 500 Binder pro Jahr -> 275
Material Knoten normal	35000	€	Einsätze/Jahr, Schalung hält 3 Jahre
			35.000 € für Stahlschalung [Schultheiß et al., 2016],
			Kapazität für 40 Teile, 500 Binder pro Jahr -> 250
Material Knoten verkürzt	35000	€	Einsätze/Jahr, Schalung hält 3 Jahre
Bewehrung			
			5,5 h/t (-> nach Interpolation der Werte von <i>Plümecke</i>
			[2008] S. 343), in Fertigteilwerk jedoch automatisierte
			Maschinen und immer wieder die gleichen Formen ->
Lohn Schneiden und Biegen	2	Std/t	2,0 [Keßler, 2016]
			20 h/t (-> nach Interpolation der Werte von Plümecke
Lohn Verlegen und Einbauen	20	Std/t	[2008] S. 345)
Lohn Knotenelemenz	0,25	Std/Stck.	Erfahrungswert [Keßler, 2016]
Material	600	€/t	600 €/t [Kaiser Bauservice Gbr., 2016]
Poton			
beton			0.64 Std/m ³ -> Plümecke (2008) S 310 Bessere
			Bedingungen
Lohn	0.5	Std/m ³	
Material C100/115	100	Stu/m	$\frac{100 \text{ f}}{100 \text{ f}} \frac{100 \text{ f}}{100 \text{ f}} 10$
Material > C150	100	€/m²	Luo e/m² [Schultheljs et dl., 2016] S. 21
iviaterial >C150	200	€/m²	Schatzung von vorderwuldecke

Einbauteile			
Pfeifer Transporteinbauteile			
			Schatzung von Vorderwulbecke anhand Plumecke
			[2008] S. 342 Ankerschienen auf Schalungsfläche
Lohn Einbau	0,1	Std/Stck.	befestigen 0,08 Std/m
Material			
			Disitor Providisto 02/2016 5 6 (DEE/FED Sail und
		- (-)	Veheteeheik Carbon 2016
Welle kurz RD24	4,7	€/Stck.	Hebetechnik GmbH, 2016j
Schragzugb.	0,5	€/Stck.	Pauschale Annahme von Vorderwuldecke
			Pfoifer Providisto 02/2016 S. 6. [PEE/FER Soil und
Walle kurz PD20	2.05	E /Stole	Hebeteebeik CmbH 2016
Sebrögzugh	3,63	E/Stck.	Revechale Annahma von Vordenwülhacka
Schlagzugb.	0,5	E/SICK.	
			Pfeifer Preisliste 03/2016 S 6 [PEE/EER Seil- und
Welle kurz BD18	3.75	£/Stck	Hebetechnik GmbH 2016]
Schrägzugh	0.5	E/Stck	Pauschale Annahme von Vorderwülbecke
	0,5	C/ Ster.	
			Pfeifer Preisliste 03/2016 S.6 [PEE/EER Seil- und
Hülse BD12	1.44	£/Stck	Hebetechnik GmbH 2016]
Schrägzugh und Rückhängeh	1,44	£/Stck	Pauschale Annahme von Vorderwülbecke
Seniagzago, and Rackhangeo.		C/ Ster.	
Hüllrohre			
Lohn Zuschneiden und Einbau			
senkrecht in Ober-/Untergurt			
D=60mm, l= 0,31 m	0,1	Std/Stck.	Schätzung/Erfahrungswert von Vorderwülbecke
Lohn Zuschneiden und Einbau			
waagrecht in Untergurt D=72			
mm, l= 15,26 m	1	Std/Stck.	Schätzung/Erfahrungswert von Vorderwülbecke
Lohn Zuschneiden und Einbau			
waagrecht in Untergurt D=72			
mm, l= 11,51 m	0,9	Std/Stck.	Schätzung/Erfahrungswert von Vorderwülbecke
Lohn Zuschneiden und Einbau			
waagrecht in Pfosten D=60			
mm, l= 3,12 m	0,3	Std/Stck.	Schätzung/Erfahrungswert von Vorderwülbecke
Lohn Zuschneiden und Einbau			
waagrecht in Diagonale D=60			
mm, l= 4,675 m	0,3	Std/Stck.	Schätzung/Erfahrungswert von Vorderwülbecke
Lohn Zuschneiden und Einbau			
in Knotenelemente D=60 mm			
und 30 mm, l= 0,13 m und 0,11	0,1	Std/Stck.	Schätzung/Erfahrungswert von Vorderwülbecke

Material			
			telefonische Anfrage: 4,8 €/m, Lieferlänge: 5m. Ca. 10 %
			Nachlass für benötigte Mengen, jedoch ca. 10 %
72 mm Hüllrohr für SUSPA			Zuschlag für Verschnitt [Froschmeier GmbH & Co. KG.,
Monolitzenbündel DSI	4,8	€/m	2016]
			telefonische Anfrage: 3,7 €/m, Lieferlänge: 5m. Ca. 10 %
			Nachlass für benötigte Mengen, jedoch ca. 10 %
60 mm Hüllrohr für DYWIDAG			Zuschlag für Verschnitt [Froschmeier GmbH & Co. KG.,
40WR Spannstab	3,7	€/m	2016]
			telefonische Anfrage: 2,15 €/m, Lieferlänge: 5m. Ca. 10
			% Nachlass für benötigte Mengen, jedoch ca. 10 %
30 mm Hüllrohr für 18 WR			Zuschlag für Verschnitt [Froschmeier GmbH & Co. KG.,
Spannstab	2,15	€/m	2016]
<u>Zahnleisten</u>			
			Schätzung von Vorderwülbecke anhand Plümecke
Lohn Einbau mit			[2008] S. 342 Ankerschienen auf Schalungsfläche
Rückbewehrung	0,15	Std/Stck.	befestigen 0,08 Std/m
			Schätzung von Vorderwülbecke, anhand von
			angefragten Kosten von J. Schmidt bei PFEIFER Seil- und
Material Zahnleiste lang	100	€/Stck.	Hebetechnik GmbH
			Schätzung von Vorderwülbecke, anhand von
			angefragten Kosten von J. Schmidt bei PFEIFER Seil- und
Material Zahnleiste kurz	80	€/Stck.	Hebetechnik GmbH
Consumption by L			
Spannstani			
0.5″ Litze			
Lohn Spannen I=15.26 m und			Schätzung von Vorderwülbecke: 500 €/t [Dressel. 2016]
11.51m	1	Std/Stck.	-> 22 €/Stck.
		,	Eingeholter Preis [Gebr. Lotter KG - Kummetat Stahl,
			2016] : 800€/t, der Meter wiegt ca. 0,726 kg -> 0,58€/m
Material	0.64	€/m	+ 10 % Verschnitt und Überlänge = 0.64 €/m
	-,	-,	
SUSPA Monolitze			
Lohn Spannen	1	Std/Stck.	Schätzung von Vorderwülbecke
Material I= 61,3 m inkl. Spann-			Eingeholter Preis [DYWIDAG-Systems International,
und Festanker	950	€/Stck.	2016]
Gewindestab 40 WR,			
l= 4,22 m			
Lohn Spannen	0,5	h/Stck.	Schätzung von Vorderwülbecke
			Eingeholter Preis [DYWIDAG-Systems International,
Material	340	€/Stck.	2016]
Gewindestab 18 WR			California Manda "U. I
Lonn Spannen	0,5	Std/Stck.	Schatzung von Vorderwulbecke
A determined		- 1- 1	Eingenolter Preis [DYWIDAG-Systems International,
Material	200	€/Stck.	2016]

