Untersuchung des Einflusses von unterschiedlichen Sprossenkonstruktionen auf den Wärmedurchgang von Fenstern

T 2959

Fraunhofer IRB Verlag

T 2959

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

Im Originalmanuskript enthaltene Farbvorlagen, wie z.B. Farbfotos, können nur in Grautönen wiedergegeben werden. Liegen dem Fraunhofer IRB Verlag die Originalabbildungen vor, können gegen Berechnung Farbkopien angefertigt werden. Richten Sie Ihre Anfrage bitte an die untenstehende Adresse.

© by Fraunhofer IRB Verlag

2001, ISBN 3-8167-5982-3

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

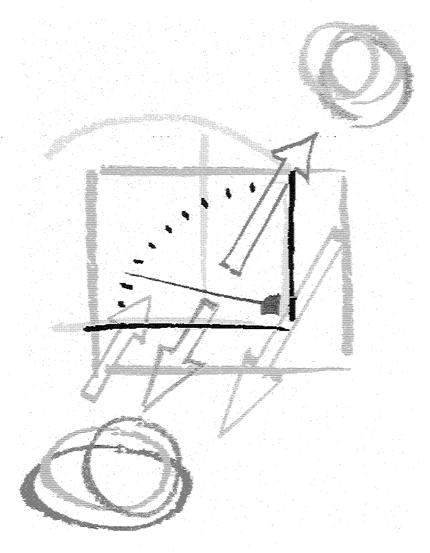
Fraunhofer IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08


e-mail info@irb.fhg.de

URL http://www.IRBbuch.de

Forschungsvorhaben

Untersuchung des Einflusses von unterschiedlichen Sprossenkonstruktionen auf den Wärmedurchgang von Fenstern

Abschlußbericht Februar 2001

Abschlußbericht

Thema Untersuchung des Einflusses von

unterschiedlichen Sprossenkonstruktionen auf

den Wärmedurchgang von Fenstern

Kurztitel Einfluss von Sprossenkonstruktionen auf den

Wärmedurchgang von Fenstern

Auftraggeber Deutsches Institut für Bautechnik

Kolonnenstr. 30

10829 Berlin

Az.:IV 1-5-880/98

Forschungsstelle ift Rosenheim

Theodor-Gietl-Straße 7-9

83026 Rosenheim

Bearbeiter Dipl.-Ing. (FH) Hans Froelich

Dipl.-Ing. (FH) Hans-Jürgen Hartmann

Dipl.-Ing. (FH) Konrad Huber

Dipl.-Ing. (FH) Waldemar Weimann

Dipl.-Phys. Norbert Sack Dr. rer. nat. Harald Krause

Institutsleitung Dr. Helmut Hohenstein

Rosenheim, Februar 2001

Inhalt

		Seite
1	Projektzielsetzung	1
1.1	Problemstellung	1
1.2	Projektstruktur und -ablauf	1
2	Berechnungs- und Meßverfahren	3
2.1	Berechnungsmethode	3
2.2	Meßmethode	6
3	Grundtypen von Sprossenkonstruktionen	7
3.1	aufsetzbarer Sprossenrahmen	7
3.2	Sprosse im Scheibenzwischenraum	7
3.3	aufgeklebte Sprosse	8
3.4	glasteilende Sprosse	9
4	Längenbezogene Wärmedurchgangskoeffizienten	10
4.1	Zusammenfassung nach Sprossenwerkstoff	12
4.2	Zusammenfassung der Ψ-Werte	19
5	Messungen an Sprossenfenstern	21
5.1	Probekörper und Meßergebnisse	21
5.2	Vergleich Messung und Berechnung	23
5.3	Parametervariation	25
5.3.	1 Ψ-Werte von Isolierglasabstandhaltern	26
5.3.	2 Ψ-Werte von Sprossenkonstruktionen	27
5.3.	3 U _w -Werte von Fenstern	29
6	Auswirkung von Sprossenkonstruktionen auf den Wärmed von Fenstern	urchgang 30
7	Zusammenfassung	38
Lite	raturverzeichnis	40
	age 1 age 2	

Aniage 2
Aniage 3

1 Proiektzielsetzuna

1 Projektzielsetzung

1.1 Problemstellung

Der Wärmedurchgangskoeffizient U_F (k_F) einer Fensterkonstruktion wird bestimmt durch die Wärmedurchgangskoeffizienten und Flächenanteile der Einzelbauteile (Rahmen, Verglasung, etc.). Die nationalen Regelwerke bieten zwei Möglichkeiten, den $U_F(k_F)$ -Wert von Fenstern nachzuweisen. Der Nachweis kann entweder nach DIN V 4108-4 Tabelle 2 [1] oder durch eine Prüfung nach DIN 52619-1 [2] geführt werden.

Grundlage für den Nachweis des $U_F(k_F)$ -Wertes nach DIN V 4108-4 ist die Einstufung des Rahmenprofils in eine Rahmenmaterialgruppe sowie die Festlegung des Rechenwertes des Verglasungsaufbaus. Die Einstufung eines Rahmenprofils in eine Rahmenmaterialgruppe erfolgt aufgrund der in DIN V 4108-4 festgelegten Konstruktionskriterien oder durch eine Prüfung nach DIN 52619-3 [3]. Die Festlegung des Rechenwertes $U_V(k_V)$ von Mehrscheiben-Isolierglas erfolgt nach DIN V 4108-4 oder nach den in der Bauregelliste festgelegten Verfahren auf der Grundlage von Prüfungen nach DIN 52619-2 [4] bzw. von Berechnungen nach DIN EN 673 [5].

Bei der Ermittlung der Rechenwerte $U_F(k_F)$ der Wärmedurchgangskoeffizienten von Fenstern nach DIN V 4108-4 wird der Einfluss von Sprossenkonstruktionen auf den Wärmedurchgang nicht berücksichtigt, d.h. Fenstern mit Sprosse und Fenstern ohne Sprosse wird der gleiche $U_F(k_F)$ -Wert zugeordnet.

Der Einfluss der Sprossenkonstruktion auf den Wärmedurchgang von Fenstern kann daher nur durch eine Prüfung nach DIN 52619-1 (k_F-Wert) bzw. prEN 12567 (U_w-Wert) ermittelt werden. Die Ergebnisse gelten nur für die gewählte Rahmenkonstruktion, den Verglasungstyp und die Probekörpergröße.

1.2 Projektstruktur und -ablauf

Das Projekt hat zum Ziel, den Einfluss unterschiedlicher Sprossenkonstruktionen auf den Wärmedurchgang von Fenstern basierend auf numerischen Berechnungen detailliert zu erarbeiten. In den nationalen Normen ist kein numerisches Berechnungsverfahren definiert. Die Beschreibung des Einflusses der Sprossenkonstruktion auf den Wärmedurchgang erfolgt daher in Anlehnung

an die Beschreibung der Abstandhalter von Mehrscheiben-Isoliergläsern nach prEN 10077 [6] [8] durch sog. Ψ-Werte.

Bei der Ermittlung der Ψ -Werte für Sprossen wurden verschiedene

- Sprossenkonstruktionen
- Sprossenwerkstoffe
- Mehrscheiben-Isoliergläser berücksichtigt.

Zur Verifikation der in Anlehnung an prEN 10077 rechnerisch ermittelten Ψ -Werte wurden für Fenster mit Rahmen aus wärmegedämmten Aluminium-Verbundprofilen, Holz- und PVC-Profilen sowie unterschiedlichen Sprossenkonstruktionen U_w -Werte durch Prüfung nach prEN 12567 [7] ermittelt und die messtechnisch und rechnerisch ermittelte Differenz im Wärmedurchgangskoeffizienten zwischen Fenstern mit und ohne Sprossen gegenübergestellt.

Die auf der Grundlage zukünftiger europäischer Regelwerke ermittelten Ψ -Werte können auch zur Abschätzung des Einflusses von Sprossenkonstruktionen auf den $U_F(k_F)$ -Wert, also auf den nach nationalen Normen ermittelten Wärmedurchgangskoeffizienten von Fenstern, verwendet werden.

2 Berechnungs- und Messverfahren

2 Berechnungs- und Messverfahren

2.1 Berechnungsmethode

Grundlage für die Berechnung des wärmetechnischen Verhaltens von Sprossenkonstruktionen sind zukünftige europäische Regelwerke. Es wird ausdrücklich daraufhingewiesen, dass die Berechnungen nach Vornormen erfolgen. Änderungen in den Normentwürfen können zu Änderungen in den Ergebnissen der Berechnungen führen.

Die Berechnung der längenbezogenen Wärmedurchgangskoeffizienten (Ψ -Werte) für Sprossenkonstruktionen erfolgt in Anlehnung an die Berechnung von Ψ_g -Werten für Abstandhaltersysteme von Mehrscheiben-Isoliergläsern nach prEN 10077-2.

Bei komplizierten Bauteilen wie z.B. Sprossenkonstruktionen kann der Einfluss auf den Wärmedurchgang nur durch die detaillierte Berücksichtigung der Geometrie und der unterschiedlichen Wärmeleitfähigkeiten der verwendeten Materialien ermittelt werden. Mit einem Finite Differenzen - Programm werden die zu berechnenden Objekte in kleine Teilbereiche (Finite Elemente) aufgeteilt und die Wärmeleitgleichung unter Berücksichtigung der Randbedingungen (Raum-/Außentemperatur, Wärmeübergangswiderstände) und unter Berücksichtigung der Wärmetransportmechanismen Wärmestrahlung, Wärmeleitung und Konvektion für jedes dieser Elemente gelöst. Als Ergebnis erhält man die Temperaturverteilung und die Wärmestromdichte q_{Sprosse} für das berechnete Objekt bestehend aus Sprossenprofil und Mehrscheiben-Isolierglas.

Als Referenzobjekt wird ein Mehrscheiben-Isolierglas herangezogen, dessen Abmessungen gleich groß sind wie die des Mehrscheiben-Isolierglases mit Sprosse (Bild 1). Der U-Wert des Mehrscheiben-Isolierglases wird nach DIN EN 673 berechnet. Die Transmissionswärmeverluste über das Mehrscheiben-Isolierglas können aus dem U-Werte der Verglasung und der Lufttemperaturdifferenz berechnet werden:

$$(1) q_{MIG} = U \cdot \Delta T_L$$

q_{MIG}..... Wärmestromdichte in W/m²

U......... Wärmedurchgangskoeffizient der Verglasung in W/(m²-K)

ΔT_L...... Lufttemperaturdifferenz in K

Mehrscheiben-Isolierglas mit gleichen Abmessungen als Referenzobjekt

Wärmestrom durch das Mehrscheiben-Isolierglas mit Sprosse: q _{I,Sprosse}

Wärmestrom durch das Mehrscheiben-Isolierglas: q I,MIG

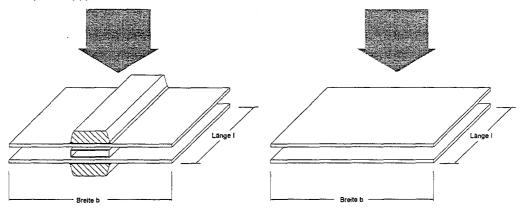


Bild 1 Ermittlung des zusätzlichen Wärmestromes bedingt durch die Sprossenkonstruktion

Der längenbezogene Wärmedurchgangskoeffizient wird durch Differenzbildung ermittelt:

(2)
$$\Psi_{\text{Sprosse}} := \frac{q_{l, \text{Sprosse}} - q_{l, \text{MIG}}}{\Delta T_L}$$

 Ψ_{Sprosse} längenbezogener Wärmedurchgangskoeffizient in W/mK für die Sprossenkonstruktion

q _{I,Sprosse}.. Wärmestromdichte Mehrscheiben-Isolierglas mit Sprosse in W/m

q IMIG...... Wärmestromdichte Mehrscheiben-Isolierglas ohne Sprosse in W/m

ΔT_L...... Lufttemperaturdifferenz in K

Der U_w -Wert eines Fensters kann nach prEN 10077-1 aus den Wärmedurchgangskoeffizienten und Flächenanteilen von Rahmen und Verglasung berechnet werden. Der Einfluss des Abstandhalters des Mehrscheiben-Isolierglases wird durch einen längenbezogenen Wärmedurchgangskoeffizienten Ψ_g berücksichtigt (Gleichung (3)).

(3)
$$U_{w} = \frac{A_{g} \cdot U_{g} + A_{t} \cdot U_{t} + I_{g} \cdot \Psi_{g}}{A_{g} + A_{t}}$$

2 Berechnungs- und Messverfahren

U_w...... Wärmedurchgangskoeffizient des Fensters in W/(m²·K)
 U_f...... Wärmedurchgangskoeffizient des Rahmens in W/(m²·K)
 U_g...... Wärmedurchgangskoeffizient der Verglasung in W/(m²·K)

A_f...... Fläche des Rahmens in m²
A_g...... Fläche der Verglasung in m²

 Ψ_g längenbezogener Wärmedurchgangskoeffizient in W/mK

lg...... Länge des Abstandhalters der Verglasung in m

Für die Berechnung des U_w-Wertes von Fenstern mit Sprossen wird Gleichung (3) um einen Term erweitert, der die in Anlehnung an prEN 10077-1 ermittelten längenbezogenen Wärmedurchgangskoeffizienten für Sprossen enthält:

(4)
$$U_{w, \, Sprosse} = \frac{A_g \cdot U_g + A_f \cdot U_f + |_g \cdot \Psi_g + |_{Sprosse} \cdot \Psi_{Sprosse}}{A_g + A_f}$$

$$= \frac{A_g \cdot U_g + A_f \cdot U_f + |_g \cdot \Psi_g}{A_g + A_f} + \frac{|_{Sprosse} \cdot \Psi_{Sprosse}}{A_g + A_f}$$

$$= U_w + \frac{|_{Sprosse} \cdot \Psi_{Sprosse}}{A_g + A_f}$$

 Ψ_{Sprosse} ... längenbezogener Wärmedurchgangskoeffizient des Sprossenprofils in W/mK

Isprosse..... Länge des Sprossenprofils in m

Die Veränderung des U_w -Wertes ($\Delta U_{w,Sprosse}$) wird somit durch den Term

(5)
$$\Delta U_{w, \, Sprosse} = \frac{|Sprosse \cdot \Psi_{Sprosse}|}{A_{g} + A_{f}}$$

beschrieben. Wird die Änderung des Wärmedurchgangs bei Fenstern bedingt durch Sprossenkonstruktionen dem Wärmedurchgangskoeffizienten des Mehrscheiben-Isolierglases zugeordnet, so ergibt sich die relative Änderung des Wärmedurchgangskoeffizienten der Verglasung aus den Gleichungen (6) und (7):

(6)
$$x = \frac{U_g, s_{prosse} - U_g}{U_g}$$

 $U_{g,Sprosse}$.. Wärmedurchgangskoeffizient der Verglasung mit Sprosse in $W/(m^2-K)$

(7)
$$\frac{A_g \cdot U_g, s_{prosse}}{A_g + A_f} = \frac{A_g \cdot U_g + I_{sprosse} * \Psi_{sprosse}}{A_g + A_f}$$

Aus den Gleichungen (6) und (7) ergibt sich somit die relative Änderung des Wärmedurchgangskoeffizienten der Verglasung zu:

(8)
$$x = \frac{I_{Sprosse} \cdot \Psi_{Sprosse}}{A_g \cdot U_g}$$

Die absolute Änderung des Wärmedurchgangskoeffizienten der Verglasung ergibt sich aus Gleichung (9):

(9)
$$\Delta U = \frac{I_{Sprosse} \cdot \Psi_{Sprosse}}{A_g}$$

2.2 Meßmethode

Die Prüfungen erfolgen nach prEN 12567-1 Bestimmung des Wärmedurchgangskoeffizienten nach dem Heizkastenverfahren. Die Probekörper werden zwischen zwei Kammern so eingebaut, dass ihre Innenseite dem Warmraum zugekehrt ist. Auf den Probekörper wird ein Heizkasten aufgesetzt und über die Regelung dafür gesorgt, dass die dem Heizkasten zugeführte Wärmenergie ausschließlich über die Prüffläche abfließt. Die Lufttemperaturen werden konstant gehalten. Im stationären Zustand strömt ein gleichbleibender Wärmestrom durch den Probekörper. Der U_w -Wert des Fensters ergibt sich aus dem Wärmestrom Q, der Lufttemperaturdifferenz ΔT_L und der Fläche des Fensters:

$$(10) U_{w,mess} = \frac{Q}{A_w \cdot \Delta T_L}$$

U_{w.mess}. Wärmedurchgangskoeffizient in W/(m²·K)

Q..... Wärmestrom in W

 A_w Fläche des Fensters in m² ΔT_L Lufttemperaturdifferenz in K

Es wird ausdrücklich daraufhingewiesen, dass die Messung des U_w -Wertes nach einer Vornorm (prEN 12567-1) erfolgt. Änderungen in diesem Normentwurf können zu Änderungen in den Messergebnissen führen.

3 Grundtypen von Sprossenkonstruktionen

3 Grundtypen von Sprossenkonstruktionen

In diesem Abschnitt werden die Grundtypen der verschiedenen Sprossenkonstruktionen dargestellt.

3.1 aufsetzbarer Sprossenrahmen

Aufsetzbare Sprossenrahmen sind mit Spezialbeschlägen von der Raumseite und / oder von der Außenseite vor die Glasfläche gesetzt (Bild 2). Sie können zum Reinigen der Glasfläche entfernt werden. Aufgrund des fertigungstechnischen Aufwandes werden sie nur noch selten verwendet. Da die Raum- bzw. Außenluft in den Zwischenraum von Verglasung und Sprossenrahmen gelangt, wird nur der raum- bzw. außenseitige Wärmeübergangswiderstand verändert. Der Einfluss auf den Wärmedurchgang ist bei Wärmeschutzverglasungen gering. Aufsetzbare Sprossenrahmen wurden im Rahmen dieses Projektes nicht untersucht.

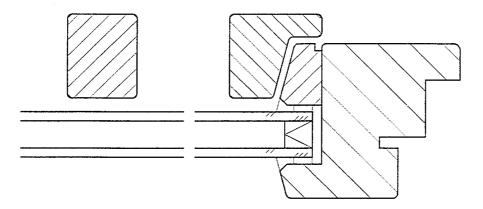


Bild 2 aufsetzbarer Sprossenrahmen

3.2 Sprosse im Scheibenzwischenraum

In den Scheibenzwischenraum eines Mehrscheiben-Isolierglases werden Sprossenprofile mit rechteckigem oder profiliertem Querschnitt eingesetzt (Bild 3). Der Anschluss an den Randabstandhalter und die Herstellung von Eck- bzw. Kreuzverbindungen erfolgt mit Verbindungsprofilen. Um Glasbruch

zu vermeiden, muss die Dicke der in den Scheibenzwischenraum eingesetzten Sprosse kleiner sein als die des Abstandhalters. Von einigen Glasherstellern werden als Mindestmaß zwischen Sprossenprofil und Scheiben 2 mm bis 3 mm angegeben. Transparente Distanzklötze aus Kunststoff, die auf die Sprossenprofile aufgeklebt werden, reduzieren mögliche Klappergeräusche. Sprossen im Scheibenzwischenraum unterbrechen das Glasfeld nicht. Die Reinigungsarbeiten werden dadurch erleichtert.

