

F 2924

Clemens Freitag, Walter Haase, Werner Sobek

Analysetool für Gitterschalen nach der Dynamic-Relaxation-Methode

F 2924

Bei dieser Veröffentlichung handelt es sich um die Kopie des Abschlussberichtes einer vom Bundesministerium für Verkehr, Bau und Stadtentwicklung -BMVBS- im Rahmen der Forschungsinitiative »Zukunft Bau« geförderten Forschungsarbeit. Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

2014

ISBN 978-3-8167-9354-0

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon 07 11 9 70 - 25 00 Telefax 07 11 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

www.irb.fraunhofer.de/bauforschung

Analysetool für Gitterschalen nach der Dynamic-Relaxation-Methode

Dipl.-Ing. Clemens Freitag

Dr.-Ing. Walter Haase

Prof. Dr.-Ing. Dr.-Ing. E.h. Dr. h.c. Werner Sobek

März 2014

Universität Stuttgart

Institut für Leichtbau Entwerfen und Konstruieren Prof. Dr.-Ing. Dr.-Ing. E.h. Dr. h.c. Werner Sobek

Prof. Dr.-Ing. Balthasar Novák

Jun.-Prof. Dipl.-Ing. Dirk A. Schwede, PhD

Institut für Leichtbau Entwerfen und Konstruieren Prof. Dr.-Ing. Dr.-Ing. E.h. Dr. h.c. Werner Sobek Prof. Dr.-Ing. Balthasar Novák Jun.-Prof. Dipl.-Ing. Dirk A. Schwede, PhD

Forschungsprojekt: Analysetool für Gitterschalen nach der

Dynamic-Relaxation-Methode

Förderstelle: Forschungsinitiative Zukunft Bau

Bundesinstitut für Bau-, Stadt- und

Raumforschung (BBSR)

im Bundesamt für Bauwesen und

Raumordnung (BBR)

Deichmanns Aue 31-37

53179 Bonn (Germany)

Förderkennzeichen: AZ SF 10.08.18.7-09.39

Mitarbeit: Dipl.-Ing. Clemens Freitag

Dr.-Ing. Walter Haase

Bearbeitungsbeginn: März 2010

Bearbeitungsstelle: Institut für Leichtbau Entwerfen und Konstruieren

Direktor:

Prof. Dr.-Ing. Dr.-Ing. E. h. Dr. h.c. Werner Sobek

Pfaffenwaldring 7 + 14

70569 Stuttgart

Telefon +49 711 / 685 63599

Telefax +49 711 / 685 66968

Der Forschungsbericht wurde mit Mitteln der Forschungsinitiative Zukunft Bau des Bundesamtes für Bauwesen und Raumordnung gefördert (Aktenzeichen: SF 10.08.18.7-09.39).

Die Verantwortung für den Inhalt des Berichtes liegt bei den Autoren.

Dieser Bericht umfasst 104 Seiten.

Stuttgart, den 20.03.2014

Dipl.-Ing. Clemens Freitag

Inhaltsverzeichnis

1	Motivation			
	1.1 Zio		el des Forschungsvorhabens	8
	1.2 Fc		orschungsansatz	8
2	Gitterschalen			
	2.1 De		efinition	9
	2.2 St		abelemente	9
	2.3	Ka	ategorisierung der Verbindungstechnologien	10
	2.4	Ve	erbindungsarten für Biegestäbe	11
	2.4.		Bolzenverbindungen	11
	2.4.		Klemmplattenverbindungen	12
	2.4.		Schellenartige Verbindungen	13
	2.5	Ka	ategorisierung der Aussteifungsprinzipien	13
	2.5.		Aussteifung durch auf Zug beanspruchte Konstruktionen	13
	2.5.2		Aussteifung und Ausbildung eines Raumabschlusses durch auf Zug beanspruchte Konstruktionen	13
	2.5.	3	Aussteifung durch auf Druck und auf Zug beanspruchte Konstruktionen	14
	2.5.4		Aussteifung und Ausbildung eines Raumabschlusses durch auf Druck und auf Zug beanspruchte Konstruktionen	14
	2.6 Kategorisierung der Errichtungsprinzipien			
	2.6.	1	Errichten durch Emporheben	14
	2.6.2		Errichten durch Absenken	15
	2.6.3		Kinematisches Errichten durch Auflagerverschiebung	16
3	Analys	Analysewerkzeug		
	3.1 Recherche nach Formfindungswerkzeugen für Gitterschalen			
	3.1.	1	DOMEdesign	18
	3.1.2		Grid Generator	18
	3.2 Zie		elsetzung	19
	3.3 An		nforderungen	20
	3.4 Herangehensweise		20	
	3.4.	1	Rhinoceros	20
	3.4.	2	RhinoScript	21

