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Abstract: 
This paper presents a structural optimisation based on modified distributed genetic algorithm 
(DGA) as a family of parallel genetic algorithm. The technique is developed to deal with discrete 
optimisation of steel portal frame. In order to have a realistic design and imitate the displacement 
and strength limitations, the DGA has been linked to BS5950 code of practice. Although the 
appearance of steel portal frames is simple, many complicated limitations and different structural 
criteria which are considered in complex structures must be taken into account. As the behaviour 
of steel portal frames necessitates using universal beam for both column and rafter, the algorithm 
selects the universal beam cross-sections from a standard table given in code of practice. In 
addition, it determines the minimum length and depth of haunch satisfying the limitations in 
order to reduce the weight and reach the most cost-effective form. Formulation of the design is 
based on elastic method. The objective function is in terms of total weight of frame as it gives a 
reasonable accurate cost of frame. A pitched roof steel portal frame has been designed to check 
its practicability. 
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1. Introduction 

Single storey buildings are widely used in the UK; it is estimated that 50% of the single storey 
steel work buildings are constructed by portal frames (Salter et al, 2004).  Because of its 
economy and versatility for large spans in construction of pitched roofs like shopping centres, 
warehouses, retail shops, pools, factories, etc, the steel portal frame has become the most often 
used structure within this sector. Furthermore, those aforementioned places need to have a large 
span without using intermediate columns and therefore it necessitates using steel portal frames 
whereas the steel yields economical solution for large spans (Saka, 2003). A number of steel 
portal frames are commonly available of which the pitched roof type is more popular. The design 
of steel portal frames can be carried out using either elastic or plastic methods. 
Any structural designer attempts to conduct an economical design. This can be achieved by 
formulating a design problem as an optimisation problem and solving by a systematic way of 
optimisation and considering the limitations of a code of practice to control the safety of the 
structure (Toropov and Mahfouz, 2001). However, due to large number of iterations in 
implementing the optimisation technique, it cannot be achieved by using the designer’s 
experiences and intuition. Optimisation is a mathematical way to seek the minimum and 
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maximum of a certain function. As the major cost of structural steelwork is its own weight, it has 
been endeavoured to minimise the weight using a systematic way of optimisation. In general, 
optimisation technique in structural engineering can be categorised into three different 
approaches: 1) Mathematical programming, 2) Optimality criteria methods and 3) Heuristic 
search technique (Camp et al. 1998). During the past decades, the attempts have been made to 
use any of the three aforementioned methods, see for example the work of Rizzi (1976); Arora 
(1980); Allwood and Chung (1984); Lin and Liu (1989); Krisch (1991); Saka (1991); Chang 
(1992) and Rozvany & Zhou (1993). Heuristic search method became the best option for dealing 
with discrete design variables, (Camp et al. 1998). Genetic algorithm as a sort of heuristic search 
method has been added to the optimisation technique. Genetic algorithm is the strategy that 
models a genetic evolution (Holland, 1975; Goldberg, 1989). Its core characteristic is based on 
the simulation of Darwinian ‘Survival of the Fittest’ theory and adaptation. A remarkable 
advantage of genetic algorithm appears when it does not require an explicit relation between 
objective function and constraints while this relation has to be defined using the mathematical 
programming and optimality criteria method. Genetic algorithm has been successfully 
implemented in structural optimum design by many researchers during the earlier past decades 
including the work of Rajeev and Krishnamorthy (1992); Adeli and Cheng (1993, 1994); Adeli 
and Kumar (1995); Camp et al. (1998); Mahfouz (1999); Pezeshk et al. (2000); Kameshki and 
Saka (2001); Toporov and Mahfouz (2001); Foley and Schinler (2003); Balling et al. (2006) and 
Liu et al. (2007). 

Genetic algorithm (GA) as a robust and efficient technique can achieve the aforementioned 
requirements. The simple genetic algorithm, however, has quite low speed process.  Therefore, 
the author has attempted to modify the simple GA in order to accelerate its operation. In this 
paper a Distributed Genetic Algorithm (DGA) has been chosen to minimise the weight of the 
pitched roof steel portal frame satisfying the limitations given in BS 5950 code of practice. As 
the genetic algorithm is used for unconstraint problems, therefore a penalty is used to bring a 
constraint problem into unconstraint one. 

The basic mechanics of the GA is based on randomised procedures of selecting and reproduction 
of the population of individuals and copying the fittest individuals into the next generation. A 
basic GA consists of three main operators; reproduction, crossover and mutation. In the 
reproduction stage, a set of population are selected for mating depending on their fitness value 
which represent the objective function including the penalty function for any violation of 
constraints.  