Bild 3 Sprosse im Scheibenzwischenraum

3.3 aufgeklebte Sprosse

Bei aufgeklebten Sprossen werden Profile aus Holz, Kunststoff oder Metall auf das Isolierglas aufgeklebt (Bild 4). Die Befestigung erfolgt mit einem Klebeband oder mit Dichtstoff. Die Profile werden aus ästhetischen Gründen meist beidseitig aufgeklebt. Unterschiedliche Raum- und Außentemperaturen oder Änderungen des Luftdruckes führen zu Verformungen der Isoliergläser. Um eine konvexe oder konkave Verformung der Scheiben auszugleichen, wird von einigen Glasherstellern eine Dichtbandvorlage von 2 mm bis 4 mm vorgeschrieben.

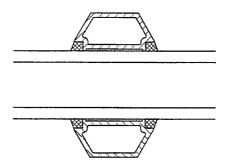


Bild 4 aufgeklebte Sprosse ohne Abstandhaltersprosse im Scheibenzwischenraum

Um ein einheitliches Aussehen des Glasrandes im Rahmen und im Sprossenbereich zu erhalten, werden Abstandhaltersprossenprofile in den Scheiben3 Grundtypen von Sprossenkonstruktionen

zwischenraum eingesetzt (Bild 5). Auch hier muss zur Verringerung der Gefahr von Glasbruch der von den Glasherstellern vorgegebene Mindestabstand zwischen Glasscheibe und Abstandhaltersprosse eingehalten werden.

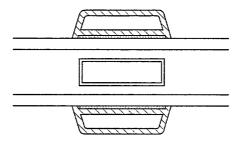


Bild 5 aufgeklebte Sprosse mit Abstandhaltersprosse im Scheibenzwischenraum

3.4 glasteilende Sprosse

Glasteilende Sprossen unterbrechen das Glasfeld (Bild 6). Schmale Ansichtsbreiten der Sprossen werden durch eine Verringerung der Glasfalztiefe und des Glaseinstandes oder durch Kombination von verschiedenen Werkstoffen z.B. Holz mit Aluminium erreicht.

Durch die Glasteilung entstehen kleinformatige Scheiben. Bei kleinformatigen Scheiben mit einer Kantenlänge von weniger als 60 cm, ungünstigen Kantenverhältnissen und Randbedingungen kann Glasbruch auftreten.

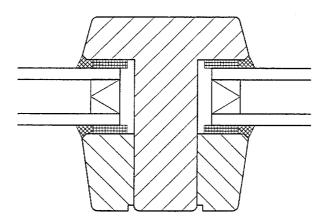


Bild 6 glasteilende Sprosse

4 Längenbezogene Wärmedurchgangskoeffizienten

Für folgende Sprossenkonstruktionen wurden die $\Psi_{\text{Sprosse}}\text{-}$ Werte ermittelt:

- Sprossentypen:
 - Sprossen im Scheibenzwischenraum aufgeklebte Sprossen mit und ohne Sprossen im Scheibenzwischenraum glasteilende Sprossen
- Sprossenwerkstoffe:

Aluminium-Holz (Weichholz/Hartholz)

Holz (Weichholz/Hartholz)

PVC mit und ohne Stahlaussteifung

wärmegedämmte Aluminium-Verbundprofile

Für Sprossenprofile, die in den Scheibenzwischenraum eingesetzt werden, und Abstandhalter von Mehrscheiben-Isoliergläsern bei glasteilenden Sprossenkonstruktionen wurden ausschließlich Aluminiumprofile verwendet.

Profildetails können den Querschnittsdarstellungen in der Anlage 2 entnommen werden. Der Aufbau der Mehrscheiben-Isoliergläser ist in Tabelle 1 zusammengefasst.

Tabelle 1 Aufbau und U-Wert der Mehrscheiben-Isoliergläser für die Berechnung

Aufbau	Gasfüllung	Emissionsgrad*	U in W/(m²·K)**		
<u>4</u> /12/ <u>4</u>	Luft	unbeschichtet	2,9		
<u>4</u> /12/ <u>4</u>	Luft	ε = 0,1	1,8		
<u>4</u> /12/ <u>4</u>	90 % Argon	ε = 0,1	1,5		
<u>4</u> /12/ <u>4</u>	90 % Krypton	ε = 0,04	1,0		
<u>4</u> /16/ <u>4</u>	Luft	unbeschichtet	2,7		
<u>4</u> /16/ <u>4</u>	Luft	ε = 0,1	1,6		
<u>4</u> /16/ <u>4</u>	90 % Argon	ε = 0,1	1,3		
<u>4</u> /16/ <u>4</u>	90 % Krypton	ε = 0,04	1,0		

normaler Emissionsgrad

Die für die Berechnung angenommenen Wärmeleitfähigkeiten wurden DIN V 4108-4 oder prEN 10077-2 [8] entnommen. In Anlage 1 sind die Stoffkennwerte zusammengefasst.

^{**} berechnet nach DIN EN 673

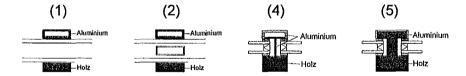
Einfluss von Sprossenkonstruktionen auf den Wärmedurchgang

4 Längenbezogene Wärmedurchgangskoeffizienten

Üblich und für wärmeschutztechnische Berechnungen sinnvoll ist die Angabe der U-Werte auf zwei wertanzeigende Ziffern. Zur besseren Vergleichbarkeit der verschiedenen Konstruktionen wurden die U-Werte auf drei wertanzeigende Ziffern angegeben.

Die Ψ_{Sprosse} -Werte für die verschiedenen Sprossentypen und -konstruktionen sind in der Anlage 2 angegeben. In Tabelle 2 bis Tabelle 10 sind die Rechenergebnisse (Ψ_{Sprosse} -Werte) sortiert nach Sprossenwerkstoffen zusammengefasst.

4.1 Zusammenfassung nach Sprossenwerkstoff


 $\begin{tabular}{ll} \textbf{Tabelle 2} & \Psi_{Sprosse} \end{tabular} \begin{tabular}{ll} \textbf{Werte (in W/mK) für Sprossen im Scheibenzwischenraum} \end{tabular} \label{eq:prosser}$

Sprossenmaterial: Sprosse im Scheibenzwischenraum									
Sprossentyp Breite in Scheibenzwischenraum 12 mm mm						Scheibenzwischenraum 16 mm			
		Luft / ε=0,89	Luft / ε=0,1	Argon / ε=0,1	Krypton / ε=0,04	Luft / ε=0,89	Luft / ε=0,1	Argon / ε=0,1	Krypton / ε=0,04
im Scheibenzwischen-	min	0,02	0,02	0,02	0,01	0,01	0,01	0,01	0,01
raum (Ziersprosse)	max	0,05	0,05	0,05	0,04	0,03	0,03	0,03	0,03
im Scheibenzwischen-	min	0,06	0,06	0,06	0,05	0,03	0,03	0,03	0,03
raum (Abstandhalterspr.)	max	0,09	0,10	0,09	0,08	0,05	0,05	0,05	0,04

Tabelle 3 Ψ_{Sprosse}-Werte (in W/mK) für Sprossen aus Aluminium-Weichholz

Sprossenmaterial:	Sprossenmaterial: Aluminium-Weichholz									
Sprossentyp	Breite in		Scheibenzwi	schenraum 12	mm		Scheibenzwischenraum 16 mm			
	mm						,			
		Luft / ε=0,89	Luft / ε≃0,1	Argon / ε=0,1	Krypton / ε=0,04	Luft / ε=0,89	Luft / ε=0,1	Argon / ε=0,1	Krypton / ε=0,04	
aufgeklebt (1)	min	-0,04	-0,02	-0,01	-0,01	-0,03	-0,01	-0,01	-0,01	
	max	-0,01	-0,01	0,00	0,00	-0,01	0,00	0,00	0,00	
mit Dichtband	min	-0,06	-0,03	-0,02	-0,01	-0,06	-0,02	-0,02	-0,01	
	max	-0,02	-0,01	-0,01	0,00	-0,02	-0,01	-0,01	0,00	
im Scheibenzwischen-	min	0,05	0,08	0,08	0,07	0,02	0,03	0,04	0,04	
raum und aufgeklebt (2)	max	0,07	0,09	0,10	0,10	0,06	0,05	0,06	0,06	
mit Dichtband	min	0,01	0,06	0,06	0,06	-0,03	0,02	0,03	0,03	
	max	0,04	80,0	0,09	0,09	0,03	0,05	0,05	0,05	
glasteilend (4)	min	0,09	0,18	0,20	0,24	0,11	0,20	0,22	0,24	
	max	0,12	0,20	0,23	0,26	0,13	0,22	0,24	0,26	
glasteilend (5)	min	-0,04	0,10	0,14	0,19	-0,02	0,14	0,17	0,19	
	max	0,03	0,12	0,16	0,22	0,05	0,15	0,18	0,22	

Sprossenmaterial: Aluminium-Hartholz										
Sprossentyp	Breite in		Scheibenzwi	schenraum 12	mm	Scheibenzwischenraum 16 mm				
	mm									
		Luft / ε=0,89	Luft / ε=0,1	Argon / ε=0,1	Krypton / ε=0,04	Luft / ε=0,89	Luft / ε=0,1	Argon / ε=0,1	Krypton / ε=0,04	
aufgeklebt (1)	min	-0,02	-0,01	-0,01	0,00	-0,02	-0,01	-0,01	0,00	
	max	-0,01	0,00	0,00	0,00	-0,01	0,00	0,00	0,00	
mit Dichtband	min	-0,05	-0,02	-0,02	-0,01	-0,05	-0,02	-0,01	-0,01	
	max	-0,02	-0,01	-0,01	0,00	-0,02	-0,01	0,00	0,00	
im Scheibenzwischen-	min	0,07	0,08	0,08	0,08	0,04	0,04	0,04	0,04	
raum und aufgeklebt (2)	max	0,08	0,11	0,10	0,09	0,05	0,06	0,06	0,06	
mit Dichtband	min	0,02	0,06	0,07	0,07	-0,02	0,03	0,03	0,03	
	max	0,05	0,09	0,09	0,09	0,03	0,05	0,05	0,05	
glasteilend (4)	min	0,11	0,20	0,22	0,26	0,13	0,22	0,24	0,26	
	max	0,14	0,22	0,25	0,28	0,15	0,24	0,26	0,28	
glasteilend (5)	min	0,00	0,14	0,17	0,21	0,02	0,17	0,19	0,21	
	max	0,05	0,16	0,20	0,26	. 0,07	0,19	0,22	0,26	

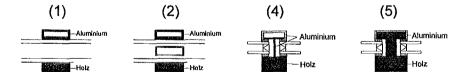
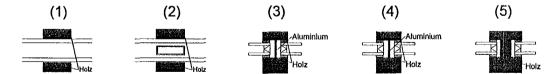
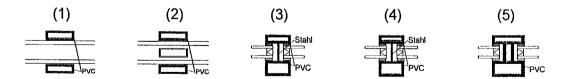



Tabelle 5 $\Psi_{Sprosse}$ -Werte (in W/mK) für Sprossen aus Weichholz

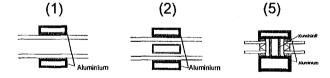
Sprossenmaterial:	Weichhol	z									
Sprossentyp	Breite in		Scheibenzwi	schenraum 12	mm		Scheibenzwischenraum 16 mm				
	mm										
		Luft / ε=0,89	Luft / ε=0,1	Argon / ε=0,1	Krypton / ε=0,04	Luft / ε=0,89	Luft / ε=0,1	Argon / ε=0,1	Krypton / ε=0,04		
aufgeklebt1(1)	min	-0,05	-0,02	-0,01	-0,01	-0,05	-0,02	-0,01	-0,01		
. 	max	-0,02	-0,01	-0,01	0,00	-0,02	-0,01	-0,01	0,00		
mit Dichtband	min	-0,06	-0,03	-0,02	-0,01	-0,05	-0,02	-0,02	-0,01		
	max	-0,02	-0,01	-0,01	0,00	-0,02	-0,01	-0,01	0,00		
im Scheibenzwischen-	min	0,02	0,06	0,06	0,06	0,00	0,03	0,03	0,03		
raum und aufgeklebt(2)	max	0,04	0,07	0,07	0,07	0,02	0,04	0,04	0,03		
mit Dichtband	min	0,00	0,05	0,06	0,06	-0,02	0,02	0,03	0,03		
	max	0,03	0,06	0,07	0,07	0,01	0,03	0,03	0,03		
glasteilend (3)	min	0,05	0,14	0,16	0,19	0,06	0,16	0,17	0,19		
	max	0,09	0,17	0,19	0,22	0,10	0,19	0,20	0,22		
glasteilend (4)	min	0,05	0,13	0,16	0,19	0,06	0,15	0,17	0,19		
	max	0,08	0,17	0,19	0,22	0,09	0,18	0,20	0,22		
glasteilend (5)	min	-0,03	0,10	0,13	0,17	-0,01	0,13	0,15	0,17		
	max	0,02	0,11	0,13	0,18	0,03	0,13	0,15	0,18		

Sprossenmaterial:	Hartholz									
Sprossentyp	Breite in		Scheibenzwi	schenraum 12	mm	Scheibenzwischenraum 16 mm				
	mm									
		Luft / ε=0,89	Luft / ε=0,1	Argon / ε=0,1	Krypton / ε=0,04	Luft / ε=0,89	Luft / ε=0,1	Argon / ε=0,1	Krypton / ε=0,04	
aufgeklebt1(1)	min	-0,03	-0,01	-0,01	0,00	-0,03	-0,01	-0,01	0,00	
	max	-0,01	-0,01	0,00	0,00	-0,01	0,00	0,00	0,00	
mit Dichtband	min	-0,05	-0,02	÷0,02	-0,01	-0,05	-0,02	-0,01	-0,01	
	max	-0,02	-0,01	-0,01	0,00	-0,02	-0,01	0,00	0,00	
im Scheibenzwischen-	min	0,04	0,07	0,07	0,07	0,02	0,04	0,04	0,03	
raum und aufgeklebt(2)	max	0,05	0,08	0,08	0,08	0,03	0,04	0,04	0,04	
mit Dichtband	min	0,02	0,06	0,07	0,06	0,00	0,03	0,03	0,03	
	max	0,04	0,07	0,07	0,07	0,02	0,04	0,04	0,04	
glasteilend (3)	min	0,08	0,16	0,19	0,22	0,09	0,18	0,20	0,22	
	max	0,12	0,19	0,21	0,25	0,12	0,21	0,23	0,24	
glasteilend (4)	min	0,07	0,16	0,18	0,22	0,08	0,18	0,20	0,21	
	max	0,11	0,19	0,21	0,25	0,12	0,21	0,23	0,24	
glasteilend (5)	min	0,01	0,13	0,16	0,19	0,03	0,15	0,17	0,19	
	max	0,04	0,14	0,17	0,22	0,06	0,17	0,19	0,22	

(3)



(4)


Tabelle 7 $\Psi_{Sprosse}$ -Werte (in W/mK) für Sprossen aus PVC

Sprossenmaterial: PVC									
Sprossentyp	Breite in		Scheibenzwi	schenraum 12	mm	Scheibenzwischenraum 16 mm			
	mm								
		Luft / ε=0,89	Luft / ε=0,1	Argon / ε=0,1	Krypton / ε=0,04	Luft / ε=0,89	Luft / ε=0,1	Argon / ε=0,1	Krypton / ε=0,04
aufgeklebt (1)	min	-0,10	-0,05	-0,03	-0,02	-0,09	-0,04	-0,03	-0,02
	max	-0,01	-0,01	0,00	0,00	-0,01	0,00	0,00	0,00
mit Dichtband	min	-0,11	-0,05	-0,04	-0,02	-0,11	-0,04	-0,03	-0,02
	max	-0,01	-0,01	0,00	0,00	-0,02	-0,01	0,00	0,00
im Scheibenzwischen-	min	-0,05	0,02	0,04	0,05	-0,06	0,00	0,01	0,02
raum und aufgeklebt(2)	max	0,03	0,05	0,06	0,06	0,02	0,03	0,03	0,03
mit Dichtband	min	-0,07	0,01	0,03	0,04	-0,08	-0,01	0,00	0,01
	max	0,03	0,05	0,05	0,05	0,01	0,02	0,02	0,02
glasteilend (3)	min	0,06	0,15	0,17	0,21	0,07	0,17	0,19	0,21
	max	0,10	0,18	0,20	0,23	0,11	0,20	0,21	0,23
glasteilend (4)	min	0,10	0,19	0,22	0,25	0,11	0,21	0,23	0,25
	max	0,13	0,21	0,23	0,27	0,14	0,23	0,25	0,27
glasteilend (5)	min	-0,02	0,09	0,13	0,18	0,00	0,13	0,15	0,17
	max	0,06	0,18	0,22	0,27	0,07	0,21	0,23	0,26

Sprossenmaterial: Aluminium-Kunststoff										
Sprossentyp	Breite in		Scheibenzwi	schenraum 12	mm	Scheibenzwischenraum 16 mm				
	mm									
		Luft / ε=0,89	Luft / ε=0,1	Argon / ε=0,1	Krypton / ε=0,04	Luft / ε=0,89	Luft / ε=0,1	Argon / ε=0,1	Krypton / ε=0,04	
aufgeklebt (1)	min	0,01	0,00	0,00	0,00	0,01	0,00	0,00	0,00	
	max	0,01	0,00	0,00	0,00	0,01	0,00	0,00	00,00	
mit Dichtband	min	-0,02	-0,01	-0,01	0,00	-0,02	-0,01	-0,01	0,00	
	max	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
im Scheibenzwischen-	min	0,11	0,10	0,10	0,09	0,07	0,05	0,05	0,04	
raum und aufgeklebt(2)	max	0,13	0,13	0,12	0,11	0,08	0,07	0,06	0,05	
mit Dichtband	min	0,06	0,08	0,08	0,07	0,03	0,04	0,04	0,04	
	max	0,07	0,09	0,09	0,08	0,04	0,05	0,04	0,04	
glasteilend (5)	min	0,07	0,20	0,23	0,27	0,09	0,22	0,24	0,26	
	max	0,14	0,27	0,30	0,35	0,16	0,29	0,32	0,34	

4.2 Zusammenfassung der $\Psi_{Sprosse}$ -Werte

Tabelle 9 Zusammenfassung der $\Psi_{Sprosse}$ -Werte (in W/mK) von aufgeklebten und glasteilenden Sprossenkonstruktionen

