Summary report

AutoEffi

Research program: Research project:

Zukunft Bau

IT-unterstütztes und automatisiertes Energiemonitoring der Technischen Gebäudeausrüstung in Echtzeit als Bestandteil eines zeitnahen und optimierten Energieeffizienzmanagements unter Berücksichtigung der Bauphysik und Nutzung

The research report was funded by the Zukunft Bau research initiative of the Bundesinstitutes für Bau-, Stadt- und Raumforschung (Reference number: II 3-F20-12-1-155 / SWD – 10.08.18.7 – 13.46).

The responsibility for the content of the report lies with the authors

Ingenieurbüro Stefan Gerhard – IBSG	Energie- & Umwelłbüro e.V. – EuB	Datentechnik Fries – DTF
DiplIng. Stefan Gerhard	Reinhold Maurer	DiplInf. Wolfgang Fries
Ebertsborn 24	Dr. Julia Kurde	Hochstr. 25
66606 St. Wendel	John-FKennedy-Platz	85221 Dachau
Tel: +49 6851 8007765	10820 Berlin	Tel: +49 8131 80770
Fax: +49 6851 8007767	Tel: +49 30 7871 7651	Fax: +49 8131 80772
E-mail: sg@ing-gerhard.de	Fax: +49 30 7870 5612	E-mail: wf@DT-Fries.de
	E-mail: info@gedeva.de	

The City of Munich (LHM) accompanied and supported the research work.

September 2017

The City of Munich (LHM) began in 1986 with initial considerations for the introduction of a central control system. With the help of the research project MEMS¹ funded by the BMBF, LHM developed a prototype for a companyneutral control center to support facility management in the nineties, which is successfully used in Munich for building and energy management with corresponding further developments.

The developments of the city are coordinated very closely with the Working Group Gebäudeautomation (AK GA) of the AMEV². Thus, guidelines such as the GA2005 have emerged, which summarize the experience of the public sector in the planning, construction and operation of building automation and building management systems. The drivers used in Munich to connect proprietary or neutral bus systems of the automation stations to the companyneutral control center can generally also be used by other municipalities without license fees. The MEMS system is tailored to the needs of large municipalities or administrations with adequate staffing requirements.

The research project VeroGAK³, funded by the Bundesamt für Bauwesen und Raumordnung, further developed the concept of MEMS for use in the housing industry and smaller municipalities. The special emphasis of the further development lay on the development and migration of the database system used in Munich to an open-source database system, which can be used without much follow-up costs in smaller administrations. The prototype developed as a test system until 2006 was adopted by AMEV as the first component of the AMEV-GA platform. Basically, even with a small budget, it was possible to set up a database-based control center for building services. However, the extensive functional possibilities could only be used profitably where there was a corresponding engineering understanding of buildings and technical facilities.

The modern building operation using a beneficial energy management system requires the timely feedback of the current state of technical equipment and consumption. In principle, an assignment from cause to effect succeeds. This interaction is a prerequisite for recognizing the need for action and developing measures for consumption that is not appropriate to the requirements or undesirable plant conditions. How can energy management be made more efficient by automated processes? In this research work, potentials for the development of automated processes are sought, discussed, prototypically implemented and tested.

The general stocktaking of today's practice has shown that linking an energy management system with the management level of a building management system still makes a lot of sense. Only in this way, in addition to the meter

¹ http://www.fnd-forum.de/publikationen/pdf/abschlussbericht-1.pdf

² AMEV – Arbeitskreis Maschinen- und Elektrotechnik staatlicher und kommunaler Verwaltungen. www.amev-online.de

³ VeroGAK - Entwicklung eines verallgemeinerten offenen Gebäudeautomationskonzeptes. Abschlussbericht, 2006, Bau- und Wohnforschung, Band F 2479

reading of consumption measuring points, can further data such as flow and return temperatures, outside temperatures, operating conditions and other state variables be taken into account in the consumption analyzes. The relatively simple consideration of plausibility or fault and danger messages are in principle already fixed components in today's systems. They can be well integrated into the always necessary operating and organizational concept of the building operation.

The analysis of classical methods of analysis and statistics has shown the greatest potential for a systematic and as automated as possible plant and process analysis. In particular, the use of statistical methods such as the correlation analyzes can well prove in existing systems whether desired control tasks are fulfilled by the building automation and plausible system states are achieved. Incorporated in energy reports or, as implemented in the test system, as additional functions in the visualization software (here jLZHview), the plant operator can obtain an overview of the quality or quality of the operation of the building technology systems at the touch of a button. The developed methods also allow the simple and rapid assessment of a large number of systems and processes.

