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Summary 
This paper reviews several utility bills analysis methods for predicting building energy consumption in the 
tropical region. Firstly, a multiple linear regression analysis method is applied to six commercial buildings, 
trying to establish an accurate linear prediction models. Three independent variables, namely, outdoor dry-
bulb temperature (T0), relative humidity (RH) and global solar radiation (GSR) are taken as independent 
variables. Secondly, in order to explore the non-linear performance of landlord energy use, artificial neural 
networks (NN) and support vector machines (SVM) are utilized to predict landlord energy consumption. 
Another four buildings are involved in these two methods. The data from four years’ bills are used to train 
and test the models. In addition, 2R , mean absolute error (MAE) and coefficient of variance (CV) are taken 
as three model performance criteria.  
The results show that in most cases outdoor dry-bulb temperature accounts for more than 80% of the 
changes of whole building energy consumption. In addition, most of the CVs of prediction models are below 
7%.  Support vector machines present the best prediction results with lowest mean absolute error (MAE) 
within 4% and CV within 3%. This study is important for energy services companies and building owners to 
track energy use during the building retrofitting period in the tropical region.  
 

1. Introduction 
Since the energy crisis of 1970s, people began to recognise the needs for efficient energy use. In the 
shortage of natural resources fundamental to the generation of electricity in Singapore, energy remains a 
critical factor for the success of all economies in the immediate and long-term future. Previous building 
energy research conducted by the Building and Construction Authority of Singapore (BCA) shows that the 
energy consumptions in buildings accounts for approximately 37% of the whole electricity consumption in 
Singapore. Particularly, energy consumption in office buildings accounts for nearly 57% of the total electricity 
consumption in buildings.  Such high energy consumption may be resulted from the combined impact of 
common deficiencies in building design and operation, for example, outdated and inefficient equipment, 
improper equipment selection and installation, lack of inadequate commissioning efforts, and inadequate 
maintenance. One of the cheapest and most useful ways to reduce this high consumption is by enhancing 
energy efficiency through the application of applying energy conservation measures (ECMs).  
A crucial element in the implementation of an energy conservation program is the ability to verify savings 
from measured energy use data (Fels and Keating, 1993). The determination of energy savings requires 
both accurate measurement and reliable methodology. However, there is no direct way of measuring energy 
use or demand savings since instruments cannot measure the absence of energy use or demand after 
retrofitting. The baseline model developed from utility bills provides a way to compute such savings. The 
accurate of the baseline model is totally based on the accurate of prediction methods. Many efforts have 
been taken on the development and improvement of the prediction methods as accurate as possible (Fels et 
al., 1986; Kissock et al., 1993; Krarti et al., 1998; Dhar et al., 1999). However, in most practical cases, utility 
bill data are used because they are widely available and inexpensive to obtain and process. In the tropical 
region, B.Dong et al. (2005) utilized two years’ utility bills to establish a baseline model and the results 
showed MAE.   
In this paper, a review of utility bill analysis methods in the tropical region was presented based both on the 
whole building level and landlord level.  The reason for the research on the landlord energy consumption is 
that the building owner often received the landlord bills only. It seems more meaningful to baseline landlord 
energy consumption rather than the whole building energy use for the benefits of both building owners and 
ESCOs. However, the method on the whole building energy consumption will be evaluated firstly. Totally ten 
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buildings are involved in this study. In all the methods applied, the weather parameters, namely, outdoor dry-
bulb temperature ( 0T ), relative humidity (RH) and global solar radiation (GSR) are taken as three 
independent variables.   
 