2. Distributed Genetic Algorithm  

In DGA, the performance of conventional GA is improved by some minor modifications in its 
main algorithm that leads to quicker convergence and higher searching capability compared to 
conventional GA (Starkweather et al. 1990; Mühlenbein et al. 1991). 

The DGA adopted in this paper can be described according to the following steps: 

1) The parameters of DGA are specified.  
2) The initial population are randomly selected for each group of population. 
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3) The objective function of each individual design is calculated. This is achieved by 
analysing the frame using the selected design variables (area of the section) and 
checking the feasibility of each individual with the constraints. For any violation of 
the constraint, a penalty is imposed. The penalised objective function is calculated 
(PFi). 

4) The smallest and largest penalised objective function (PFmin & PFmax) are specified. 
5) The fitness function is evaluated for each individual design applying the formula  

               FFi = PFmin + PFmax – PFi                                            Eq. 1(a) 
6) The average fitness value is calculated 
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Eq. 1(b) 

7) The individuals whose fitness values are below the average one are killed. 
8) For the survived population new largest value of the penalised objective function is 

found which is slightly above the average fitness value and the new fitness values are 
evaluated. 
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9) The probability of all the survived individuals are calculated using 
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Eq. 1(d) 

10) Using the percentage of elitism, find the best individuals among the survived 
population of each group. 

11) The rest of the population are undergoing the crossover operation whereas the 
increment rate is specified the number of offspring produced by crossover operation 
for each group of population. 

12) For each defined interval of the generation, the migration is taken place. Relying on 
the rate of migration, the best individuals of the groups (except that group 1) are 
migrating to the first group. 

13) The termination conditions are checked. In this study, three termination conditions 
are used and if any one of them is satisfied then the process terminates. 

a. If during the 30 successive generations the fittest individual are not changed 
or the difference between their fitness values are very small, then the 
termination will take place. The formula below shows the explicit relationship 
between the fittest individual, FGenNo and a range of small value RGenNo. 

     GenNo
GenNo

GenNoGenNo

R
F

FF ≤− −30

            
Eq. 1(e) 

b. While the genetic process proceeds, the best individuals are about to be 
selected. That causes the average of the fitness value to converge the best 
fitness value. Therefore, it necessitates defining another termination condition 
in terms of average fitness value so that the difference ratio between the 
average fitness value and the best individual’s fitness value is limited as Ravg. 
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R
F

FF ≤−
                             

Eq. 1(f) 

c. When the maximum allowable number of generation is reached. 
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14) Each gen of the strings is mutated depending on the adopted probability. 

)( minmaxmin
mm
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PP Gen −
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+=

                        
Eq. 1(g) 

15) The step 3 to step 14 must be repeated until one of the termination condition achieves. 
 
3. Analysis 

The elastic analysis of the pitched roof steel portal frame was conducted using two different 
stiffness matrices. A conventional stiffness matrix was applied for the prismatic member and a 
derived stiffness matrix for non-prismatic member whereby the haunched rafter was analysed. 
The non-prismatic stiffness matrix was derived using the virtual work method and column 
analogous (Ghali et al. 2003). Virtual work was implemented to derive the axial stiffness 
coefficient. Whereas, column analogy was employed to derive the non-prismatic stiffness matrix 
for bending and shear effect. Accordingly, the axial stiffness coefficient is: 
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while the stiffness matrix for shear and bending is (EI changes in terms of x): 
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  Eq. 3 

 
In the special case, when EI is constant, L1 = L2 and A1 = A2 then the stiffness matrix degenerate 
to what is used for the prismatic members. 

4. Design to BS5950 

BS 5950 states that when an elastic analysis is used for the design of steel framework such as the 
one shown in Fig. 1, the capacity and buckling resistance should be calculated. It is required to 
use the effective length equal to that between two intermediate restraints. 
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The members or portion of members restrained should satisfy the conditions to ensure the 
stability between two effective torsional restraints. For the prismatic members the following 
requirement should be satisfied: 

                                                                                       Eq. 4(a) 
 
and for the haunch part (i.e. non-prismatic member): 
                      Eq. 4(b) 
 
