_	•			
Kal	u <u>fo</u>	rsc	hu	ทด
Du	$\alpha_1 \circ$	150	IIG	119

Trapezstegträger, Ausschnitte

T 2643

¹ Fraunhofer IRB Verlag

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstelungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

Technische Universität Berlin

Institut für Baukonstruktionen und Festigkeit

o. Prof. Dr.-Ing. J. Lindner

Schlußbericht zum DFG-Forschungsvorhaben Li-351/8

Trapezstegträger

Ausschnitte

Bericht Nr. VR 2105

01. August 1994

Univ.-Prof. Dr.-Ing. J. Lindner Dr.-Ing. B. Huang

Dieser Bericht besteht aus 135 Seiten und 32 Seiten Anlagen

o. Professor Dr.-Ing. J. Lindner

Blatt I vom 01. 08.1994 zum Bericht VR 2105

INHA	ALTSVERZEICHNIS	Seite
1.	Einführung	1
1.1	Problemstellung	1
1.2	Stand der Forschung	1 2 2 3 3
1.3	Ziele	2
1.4	Beschränkung dieser Arbeit	3
1.5	Lösungswege und Überblick auf den Bericht	3
1.6	Formelzeichen	4
2.	Versuche	6
2.1	Allgemeines	6
2.1.1		6
2.1.2	Einflüsse auf die Versuchsergebnisse	6
2.1.3	Umfang der Versuche	6
2.2	Voruntersuchungen zur Auswahl der Versuchsträger	10
2.3	Kennwerte der Träger	14
2.3.1 2.3.3	Geometrische Abmessungen Metorielkennwerte	14
2.3.4	Materialkennwerte	16
2.4	Vorverformungen Versuchseinrichtung	23 25
2.4.1	Beschreibung der Versuchsanlage	25 25
2.4.2	Konstruktion zum Aufbringen der Einzellast	25 26
2.4.3	Meßwerterfassung	20 27
2.5	Versuchsdurchführung	29
2.6	Zusammenstellung der Versuchsergebnisse	30
2.6.1	Verformungen	30
2.6.2	Grenzlasten	32
2.6.3	Anmerkungen zum Ablauf der Versuche	35
3.	Auswertung der Versuche	40
3.1	Ermittlung von Schubspannungen mit DMS	40
3.1.1		40
3.1.2	Versuch 001	41
3.1.3	Versuch 403	44
3.1.4	Versuch 108	47
3.1.5	Versuch 1101	51
3.1.6	Zusammenfassung	51
3.2	Vergleich der Ergebnisse bezüglich verschiedener Parameter	55
3.2.1	Allgemeines	55
3.2.2	Ausschnittsform	55
3.2.3	Ausschnittsgröße	55
3.2.4	Ausschnittsposition	57
3.2.5	Mehrere Ausschnitte	62
3.2.6	Höhe der Stegprofilierung	63
3.2.7	Ausschnitte über zwei Kanten	65

o. Professor Dr.-Ing. J. Lindner

Blatt	2.2	vom	01. 08.1994
zum	Bericht	VR 2105	

4.	FEM-Untersuchungen	67
4.1	Kurzer Überblick über die ADINA-Programm	67
4.2	Annahmen in der FEM-Untersuchung	68
4.3	Vergleiche mit bekannten Lösungen	69
4.3.1	Ebene Platte unter Schubspannungsbeanspruchung	69
4.3.2	Ebene Platte mit Ausschnitten unter Schubspannungsbeanspruchung	74
4.4	Beanspruchung von trapezförmig profilierten Blechen durch Schubspannungen	76
4.4.1	Parameter	76
4.4.2	Einfluß des Winkels β zwischen Diagonalfeld und Trägerlängsrichtung	77
4.4.3	Einfluß des Parameters b	80
4.4.4	Einfluß der Höhe b, der Trapezprofilierung	83
4.4.5	Einfluß der Breite a ₁ des längsparallelen Feldes	87
4.4.6	Einfluß der Breite a ₂ des diagonalen Feldes	91
4.5	Trapezförmig profilierte Bleche mit Ausschnitten	94
4.5.1	Ausschnitte im längsparallelen Bereich	94
4.5.2	Berücksichtigung von Ausschnitten, wie sie bei den Versuchen vorhanden waren	98
5.	Nachrechnung von Versuchsträgern	102
5.1	Angaben über Träger und Versuch	102
5.2	Angaben über FEM-Untersuchung, Annahmen	103
5.3	Ergebnisse	104
5.3.1	Beispiel a) Kragträger und max. Verformung	104
5.3.2	Beispiel b) I-Träger mit rechteckigem Ausschnitt und Traglast	106
5.3.3	Nachrechnung eines Trapezstegträgers mit Ausschnitt	108
6.	Vergleiche auf der Basis der DASt-Richtlinie 015	112
6.1	Allgemeines	112
6.2	Nachweis für Träger mit Ausschnitten nach DASt-Richtlinie 015	112
6.2.1	Tragmodell	112
6.2.2	Rechnerische Grenzquerkraft nach [6-1]	114
6.3	Modifiziertes Tragmodell	122
6.3.1	Allgemeines	122
6.3.2	Auswertung der durchgeführten Versuche	123
7.	Bemessungsvorschlag	129
8.	Danksagung	130
9.	Zusammenfassung	131
10.	Literatur	132

o. Professor Dr.-Ing. J. Lindner

Blatt III vom 01. 08.1994 zum Bericht VR 2105

ANLAGENVERZEICHNIS

Anlage 1	Last-Durchbiegung-Diagramme	A1/1-A1/19
Anlage 2	Darstellung der Versuchsträger	A2/1-A2/13