

F 3129

Oliver Kornadt, Svenja Carrigan, Tim Schöndube Stefan Winter, Klaus Mindrup, Gerhard Knieriemen Franz Loderer, Juliane Nisse, Hans R. Peters, Saif Rashid Christof Richter, Torsten Schoch, André Staniszewski

Dynamisch thermisch-hygrisches Verhalten von Massivbaukonstruktionen: Entwicklung eines Wärmespeicherfähigkeitsindex für Gebäude aus Mauerwerk und thermisch aktivierbare Massivholzelemente

F 3129

Bei dieser Veröffentlichung handelt es sich um die Kopie des Abschlussberichtes einer vom Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR) im Bundesamt für Bauwesen und Raumordnung (BBR) im Rahmen der Forschungsinitiative »Zukunft Bau« geförderten Forschungsarbeit. Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

2019

ISBN 978-3-7388-0311-2

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon 07 11 9 70 - 25 00 Telefax 07 11 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

www.irb.fraunhofer.de/bauforschung

Endbericht

Dynamisch thermisch-hygrisches Verhalten von Massivbaukonstruktionen: Entwicklung eines Wärmespeicherfähigkeitsindex für Gebäude aus Mauerwerk und thermisch aktivierbare Massivholzelemente

Aktenzeichen: SWD-10.08.18.7-15.26

Der Forschungsbericht wurde mit Mitteln der Forschungsinitiative Zukunft Bau des Bundesinstitutes für Bau-, Stadt- und Raumforschung gefördert.

(Aktenzeichen: SWD-10.08.18.7-15.26)

Die Verantwortung für den Inhalt des Berichtes liegt beim Autor.

Projektlaufzeit: 01.08.2015 - 30.04.2018

Zuwendungsempfänger:

Technische Universität Kaiserslautern Fachbereich Bauingenieurwesen Fachgebiet Bauphysik / Energetische Gebäudeoptimierung Paul-Ehrlich-Straße Gebäude 29 D-67663 Kaiserslautern

Projektleitung: Prof. Dr. Oliver Kornadt (TUK)

Jun.-Prof. Dr. Svenja Carrigan (TUK)

Dipl.-Ing. (BA) Tim Schöndube, M.Sc. (TUK)

Weitere Bearbeiter: Univ.-Prof. Dr.-Ing. Stefan Winter (TUM) – Erstellung der Kap. 5.2.4 & 9

Klaus Mindrup, M.Sc. (TUM) - Erstellung der Kap. 5.2.4 & 9

Gerhard Knieriemen (JUWÖ Poroton)

Dipl.-Ing. Franz Loderer (Xella)

Dipl.-Ing. Juliane Nisse (Arge Mauerziegel) Dipl.-Ing. Hans R. Peters (Mein Ziegelhaus)

Saif Rashid, M.Sc. (TUK)

Dipl.-Forstw. Christof Richter (Binderholz)

Dipl.-Ing. Torsten Schoch (Xella)

Dipl.-Ing. (FH) André Staniszewski, M.BP. (Arge Mauerziegel)

Inhaltsverzeichnis

1	Einle	itung	4
2	Met	hodik	5
3	Stan	d der Technik	6
4	Unte	ersuchte Gebäudetypen	9
5	Vers	uchskuben	9
	5.1	Kuben-Konzept	12
	5.1.1	Bauliche Details	12
	5.1.2	Technische Gebäudeausrüstung	14
	5.1.3	Messtechnik	18
	5.2	Auswertung von Messdaten	21
	5.2.1	Ziegel-Kubus	21
	5.2.2	Porenbeton-Kubus	32
	5.2.3	Kalksandstein-Kubus	42
	5.2.4	Brettsperrholz-Kubus	51
	5.3	Kuben-Simulationen + Abgleich Messdaten und Simulationsergebnisse	61
6	Simu	ılation eines Modellgebäudes	66
7	Simu	ılationsergebnisse	78
	7.1	Einfluss der Wärmespeicherfähigkeit auf den Nutzenergiebedarf für Heizen	80
	7.2	Einfluss der Wärmespeicherfähigkeit auf die sommerliche Überhitzung	82
	7.3	Einfluss der Wärmespeicherfähigkeit auf die thermische Behaglichkeit	84
8	Wär	mespeicherfähigkeitsindex	88
	8.1	Wärmespeicherfähigkeitsindex – Nutzenergiebedarf für Heizen	88
	8.2	Wärmespeicherfähigkeitsindex – sommerliche Überhitzung	90
	8.3	Wärmespeicherfähigkeitsindex – thermische Behaglichkeit	91
9	Entv	vicklung thermisch aktivierter Massivholzelemente	94
	9.1	Grundlagen des Brettsperrholzes	94
	9.1.1	Entwicklung	94
	9.1.2	Herstellungsprozess	94
	9.1.3	Eigenschaften des Brettsperrholzes	95
	9.2	Untersuchung zur Machbarkeit von thermisch aktivierten Massivholzelementen	99
	9.2.1	Stand der Technik	99
	9.2.2	Entwicklungsparameter	101
	9.3	Produktion der Versuchskörper	112
	9.3.1	Produktionskonzept	112
	9.3.2	Bemaßung	113
	9.3.3	Produktion	115
	9.3.4	Bewertung des Herstellungsprozesses	119

9	.4	Laborversuche	120
	9.4.1	Zeitplanung	120
	9.4.2	Versuchskonfiguration	120
	9.4.3	Versuchsergebnisse	127
	9.4.4	Visuelle Prüfung und Bewertung der Materialfeuchteentwicklung	128
9	.5	Thermische Simulation	. 134
	9.5.1	Implementierung einer luftgeführten thermischen Aktivierung von Brettsperrholz- elementen in das thermisches Simulationsprogramm TRNSYS	134
	9.5.2	Aufbau des Simulationsmodells mit TYPE 360	135
	9.5.3	Validierung des numerischen Modells	. 140
10	Zusa	mmenfassung und Ausblick	. 144
11	Liter	Literatur	
12	Abbildungsverzeichnis		149
13	Tabellenverzeichnis		
14	Anhänge		