klung des Angebotspreises ü	es Angebotspreises ü	ebotspreises ü	ber die Kalkulationsendsur	mme				52	tundenverrec	hnungssatz:	30,00	€/Std	Ang	ebot
Kurzbeschreibung der Teilleistungen und	Kurzbeschreibung der Teilleistungen und	Kurzbeschreibung der Teilleistungen und		°	je Einheit hne Zuschläj	ge		Menge x Einhe ohne Zuschläg	in the second		je Einheit t Zuschläger	-	Angebots- preis je	Anget
Menge Einheit Kalkulationsansätze	Einheit Kalkulationsansätze	Kalkulationsansätze Loi	3	a -	SoKo	Frendl.	Lohn	SoKo	Fremdl.	Lohn	SoKo	Fremdl.	Einheit (EP) €	Teilleistun E
Fachwerkträger Einzelteil (außer Knotenelemente) auf Montagefläche ausrichten 47:Sterk. turd montieren	Fachwerkträger Einzelteil (außer Knoteneiemente) auf Montagefläche ausrichten Stek. und montieren	Fachwerkträger Einzelteil (außer Knotenelemente) auf Montagefläche ausrichten und montieren			Þ	þ	5	Þ	Þ	p	Þ	Þ	50.45	2.371
[Lohn: 3 Mann * 0,5 Std/Mann [Teleskoplader 0,5 Std * 109 €/10 Std.	Lohn: 3 Mann * 0,5 Std/Mann Teleskoplader 0,5 Std * 109 €/10 Std.	Lohn: 3 Mann * 0,5 Std/Mann Teleskoplader 0,5 Std * 109 €/10 Std.	1,5(8		5,45	70,50		256,15	45,00		5,45		
				Γ										
Knotenelemente auf Montagefläche ausrichten 42 Stek. und montieren	Knotenelemente auf Montagefläche ausrichten Stek. und montieren	Knotenelemente auf Montagefläche ausrichten und montieren											22,50	945,
Lohn: 3 Mann * 0,25 StdMann 0,7	Lohn: 3 Mann * 0,25 Std/Mann 0,7	Lohn: 3 Mann * 0,25 Std/Mann 0,7	0,7	500			31,50			22,50				
										••••				
21 Stek Vorspannen eines Pfostens	Stek. Vorspannen eines Pfostens	Vorspannen eines Pfostens											355,00	7.455,0
Lohn: 2 Mann * 0,25 Std/Mann Material:	Lohn: 2 Mann * 0,25 StdMann Material:	Lohn: 2 Mann * 0,25 Std/Mann Material:	0,5	000		340,00	10,50		7.140,00	15,00		340,00		
4 Stek. Vorspannen einer Diagonale	Stek. Vorspannen einer Diagonale	Vorspannen einer Diagonale		[]									215,00	860,0
Lohn: 2 Mann * 0,25 Std/Mann Material:	Lohn: 2 Mann * 0,25 Std/Mann Material:	Lohn: 2 Mann * 0,25 Std/Mann Material:	0,5(000		200,00	2,00		800,00	15,00		200,00		
12 Stck. Verbinden von Diagonale und Knotenelementen	Stck. Verbinden von Diagonale und Knotenelementen	Verbinden von Diagonale und Knotenelementen											55,00	660,
Lohn: 2 Mann * 0,25 Std/Mann Material:	Lohn: 2 Mann * 0,25 Std/Mann Material:	Lohn: 2 Mann * 0,25 Std/Mann 0,5 Material:	0,5	0000		40,00	6,00		480,00	15,00		40,00		
Einbauen und vorspannen der SUSPA Monolitzen 4 Stets. in die Hülfrohre im Untergurt. L= 61,3 m	Einbauen und vorspannen der SUSPA Monokitzen Stek. in die Hüllrohre im Untergurt. L= 61,3 m	Einbauen und vorspannen der SUSPA Monolitzen in die Hüllrohre im Untergurt. L= 61,3 m											00'086	3.920
Lohn: 2 Mann * 0,5 Std/Mann Material	Lohn: 2 Mann * 0,5 Std/Mann Material	Lohn: 2 Mann * 0,5 Std/Mann Material	1,00	8		950,00	4,00		3.800,00	00'08		950,00		
				r										
Embau des liegenden Fachwerkträgers in die I Stetk. Endposition im Gabellager in 15m Höhe	Embau des luegenden Fachwerkträgers in die Stek. Endposition im Gabellager in 15m Höhe	Embau des liegenden Fachwerkträgers in die Endposition im Gabellager in 15m Höhe											4.309,00	4.309,(
Autokräne 2 Stück inkl. An-/Abfahrt und	Autokräne 2 Stück inkl. An-/Abfahrt und	Autokräne 2 Stück inkl. An-/Abfahrt und		r								Γ		
Kranführer * 0,5 Tage	Kranführer * 0,5 Tage	Kranführer * 0,5 Tage				3.750,00			3.750,00			3750,00		
Hubsteiger 2 Stck. * 0,5 Tage Lohn: 3 Mann * 5 Std	Hubsteiger 2 Stck. * 0,5 Tage Lohn: 3 Mann * 5 Std 15.00	Hubsteiger 2 Stck. * 0,5 Tage Lohn: 3 Mann * 5 Std 15.00	15.00	S		109,00	15.00		109,00	450.00		109,00		
				1										
			L	[]										20.520,1

Anhang FB4: Kalkulation Montage

Anhang FB5: Zusammenstellung Kalkulationsgrundlagen zur Montage

Teleskoparbeitsbühne			
T200 DA-L	109	€/Tag	tel. Anfrage [Wagert, 2016]
An- und Abtransport			
Teleskoparbeitsbühne			
T200 DA-L	160	€	tel. Anfrage [Wagert, 2016]
200 t Autokran inkl. An-			
/Abfahrt und Kranführer	3750	€/Tag	Angebot Fa. Grimm [Steckmann, 2016]
Teleskoplader	150	€/Tag	tel. Anfrage [Wagert, 2016]
An- und Abtransport			
Teleskoplader	160	€	tel. Anfrage [Wagert, 2016]
Ausrichten auf			Montagetrupp besteht aus 3 Mann und einem
Montagefläche Einzelteile	0,5	Std/Teil/Mann	Teleskoplader [Schultheiß et al., 2016]
Ausrichten auf			Montagetrupp besteht aus 3 Mann und einem
Montagefläche			Teleskoplader. Schätzung von Vorderwülbecke
Knotenelemente	0,25	Std/Teil/Mann	nach Schultheiß et al., [2016]
Spannstahl			
Material			
Gewindespannstab 18 WR;			Eingeholter Preis [DYWIDAG-Systems
l= 4,675	200	€/Stck.	International, 2016]
Gewindespannstab 40 WR;			Eingeholter Preis [DYWIDAG-Systems
l= 4,22	340	€/Stck.	International, 2016]
			Eingeholter Preis [DYWIDAG-Systems
SUSPA Monolitze; I=61,3 m	950	€/Stck.	International, 2016]
Lohn			
Gewindestab	0,5	Std/Stck.	Schätzung Vorderwülbecke
Monolitze	0,5	Std/Stck./Mann	Schätzung Vorderwülbecke
Verbinden von Diagonale			
und Knotenelementen	0,5	Std/Stck.	Schätzung Vorderwülbecke
Einbau in Endposition			
Halber Tag mit einem Montag	otrunn he	estebend aus 2 v /	Autokran, 2 x Hubsteiger, 3 Mann

Halber Tag mit einem Montagetrupp bestenend aus 2 x Autokran, x Hubsteiger, 3 Ma

Anhang FC: Zeichnungen zum Fachwerkträger

Anhang FC1: Gesamtträger Segmentverbindung "Doppelpfosten"

Anhang FC2: Gesamtträger Segmentverbindung "Diagonale"

Schnitt 4 - 4: Querschnitt Obergurt - Knotenelement

Seitenansicht Knotenelement

Betondeckung (Verlegemaß)	Betonfestigkeitsklassen	Betonoberflächen Schalseite:	Betonoberflächen Einfüllseite
Allgemein: 3,5cm	C100/115	Schalungsglatt	Handgeglättet
Zahnleisten: 4,0cm	Kantenfasung	Keine besond. Anforderungen	Sauber abgerieben
		Aufgerauht	Aufgerauht
[XC1]	a = 1,0cm	W / S Waschbeton, Struktur	B Besenstrich

Obergurt

Untergurt

Diagonale

Pfosten

Anhang V: Versuchsdokumentation

Anhang VA: Materialkennwerte	
Anhang VA1: Materialkennwerte Stahl	
Anhang VA2: Materialkennwerte Beton	5
Anhang VB: Dokumentation Versuche	13
Anhang VB1: Dokumentation Versuche Phase I	13
Anhang VB2: Dokumentation Versuche Phase II	
Anhang VB3: Dokumentation Versuche Phase III	56
Anhang VB4: Dokumentation Versuche Phase IV	84
Anhang VD: Pläne	106
Anhang VD1: Pläne Prüfkörper Phase I	106
Anhang VD2: Pläne Prüfkörper Phase II	115
Anhang VD3: Pläne Prüfkörper Phase III	123
Anhang VD4: Pläne Prüfkörper Phase IV	125
Anhang VD5: Pläne Widerlager für Phase III	130
Anhang VD6: Pläne Widerlager Phase IV	131
Anhang VD7: Zahngeometrie	132
Anhang VE: Prüfkörperherstellung	136

Anhang VA: Materialkennwerte

Anhang VA1: Materialkennwerte Stahl

Ermittlung der Materialkennwerte des Stahls

Es werden die Materialkennwerte der Stahlprüfkörper ermittelt. Dabei werden aus dem Stahlblech, aus dem auch die Stahlprismen gefertigt werden, 18 Zugproben 8x40 der Form B sowie zwei Flachproben 108 x 60 der Form G gem. DIN 50125 hergestellt. Die Zugprüfungen werden nach der Prüfnorm DIN EN ISO 6892-1 durchgeführt.