5. Optimum Design 

In the design of pitched roof steel portal frames, it is common to have the same universal beam 
section for the both rafters and a different universal beam sections for the columns. For the 
reason of economy, the same section of rafter is used to produce the haunch. Fig. 2 shows more 
details of the haunched rafter section. Therefore, the optimum design of the pitched roof steel 
portal frame necessitates using two design variables; one for rafter and its haunch and another for 
the columns. However, if it is necessary to use different section for the haunched section, the 
number of design variables increases to three. Moreover, due to the complexity of the design 
constraints in the formulation of the design problem only vertical gravity load is considered at 
this stage.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Typical pitched roof steel portal 

Fig. 2(a) Longitudinal section of the haunched rafter (b) cross section of the haunched 
rafter at the distance x from the near end (1) of the member 

(a) 

(b) 

b
x

p
S

M

A

F ≤+

39



  

The design of pitched roof steel portal frame with haunched eaves when the objective is 
obtaining minimum weight and the constraints are implemented according to BS 5950 has the 
following form of formula: 

Minimise ∑∑∑
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+=+=
HauNo

k
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mhm HLGwww

111

             Eq. 5 (a) 
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Eq. (5b) checks the displacement of the joints. BS 5950 has limited the horizontal displacement 
of the joints to column/300 and the upper limit of the beam deflection is span/360. Inequality 
(5c) defines the load capacity check for beam-column with semi-compact or slender cross 
section. Inequality (5d) is the simplified approach of the overall buckling check for beam-
column. Inequalities (5e) and (5f) define the stability constraints for rafters and columns 
respectively where the compression flange is unrestrained.  

The solution of the optimum design problem is given in Eq. (5a) necessitates selecting universal 
beam section from the table of standard section for rafters, columns and haunched section. This 
manipulates using the discrete design variables. Implementing mathematical programming on the 
discrete problems require discretising the problems which does not give an efficient solution and 
is somewhat cumbersome. Alternatively, genetic algorithm can handle with discrete design 
variable and can give the efficient optimum solution. 

6. Solution by Distributed Genetic Algorithm 

The optimisation of the pitched roof steel portal frame is based on distributed genetic algorithms. 
The individuals (design variables) are the area of the standard steel sections table. The author has 
decided to formulate the mutation probability (Eq. 1(g)) to check its suitability and effect on the 
convergence of the solution. The mutation probability was used as constant by researchers Adeli 
and Cheng (1993, 1994), Pezeshk et al. (2000) and Saka (2003, 2007). In addition, a probability 
has been given to produce the greater offspring than the usual by the same parents (Fig. 3, 
increment rate of population) to increase the number of population and likely get the best 
individuals in the earlier stage of the solution. As the DGA can only handle unconstraint 
objective function, a penalty function has to be introduced to include the constraints in 
calculations. There are different types of the penalty function which can be used in GA such as 
linear double segment, linear multiple segment and quadratic penalty functions (Adeli and 
Cheng, 1994). In this paper the transformation of the constraints given in Eq. 5 is based on the 
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Eq. 8 
 

violation of the normalised constraints according to following rearrangement (Rajeev and 
Krishnamoorthy, 1992). 
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The unconstraint function P is then constructed by adding the normalised constraints to the 
objective function as in the following 


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Eq. 7 

Where W is the objective function given in Eq. 5(a), C is a constant to be selected depending on 
the problem under consideration which for this study it is taken as 10 and Zm is the violation 
coefficient determined as 

If gm > 0 then Zm = gm 

                                                                    If gm ≤ 0 then Zm = 0  

Saka (2003) has designated C as 10 after several trials he carried out. The unconstraint function 
(Eq. 7) is used to obtain the fitness value of individuals according to the Eq. 1 (c). The chosen 
number of population for each group was found after several trials to be 30. The adopted number 
of group is 2. 

For the purpose of implementing the DGA, software was developed by the author known as 
Optimum Design of Steel Portal Frames (ODSPF). Visual Basic Language was employed to 
code ODSPF. A part of software is depicted in Fig. 3 which shows up the input genetic 
parameters. 
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7. Design Example 

A typical pitched roof steel portal frame with pinned supports was selected to test the efficiency 
of the developed DGA. The relevant data and diagram of the structure are presented in Table 1 
and Fig 4 respectively. The problem has already been solved by Saka (2003) using simple GA. 
Unlike the example designed by Saka (2003), the frame is not subdivided into a large number of 
elements of relatively small lengths. Instead, the overall numbers of the frame members was 
taken as six: two for columns, two for rafters and the rest for haunched part of the rafter. This 
outperforms the operation speed of the algorithm as the less number of members, the more speed 
of the analysis of the frame will be, hence the convergence will dramatically be improved. 
Eighty steel sections from the standard steel tables given in Steel work Design Guide to BS 5950 
are employed as design variables while Saka (2003) used 64 sections to have 26 upper limit. The 
final optimum design is shown in Fig. 5. This achieved after 10 re-designs running of the pitched 
roof steel portal frame with varied seeds as presented in Table 2. Initially running the program 
took place 50 times, but later it was found out that the optimum design obtained with 10 runs 
revealed the same result as 50 runs. Therefore for saving the time of calculation, it was adopted 
to re-design the frame in 10 times. 

