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ABSTRACT 
Chloride diffusion is one of the major causes of deterioration of concrete 
structures.  A large amount of research has been conducted to study the chloride 
diffusion of concrete, both experimentally and theoretically. Because chloride 
diffusion experiments are time consuming, it is desirable to develop a model to 
predict the chloride profiles in concrete. This paper studies the feasibility of using a 
neural network as an adaptive synthesizer as well as a predictor to meet such a 
requirement. 
So some neural network models to predict chloride diffusion coefficient were 
made. The models were trained by results of chloride profile experiments. Input 
parameters were water to binder ratios, the amount of silica-fume and 
environmental condition of samples. The output parameter was chloride diffusion 
coefficient.  
Neural network models are multi layer Perspetron models and they differ in the 
number of hidden layers and neurons. To control the accuracy of the model, an 
ANNs model was made and the result of the model was compared with test 
specimens. The result demonstrates that both neural network models have the 
ability of predicting the chloride diffusion coefficient with good accuracy.  
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1. INTRODUCTION 
Steel reinforced concrete is one of the most durable and cost effective construction 
materials. The durability of reinforced concrete depends on the surrounding 
environment and exposure conditions, including the factors such as carbonation, 
corrosion, alkali-slices reaction and freezing/thawing [1,2]. Corrosion of reinforced 
steel resulting from the ingress of chloride ion is one of the most important issues 
concerning the durability of concrete structures. The prevention of reinforcement 
corrosion is primarily in the design stage with the use of high quality concrete and 
adequate cover. It is well known that steel is protected from corrosion by a 
microscopically thin oxide layer (Passive film: γ-Fe2O3-H2O) that is formed in the 
highly alkaline condition of concrete pore solution. This protective film suppresses 
the iron dissolution to negligibly low values and furthermore, this oxide is 
insoluble and highly stable [3]. Corrosion occurs by loss of the alkalinity of 
concrete in the form of carbonates, thereby providing a direct route for chlorides to 
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approach the reinforcing steel and prevent re-passivation reaction that leads to 
pitting corrosion [4].Carbonates, chlorides and sulphates media can be found in 
concrete when using contaminant aggregate, or adding CaCl2 during the mixing 
step or they are found under the effect of sea-water or ground water on concrete 
and they can also result from an attack on concrete by the surrounding environment 
in coastal regions. Carbonation destroys the protective oxide layer presented on the 
surface of embedded steel in concrete leading to corrosion. As the corrosion of 
embedded steel continues, the products formed exert enormous stress on the 
surrounding concrete leading to cracking and later sapling of the concrete. These 
stresses have been reported to be as high as 450 Mpa [5]. Methods of corrosion 
control include cathodic protection, surface treatments of the rebar and the use of 
admixtures in concrete [6]. Use of blended cements incorporating supplementary 
cementing materials such as silica-fume, blast furnace slag, fly ash or natural 
pozzolan, is a solution that leads to mixtures with greater resistance against 
chloride [7].  
There are a number of computational analysis techniques that deal with concrete 
[8-12]. One of the most known techniques is artificial neural network (ANNs) [13, 
16]. Topcu and Sndemire [17] that used ANNs and Fuzzy logic for prediction of 
mechanical properties of recycled aggregate concretes containing silica fume. They 
obtained successful simulation result from both ANNs and fuzzy logic. Altun et al. 
[18] used ANNs for predicting the compressive strength of steel fiber added 
lightweight concrete and they compared ANN result with multi layer regression 
technique results. They concluded that ANNs predicts the compressive strength of 
steel fiber added lightweight concrete more accurately than multi layer regression. 
Sakla and Ashour [19] predicted tensile capacity of single adhesive anchors using 
ANNs. They concluded that ANN is a useful technique for predicting of tensile 
capacity of adhesive anchors. Since ANNs has taken into account nonlinear 
transfer functions, they can automatically consider the nonlinear relations between 
the data. Hence better prediction results than other statistical tools can be obtained 
in general. Topcu et al. [3] used ANNs to model corrosion currents of reinforced 
concrete. They used two types of cement and 3 different ratios of fly ash for their 
modeling. Their Ann model produced close prediction current values to currents 
measured in experiment. They concluded that ANN is an appropriate tool for 
modeling the corrosion currents. Parichatprecha, and Nimityongskul.[20] used 
ANNs to durability analysis  of high performance concretes. Their results indicated 
that the ANN models can be used to efficiently predict the chloride ions 
permeability across a wide range of ingredients of HPC. Based on the simulated 
total charge passed model, built using trained neural networks, they also concluded 
that the optimum cement content for the design of HPC in terms of total charge 
passed ranges from 450 to 500 kg/m3.  
The aim of this study is to construct an ANNs model to investigate the influence of 
mix proportion parameters on the resistance of chloride ion penetrability on 
concretes containing silica-fume. For this purpose, data for developing the neural 
network model are collected from the experiments. The design of the experimental 
program is based on the relevant parameters, namely W/B, cement content, silica 
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fume content and some experimental data. 
 
