BAUFORSCHUNG FÜR DIE PRAXIS, BAND 104

Ursula Eicker, Andreas Löffler, Antoine Dalibard, Felix Thumm, Michael Bossert, Davor Kristic

Stegplatten aus Polycarbonat Potenziale und neue Anwendungen

Die vorliegende Arbeit wurde unter dem Förderkennzeichen SF-10.08.18.7-09.40; II2-F20-09-1-024 – F 2819 vom Bundesinstitut für Bau,- Stadt- und Raumforschung, Bonn, mit Mitteln der Forschungsinitiative Zukunft Bau gefördert. Für den Inhalt sind allein die Verfasser verantwortlich.

Druck und Weiterverarbeitung:

IRB Mediendienstleistungen des Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart

Für den Druck des Buches wurde chlor- und säurefreies Papier verwendet.

© by Fraunhofer IRB Verlag, 2012 ISBN 978-3-8167-8828-7 Fraunhofer-Informationszentrum Raum und Bau IRB Postfach 80 04 69, 70504 Stuttgart Telefon 0711 970-2500, Telefax 0711 970-2508 E-Mail info@irb.fraunhofer.de URL www.baufachinformation.de

Alle Rechte vorbehalten

Dieses Werk ist einschließlich seiner Teile urheberrechtlich geschützt. Jede Verwertung, die über die engen Grenzen des Urheberrechtsgesetzes hinausgeht, ist ohne schriftliche Zustimmung des Fraunhofer IRB Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen sowie die Speicherung in elektronischen Systemen.

Die Wiedergabe von Warennamen und Handelsnamen in diesem Buch berechtigt nicht zu der Annahme, dass solche Bezeichnungen im Sinne der Warenzeichen und Markenschutz-Gesetzgebung als frei zu betrachten wären und deshalb von iedermann benutzt werden dürften.

Sollte in diesem Werk direkt oder indirekt auf Gesetze, Vorschriften oder Richtlinien (z.B. DIN, VDI, VDE) Bezug genommen werden oder aus ihnen zitiert werden, so kann der Verlag keine Gewähr für Richtigkeit, Vollständigkeit oder Aktualität übernehmen. Es empfiehlt sich, gegebenenfalls für die eigenen Arbeiten die vollständigen Vorschriften oder Richtlinien in der jeweils gültigen Fassung hinzuzuziehen.

HFT Stuttgart zafh.net

Stegplatten aus Polycarbonat

Potenziale und neue Anwendungen

Abschlussbericht

Forschungsprojekt an der Fakultät für Architektur und Gestaltung in Zusammenarbeit mit dem Zentrum für angewandte Forschung an Fachhochschulen Nachhaltige Energietechnik (zafh.net) Stuttgart

Projektleiter:

Prof. Dr. habil. Ursula Eicker Prof. Andreas Löffler

Bearbeiter:

Dipl.-Ing. Antoine Dalibard Felix Thumm, M.Eng. Dipl.-Ing.(FH) Michael Bossert, M.A. Dipl.-Ing.(FH) Davor Kristic, M.Eng.

Projektlaufzeit 01.12.2009-31.10.2011

Der Forschungsbericht wurde mit Mitteln der Forschungsinitiative Zukunft Bau des Bundesinstitutes für Bau-, Stadt- und Raumforschung gefördert.

Projektpartner: RODECA GmbH, Menerga GmbH (Aktenzeichen: SF – 10.08.18.7 – 09.40 / II2 – F20-09-1-024) Die Verantwortung für den Inhalt des Berichtes liegt beim Autor.

