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Abstract:  
The task of measuring the progress of construction is often a subjective process 
that is prone to error and frequently out-of-date information.  The need to 
recognize completed work feeds into many aspects relating to cost control, 
scheduling and interim payments.  Established photogrammetry techniques and 
advanced reconstruction tools are available for creating and comparing 3D models 
of the current site. However, these often involve intensive user interaction and 
have slow turnaround. In this work we propose the advantages of a fully 
automated approach using Computer Vision to provide timely and accurate 
feedback of site progress. We illustrate these benefits with a simplified test case 
highlighting some initial results based on a building component model. This 
framework has potential as a valuable aid for project management, enabling 
tighter control and greater efficiency. 
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1. Introduction 

1.1  Motivation and Background 

Modern medium-to-large scale construction projects are complex affairs, 
requiring a great deal of planning and management. The core problem remains 
one of remaining on schedule – whether by organizing materials and tasks along 
identified critical paths; realizing and correcting errors to maintain quality; or 
imposing standard techniques and adopting recognized best practices. In parallel 
with these concerns, run the ever constant monitoring required to manage the 
costs of the project; enable payment of contracted work; and to stay within 
budget. 
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The tendency of the industry to adopt standardized systems and processes aims to 
address a substantial portion of these issues. This is based on the control offered 
by structured object models, and has resulted in much recent research into the 
automation of project planning and control. In essence, most such systems feature 
at their core a “4D model” involving the 3D design expanded over the time-line of 
the project. This facilitates the appearance, transition, and completion of 
individual components, as dictated by the schedule and the monitored status of 
construction work. In this way the overall costing and control of the project can be 
visualized and managed, since updates to the status of the components drive and 
feed report generation. 

Such systems can formalize interoperability and transfer of construction data 
through the use of the IAI Industry Foundation Classes. These aim to provide the 
support for a new generation of tools in which the component model incorporates 
not only geometric structural information, but relates the instance within the entire 
project plan in terms of cost, scheduling, supply, contracting, services, and many 
other facets evolving over time. This methodology is now widely seen in new nD 
systems that allow for the first time a fully integrated approach to construction 
management. (Lee et al, 2003, Fu et al, 2006). 

The basis of dividing work, or grouping components (for example, into associated 
work packages) is a common industry approach for project management. In 
essence these involve compete portions of the project that can be separately 
allocated and performed. They can involve a single component, or more 
commonly, support a whole range of preparatory work across the site. The process 
of division can be unique to individual contractors, and can be particular to their 
working practices. However, standard approaches can be recognized. Observing 
the completion of such packages serves as important landmark events in the 
project, and is a key feature of current methods for surveying site progress. 

What is of particular interest is the ability to achieve the recognition of component 
completion on demand, and automatically, with minimal human intervention. 
Multiple benefits could be gained for the overall management of the project based 
on timely feedback. Even, for example, simply reporting a percentage complete 
for individual components would prove incredibly useful. In particular, the ability 
to measure progress would enable the accurate calculation of interim payments, to 
measure overall productivity to date, and ultimately support cost and schedule 
control. 

Navon and Sacks (2006) noted that effective project control needs two kinds of 
information. The first is the plan that typically comes in the form of a list of 
activities to be performed, broken down in terms of a performance indicator. The 
second kind of information is a measurement of the actual performance based on 
the same performance indicator. While the first kind of information can be 
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obtained from experience, past records and the building model in question, the 
second kind can only be obtained through measurement. The traditional 
approaches to obtaining these measurements have been known to be subjective, 
costly and too infrequent to allow for effective project control. The way forward, 
according to Navon and Sacks is to automate the process. 

A number of studies have been conducted in the area of automatic progress 
monitoring of construction projects. These studies employ technologies that range 
from laser scanning, radio-frequency tags, GPS, barcode, web applications or a 
hybrid of two or more technologies to monitor the progress of various aspects of 
construction. Navon (2007) gives an up-to-date review of these technologies. 
Some of these approaches can be very sound in monitoring various construction 
operations but their high costs are often a concern for practical applications. One 
of the most economical ways to track progress is by recording videos or taking 
photographs, and this is not a new approach in construction management. The 
challenge however, is to automatically extract progress information from the 
images and report on the status of the project at various levels of detail with 
minimal or no human intervention. This is the thrust of the present study. 