2. Performance Criteria  
The criterion used to select the most appropriate regression model is to maximize the goodness of fit using 
the simplest mode or combination of models (Draper and Smith, 1981). According to the literature review, it 
is believed that the coefficient of determination ( 2R ) and the coefficient of variance of the root-mean-square 
error (CV-RMSE) are two major measures to evaluate the goodness of fit of a model. The CV-RMSE is a 
non-dimensional measure that is found by diving root-mean-square error (RMSE) by the mean value of total 
energy consumption E . It is usually presented as a percentage. A CV-RMSE value of 10% indicates that the 
mean variation in E  not explained by the regression model is only 10% of the mean value of E  (Reddy et 
al., 1997a). The CV-RMSE defined below:    
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iE  is the measured energy consumption of single month/day/hour i  ( i =1,…n). E  is the mean value of E . 
Ê  is the value of E  predicted by the regression model, n is the number of observations; p is the number of 
model parameters. 
For simplicity, the direct deviation between the two types of energy consumption values, measured versus 
predicted, which is also called mean absolute error (MAE), is defined below: 
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How to determine the goodness of the model with the two measures, namely, 2R  and CV-RMSE, has been 
well discussed and examined by researchers. Fels et al. (1993) arbitrarily suggested that monthly models 
with 2R ≥ 0.7 and CV-RMSE ≤ 7% be deemed “good” models. Reddy et al. (1997a) pointed out that CV-
RMSE less than 5% are considered excellent models, those less than 10% are considered good models, 
and those less than 20% are taken to be mediocre models and those greater than 20% are considered to be 
poor model. In this study, the values of 2R  and CV-RMSE are following the criteria pointed out by Reddy et 
al. (1997a) because it was concluded from the whole building energy consumptions.  
Another important evaluating parameter for model prediction ability is the variance of forecast error (VAR).  
VAR is defined below (Tan, 2002): 
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Where, S is the standard error of the estimate as given below:  
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And, ie  is value of the residual; n is the sample number; p  is the model parameter. Finally, the predicted 
energy consumption may be expressed as VAREE ±= ˆ& .  
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3. Approaches 

3.1 Possibilities of Utility Bill Reading Dates 
Before any approach is concerned, an important thing in the model development is to verify uncertainty in 
the bill reading dates. Neither the building owners nor Singapore Power Service Company provide detailed 
information on utility bill reading dates. In addition, every building may have its own policy for recording 
electricity use. Hence, it is difficult to verify the specific utility reading period. Here, the methodology was 
recommended by Reddy et al. (1997a) who pointed out that there were three possibilities in recording 
building energy use: 
a) The utility bill period is correspondent with weather data period. It means that the utility bill reading dates 
are the same dates as weather data dates. 
b) The utility bill period is one month later than the weather data period. It means that the present utility bill 
actually represents the previous month’s electricity use. This situation always happens 
c) The utility bill period is 15 days later than the weather data period. It means the readings of utility bills 
begin around the middle of the month. 
For each of the baseline model, all these three possibilities are performed. Then, the one which has the 
best-fit regression is selected. 
 

3.2 Whole Building Energy Consumption 

3.2.1 Data collection 
Six buildings were selected randomly among all the buildings around the Central Business District in 
Singapore. They are all office buildings for commercial use. The utility bills of these six buildings were 
collected through surveys which were carried by the previous research on building efficiency (Lee, 2001). In 
order to retain the individual building anonymity, these twelve buildings are referred to as building A, B, C, D, 
E and F. Table 1 shows the building size and the annual energy use of these buildings. For building A, B and 
C, 2000 was their modeling year. Building D, E, H, I and J take year 2001 as their modeling year. The utility 
bills from building F are only available from September 1999 to September 2001 and therefore the baseline 
year is set to be from October 2000 to September 2001. 

Table 1 Size and energy use in six buildings  

 
Building Modeling Year Total Bldg. 

Area(m2) 
Air Conditioned 

Area(m2) 

Total Bldg. 
Energy 

Consumption 
( MWh/yr) 

A 2000 20 165 12 268 3 470 
B 2000 32 368 24 825 6 034 
C 2000 42 026 25 822 9 998 
D 2001 60 894 36 688 11 551 
E 2001 42 060 25 833 8 031 
F Oct 00~ Sept 01 43 187 34 753 7 880 

 

2.2.2 Multivariate regression analysis (MLR)  
 
The multiple linear regression model is derived as follows: 

GSRRHTE 32010
ˆ ββββ +++=                                                                                                              (6) 

 
Where, 1β , 2β and 3β are regression coefficients.  
An important verification parameter in the multiple linear regression (MLR) analysis is the partial correlations. 
The partial correlations procedure computes partial correlation coefficients that describe the linear 
relationship between two variables while controlling for the effects of one or more additional variables (SPSS 
1999). This parameter clearly shows the correlations between every independent variable with the 
dependent variable (Dong et al. 2005).  
The whole multiple linear regression analysis is processed using backward elimination method in SPSS. 
After the regression model containing all variables has been set up, the partial F-test is calculated for every 
predictor variable. Based on the critical F-value, which are defined as 0.1 in this study, the backward 
procedure removes all unneeded X-variables one by one. This backward method lists all possible 2R  based 
on three possible variables. Hence, when adding additional variables, it can check its effect to the regression 
model itself. The detailed process can be referred to Dong et al. (2005).  
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3.2 Landlord Energy Consumption 
A buildings’ landlord energy consumption refers to the energy utilized by the common facilities, systems, 
services and space provided by the landlord. typically comprising: a) Air-conditioner central plant system; b) 
Vertical transportation service such as escalator and lift; c) Ventilation system such as exhaust fan and 
ventilator; d) Artificial lighting system in the common area. Obviously, the usages of these systems present 
certain non-linear performance between building energy use and weather data. 
 