Тур	Isolierglas	Alu-Weichholz	Alu-Hartholz	Weichholz	Hartholz	PVC	Metall
aufgeklebt (1)	Luft / ε=0,89	-0,06 bis -0,01	-0,05 bis -0,01	-0,06 bis -0,02	-0,05 bis -0,01	-0,11 bis -0,01	-0,02 bis 0,01
	Luft / ε=0,1	-0,03 bis 0,00	-0,02 bis 0,00	-0,03 bis -0,01	-0,02 bis 0,00	-0,05 bis 0,00	-0,01 bis 0,00
	Argon / ε=0,1	-0,02 bis 0,00	-0,02 bis 0,00	-0,02 bis - 0,01	-0,02 bis 0,00	-0,04 bis 0,00	-0,01 bis 0,00
	Krypton / ε=0,04	-0,01 bis 0,00	-0,01 bis 0,00	-0,01 bis 0,00	-0,01 bis 0,00	-0,02 bis 0,00	0,00 bis 0,00
im Scheibenzwischen-	Luft / ε=0,89	-0,03 bis 0,07	-0,02 bis 0,08	-0,02 bis 0,04	0,00 bis 0,05	-0,08 bis 0,03	0,03 bis 0,13
raum und aufgeklebt(2)	Luft / ε=0,1	0,02 bis 0,09	0,03 bis 0,11	0,02 bis 0,07	0,03 bis 0,08	-0,01 bis 0,05	0,04 bis 0,13
	Argon / ε=0,1	0,03 bis 0,10	0,03 bis 0,10	0,03 bis 0,07	0,03 bis 0,08	0,00 bis 0,06	0,04 bis 0,12
	Krypton / ε=0,04	0,03 bis 0,10	0,03 bis 0,09	0,03 bis 0,07	0,03 bis 0,08	0,01 bis 0,06	0,04 bis 0,11
glasteilend (3)	Luft / ε=0,89	-	-	0,05 bis 0,10	0,08 bis 0,12	0,06 bis 0,11	-
	Luft / ε=0,1	-	-	0,14 bis0,19	0,16 bis 0,21	0,15 bis 0,20	-
	Argon / ε=0,1	-	. -	0,16 bis 0,20	0,19 bis 0,23	0,17 bis 0,21	-
	Krypton / ε=0,04		-	0,19 bis 0,22	0,22 bis 0,25	0,21 bis 0,23	-
glasteilend (4)	Luft / ε=0,89	0,09 bis 0,13	0,11 bis 0,15	0,05 bis 0,09	0,07 bis0,12	0,10 bis 0,14	-
	Luft / ε=0,1	0,18 bis 0,22	0,20 bis 0,24	0,13 bis 0,18	0,16 bis 0,21	0,19 bis 0,23	-
	Argon / ε=0,1	0,20 bis 0,24	0,22 bis 0,26	0,16 bis 0,20	0,18 bis 0,23	0,22 bis 0,25	-
	Krypton / ε=0,04	0,24 bis 0,26	0,26 bis 0,28	0,19 bis 0,22	0,21 bis 0,25	0,25 bis 0,27	-
glasteilend (5)	Luft / ε=0,89	-0,04 bis 0,05	0,00 bis 0,07	-0,03 bis 0,03	0,01 bis 0,06	-0,02 bis 0,07	0,07 bis 0,16
	Luft / ε=0,1	0,10 bis 0,15	0,14 bis 0,19	0,09 bis 0,13	0,13 bis 0,17	0,10 bis 0,21	0,20 bis 0,29
	Argon / ε=0,1	0,14 bis 0,18	0,17 bis 0,22	0,13 bis 0,15	0,16 bis 0,19	0,13 bis 0,23	0,23 bis 0,32
	Krypton / ε=0,04	0,19 bis 0,22	0,21 bis 0,26	0,17 bis 0,18	0,19 bis 0,22	0,17 bis 0,27	0,26 bis 0,35

Nummerierung der Sprossen siehe Seite 12 bis 17

Tabelle 10 Zusammenfassung der Ψ_{Sprosse} -Werte (in W/mK) für Sprossen im Scheibenzwischenraum

Тур	Isolierglas	
Sprosse im Scheiben-	Luft / ε=0,89	0,01 bis 0,09
zwischenraum	Luft / ε=0,1	0,01 bis 0,10
	Argon / ε=0,1	0,01 bis 0,09
	Krypton / ε=0,04	0,01 bis 0,08

4 Längenbezogene Wärmedurchgangskoeffizienten

Für Sprossen im Scheibenzwischenraum wurden Ψ_{Sprosse} -Werte von 0,01 W/mK bis 0,10 W/mK ermittelt. Dabei zeigten sich nur geringe Unterschiede zwischen unbeschichteten und beschichteten Isoliergläsern.

Die Berechnungen ergaben für aufgeklebte Sprossen aus Aluminium-Holz, Holz, PVC und Aluminium Ψ_{Sprosse} -Werte von -0.11 W/mK bis 0.01 W/mK. Sprossen mit negativen Ψ_{Sprosse} -Werten vermindern den Wärmedurchgang und verbessern somit den U-Wert der Fenster. Das Einsetzen von Metallprofilen aus Aluminium in den Scheibenzwischenraum ("Abstandhaltersprosse") führt bei unbeschichteten Isoliergläsern je nach Sprossenkonstruktion zu Ψ_{Sprosse} -Werten von -0.08 W/mK bis 0.13 W/mK. Bei beschichteten Isoliergläsern ist der Unterschied in den Ψ_{Sprosse} -Werten zwischen den verschiedenen Verglasungsaufbauten gering. Für Sprossen aus Aluminium-Holz wurden Ψ_{Sprosse} -Werte von 0.02 W/mK bis 0.11 W/mK, bei Holz von 0.02 W/mK bis 0.08 W/mK, bei PVC von -0.01 W/mK bis 0.06 W/mK und bei Aluminium von 0.04 W/mK bis 0.13 W/mK ermittelt.

Glasteilende Sprossen weisen höhere Ψ_{Sprosse} -Werte auf als nichtglasteilende Sprossenkonstruktionen. Deutlicher treten hierbei auch Unterschiede zwischen den verschiedenen Verglasungen auf, wobei Sprossen in Verglasungen mit niedrigeren U-Werten höhere Ψ_{Sprosse} -Werte aufweisen. Bei unbeschichteten Verglasungen wurden für Sprossen aus Aluminium-Holz Ψ_{Sprosse} -Werte von - 0,05 W/mK bis 0,15 W/mK, bei Holz von - 0,03 W/mK bis 0,12 W/mK, bei PVC von - 0,02 W/mK bis 0,14 W/mK und bei Aluminium von 0,07 W/mK bis 0,16 W/mK ermittelt. Bei beschichteten Verglasungen liegen die Ψ_{Sprosse} -Werte bei Sprossen aus Aluminium-Holz im Bereich von 0,10 W/mK bis 0,28 W/mK, bei Holz von 0,09 W/mK bis 0,25 W/mK, bei PVC von 0,10 W/mK bis 0,27 W/mK und bei Aluminium von 0,20 W/mK bis 0,35 W/mK.

5 Messungen an Sprossenfenstern

5 Messungen an Sprossenfenstern

5.1 Probekörper und Messergebnisse

Zur Validierung der in Anlehnung an prEN 10077-2 berechneten Ψ_{Sprosse^-} Werte wurden an Fenstern aus verschiedenen Rahmenwerkstoffen und mit verschiedenen Sprossenkonstruktionen Prüfungen nach prEN 12567-1 durchgeführt. Für die Prüfungen wurden Fenster mit der Standardabmessung 1,23 m x 1,48 m verwendet. Die Sprossenkonstruktionen wurden in allen Fällen als Kreuzsprosse ausgeführt. In Tabelle 11 sind die Probekörper beschrieben. Die Querschnitte der geprüften Sprossenvarianten in sind Bild 7, Bild 8 und Bild 9 dargestellt.

Tabelle 11 Beschreibung der Probekörper

Nr.	Sprossenmaterial	Verglasung	Sprosse
1	Holz	<u>4</u> /16/ <u>4</u> , Argon, ε=0,07	ohne Sprosse
2	Holz	<u>4</u> /16/ <u>4</u> , Argon, ε=0,07	Sprosse im Scheibenzwischenraum
3	Holz	<u>4</u> /16/ <u>4</u> , Argon, ε=0,07	glasteilende Sprosse
4	PVC	<u>4</u> /16/ <u>4</u> , Argon, ε=0,07	ohne Sprosse
5	PVC	<u>4</u> /16/ <u>4</u> , Argon, ε=0,07	Sprosse im Scheibenzwischenraum
6	PVC	<u>4</u> /16/ <u>4</u> , Argon, ε=0,07	glasteilende Sprosse
7	Alu-Verbund	<u>4</u> /16/ <u>4</u> , Argon, ε=0,04	ohne Sprosse
8	Alu-Verbund	<u>4</u> /16/ <u>4</u> , Argon, ε=0,04	Sprosse im Scheibenzwischenraum
10	Alu-Verbund	<u>4</u> /16/ <u>4</u> , Argon, ε=0,04	glasteilende Sprosse

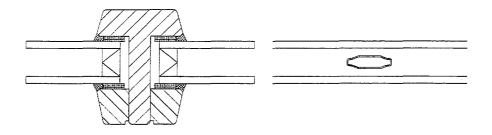


Bild 7 Querschnitte der geprüften Sprossenprofile des Holzfensters

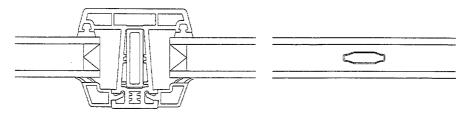


Bild 8 Querschnitte der geprüften Sprossenprofile des PVC-Fensters

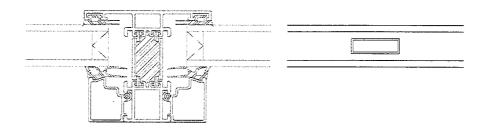


Bild 9 Querschnitte der geprüften Sprossenprofile des Aluminium-Fensters

In Tabelle 12 sind die Messergebnisse zusammengefasst.

Tabelle 12 Zusammenfassung der Messergebnisse für Einfachfenster mit und ohne Sprossenkreuz

Nr.	Fenster	U _w in W/(m ² ·K)
1	Holzfenster ohne Sprosse	1,45
2	Holzfenster mit Sprosse im Scheibenzwischenraum	1,48
3	Holzfenster mit glasteilender Sprosse	1,62
4	PVC-Fenster ohne Sprosse	1,51
5	PVC-Fenster mit Sprosse im Scheibenzwischenraum	1,55
6	PVC-Fenster mit glasteilender Sprosse	1,70
7	Alu-Fenster ohne Sprosse	1,80
8	Alu-Fenster mit Sprosse im Scheibenzwischenraum	1,88
9	Alu-Fenster mit glasteilender Sprosse	2,04

5 Messungen an Sprossenfenstern

5.2 Vergleich Messung und Berechnung

Für den Vergleich von Messung und Rechnung werden die Differenzen der U_w -Werte der Fenster mit Sprossen zu den U_w -Werten der Fenster ohne Sprossen betrachtet.

Die gemessene Differenz ergibt sich durch Differenzbildung der U_w -Werte der Fenster mit Sprosse zu dem U_w -Wert des Fensters ohne Sprosse:

(11)
$$\Delta U_{w, mess} = U_{w, mitSprosse} - U_{w, ohneSprosse}$$

Rechnerisch wird diese Differenz nach Gleichung (5) ermittelt:

$$\Delta U$$
w, rech = ΔU w, Sprosse = $\frac{I$ Sprosse · Ψ Sprosse $A_g + A_f$

In Tabelle 13 sind die berechneten und gemessenen Differenzen gegenübergestellt.

Tabelle 13 Änderung des Uw-Wertes (in W/(m²·K)) eines Holzfensters durch Sprossen

Nr.	Fenster	U _w	$\Delta U_{w,mess}$	$\Delta U_{w, rech}$
1	ohne Sprosse	1,45	-	-
2	Sprosse im Scheibenzwischenraum	1,48	0,03	0,02
3	glasteilende Sprosse	1,62	0,17	0,19

Tabelle 14 Änderung des Uw-Wertes (in W/(m²-K)) eines PVC-Fensters durch Sprossen

Nr.	Fenster	U _w	$\Delta U_{w, mess}$	$\Delta U_{w, rech}$
4	ohne Sprosse	1,51		-
5	Sprosse im Scheibenzwischenraum	1,55	0,04	0,02
6	glasteilende Sprosse	1,70	0,19	0,22

Tabelle 15 Änderung des Uw-Wertes (in W/(m²·K)) eines Alu-Fensters durch Sprossen

Nr.	Fenster	U _w	$\Delta U_{w,mess}$	$\Delta U_{w, rech}$
7	ohne Sprosse	1,80	-	-
8	Sprosse im Scheibenzwischenraum	1,88	0,08	0,08
9	glasteilende Sprosse	2,04	0,24	0,22*

die rechnerisch ermittelte Differenz von 0,17 W/m²K wurde aufgrund der Unterschiede in den gemessenen U-Werten der Mehrscheiben-Isoliergläser korrigiert

Der Vergleich der Ergebnisse aus den numerischen Berechnungen mit den Messergebnissen zeigt, dass bei Sprossen im Scheibenzwischenraum die rechnerisch ermittelte Differenz des U_w-Wertes etwas kleiner ist als die gemessene Differenz. Der Unterschied zwischen berechneter und gemessener Differenz beträgt ca. 0,01 W/(m²·K) bis 0,02 W/(m²·K). Ursächlich dafür ist die bei großen Scheibenflächen auftretende größere Scheibendurchbiegung, die dazu führt, dass in der Scheibenmitte ein geringerer Scheibenzwischenraum entsteht. Der kleinere Abstand zwischen Sprossenprofil und Scheibe bedingt einen höheren gemessenen Wärmedurchgang für Fenster mit Sprossen im Scheibenzwischenraum. Darüber hinaus führen fertigungsbedingte Abweichungen im Scheibenformat zu unterschiedlichen Glaseinständen im Rahmenprofil und damit zu einer Änderung des Wärmedurchgangs im Glasrandbereich. Die durch Messung ermittelte Differenz im U_w-Wert umfasst daher mehrere Einflussgrößen.

Bei den glasteilenden Sprossenkonstruktionen im Holz- und Kunststofffenster ergibt sich durch die numerische Berechnung ein etwas größerer ΔU_w -Werte als der durch die Messung ermittelt ΔU_w -Wert. Dies entspricht dem Grundprinzip, dass rechnerisch ermittelte wärmetechnische Kennwerte von Bauteilen höher sein sollten als die durch Messung ermittelten Kennwerte. Die Differenz zwischen der rechnerisch und der durch Messung ermittelten Erhöhung des U_w -Wertes beträgt ca. 0,02 W/(m^2 -K).

Bei den glasteilenden Sprossenkonstruktionen im Metallfenster ergibt sich durch die numerische Berechnung ein kleinerer ΔU_w -Wert als der durch die Vergleichsmessung ermittelte ΔU_w -Wert. Der Unterschied ist im unterschiedlichen Glaseinstand im Rahmen- und Sprossenprofil (siehe Kapitel 5.3) und in den Unterschieden im U-Wert der verwendeten Mehrscheiben-Isoliergläser begründet. In Tabelle 15 wurde die rechnerisch ermittelte Differenz im U_w -

5 Messungen an Sprossenfenstern

Wert von Metallfenstern mit und ohne glasteilender Sprosse um die Differenz, die sich aus den U-Werten der Mehrscheiben-Isoliergläser ergibt, korrigiert.

Die Differenz zwischen der rechnerisch und durch Messung ermittelten Änderung des U-Wertes von Fenstern, die sich bei Verwendung von Sprossen ergibt, ist gering. Die numerische Simulation des wärmetechnischen Verhaltens von Sprossenkonstruktionen bietet daher die Möglichkeit, den Einfluss von verschiedenen Sprossenkonstruktionen auf den Wärmedurchgang von Fenstern rechnerisch zu ermitteln.

5.3 Parametervariation

Bei der rechnerischen Ermittlung von Ψ_{Sprosse} -Werten werden idealisierte Abstandhaltersysteme und Profilquerschnitte berechnet. Fertigungsbedingte Abweichungen in der Geometrie und Schwankungen in den Materialkennwerten führen zu Veränderungen in den Ψ_{Sprosse} -Werten.

Die Temperaturdifferenz zwischen der inneren und äußeren Oberfläche der Mehrscheiben-Isoliergläser führt bei der Prüfung zu einer formatabhängigen Durchbiegung der Scheiben. Dem überlagert sind konvexe oder konkave Verformungen der Scheiben durch Änderungen im Luftdruck. Beide Einflussgrößen führen zu einer Änderung des Scheibenzwischenraumes und somit zu einer Änderung des Wärmedurchgangs im Bereich der Verglasung.

Der Einfluss fertigungsbedingter Abweichungen und Änderungen in den Randbedingungen auf die Ψ-Werte für Abstandhalter von Mehrscheiben-Isoliergläsern und Sprossenkonstruktionen wurde für die für die Prüfung ausgewählten Konstruktionen rechnerisch untersucht.

Es wurden folgende Einflüsse untersucht:

- Abweichung im Glaseinstand (± 2 mm)
- Abweichung im Scheibenzwischenraum (+ 1 mm / 0,5 mm)
- außermittige Lage der Sprosse im Scheibenzwischenraum (± 1 mm)

Der Einfluss auf den Ψ_g -Wert des Isolierglasabstandhalters und den Ψ_{Sprosse} -Wert des Sprossenprofils ist für die verschiedenen Rahmenwerkstoffe in den folgenden Tabellen zusammengefasst.