Table1: The required data for design of the pitched roof steel portal frame 

Span, 
m 

Column, 
m 

Purlin 
Space, 

m 

P, 
kN 

Modulus of 
Elasticity, E, kN/m2 

Haunch Depth 
Range & 

increment, cm 

Haunch Length 
Range & Increment, 

m 
20 5 1.25 5 200 10 – 74, & 2 0.5 – 5, & 0.25 

 
 
 
 
 
 

 
 
 

Fig. 3. The genetic parameters which have been input for this study into one of ODSPF 

Fig. 4. The pitched roof steel portal frame of the example 
 

42



  

It is observed from Table 2 that, whatever the number of generation increases, the likelihood of 
getting the optimum or near optimum solution is raised. Due to inputting a smaller value for the 
max mutation probability and consequently premature convergence of Run 6, the optimum result 
has been booked as heaviest. This was achieved after 36 generations. The design carried out for 
different applied load values and the best output is collected into Table 3 with the associated 
frame weight. It is clear that whatever the applied load increases the weight of the frame turns to 
be heavier and the depth of the haunch turned to be smaller, because the heavier member 
necessitates having smaller depth of haunch. Furthermore, the obtained designed is compared 
with what was done by Saka (2003) using simple genetic algorithms. The implemented DGA 
increased the speed of the operation and the convergence took place after 63 generations which 
took 204 seconds of physical time (using Pentium 4, 2.40 GHz CPU, with 512 MB RAM). Also 
the obtained depth of the haunch for each seed is less than that designed using simple genetic 
algorithms. The reason refers to the reduction in number of considered members for design and 
using the derived non-prismatic stiffness matrix. The depth of the haunch is required to be less 
than the section depth of the rafter. However, some of the design run reveals that the depth of the 
haunch exceed that of the rafter. It therefore, raises the requirement for adding another constraint 
which will restrict any exceeds in the depth of the haunch. This constraint could be defined as Dh 
< (D - tf - r) . This makes it possible to use the same section of the rafter for the haunch. By 
making a comparison between Fig. 5 and Fig. 6, it can be realised that adding the 
aforementioned constraints resulted in a heavier frame which caused an increasing in the weight 
by 20.02%.  

Fig. 7 shows the convergence of the problem into optimum solution. After reaching the 63rd 
generation, the best individual dominated consistently in the population. This refers to the 
application of elitism and migration strategy which caused a convergence within a few 
generations. As a consequence, it saved the time consuming for checking the constraints and 
performing the analysis accordingly. Fig. 8 depicted the percentage of domination the best 
individual after certain number of generation. 

 
Table 2: Result of the optimum solution from different Run for P=5kN 

Section Designation 
Run 

Column Rafter 

Depth of  
Haunch, 

m 

Length of  
Haunch, 

m 

Generation No. 
for Optimum 

Design 

Weight, 
kg 

1 457x191x89 UB 356x127x33 UB 0.38 3.00 59 1562.3 
2 457x191x74 UB 356x127x39 UB 0.40 3.25 71 1530.3 
3 457x191x89 UB 356x171x45 UB 0.36 2.75 46 1902.7 
4 457x191x74 UB 356x127x33 UB 0.40 3.25 63 1515.9 
5 457x191x74 UB 356x171x45 UB 0.38 3.50 49 1774.8 
6 457x191x98 UB 356x171x67 UB 0.32 1.50 36 2415.8 
7 457x191x74 UB 356x127x33 UB 0.42 3.50 64 1528.6 
8 457x191x74 UB 356x127x33 UB 0.42 3.25 67 1520.3 
9 457x191x82 UB 356x171x67 UB 0.30 2.0 41 2124.2 
10 457x191x98 UB 356x127x33 UB 0.28 1.75 48 1694.6 
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Table 3: Optimum design parameters for different load values 
Section Designation Load P, 

kN Column Rafter 

Depth of  
Haunch, 

m 

Length of  
Haunch, m 

Weight, 
kg 

Weight, kg 
By Saka 
(2003) 