This work is related to our initial investigation into automatic progress estimation 
using Computer Vision (Trucco and Kaka, 2004). In the rest of the paper we 
describe the use of alternative techniques, particularly focusing on the core desire 
to automatically recognize discrete construction components – which would 
ultimately help to assess the completion of entire work packages. By highlighting 
the issues involved, and giving an example simplified test case, we aim to justify 
the feasibility and further put forward the case for “closing the loop” on progress 
measurement by the means of Computer Vision. 

1.2  Photogrammetric Approaches 

The idea of using imagery to record and – more importantly - measure buildings is 
not a new one. The Prussian architect Albrecht Meydenbauer originally coined the 
term photogrammetry in 1867 as the process to produce topographic plans and 
elevation drawings from photographs. This key desire - the measurement of 2D or 
3D objects from photographs - has grown into a standard and popular technique 
for the survey and archival of construction projects.  When used to capture close-
range aspects of buildings, the distinction is then often made that this is different 
from those alternative approaches that capture from greater distances associated 
with traditional “remote sensing”. For example, recovering top-down models from 
aerial photography (Mikhail et al, 2001). 

In many instances the staple techniques in photogrammetry involve recovering 
information about the position and properties of the camera used to capture the 
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images.  Establishing these properties enable the process of calibrated 
rectification, by which 2D distances in the images can be extracted by the removal 
of perspective effects, and thus related to actual schematics. Comparing images 
from different images can be further fine-tuned using bundle adjustment to refine 
the relationships between multiple measurements. These processes are 
incorporated into many advanced tools such as Canoma, ImageModeler and 
PhotoModeler. However, the fact remains that these require substantial human 
interaction to selectively mark-up and correlate sample images – although the 
process can be automated up to an extent (Van den Heuvel, 2003).  

A recently proposed example of using such tools to verify the progress of work 
has been to extend the current practice of regularly taking images of construction 
work (Memon et al, 2005). In this the authors directly compare a recovered “as-
built” 3D model (generated by hand using PhotoModeler) with the AutoCAD 
design phase output. Through this they seek to adopt and unify the existing 
surveying of a site by photographs to an integrated database that tracks the 
schedule of work. This approach shows the potential that exists for better control 
and overall quality improvement for monitored construction. However, it suffers 
from the relatively slow turn around and technical expertise required to 
reconstruct the 3D geometry, even for relatively simply structures.  

In many respect, a large amount of similar work in the field of augmented reality 
has also been carried out with the techniques developed from photogrammetry. 
The concern here is the reconstruction of a “reality model”, i.e., a geometric 
representation of the current structure that can be merged and overlaid with the 
virtual model representing the final design, service features and final fittings 
(Klinker et al, 2001). Many additional techniques are employed in order to align 
the perceived world with the projection of the 3D model. It is however extremely 
challenging to be able to process the incoming video of the site in real-time, to 
relay the overlay to the as user as he or she moves around. The use of distinctive 
fiducial markers, which must be automatically discovered and their positing 
recorded in the scene, can greatly help in this process. However, this is necessarily 
an intrusive solution, requiring additional planning and work to place these 
markers over the site at visible and obtrusive locations. 

Alternative modalities – such as laser scanning – have been the focus for other 
research in close-range architectural work. This is particularly suited to looking at 
the problem of defect detection since a great amount of detail can be captured 
(Gordon et al, 2003). The use of laser however is expensive and raises a whole set 
of new problems, especially with performing the capture, and in simply dealing 
with the vast volumes of data generated. This often involves some intensive post-
processing methods for “cleaning” the data.  For example, in detecting that the 
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million of so range points actually lie on the surface of a single wall, which can be 
represented in a far simpler way.  

1.3  The Computer Vision Perspective 

Many of the techniques developed by photogrammetry concerning the geometry 
of camera calibration and location, also lie at the core of Computer Vision 
(Hartley and Zisserman, 2004). The distinction is that Computer Vision aims to 
derive such information automatically, such that ideally no (or minimal) user 
interaction is required.  This then involves further techniques for recognition, 
analysis and classification of what objects, or properties, are present within the 
scene. Fundamentally, most problems are concerned with extracting meaningful 
structure from the data (i.e. images), and to make sense of these based on 
previously learned knowledge or representations. This is a task that humans 
perform effortlessly, but one that is extremely hard for a computer to do well.  

