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1 Project Objective 

An increasing number of office and administrative buildings are equipped with 
thermally active floors. To cease to apply an acoustic suspended ceiling means 
to lose the most precious surface for room acoustic attenuation. The project 
was aimed developing sound absorbing systems for thermally active concrete 
floors which  

− have an adequate sound absorption coefficient dependent on the use with 
simultaneous minimum thermal losses,  

− have an even and planar surface to support present architectural trends,  

− guarantee high economic efficiency with simple building site operation. 

The solutions should allow an equally distributed sound absorption of the floor 
surface. This assures a basic attenuation of rooms with intensive communica-
tion as well as represents the condition for a flexible design of the acoustic 
separation of workstations by means of acoustical screens. 

2 Procedure 

An approach was alternatively aligned absorber strips and a sound-reflecting 
concrete floor. The change of acoustic impedances results in clearly higher ab-
sorption coefficients in comparison to the periodic structure with the same ab-
sorber surface. Thus, the proportion of thermally insulating absorbers can be 
kept at such a low degree so that the influence on cooling is negligible. Strips 
which are completely installed in the concrete floor allow an even surface.  

A computed prognosis is important for the acoustic optimization of the strip 
geometry. Therefore, a theoretical modeling of the acoustic properties was de-
veloped. The computer model was checked by measuring the sound absorption 
coefficient of small-sized test specimens in the Kundt’s tube. 

Based on computation and measurement parameter variations principles and 
absorber materials were selected. Then, larger test specimens were investigated 
at random incidence in the reverberation room. The reduction of thermal trans-
mittance was quantified for the most promising variables by FEM calculation.  

 

3 Results 

3.1 Theoretical Modeling 

A computer model was developed and implemented as software to calculate 
sound absorption coefficients. The model is based on the scattering waves ap-
proach of Lord Rayleigh [1], where the basis is an infinitely extended area with 

 
 

Fraunhofer Institute for Building Physics Abridged Report
Integral Acoustic Systems for Thermally Active Building Components 1



the acoustic admittance A1 in which absorber strips with width L2 and admit-
tance A2 are completely installed. The structure is periodic with a period length 
Λx (see Fig. 1).  
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Fig. 1: concrete building component which is equipped with a few sound absorbing 
strips  

The sound field scattered on the surface is composed by a sum of harmonic 
waves. If a sound wave impinges from a polar angle θ and an azimuth angle φ , 
the sound field in front of the building component can be described as: 
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whereby α0, β0, γ0 mean projections of the wave number k0 on the Cartesian 
coordinates x, y, z. Rm are the unknown (complex) amplitudes of the scattered 
sound waves and αm, βm, γm  are their projected wave numbers. The time ele-

ment is . tje ω

The scattered wave number along the period (in x direction) can be described 
according to [2] as follows: xm ma Λ⋅+= /20 πα . Wave numbers βm are equal to 

β0 and the wave numbers γm can be determined by the Helmholtz equation: 
2
0

22
0 βαγ −−±= mm k . Re(γm > 0) results in propagating sound waves and 

Im(γm < 0) in decreasing or evanescent sound waves towards to upper space of 
the reverberation room (z < 0) according to Fig. 1. 

The amplitudes of scattered partial waves are calculated by an equation system 
as follows: 
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The angle-dependent sound absorption coefficient of the striped component 
can now be calculated according to [3]: 
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Thermal calculations were performed on the basis of the usual FEM program.  

3.2 Development of sound absorbers 

3.2.1 Acoustic effect  

The result of computed parameter studies was the following properties of 
structures with periodic absorber strips:  

− Geometries represent a clearly higher sound absorption coefficient as was 
to be expected from laminar media.  

− The slimmer the period, the wider the sound absorption spectrum with the 
same absorber input.  

− In contrast to non-periodic absorbers the absorption coefficient increases 
with an increasing polar angle θ. This is an advantage for the use in offices 
since the floor avoids reflections over long distances. Fig. 3 shows the an-
gle-dependent absorption coefficient for an exemplary frequency where 
scattering waves are generated.  

 

Fig. 2: Calculated sound absorption coefficient dependent on the angles of inci-
dence according to the equations (2).  
L1 =0.8 m , L2 = 0.2 m, Λx =1.0 m,  
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A1 = 0, A2 = 1  
2π(Λx/λ0) = 16. 

Three acoustic principles were investigated to find out whether they are appro-
priate for the structure of absorber strips: porous absorbers, micro-perforated 
absorbers MPA and slotted absorbers [4]. Fig. 3 shows the sound absorption 
coefficient at normal incidence for the structure with glass foam strips. Con-
formity of calculation and measurement in the Kundt’s tube is sufficient for de-
velopment purposes. The comparison with the absorption coefficient of a non-
periodic structure with the same absorber surface area clearly demonstrates the 
advantages of the strip geometry.  
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Fig. 3: measured (∀) and calculated (—) sound absorption coefficient at normal inci-

dence of a test specimen made of glass foam strips and wooden beam (both 
50 mm depth and width). The surface-averaged sound absorption coefficient 
(- -) serves as comparison. 

Fig. 4 shows the sound absorption coefficient of a large-sized test specimen in 
the reverberation room  
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Fig. 4: measured sound absorption coefficient (−) at random incidence of a test 

specimen made of porous glass foam strip and wooden beam (both 50 mm 
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wide). 
L2 = 50 mm, Λx = 250 mm. calculation (— or - -). 

3.2.2 Thermal effect 

The surface temperature of a thermally active floor is significant for thermal 
transmittance. Sections of the floor were modeled by a FEM program for calcu-
lation, whereby variations of the daily temperature curves of the room and 
coolant temperatures were known (Fig. 1). Efficiency η shows the deterioration 
in comparison to an undisturbed concrete floor. The advantages of MPA by the 
heat transmission of the sheet can be clearly seen by means of the heat flow 
lines. 

 

 

 

Fig. 5: Examples of calculated heat flows  
top: undisturbed concrete floor, η = 100% 
center: porous glass foam strip , η = 96% (Λx = 250 mm, L2 = 50 mm) 
bottom: metal MPA, , η = 99% (Λx = 250 mm, L2 = 50 mm) 

The strip geometries were optimized with regard to acoustics and thermal insu-
lation. Rig. 6 gives examples of the sound absorption coefficients and surface 
temperatures for floors with glass foam strips. The absorber area ratio is 20 % 
for all variations. The period length was varied. The sound absorption coeffi-
cient increases with smaller strips and the surface temperatures of the chilled 
ceiling drop.  
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Rig. 6: calculated sound absorption coefficient (top) and averaged surface tempera-
ture with thermal efficiency η of a concrete building component with strips 
made of porous glass L2 = 50 mm. Λx = 250 mm, d = 50 mm, (20% absorber 
area ratio). 

 

3.3 Investigations of test specimens 

A first prototype implementation was successfully completed in the inHaus2 of 
the Fraunhofer Gesellschaft (Fig. 7) in the project duration.  
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Fig. 7: absorber strips of porous glass installed in thermally active concrete floor in 
an office room designed for several persons [5] and measured reverberation 
times with and without absorber strips  

A first functioning of the installations could be demonstrated in an office floor. 
Approaches were made concerning the cost-efficient installation in an in-situ 
concrete floor.  
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