4	Die Dynamic-Relaxation-Methode					
	4.1	В	eschreibung des DR-Algorithmus	22		
	4.2	4.2 Schematische Illustration des DR-Algorithmus				
	4.2.	1	Struktureller Aufbau der Illustration des DR-Algorithmus	23		
	4.2.	2	Ablauf des Algorithmus	24		
	4.2.	3	Steuerungsschleifen des DR-Algorithmus	24		
	4.3	В	eschreibung der strukturellen und geometrischen Zusammenhänge	25		
	4.4	Pł	nysikalische Annahmen	25		
	4.5	Ве	erechnung des spannungsfreien Zustands	26		
	4.6	В	erechnung des Spannungszustands	26		
	4.6.	1	Berechnung der Axialkräfte	27		
	4.6.	2	Berechnung der Einzelkräfte aus den Momenten	27		
	4.6.	3	Berechnung der Massenparameter	28		
	4.6.	4	Berechnung der kinetischen Energie	29		
	4.7	KI	E limit als Abbruchkriterium	29		
5	Bedienung des Analysewerkzeugs			31		
	5.1	G	eometrieerstellung auf der Grundlage von "getrimmten" Geometrien	31		
	5.2	Pa	arametereingabe	32		
	5.3	Fr	eigabe der Geometrie / Optionale Modifikationen	33		
	5.4	В	erechnung durch den DR-Algorithmus	33		
	5.5	Po	ostprozess	34		
	5.6	G	eometrieerstellung auf der Grundlage von Freiformen	35		
6	Kategorisierung und Untersuchung von Verbindungsmitteln		sierung und Untersuchung von Verbindungsmitteln	37		
	6.1	G	urtartige Verbindungen: Klettverschlüsse	37		
	6.2	G	urtartige Verbindungen: Kabelbinder	37		
7	Erprob	oun	g der Errichtungsmethode an einem Demonstrator	39		
	7.1	M	aterialien für den Demonstrator	40		
	7.2	M	ontage und Errichtung des Demonstrators	41		
	7.3	Er	kenntnisse aus der Umsetzung des Demonstrators	43		
8	Entwicklung und Planung des 1:1-Prototyps					

	8.1	Pr	ojektbesprechung beim Industriepartner Fiberline Composites A/S	44		
	8.2	Er	ntwicklung der Verbindungstechnologie	44		
	8.3	Ма	aterialversuche	45		
	8.3.	.1	Ermittlung des E-Moduls von GFK-Stäben mit Hilfe von 3-Punkt- Biegeversuchen	46		
	8.3. 8.3. 8.3.		3-Punkt-Biegeversuch an einem GFK-Stab bis zum Bruch	47		
			3-Punkt-Biegeversuche an über Hülsen gefügten GFK-Stäben bis zum Bruck	h 48		
			Analoge Kraftgrößenermittlung an den Endpunkten eines GFK-Biegestabs	51		
	8.3.	.5	Digitale Kraftgrößenermittlung an den Endpunkten eines GFK-Biegestabs	53		
	8.3.	.6	Versuche an den Knotenverbindern	54		
	8.3.	.7	Schlussfolgerungen aus den Materialversuchen	58		
9	Bau d	es '	1:1-Prototyps	59		
	9.1	Pla	anung des 1:1-Prototyps	59		
	9.1.	.1	Anpassen der Stablängen	59		
	9.1.	.2	Ausbildung und Positionierung von unterschiedlichen Knoten	60		
	9.1.	.3	Planung des Ringankers	60		
	9.2	Ei	nrichten der ILEK-Experimentierplattform	62		
	9.3	Vc	orbereitende Arbeiten für den Prototyp	62		
	9.4	М	ontage der Gitterschale	63		
	9.5	Er	richtung der Gitterschale	64		
10) Validi	erui	ng des Analysewerkzeugs	70		
	10.1	Si	mulation und Validierung durch ANSYS	70		
	10.2	La	serscanning	71		
11	1 Durchführung von Belastungsversuchen 76					
	11.1	Νι	umerische Verformungssimulation des Aufbringens zusätzlicher Lasten	76		
	11.2	Dι	urchführung von Belastungsversuchen am Prototyp	76		
12	2 Zusan	nme	enfassung	79		
	12.1	Re	echerche zu Gitterschalen, Softwareprogrammen und Verbindungsmitteln	79		
	12.	1.1	Literatur- und Softwarerecherche zu Gitterschalen	79		
	12.	1.2	Recherche zu Verbindungsmitteln	79		
	12.2	Pr	ogrammierung und Modellversuche	80		
	12.2	2.1	Entwicklung des Programms	80		

12.3 Bau und Test eines 1:1-Prototyps	80			
12.4 Validierung	81			
12.4.1 Validierung durch ANSYS	81			
12.4.2 Validierung durch Laserscanning	81			
13 Leistungsabgleich	82			
Abbildungsverzeichnis	84			
Tabellenverzeichnis	89			
Quellenverzeichnis				
Anhang	92			
Firmenadressen	92			
Übersicht realisierter Gitterschalen und deren Verbindungsmittel	94			
Übersicht potentieller schellenartiger Verbindungsmittel	96			
Übersicht potentieller gurtartiger Verbindungsmittel (Klettverbinder)	100			
Übersicht potentieller gurtartiger Verbindungsmittel (Kabelbinder)	102			
Projektbeteiligte	104			