Various test runs have shown that the depth of the analysis increases proportionally with the parameterization effort of the user. Thus, a simple analysis can be almost completely automated, while a detailed analysis must first be parameterized by the user.

In a simple analysis, the user selects the time range to be analyzed as well as the desired flow and return temperatures in the system image via the symbolic addresses.

Procedure:

The program automatically finds the pairs of the flow and return temperatures (TV, TR) in the various heating circuits and determines from the measured values in the time domain the indicators for evaluating the heating circuits:

Mean and standard deviation of TV, TR and (TV-TR)

Correlation of TV with TR

Result:

Table with key figures and their evaluation by color highlighting.

Effect:

Red marked heating circuits should be checked by the user. The graphical representation of the measured values can be helpful for this. For a deeper view of the conspicuous heating circuit, a detailed analysis with further data points of this heating circuit can be carried out (for example outside temperature, valve position, operating message, etc.).

Conclusion:

With the help of such simple automatically executable analyzes, the specialist personnel can be pointed to those heating circuits that do not or no longer do

what they should. The cause can be diverse and requires appropriate expertise from the user.

For example, a detailed analysis can be performed for various operating modes such as DAY / NIGHT or HEAT CIRCUIT ON / OFF.

The selection of parameters is saved and can be recalled for further analysis.

The user selects the data points to be analyzed, the time range and cycle (e.g., 2017 - monthly), and the useful times or measured value filters (optional).

Procedure:

The program automatically finds the measured values of the selected data points in the specified time interval, applies filters or useful times and calculates the statistics as well as correlation matrices.

Result:

Tabular and graphical representation of the statistics and the correlation matrices with color highlighting.

In this way, the system operation Summer / Winter can be evaluated in an annual overview:

- Is the system outside temperature?
- Correlate actual values with their setpoints?
- Are the mean values and scatter of the measured values in order?

Effect:

Plant operation can be automatically checked in any time range.

Conclusion:

The detailed analysis gives a deep insight into the function of a plant or a process. Helpful in assessing the calculated statistical values are comparative historical results of the same analysis.

Especially the investigation of the potential of the detailed analyzes on the basis of real building data has shown that the quality of the implemented building automation varies greatly depending on the manufacturer. A bad control quality of a control loop is detected directly by the analysis, but cannot always be improved by better controller parameterization by the user. The diversity of the systems in their function, their structural implementation, their connection depth and in the data designations in the building control technology prevents the development of a generally applicable analysis tool. An adaptation to the concrete plant must always be made. However, this adaptation does not have to be reparameterized by every user, but can, once created, stored and automatically called up.

In addition to classical methods of analysis and statistics, methods of artificial intelligence have been developed and evaluated for the independent calculation of new mathematical models for controllers and tracks for the optimization of automation in research work. At first glance, Computational Intelligence seems promising in solving complex problems in the analysis and

optimization of building services. In addition to the experimental analysis of systems and storage of input / output values using neural networks in black box models, even the automated generation of models in structure and parameters using genetic programming analogous to a theoretical model creation is possible. The concrete discussion of individual application scenarios showed that many tasks of the technical building management can be better solved with the help of classical methods of control technology due to suitable conditions. Thus, for almost all buildings appropriate planning documents on structure and dimensions are available, which lead for example in the heating design and demand calculation easier to accurate models. Where these are not present, a building reception can be easily carried out and results in a more precise statement. For example, a multilayer wall construction can hardly be identified unambiguously by means of evolutionary methods. The challenges of using evolutionary methods are the coding of the problem in suitable individuals as well as the development of suitable target and fitness functions for controlling the algorithms.

The prototypical methods developed in this research project are to be further developed for use in day-to-day operations. It is certainly necessary to further simplify the mathematical methods for the user in their handling and interpretation.

As an example of a possible result of an automated analysis, the heating circuit analysis presented below is in report form.

In the example, a seven-page result report of a "well set" heating circuit is shown in Figure 1 to Figure 7. The example was generated with the stored data of the control center building services of the district office Treptow Köpenick in Berlin and shows in figure 2 beside the monthly mean values also the correlation coefficients between different measured values and the outside temperature as well as between set and actual values.

Object BARB: H20 SG-O: School Building East

Heat generator is a condensing boiler, which supplies 5 heating circuits incl. ventilation and air conditioning. This object has been selected as a positive example for a heating circuit analysis, since

- the required archive metrics are available,
- the strategy for the calculated setpoint value of the flow temperature is known,
- The system is stable.