With regards to close-range images of buildings, most of the recent research in 
Computer Vision has been concerned with “reverse engineering” of architectural 
models. For example, (Schindler and Bauer, 2003) make extensive use of the 
presence of vanishing points and lines within architectural scenes, in order to 
detect and recover piecewise the constituent planes that make up the exterior of 
the building. Such work can produce very realistic looking models, particularly 
since the image can also be use texture the model and make it look more detailed 
and realistic, even though the underlying geometry is often coarse and ill refined.  

This approach, by exploiting constraints commonly encountered in architecture 
(such as orthogonality, symmetry, repetition and parallelism), is exploited in a 
number of other developments. Importantly, it does not require an a priori 
knowledge of a model of the building, only the common “rules” that many human 
structures follow. The desire for automatic recovery is further driven by 
applications extending beyond single reconstructions of houses - towards entire 
towns and cities. This is motivated by the demands for content generation of 
urban models to accompany on-line mapping and satellite data - e.g. Google 
Earth. For example (Cornelis et al, 2006) describe a recent system that can 
recover the structure of entire streets from a fitted multi-stereo camera system. 

An alternative view is that of matching known structure to the observations in the 
images: performing model-based object recognition (Trucco and Verri, 1998). 
These techniques have a long pedigree in Computer Vision and can be seen as the 
equivalent of camera pose estimation - since to find the location of the camera, 
and to find the model that fits the scene, reveal the same thing. Application of 
such techniques to images of buildings are most generally employed to provide an 
estimate of location, particularly in urban environments when satellite and other 
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services can fail due to “canyon” effects resulting in lack of coverage. The work 
of  (Klinec, 2004) is an example of this where they use a comprehensive 3D city 
model to match to visible building images and so recover the exact position of the 
user. Again, such work intersects with that of Augmented Reality, when 
attempting to compensate for motion and real-time model based tracking 
(Reitmayr and Drummond, 2006). These systems also rely on fusion of geo-
referencing and orientation sensors in order to achieve a good initial estimate. 

The culmination of the work by (Dick et al, 2004) offers an approach that bridges 
the middle ground, by having at its core a generative model of individual “Lego-
like” primitive geometric components (for doors, windows, wall, etc). This is 
coupled within a probabilistic framework that takes account of the distribution of 
such components over a building – as learned from training 3D data and 
experienced architects. Each primitive is further parameterised in order to allow 
for different sizes and lengths. The objective is to then find a composite 
architectural model and set of parameters that best explains the visible scene. 

The previous related work to this research (Trucco and Kaka, 2004) offers an 
alternative image based “iconic vision” approach that is used to first help locate 
images of particular components within the site. This is based on using a suitable 
metric to find the distance between two images – one of the prototype 
components, and the other querying for a particular scene. In adopting a statistical 
approach, resilience to viewpoint and lighting can be gained. The idea is that it 
could then act as an indexing stage prior to comparison to a CAD model, in order 
to scan and provide an initial estimate of location. This work is related to the 
further topic of change detection as approached by Computer Vision to establish 
and statistically interpret the differences between sets of images (Radke et al, 
2005). 

2. Challenges with Interpreting Images of Construction 

The great advantage to using images is that they are extremely quick, easy, and 
non-intrusive to capture. However, deriving information on structure from images 
is intrinsically a hard problem, since it is often ill defined and requires additional 
assumptions and prior knowledge. In particular, images of construction sites 
contain high amounts of clutter, i.e. elements confusing an automatic recognition 
system; including shadows, reflections, occlusions, different materials, equipment, 
and people. All this can make the discovery of the true structure of a building 
extremely difficult. 

In general, there are two possible routes for capturing progress images of the site. 
One possibility is to have access to fixed security and web-cameras directed at the 
work in progress.  The disadvantages here lie with the inflexibility to adapt to 
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changes in the structure – particularly as portions become occluded. This requires 
substantial forethought and planning in deciding where to place the cameras and 
supporting network infrastructure for complete coverage. However, such an 
approach offers the possibility of constantly on-demand images, taken from a 
known location, and can be integrated with site security systems.  