Prüfparameter/Versuchsdurchführung

- Vorspannung: _
- 10 МРа Prüfgeschwindigkeit E-Modul: 10 MPa/s -
- Prüfgeschwindigkeit ab Streckgrenze: 20 MPa/s _
- 0,004 Prüfgeschwindigkeit: -

Abb. VA1.1 Zugprüfung gem. DIN EN ISO 6892-1 (Schmidt 2018)

Ergebnisse

Ergebnisse: Rundproben Charge 1								
Legende	Bezeichnung	m _E	R _{eH}	R _{eH*}	R _m	А	Ζ	
_	_	[GPa]	[MPa]	[MPa]	[MPa]	[%]	[%]	
	R1	303	-	276	454	24,6	74,3	
	R2	204	-	264	449	34,3	74,5	
	R3	196	-	277	452	31,5	74,1	
	R4	199	-	265	449	28,5	73,9	
	R5	203	-	262	449	30,6	73,7	
	R6	195	-	265	452	32,8	74,4	
	R7	202	-	266	450	38,9	74,8	
	R8	207	-	266	452	37,1	73,9	
	R9	198	-	274	452	37,0	74,5	
Statistik: $n = 9$								
\overline{x}		212	-	268	451	32,8	74,2	
S		34	-	5,679	2	4,6	0,3	
ν		16,17	-	2,12	0,41	13,95	0,46	

Ergebnisse: Flachproben Charge 1								
Legende	Bezeichnung	$m_{\rm E}$	R _{eH}	R _{eH*}	R _m	A ₆₀	Z	
		[GPa]	[MPa]	[MPa]	[MPa]	[%]	[%]	
	F1	191	302	-	439	35,6	73,1	
	F2	203	315	-	442	37,6	72,6	
Statistik: n = 2								
	\bar{x}	197	308		440	36,6	72,8	
	S	9	9		2	1,5	0,4	
ν		4,34	3,01		0,44	3,97	0,52	

Ergebnisse: Flachproben Charge 2								
Legende	Bezeichnung	$m_{\rm E}$	R _{eH}	R _{eH*}	R _m	A ₆₀	Z	
		[GPa]	[MPa]	[MPa]	[MPa]	[%]	[%]	
	F3	176	241	-	388	39,8	68,8	
	F4	181	244	-	388	34,7	67,6	
	F5	190	240	-	387	41,2	64,8	
	F6	199	239	-	386	34,5	69,1	
Statistik: n = 4								
\overline{x}		186	241	-	387	37,5	67,6	
S		10	2	-	1	3,5	1,9	
ν		5,40	0,92	-	0,26	9,22	2,87	

 $\mathbf{d}_{\mathbf{0}}$ = Werkstoffdurchmesser des Prüfkörpers

 $\mathbf{m}_{\mathbf{E}} = \mathbf{E}$ -Modul

 \mathbf{R}_{eH} = obere Streckgrenze (Wert durch Prüfsoftware bestimmt)

 \mathbf{R}_{eH^*} = obere Streckgrenze (Wert durch anwählen auf der Arbeitslinie manuell bestimmt)

 $\mathbf{R}_{\mathbf{m}}$ = Zugfestigkeit

A_{40/60} = Bruchdehnung in % (bezogen auf die 40mm Meßlänge der Extensometerabstände bei den Rundproben und 60mm Meßlänge bei den Flachproben)

Z = Brucheinschnürung

Anhang VA2: Materialkennwerte Beton

Allgemeines

Beton wird als Drei-Phasen-Werkstoff, bestehend aus Gesteinskörnungen, Zement und Wasser bezeichnet. Ultrahochfester Beton hat darüber hinausgehend noch Zusatzmittel und Zusatzstoffe beigemischt. Da ultrahochfester Beton schlagartig spröde versagt, werden häufig Stahlfasern beigemischt um ein duktileres Verhalten zu erreichen. Bei normalfesten Beton verlaufen die Risse entlang der Gesteinskörnung, im ultrahochfesten Beton durch die Gesteinskörnung hindurch (Zilch, Zehetmaier 2010). Die Festigkeit von ultrahochfesten Beton ist somit von der Gesteinskörnung abhängig.

Abb. VA2.1 unterschiedliche Rissverläufe bei NFB und UHFB (Zilch, Zehetmeier 2010, S.116)

Gemäß dem Größtkorndurchmesser werden ultrahochfeste Betone in zwei Typen unterschieden, feinkörniger Beton mit einem Größtkorn von 0,5 mm und grobkörniger Beton mit einem Größtkorn bis zu 16 mm (FEHLING 2005).

Probekörper

Es werden zylindrische Probekörper gemäß DIN EN 12390-13 mit den Abmessungen d/h=150/300mm hergestellt. Die Lagerung erfolgt unter Wasser. Vor der Prüfung wird die Oberfläche der Probe geschliffen. Die Prüfung erfolgt an einem 3,0 MN Lastrahmen Bauform 2031 (Toni Technik GmbH) mit einer Belastungsgeschwindigkeit von 0,6 mm/min. Die Wege werden über drei vertikal angebrachte induktive Wegaufnehmer aufgenommen.

Abb. VA2.2 Zylinderherstellung

Betonprüfung: Ultralith für die Prüfkörper Phase II, Phase III (V1-V3), Phase IV							
Prüfkörper	Lastpfad						
19.10.16 28 2 3 16. 10. 16	Last [kN] 1400 1200 1000 800 600 400 200 100	Last [kN] 1400 1200 1000 800 600 400 200 100 200 100 200 200 100 200 2					
Prüfmaschine	Lastrahmen Bauform	2031 (Toni Technik Gmł	oH) 3,0 MN				
Belastungsgeschwindigkeit	0,6 mm/min = 0,01 m	nm/sek					
Prüfvorschrift	DIN EN 12390-13:2014						
Wegaufnehmer	3x vertikal						
	1	1					
	ZY 1	ZY 2	ZY 3				
Herstelldatum	19.10.2016	19.10.2016	19.10.2016				
Prüfdatum	21.11.2016	21.11.2016	21.11.2016				
Betonalter	32d	32d	32d				
Lagerung	unter Wasser	unter Wasser	unter Wasser				
Durchmesser [mm]	149,61	149,61	151,13				
Höhe [mm]	296,62	298,06	303,84				
Fläche [cm ²]	175,80	176,50	179,39				
Bruchlast [kN]	2200,32	2085,83	2165,29				
Bruchspannung [N/mm ²]	125,16	118,18	120,70				
E-Modul [N/mm ²]	43.240	44.170	45.100				

Der gemittelte E-Modul beträgt somit 44.170 N/mm²

Betonprüfung: Betec für die Prüfkörper Phase III (V4-V6)						
Prüfkörper	Lastpfad					
	Last [kN]		Bruch	➤ Zeit [sek]		
Prüfmaschine	Lastrahmen H	Bauform 2031 (Toni	Technik GmbH) 3,0	MN		
Belastungsgeschwindigkeit	0,24 mm/min = 0,004 mm/sek					
Prüfvorschrift	DIN EN 12390-13:2014					
Wegaufnehmer	3x vertikal					
ZY=Zylinder	ZY 4	ZY 5	ZY 6	ZY 7		
Herstelldatum	11.09.2017					
Prüfdatum	10.10.2017					
Betonalter	29d					
Lagerung	an der Luft					
Durchmesser [mm]	149,87	149,82	149,90	149,97		
Höhe [mm]	296,91	298,34	296,64	295,71		
Fläche [cm ²]	176,41	176,29	176,48	176,64		
Bruchlast [kN]	1413,64	1458,46	1509,79	1574,60		
Bruchspannung [N/mm ²]	80,13	82,73	85,55	89,14		
E-Modul [N/mm ²]	31.342	27.863	28.026	28.806		

Charge ZY4 (Konsole 4) Charge ZY5 (Konsole 5) Charge ZY6+7 (Konsole 6)

Kraft-/Verformungskurven

Abb.VA.2.3: Kraft/Verformungslinie Zylinder 1

Abb. VA.2.4: Kraft/Verformungslinie Zylinder 2

Abb. VA.2.5: Kraft/Verformungslinie Zylinder 3

Abb. VA.2.6: Kraft/Verformungslinie Zylinder 4

Abb. VA.2.7: Kraft/Verformungslinie Zylinder 5

Abb. VA.2.8: Kraft/Verformungslinie Zylinder 6

Abb. VA.2.9: Kraft/Verformungslinie Zylinder 7

Abb. VA.2.10: Bruchbild

Anhang VB: Dokumentation Versuche

Anhang VB1: Dokumentation Versuche Phase I

Abb.VB1: Prüfkörper Phase I

Stahl/Stahl								
Versuchs -nr.	Bezeichnung Neigung/Zahnhöhe/ Zahngrundlänge b/t/h	An- zahl	Art der Ver- zahnung	Art der vert. Lastauf- bringung	Prüfge- schwin- digkeit [mm/sec]	Material		
I/R	Stahlreferenzprisma 32/40/200mm	1	S/S	Monoton/Druck	0,6	S235 Charge 1		
I/P1/2	Stahlprisma 30°/2,8/3,5mm 32/40/200mm	2	S/S	Monoton/Druck	0,6	S235 Charge 1		
I/P3/4	Stahlprisma 30°/3/5mm 32/40/200mm	2	S/S	Monoton/Druck	0,6	S235 Charge 1		
I/P5/6	Stahlprisma 20°/2,8/3,5mm 32/40/200mm	2	S/S	Monoton/Druck	0,6	S235 Charge 2		
I/P7/8	Stahlprisma 25°/2,8/3,5mm 32/40/200mm	2	S/S	Monoton/Druck	0,6	S235 Charge 2		
I/P9/10	Stahlprisma 45°/2,8/3,5mm 43/40/200mm	2	S/S	Monoton/Druck	0,6	S235 Charge 2		
I/P11/12	Stahlprisma 50°/2,8/3,5mm 46/40/200mm	2	S/S	Monoton/Druck	0,6	S235 Charge 2		
I/P13	Stahlprisma 70°/2,8/3,5mm 56/40/200mm	1	S/S	Monoton/Druck	0,6	S235 Charge 2		
I/P14	Stahlprisma 90°/2,8/3,5mm 61/40/200mm	1	S/S	Monoton/Druck	0,6	S235 Charge 2		