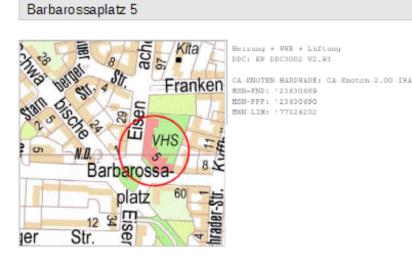
In the heating circuit H20 SG-O a weekly program is active (DAY / NIGHT). The two operating modes DAY / NIGHT were analyzed separately.

The annual analysis shows that the heating circuit was out of service during the summer months of June to September 2016, which is shown in Figure 2 as correlation coefficients displayed in blue. In the remaining months, the system reaches with a few exceptions a mediocre (yellow) to good (green) rating.

The return temperature is essentially constant, resulting in a rather poor correlation with the outside temperature. The mixing value in the flow is often

temporarily closed and reopened when switching between the operating modes DAY / NIGHT. These rapid changes lead to a partially poor correlation with the outside temperature.

Hints:


The heating circuit pump operates at constant pressure.

In JAN 2017, the condensing boiler started 3904 times, about 5 times an hour in monthly average. Condensing boilers should be operated as long as possible at about 30 to 40% power (not shown).

BARB

ZSG: G18 + VHS

Objekt-Übersicht

Wärm eerzeuger ist ein Brennwertkessel, welcher 5 Heizkreise ind. RLT+WWB versorgt.

Im Heizkreis H20 SG-O ist ein Wochenprogramm aktiv (TAG/NACHT). Die beiden Betriebsmodi TAG/NACHT wurden getrennt analysiert.

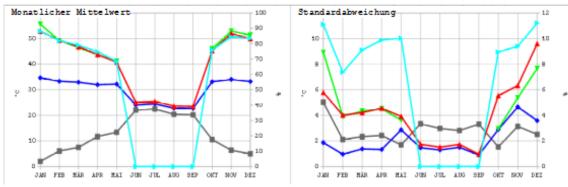
Der Heizkreis ist in den Sommermonaten nicht in Betrieb und die Vorlauftemperatur ist mit 65°C nach oben begrenzt.

Die Heizkreis-Pumpe arbeitet mit konstantem Druck.

BESCHREIBUNG P_BAUM ARB BARB 🗸 💢 Zentrale: S a & Gewerk: D DDC > DA0 (1) DA0 DDC-1 WP1 NZ_BM EIN + B DB1 (14) DB1 DDC-1 WP2.1 NZ_ > @ DB2 (14) DB2 DDC-1 WP2.2 NZ_ > DC0 (1) DC0 DDC-1 WP3 NZ_BM EIN > 🕀 DC1 (14) DC1 DDC-1 WP3.1 NZ_ > DD0 (1) DD0 DDC-1 WP4 NZ_BM EIN > 由 DD1 (14) DD1 DDC-1 WP4.1 NZ_ > DD3 (14) DD3 DDC-1 WP4.3 NZ_) [] DD4 (14) DD4 DDC-1 WP4.4 NZ_ > DE0 (1) DE0 DDC-1 WP5 NZ_BM EIN > 由 DE2 (14) DE2 DDC-1 WP5.2 NZ_ > @ D00 (3) D00 AP DDC TS_ > 🕀 D01(10) D01 SG DDC Ø Gewerk: H Heizungsanlagen > ⊕ H01(23) H01K1 > ⊕ H03 (2) H03 Druck > H04 (4) H04 Vert. T > 由 H10(12) H10Lft. H20 (48) H20 SG O + 🕀 H30 (48) H30 SG-W > 由 H40 (48) H40 SG-TH > # H50 (18) H50 WW intern: % (5)

Abbildung 1: Example result report heating circuit analysis page 1

Datenpunkt-Baum Baum-Darstellung nach Datenpunkt-Adresse


BARB: Barbaros saplatz 5 H20 SG-O: Schulgebäude Ost (Hof)

Jahresübersicht 2016 - Tagbetrieb

Datenpunkte

	OBJEKT	L	AD RES SE	T	BE SCHRE I BUNG	L	DIM	L	KÜRSEL
	BARB	I.	SD OOT SOO 3SG UGK P4	I.	DOO AP DDC TS_IST	I.	°C	I.	TS_IST
	BARB	I.	SH20TVS033GUGKP4	T	H20 SG-0 TV_SOLL		°C	L	TV_SOLL
I	BARB		SH20TV0033GUGKP4						TV_IST
l	BARB		SH20TR003SGUGKP4		H20 SG-0 TR_IST		°C		TR_IST
	BARB	I.	SH20VVS03SGUGKP4	T	H20 3G-0 VV_SOLL	Т	¥	L	VV_SOLL