Inhaltsverzeichnis

Kur	zfass	ung	I
Abs	tract		II
Inha	altsv	erzeichnis	III
Nor	nenk	latur	VI
1	Einf	ührung und Relevanz der Forschungsarbeit	1
1.	1	Aufgabenstellung	2
	1.1.1	Arbeitspaket 1: Einfache Simulationsanwendung zur Abschätzung der Potenziale von ein-	
	meh	schaligen Wandaufbauten mit PC Stegplatten	
	1.1.2	Arbeitspaket 2: Kombination von Polycarbonat-Stegplatten mit anderen Materialien	3
	1.1.3	Arbeitspaket 3: Aktivierung der Stegplatten als Kollektor	3
1.	2	Methodik	4
2	Mat	erialcharakterisierung und Stand der Technik	5
2.	1	Recherche nach vorhandenen Anwendungen von Polycarbonat Stegplatten	5
	2.1.1	Ausgeführte Objekte mit PC-Stegplatten	
	2.1.2	0	
	2.1.3	,	
2.	.2	Aufbau eines Prüfstandes für PC-Stegplatten	
	2.2.1	Umbau und Erweiterung des Sonnensimulators der HFT Stuttgart	
	2.2.2		
2	2.2.3		
2.		Systematik der zu untersuchenden Wandaufbauten	
2.	4	Experimentelle Bestimmung der g-Werte	
2.	.5	Experimentelle Bestimmung der Leistung von Stegplatten als Kollektor	26
2.	6	Experimentelle Bestimmung des Emissionsgrads von Stegplatten	29
2.	.7	Bestimmung der relevanten Eigenschaften von PC-Stegplatten	30
	2.7.1	Bestimmung der optischen Eigenschaften von PC-Stegplatten	
	2.7.2	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	2.7.3	Bestimmung des U-Werts von PC-Stegplatten	34
3	Bere	echnungsalgorithmen für Simulationsmodelle mit Stegplatten	37
3.	1	Transparente Wärmedämmung	37
3.	2	Hinterlüftete Fassade	40
	3.2.1	Mechanische Belüftung des Luftspaltes	41
	3.2.2	Spezieller Fall: reine Freikonvektion im Luftspalt	43
3.	.3	Durchströmte Fassade	45
3.	4	Validierung des Modells anhand der Prüfstandsmessungen	47

4	Unt	ersuchung der Potenziale von Kombinationen zwischen Polycarbonat Stegpla	tten	
un	d inno	vativen Materialien	50	
	4.1	Verbesserung der Wärmedämmung	50	
	4.2	Erhöhung der Speichermasse	51	
	4.3	Verbesserung der Absorption		
		versesserung der Absorption	55	
5	Pote	enziale der Stegplatten zur Einbindung in die Systemtechnik	56	
!	5.1	Wohngebäude aus den 70er Jahren	57	
	5.1.1	Simulationsergebnisse des Wohngebäudes	59	
	5.1.2	Interpretation und Analyse der Ergebnisse	69	
!	5.2	Produktionsgebäude mit Büroanbau	73	
	5.2.1	Simulation des Industriegebäudes	75	
	5.2.2	Interpretation und Analyse der Ergebnisse	83	
ļ	5.3	Systemtechnischen Anbindung der Stegplattenfassade an ein solares Kühlsystem	87	
	5.3.1	Prinzip der Thermisch angetriebene Klimatisierung	87	
	5.3.2	Beispielsanwendung mit TOOL Stegplatte 1.1: Parameterstudie Kühlung	89	
6	Sim	ulationstool	92	
	6.1	Methodik		
		Dynamisches Wandmodell (Type 851)		
(6.2 6.2.1			
	6.2.2	5		
	_	_		
(6.3 6.3.1	Vorstellung des Tools		
	6.3.2			
	6.3.3			
	6.3.4			
	6.3.5	·		
	6.3.6	Excel-Files zur Datenanalyse	101	
_	_			
7	Zusa	ammenfassung und Ausblick	104	
8	Lite	raturverzeichnis	108	
9	Abb	ildungsverzeichnis	111	
10	Ta	abellenverzeichnis	114	
11	۸	nhang	115	
		_		
		g A: Katalog		
Anhang B.1				
4	Anhan	g B.2	124	
	Anhan	g B.3	125	
	Anhan	g C	126	
	Anhan	g D	127	

Anhang E	128
Anhang F	143
Anhang G	144
Anhang H	148
Anhang I	163
Anhang J	164
Anhang K	170
Anhang L	173
Anhang M	174
Anhang N	175