5.3.1 Ψ_g -Werte von Isolierglas-Abstandhaltern

Tabelle 16 $\ensuremath{\Psi_g} ensuremath{\text{-Werte}}$ (in W/mK) von Isolierglas-Abstandhaltern aus Aluminium für das Rahmenprofil aus Holz

Rahmenwerkstoff: Holz	Glaseinstand		
	13 mm	15 mm	17 mm
SZR = 15,5 mm	0,09	0,08	0,08
	(113 %)	(106 %)	(98 %)
SZR = 16 mm	0,08	0,08	0,07
	(108 %)	(100 %)	(93 %)
SZR = 17 mm	0,08	0,07	0,07
	(99 %)	(92 %)	(86 %)

Tabelle 17 Ψ_g -Werte (in W/mK) von Isolierglas-Abstandhaltern aus Aluminium für das Rahmenprofil aus PVC

Rahmenwerkstoff: PVC	Glaseinstand			
(Standardabstandhalter)	13 mm	15 mm	17 mm	
SZR = 15,5 mm	0,08	0,07	0,06	
	(118 %)	(107 %)	(97 %)	
SZR = 16 mm	0,07	0,06	0,06	
	(111 %)	(100 %)	(92 %)	
SZR = 17 mm	0,07	0,06	0,06	
	(104 %)	(93 %)	(85 %)	

 $\textbf{Tabelle 18} \ \ \Psi_g\text{-Werte (in W/mK) von Isolierglas-Abstandhaltern aus Aluminium für das Rahmenprofil aus wärmegedämmten Aluminium-Verbundprofil }$

Rahmenwerkstoff: Alu	Glaseinstand			
(Standardabstandhalter)	13 mm	15 mm	17 mm	
SZR = 15,5 mm	0,11	0,10	0,09	
	(113 %)	(107 %)	(101 %)	
SZR = 16 mm	0,10	0,09	0,09	
	(107 %)	(100 %)	(94 %)	
SZR = 17 mm	0,09	0,09	0,09	
	(97 %)	(96 %)	(91 %)	

5 Messungen an Sprossenfenstern

5.3.2 $\Psi_{\text{Sprosse}}\text{-Werte von Sprossenkonstruktionen}$

Tabelle 19 absolute und relative $\Psi_{\text{Sprosse}}\text{-Werte}$ (in W/mK bzw. in %) von Sprossenkonstruktionen aus Holz

Profilwerkstoff: Holz						
Sprosse im Scheibenzwischenraum						
	nach außen (1 mm)	mittig	nach innen (1 mm)			
SZR = 15,5 mm	0,02	0,02	0,02			
	(108 %)	(106 %)	(108 %)			
SZR = 16 mm	0,02	0,02	0,02			
	(102 %)	(100 %)	(101 %)			
SZR = 17 mm	0,01	0,01	0,01			
	(93 %)	(92 %)	(92 %)			
glasteilende Sprosse						
	13 mm	Glaseinstand 15 mm	17 mm			
SZR = 15,5 mm	0,18	0,16	0,15			
	(116 %)	(106 %)	(98 %)			
SZR = 16 mm	0,17	0,15	0,14			
	(109 %)	(100 %)	(93 %)			
SZR = 17 mm	0,16	0,14	0,13			
	(101 %)	(93 %)	(86 %)			

Tabelle 20 absolute und relative $\Psi_{\text{Sprosse}}\text{-Werte}$ (in W/mK bzw. in %) von Sprossenkonstruktionen aus PVC

Profilwerkstoff: PVC						
Sprosse im Scheibenzwischenraum						
	nach außen (1 mm)	mittig	nach innen (1 mm)			
SZR = 15,5 mm	0,02	0,02	0,02			
	(108 %)	(106 %)	(108 %)			
SZR = 16 mm	0,02	0,02	0,02			
	(102 %)	(100 %)	(101 %)			
SZR = 17 mm	0,01	0,01	0,01			
	(93 %)	(92 %)	(92 %)			

Profilwerkstoff: PVC							
glasteilende Sprosse							
·	13 mm	Glaseinstand 15 mm	17 mm				
SZR = 15,5 mm	0,21	0,19	0,18				
	(112 %)	(105 %)	(98 %)				
SZR = 16 mm	0,20	0,18	0,17				
	(107 %)	(100 %)	(93 %)				
SZR = 17 mm	0,18	0,17	0,16				
	(99 %)	(94 %)	(87 %)				

Tabelle 21 absolute und relative $\Psi_{\text{Sprosse}}\text{-Werte}$ (in W/mK bzw. in %) von Sprossenkonstruktionen aus wärmegedämmten Aluminium-Verbundprofilen

	aus wannegedamm	ton / dumman - ver	anapronier
Profilwerkstoff: Alu			
Sprosse im Scheibenzwi	schenraum		
	nach außen (1 mm)	mittig	nach innen (1 mm)
SZR = 15,5 mm	0,07	0,07	0,07
	(110 %)	(109 %)	(110 %)
SZR = 16 mm	0,06	0,06	0,06
	(101 %)	(100 %)	(101 %)
SZR = 17 mm	0,05	0,05	0,05
	(87 %)	(86 %)	(87 %)
glasteilende Sprosse			
	13 mm	Glaseinstand 15 mm	17 mm
SZR = 15,5 mm	0,15	0,15	0,14
	(108 %)	(104 %)	(101 %)
SZR = 16 mm	0,15	0,14	0,14
	(104 %)	(100 %)	(97 %)
SZR = 17 mm	0,14	0,13	0,13
	(98 %)	(94 %)	(91 %)

5 Messungen an Sprossenfenstern

5.3.3 U_w-Werte von Fenstern

Die Variationsrechnung zeigt, dass durch fertigungstechnisch bedingte Abweichungen (z.B. Glaseinstand) und durch die Verformung des Probekörpers (Durchbiegung der Einzelscheiben des Mehrscheiben-Isolierglases) Abweichungen in den Ψ-Werten von Abstandhaltern von Mehrscheiben-Isoliergläsern und von Sprossenkonstruktionen von ca. 10 % bis 15 % möglich sind. Für die untersuchten Probekörper ergeben sich durch die Parametervariation für die berechneten U_w-Werte folgende Toleranzen:

Tabelle 22 Toleranzgrenzen der U_w-Werte für die untersuchten Fensterkonstruktionen

	U _w -Wert in W/(m²·K)	U _w -Wert in W/(m ² -K)	U _w -Wert in W/(m ² ·K)		
	ohne Sprosse	Sprosse im SZR	mit glasteilender Sprosse		
Holzfenster	1,54 _{-0,03}	1,56 _{-0,03}	1,73-0,05		
PVC-Fenster	1,68 ^{+0,02} _{-0,03}	1,70 +0,02 -0,03	1,90-0,05		
Alu-Fenster	1,79 ^{+0,02} _{-0,03}	1,87 ^{+0,03} _{-0,04}	1,960,03		

Die Berechnungen zeigen, dass bei den Prüfungen für Fenstern mit Sprossen im Scheibenzwischenraum ("Ziersprosse") Toleranzen im U_w-Wert auftreten können, die vergleichbar sind mit den Toleranzen der U_w-Werte der Fenster ohne Sprossen. Durch den geringen Unterschied im U_w-Wert können je nach Glaseinstand und Position des Sprossenprofils im Scheibenzwischenraum für Fenster mit Sprosse im Scheibenzwischenraum und Fenster ohne Sprosse um ca. –0,03 W/(m²·K) bis 0,07 W/(m²·K) unterschiedliche U_w-Werte gemessen werden (Holz- und PVC-Fenster). Bei Fenstern mit sog. Abstandhaltersprossen (rechteckiger Sprossenquerschnitt) können die Unterschiede im U_w-Wert gegenüber Fenstern ohne Sprossen im Bereich von ca. 0,02 W/(m²·K) bis 0,14 W/(m²·K) liegen (Alu-Fenster).

Bei den geprüften Fenstern mit glasteilenden Sprossen können sich die U_w -Werte um ca. 0,12 W/(m²·K) bis ca. 0,23 W/(m²·K) (Alu-Fenster) bzw. um ca. 0,12 W/(m²·K) bis ca. 0,30 W/(m²·K) (Holz- und PVC-Fenster) von den U_w -Werten der Fenster ohne Sprossen unterscheiden. Die Toleranzgrenzen sind bedingt durch die größere Länge des Glasrandes der Isoliergläser größer als bei Fenstern ohne Sprossen.

6 Auswirkung auf den Wärmedurchgangskoeffizienten U

6 Auswirkung auf den Wärmedurchgangskoeffizienten U

6.1 Absolute und relative Änderung des U-Wertes von Verglasungen

In Tabelle 23 bis Tabelle 30 sind die absoluten und relativen Änderungen der U-Werte von Verglasungen für folgende Sprossenkonstruktionen zusammengefasst:

- aufgeklebte Sprossen
- Sprossen im Scheibenzwischenraum
- aufgeklebte Sprossen mit Abstandhaltersprosse im Scheibenzwischenraum
- glasteilende Sprossen

Für das Fenster wurde eine Standardgröße von $1,23~m\times 1,48~m$ und für das Flügel-/Blendrahmenprofil eine Rahmenbreite von 0,112~m gewählt. Als Sprossenteilung wurde eine einfache und doppelte Sprossenteilung (horizontale / vertikale Teilung und Sprossenkreuz (Bild 10)) gewählt.

Die absoluten Änderungen im Wärmedurchgang bedingt durch Sprossenkonstruktionen bezogen auf die Verglasungen wurden nach Gleichung (9) und die relativen Änderungen im Wärmedurchgang bezogen auf die U-Werte der Verglasungen nach Gleichung (8) berechnet.

Die Ergebnisse der Berechnungen auch für andere Sprossenteilungen und -konstruktionen sind in Anlage 3 zusammengefasst.

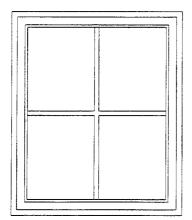


Bild 10 Fenster mit einfachem Sprossenkreuz und doppeltem Sprossenkreuz

absolute Änderungen (in W/(m²K)) der U-Werte von Verglasungen mit einfacher Sprossenteilung Tabelle 23

Тур	Isolierglas	Alu-Weichholz	Alu-Hartholz	Weichholz	Hartholz	PVC	Metali
							
aufgeklebt	Luft / ε=0,89	-0,11 bis0,02	-0,09 bis - 0,01	-0,10 bis -0,04	-0,09 bis -0,02	-0,20 bis -0,02	-0,04 bis 0,02
	Luft / ε=0,1	-0,05 bis –0,01	-0,04 bis 0,00	-0,04 bis -0,01	-0,04 bis -0,01	-0,09 bis -0,01	-0,02 bis 0,01
	Argon / ε=0,1	-0,03 bis 0,00	-0,04 bis 0,00	-0,03 bis -0,01	-0,03 bis -0,01	-0,07 bis -0,01	-0,01 bis 0,01
	Krypton / ε=0,04	-0,02 bis 0,00	-0,02 bis 0,00	-0,02 bis -0,01	-0,02 bis 0,00	-0,04 bis 0,00	-0,01 bis 0,00
aufgeklebt und im	Luft / ε=0,89	-0,06 bis 0,12	-0,04 bis 0,15	-0,03 bis 0,06	-0,01 bis 0,10	-0,13 bis 0,06	0,05 bis 0,23
Scheibenzwischenraum	Luft / ε=0,1	0,04 bis 0,16	0,05 bis 0,20	0,04 bis 0,12	0,05 bis 0,14	-0,01 bis 0,10	0,07 bis 0,23
	Argon / ε=0,1	0,05 bis 0,17	0,05 bis 0,18	0,05 bis 0,13	0,05 bis 0,15	0,01 bis 0,10	0,07 bis 0,21
	Krypton / ε=0,04	0,05 bis 0,17	0,05 bis 0,18	0,05 bis 0,13	0,05 bis 0,14	0,02 bis 0,10	0,06 bis 0,18
glasteilend	Luft / ε=0,89	-0,05 bis 0,13	0,00 bis 0,15	-0,03 bis 0,18	0,01 bis 0,22	-0,04 bis 0,19	0,08 bis 0,26
	Luft / ε=0,1	0,08 bis 0,26	0,11 bis 0,33	0,08 bis 0,33	0,11 bis 0,37	0,08 bis 0,36	0,16 bis 0,51
	Argon / ε=0,1	0,12 bis 0,43	0,14 bis 0,46	0,10 bis 0,36	0,13 bis 0,40	0,10 bis 0,43	0,18 bis 0,55
	Krypton / ε=0,04	0,15 bis 0,46	0,16 bis 0,49	0,14 bis 0,39	0,17 bis 0,43	0,14 bis 0,47	0,21 bis 0,60

Tabelle 24 relative Änderungen (in %) der U-Werte von Verglasungen mit einfacher Sprossenteilung

Тур	Isolierglas	Alu-Weichholz	Alu-Hartholz	Weichholz	Hartholz	PVC	Metall
aufgeklebt	Luft / ε=0,89	-4 bis –1	-3 bis 0	-4 bis –1	-3 bis 1	-7 bis –1	-2 bis 1
	Luft / ε=0,1	-3 bis 0	-2 bis 0	-2 bis –1	-2 bis 0	-5 bis –1	-1 bis 0
	Argon / ε=0,1	-2 bis 0	-3 bis 0	-2 bis1	-2 bis 0	-4 bis 0	-1 bis 0
	Krypton / ε=0,04	-2 bis 0	-2 bis 0	-2 bis –1	-2 bis 0	-4 bis 0	-1 bis 0
aufgeklebt und im	Luft / ε=0,89	-2 bis 4	-1 bis 5	-1 bis 2	0 bis 3	-5 bis 2	2 bis 8
Scheibenzwischenraum	Luft / ε=0,1	3 bis 9	3 bis 11	3 bis 7	3 bis 8	-1 bis 5	4 bis 13
	Argon / ε=0,1	4 bis 11	4 bis 11	4 bis 8	4 bis 10	0 bis 7	5 bis 14
	Krypton / ε=0,04	5 bis 17	6 bis 16	5 bis 13	5 bis 14	2 bis 10	6 bis 18
glasteilend	Luft / ε=0,89	-2 bis 5	0 bis 5	-1 bis 7	0 bis 8	-1 bis 7	3 bis 10
	Luft / ε=0,1	4 bis 17	6 bis 22	4 bis 21	6 bis 24	4 bis 23	9 bis 33
	Argon / ε=0,1	8 bis 33	9 bis 35	7 bis 28	9 bis 31	7 bis 34	12 bis 43
	Krypton / ε≃0,04	15 bis 46	16 bis 49	14 bis 39	16 bis 43	14 bis 47	21 bis 60

Tabelle 25 absolute Änderungen (in W/(m²K)) der U-Werte von Verglasungen mit einfacher Sprossenteilung

Тур	Isolierglas	
Sprosse im Scheibenzwi-	Luft / ε=0,89	0,02 bis 0,13
schenraum	Luft / ε=0,1	0,02 bis 0,17
	Argon / ε=0,1	0,02 bis 0,17
	Krypton / ε=0,04	0,02 bis 0,15

Tabelle 26 relative Änderungen (in %) der U-Werte von Verglasungen mit einfacher Sprossenteilung

Тур	Isolierglas	
Sprosse im Scheibenzwi-	Luft / ε=0,89	1bis 5
schenraum	Luft / ε=0,1	1 bis 9
	Argon / ε=0,1	1 bis 11
	Krypton / ε=0,04	2 bis 15

Einfluss von Sprossenkonstruktionen auf den Wärmedurchgang

Tabelle 27 absolute Änderungen (in W/(m²K)) der U-Werte von Verglasungen mit doppelter Sprossenteilung

Тур	Isolierglas	Alu-Weichholz	Alu-Hartholz	Weichholz	Hartholz	PVC	Metall
aufgeklebt	Luft / ε=0,89	-0,21 bis -0,04	-0,18 bis -0,02	-0,20 bis -0,07	-0,12 bis -0,04	-0,38 bis -0,05	-0,08 bis 0,04
	Luft / ε=0,1	-0,09 bis -0,01	-0,08 bis -0,01	-0,09 bis -0,02	-0,05 bis -0,01	-0,17 bis -0,02	-0,03 bis 0,02
	Argon / ε=0,1	-0,06 bis -0,01	-0,08 bis 0,00	-0,06 bis -0,02	-0,04 bis -0,01	-0,13 bis -0,01	-0,02 bis 0,02
	Krypton / ε=0,04	-0,04 bis0,01	-0,03 bis 0,00	-0,04 bis -0,01	-0,02 bis -0,01	-0,08 bis -0,01	-0,01 bis 0,01
aufgeklebt und im	Luft / ε=0,89	-0,11 bis 0,24	-0,07 bis 0,29	-0,05 bis 0,13	-0,01 bis 0,19	-0,25 bis 0,12	0,11 bis 0,45
Scheibenzwischenraum	Luft / ε=0,1	0,08 bis 0,31	0,09 bis 0,38	0,08 bis 0,24	0,10 bis 0,28	-0,02 bis 0,19	0,14 bis 0,44
	Argon / ε=0,1	0,09 bis 0,33	0,10 bis 0,34	0,09 bis 0,25	0,10 bis 0,28	0,01 bis 0,21	0,13 bis 0,42
	Krypton / ε=0,04	0,11 bis 0,33	0,11 bis 0,32	0,10 bis 0,25	0,11 bis 0,27	0,04 bis 0,20	0,13 bis 0,36
glasteilend	Luft / ε=0,89	-0,11 bis 0,45	0,00 bis 0,51	-0,07 bis 0,36	0,04 bis 0,43	-0,07 bis 0,48	0,18 bis 0,51
	Luft / ε=0,1	0,25 bis 0,61	0,35 bis 0,66	0,24 bis 0,51	0,34 bis 0,57	0,24 bis 0,70	0,49 bis 0,92
	Argon / ε=0,1	0,35 bis 0,66	0,43 bis 0,73	0,32 bis 0,56	0,42 bis 0,65	0,32 bis 0,78	0,57 bis 1,06
	Krypton / ε=0,04	0,47 bis 0,72	0,52 bis 0,85	0,44 bis 0,78	0,53 bis 0,85	0,43 bis 0,90	0,66 bis 1,16

Tabelle 28 relative Änderungen (in %) der U-Werte von Verglasungen mit doppelter Sprossenteilung

Тур	Isolierglas	Alu-Weichholz	Alu-Hartholz	Weichholz	Hartholz	PVC	Metali
aufgeklebt	Luft / ε=0,89	-7 bis1	-6 bis -1	-7 bis –3	-6 bis2	-13 bis2	-3 bis 1
	Luft / ε=0,1	-5 bis –1	-4 bis 0	-5 bis –1	-4 bis1	-10 bis1	-2 bis 1
	Argon / ε=0,1	-4 bis –1	-5bis 0	-4 bis –1	-3 bis –1	-8 bis -1	-2 bis 1
	Krypton / ε=0,04	-4 bis –1	-3 bis 0	-4 bis –1	-3 bis –1	-8 bis –1	-1 bis 1
aufgeklebt und im	Luft / ε=0,89	-4 bis 8	-3 bis 10	-2 bis 4	0 bis 6	-9 bis 4	4 bis 16
Scheibenzwischenraum	Luft / ε=0,1	5 bis 17	6 bis 21	5 bis 13	6 bis 15	-1 bis 10	9 bis 25
	Argon / ε=0,1	7 bis 22	8 bis 23	7 bis 17	8 bis 19	1 bis 14	10 bis 28
	Krypton / ε=0,04	10 bis 33	11 bis 32	9 bis 25	10 bis 27	4 bis 20	12 bis 36
glasteilend	Luft / ε=0,89	-4 bis 16	0 bis 19	-2 bis 13	1 bis 16	-2 bis 17	6 bis 19
	Luft / ε=0,1	14 bis 39	19 bis 42	13 bis 33	19 bis 37	13 bis 45	27 bis 59
	Argon / ε=0,1	23 bis 51	28 bis 57	22 bis 43	28 bis 51	22 bis 61	38 bis 82
	Krypton / ε=0,04	46 bis 72	51 bis 85	43 bis 78	52 bis 85	42 bis 90	65 bis 116

Tabelle 29 absolute Änderungen (in W/(m²K)) der U-Werte von Verglasungen mit doppelter Sprossenteilung

Тур	Isolierglas	
Sprosse im Scheibenzwi-	Luft / ε=0,89	0,04 bis 0,23
schenraum	Luft / ε=0,1	0,03 bis 0,26
	Argon / ε=0,1	0,03 bis 0,26
	Krypton / ε=0,04	0,02 bis 0,23

Tabelle 30 relative Änderungen (in %) der U-Werte von Verglasungen mit doppelter Sprossenteilung

Тур	Isolierglas	
Sprosse im Scheibenzwi-	Luft / ε=0,89	2 bis 10
schenraum	Luft / ε=0,1	2 bis 18
	Argon / ε=0,1	3 bis 22
	Krypton / ε=0,04	3 bis 29

Bei Sprossen im Scheibenzwischenraum erhöhen sich die U-Werte bei einfacher Sprossenteilung um ca. 0,02 W/(m²K) bis 0,17 W/(m²K) und bei doppelter Sprossenteilung um ca. 0,02 W/(m²K) bis 0,26 W/(m²K).