Zeitlicher Verlauf der Messwerte

Vergleich mit Grenzwerten

	JAN	FTB	н	ÄR.	APR	HAT	3106	JUL	AUG	SEP	OKT	HOA	DEZ	AL_U	WA_U	WA_0	AL_0		Wert	in Normal-Be	reich
IST	1,95	0 6,	0.69	7,454	11,733	13,372	22,049	22,51	20,419	20,213	10,500	6,347	4,947	-20	-10	20	25		Mert	in Warn-Dere	ich
SOLL	55,62	4 49,	,279	46,490	43,659	41,210	1				46,064	52,93	51,397						Mert	in Alarm-Dec	eich
IST	52,85	7 41	9,37	46,006	43,735	40,764	2.5,033	25,396	23,623	23,508	45,215	51,953	49,911	20	30	70	00		AL_U:	Alarm unter	
IST	34,66	5 33,	346	32,956	31,967	32,219	24,030	24,462	22,782	22,726	33,163	34,041	33,23	20	30	70	00		WA U:	Warning unt	en
SOLL	00,07	0 01,	971	79,055	74,704	60,473) (0	0	0	75,039	9 04,490	03,590						MA_O:	Warning obe	n
coleid	ih mit (Fenz	Verte	n: Sta	ndardab	weichung								_					AL_0:	Alarm oben	
	JAN	FEB	н	ÄR	APR	weichung NAI	JUS			SEP	ακτ	HDV	14Z	Stalw					Wert	< Stabu-Gens	
157	3AN 5,02	FEB	н 104	ÄR 2,000	APR 2,423	HAI 1,600	3108 3,342	JWL 2,972		SEP 3,000	1,53	3,135	2,509	4				•	Wert Wert	< Stabu-Gens > Stabu-Gens	mert
157	JAN	FEB	н	ÄR	APR 2,423	HAI 1,600	3108 3,342					3,135		4					Wert	< Stabu-Gens > Stabu-Gens	mert
IST SOLL	3AN 5,02	FEB 1 2 6 3	104	ÄR 2,000	APR 2,423 4,513	HAI 1,600	3708 3,342	2,972		3,300	2,946	3,135 5,37	2,500	4					Wert Wert	< Stabu-Gens > Stabu-Gens	mert
rgleid IST SOLL IST	3AN 5,02 0,92	FEB 1 2 6 3 5 4	H 104 921 011	ÁR 2,330 4,336 4,215	APR 2,423 4,513 4,553	HAI 1,600 3,620	3708 3,342 1,73	2,972	2,01	3,300	2,946	3,135 5,37 6,325	2,500 7,660 9,613	4					Wert Wert	< Stabu-Gens > Stabu-Gens	mert

Korrelationen

IST -0,786 -0,584 -0,594 -0,594 -0,597 Model Description Vert<>0 IST -0,786 -0,596 -0,514 -0,52 -0,324 0,322 0,369 0,074 0,353 -0,456 -0,704 -0,597 Model Model Model 0,353 -0,456 -0,704 -0,597 Model Model<		JAN	FEB	HĂR	APR	HAI	308	JUL .	AUG	SEP	OKT	HOV	DEZ		Detrog von Wert 3
IST -0,786 -0,5 -0,511 -0,22 -0,22 0,322 0,369 0,556 0,412 0,413 0,414 <th< td=""><td>JLI</td><td>-0,94</td><td>6 -0,876</td><td>-0,743</td><td>-0,916</td><td>-0,989</td><td></td><td></td><td></td><td></td><td>-0,86</td><td>5 -0,962</td><td>-0,712</td><td></td><td>Detrog von Wert)</td></th<>	JLI	-0,94	6 -0,876	-0,743	-0,916	-0,989					-0,86	5 -0,962	-0,712		Detrog von Wert)
ST -0,756 -0,53 -0,53 -0,63 -0,23 -	51	-0,75	6 -0,854	-0,803	-0,898	-0,724	0,245	0,333	0,004	0,353	-0,65	e -0,704	-0,597		Betrag von Wert «
elation mit Soll-Wert JAM FEB HAR APR HAI JNM JWL AJG SEP OKT HOW ME2 ST 0,867 0,913 0,851 0,948 0,751 0,626 0,725 0,886 Detray von Wert		-0,78	6 -0,8	-0,511	-0,52	-0,096	0,322	0,369	0,076	0,550	-0,42	9 -0,217	-0,439		Wert > 0
elation mis Soll-Wert JAM FEB HAR APR MAI JUM JWL AUG SEP OKT HOW ME2 ST 0,867 0,913 0,851 0,948 0,751 0,626 0,725 0,886 Detroy von Wert	T.T.	-0.70	6 -0 E14	-0.53							1.00	-0.300	10 000		
		-01.05	0 -0101-	-0,00		-0,021					20, 10,	-0,760			
867 0,913 0,951 0,948 0,751 0,626 0,725 0,986Betrag von Wert						-0,021						-0,760			
		ion wit	8011-W	:ec				Jul.	AUG	SEP				_	Betrag von Wert :
	elat	ion mit JAN	Soll-W	ET. MÁR	APR	HAI	3108	JWL .	AUG	SEP	067	807	162		Bettag von Wert : Betrag von Wert :