2. ARTIFICIAL NEURAL NETWORKS 
Artificial neural networks are computing systems that simulate the biological 
neural systems of the human brain. They are based on a simplified modeling of the 
brain’s biological functions exhibiting the ability to learn, think, remember, reason, 
and solve problems. Conceptually, a neural networks model consists of a set of 
computational units and a set of one-way data connection joining units or weights 
as shown in Figure 1. 
 

 
Figure 1. Single processing element of ANNs 

 
Units that receive no input from others are called input nodes, while those with no 
outgoing links are called output nodes. All other intermediate units are called 
hidden nodes. The multi-layered model has several layers, and each layer consists 
of numerous neurons which are connected with each other. In this model, 
information is sent from input layer to output in one direction, and learning is 
preceded so as to minimize the difference between the output of the model and the 
target output. ANNs can solve challenging problems of interest to computer 
scientists and engineers such as pattern classification, categorization, function 
approximation, prediction and forecasting, optimization, content-addressable 
memory, and control robotics. Rumellhart et al. [21] developed a method called 
error back-propagation, or more simply back-propagation, for learning associations 
between input and output patterns using more than the two layers of Rosenblat’s 
original perceptron. Back-propagation is a supervised learning technique that 
compares the responses of the output units to the desired response, and readjusts 
the weights in the network so that the next time when the same input is presented to 
the network, the network’s response will be closer to the desired response. Errors 
that arise during the learning process can be expressed in terms of mean square 
error (MSE) and are calculated using Eq. (1). 
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In addition, the absolute fraction of variance (R2) and mean absolute percentage 
error (MAPE) are calculated using Eqs. (2) and (3), respectively. 
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where tj is the target value of jth pattern, σj is the output value of jth pattern, and p is 
the number of patterns. 
 
3. EXPERIMENTAL STUDIES 
3.1. Materials Used 
3.1.1. Cement and silica-fume 
In experimental studies, the CEM I 425 R Portland cement which is produced by 
Tehran cement factory were used.  
 
3.1.2. Aggregates 
Crushed sand and crushed stone aggregates were used. The maximum particle size 
of aggregates is 20 mm. As a result of the experiment, the specific gravities of sand 
and crushed stone are obtained as 2.62 and 2.71 kg/dm3, respectively.  
 
3.2. Mix Proportions 
Cement type I.425 was used in concrete mixtures. Concretes are produced using 0, 
7 and 10% replacement level of SF by weight of cement. These specimens were 
cured at 28, 90 and 270 days. The amounts of materials used in 1 m3 concrete are 
given in Table 1. 
 

Table 1: Mix design of specimens 
gravel sand csf/(c+csf)* W/B Specimen code 
1050 800 0 0.35 M-35-0 
1050 800 7 0.35 M-35-7 
1050 800 10 0.35 M-35-10 
1050 800 0 0.4 M-40-0 
1050 800 7 0.4 M-40-7 
1050 800 10 0.4 M-40-10 
1050 800 0 0.5 M-50-0 
1050 800 7 0.5 M-50-7 
1050 800 10 0.5 M-50-10 

          *csf : content of silica-fume in concrete 
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4. EXPERIMENTAL PROGRAM AND DATA COLLECTION 
The first step in developing the network is to obtain good and reliable training and 
testing examples. To obtain the data for developing the neural network models, 
different experiments were done on specimens. The aim of these experiments was 
to find a relationship between mix design and chloride diffusion coefficient in 
concrete. For this reason, the specimens were exposed to chloride in 3 different 
conditions for more than 270 days. The environmental conditions were submerge, 
tidal and atmospheric zone. Persian Gulf modeling room of Building and Housing 
Research Center (BHRC) was used to model the mentioned environment. In 
addition to this experiment, RCPT, concrete compressive strength and water 
permeability of concrete under pressure were done to find a relationship between 
concrete durability contents and chloride penetration coefficient. Results of 
experiments can be finding in ref. [22]. 
 
4.1. Variables Selected for Neural Networks 
Considering the environmental conditions at the construction sites and in order to 
find the important variables that might strongly affect the chloride diffusion 
coefficient, 7 different ANNs were selected with different input variables and 
hidden layers. 1 variable was chosen as the desired output. Table 2 gives the list of 
the ANNs inputs and outputs. In this study, the neural networks were developed 
and performed under MATLAB programming. The learning algorithm used in the 
study was gradient descent with adaptive learning rate back-propagation, a network 
training function that updates weight and bias values according to gradient descent 
with adaptive learning rate [21]. The error incurred during the learning process was 
expressed in terms of mean-squared-error (MSE). 
 