3.2.1 Data Collection 
Another four buildings, namely G, H, I and J were selected and, this time, four years’ bills were collected.  
The details are shown in Table 2.  
 

Table 2 Size and energy use in four buildings  

Building Training Year Test Year Building Design 
Efficiency (%) 

Total Landlord 
Energy 

Consumption 
( MWh/yr) 

G Oct.1996~Oct. 
1998 and 2000 2001 61.44 5,291 

H Oct.1996~Oct. 
1998 and 2000 2001 56.26 6,024 

I Oct.1996~Oct. 
1998 and 2000 2001 54.77 7,681 

J Oct.1996~Oct. 
1998 and 2000 2001 77.69 15,400 

 
3.2.2 Neural Networks (NN) 
The neural networks toolbox in this study is MATLAB 6.5. The algorithm applied inside is back-propagation 
(BP). The network had one input layer, one hidden layer of different neurons and one output layer. The 
transfer functions for the three layers were tan-sigmoid, tan-sigmoid and linear, respectively.  
The total input parameters are four including three weather data and the time tag. The output is the building 
landlord’s energy consumption. The first three years’ data was used for training and another one year utility 
bill was used for testing and verification. In this study, the projected year was selected forward to year 2001. 
It is the same when someone wants to predict backward. The same input information was collected in year 
2001. Finally, the predicted annual whole building landlord energy consumption was compared with the 
actual measured value.  
In the training of the back-propagation network, the number of neurons in the hidden layer is set from 1 to 10 
because the size of the network should be controlled by the ratio of free parameters to the number of training 
samples. By varying the number of hidden nodes, the best performance of BP networks was determined 
based on the MSE. The number of epochs is set to be 500 in this study. The stop criterion is set to be 10-5. 
After the number of hidden nodes of best performance is chosen, neural networks ran 30 times again on the 
optimum point and the averages of best five results were selected. It is because the random selection 
characters of neural networks.   
 
3.2.2 Support Vector Machines (SVMs) 
Support vector machines (SVMs), developed by Vapnik and his co-workers in 1995, has been widely applied 
in classification, forecasting and regression of random data set. One of its main application fields in 
regression modeling is the time series financial forecasting. Their practical success can be attributed to solid 
theoretical foundations based on Vapnik-Chervonenkis Theory (Cherkassky et al., 2004). The detailed 
theory can be found in Vapnik et al. (1996). Simply speaking, SVMs is based on the structural risk 
minimization (SRM) inductive principle which seeks to minimize an upper bound of the generalization error 
consisting of the sum of the training error and a confidence level. This is the difference from commonly used 
empirical risk minimization (ERM) principle which only minimizes the training error. Based on such induction 
principle, SVMs usually achieves higher generalization performance than the traditional neural networks that 
implement the ERM principle in solving many data mining problems (Dong et al. 2005).  
This is the first time that SVMs is applied in the building energy consumption prediction. The principle of 
SVMs is to map non-linear functions in the low space to the high space to be linear problems by the use of 
the kernel function. All necessary computations can be performed directly in a high dimensional feature 
space and a linear function is trained in such a space, without having to compute the map ( )xφ .Some 
popular kernel functions are the linear kernel ( , )i j i jK x x x x= ⋅ , polynomial kernel ( , ) ( 1)d

i j i jK x x x x= ⋅ + and 

 

The 2005 World Sustainable Building Conference,
Tokyo, 27-29 September 2005 (SB05Tokyo) 