Bemerkungen

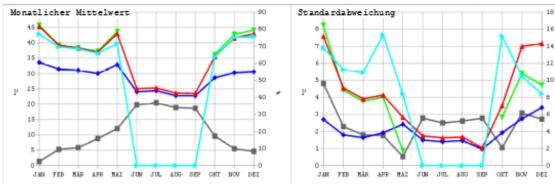
(1) Die Anlage ist außer Betrieb (TV_SOLL ist NULL und VV_SOLL ist 0%) in den Monaten: JUN, JUL, AUG, SEP

Hinweis e

```
    Die Korrelation mit TS_IST muss negativ sein, wenn die Anlage in Betrieb ist.
    Die Korrelation mit dem Soll-Wert muss positiv sein, wenn die Anlage in Betrieb ist.
```

Abbildung 2: Example result report heating circuit analysis page 2

BARB: Barbaross aplatz 5


H20 SG-O: Schulgebäude Ost (Hof)

Jahresübersicht 2016 - Nachtbetrieb

Datenpunkte

	OBJEKT	T	ADRESSE	T	BESCHREI BUNG	1	DIM	I	KÜRSEL
	BARB	1	SD0 0TS0 033 GUG KP4	1	DOO AP DDC TS_IS	0.1	°C	I.	TS IST
•	BARB		SH2 OTVS 033 GUG KP4	1	H20 3G-0 TV_SOLL		°C	T	TV_SOLL
•	BARB		SH2 OTVO 033 GUG KP4	I.	H20 3G-0 TV_IST		°C	I.	TV_IST
	BARB	1	SH2 OTRO 033 GUG KP4	T	H20 SG-0 TR IST		°C	T	TR IST
	BARB	1	3H2 0VVS 035 GUG KP4	1	H20 SG-0 VV_SOLL	1	8	I.	VV_SOLL

Zeitlicher Verlauf der Messwerte

Vergleich mit Grenzwerten

	JAN	FEB	н	ÅR.	APR.	HAI	3108	JUL	AUG	SEP	OKT	BOV	DEZ	AL_U	ห_บง	N_0 /	AL_0	Wert im Normal-Bereic
151	1,32	28 5	,276	5,855	8,81	12,0	16 19,	8 20,46	15,912	18,65	1 9,605	7 5,506	4,626	-20	-10	20	25	Wert im Warn-Bereich
SOLL	45,70	81 39	,285	38,351	37,27	43,7	14				36,143	42,792	44,119					Wert im Alarn-Bereich
151	45,34	44 3	9,24	38,268	37,00	42,9	25,01	1 25,2	23,616	5 23,5	2 35,499	41,6	43,013	20	30	70	80	AL_U: Alarm unten
151	33,63	34 31	,424	31,043	30,02	32,8	24,03	9 24,38	5 22,783	22,76	2 28,644	30,27	30,632	20	30	70	80	WA_U: Warnung unten
SOLL	77,14	44 69	,635	68,507	65,86	1 71,5	12	0	3 0) (0 63,890	3 75,159	75,859					WA O: Warnung oben
-					r day dak	michu												AL_O: Alarm oben
rgleid	h mit JAN	Orens FEB		n: Sto	ndar dak APR	weichu MAI		ராட	AUG	SEP	ORT	BOA	DE2	Stalw				ML_O: Alarm oben
		FEB						ગળા. ઘ 2,50	AUG 2,610		08.T	BOV 1 3,075	DE2	Stalw 4				
151	JAH	FEB			APR 1,76	MAI 0,5	JUS 5 2,76	ઝળા. 12 2,50			081 6 1,05 2,832	4 3,075	2,726	4				Wert < Staby-Oenswert
1ST SOLL	3AB 4,8	FEB 81 24 4	1,29 ,417	AR 1,793	APR 1,76 4,01	HAI 0,5	37056 5 2,76	ປາຍ ຊີ 2,50 3 1,62	3 2,616	5 2,77	6 1,05 2,832	4 3,075	2,726 4,729	4				Wert < Stabw-Genswert Wert > Stabw-Genswert
- IST SOLL IST IST	JAH 9,8 8,23	FEB 81 24 4 89	N 2,29 ,417 4,55	AR 1,790 3,76 3,905	APR 1,76 4,01 4,13	HAI 0,5	3708 5 2,76 71 6 1,74	2 2,50	3 2,616 5 1,672	5 2,77 1,03	6 1,05 2,832	3,075 5,408	2,726 4,729	4				Wert < Stabw-Genswert Wert > Stabw-Genswert