The alternative is to have regular surveys conducted on foot. The advantages here 
are that higher resolution and better quality images could be captured from any 
given location, especially in response to changes. And yet, this flexibility can lead 
to problems in reconciling the location of the capture, although, following a strict 
protocol and utilizing further geo-referencing technologies could alleviate this. A 
combination of both approaches could also be performed. 

Having then gathered suitable data, and given the architectural model for expected 
structure, two further approaches are then possible for matching. One way is to 
recover a complete 3D model from the images first and then try to match them to 
the model. Given that the recovery of structure from images is such a hard 
problem, and so prone to error, this is only really possible for large-scale 
structure. The subsequent matching of 3D models is also difficult given the 
complexity of the representation.  

The other approach is to try and re-establish the 3D camera pose by matching the 
back-projection of 2D structure to features in images. This is effectively model-
based recognition, and is reliant mainly on the ability to reliably extract matching 
features (e.g., lines or points) from the image data. Since this operation is 
performed on the data itself there is no intermediate step that can introduce errors 
and increase computation. The matching is still difficult, since it is non-linear to 
perform and must be able to take account of potential outliers in the discovered 
features (elements of the scene can not be explained by the model).  

A number of techniques can then be introduced when it comes to matching the 
model to scene features. In particular, reducing complexity by employing methods 
from computer graphics – such as back-face and occlusion culling - to remove 
those elements of the model that cannot be seen from a proposed camera position. 
Furthermore, the relationships between individual component locations can be 
exploited to provide additional context when matching. For example, knowing 
that a column is part of a colonnade (consisting of a number of very similar 
components) would mean that all columns, or their pediment, must also be used in 
order to identify the individual component. The matching process can then 
become analogous to a search, in which the reliability of finding one element 
leads to support for the location of its neighbours. 

The accuracy with which this match can occur can be defined by the resolution of 
the model and the images. The ideal of being able to identify individual fittings 
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and small interior details requires additional captures which generally lead to 
increasing ambiguity. For example, a picture of an interior doorway and 
surrounding wall gives very little information regarding its location or identity 
within the model. Ultimately, the question of scale is dictated by the requirement 
for what is useful for the purposes of management and estimation.  

Once components have been discovered within the scene, the task then switches 
to being able to confirm their existence. Initially, through the process of matching, 
it is hopefully established if particular components are actually present at all. This 
issue is further related to combing matches from multiple viewpoints, since a 
particular component may only be visible from certain angles. In the case of 
visibility from a number of views, then increased reliability can be gained by 
combining estimates. However, ambiguity must again be resolved in order to 
confirm that the component is self-consistent across all views, and to establish 
those portions of the site where no information is available. 

Given that a component can be seen, and that the matching verifies that there is 
structure in the scene that supports its presence – then additional processing must 
occur to establish its status. In particular, the texture or colour of the identified 
region can be analysed, since in many cases this is indicative of the current stage 
in the construction lifecycle. For example, a column may be shuttered, cast, 
rendered or painted. Seldom is a component simply “filled up” like an empty 
glass. Progress is really an assigned percentage to the visible work, as seen across 
the entire work-package. Learning to accurately estimate and recognize such 
variations associated with each stages of a components lifecycle, depending on 
locally used materials and conditions, is a particular challenging problem. 

3. A Simple Example 

3.1  The Data 

This simplified test case represents two phases of construction of a holiday house 
in Turkey. Geometric information for instances of columns, slabs, walls and a 
base, are provided as shown in Figure 1 below. The assemblages of these 
components describe the difference gained by adding the first floor and some of 
the exterior brick walls. Accompanying these models are a number of images 
taken from a variety of angles around the site – at reasonably close range such that 
the majority of the entire building is in view.  
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Figure 1: Individual labelled components for two phases of construction. 

