Forschung & Entwicklung

Kurzbericht
Dauerhaftigkeit VIP

Dezember 2012
Kurzbericht
Dauerhaftigkeit VIP

Thema
CO₂-Einsparung mit Vakuum-Isolations-Paneelen (VIP): Untersuchung der Dauerhaftigkeit von VIPs mit verklebten Schutzschichten und in der klebetechnischen Anwendung

Kurztitel
Dauerhaftigkeit VIP

Gefördert durch
Deutsches Institut für Bautechnik (DIBt)

Forschungsstelle
ift gemeinnützige Forschungs- und Entwicklungsgesellschaft mbH
Theodor-Gietl-Straße 7–9
83026 Rosenheim

Projektleitung
Dipl.-Phys. Norbert Sack

Projektbearbeitung
Dr. Ansgar Rose

weitere Forschungsstelle
Forschungsinstitut für Wärmeschutz e.V.

Bearbeiter
Dipl.-Ing. (FH) Wolfgang Albrecht
Dipl.-Ing. (FH) Stefan Koppold

Rosenheim, Dezember 2012
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Beitrag</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motivation und Projektziel</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Vorgehensweise</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Durchgeführte Untersuchungen</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Danksagung</td>
<td>11</td>
</tr>
</tbody>
</table>
1 Motivation und Projektziel

Dauerhaftigkeit VIP

2 Vorgehensweise

Die Projektarbeit folgte im Wesentlichen dem Arbeitsplan gemäß Förderungsantrag:

Tabelle 1 Arbeitsplan

<table>
<thead>
<tr>
<th>Forschungsabschnitt</th>
<th>Leistungsbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analyse</td>
</tr>
<tr>
<td></td>
<td>Analyse und Klassifizierung hinsichtlich</td>
</tr>
<tr>
<td></td>
<td>• Bisherige Erkenntnisse zur Thematik (öffentliche Forschung, Erkenntnisse der Projektpartner)</td>
</tr>
<tr>
<td></td>
<td>• Verwendete Folien und ihr Aufbau für VIP</td>
</tr>
<tr>
<td></td>
<td>• Kleber und andere Materialien wie Klebemörtel, Putz, Estrich, Betoninhaltstoffe, die in Kontakt mit den VIPs stehen</td>
</tr>
<tr>
<td></td>
<td>• Weitere Belastungen, die z.B. durch die Verklebung auf das VIP wirken; Beispiel: unterschiedliche Längenausdehnung</td>
</tr>
<tr>
<td></td>
<td>• Analyse weiterer Randbedingungen in der Nutzungsphase wie Temperaturen, Strahlung, Feuchtigkeit etc.</td>
</tr>
<tr>
<td>2</td>
<td>Festlegung der Untersuchungsschwerpunkte und der entsprechend durchzuführenden Prüfungen</td>
</tr>
<tr>
<td></td>
<td>Aufgrund der Ergebnisse der Analyse werden die relevanten Untersuchungsschwerpunkte sowie die hierzu notwendigen Prüfungen festgelegt:</td>
</tr>
<tr>
<td></td>
<td>• Kombination der Folien und Klebstoffe bzw. Stoffe wie Beton, Estrich etc.</td>
</tr>
<tr>
<td></td>
<td>• Anzahl und Größe der Probekörper</td>
</tr>
<tr>
<td></td>
<td>• Sonstige Belastungen wie Temperatur, Druck, Zwängung</td>
</tr>
<tr>
<td>3</td>
<td>Vorbereitung der Probekörper</td>
</tr>
<tr>
<td></td>
<td>Zur Durchführung der in 2 festgelegten Untersuchungen werden die notwendigen Probekörper hergestellt. Dies erfolgt zum Teil bei den in das Projekt mit eingebundenen Industriepartnern als auch bei den beiden Forschungsstellen.</td>
</tr>
<tr>
<td>4</td>
<td>Durchführung der Untersuchungen/Prüfungen</td>
</tr>
<tr>
<td></td>
<td>An den entsprechend 3 hergestellten Probekörper werden hinsichtlich der in 2 festgelegten Belastungen Untersuchungen durchgeführt. Um eine Aussage zu erhalten, ob die jeweilige Belastung zu signifikantem Einfluss geführt hat, können folgende Parameter und deren Änderung ermittelt werden:</td>
</tr>
</tbody>
</table>
Dauerhaftigkeit VIP
Vorgehensweise