Korrelationen

arrelat	tion mit	t TS IS	т										
	JAN	FEB	HÄR	APR	HAI	JUS	JUL.	AUG	SEP	ORT	HOV	DEZ	Betrag von Wert >= 0,
SOLL			76 -0,814		-0,999					-0,65		-0,959	letrag von Wert >= 0,
IST			-0,790				0,270	0,010	0,393			-0,761	letrag von Wert < 0,
IST			1 -0,88					0,094				-0,547	Wert > 0
SOLL	-0,02	2 -0,54	69 -O, 4B1	-0,400							-0,46	-0,416	
crelat	tion mi	t Soll-	Wert										
	JAN	FED	MAR	APR	HAI	JUS	JUL.	AUG	SEP	OKT	HOW	DEZ	Betrag von Wert >= 0.
IST	0,96	0,95	s7 0,94i	6 0,914	-0,619					0,665	0,776	0,774	Betrag von Wert >= 0
													Betrag von Wert < 0,3
													Wert (0

Bemerkungen

Die Anlage ist außer Betrieb (TV_SOLL ist NULL und VV_SOLL ist 0%) in den Monaten: JUN, JUL, AUG, SEP

Hinweise

Die Korrelation mit TS_IST muss negativ sein, wenn die Anlage in Betrieb ist.
 Die Korrelation mit dem Soll-Wert muss positiv sein, wenn die Anlage in Betrieb ist.

Abbildung 3: Example result report heating circuit analysis page 3

BARB: Barbarossaplatz 5

H20 SG-O: Schulgebäude Ost (Hof)

Datenpunkte

OBJEKT	ADRESSE BESCHREIBUNG	DIM KÜRZEL
BARB	SD00TS003SGUGKP4 D00 AP DDC TS	SIST °C TS IST
BARB	SH20TVS03SGUGKP4 H20 SG-0 TV S	SOLL °C TV SOLL
BARB	SH20TV003SGUGKP4 H20 SG-0 TV	IST °C TV IST
BARB	SH20TR003SGUGKP4 H20 SG-0 TR	IST °C TR IST
BARB	SH2 OVVS0 3SGUGKP4 H20 SG-O VV	SOLL % VV_SOLL

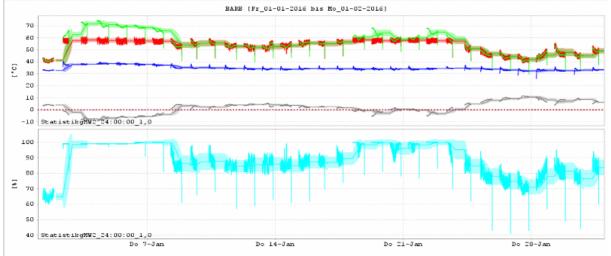
Zeitlicher Verlauf der Messwerte

Abbildung 4: Example result report heating circuit analysis page 4

Januar 2016

BARB: Barbarossaplatz 5

H20 SG-O: Schulgebäude Ost (Hof)


Januar 2016 - Tagbetrieb

Datenpunkte

OBJERT	ī.	ADRESSE	T.	BESCHREIBUNG	ī.	DIM	ī	KÜRZEL
BARB	i.	SD00TS003SGUGKP4	i.	DOO AP DDC TS IST	i.	°C	i.	TS IST
BARB	I.	SH20TVS03SGUGKP4	I.	H20 SG-0 TV SOLL	L	°C	I.	TV SOLL
BARB		SH20TV003SGUGKP4		H20 SG-0 TV IST		°C	L	TV IST
BARB	1	SH20TR003SGUGKP4		H20 SG-0 TR IST		°C	L	TR IST
BARB	I.	SH20VVS03SGUGKP4	Т	H20 SG-0 VV_SOLL	L	8	L	VV_SOLL