 

the radial basis function (RBF) kernel
2

( , ) exp( )i j i jK x x x xγ= − − , γ >0, where d and γ  are the kernel 
parameters. Most of the previous research selected Gaussian function which is included in RBF as the 
kernel model for regression.  The selection of parameters of the kernel function, namely C andε  is based on 
the stepwise search pointed out by Dong et al. (2005). In the stepwise method, one-time search was first 
conducted to get MSE1. Then, the same selection process is conducted again on parameter C (fixing the first 
result ofε ) and ε (fixing the second result of C), to get lowest MSE2. The one-time search continues until 

nMSE - 1−nMSE <0.00001, which is the normal stop criteria for neural network training, and then, the training 
stopped.  Finally, after the best (C,ε ) is found, the whole training set is trained again to generate the final 
regressor.  
Libsvm-2.6(Chang and Lin, 2001) developed by Chih-Chung Chang and Chih-Jen Lin, is applied in this study 
to produce and test the application of SVMs on predicting building energy consumption. The training inputs 
and outputs are the same as NN.  
 

4. Results and Discussion 

4.1 Model Identification 

4.1.1 Whole building approach 
 
Table 3 shows the results of multiple linear regression analysis. This MLR regression process checked the 
individual effect of each variable to the whole MLR model and settled down the final variable in the projected 
regression baseline model. As shown in table 3, for example, the partial R of 0.92 for T0 means that the 
outdoor dry-bulb temperature explains 92% of the variation in the whole building energy consumption. For all 
these six buildings, T0 explains most of the variation in the whole building energy use followed by RH and 
GSR. In addition, judging from the t test, at 90% confidence level, only T0 is statistically significant for most of 
the buildings. RH and GSR are both rejected for all buildings except building A. Hence, at 90% confidence 
level, only the model for building A is accepted as a multiple linear regression model. All other models for the 
left five buildings are single variant linear regression models. However, as it is shown that T0 is the main 
contribution to the changes of whole building energy consumption, namely, all the partial R of T0 is more than 
80%, and to be simpler and more practical, in this paper, we only consider T0 as our model independent 
variable.  
 

Table 3. Summary of Multiple Linear Regression Results 

A B C Varia
bles Correlation Correlation Correlation 

 Partial 
R 

Model 
R2 

t Partial 
R 

Model 
R2 

t Partial 
R 

Model 
R2 

t 

T0 0.93 7.10 0.86 4.77 0.82 4.6 
RH 0.35 1.01 0.36 1.07 0.15 0.43

GSR -0.66 
0.92 

-2.49 -0.35 
0.79 

-1.06 -0.15 
0.76 

-0.43
(Continued) 

D E F Varia
bles Correlation Correlation Correlation 

 Partial 
R 

Model 
R2 

t Partial 
R2 

Model 
R2 

t Partial 
R 

Model 
R2 

t 

T0 0.87 5.06 0.86 4.8 0.89 5.6 
RH 0.12 0.31 -0.28 -0.84 0.44 1.37

GSR -0.13 
0.78 

-0.37 0.08 
0.81 

0.23 0.18 
0.82 

0.51
 
After the model was identified, it was used to predict energy consumption for another 12 months. The results 
of the prediction are shown in table 4.  The direct deviations from modeled and measured energy use are all 
below 5%, except for building D. The lower the deviation, the more accurate the predicted energy 
consumption is. For building A, the monthly electricity use in year 2001 is predicted to be 24.11(±1.71) 
(kWh/m2/month), an increase of about 0.92%, while the measured energy use is 23.52(kWh/m2/month), an 
increase of about 2.45%. They are very near. The results in building D are not good enough.  
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Table 4 Prediction results of whole building energy consumption 

Building 
Annual Energy Use 

(kWh/m2/month) 
CV (%) 

VAR(Model) 

(kWh/m2/month) 
MAE (%) 

 Measured Modeled    

A 23.52 24.11 3.48 2.92 2.51% 

B 20.26 20.59 3.80 1.35 1.64 

C 32.87 32.09 2.78 2.60 2.42 

D 28.59 24.22 3.49 29.79 15.33 

E 25.55 25.76 3.76 2.05 0.8 

F 18.81 18.34 3.32 2.83 2.5 

 

4.1.1 Landlord approach  
 
The same utility bill analysis method was applied when selecting the suitable bill period.  
 