Phase I. Klainvarsuche zur konzentrierten Kraftijhertregun • **F**---

IP1

IP6

IP11

IP13 Anhang V Seite 20

Abb.VB1.2: Laststufen-Diagramm – Referenzprüfkörper

Abb.VB1.3: Laststufen-Diagramm –gezahnte PK beispielhaft

Anhang VB2: Dokumentation Versuche Phase II

Abb.VB2.1: Versuchsaufbau

Phase II: Kleinversuche zur konzentrierten Kraftübertragung in der verzahnten Fuge - Stahl/Stahl und Stahl/Beton									
Versuchsnr.	Bezeichnung	Art der Verzahnung	Art der Lastauf-bringung	Prüfge- schwindigkeit [mm/sec]	Stahl Einbauteil	Beton			
II/R1	Betonreferenzprisma 14/14/50cm	х	Monoton/Druck	0,6	Х	Ultralith			
II/R2	Betonreferenzprisma 261/14/50cm	x	Monoton/Druck	0,6	Х	Ultralith			
II/R3	Betonreferenzprisma 14/5/50cm	x	Monoton/Druck	0,6	Х	Ultralith			
II/R4	Betonreferenzprisma 261/5/50cm	x	Monoton/Druck	0,6	Х	Ultralith			
II/P1	St/St/Bet_2ZL 30°; 14/14/50cm	S/B_S/S	Monoton/Druck	0,6	S235	Ultralith			
II/P2	St/St/Bet_2ZL 70°; 261/14/50cm	S/B_S/S	Monoton/Druck	0,6	S235	Ultralith			
II/P3	St/St/Bet_1ZL 30°; 14/5/50cm	S/B_S/S	Monoton/Druck	0,6	S235	Ultralith			
II/P4	St/St/Bet_1ZL 30°; 14/5/50cm	S/B_S/S	Monoton/Druck	0,6	S235	Ultralith			
II/P5	St/St/Bet_1ZL 70°; 261/5/50cm	S/B_S/S	Monoton/Druck	0,6	S235	Ultralith			

Bezeichnung	PhII Ref - 7	0-1			
Beschreibung	Referenzkörper zum PK mit einer Zahnleiste, 20°.				
	Homogener Prisma mit e	Betonkörper mit ide iner Zahnleiste unte	ntischen Grundr r 20°.	issabmessungen wie	
Herstelldatum	19.10.2016	5	Betonalter	32d	
Prüfdatum	21.11.2016	5	Lagerung	an der Luft	
Zylinderfestigkeit	121,35	[N/mm ²]			
Prüfmaschine	Lastrahmen	Bauform 2031 (Ton	i Technik GmbH	I) 3,0 MN	
a x b [mm]	261,16 x	50,75			
A [cm ²]	132,54				
h [mm]	502				
Wegaufnehmer	2x vertikal				
Versagensart	Betondruckversagen über das gesamte Bauteil				
Bruchlast	[kN]	1168,81			
Bruchspannung	[N/mm ²]	88,19			
Belastungsgeschwind	igkeit	0,6 mm/min = 0,01	mm/sek		
Belastungsprotokoll		siehe Laststufen-Diagramm für 1 Zahnleiste			

Bezeichnung	PhII Ref - 7	0-2					
Beschreibung	bung Referenzkörper zum PK mit zwei Zahnleisten, 20°. Hohlraum in der Mitte, da die Kraft analog zum Prüfkörper nur über die seitlichen Stege abgetragen werden soll. Zusätzliche Sicherung durch Gewindestangen gegen Ouerzugversagen					iber die urch	
Herstelldatum	19.10.2016)	Betona	lter	32d		
Prüfdatum	21.11.2016)	Lageru	ng	an der Lu	ft	
Zylinderfestigkeit	linderfestigkeit 121,35 [N/mm ²]						
Prüfmaschine	Lastrahmen	Lastrahmen Bauform 2031 (Toni Technik GmbH) 3,0 MN					
a x b [mm]	260,50 x	139,40	$a_{eff} x \; b_{eff}$	[mm]	2 x 35	х	260,50
A [cm ²]	363,14		A_{eff}	[cm ²]	182,35		
h [mm]	501						
Wegaufnehmer	2x vertikal						
Versagensart	Leichte Risse an der Oberkante. Versagen durch Druckbruch in den Stegen. Es wird die effektive Betonfläche entlang der geneigten Stege maßgebend.					len Stege	
Bruchlast	[kN]	1663,93					
Bruchspannung	[N/mm ²]	91,25					

Belastungsgeschwindigkeit

Belastungsprotokoll

0,6 mm/min = 0,01 mm/sek siehe Laststufen-Diagramm für 2 Zahnleistenpaare

Probekörper

Bruchbild

PhII Ref - 70-2

Bezeichnung PhII - Ref - 30-1					
Beschreibung	Referenzkör	per zum PK mit ei	iner Zahnleiste, 60	0°.	
	Homogener Prisma mit e	Betonkörper mit i einer Zahnleiste un	dentischen Grund hter 20°.	rissabmessungen wie	
Herstelldatum	19.10.2016	6	Betonalter	32d	
Prüfdatum	21.11.2016	6	Lagerung	an der Luft	
Zylinderfestigkei	121,35	$[N/mm^2]$			
Prüfmaschine	Lastrahmen	Bauform 2031 (To	oni Technik Gmb	H) 3,0 MN	
a x b [mm]	140,38 x	50,75			
A [cm ²]	71,24				
h [mm]	501				
Wegaufnehmer	2x vertikal				
Versagensart	Starke Betor durch Entmi	Starke Betonabplatzungen am Fußpunkt des Probekörpers. Vermutlich durch Entmischung in diesem Bereich			
Bruchlast	[kN]	471,29			
Bruchspannung	[N/mm ²]	66,16			
Belastungsgeschv	vindigkeit	0,6 mm/min = 0,	01 mm/sek		
Belastungsprotok	oll	siehe Laststufen-	Diagramm für 1 Z	Zahnleistenpaar	

Probekörper

Bezeichr	nung	PhII - Ref -	30-2					
Beschrei	bung	Referenzkörper zum PK mit zwei Zahnleisten, 60°. Hohlraum in der Mitte, da die Kraft analog zum Prüfkörper nur über die seitlichen Stege abgetragen werden soll. Zusätzliche Sicherung durch Gewindestangen gegen Ouerzugversagen.					iber die lurch	
Herstelld	latum	19.10.2016)	Betona	lter	32d		
Prüfdatum		21.11.2016		Lageru	ng	an der Lut	ft	
Zylinderfestigkeit 12		121,35	[N/mm ²]					
Prüfmaschine		Lastrahmen Bauform 2031 (Toni Technik GmbH) 3,0 MN						
a x b	[mm]	139,88 x	140,59	$a_{eff} x \; b_{eff}$	[mm]	2 x 35	х	140,59
А	[cm ²]	196,66		A_{eff}	[cm ²]	98,41		
h	[mm]	501						
Wegaufr	nehmer	2x vertikal						
Versagensart		Leichte Risse aus Querzug, da die Gewindestangen zu weit von der Aussparung angebracht sind. Prüfkörper schert entlang der Stege ab. Es wird die effektive Betonfläche maßgebend.						
Bruchlas	st	[kN]	792,40					
Bruchspa	annung	[N/mm ²]	80,52					
Belastungsgeschwindigkeit		igkeit	0,6 mm/min = 0	,01 mm/sek	X			

Belastungsprotokoll

siehe Laststufen-Diagramm für 2 Zahnleistenpaare

Probekörper

Bruchbild

PhII - Ref - 30-2

Laststufen für 1 Zahnleistenpaar

Abb.VB2.2: Laststufen-Diagramm für PK mit einem Zahnleistenpaar

Abb.VB2.3: Laststufen-Diagramm für PK mit zwei Zahnleistenpaaren

Verschiebungsrichtungen

Abb.VB.2.4: Probekörper mit Verschiebungsrichtungen

Vorzeichen-		
regelung	F	ε
Negativ	Zug	Dehnung
Positiv	Druck	Stauchung

Bezeichn	ung		PhII - 70°-1ZL-	a			
Beschreil	oung	1 Zahnleister	npaar, 20°				
Betonkörper mit einem unter 20° geneigten Zahnleistenpaar				eistenpaar			
Herstelld	atum	19.10.2016	5	Betonalter	33d		
Prüfdatur	n	22.11.2016	5	Lagerung	an der Luft		
Zylinderf	estigkeit	121,35	[N/mm ²]				
Prüfmasc	hine	Lastrahmen	Bauform 2031 (Ton	i Technik GmbH)	3,0 MN		
a x b	[mm]	260,64 x	49,60				
А	[cm ²]	129,28					
h	[mm]	500					
Wegaufnehmer		2x horizontal 1x vertikal 1x axial					
Versagensart		Leichte Abplatzungen an der Unterkante, starke Abplatzungen an der Oberkante durch Schiefstellung des gesamten Probekörpers. Zähne werden leicht ineinander gestaucht und plastisch verformt. Der Beton wird maßgebendes Element.					
Bruchlast	t	[kN]	1030,29				
Bruchspa	nnung	[N/mm ²]	79,69 (Spannung im Beton)				
Belastung	gsgeschwind	igkeit	0,6 mm/min = 0,01 mm/sek				
Belastung	gsprotokoll		siehe Laststufen-Diagramm für 1 Zahnleistenpaar				