5.0 457x191x74 UB 356x127x33 UB 0.40 3.25 1515.9 1521.4 
7.5 610x229x101 UB 406x140x39 UB 0.36 3.00 1893.6 1903.7 
10.0 610x229x101 UB 406x178x54 UB 0.26 3.00 2202.9 2260.0 
20.0 610x229x140 UB 533x210x92 UB 0.14 2.25 3334.3 3224.0 
30.0 914x305x210 UB 610x229x101 UB 0.12 2.75 4141.8 4197.7 

 
 

 
 

  
 
 
 
 
 
 

 
 
 
 

 

 

Fig. 7. Converging of the design to 
Optimum Solution when P=5kN 

Fig. 8. Percentage of domination of 
best individual in each run 

Fig. 5. The best optimum design from 10 
seeds 

Fig. 6. The best optimum design accounting the haunch depth 
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8. Conclusion 

The distributed genetic algorithm was presented to investigate the optimum design of the pitched 
roof steel portal frame. The algorithm was linked to a data base containing the standard universal 
beam sections table. The performance of the algorithm was checked by comparing it with the 
simple genetic algorithm. The design obtained by using the DGA was slightly lighter than the 
design obtained by simple genetic algorithms. In addition, the optimum design was achieved 
after a small number of the generation. This shows the great capability of the DGA to converge 
into the optimum or near-optimum solution rapidly. The derived stiffness matrix for non-
prismatic member played the great role to reduce the depth of the haunch and consequently the 
total weight of the structure. In fact, it could handle the analysis of the frames with tapered 
members. Using the seed, representing the number of design running increased the likelihood of 
getting the best design among different runs. This improves the possibility to cover more 
domains of the design spaces. As a result, it potentially eliminates any entrapment into local 
optimum. The developed software ODSPF uses DGA, the derived stiffness matrix and formula 
of the mutation to reach the optimum solution of steel portal frame within a certain number of 
generations. By gradually decreasing the mutation probability as the generation increases, the 
premature convergence of the solution (which could lead to a non-optimal solution) can be 
avoided. Producing more offspring raised the likelihood of having the best individuals in earlier 
stages of the solution. 
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Notations: 
A1 and A2 : The areas of member ends 
Agj :  Gross cross sectional area of the member j 
ConNo : Total number of the constraints 
Dh  Depth of the flange 
E :  Modulus of Elasticity 
Favg Average fitness value of the population 
FF Fitness value of individuals 
FGenNo Fitness value of the current generation  
Fj :  Applied axial force at the critical region of the 

member j 
GenNo :  Number of generation 
Gm :  Group of member from the table of standard 

sections 
GrpNo :  Number of population group 
Hw :  Weight of the haunched eaves 
I :  Moment of the inertia 
JointNo Total number of frame joints 
K :  Stiffness Coefficient 
L :  Length of the member 
Lw :  Member weight  
m :  Equivalent uniform moment factor 
M  Equivalent uniform moment 
Mb  buckling resistance 
Mbj :  Buckling resistance moment capacity for 

member j about its major axis (Clause 4.3.7 
of BS5950) 

Mcxj :  Moment capacity of the member about the 
major axis 

Mk  Applied moment in member k 
Mxj :  Bending moment around the major axis at 

the critical region of the member j 
MemNo : Total number of the members 

GenN  :  Current generation 

pb  Bending strength 
Pc  Compression resistance 
 Pc :  Crossover probability 
pcj :  Compression strength obtained from the 

solution of the quadratic Perry–Robertson 
formula 

Pen :  Increment rate of population 
PE  :  Elitism rate 
Pi Survival probability of the individual i 
Pm  :  Mutation probability 

max
mP  :  Maximum range of mutation probability 
min

mP  :  Minimum range of mutation probability  

GenN
mP :  Mutation probability in current generation 

Pmig :  Migration rate  
py :  Bending strength 
PF Penalised fitness value of the individuals 
PFmax Maximum penalised fitness value of the 

current population 
 
PFmin Minimum penalised fitness value of the 

current population 
PopNo  :  Number of population in each group 
r  root radius of the universal beam section 
Sx  plastic modulus of a section about x–x 

axis 
TapMNo : Number of tapered members 
tf  Thickness of the flange 
UniMNo : Number of the uniform member 
δi :  Displacement at joint i 
δiu :  Upper limit displacement of the joints  
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