Table 2: Input and output parameters of ANNs 
Input Output 

Code 
W/B SF 

(%) 
RCPT 
index 

Time of 
exposing 

RCPT 
index 

Diffusion 
coefficient 

D 

Number 
of Data 

M1 * *   *  24 
M2 * *  *  * 16 
M3 * *  *  * 16 
M4   * *  * 24 
M5   * *  * 24 
M6   * *  * 24 
M7   * *  * 24 

 
All model structures were based on the following cases: 
1. The minimum and maximum neurons in the hidden layer were changing 

between 1.5 and 3 times the input number of parameters. For example, in the 
model with 2 input parameters, the number of hidden layer neurons was 3 to 6.  

2. The number of iterations and MSE between output parameter of model and test 
data was the criteria used for selecting the best model. 
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5. RESULTS AND DISCUSSION 
For 7 models, the summary of models has been collected in tables 3-9. According 
to the criteria mentioned for choosing the best model in each ANNs, the selected 
model has been shown in different colors in the rows. 
 

Table 3: The summary of results of M1 ANNs model 

Code Number of 
iterations 

Number of neurons 
in hidden layer MSE (*10-4) MAPE 

M1-3-1 6 3 6.52 7.93 
M1-4-4 5 4 6.52 7.93 
M1-5-6 5 5 6.52 7.93 
M1-6-4 4 6 6.52 7.93 

 
Table 4: The summary of results of M2 ANNs model 

Code Number of 
iterations 

Number of 
neurons in hidden 

layer 

MSE 
(*10−4) MAPE 

M2-5-1 13 5 1 12.68 
M2-6-5 9 6 1 22.93 
M2-7-7 7 7 1 7.63 
M2-8-2 7 8 1 11.97 
M2-9-4 6 9 1 62.57 

 
Table 5: The summary of results of M3 ANNs model 

Code Number of 
iterations 

Number of neurons 
in hidden layer 

MSE 
(*10-4) MAPE 

M3-5-3 9 5 1 21.50 
M3-6-1 9 6 1 20.61 
M3-7-2 8 7 1 9.30 
M3-8-3 6 8 1 1.76 
M3-9-2 5 9 1 16.14 

 
Table 6: The summary of results of M4 ANNs model 

Code Number of 
iterations 

Number of neurons 
in hidden layer 

MSE 
(*10−4) MAPE 

M4-3-1 1000 3 5.01 120.4 
M4-4-2 1000 4 1.19 84.97 
M4-5-2 1000 5 0.02 92.90 
M4-6-4 1000 6 0.0008 9894.78 

 
Table 7: The summary of results of M5 ANNs model 

Code Number of 
iterations 

Number of neurons 
in hidden layer 

MSE 
(*10−4) MAPE 

M5-3-3 1000 3 3.23 66.05 
M5-4-3 1000 4 0.772 23.12 
M5-5-2 1000 5 0.0002 150.07 
M5-6-2 1000 6 0.0919 205.68 
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Table 8: The summary of results of M6 ANNs model 

Code Number of 
iterations 

Number of neurons 
in hidden layer 

MSE 
(*10-4) MAPE 

M6-3-3 1000 3 1.27 7.30 
M6-4-3 1000 4 0.0975 8.64 
M6-5-1 1000 5 0.0448 36.79 
M6-6-2 1000 6 8.04*10-9 29.46 

 
Table 9: The summary of results of M7 ANNs model 

Code Number of 
iterations 

Number of neurons 
in hidden layer 

MSE  
(*10-4) MAPE 

M7-3-3 1000 3 5.7 9.46 
M7-4-1 1000 4 0.0683 14.27 
M7-5-3 1000 5 0.0683 23.10 
M7-6-1 1000 6 3.33*10-8 84.35 

 
As it can be seen from the results, the selection of mix design parameter (W/B and 
S.F percentage) makes better output than RCPT. It is because of the uncertainties 
of RCPT. Furthermore, both the number of neurons in hidden layer and number of 
hidden layers in relation with each other has a positive effect in ANNs output. It's 
because of the nonlinear nature of chloride diffusion in concrete. 
 
6. CONCLUSION 
After the tests, it is observed that the diffusion of chloride in concrete changes by SF 
ratio used instead of cement and water to binder ration. As a result of the analysis, 
ANN structures that produce close prediction current values to measured ones are 
presented and the robustness of ANN structure is tested. 7 ANN model was tested and 
in each model, the input and output parameters was changed to find the best input 
variable for prediction of chloride diffusion coefficient in concrete. The results show 
that W/B ration and percentage of silica-fume in concrete are better inputs than RCPT 
results. Furthermore, the results show that both the number of neurons in hidden layer 
and number of hidden layers in relation with each other has positive effect in ANNs 
output. To sum up, it is concluded that ANN is an appropriate tool for modeling the 
diffusion coefficient of chloride in concrete. 
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