PhII - 70°-1ZL-a

Verformte Zähne Vorderseite

Verformte Zähne Rückseite

Bezeichr	nung	PhII - 70°-1ZL-b					
Beschrei	bung	1 Zahnleistenpaar, 20°					
		Betonkörper mit einem unter 20° geneigten Zahnleistenpaar mit Dehnungsmessstreifen					
Herstelld	latum	19.10.2016	5	Betonalter	34d		
Prüfdatu	m	23.11.2016	5	Lagerung	an der Luft		
Zylinder	festigkeit	121,35	[N/mm ²]				
Prüfmase	chine	Lastrahmen	Bauform 2031 (Ton	i Technik GmbH)	3,0 MN		
a x b	[mm]	261,48 x	50,33				
А	[cm ²]	131,60					
h	[mm]	501					
Wegaufnehmer		2x horizontal 1x vertikal 1x axial					
Versagensart		Leichte Abplatzungen an der Ober- und starke Abplatzungen an der Unterkante ab 100 kN, die stetig zunehmen. Abplatzungen am Eckzahn Beton – Stahl. Sprödes Versagen des Betons an der Unterkante.					
Bruchlas	st	[kN]	1058,63				
Bruchspa	annung	[N/mm ²]	80,44 (Spannung im Beton)				
Belastun	gsgeschwind	igkeit	0,6 mm/min = 0,01 mm/sek				
Belastungsprotokoll			siehe Laststufen-Diagramm für 1 Zahnleistenpaar				

PhII - 70°-1ZL-b

Anhang V Seite 41

PhII - 70°-1ZL-b

Vorzeichen-		
regelung	F	ε
Negativ	Zug	Dehnung
Positiv	Druck	Stauchung

Abb.: Links: Lage der DMS vorne; rechts: Lage der DMS hinten

Bezeichnu	ung		PhII - 70°-2ZL	4		
Beschreib	oung	2 Zahnleistenpaare, 20°				
		Betonkörper	mit zwei unter 20°	geneigten Zahnlei	stenpaaren	
Herstellda	atum	19.10.2010	6	Betonalter	32d	
Prüfdatun	n	21.11.2010	6	Lagerung	an der Luft	
Zylinderf	estigkeit	121,35	[N/mm ²]			
Prüfmasc	hine	Lastrahmen	Bauform 2031 (Ton	i Technik GmbH)	3,0 MN	
a x b	[mm]	140,93 x	259,50			
А	[cm ²]	365,71				
h	[mm]	501				
Wegaufne	ehmer	2x vertikal				
		1x axial				
Versagensart		Leichte Riss - Stahl. Abfa	bildung aus Querzug allende Last zum En	g. Abplatzungen a de hin durch Fließ	n den Eckzähnen Beton en der Gewindestangen.	
Bruchlast	[kN]	1577,08				
Belastung	sgeschwind	igkeit	0,6 mm/min = 0,01	mm/sek		
Belastungsprotokoll			siehe Laststufen-Diagramm für 2 Zahnleistenpaare			

PhII - 70°-2ZL

Verformte Zähne:

Abplatzungen Eckzähne Beton - Stahl

Bezeich	nung		PhII - 30°-1ZL-	·a				
Beschrei	ibung	1 Zahnleiste	enpaar, 60°					
		Betonkörper	Betonkörper mit einem unter 60° geneigten Zahnleistenpaar					
Herstelle	datum	19.10.201	6	Betonalter	33d			
Prüfdatu	ım	22.11.201	6	Lagerung	an der Luft			
Zylinder	rfestigkeit	121,35	$[N/mm^2]$					
Prüfmas	chine	Lastrahmen	Bauform 2031 (Ton	i Technik GmbH)	3,0 MN			
a x b	[mm]	140,33 x	50,18					
А	[cm ²]	70,42						
h	[mm]	499						
Wegaufi	nehmer	2x horizontal 1x vertikal 1x axial						
Versagensart		Abplatzungen der Ecken an der Unterkante ab 200 kN. Untere Zähne erreichen Fließgrenze bis keine weitere Last mehr aufgebracht werden kann. Dann verformen sich die oberen. Der Versuch wird manuell beendet. Durch eine leichte Schiefstellung des Probekörpers wurden die Zähne nicht gleichmäßig über die gesamte Breite beansprucht. Die Zähne sind hälftig stark verbogen und komplett abgeschert.						
Bruchlas	st [kN]	383,84						
Belastungsgeschwindigkeit $0.6 \text{ mm/min} = 0.01 \text{ mm/sek}$								

Belastungsprotokoll

0,6 mm/min = 0,01 mm/sek siehe Laststufen-Diagramm für 1 Zahnleistenpaar

PhII - 30°-1ZL-a

Verformte Zähne:

Kraft-Verformung vertikal (Anfangsbereich)

Bezeichnung		PhII - 30°-1ZL-b					
Beschreibung		1 Zahnleiste	1 Zahnleistenpaar, 60°				
		Betonkörper Dehnungsm	r mit einem unter 60 nessstreifen	° geneigten Zahnl	eistenpaar mit		
Herstelldatum		19.10.201	6	Betonalter	34d		
Prüfdatum		23.11.201	6	Lagerung	an der Luft		
Zylinderfestigl	keit	121,35	[N/mm ²]				
Prüfmaschine		Lastrahmen	Bauform 2031 (Tor	ni Technik GmbH)	3,0 MN		
a x b [mm	1]	140,78 x	50,08				
A [cm ²]	70,50					
h [mm	1]	505					
Wegaufnehmer		2x horizonta 1x vertikal 1x axial	al				
Versagensart		Leichte Abplatzungen an der Unterkante durch Schiefstellung. Untere Zähne erreichen Fließgrenze bis keine weitere Last mehr aufgebracht werden kann. Dann verformen sich die oberen. Durch die Schiefstellung des Probekörpers wurden die Zähne nicht gleichmäßig über die gesamte Breite beansprucht. Die Zähne sind hälftig stark verbogen und komplett abgeschert.					
Bruchlast	[kN]	373,20					
Belastungsges	chwind	igkeit	0,6 mm/min = 0,01 mm/sek				
Belastungsprotokoll			siehe Laststufen-Diagramm für 1 Zahnleistenpaar				

PhII - 30°-1ZL-b

Verformte Zähne:

Anhang V Seite 51

PhII - 30°-1ZL-b

Spannungs-Dehnungsdiagramm (DMS)

Abb.: Links: Lage der DMS vorne; rechts: Lage der DMS hinten

Bezeichnung		PhII - 30°-2ZL			
Beschreibung		2 Zahnleistenpaare, 60°			
		Betonkörper mit zwei unter 60° geneigten Zahnleistenpaaren			
Herstelldatum		19.10.2016	Betonalter	32d	
Prüfdatum		21.11.2016	Lagerung	an der Luft	
Zylinderfestigkeit		121,35 [N/mm ²]			
Prüfmaschine		Lastrahmen Bauform 2031 (Toni Technik GmbH) 3,0 MN			
a x b	[mm]	139,71 x 140,24			
А	[cm ²]	195,93			
h	[mm]	501			
Wegaufnehmer		2x horizontal 1x vertikal 1x axial			
Versagensart		Die Zahnleisten werden fälschlicherweise bei der Betonage mit einem Versatz von einem Zahn zueinander eingebracht. Dadurch sitzt eine Seite richtig ineinander und die gegenüberliegende Seite hat einen unbeanspruchten Zahn, wodurch die Versagenslast stark reduziert wird. Die beanspruchten Zähne verformen sich gleichmäßig, bis der obere Körper abrutscht. Dabei wird der Verbund zwischen Zahnleiste und Beton auf einer Seite vollständig gelöst.			
Bruchlas	t [kN]	398,64			
Belastungsgeschwindigkeit 0,6			,6 mm/min = 0,01 mm/sek		
Belastungsprotokoll		siehe	siehe Laststufen-Diagramm für 2 Zahnleistenpaare		

PhII - 30°-2ZL

Verformte Zähne Vorderseite

Versagensbild

Verformte Zähne Rückseite

Anhang V Seite 54

50

0

0,5

1

-0,5

w [mm]