Bei aufgeklebten Sprossen aus Aluminium-Holz, Holz, Kunststoff und Metall verändern sich die U-Werte bei einer einfachen Sprossenteilung bei unbeschichteten, luftgefüllten Verglasungen um ca. -0,20 W/(m²K) bis 0,02 W/(m²K) und bei beschichteten Verglasungen um ca. -0,09 W/(m²K) bis 0,01 W/(m²K).

Bei einer doppelten Sprossenteilung sind bei aufgeklebten Sprossenprofilen aus Aluminium-Holz, Holz, Kunststoff und Metall bei unbeschichteten, luftgefüllten Verglasungen Änderungen im U-Wert von - 0,38 W/(m²K) bis 0,04 W/(m²K) und bei beschichteten Verglasungen von -0,17 W/(m²K) bis 0,02 W/(m²K) möglich.

Bei aufgeklebten Sprossen mit Abstandhaltersprosse im Scheibenzwischenraum verändern sich die U-Werte bei einfacher Sprossenteilung und unbeschichteten, luftgefüllten Verglasungen um ca. -0,06 W/(m²K) bis 0,23 W/(m²K) und bei beschichteten Verglasungen um ca. -0,01 W/(m²K) bis 0,23 W/(m²K).

Aufgeklebte Sprossen mit Abstandhaltersprosse im Scheibenzwischenraum führen bei doppelter Sprossenteilung und luftgefüllten, unbeschichteten Verglasungen zu Änderungen in den U-Werten von -0,25 W/(m²K) bis 0,45 W/(m²K) und bei beschichteten Verglasungen von ca. -0,02 W/(m²K) bis 0,44 W/(m²K).

Glasteilende Sprossen führen zu höheren Wärmeverlusten als aufgeklebte bzw. in den Scheibenzwischenraum eingesetzte Sprossenprofile. Bei einer einfachen Sprossenteilung verändern sich die U-Werte bei luftgefüllten, unbeschichteten Verglasungen um -0,05 W/(m²K) bis 0,26 W/(m²K) und bei beschichteten Isoliergläsern um 0,08 W/(m²K) bis 0,60 W/(m²K). Bei einer zweifachen Sprossenteilung ändern sich die U-Werte bei luftgefüllten, unbeschichteten Verglasungen um -0,11 W/(m²K) bis 0,51 W/(m²K) und bei beschichteten Verglasungen um 0,25 W/(m²K) bis 1,16 W/(m²K).

6.2 Vorschlag für Bauregelliste

Der Einfluss von Sprossenkonstruktionen auf den Wärmedurchgang könnte beschrieben werden durch die

- absoluten Änderungen der U-Werte der Verglasungen (Tabelle 31)
- relativen Änderungen der U-Werte der Verglasungen (Tabelle 32)

Tabelle 31 Vorschlag (im Rahmen der Bauregelliste) für die absolute Änderung der U-Werte von Verglasungen bedingt durch Sprossenkonstruktionen

	einfache s	senkrechte und	zweifache	senkrechte und
	waagrechte	Teilung	waagrechte Teilung	
Sprosse im Schei-	+ 0,2	W/(m ² K)	+ 0,3	3 W/(m ² K)
benzwischenraum				
aufgeklebte Spros-	kein	Zuschlag	kein	Zuschlag
se	the case of the ca			
aufgeklebte Spros-	Alu-Holz:	+ 0,2 W/(m ² K)	Alu-Holz:	+ 0,4 W/(m ² K)
se mit Sprosse im	Holz:	+ 0,2 W/(m ² K)	Holz:	+ 0,3 W/(m ² K)
Scheibenzwischen-	Kunststoff:	+ 0,1 W/(m ² K)	Kunststoff:	+ 0,2 W/(m ² K)
raum	Metall:	+ 0,3 W/(m ² K)	Metall:	+ 0,5 W/(m ² K)
glasteilende	Alu-Holz:	+ 0,5 W/(m ² K)	Alu-Holz:	+ 0,9 W/(m ² K)
Sprosse	Holz: $+ 0.5 \text{ W/(m}^2\text{K)}$		Holz:	+ 0,9 W/(m ² K)
	Kunststoff:	+ 0,5 W/(m ² K)	Kunststoff:	+ 0,9 W/(m ² K)

1	~ I		3 1
Metall:	+ 0,6 W/(m ² K)	3 A . C . II.	$+ 1.2 \text{ W/(m}^2\text{K)}$
1 (40101)	± 11 6 W///m=k 1 1	I MATON'	+ 1 / W///m=k \ 1
i iviciali.	U.G. VVAIII IXI I	IVICIOII.	' 1.Z. V V/1111 / 1/1
(11.0 10	-,, (,		

Tabelle 32 Vorschlag (im Rahmen der Bauregelliste) für die relative Änderung der U-Werte von Verglasungen bedingt durch Sprossenkonstruktionen

	einfache	senkrechte	und	zweifache	senkrechte	und
	waagrechte	e Teilung		waagrechte	e Teilung	
Sprosse im Schei-		15 %			30 %	
benzwischenraum						
aufgeklebte Spros-	kein Zuschlag			keir	Zuschlag	
se						
aufgeklebte Spros-	Alu-Holz:	20 %		Alu-Holz:	35 %	
se mit Sprosse im	Holz:	15 %		Holz:	30 %	
Scheibenzwischen-	Kunststoff:	10 %		Kunststoff:	20 %	
raum	Metall:	20 %		Metall:	40 %	
glasteilende	Alu-Holz:	50 %		Alu-Holz:	85 %	
Sprosse	Holz:	45 %		Holz:	85 %	
	Kunststoff:	50 %		Kunststoff:	90 %	
	Metall:	60 %		Metall:	115 %	

Die absoluten Zuschlagswerte für die U-Werte von Verglasungen wurden jeweils auf eine Dezimalstelle aufgerundet.

Bei Sprossen im Scheibenzwischenraum sind die absoluten Änderungen in den U-Werten für die untersuchten Verglasungsaufbauten nahezu gleich, so dass für Sprossen im Scheibenzwischenraum bei einem einfachen bzw. doppelten Sprossenkreuz ein absoluter Zuschlagwert verwendet werden könnte. Die relativen Änderungen der U-Werte der Verglasungen hingegen sind abhängig vom Verglasungsaufbau. In diesem Fall müsste für <u>einen</u> Zuschlagswert der ungünstigere Zuschlagswert verwendet werden.

Bei aufgeklebten Sprossen ergab sich in den meisten Fällen eine Verbesserung des U-Wertes der Verglasungen. Lediglich bei aufgeklebten Sprossen aus Aluminium wurde für einige Fälle eine geringe Erhöhung des U-Wertes um ca. 0,02 W/(m²K) ermittelt. Für die praktische Anwendung bedeutet dies, dass der Einfluss von aufgeklebten Sprossen auf den Wärmedurchgang von Verglasungen bzw. Fenstern vernachlässigt werden kann.

Bei aufgeklebten und mit in den Scheibenzwischenraum eingesetzten Sprossen ist bei beschichteten Verglasungen der Einfluss des Verglasungsaufbaus

Einfluss von Sprossenkonstruktionen auf den Wärmedurchgang

6 Auswirkung auf den Wärmedurchgangskoeffizienten U

auf die Änderung des U-Wertes bedingt durch Sprossen gering. Für die Sprossenwerkstoffe Aluminium-Holz, Holz und Kunststoff beträgt der Unterschied zwischen den Verglasungen ca. 0,01 W/(m²K) bis 0,05 W/(m²K). Der Einfluss von Sprossen auf den Wärmedurchgang kann daher für beschichtete Verglasungsaufbauten mit aufgeklebten und in den Scheibenzwischenraum eingesetzten Sprossen für die verschiedenen Sprossenwerkstoffe durch jeweils einen ΔU-Wert beschrieben werden. Die relativen Änderungen der U-Werte der Verglasungen bedingt durch Sprossen hingegen zeigen auch hier eine deutliche Abhängigkeit von den U-Werten der Verglasungen. Für die Festlegung von relativen Zuschlägen für die U-Werte von Verglasungen im Rahmen der Bauregelliste müssten daher außer den Sprossenwerkstoffen auch die Glasaufbauten spezifiziert oder die ungünstigeren Zuschlagswerte verwendet werden.

Bei glasteilenden Sprossen ist der Einfluss des Verglasungsaufbaus auf die absoluten und relativen Änderungen im Wärmedurchgang größer als bei nichtglasteilenden Sprossenkonstruktionen. Für die Festlegung von relativen oder absoluten Zuschlägen für die U-Werte von Verglasungen müssten auch hier entweder die Glasaufbauten spezifiziert oder die ungünstigeren Zuschlagswerte verwendet werden.

Ein Vorschlag für die absolute und relative Änderung der U-Werte von Verglasungen bedingt durch Sprossen ist in Tabelle 31 und Tabelle 32 angegeben. Für glasteilende Sprossenkonstruktionen wurden die ungünstigeren Zuschlagswerte verwendet.

7 Zusammenfassung

Die durchgeführten Untersuchungen haben gezeigt, dass der Einfluss von Sprossenkonstruktionen auf den Wärmedurchgang von Fenstern durch die Einführung eines längenbezogenen Wärmedurchgangskoeffizienten auf einfache Weise berücksichtigt werden kann.

Für ausgewählte Sprossenkonstruktionen wurde der Einfluss auf den Wärmedurchgang von Fenstern durch Messungen ermittelt und mit den Ergebnissen der numerischen Berechnungen verglichen. Es zeigte sich dabei eine gute Übereinstimmung der Ergebnisse von Messung und numerischer Berechnung. Die Ermittlung des Einflusses von Sprossenkonstruktionen auf den Wärmedurchgang kann also durch Messung oder numerische Berechnung erfolgen.

Die Berechnungen haben ergeben, dass aufgeklebte Sprossen aus Aluminium-Holz, Holz, PVC und Aluminium zu einer Verringerung der Wärmeverluste führen. Der Einfluss von aufgeklebten Sprossen auf den Wärmedurchgang ist dabei umso geringer, je niedriger der U-Wert der Verglasungen ist.

Bei der Kombination von aufgeklebten Sprossenprofile mit Sprossenprofilen aus Aluminium, die in den Scheibenzwischenraum eingesetzt werden, wurden positive und negative Ψ_{Sprosse} -Werte ermittelt. Negative Ψ_{Sprosse} -Werte wurden für einige Sprossenkonstruktionen kombiniert mit luftgefüllten, unbeschichteten Verglasungen ermittelt. Bei beschichteten Mehrscheiben-Isoliergläsern wurden überwiegend positive Ψ_{Sprosse} -Werte ermittelt.

Einen größeren Einfluss auf den Wärmedurchgang von Fenstern haben glasteilende Sprossenkonstruktionen. Für einige Sprossenkonstruktionen kombiniert mit luftgefüllten, unbeschichteten Verglasungen wurden zum Teil negative Ψ_{Sprosse} -Werte ermittelt. Bei beschichteten Mehrscheiben-Isoliergläsern ergaben sich für die untersuchten glasteilenden Sprossenkonstruktionen ohne Ausnahme positive Ψ_{Sprosse} -Werte.

Der Einfluss von aufgeklebten Sprossenprofilen auf den Wärmedurchgang von Fenstern kann aufgrund negativer Ψ_{Sprosse} -Werte vernachlässigt werden. Für die Fenster werden dann höhere und damit ungünstigere U_{F} - bzw. U_{w} -Werte angenommen.

7 Zusammenfassung

Der Einfluss glasteilender Sprossen, von aufgeklebten Sprossenprofilen mit in den Scheibenzwischenraum eingesetzten Abstandhaltersprossen und von in den Scheibenzwischenraum eingesetzten Sprossen auf den Wärmedurchgang von Fenstern kann nicht vernachlässigt werden. Der Einfluss auf den Wärmdurchgang ist dabei umso größer, je niedriger der U-Wert der Verglasung ist.

Die Beschreibung des Einflusses von Sprossenkonstruktionen auf den Wärmedurchgang von Fenstern im Rahmen der Bauregelliste könnte durch einen absoluten ΔU -Zuschlag oder durch einen relativen Zuschlag für die U-Werte die Verglasungen erfolgen. Die Berechnungen haben gezeigt, dass die Beschreibung des Einflusses von Sprossen auf den Wärmedurchgang für die untersuchten Verglasungsaufbauten in den meisten Fällen durch einen ΔU -Zuschlag erfolgen kann, während bei der Beschreibung durch einen relativen Zuschlag für den U-Wert der Verglasung nicht nur zwischen den verschiedenen Sprossenwerkstoffen unterschieden werden muss, sondern auch der Glasaufbau spezifiziert werden muss.

Literaturverzeichnis:

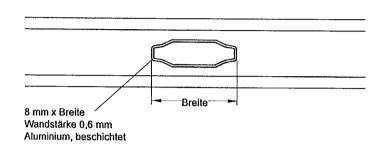
- [1] DIN V 4108-4: 1998-10, Wärmeschutz im Hochbau. Wärme- und feuchtetechnische Kennwerte; Beuth-Verlag GmbH, Berlin
- [2] DIN 52619-1: 1982-11, Bestimmung des Wärmedurchlasswiderstandes und Wärmedurchgangskoeffizienten von Fenstern, Teil 1: Messung an der Gesamtkonstruktion; Beuth-Verlag GmbH, Berlin
- [3] DIN 52619-3: 1985-02, Bestimmung des Wärmedurchlasswiderstandes und Wärmedurchgangskoeffizienten von Fenstern, Teil 3: Messung an Rahmen; Beuth-Verlag GmbH, Berlin
- [4] DIN 52619-2: 1985-02, Bestimmung des Wärmedurchlasswiderstandes und Wärmedurchgangskoeffizienten von Fenstern, Teil 2: Messung an der Verglasung; Beuth-Verlag GmbH, Berlin
- [5] DIN EN 673: 1999-01, Glas im Bauwesen Bestimmung des Wärmedurchgangskoeffizienten (U-Wert) Berechnungsverfahren
- [6] prEN 10077-1: 1997-11, Thermal performance of windows, doors and shutters Calculation of thermal transmittance Part 1: Simplified method
- [7] prEN 12567-1: 1999-06, Thermal performance of roof windows and other projecting windows Determination of thermal transmittance by hot box method
- [8] prEN 10077-2: 1998-04, Thermal performance of windows, doors and shutters Calculation of thermal transmittance Part 2: Numerical method for frames

Abschlußbericht Anlage 1 Blatt 1

Anlage 1

Wärmetechnische Kenngrößen (aus DIN V 4108-4 oder prEN 10077-2)

Material	Wärmeleitfähigkeit in W/(m·K)
Aluminium	160
Stahl	50
PVC	0,17
Hartholz	0,18
Weichholz	0,13
Polyamid	0,25
Polyamid 6.6, glasfaserverstärkt 25 %	0,30
Neopren	0,23
EPDM	0,25
Silikon	0,35
Butyl	0,24
Polysulfid	0,40


Abschlußbericht Anlage 2 Blatt 1

Anlage 2

Querschnitte und $\Psi_{\text{Sprosse}} ext{-Werte}$ von Sprossenkonstruktionen

In der Anlage 2 sind die Ergebnisse der Berechnungen den berechneten Sprossenquerschnitten zugeordnet. Die wichtigsten Maße und Materialien sind angegeben. Variierende geometrische Angaben und Angaben zu den Mehrscheiben-Isoliergläsern können den Tabellen entnommen werden.

Tabelle 1 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m ² K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	<u>4</u> /12/ <u>4,</u> 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K
45	0,05	0,05	0,05	0.04
26	0,03	0,03	0,03	0,02
18	0,02	0,02	0,02	0,01
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m²K
45	0,03	0,03	0,03	0,03
26	0,02	0,02	0,02	0,01
18	0,01	0,01	0,01	0,01

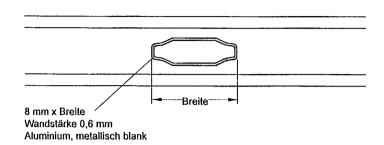
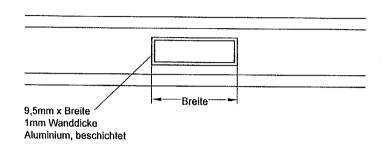



Tabelle 2 Ψ_{Sprosse}-Werte in W/mĶ

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2.9 W/m²K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1.8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K
45	0,05	0,05	0,05	0,04
26	0,03	0,03	0,03	0,02
18	0,02	0,02	0,02	0,01
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m²K
45	0,03	0,03	0,03	0,03
26	0,02	0,02	0,02	0,01
18	0,01	0,01	0,01	0,01

 $\textbf{Tabelle 3} \quad \Psi_{\text{Sprosse}}\text{-Werte in W/mK}$

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04
				1,0 W/m ² K
34	0,09	0,10	0,09	0,08
30	0,08	0,09	0,09	0,08
24	0,07	0,08	0,07	0,06
20	0,06	0,07	0,06	0,06
18	0,06	0,06	0,06	0,05
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m²K
34	0,05	0,05	0,05	0.04
30	0,05	0,04	0,04	0,04
24	0,04	0,04	0,04	0,03
20	0,04	0,03	0,03	0,03
18	0,03	0,03	0,03	0,03

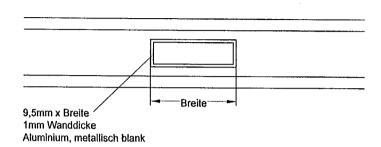
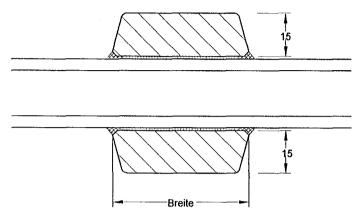
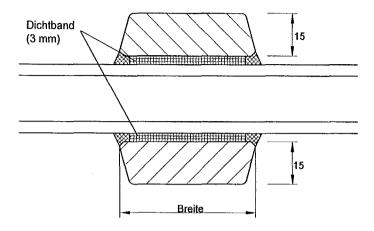



Tabelle 4 $\Psi_{Sprosse}$ -Werte in W/mK

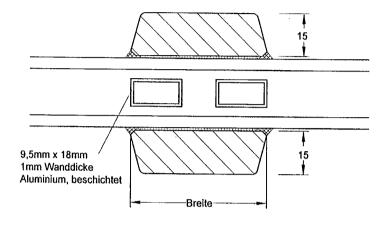
Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K	4/12/4, Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m²K
34	0,09	0,10	0,09	0.08
30	0,08	0,09	0,09	0,08
24	0,07	0,08	0,07	0,06
20	0,06	0,07	0,06	0,06
18	0,06	0,06	0,06	0.05
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	4/16/4, Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m²K
34	0,05	0,05	0,05	0,04
30	0,05	0,04	0,04	0,04
24	0,04	0,04	0,04	0,03
20	0,04	0,03	0,03	0,03
18	0,03	0,03	0,03	0,03