<table>
<thead>
<tr>
<th>Forschungsabschnitt</th>
<th>Leistungsbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Wärmeleitfähigkeit entsprechend EN 12667</td>
</tr>
<tr>
<td></td>
<td>• Gasdrucks im Panel (Verfahren im Rahmen der WPK der Hersteller)</td>
</tr>
<tr>
<td></td>
<td>• Gaspermeationsraten</td>
</tr>
<tr>
<td></td>
<td>• Visuelle Prüfung auf Veränderungen der Folie</td>
</tr>
<tr>
<td></td>
<td>• Evtl. mechanische Prüfungen an den Folien</td>
</tr>
<tr>
<td>5</td>
<td>Auswertungen der Untersuchungen</td>
</tr>
<tr>
<td>6</td>
<td>Dokumentation</td>
</tr>
<tr>
<td></td>
<td>Die durchgeführten Analysen, Untersuchungen und Ergebnisse werden in einem Bericht dargestellt, diskutiert und bewertet.</td>
</tr>
</tbody>
</table>

Im Rahmen des Forschungsvorhabens wurden alle Arbeitspunkte entsprechend den Leistungsbeschreibungen des Arbeitsplanes durchgeführt. Dabei diente die erste Projektphase der Orientierung. Es wurde die

- Einwirkung mehrerer verbreiteter Baukleber auf Folie, Siegelnahnt und Paneele

untersucht. Gleichzeitig wurde die Eignung der ausgewählten Analysemethoden geprüft. Nach Auswertung der Ergebnisse und Erfahrungen aus der ersten Projektphase wurden die Untersuchungsschwerpunkte der zweiten Projektphase von der Projektgruppe ausgewählt:

- Einwirkung nicht aushärtender (feuchter) alkalischer Kleber
- Einwirkung von Feuchtigkeit und ausgewaschenen Salzen aus dem Untergrund
- Belastung von Paneelen durch thermische Ausdehnung des Untergrundes
Dauerhaftigkeit VIP

3 Durchgeführte Untersuchungen und Ergebnis

3 Durchgeführte Untersuchungen

Um das Projektziel zu erreichen, wurden Folien, Siegelnähte und VIPs Belastungen unterworfen, die in typischen Bauanwendungen auftreten können, wenn die Paneele mit Klebstoffen auf dem Untergrund befestigt werden:

- Kontakt mit ausgehärteten Klebstoffen über einen langen Zeitraum, simuliert durch eine mehrmonatige Lagerung bei erhöhter Temperatur.
- Kontakt mit unausgehärteten (feuchten) Klebstoffen über mehrere Wochen, um die verzögerte Aushärtung von Klebstoffen hinter/unter großflächigen Paneelen zu simulieren.
- Kontakt mit alkalischer Feuchte über mehrere Monate, um die Einwirkung von Auswaschungen aus dem Untergrund zu simulieren.
- Thermisch/mechanische Wechselbelastung von Paneelen, um Belastungen zu simulieren, die in der Bauanwendung durch thermische Ausdehnung des Untergrundes auftreten.

3.1 Kontakt mit ausgehärteten Klebstoffen

Die Wirkungen der Belastungen auf die Probekörper wurden durch folgende Analysemethoden beurteilt:

- Messungen des Gasinnendrucks von VIPs,
- Messung der Wärmeleitfähigkeit von VIPs,
- Messung der Zugfestigkeit von VIPs senkrecht zur Plattenebene,
- visuelle Inspektionen der Folien,
- Bestimmungen der Gaspermeation der Folien,
- Messung der Zugfestigkeit der Siegelnähte.
Abbildung 1 stellt exemplarisch die Ergebnisse der Gasinnendruckmessungen dar.

![Diagramm der Gasinnendruckmessungen](image)

Abbildung 1 Zeitabhängiger Gasinnendruck nach der Beschichtung mit verschiedenen Klebstoffen, Probe 200 mm x 200 mm x 10 mm

Basierend auf den durchgeführten Untersuchungen lassen sich keine signifikanten Wirkungen von (ausgehärteten) Klebstoffbeschichtungen auf die Folienumhüllung von VIPs ableiten.