2

1,5

Anhang V Seite 55

Anhang VB3: Dokumentation Versuche Phase III

Abb.VB3.1: Versuchsaufbau Konsole, oben 68vm Konsolhöhe, unten 33cm Konsolhöhe

Phase III: Konsole										
Versuchsnr.	Bezeichnung	Art der Verzahnung	Art der Lastaufbringung	Prutge- schwindigkeit [mm/sec]	Anzahl der Zähne	Zahngeometrie	Anordnung der Zähne	Stahl Einbauteil	Beton	
III/V1	Konsole h=68cm	S/B_S/S	Monoton/ Druck	0,01	36	GT5	Gruppen	S235	Ultralith	
III/V2	Konsole h=68cm	S/B_S/S	Monoton/ Druck	0,01	36	GT5	Gruppen	S235	Ultralith	
III/V3	Konsole h=68cm	S/B_S/S	Monoton/ Druck	0,01	36	GT5	Gruppen	S235	Ultralith	
III/V4	Konsole h=33cm	S/B_S/S	Monoton/ Druck	0,01	24	GT5	Gruppen	S235	Betec ZY4	
III/V5	Konsole h=33cm	S/B_S/S	Monoton/ Druck	0,01	24	GT5	Konzentration	S235	Betec ZY5	
III/V6	Konsole h=33cm	S/B_S/S	Monoton/ Druck	0,01	10	GT3	Konzentration	S235	Betec ZY6u.7	

Tab.VB3.1: Versuchsprogramm Phase III – Stahl/Stahl

Die ersten drei Konsolversuche V1 bis V3 erreichen nicht die erwarteten Versuchslasten. Das wird damit begründet, dass die Zähne beim Zusammenbau nicht exakt ineinander gegriffen haben und bei V2 und V3 durch die geringere Vorspannung der Gewindestangen schneller ins Gleiten gekommen sind. Um abschätzen zu können welche Zähne getragen haben, werden die Schadensbilder untersucht und die einzelnen Zahngruppen mit dem Meßschieber aufgemessen (Abb. VB3.2). Die Konsole wird auf die Stütze geklappt, so dass jeweils die Zahnleisten A-A bzw. B-B aufeinanderliegen. Zu den einzelnen Zahnreihen ist jeweils die aktivierte Länge, die nach dem Versuch Abnutzungsspuren aufweist angegeben. Weiterhin ist relativ die aktivierte Zahnhöhe sowie die Flächenverteilung (1,0 für rechteckig; 0,5 für dreieckig) angegeben. Daraus ergibt sich die prozentual aktivierte Fläche je Zahnreihe. Am Ende der Tabelle wird die prozentual über die gesamte Zahnleiste mit 6 Zahngruppen mit jeweils 3 Zahnreihen (maximal 1800%) aktivierte Fläche angegeben.

Abb.VB3.2: Bezeichnung der einzelnen Zahngruppen

Belastungsprotokolle

Abb.VB3.3: Belastungsprotokoll Konsolversuche

Bezeichnung	Konsolenversuch 1								
Beschreibung	Konsole mit	2 Zahnleisten mit je	eweils 6 x 3 Stahlz	zähnen					
	Alle Gewind	lestangen handfest a	ngezogen						
Herstelldatum	19.+20.10.20	016	Betonalter	38d					
Prüfdatum	28.11.2016	5	Lagerung	an der Luft					
Zylinderfestigkeit	121,35	[N/mm ²]							
Prüfmaschine	Prüfportal (Z	rüfportal (Zwick/Roell) 2,5 MN							
Wegaufnehmer Versuchs- beobachtungen	2x horizonta 2x horizonta 2x vertikal u 1x vertikal ir Starke Setzu der Konsole verlieren Ko erreicht.	l an der Stütze l an der Konsole nter der Konsole m Zylinder ngen in der Lasteinl in horizontaler Rich ntakt. Versuchslast	eitungskonstruktio tung. Die Fuge öf wird noch vor der	on. Starke Verformung fnet sich und die Zähne Laststufe 300 kN					
Bruchlast	[kN]	260,4							
Reibungsanteil	[kN]	~0,0							
Belastungsgeschwind	igkeit	0,6 mm/min = 0,01	mm/sek						
Belastungsprotokoll	ngsprotokoll siehe Weg-Zeit-Diagramm Zylinder								

	Zahnreihe	aktivierte Breite	aktivierte Zahnhöhe	Flächenverteilung	aktivierte Fläche			Zahnreihe	aktivierte Breite	aktivierte Zahnhöhe	Flächenverteilung	aktivierte Fläche	
		[cm]	[-]	[-]	[%]				[cm]	[-]	[-]	[%]	
S-A1	1	1,25	1	0,5	17,9		K-A1	1	1,52	0,2	1	8,7	
	2	1,28	1	0,5	18,3			2	1,74	0,2	1	9,9	
	3	1,33	1	0,5	19			3	0	0,2	1	0	
S-A2	1	1,33	1	0,5	19		K-A2	1	1,77	0,2	1	10,1	
	2	1,75	1	0,5	25			2	1,25	0,2	1	7,1	
	3	1,58	1	0,5	22,6			3	1,61	0,2	1	9,2	
S-A3	1	1,30	1	0,5	18,6		K-A3	1	2,23	1	0,5	31,9	
	2	1,74	1	0,5	24,9			2	2,07	1	0,5	29,6	
	3	1,92	1	0,5	27,4			3	2,15	1	0,5	30,7	
S-A4	1	1,66	1	0,5	23,7		K-A4	1	2,68	1	0,5	38,3	
	2	1,72	1	0,5	24,6			2	2,62	1	0,5	37,4	
	3	1,33	1	0,5	19			3	2,65	1	0,5	37,9	
S-A5	1	1,95	1	0,5	27,9		K-A5	1	3,1	1	0,5	44,3	
	2	1,90	1	0,5	27,1			2	2,96	1	0,5	42,3	
	3	1,96	1	0,5	28			3	2,9	1	0,5	41,4	
S-A6	1	2,07	1	0,5	29,6		K-A6	1	3,16	1	0,5	45,1	
	2	2,28	1	0,5	32,6			2	3,07	1	0,5	43,9	
	3	2,18	1	0,5	31,1			3	3,09	1	0,5	44,1	
			-	Σ	436,3	%	-		-		Σ	511,9	%

von maximal 1800%

28,4 %

von maximal 1800%

24,2 %

Anhang V Seite 64

	Zahnreihe	aktivierte Breite	aktivierte Zahnhöhe	Flächenverteilung	aktivierte Fläche			Zahnreihe	aktivierte Breite	aktivierte Zahnhöhe	Flächenverteilung	aktivierte Fläche	
		[cm]	[-]	[-]	[%]				[cm]	[-]	[-]	[%]	-
S-B1	1	1,33	1	0,5	19		K-B1	1	2,58	0,3	0,5	11,1	
	2	1,51	1	0,5	21,6			2	2,15	0,3	0,5	9,2	
	3	1,44	1	0,5	20,6			3	1,28	0,3	0,5	5,5	
S-B2	1	0,92	1	0,5	13,1		K-B2	1	1,95	0,3	0,5	8,4	
	2	1,18	1	0,5	16,9			2	2,1	0,3	0,5	9	
	3	1,73	1	0,5	24,7			3	1,25	0,3	0,5	5,4	
S-B3	1	1,48	1	0,5	21,1		K-B3	1	1,45	0,5	0,5	10,4	
	2	1,60	1	0,5	22,9			2	1,08	0,5	0,5	7,7	
	3	1,73	1	0,5	24,7			3	1,45	0,5	0,5	10,4	
S-B4	1	2,08	1	0,5	29,7		K-B4	1	1,4	0,5	0,5	10	
	2	2,42	1	0,5	34,6			2	1,4	0,5	0,5	10	
	3	2,59	1	0,5	37			3	1,4	0,5	0,5	10	
S-B5	1	0,69	1	0,5	9,9		K-B5	1	1,2	0,5	0,5	8,6	
	2	0,63	1	0,5	9			2	1,33	0,5	0,5	9,5	
	3	0,80	1	0,5	11,4			3	1,18	0,5	0,5	8,4	
S-B6	1	0,50	1	0,5	7,1		K-B6	1	1,96	0,5	0,5	14	
	2	0,73	1	0,5	10,4			2	1,68	0,5	0,5	12	
	3	1,56	1	0,5	22,3			3	2,35	0,5	0,5	16,8	
				Σ	356	%					Σ	176,4	%

von maximal 1800%

19,8 %

von maximal 1800% 9,8 %

Bezeichnung		Konsolenversuch	n 2					
Beschreibung	Konsole mit	2 Zahnleisten mit je	eweils 6 x 3 Stahlz	zähnen				
	Alle Gewind	lestangen mit 300 N	m vorgespannt					
Herstelldatum	19.+20.10.20	016	Betonalter	39d				
Prüfdatum	29.11.2016	5	Lagerung	an der Luft				
Zylinderfestigkeit	121,35	[N/mm ²]						
Prüfmaschine	Prüfportal (Zwick/Roell) 2,5 MN							
Wegaufnehmer Versuchs-	2x vertikal u 1x vertikal in Konsole leic	nter der Konsole n Zylinder ht schief eingebaut.	Horizontale Wega	aufnehmer liefern keine				
beobachtungen	brauchbaren als Starrkörp	Ergebnisse. Stütze v eer.	und Konsole versc	hieben sich zusammen				
Bruchlast	[kN]	375,4						
Reibungsanteil	[kN] ~ 0,0							
Belastungsgeschwind Belastungsprotokoll	Belastungsgeschwindigkeit0,6 mm/min = 0,01 mm/sekBelastungsprotokollsiehe Weg-Zeit-Diagramm Zylinder							
Belastungsprotokoll siehe Weg-Zeit-Diagramm Zylinder								