Sprossenbreite in mm		4/12/4, Luft, unbeschichtet 2,9 W/m² Κ 4/12/4, Luft, ε=0,1		uft, ε=0,1 //m²K	<u>4</u> /12/ <u>4,</u> 90% 1.5 W	Argon, ε=0,1 //m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K	
·	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
58	-0,05	-0,03	-0,02	-0,01	-0,01	-0,01	-0,01	0,00
48	-0,04	-0,03	-0,02	-0,01	-0,01	-0,01	-0,01	0,00
38	-0,03	-0,02	-0,01	-0,01	-0,01	-0,01	0,00	0,00
32	-0,02	-0,01	-0,01	-0,01	-0,01	0,00	0,00	0,00
		unbeschichtet //m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K		<u>4/16/4,</u> 90% 1,3 W	Argon, ε=0,1 //m²K		rypton, ε=0,04 //m²K
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
58	-0,05	-0,03	-0,02	-0,01	-0,01	-0,01	-0,01	0,00
48	-0,04	-0,02	-0,01	-0,01	-0,01	-0,01	-0,01	0,00
38	-0,03	-0,02	-0,01	-0,01	-0,01	0,00	0,00	0,00
32	-0,02	-0,01	-0,01	0,00	-0,01	0,00	0,00	0,00

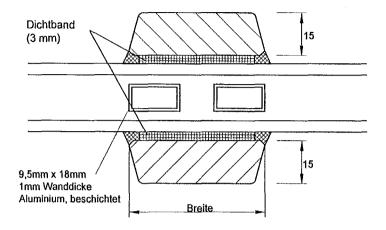
Anlage 2 Blatt 7

aufgeklebte Sprosse (Holz)


 $\textbf{Tabelle 6} \qquad \Psi_{\text{Sprosse}}\text{-Werte in W/mK}$

Sprossenbreite in mm		4/12/4, Luft, unbeschichtet 4/12/4, Luft, ε=0,1 4/12/4, 90% Argon, ε= 2,9 W/m²K 1,5 W/m²K 1,5 W/m²K		4/12/4, Luft, ε=0,1 1,8 W/m²K			4/12/4, 90% Krypton, ε=0, 1,0 W/m ² K	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
58	-0,06	-0,05	-0,03	-0,02	-0,02	-0,02	-0,01	-0,01
48	-0,04	-0,04	-0,02	-0,02	-0,01	-0,01	-0,01	-0,01
38	-0,03	-0,03	-0,01	-0,01	-0,01	-0,01	0,00	0,00
32	-0,02	-0,02	-0,01	-0,01	-0,01	-0,01	0,00	0,00
		unbeschichtet //m ² K	<u>4</u> /16/ <u>4,</u> L 1,6 W	uft, ε=0,1 //m²K	<u>4</u> /16/ <u>4,</u> 90% 1,3 W	Argon, ε=0,1 //m²K	<u>4</u> /16/ <u>4</u> , 90% K 1,0 W	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
58	-0,05	-0,05	-0,02	-0,02	-0,02	-0,01	-0,01	-0,01
48	-0,04	-0,03	-0,01	-0,01	-0,01	-0,01	-0,01	-0,01
38	-0,03	-0,02	-0,01	-0,01	-0,01	-0,01	-0,01	0,00
32	-0.02	-0,02	-0,01	-0,01	-0,01	0.00	0,00	0.00

າກ Sprossenkonstruktionen auf den Wärmedurchgang von Fe

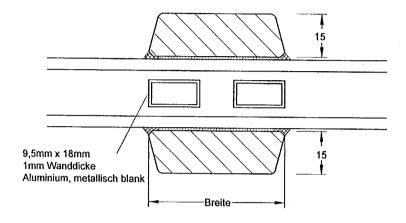

Abschlußbericht Anlage 2 Blatt 8

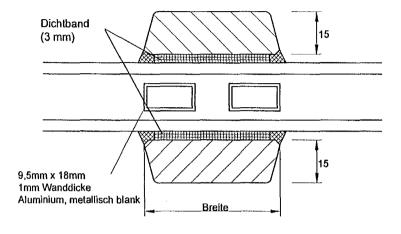
Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K		<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K		<u>4</u> /12/ <u>4,</u> 90% Argon, ε=0,1 1,5 W/m²K		4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
58	0,02	0,04	0,06	0,08	0,07	0,08	0,07	0.08
48	0,03	0,05	0,07	0,08	0,07	0,08	0,07	0.08
38	0,04	0,05	0,07	0,08	0,07	0,08	0.07	0,07
		unbeschichtet //m ² K	4/16/4, Luft, ε=0,1 1,6 W/m²K		4/16/4, 90% Argon, ε=0,1 1,3 W/m²K		4/16/4, 90% Krypton, ε=0,04 1,0 W/m²K	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelhoiz	Laubholz	Nadelholz	Laubholz
58	0,00	0,02	0,03	0,04	0.03	0.04	0.03	0,04
48	0,01	0,02	0,03	0,04	0,03	0,04	0,03	0,04
38	0,02	0,03	0,04	0,04	0,04	0,04	0,03	0,04

Anlage 2 Blatt 9

Tabelle 8 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm		unbeschichtet //m ² K	<u>4</u> /12/ <u>4,</u> L 1,8 W	uft, ε=0,1 //m²K	<u>4</u> /12/ <u>4,</u> 90% 1,5 W	Argon, ε=0,1 //m²K		rypton, ε=0,04 //m ² K
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
58	0,00	0,02	0,05	0,06	0,06	0,07	0,06	0,07
48	0,01	0,03	0,06	0,07	0,06	0,07	0,07	0,07
38	0,03	0,04	0,06	0,07	0,07	0,07	0,07	0,07
		unbeschichtet //m ² K	<u>4</u> /16/ <u>4,</u> L 1,6 W	uft, ε=0,1 //m²K	<u>4</u> /16/ <u>4,</u> 90% 1,3 V	Argon, ε=0,1 //m²K	<u>4</u> /16/ <u>4</u> , 90% K 1,0 W	rypton, ε=0,04 //m²K
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
58	-0,02	0,00	0,02	0,03	0,03	0,03	0,03	0,03
48	0,00	0,01	0,03	0,03	0,03	0,03	0,03	0,03
38	0.01	0,02	0.03	0.04	0.03	0.04	0,03	0,04




Tabelle 9 $\Psi_{\text{Sprosse}}\text{-Werte in W/mK}$

Sprossenbreite in mm	2,9 W	Luft, unbeschichtet 4/12/4, Luft, ε=0,1 2,9 W/m²K 1,8 W/m²K			<u>4</u> /12/ <u>4,</u> 90% Argon, ε=0,1 1,5 W/m ² K		4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
58	0,02	0,04	0,06	0,08	0,07	0,08	0,07	0.08
	<u>4</u> /16/ <u>4,</u> Luft, t 2,7 W	inbeschichtet //m²K	<u>4</u> /16/ <u>4,</u> L 1,6 W	uft, ε=0,1 //m²K		Argon, ε=0,1 //m²K	<u>4</u> /16/ <u>4</u> , 90% K	rypton, ε=0,04 //m²K
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
58	0,00	0,02	0,03	0,04	0,03	0.04	0,03	0,04

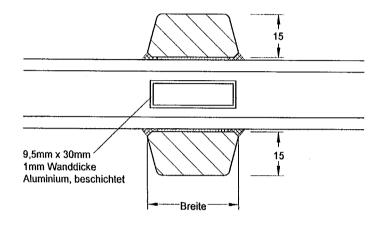
Abschlußbericht

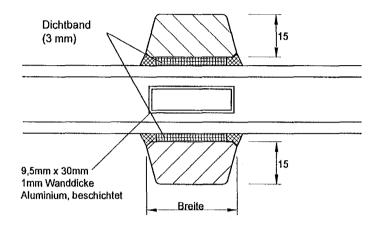
Anlage 2 Blatt 11

Tabelle 10 $\Psi_{\text{Sprosse}}\text{-Werte in W/mK}$

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K			<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K		<u>4</u> /12/ <u>4,</u> 90% Argon, ε=0,1 1,5 W/m²K		4/12/4, 90% Krypton, ε=0,04 1,0 W/m²K	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	
58	0,00	0,02	0,05	0,06	0,06	0,07	0,06	0,07	
	4/16/4, Luft, unbeschichtet 2.7 W/m ² K			<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K		Argon, ε=0,1 //m²K		rypton, ε=0,04 //m²K	
	Nadelholz	Laubholz	Nadelhoiz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	
58	-0,02	0,00	0,02	0,03	0,03	0,03	0,03	0,03	

n Sprossenkonstruktionen auf den Wärmedurchgang von Fen




Tabelle 11 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m ² K		<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K		4/12/4, 90% Argon, ε=0,1 1,5 W/m ² K		4/12/4, 90% Krypton, ε=0,04 1,0 W/m²K	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
32	0,04	0,05	0,06	0,07	0,06	0,07	0,06	0,09
	4/16/4, Luft, u 2,7 W	inbeschichtet //m²K		<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K		Argon, ε=0,1 //m²K	4/16/4, 90% K 1,0 W	rypton, ε=0,04 //m²K
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
32	0,02	0,03	0,03	0,04	0,03	0,04	0,03	0,06

Abschlußbericht

Anlage 2 Blatt 13

Tabelle 12 Ψ_{Sprosse} -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m ² K		<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K		<u>4</u> /12/ <u>4,</u> 90% Argon, ε=0,1 1,5 W/m²K		4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
32	0,03	0,04	0,06	0,06	0,06	0,07	0,06	0,06
		unbeschichtet //m ² K	<u>4</u> /16/ <u>4,</u> L 1,6 W	uft, ε=0,1 //m²K		Argon, ε=0,1 V/m²K	<u>4</u> /16/ <u>4</u> , 90% K 1,0 W	rypton, ε=0,04 //m²K
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
32	0,01	0,02	0,03	0,03	0,03	0,03	0,03	0,03

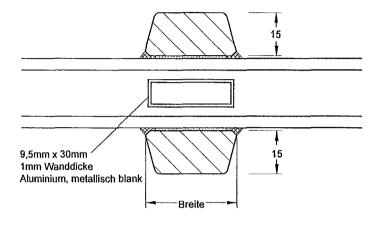


Tabelle 13 $\Psi_{\text{Sprosse}}\text{-Werte in W/mK}$

Sprossenbreite in mm	<u>4</u> /12/ <u>4,</u> Luft, u 2,9 W			<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m ² K		4/12/4, 90% Argon, ε=0,1 1,5 W/m²K		4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K	
l ì	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz Laubholz		Nadelholz	Laubholz	
32	0,04	0,05	0,06	0,07	0,06	0,07	0,06	0,07	
	4/16/4, Luft, unbeschichtet 2.7 W/m ² K		<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K		<u>4</u> /16/ <u>4,</u> 90% 1,3 W		4/16/4, 90% Krypton, ε=0,04 1,0 W/m ² K		
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	
32	0,02	0,03	0,03	0,04	0,03	0,04	0,03	0,03	

Abschlußbericht

Anlage 2 Blatt 15

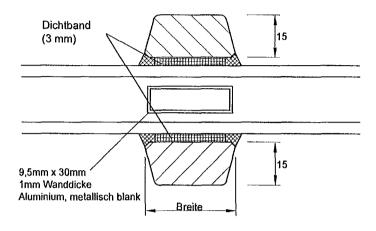


Tabelle 14 $\Psi_{\text{Sprosse}}\text{-Werte in W/mK}$

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m ² K		<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K		<u>4</u> /12/ <u>4,</u> 90% Argon, ε=0,1 1,5 W/m²K		4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
32	0,03	0,04	0,06	0,06	0,06	0,06	0,06	0,06
	<u>4</u> /16/ <u>4,</u> Luft, u 2,7 W	unbeschichtet //m ² K	<u>4</u> /16/ <u>4,</u> L 1,6 W	uft, ε=0,1 //m²K		Argon, ε=0,1 //m²K	<u>4</u> /16/ <u>4</u> , 90% K 1,0 W	rypton, ε≃0,04 //m²K
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
32	0,01	0,02	0,03	0,03	0,03	0,03	0,03	0,03

Einfluss von Sprossenkonstruktionen auf den Wä

Abschlußbericht Anlage 2 Blatt 16

glasteilende Sprosse (Holz)

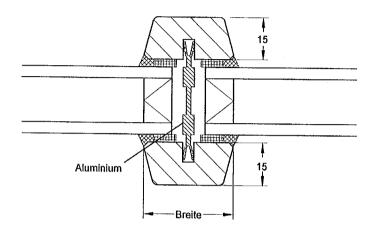


Tabelle 15 $\Psi_{\text{Sprosse}}\text{-Werte in W/mK}$

Sprossenbreite in mm		W/m²K 1,8 W/m²K		uft, ε=0,1 //m²K		Argon, ε=0,1 V/m²K		rypton, ε=0,04 //m²K
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelhoiz	Laubholz	Nadelholz	Laubholz
48	0,05	0,08	0,14	0,16	0,16	0,19	0,19	0,22
38	0,08	0,10	0,15	0,18	0,18	0,20	0,21	0,23
32	0,09	0,12	0,17	0,19	0,19	0,21	0,22	0,25
	2,7 W	Inbeschichtet //m²K	<u>4</u> /16/ <u>4,</u> L 1,6 W	uft, ε=0,1 //m²K		Argon, ε=0,1 //m²K	<u>4</u> /16/ <u>4</u> , 90% K	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
48	0,06	0,09	0,16	0,18	0,17	0,20	0,19	0,22
38	0,09	0,11	0,17	0,20	0,19	0,21	0,21	0,23
32	0,10	0,12	0,19	0,21	0,20	0,23	0,22	0,24

Abschlußbericht

Anlage 2 Blatt 17

glasteilende Sprosse (Holz)

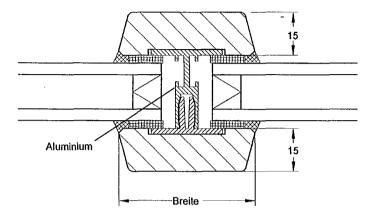


Tabelle 16 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm		12/4, Luft, unbeschichtet 2,9 W/m²K		<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K		<u>4</u> /12/ <u>4,</u> 90% Argon, ε=0,1 1,5 W/m²K		4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	
48	0,05	0,07	0,13	0,16	0,16	0,18	0,19	0,22	
38	80,0	0,11	0,17	0,19	0,19	0,21	0,22	0,25	
		unbeschichtet //m ² K		uft, ε=0,1 //m²K	<u>4</u> /16/ <u>4,</u> 90% 1,3 V	Argon, ε=0,1 V/m²K	<u>4</u> /16/ <u>4</u> , 90% K 1,0 W	rypton, ε=0,04 //m²K	
ļ .	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	
48	0,06	80,0	0,15	0,18	0,17	0,20	0,19	0,21	
38	0,09	0,12	0,18	0,21	0,20	0,23	0,22	0,24	

glasteilende Sprosse (Holz)

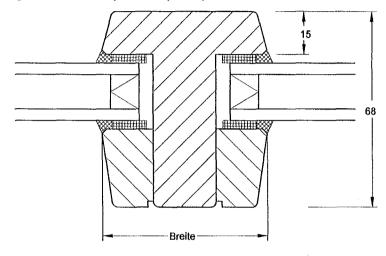


Tabelle 17 Ψ_{Sprosse} -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K		<u>4</u> /12/ <u>4,</u> L 1,8 W	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K		4/12/4, 90% Argon, ε=0,1 1,5 W/m²K		4/12/4, 90% Krypton, ε=0,04 1,0 W/m²K	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	
78	-0,03	0,01	0,10	0,14	0,13	0,17	0,18	0,22	
68	-0,01	0,02	0,10	0,13	0,13	0,17	0,18	0,21	
58	0,00	0,03	0,10	0,13	0,13	0,16	0,17	0,20	
48	0,02	0,04	0,11	0,13	0,13	0,16	0,17	0,19	
		unbeschichtet V/m²K	<u>4</u> /16/ <u>4</u> , L 1,6 V	uft, ε=0,1 //m²K	<u>4</u> /16/ <u>4</u> , 90% 1,3 W	Argon, ε=0,1 //m²K	<u>4</u> /16/ <u>4</u> , 90% K 1,0 V	Krypton, ε=0,04 N/m²K	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	
78	-0,01	0,03	0,13	0,17	0,15	0,19	0,18	0,22	
	-0,01	J 0,03	0,10	0,11	0,.0	0,.0			
68	0,01	0,03	0,13	0,16	0,15	0,18	0,18	0,21	
									

Anlage 2 Blatt 19

aufgeklebte Sprosse (Aluminium-Holz)

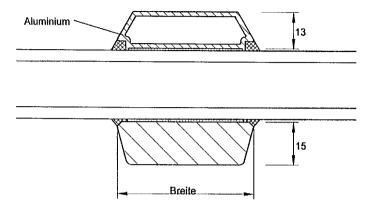


Tabelle 18 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K		<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K		<u>4</u> /12/ <u>4,</u> 90% Argon, ε=0,1 1,5 W/m²K		4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K		
	Nadelhoiz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	
68	-0,04	-0,02	-0,02	-0,01	-0,01	-0,01	-0,01	0,00	
58	-0,03	-0,02	-0,01	-0,01	-0,01	-0,01	0,00	0,00	
48	-0,02	-0,01	-0,01	-0,01	-0,01	0,00	0,00	0,00	
38	-0,02	-0,01	-0,01	0,00	0,00	0,00	0,00	0,00	
32	-0,01	-0,01	-0,01	0,00	0,00	0,00	0,00	0,00	
		4/16/4, Luft, unbeschichtet 2,7 W/m²K		<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K		Argon, ε≃0,1 //m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m ² K		
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	
68	-0,03	-0,02	-0,01	-0,01	-0,01	-0,01	-0,01	-0,01	
58	-0,03	-0,02	-0,01	-0,01	-0,01	0,00	0,00	0,00	
48	-0.02	-0,01	-0,01	0,00	-0,01	0,00	0,00	0,00	
38	-0,01	-0,01	0,00	0,00	0,00	0,00	0,00	0,00	
32	-0,01	-0,01	0,00	0,00	0,00	0,00	0,00	0,00	

aufgeklebte Sprosse (Aluminium-Holz)