3.2  Extraction of Scene Structure for Matching 

We first apply a standard Canny edge detector to the input image generating a 
map of high-contrast image points, or contour elements. From this we join the 
individual edges into line segments if they are of a certain size (at least 30 pixels) 
and if they can be joined with other edges within a certain angle (<0.05 radians) 
and gap (<=15 pixels). Final results are around 2000 individual segments – as 
defined by the co-ordinates of the two end points as show in Figure 2. Notice 
however that shadowing can create additional edges, and that regions of similar 
contrast can results in none. Further refinement of these segments could be 
achieved by only accepting those that lie towards a vanishing point, or can be 
matched via a Hough transform, or limited to those that occur start at a corner 
point. These could possibly further reduce the amount of clutter and reveal true 
structure. 
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Figure 2: Images (left), edges (middle), and extracted line segments (right). 

3.3  Location of Components in the Scene Structure 

Having then extracted the dominant line segments in the scene, we can then 
attempt to match to the 3D data.  Our approach is a model based fitting approach 
to pose estimation, which exploits the context provided by fitting all components, 
but removing those edges from the model that are not visible from the suggested 
camera pose. This distance between back-projected edges and the discovered line 
segments is derived by first representing each line as an end point (x, y) and angle 
(theta). All edges over a certain length (15 pixels) are split into smaller segments 
and each segment is represented twice – since each line can be said to have two 
directions (David and DeMenthon, 2005). The final distance is the Sum Squared 
Error between matching closest model and image segments. 

We then use a standard particle swarm optimisation (Clerc and Kennedy, 2002) 
technique to attempt to minimize this distance. This is a suitable non-linear 
technique that combines a good degree of freedom to generate possible poses – 
yet will constantly converge toward the best overall solution. We aim to further 
help this minimization by constraining the camera angle, such that it is never too 
close to the model, and that it never looks completely away from the centre. These 
safeguard against degenerate solutions in which no lines would match and would 
only confuse the algorithm. The initial starting pose (which must be relatively 
close to the image) is shown in Figure 3. 
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Figure 3: Initial model poses projected onto image and discovered line segments. 

3.4  Evaluation of Individual Components 

Once the optimisation has converged the model has been aligned to the image line 
segments. From this global fitting we then further attempt to optimise each unique 
component in turn. The idea here is that any serious deviation from the individual 
pose solution gives and indication that local structure is sufficiently present in the 
image to justify its presence. Conversely, any component that cannot be supported 
by the data (without the support of the surrounding context of other components) 
will result in a radically different pose. If the camera location or angle varies by 
more than 5% we thus reject that component. The final output for found 
components is shown in Figure 4 below. 

 

Figure 4: Final pose and components found. 

4. Conclusion 

In this paper we have proposed the possibilities and advantages for estimating 
progress of construction by automatically locating components in images of the 
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site. We have summarized how the trend to achieving this has been driven by 
recent work focusing on control for construction management, standard 
component frameworks, and the ability to leverage design phase 3D models.  
Having presented a review of the current state of the art, and the challenges posed 
by the complexity of construction sites, we showed how techniques in Computer 
Vision could potentially provide a solution. While this has potential, many 
problems still remain for not only finding components, but in then accurately 
measuring their level of “completeness”. The main benefit offered by this work is 
for a possible means of maintaining on-demand productivity metrics at a finer 
granularity than currently supported by occasional site survey. Ultimately such 
information can be used for quicker release of interim payments on the basis of 
completed work-packages, and to enable integrated cost and schedule control. 

For our future work we aim to build more robustness around the prototype 
framework we propose here for finding components. Currently a considerable 
amount of parameter adjustment and initial pose alignment needs to be performed 
to guarantee a solution. Ideally, we would like to remove all dependencies on user 
interaction, or the need to specifically tailor the system to a particular site. We 
also wish to push the limits toward much more realistically complex and useful 
test cases in order to truly verify the potential for this approach. This will lead us 
to tie in the status of multiple components to estimation of entire work package 
progress. Furthermore, there are other possible uses for Computer Vision analysis 
of regularly recorded images of the site. These include route/activity analysis – 
showing current “hot spots” of work with the potential to modify layout for 
increased productivity and safety. Alternatively, attempting to actually recognize 
what the materials and equipment is on site (as opposed to the structure) would be 
possibly useful to identify deliveries and provide an up-to-date inventory for 
management of resources.  
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