	Zahnreihe	aktivierte Breite	aktivierte Zahnhöhe	Flächenverteilung	aktivierte Fläche			Zahnreihe	aktivierte Breite	aktivierte Zahnhöhe	Flächenverteilung	aktivierte Fläche	
		[cm]	[-]	[-]	[%]				[cm]	[-]	[-]	[%]	_
S-A1	1	3,13	1	1	89 <i>,</i> 4		K-A1	1	2,85	1	0,5	40,7	
	2	3,05	1	1	87,1			2	2,85	1	0,5	40,7	
	3	3,05	1	1	87,1			3	3,08	1	0,5	44	
S-A2	1	2,97	1	1	84,9		K-A2	1	2,96	1	0,5	42,3	
	2	2,93	1	1	83,7			2	2,96	1	0,5	42,3	
	3	2,90	1	1	82,9			3	2,96	1	0,5	42,3	
S-A3	1	2,84	1	1	81,1		K-A3	1	2,88	1	0,5	41,1	
	2	2,84	1	1	81,1			2	2,88	1	0,5	41,1	
	3	2,78	1	1	79,4			3	2,88	1	0,5	41,1	
S-A4	1	2,70	1	1	77,1		K-A4	1	2,77	1	0,5	39,6	
	2	2,70	1	1	77,1			2	2,77	1	0,5	39,6	
	3	2,65	1	1	75,7			3	2,77	1	0,5	39,6	
S-A5	1	2,60	1	1	74,3		K-A5	1	2,66	1	1	76	
	2	2,64	1	1	75,4			2	2,66	1	1	76	
	3	2,60	1	1	74,3			3	2,65	1	1	75,7	
S-A6	1	2,50	1	1	71,4		K-A6	1	2,46	1	1	70,3	
	2	2,52	1	1	72			2	2,46	1	1	70,3	
	3	2,54	1	1	72,6			3	2,46	1	1	70,3	
			-	Σ	1426,6	%				- '	Σ	933	%

von maximal 1800%

79,3 % vor

von maximal 1800% 51,8 %

	Zahnreihe	aktivierte Breite	aktivierte Zahnhöhe	Flächenverteilung	aktivierte Fläche			Zahnreihe	aktivierte Breite	aktivierte Zahnhöhe	Flächenverteilung	aktivierte Fläche
		[cm]	[-]	[-]	[%]				[cm]	[-]	[-]	[%]
S-B1	1	2,82	1	1	80,6		K-B1	1	2,85	1	0,5	40,7
	2	2,90	1	1	82,9			2	2,85	1	0,5	40,7
	3	2,83	1	1	80,9			3	2,88	1	0,5	41,1
S-B2	1	2,85	1	1	81,4		K-B2	1	2,93	1	1	83,7
	2	2,85	1	1	81,4			2	2,93	1	1	83,7
	3	2,93	1	1	83,7			3	2,94	1	1	84
S-B3	1	2,99	1	1	85,4		K-B3	1	3,01	1	1	86
	2	2,98	1	1	85,1			2	3,01	1	1	86
	3	2,99	1	1	85,4			3	3,01	1	1	86
S-B4	1	2,99	1	1	85,4		K-B4	1	3,05	1	1	87,1
	2	2,99	1	1	85,4			2	3,05	1	1	87,1
	3	2,98	1	1	85,1			3	3,05	1	1	87,1
S-B5	1	3,15	1	1	90		K-B5	1	3,07	1	1	87,7
	2	3,15	1	1	90			2	3,07	1	1	87,7
	3	3,16	1	1	90,3			3	3,07	1	1	87,7
S-B6	1	3,00	1	1	85,7		K-B6	1	3,17	1	1	90,6
	2	3,10	1	1	88,6			2	3,17	1	1	90,6
	3	3,10	1	1	88,6			3	3,17	1	1	90,6
				Σ	1535,9	%				-	Σ	1428,1 %

von maximal 1800% 79,3 %

von maximal 1800% 85,3 %

Bezeichnung		Konsolenversuc	h 3				
Beschreibung	Konsole mit	2 Zahnleisten mit je	eweils 6 x 3 Stahlz	zähnen			
	Alle Gewind	lestangen mit 1200	Nm angezogen				
Herstelldatum	19.+20.10.20	016	Betonalter	39d			
Prüfdatum	29.11.2016	5	Lagerung	an der Luft			
Zylinderfestigkeit	121,35	[N/mm ²]					
Prüfmaschine	Prüfportal (Z	Zwick/Roell) 2,5 Mi	N				
Wegaufnehmer Versuchs- beobachtungen	2x horizonta 2x horizonta 2x vertikal u 1x vertikal in Stütze steht s Schiefstellur Nach dem V Starke Rissb Die aufgebra	l an der Stütze l an der Konsole nter der Konsole m Zylinder schief auf Widerlag ng ausgeglichen. ersuch: ildung an der Konso achten Vorspannung	ger. Durch Stahlpla ble im Bereich der gen sind noch vorh	atten wird die eingelegten Stahlplatte. anden.			
Bruchlast	[kN]	493,5					
Reibungsanteil	[kN]	~ 18,9 (aus Versuc	h)				
Belastungsgeschwind	igkeit	0,6 mm/min = 0,01	l mm/sek				
Belastungsprotokoll	elastungsprotokoll siehe Weg-Zeit-Diagramm Zylinder						

	Zahnreihe	aktivierte Breite	aktivierte Zahnhöhe	Flächenverteilung	aktivierte Fläche			Zahnreihe	aktivierte Breite	aktivierte Zahnhöhe	Flächenverteilung	aktivierte Fläche	
		[cm]	[-]	[-]	[%]				[cm]	[-]	[-]	[%]	_
S-A1	1	3,10	1	1	88,6		K-A1	1	3,1	1	1	88,6	
	2	3,08	1	1	88			2	3,1	1	1	88,6	
	3	3,05	1	1	87,1			3	3,1	1	1	88,6	_
S-A2	1	3,00	1	1	85,7		K-A2	1	3,1	1	1	88,6	
	2	2,98	1	1	85,1			2	3,1	1	1	88,6	
	3	2,98	1	1	85,1			3	3,1	1	1	88,6	_
S-A3	1	3,04	1	1	86,9		K-A3	1	3,1	1	1	88,6	
	2	3,04	1	1	86,9			2	3,1	1	1	88,6	
	3	3,00	1	1	85,7			3	3,1	1	1	88,6	
S-A4	1	3,03	1	1	86,6		K-A4	1	3,06	1	1	87,4	_
	2	3,05	1	1	87,1			2	3,06	1	1	87,4	
	3	3,05	1	1	87,1			3	3,06	1	1	87,4	
S-A5	1	3,03	1	1	86,6		K-A5	1	3,06	1	1	87,4	-
	2	3,01	1	1	86			2	3,06	1	1	87,4	
	3	3,08	1	1	88			3	3,06	1	1	87,4	
S-A6	1	3,03	1	1	86,6		K-A6	1	3,06	1	1	87,4	-
	2	3,00	1	1	85,7			2	3,06	1	1	87,4	
	3	3,00	1	1	85,7			3	3,06	1	1	87,4	_
				Σ	1558,5	%					Σ	1584	%

von maximal 1800% 88 %

von maximal 1800% 86,6 %

	Zahnreihe	aktivierte Breite	aktivierte Zahnhöhe	Flächenverteilung	aktivierte Fläche			Zahnreihe	aktivierte Breite	aktivierte Zahnhöhe	Flächenverteilung	aktivierte Fläche	
		[cm]	[-]	[-]	[%]				[cm]	[-]	[-]	[%]	_
S-B1	1	3,01	1	1	86		K-B1	1	3,05	1	1	87,1	
	2	3,00	1	1	85,7			2	2,97	1	1	84,9	
	3	3,00	1	1	85,7			3	2,97	1	1	84,9	_
S-B2	1	2,95	1	1	84,3		K-B2	1	2,97	1	1	84,9	
	2	2,95	1	1	84,3			2	2,97	1	1	84,9	
	3	2,95	1	1	84,3			3	2,97	1	1	84,9	_
S-B3	1	2,90	1	1	82,9		К-ВЗ	1	2,9	1	1	82,9	
	2	2,90	1	1	82,9			2	2,9	1	1	82,9	
	3	2,97	1	1	84,9			3	2,9	1	1	82,9	_
S-B4	1	2,96	1	1	84,6		K-B4	1	2,84	1	1	81,1	
	2	2,96	1	1	84,6			2	2,84	1	1	81,1	
	3	2,96	1	1	84,6			3	2,84	1	1	81,1	_
S-B5	1	2,83	1	1	80,9		K-B5	1	2,84	1	1	81,1	
	2	2,83	1	1	80,9			2	2,84	1	1	81,1	
	3	2,83	1	1	80,9			3	2,84	1	1	81,1	_
S-B6	1	2,64	1	1	75,4		K-B6	1	2,8	1	1	80	
	2	2,64	1	1	75,4			2	2,8	1	1	80	
	3	2,73	1	1	78			3	2,8	1	1	80	_
				Σ	1486,3	%					Σ	1486,9	%