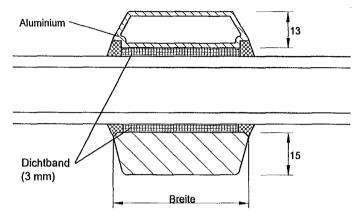


Tabelle 19 Ψ_{Sprosse} -Werte in W/mK

Sprossenbreite	<u>4</u> /12/ <u>4</u> , Luft, ı	unbeschichtet		uft, ε=0,1	<u>4</u> /12/ <u>4</u> , 90%		<u>4</u> /12/ <u>4</u> , 90% K	rypton, ε=0,04
in mm	2,9 W/m ² K		1,8 W/m ² K		1,5 W/m²K		1,0 W/m²K	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
68	-0,06	-0,05	-0,03	-0,02	-0,02	-0,02	-0,01	-0,01
58	-0,05	-0,04	-0,02	-0,02	-0,02	-0,01	-0,01	-0,01
48	-0,04	-0,03	-0,02	-0,01	-0,01	-0,01	-0,01	-0,01
38	-0,03	-0,02	-0,01	-0,01	-0,01	-0,01	0,00	0,00
32	-0,02	-0,02	-0,01	-0,01	-0,01	-0,01	0,00	0,00
		unbeschichtet	<u>4</u> /16/ <u>4</u> , L	uft, ε=0,1	<u>4</u> /16/ <u>4</u> , 90%	Argon, ε=0,1		rypton, ε=0,04
	2,7 W	//m²K	1,6 W/m²K		1,3 W/m ² K		1,0 W/m ² K	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
68	-0,06	-0,05	-0,02	-0,02	-0,02	-0,01	-0,01	-0,01
58	-0,04	-0,04	-0,02	-0,01	-0,01	-0,01	-0,01	-0,01
48	-0,03	-0,03	-0,01	-0,01	-0,01	-0,01	-0,01	-0,01
38	-0,02	-0,02	-0,01	-0,01	-0.01	-0.01	0.00	0,00

Anlage 2 Blatt 21

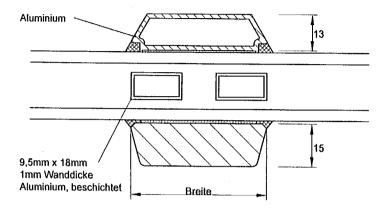


Tabelle 20 Ψ_{Sprosse} -Werte in W/mK

Sprossenbreite in mm	in mm 2,9 W/m ² K		4/12/4, Luft, ε=0,1 1,8 W/m²K		4/12/4, 90% Argon, ε=0,1 1,5 W/m²K		4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K	
	Nadelholz	Laubholz	Nadelholz	Laubhoiz	Nadelholz	Laubholz	Nadelholz	Laubholz
68	0,05	0,07	0,08	0,11	0,09	0,10	0.09	0,09
58	0,06	0,08	0,09	0,10	0,09	0,10	0,09	0,09
48	0,07	0,08	0,09	0,10	0,10	0,10	0,09	0,09
38	0,07	0,08	0,09	0,10	0,09	0,10	0.09	0,09
	2,7 W	unbeschichtet //m²K	<u>4</u> /16/ <u>4,</u> L 1,6 W	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K		Argon, ε=0,1 //m²K	4/16/4, 90% Krypton, ε=0,04 1.0 W/m ² K	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
68	0,02	0,04	0,04	0,06	0,05	0.06	0,05	0,06
58	0,03	0,04	0,04	0,06	0,06	0,06	0,06	0,06
48	0,04	0,05	0,05	0,06	0,06	0,06	0,06	0,06
38	0,04	0,05	0,05	0,06	0,06	0,06	0,06	0,06

Einfluss von Sprossen

Absorbing borious Anlago 2 Blatt

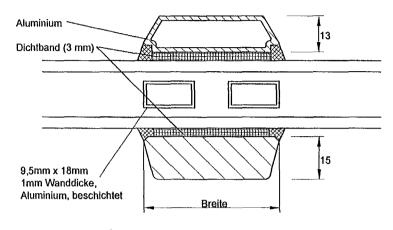


Tabelle 21 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm		ınbeschichtet //m²K	<u>4</u> /12/ <u>4,</u> L	uft, ε=0,1 //m²K		Argon, ε=0,1 //m²K	<u>4</u> /12/ <u>4</u> , 90% K 1.0 W		
, ,,,,,,,,	Nadelholz	Laubholz	Nadelholz	Laubhoiz	Nadelholz	Laubholz	Nadelholz	Laubholz	
68	0,01	0,02	0,07	0,08	0,08	0,08	0,08	0,09	
58	0,02	0,03	0,07	0,08	0,08	0,09	0,09	0,09	
48	0,03	0,04	0,08	0,09	0,09	0,09	0,09	0,09	
38	0,04	0,05	0,07	0,08	0,09	0,09	0,09	0,09	
		unbeschichtet //m²K	<u>4</u> /16/ <u>4,</u> L 1,6 W	uft, ε=0,1 //m ² K		Argon, ε=0,1 //m²K		Krypton, ε=0,04 <i>N</i> /m²K	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	
68	-0,01	0,00	0,04	0,04	0,04	0,04	0,04	0,04	
58	0,01	0,01	0,04	0,04	0,04	0,05	0,04	0,05	
48	0,02	0,02	0,05	0,05	0,05	0,05	0,05	0,05	
38	0,03	0,03	0,05	0,05	0,05	0,05	0,05	0,05	

Abschlußbericht

Anlage 2 Blatt 23

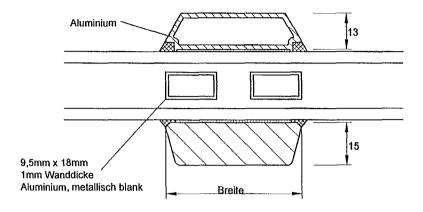


Tabelle 22 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m ² K		<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K		<u>4</u> /12/ <u>4,</u> 90% Argon, ε=0,1 1,5 W/m²K		4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
68	0,05	0,07	0,08	0,10	0,09	0,10	0,09	0,09
	4/16/4, Luft, u 2,7 W	inbeschichtet //m²K	<u>4</u> /16/ <u>4,</u> Le 1,6 W		<u>4</u> /16/ <u>4,</u> 90% 1,3 W	Argon, ε=0,1 //m²K		(rypton, ε=0,04 V/m²K
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
68	0.02	0,04	0,03	0,05	0,04	0,04	0,04	0,05

n Sprossenkonstruktionen auf den Wärmedurchgang von Fe

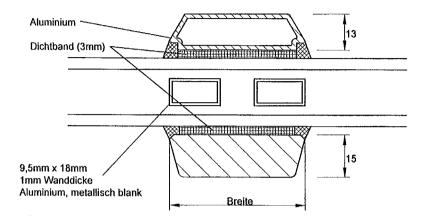


Tabelle 23 Ψ_{Sprosse}-Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m ² K		<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K		<u>4</u> /12/ <u>4,</u> 90% Argon, ε=0,1 1,5 W/m²K		4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
68	0,01	0,02	0,06	0,06	0,06	0,07	0,07	0,08
	<u>4</u> /16/ <u>4,</u> Luft, u 2,7 W	unbeschichtet //m²K	<u>4</u> /16/ <u>4,</u> L 1,6 W	uft, ε=0,1 //m²K	<u>4</u> /16/ <u>4,</u> 90% 1,3 V	Argon, ε=0,1 //m²K	4/16/ <u>4</u> , 90% K 1,0 W	rypton, ε=0,04 //m²K
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
68	-0,03	-0,02	0,02	0,03	0,03	0,03	0,03	0,03

Abschlußbericht Anlage 2 Blatt 25

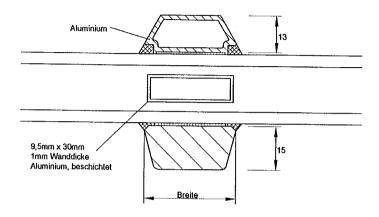


Tabelle 24 $\Psi_{\text{Sprosse}}\text{-Werte in W/mK}$

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K		9 W/m²K 1,8 W/m²K		<u>4</u> /12/ <u>4,</u> 90% Argon, ε=0,1 1,5 W/m²K		4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K	
	Nadelhoiz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
32	0,6	0,08	0,08	0,10	0,08	0,10	0,08	0.08
	4/16/4, Luft, unbeschichtet 2,7 W/m²K		4/16/4, Luft, ε=0,1 1,6 W/m²K		4/16/4, 90% Argon, ε=0,1 1,3 W/m ² K		4/16/4, 90% Krypton, ε=0,0	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubhoiz	Nadelholz	Laubholz
32	0,04	0,05	0,04	0,05	0,05	0,05	0,05	0,06

n Sprossenkonstruktionen auf den Wärmedurchgang von Fe

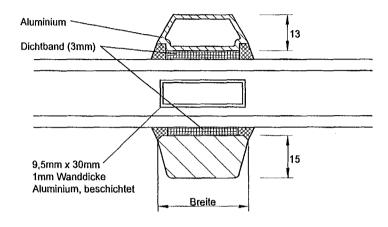


Tabelle 25 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm			4/12/4, Luft, ε=0,1 1,8 W/m²K		4/12/4, 90% Argon, ε=0,1 1.5 W/m²K		4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
32	0,04	0,04	0,06	0,08	0,08	0,08	0,08	0,08
		unbeschichtet //m ² K	<u>4</u> /16/ <u>4,</u> L 1,6 W	uft, ε=0,1 //m²K	<u>4</u> /16/ <u>4,</u> 90% 1,3 W	Argon, ε≔0,1 //m²K		rypton, ε=0,04 //m²K
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
32	0,02	0,02	0,04	0,04	0,04_	0,04	0,04	0,04

Abschlußbericht Anlage 2 Blatt 27

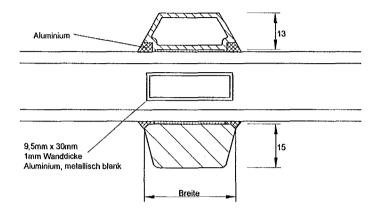


Tabelle 26 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm	<u>4</u> /12/ <u>4,</u> Luft, u 2,9 W	unbeschichtet //m ² K	<u>4</u> /12/ <u>4,</u> L 1,8 W	uft, ε=0,1 //m²K	<u>4</u> /12/ <u>4,</u> 90% 1,5 W	Argon, ε=0,1 //m²K	<u>4</u> /12/ <u>4,</u> 90% K 1,0 W	rypton, ε=0,04 //m²K
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
32	0,06	0,07	0,08	0,08	0,08	0,08	0,07	0,08
		unbeschichtet //m²K	<u>4</u> /16/ <u>4,</u> L 1,6 W	uft, ε=0,1 //m²K	<u>4</u> /16/ <u>4,</u> 90% 1,3 W	Argon, ε=0,1 //m²K		rypton, ε=0,04 //m²K
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
32	0,03	0,04	0,04	0,04	0,04	0,04	0,04	0,04

ssenkonstruktionen auf den Wärmedurchgang von Fen

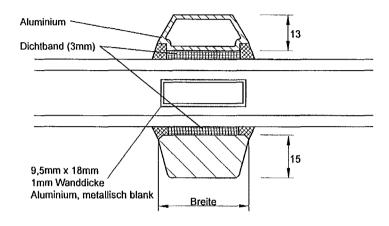


Tabelle 27 Ψ_{Sprosse} -Werte in W/mK

Sprossenbreite in mm	<u>4</u> /12/ <u>4,</u> Luft, t 2,9 W	ınbeschichtet //m²K	<u>4</u> /12/ <u>4,</u> L 1,8 W	uft, ε=0,1 //m²K		Argon, ε=0,1 //m²K	<u>4</u> /12/ <u>4,</u> 90% K 1,0 W	
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
32	0,04	0,04	0,06	0,07	0,06	0,07	0,06	0,07
	<u>4</u> /16/ <u>4,</u> Luft, u 2,7 W	inbeschichtet //m²K	<u>4</u> /16/ <u>4,</u> L 1,6 W	uft, ε=0,1 //m²K		Argon, ε=0,1 //m²K	<u>4</u> /16/ <u>4,</u> 90% K 1,0 W	rypton, ε=0,04 //m²K
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
32	0,02	0,02	0,03	0,03	0,03	0,03	0,03	0,03

Anlage 2 Blatt 29

glasteilende Sprosse (Aluminium-Holz)

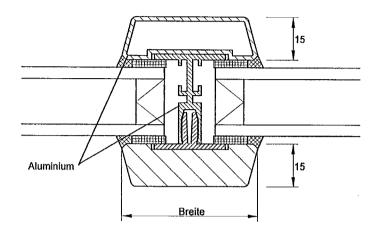


Tabelle 28 Ψ_{Sprosse} -Werte in W/mK

Sprossenbreite in mm	<u>4</u> /12/ <u>4,</u> Luft, u 2,9 W	inbeschichtet //m²K	<u>4</u> /12/ <u>4,</u> L 1,8 W	uft, ε≃0,1 //m²K	<u>4</u> /12/ <u>4,</u> 90% 1,5 W	Argon, ε=0,1 //m²K		rypton, ε=0,04 //m²K
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
48	0,09	0,11	0,18	0,20	0,20	0,22	0,24	0,26
38	0,12	0,14	0,20	0,22	0,23	0,25	0,26	0,28
	<u>4</u> /16/ <u>4,</u> Luft, u 2,7 W	inbeschichtet //m²K	<u>4</u> /16/ <u>4,</u> L 1,6 W	uft, ε=0,1 //m²K	4/16/4, 90% 1,3 W	Argon, ε=0,1 //m²K		rypton, ε=0,04 //m²K
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
48	0,11	0,13	0,20	0,22	0,22	0,24	0,24	0,26
38	0,13	0,15	0,22	0.24	0,24	0,26	0,26	0,28

Einfluss von Sprossenkonstruktionen auf den Wärmedurchga

าใน**ßbericht** Anlage 2 Blatt 30

glasteilende Sprosse (Aluminium-Holz)

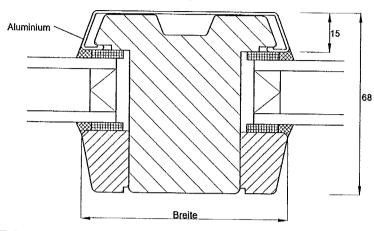


Tabelle 29 Ψ_{Sprosse} -Werte in W/mK

Sprossenbreite in mm	<u>4</u> /12/ <u>4,</u> Luft, a 2,9 W	unbeschichtet //m²K	<u>4</u> /12/ <u>4,</u> L 1,8 V	uft, ε=0,1 V/m ² K		Argon, ε=0,1 V/m²K	4/12/4, 90% K	Krypton, ε=0,04 V/m²K
	Nadelholz	Laubholz	Nadelholz	Laubhoiz	Nadelholz	Laubholz	Nadelholz	Laubholz
100	-0,04	0,00	0,10	0,14	0,14	0,19	0.20	0,24
78	-0,01	0,02	0,11	0,15	0,15	0,18	0,20	0,23
68	0,00	0,04	0,12	0,15	0,15	0,18	0,19	0,23
58	0,02	0,05	0,12	0.15	0,15	0,18	0,19	0,22
48	0,03	0,05	0,12	0,15	0,15	0,17	0.19	0,21
	2,7 W	inbeschichtet //m²K	<u>4</u> /16/ <u>4,</u> L 1,6 W	uft, ε=0,1 //m²K		Argon, ε=0,1 //m²K	4/16/4, 90% K	rypton, ε=0,04 //m²K
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
100	-0,02	0,02	0,14	0,18	0,17	0,21	0,20	0,24
78	0,01	0,05	0,14	0,18	0,17	0,20	0,20	0,23
68	0,03	0,05	0,15	0,18	0,17	0,20	0,19	0,22
58	0,04	0,06	0,15	0,17	0,17	0,19	0,19	0,22
48	0,05	0,07	0,15	0,17	0,17	0,19	0,19	0,22

glasteilende Sprosse (Aluminium-Holz)

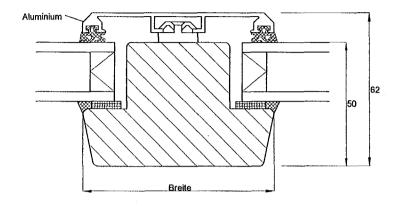


Tabelle 30 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm		unbeschichtet //m²K	<u>4</u> /12/ <u>4,</u> L 1,8 W	uft, ε=0,1 //m²K	<u>4</u> /12/ <u>4,</u> 90% 1,5 W	Argon, ε=0,1 //m²K	<u>4</u> /12/ <u>4,</u> 90% K 1,0 W	rypton, ε=0,04 //m²K
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
100	-0,03	0,02	0,12	0,16	0,16	0,20	0,22	0,26
78	0,00	0,03	0,12	0,15	0,16	0,19	0,21	0,24
68	0,01	0,04	0,12	0,15	0,16	0,18	0,20	0,23
58	0,02	0,05	0,12	0,15	0,15	0,18	0,20	0,22
		unbeschichtet //m²K	<u>4</u> /16/ <u>4,</u> L 1,6 W	uft, ε=0,1 //m²K		Argon, ε=0,1 //m²K	<u>4</u> /16/ <u>4</u> , 90% K 1,0 W	rypton, ε=0,04 //m²K
	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz	Nadelholz	Laubholz
100	-0,01	0,03	0,15	0,19	0,18	0,22	0,22	0,26
78	0,02	0,05	0,15	0,19	0,18	0,21	0,20	0,23
68	0,03	0,05	0,15	0,18	0,17	0,20	0,20	0,22
58	0,04	0,06	0,15	0,17	0,17	0,19	0,19	0,22

aufgeklebte Sprosse (PVC)

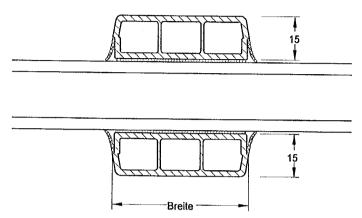


Tabelle 31 Ψ_{Sprosse} -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K	<u>4</u> /12/ <u>4</u> , Luft, ε≃0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K
78	-0,10	-0,05	-0.03	-0,02
63	-0,08	-0,03	-0,02	-0,02
48	-0,06	-0,02	-0,02	-0,01
33	-0,04	-0,02	-0,01	-0,01
35	-0,03	-0,01	-0,01	0,00
25	-0,01	-0,01	0,00	0,00
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m²K
78	-0,09	-0,04	-0,03	-0,02
63	-0,07	-0,03	-0,02	-0.01
48	-0,05	-0,02	-0,01	-0,01
33	-0,03	-0,01	-0,01	-0,01
35	-0,02	-0,01	-0,01	0,00
25	-0,01	0,00	0,00	0,00

aufgeklebte Sprosse (PVC)

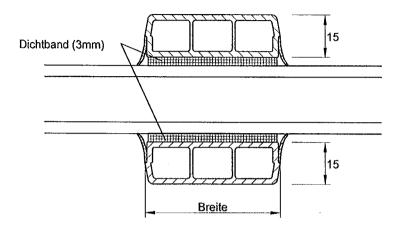


Tabelle 32 Ψ_{Sprosse} -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K
78	-0,11	-0,05	-0,04	-0,02
33	-0,04	-0,02	-0,01	-0,01
25	-0,01	-0,01	0,00	0,00
	4/16/4, Luft, unbeschichtet 2,7 W/m²K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m ² K
78	-0,11	-0,04	-0,03	-0,02
33	-0,04	-0,01	-0,01	-0,01
25	-0,02	-0,01	0,00	0,00