Table 5 Results of neural networks training and prediction  
 
 
 
 
                               
 
 
 
 
 
 
 
 
Table 5 shows the results of prediction CV and prediction accuracy. All the prediction CV is larger than 7%, 
which is deemed the CV of an excellent model. However, the MAE, which show the annual energy 
consumption prediction error, are all below 10%. Two out of four MAE are below 2%.  For building H, it is 
particularly good, which is only 0.64%. However for building I, both the prediction CV and MAE are highest 
among these four buildings, which are 15.12% and 7.33 respectively.  It shows that the NN model has a 
good performance in forecasting the annual energy consumption for the landlord energy consumption, but 
not the monthly consumption.  This undesirable result initiated our motivation to search an improved new 
method to predict the building landlord energy consumption.  
The summary of results of SVMs is shown in Table 6. Table 6 shows that building G has the highest MSE of 
0.73, while building J has the lowest MSE of 0.14. All CVs, which represent the variances from the true value, 
are very small and those values are less than 3%. This indicates all SVMs models can be considered as 
excellent models according to Reddy et al. (1997a). Comparing with other studies conducted using other 
methods such as neural networks (NN) and genetic programming (GP) on the building load research based 
on hourly or daily data, which are 1993 ASHRAE Competition demonstrated the best CV of 10.36% (NN) on 
the whole building energy consumption, Kreider et al. (1998) found the best CV of 4.7% (NN) on chilled 
water and Chen et al. (2003) found the best CV of 14.7% (GP) on the HVAC load,  SVM in this study shows 
better results in terms of CV. The highest CV of 2.89% appears in Building G, while the lowest CV of 0.99% 
appears in Building J. Furthermore, the MAE is also small. The best MAE appears in building I, which is only 
0.68%. 
Figure 1 shows the graphical results of predictions for four commercial buildings. Obviously, Building J 
shows the best prediction result. Because of low CV in building J, the predicted values are almost the same 
as real values. In addition, all four predicted value curves tracked the variation of real values correctly. It 
indicates that such kind of method can be applied in tracking the monthly building energy use for diagnosing 
whether the systems are working properly or not.   

Neuron Numbers in The Hidden Layer/Predicted 
Consumption Building 

Ref. No. 
Actual  Value 

(kWh/month/m2) 8 9 10 MSE 
Prediction 

CV (%) 
 

MAE 
(%) 

G 10.55 10.39   0.78 9.67 -1.5 
H 11.05   11.12 3.83 15.5 0.64 
I 9.54   10.23 1.58 15.12 7.33 
J 12.59  11.82  2.38 14.17 -6.2 
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(c)                                                                                   (d) 
 
 

4.2 Comparison of Three Approaches 
 
Although the buildings for predicting whole building energy consumption are different from the buildings for 
landlord energy consumption, the prediction results still potentially indicate the differences between these 
three methods. From table 4 and 5, in terms of MAE, the MLR and SVMs method is slightly better than NNs 
method. While with regard to the value of CV, SVMs is much better than the other two methods with all value 
below 3%. Table 5 shows the results of comparison on landlord energy consumption between NN and SVMs. 
The better CV indicates the stronger tracking ability of SVMs on the monthly basis. It is because of the 
Structural Risk Minimization (SRM) principle and unique and optimal solution of SVMs. The final results 
demonstrated that SVMs is feasible and applicable in prediction of monthly landlord utility bills in the tropical 
region. Moreover, the application of this methodology is not limited to only the tropical region based on its 
strongly theoretical background and regression characters. 

Table 6 Results of comparison on landlord energy consumption between NN and SVMs 
 

 MAE CV(%) 
Building NN SVMs NN SVMs 

A -1.5 -2.72 9.67 2.69 
B 0.64 3.44 15.5 2.39 
C 7.33 0.68 15.12 1.28 
D 6.2 -1.89 14.17 0.99 

 

5. Results and Discussion 
 
The methodology for prediction building energy consumption is important for developing the baseline models, 
which is crucial and necessary for any performance contracting and M&V protocol. The baseline model is a 
key to secure and verify savings from energy retrofitting programs. The main purpose of this paper is to 
investigate several mathematical methodologies for prediction and comparison.  The weakness and 
strangeness of different methods are presented as the different prediction results. Such holistic analysis is 
useful for energy services companies (ESCOes) to select appropriate methods according to different 
situations such as available bills and model levels. The main contribution of this study is to explore a new 
method called support vector machines and stepwise search for its parameters’ optimization. Finally, the 
results of baseline models clearly and accurately show and simulate the tendency of energy consumption 
along the time.  They help building owners to track building normal operations and the ESCOes to secure 
their energy savings in the EPC or IPMVP programs.  
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