von maximal 1800% 82,6 %

von maximal 1800% 82,6 %

Anhang VB4: Dokumentation Versuche Phase IV

Abb.VB4.1: Versuchsaufbau Knotenpunkt

Phase V	'I: Versuche am Kn	otenpunkt				
Versuchsnr.	Bezeichnung	Art der Verzahnung	Art der Lastaufbringun g	Prüfge- schwindigkeit [mm/sec]	Stahl Einbauteil	Beton
III/V4	Knotenpunkt	S/B_S/S	Monoton/Druck	0,01	S235	Ultralith
III/V5	Knotenpunkt	S/B_S/S	Monoton/Druck	0,01	S235	Ultralith
III/V6	Knotenpunkt	S/B_S/S	Monoton/Druck	0,01	S235	Ultralith

Tab.VB.1: Versuchsprogramm Phase IV – Stahl/Stahl

Abb.VB4.2: Verwendete Zahnleisten

Es werden die Versagensbilder der Stahlzähne dokumentiert indem die einzelnen Zahnreihen fotografiert und mit einem Messschieber vermessen werden (Abb. VB4.2). Der Knoten wird auf den Gurt geklappt, so dass jeweils die Zahnleisten A-A bzw. B-B aufeinanderliegen.

Abb.VB4.3: Bezeichnung der Zahnreihen der Knotenpunkte

Abb.VB4.4: Laststufen-Diagramm Knotenpunkte

Bezeichnung		Knotenversuch	1	
Beschreibung	Knoten mit 2	2 Zahnleisten mit jev	weils 2x5 und 2x6	5 Stahlzähnen
	Gewindestan	nge mit 125 kN vorg	espannt	
Herstelldatum	19.+20.10.20	016	Betonalter	53d
Prüfdatum	13.12.2016	5	Lagerung	an der Luft
Zylinderfestigkeit	121,35	[N/mm ²]		
Prüfmaschine	Prüfportal (Z	Zwick/Roell) 2,5 MN	1	
Wegaufnehmer	2x vertikal u 2x senkrecht 2x axial zur 1x vertikal ir	nter der Lasteinleitu zur Fuge Fuge m Zylinder	ng	
Versuchs- beobachtungen	Leichte Schi Betonquader	efstellung des Probe der Lasteinleitung l	körpers. Leichte bei 1,0 MN aus S	Abplatzungen am chiefstellung.
Bruchlast	[kN]	1401,8		
Belastungsgeschwind Belastungsprotokoll	igkeit	0,6 mm/min = 0,01 siehe Weg-Zeit-Dia	mm/sek agramm Zylinder	

Kraft-Verformung senkrecht

Bezeichnung	Knotenversuch 2					
Beschreibung	Knoten mit 2 Zahnleisten mit jeweils 2x5 und 2x6 Stahlzähnen					
	Gewindestange mit 125 kN vorgespannt					
Herstelldatum	19.+20.10.20)16	Betonalter	54d		
Prüfdatum	14.12.2016		Lagerung	an der Luft		
Zylinderfestigkeit	121,35 [N/mm ²]					
Prüfmaschine	Prüfportal (Zwick/Roell) 2,5 MN					
Wegaufnehmer Versuchs- beobachtungen	 2x vertikal unter der Lasteinleitung 2x senkrecht zur Fuge 2x axial zur Fuge 1x vertikal im Zylinder Gute Lage des Probekörpers im Widerlager. Versuch wird unmittelbar vor Erreichen der Bruchlast beendet um das Versagensbild der Zähne besser erkennen zu können. 					
Bruchlast	[kN]	1414,1				
Belastungsgeschwindigkeit		0,6 mm/min = 0,01 mm/sek				
Belastungsprotokoll		siehe Weg-Zeit-Diagramm Zylinder				

Kraft-Verformung senkrecht

Bezeichnung	Knotenversuch 3						
Beschreibung	Knoten mit 2 Zahnleisten mit jeweils 2x5 und 2x6 Stahlzähnen						
	Gewindestan	vindestange mit 125 kN vorgespannt					
Herstelldatum	19.+20.10.20)16	Betonalter	54d			
Prüfdatum	14.12.2016)	Lagerung	an der Luft			
Zylinderfestigkeit	121,35 [N/mm ²]						
Prüfmaschine	Prüfportal (Zwick/Roell) 2,5 MN						
Wegaufnehmer Versuchs- beobachtungen	 2x vertikal unter der Lasteinleitung 2x senkrecht zur Fuge 2x axial zur Fuge 1x vertikal im Zylinder Versuch kurz vor Erreichen der Bruchlast beendet. Durch die Reaktionszeit des Systems ist der Probekörper dennoch versagt. Nach dem Versuch: Starke Rissbildung im Knotenelement durch Biegung des Bauteils. 						
Bruchlast	[kN]	1448,3					
Belastungsgeschwindigkeit Belastungsprotokoll		0,6 mm/min = 0,01 mm/sek siehe Weg-Zeit-Diagramm Zylinder					

Kraft-Verformung senkrecht

Knoten Gurt G-A1 K-A1 G-A2 K-A2 G-A3 K-A3 G-A4 K-A4 8

Anhang VD: Pläne

Anhang VD1: Pläne Prüfkörper Phase I

Kraftneigung 20° - Zähne hz=2,8mm

Kraftneigung 25° - Zähne hz=2,8mm

Kraftneigung 30° - Zähne hz=2,8mm

Kraftneigung 45° - Zähne hz=2,8mm

Kraftneigung 50° - Zähne hz=2,8mm

Kraftneigung 70° - Zähne hz=2,8mm

Kraftneigung 90° - Zähne hz=2,8mm Anhang V Seite 112

Referenzprüfkörper

Anhang VD2: Pläne Prüfkörper Phase II

II/P1

Seitenansicht von links

Draufsicht

8

Draufsicht

260

410,25

75,46

74,8

Seitenansicht von links

Seitenansicht von links

Seitenansicht von links

Anhang VD3: Pläne Prüfkörper Phase III

Übersicht Versuchsaufbau für Konsolenelement, o. M.

Schal- und Bewehrungsplan Konsolenelement, o. M.

Schal- und Bewehrungsplan Stütze für Konsolenelement, o. M.

Anhang VD4: Pläne Prüfkörper Phase IV

Übersicht Versuchsaufbau für Fachwerkträger-Knotenelement, o. M.

Ausschnitt Gurt und Knotenelement

Schal- und Bewehrungsplan Fachwerkträger-Knotenelement, o. M.

Schal- und Bewehrungsplan Gurt für Fachwerkträger-Knotenelement, o. M.

Schal- und Bewehrungsplan Pfosten/Diagonale für FWT-Knotenelement, o. M.

Anhang VD5: Pläne Widerlager für Phase III

Schal- und Bewehrungsplan Widerlager für Konsolenelement, o. M.

Anhang VD6: Pläne Widerlager Phase IV

Schal- und Bewehrungsplan Widerlager für FWT-Knotenelement, o. M.

Anhang VD7: Zahngeometrie

Phase I (Stahl/Stahl-Verzahnung) (Schmidt 2018)

Be- zeich- nung	Zahngeometrie I	Zahngeometrie II	Zahngeometrie III
Probe- körper	Prototyp	Stahlprisma P3 und P4	Stahlprisma P1 und P2
Darstellung der Geometrie	Zahnhöhe 5,0mm Zahnabstand 7,3mm	Zahnhöhe 3,02mm Zahnabstand 5,0mm	Zahnhöhe 2,83mm Zahnabstand 3,46mm
Bild der Verzahnungen			innun
Bild Genauigkeit 500µm	28		

Phase III

Anhang VE: Prüfkörperherstellung

Phase II

Herstellung der Prüfkörper für Phase II: Oben: Schalungen vor der Betonage; Unten: Betonierte Prüfkörper

Phase III und IV

Gurte und Knotenelemente der Phase IV

Bewehrung der Konsole in Phase III

Gurt für Phase IV vor und nach der Betonage

Schalung und Bewehrung des Knotenelement

Stütze für Phase IV

Stütze der Phase III

Betonierte Bauteile für Versuchsphase III und IV bei der Fa. Benno Drössler, Siegen

Ausgeschalte Stütze für Versuchsphase III

Widerlager für Versuchsphase III und IV

Widerlager im Fertigteilwerk der Fa. Angermüller in Untersiemau

Widerlager platziert im Aufspannfeld in der Peter Behrens Halle der TU Berlin