Zeitlicher Verlauf der Messwerte

24-Std-gleitender Mittelwert mit Standardabweichung

Statistik und Vergleich mit Grenzwerten

Grenzwer	t-Woerse	nswert-Uberschreitung in % Anzahl Ressverte Staby, stdl. Staby, tägl.													Überschreitung <=20 ≷
Anzahl Hessverte								Stabu.	stdl.	Stabu	. tägl.		Überschreitung <=50 %		
	GESAMT	AL_U[%]	WA U[*] WA	0[%] AL_0[%]	AL_U	WA_U 1	A 0 A	AL_0	x1 [%]	x2[%]	x1[%]	x2[%]	Stabw	Überschreitung > 50 %
TS_IST	4464	1	a	O D	0	0 -20	-10	20	25	0	0		0 C	4	AL_U: Alarm unten
TV_SOLL															WA_U; Warnung unten
TV IST	4465		0	0	0	0 20	30	70	80	1	0		а с	5	WA_O: Warnung oben
TR_IST	4465	(0	0	0	0 20	30	70	80	0	0	(I	0 C	5	AL O: Alarm oben
WW_SOLL	4465									4	z		1 0	10	Stabw: Standardabweichung

Abbildung 5: Example result report heating circuit analysis page 5

BARB: Barbarossaplatz 5 H20 SG-O: Schulgebäude Ost (Hof)

Januar 2016 - Nachtbetrieb

Datenpunkte

1						
	OBJERT	1.1	ADRESSE	ī.	BESCHREIBUNG DIM KÜRZEL	
	BARB		SD00TS003SGUGKP4	I.	DOO AP DDC TS_IST °C TS_IST	
	BARB		SH20TVS03SGUGKP4		H20 SG-O TV_SOLL °C TV_SOLL	
	BARB		SH20TV003SGUGKP4		H20 SG-O TV IST °C TV IST	
	BARB		SH20TR003SGUGKP4		H20 SG-O TR_IST °C TR_IST	
	BARB		SH20VVS03SGUGKP4		H20 SG-0 VV SOLL & VV SOLL	

Zeitlicher Verlauf der Messwerte

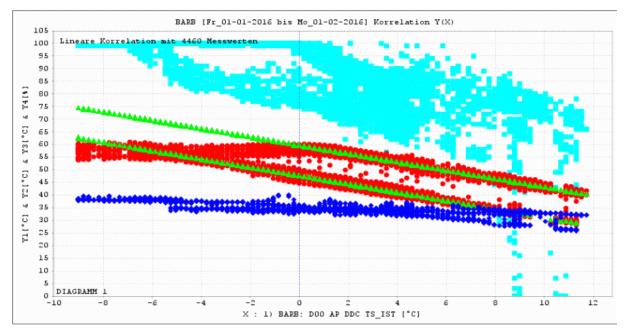
24-Std-gleitender Mittelwert mit Standardabweichung BARB [Fr_01-01-2016 bis Mo_01-02-2016] 70 60 50 40 [0,] 30 20 10 0 StatistikgMW2_24:00:00_1,0 -10 100 90 80 70 60 50 2 40 30 20 10 0 StatistikgMW2_24:00:00_1,0 Do 7-Jan Do 14-Jan Do 21-Jan Do 28-Jan

Statistik und Vergleich mit Grenzwerten

Grenzwer	t-Woerso	hreitung	in %											Überschreitung <=20 ≷
	Anzahl Hesswerte								Stabu.	stdl.	Stabu.	tägl.		Überschreitung <=50 %
	GESAMT	AL_U[%] '	HA_U[%] ₩	0[%] AL_0[%]	AL_U W	W U AN	A 0 A	L_0	x1[%] x	ĸ2[%]	x1[%] ж	2[%]	Stabw	Überschreitung > 50 %
TS_IST	4464	C C	0	0	0 -20	-10	20	2.5	0	C	a	0	4	AL_U: Alarm unten
TV SOLL														UA U: Warnung unten
TV IST	4465	0	0	0	0 20	30	70	80	1	0	2	0	5	WA_O: Warnung oben
TR IST	4465	0	0	0	0 20	30	70	80	0	0	0	0	5	AL O: Alarm oben
VV_SOLL	4465								3	0	10	6	. 10	Staby: Standardabweichung

Abbildung 6: Example result report heating circuit analysis page 6

BARB: Barbarossaplatz 5


Januar 2016

H20 SG-O: Schulgebäude Ost (Hof)