3.2 Kontakt mit unausgehärteten (feuchten) Klebstoffen

Werden Vakuumisolationspaneeele mit Klebstoffen auf nicht saugfähige oder diffusionsbehindernde Untergründe aufgebracht, so kann ein verzögertes Aushärtung von Klebstoffen auftreten. Im Regelfall wird die Aushärtung zunächst nur am Rand der Paneelfläche stattfinden; im Zentrum der Paneelfläche dauert die Aushärtung, je nach Größe des Paneels und Dicke der aufgetragenen Klebstoffschicht, länger. Im schlimmsten Fall verbleibt feuchte, teigige Klebstoffmasse dort sehr lange. Ist der feuchte Klebstoff alkalisch, so könnte auch die Aluminiumbeschichtung korrodieren und die Gasundurchlässigkeit der Folienumhüllung beeinträchtigt werden.
Dauerhaftigkeit VIP

3 Durchgeführte Untersuchungen und Ergebnis

Um diesen Sachverhalt zu untersuchen, wurden zwei geeignete Klebstoffe ausgewählt und auf Folien, Siegelnähte und Paneele aufgetragen. Zur Verhinderung oder zumindest Verlangsamarung der Aushärtung wurden die Klebstoffschichten mit Folie abgedeckt und die Probekörper zusätzlich in Folienbeutel eingeschweißt. Im Abstand von mehreren Tagen erfolgten visuelle Inspektionen, Festigkeitsprüfungen der Siegelnähte (siehe Abbildung 2) und Gasinnendruckmessungen.

Es zeigte sich im Rahmen der durchgeführten Untersuchungen keine Schädigung der Folienumhüllung durch feuchte alkalische Klebstoffbeschichtungen. Jedoch kann bei einer länger andauernden Einwirkung von feuchten alkalischen Klebstoffen eine Schädigung der Siegelnahht nicht ausgeschlossen werden. Es erscheint daher ratsam, eine langfristige Einwirkung von alkalischer Feuchte, auf Folienumhüllungen, insbesondere die Siegelnähte, zu vermeiden.

3.3 Kontakt mit alkalischer Feuchte

Das Problem der Einwirkung von Feuchtigkeit und alkalischen Medien wurde im vorigen Kapitel bereits behandelt. Dort ging es um nicht-aushärtende Klebstoffe. Aber auch der Untergrund, auf den die VIPs aufgeklebt sind, kann über
Kapillarwirkungen Feuchtigkeit an die Folienumhüllung heranführen. Beim Kapillartransport des Wassers durch den Untergrund können Salze, z.B. aus dem Mauerwerk oder Beton, ausgewaschen werden, so dass die Folienumhüllung auch in diesem Fall mit einer alkalischen Lösung in Kontakt kommen kann.

Diese Belastungen wurden für Folien/Siegelnähte und Paneele durch unterschiedliche Untersuchungen simuliert:

![Abbildung 3 Zugfestigkeit der Siegelnähte nach Einwirkung von NaOH](image-url)
Dauerhaftigkeit VIP

3 Durchgeführte Untersuchungen und Ergebnis

Eine Schädigung der Siegelnäht durch alkalische Feuchte (Auswaschungen aus dem Untergrund) kann nicht ausgeschlossen werden. Es erscheint ratsam, eine langfristige Einwirkung von alkalischer Feuchte auf Siegelnähte zu vermeiden.

Thermisch/mechanische Wechselbelastung von Paneelen

Neben den chemischen Belastungen, die in den drei vorangehenden Kapiteln behandelt wurden, können VIPs in der Bauanwendung auch mechanischen Belastungen durch thermische Ausdehnung des Untergrundes, auf den sie aufgeklebt sind, ausgesetzt sein.

Die thermische Ausdehnung von VIPs ist im Wesentlichen durch das Kernmaterial bestimmt. Hat der Untergrund einen größeren thermischen Ausdehnungskoeffizienten und ist die Klebeverbindung steif, so werden bei Temperaturänderungen Zug- und Scherkräfte im Paneel erzeugt.

Um die Belastungen durch thermische Ausdehnung des Untergrundes zu simulieren, wurden Paneele auf Aluminiumplatten aufgeklebt und einer Temperaturwechselbelastung von mehr als 130 Zyklen ausgesetzt.

Abbildung 4 Probekörper in der Klimakammer
Basierend auf den durchgeführten Untersuchungen kann keine signifikante Wirkung temperaturbedingter mechanischer Wechselbelastungen auf die Folienumhüllung von VIPs abgeleitet werden.
4 Danksagung

Besonderer Dank gebührt auch folgenden Industriepartnern, die das gesamte Projekt sowohl ideell als auch finanziell unterstützen und somit zum Gelingen beitrugen:

va-Q-tec AG
Würzburg

Variotec GmbH & Co KG
Neumarkt