Datenpunkte

OBJEKT	ī.	ADRESSE	ī.	BESCHREIBUNG	ī.	DIM	ī.	KÜRZEL
BARB		SD00TS003SGUGKP4	I	DOO AP DDC TS_IST	L	°C	L	TS_IST
BARB		SH20TVS03SGUGKP4		H20 SG-O TV_SOLL		°C	L	TV SOLL
BARB		SH20TV003SGUGKP4		H20 SG-O TV_IST		°C	L	TV_IST
BARB		SH20TR003SGUGKP4		H20 SG-0 TR_IST		°C	L	TR_IST
BARB	1	SH20VVS03SGUGKP4	1	H20 SG-O VV SOLL	1	8	1	VV SOLL

Korrelation mit der Außentemperatur (TS_IST)

Korrelationsmatrix Tag-Betrieb

Y KLARTEXT	YN	T BESCHREIBUNG	T DATUM_VON	Y ANZAHL	WWERT	Y STABW	Y 1	Y 2	Y 3	Y 4	Y 5
BARB_H20_SG-O_JULE_TEST_2016_TAG	1	DOO AP DDC TS_IST	2016-01-01 00:00:00	2,377	1,958	5,021	1	-0,786	-0,946	-0,786	-0,796
BARB_H20_SG-O_JULE_TEST_2016_TAG	2	H20 SG-0 TR_IST	2016-01-01 00:00:00	2.377	34,665	1,858	-0,786	1	0,781	0,583	0,6
BARB_H20_SG-0_JULE_TEST_2016_TAG	3	H20 SG-O TV_SOLL	2016-01-01 00:00:00	2.377	55,624	8,926	-0,946	0,781	1	0,867	0,902
BARB_H20_SG-O_JULE_TEST_2016_TAG	4	H20 SG-O TV_IST	2016-01-01 00:00:00	2.377	52,857	5,785	-0,786	0,583	0,867	.1	0,841
BARB_H20_SG-O_JULE_TEST_2016_TAG	5	H20 SG-O VV_SOLL	2016-01-01 00:00:00	2.377	88,078	11,116	-0,796	0,6	0,902	0,841	1

Korrelationsmatrix Nacht-Betrieb

Y KLARTEXT	YN	Y BESCHREIBUNG	T DATUM_VON	Y ANZAHL	Y MWERT	Y STABW	Y 1	Y 2	ү з	Y 4	Y 5
BARB_H20_SG-O_JULE_TEST_2016_Nacht	1	DOO AP DDC TS_IST	2016-01-01 00:00:00	2.087	1,328	4,81	1	-0,936	-0,967	-0,952	-0,822
BARB_H20_SG-O_JULE_TEST_2016_Nacht	2	H20 SG-O TR_IST	2016-01-01 00:00:00	2.087	33,634	2,708	-0,936	1	0,906	0,903	0,739
BARB_H20_SG-O_JULE_TEST_2016_Nacht	3	H20 SG-O TV_SOLL	2016-01-01 00:00:00	2.087	45,781	8,224	-0,967	0,906	1	0,968	0,849
BARB_H20_SG-0_JULE_TEST_2016_Nacht	4	H20 SG-O TV_IST	2016-01-01 00:00:00	2.087	45,344	7,589	-0,952	0,903	0,968	1	0,803
BARB_H20_SG-0_JULE_TEST_2016_Nacht	5	H20 SG-O VV_SOLL	2016-01-01 00:00:00	2.087	77,144	13,787	-0,822	0,739	0,849	0,803	1

Hinweise

(1) Die Korrelationsmatrix ist symmetrisch.

Abbildung 7: Example result report heating circuit analysis page 7

The application of analysis methods basically requires a sufficient amount of data, which ideally is stored in an archive database within a company-neutral and cross-trade control center building services (LZH). The LZH should

- measuring points (meters) of the media contain heat, gas, electricity, water,
- include at least the trades electrical, heating, air conditioning, ventilation, water heating,
- be able to unlock further tasks such as an electronic key system.

The more comprehensive the available data, the more extensive the analyzes can be performed. A technical system is optimally operated if the consumption exactly meets the demand. Defining the requirement based on defined plant conditions is a good way to make matching of consumption to demand measurable. A better way would be to dynamically define demand based on changing criteria such as weather.

The poor quality of control in various manufacturers of automation stations that has been encountered in the field tests has surprised the authors. The practical implementation of the rule task was sometimes so poorly resolved that the analysis tools had identified a mistake. Uniform quality control requirements for automation stations would be necessary in order to be able to clearly assess the analysis results.