Sprossenkonstruktionen auf den Wärmedurchgang von F

bericht Anlage 2 Blatt 34

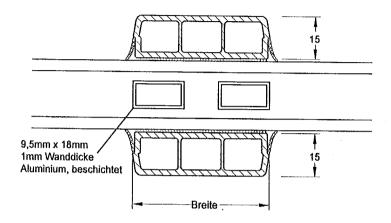


Tabelle 33 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K
78	-0,05	0,02	0,04	0.05
63	-0,03	0,03	0.05	0,06
48	-0,01	0,04	0,05	0,06
33	0,01	0,04	0,05	0,05
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m²K
78	-0,06	0,00	0,01	0,02
63	-0,04	0,01	0,02	0,02
48	-0,02	0,02	0,02	0,03
33	0,00	0,02	0,02	0,02

Abschlußbericht

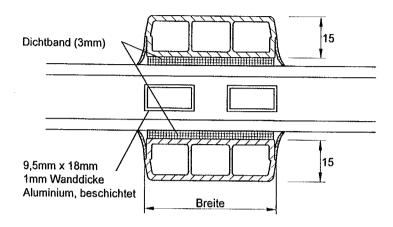
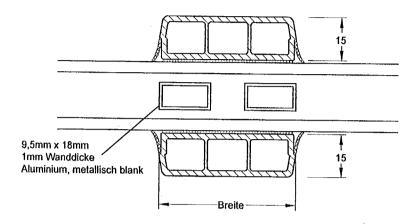



Tabelle 34 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K
78	-0,07	0,01	0,03	0,04
33	. 0,00	0,04	0,04	0,05
***	4/16/4, Luft, unbeschichtet 2,7 W/m²K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m ² K
78	-0,07	-0,01	0,00	0.01
33	-0,01	0,02	0,02	0,02

n Sprossenkonstruktionen auf den Wärmedurchgang von Fens

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m ² K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m ² K	4/12/4, 90% Krypton, ε=0,04 1.0 W/m²K
78	-0,05	0,02	0,04	0.05
33	0,01	0,04	0,05	0,05
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	<u>4</u> /16/ <u>4,</u> 90% Argon, ε=0,1 1.3 W/m ² K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m²K
78	-0,06	0,00	0,01	0.02
33	0,00	0,02	0,02	0,03

Anlage 2 Blatt 37

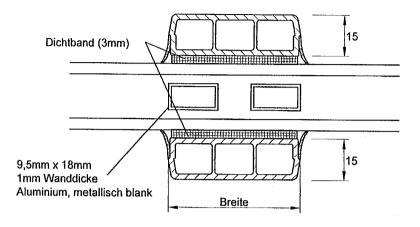


Tabelle 36 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m ² K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K
78	-0,07	0,01	0,03	0.04
33	0,00	0,04	0,04	0,05
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m ² K
78	-0,08	-0,01	0,00	0,01
33	-0,01	0,02	0,02	0,02

Tabelle 37 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1.0 W/m ² K
35	0,03	0,05	0,06	0,06
25	0,03	0,05	0,05	0,05
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m ² K
35	0,01	0,03	0,03	0,03
25	0,02	0,03	0,03	0,02

Anlage 2 Blatt 39



Tabelle 38 Ψ_{Sprosse} -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m ² K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m²K
25	0,03	0,05	0,05	0,05
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m²K
25	0,01	0,02	0,02	0,02

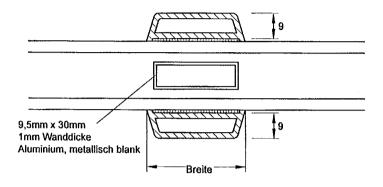


Tabelle 39 Ψ_{Sprosse} -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m ² K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K
25	0,03	0,05	0,05	0,05
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m ² K
25	0,02	0,03	0,03	0,02

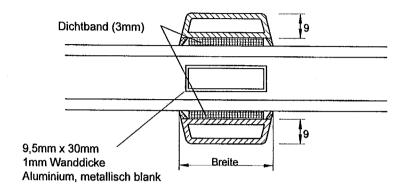


Tabelle 40 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m²K
25	0,03	0,05	0,05	0,05
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m ² K
25	0,01	0,02	0,02	0,02

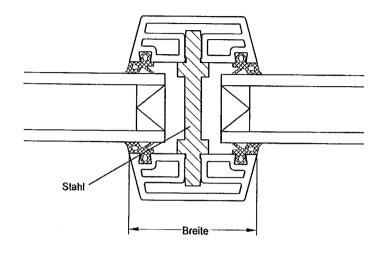


Tabelle 41 $\Psi_{\text{Sprosse}}\text{-Werte in W/mK}$

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m ² K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m ² K	4/12/4, 90% Krypton, ε=0,04 1.0 W/m ² K
45	0,06	0,15	0,17	0.21
35	0,10	0,18	0,20	0.23
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m²K
45	0,07	0,17	0,19	0,21
35	0,11	0,20	0,21	0,23

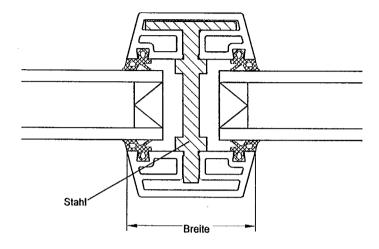
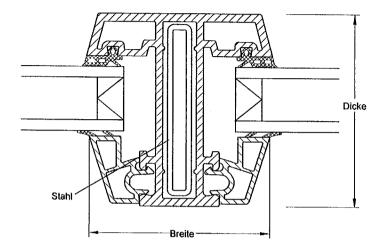
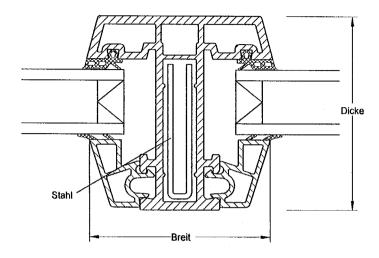



Tabelle 42 Ψ_{Sprosse} -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K
45	0,10	0,19	0,22	0,25
35	0,13	0,21	0,23	0,27
	4/16/4, Luft, unbeschichtet 2,7 W/m²K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m ² K
45	0,11	0,21	0,23	0,25
35	0,14	0,23	0,25	0,27


า Sprossenkonstruktionen auf den Wärmedurchgang von Fer

 $\begin{tabular}{ll} \textbf{Tabelle 43} & \Psi_{\text{Sprosse}}\text{-Werte in W/mK} \\ \end{tabular}$

Sprossenbreite in mm	Dicke in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K
68	72	0,05	0,16	0,19	1,0 VV/m ⁻ K 0,24
68	82	0,04	0,16	0,19	0,24
78	72	0,06	0,18	0,22	0,27
78 82	82	0,06	0,18	0,22	0,27
		4/16/4, Luft, unbeschichtet 2,7 W/m²K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m ² K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m ² K
68	72	0,06	0,18	0,21	0,23
68	82	0,06	0,18	0,21	0,23
78	72	0,07	0,21	0,23	0,26
78	82	0,07	0,21	0,23	0,26

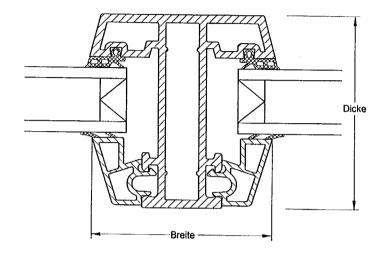


Tabelle 44 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm	Dicke in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K	4/12/4, Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K
68	72	0,02	0,13	0,16	0,20
68	82	0,02	0,13	0,16	0,21
78	72	0,01	0,13	0,17	0,22
78 82	82	0,01	0,14	0,17	0,22
		4/16/4, Luft, unbeschichtet 2,7 W/m²K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m²K
68	72	0,03	0,15	0,18	0,20
68	82	0,03	0,13	0,18	0,20
78	72	0,03	0,16	0,19	0,21
78	82	0,03	0,16	0,19	0,22

n Sprossenkonstruktionen auf den Wärmedurchgang von Fen

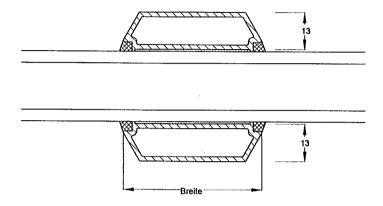


Tabelle 45 Ψ_{Sprosse} -Werte in W/mK

Sprossenbreite	Dicke	4/12/4, Luft, unbeschichtet	4/12/4, Luft, ε=0,1	4/12/4, 90% Argon, ε=0,1	4/12/4, 90% Krypton, ε=0,04
in mm	in mm	2,9 W/m ² K	1,8 W/m ² K	1,5 W/m ² K	1,0 W/m ² K
68	72	-0,01	0,10	0,13	0,18
68	82	-0,02	0,10	0,13	0.18
78	72	-0,02	0,10	0,14	0,19
78 82	-0,02	0,11	0,14	0,19	
		4/16/4, Luft, unbeschichtet 2,7 W/m ² K	4/16/4, Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m ² K	<u>4/16/4,</u> 90% Krypton, ε=0,04 1,0 W/m²K
68	72	0,00	0,13	0,15	0,17
68	82	0,00	0,13	0,15	0,17
78	72	0,00	0,13	0,16	0,17
78	82	0,00	0,13	0,16	0,19

aufgeklebte Sprosse (Aluminium)

Tabelle 46 $\Psi_{\text{Sprosse}}\text{-Werte in W/mK}$

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m ² K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m²K
58	0,01	0,00	0,00	0,00
48	0,01	0,00	0,00	0,00
38	0,01	0,00	0,00	0,00
28	0,01	0,00	0,00	0,00
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	<u>4</u> /16/ <u>4</u> , 90% Krypton, ε=0,04 1,0 W/m²K
58	0,01	0,00	0,00	0,00
48	0,01	0,00	0,00	0,00
38	0,01	0,00	0,00	0,00
28	0,01	0,00	0.00	0,00

von Sprossenkonstruktionen auf den Wärmedurchgang von Fer

aufgeklebte Sprosse (Aluminium)

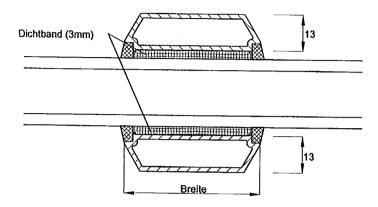
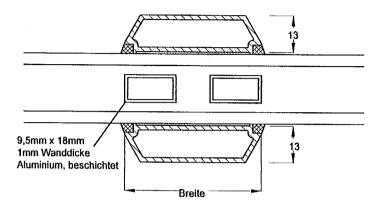



Tabelle 47 Ψ_{Sprosse} -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	<u>4</u> /12/ <u>4</u> , 90% Krypton, ε=0,04 1,0 W/m²K
58	-0,02	-0,01	-0,01	0,00
48	-0,02	-0,01	0,00	0,00
38	-0,01	0,00	0,00	0,00
28	0,00	0,00	0,00	0,00
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m²K
58	-0,02	-0,01	-0,01	0,00
48	-0,02	-0,01	0.00	0,00
38	-0,01	0,00	0,00	0,00
28	0,00	0,00	0,00	0,00

Tabelle 48 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m ² K	4/12/4, Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K
58	0,13	0,13	0,12	0,11
48	0,13	0,13	0,12	0,10
38	0,13	0,12	0,12	0,10
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	4/16/4, Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m ² K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m²K
58	0,08	0,07	0,06	0,05
48	0,08	0,07	0,06	0,05
38	0,08	0,06	0,06	0,05

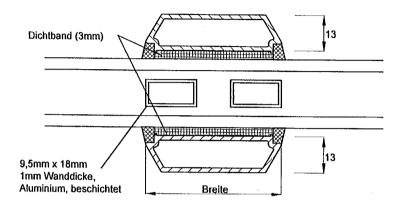


Tabelle 49 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m ² K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m ² K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04
58	0,06	0,09	0,09	0,08
48	0,07	0,09	0,09	0,08
38	0,07	0,09	0,09	0,08
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04
58	0,03	0,04	0,04	0,04
48	0,04	0,05	0,04	0,04
38	0,04	0,05	0,04	0,04

Abschlußbericht

Anlage 2 Blatt 51

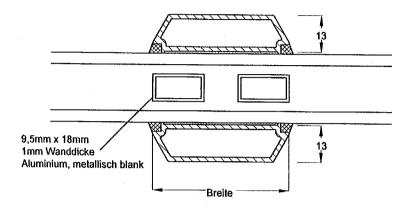
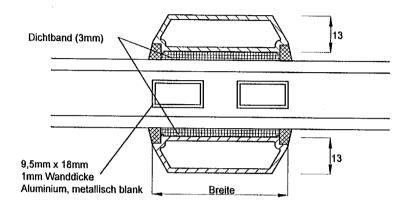
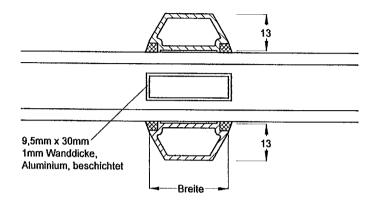


Tabelle 50 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m ² K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K
58	0,13	0,13	0,12	0,11
48	0,12	0,13	0,12	0,10
38	0,12	0,12	0,11	0,10
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m ² K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m ² K
58	0,08	0,06	0,06	0.05
48	0,08	0,06	0,06	0,05
38	0,08	0,06	0,05	0,05

ກ Sprossenkonstruktionen auf den Wärmedurchgang von Fe




Tabelle 51 Ψ_{Sprosse} -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K
58	0,06	0,09	0,09	0.08
48	0,06	0,09	0,09	0,08
38	0,07	0,09	0,09	0.08
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε≔0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1.0 W/m ² K
58	0,03	0,04	0.04	0,04
48	0,04	0,04	0,04	0,04
38	0,04	0,04	0,04	0,04

Abschlußbericht

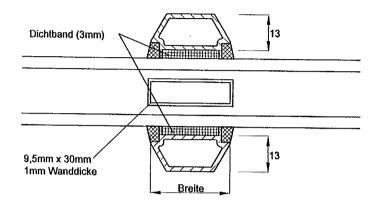

Anlage 2 Blatt 53

Tabelle 52 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1	<u>4</u> /12/ <u>4,</u> 90% Argon, ε=0,1	4/12/4, 90% Krypton, ε=0,04
	2,9 W/m²K	1,8 W/m²K	1,5 W/m²K	1,0 W/m ² K
28	0,11	0,11	0,10	0,09
	4/16/4, Luft, unbeschichtet	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1	4/16/4, 90% Argon, ε=0,1	<u>4</u> /16/ <u>4</u> , 90% Krypton, ε=0,04
	2,7 W/m²K	1,6 W/m²K	1,3 W/m²K	1,0 W/m ² K
28	0,07	0,05	0,05	0,04

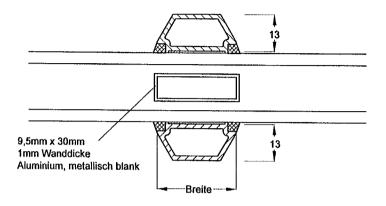


Tabelle 53 $\Psi_{\text{Sprosse}}\text{-Werte in W/mK}$

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1.0 W/m²K
28	0,07	0,08	0,08	0.07
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m ² K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m ² K
28	0,04	0,04	0,04	0,04

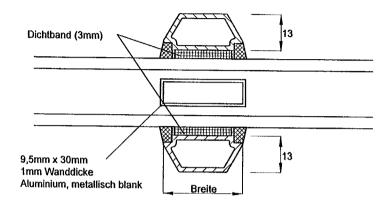


Tabelle 54 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K	<u>4</u> /12/ <u>4</u> , Luft, ε=0,1 1,8 W/m²K	<u>4</u> /12/ <u>4,</u> 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1,0 W/m ² K
28	0,07	0,10	0,10	0,09
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m ² K
28	0,04	0,05	0,05	0,04

prossenkonstruktionen auf den Wärmedurchgang von Fe

Tabelle 55 $\Psi_{\text{Sprosse}}\text{-Werte in W/mK}$

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m ² K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1.0 W/m ² K
28	0,07	0,08	0,08	0,07
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1,0 W/m²K
28	0,04	0,04	0,04	0,04

Abschlußbericht

glasteilende Sprosse (wärmegedämmtes Aluminium-Verbundprofil)

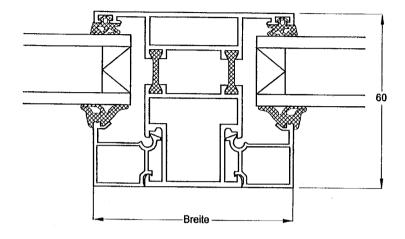
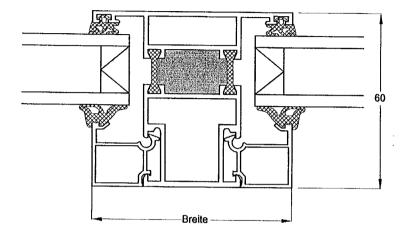



Tabelle 56 $\Psi_{Sprosse}$ -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m ² K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1.0 W/m²K
70	0,14	0,27	0,30	0,35
50	0,14	0,24	0,27	0,31
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	4/16/4, Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04
70	0,16	0,29	0,32	0,34
50	0,15	0,26	0,28	0,31

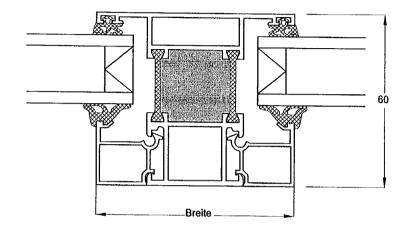

glasteilende Sprosse (wärmegedämmtes Aluminium-Verbundprofil)

 $\begin{tabular}{ll} \textbf{Tabelle 57} & \Psi_{\text{Sprosse}}\text{-Werte in W/mK} \\ \end{tabular}$

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1.0 W/m ² K
70	0,10	0,22	0,26	0,30
50	0,10	0,20	0,23	0,27
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1.3 W/m²K	4/16/4, 90% Krypton, ε=0,04
70	0,12	0,25	0,27	0,30
50	0,12	0,23	0,25	0,27

glasteilende Sprosse (wärmegedämmtes Aluminium-Verbundprofil mit Dämmstoff in der Dämmzone (λ = 0,020 W/mK))

Tabelle 58 $\Psi_{Sprosse}$ -Werte in W/mK


Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m²K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1	4/12/4, 90% Krypton, ε=0,04 1.0 W/m ² K
70	0,12	0,25	0,28	0.33
50	0,14	0,24	0,27	0.31
	4/16/4, Luft, unbeschichtet 2,7 W/m²K	<u>4</u> /16/ <u>4,</u> Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	4/16/4, 90% Krypton, ε=0,04 1.0 W/m ² K
70	0,14	0.27	0,30	0.32
50	0,15	0,26	0,28	0,30

prossenkonstruktionen auf den Wärmedurchgang von Fens

glasteilende Sprosse (wärmegedämmtes Aluminium-Verbundprofil mit Dämmstoff in der Dämmzone (λ = 0,020 W/mK))

Tabelle 59 Ψ_{Sprosse} -Werte in W/mK

Sprossenbreite in mm	4/12/4, Luft, unbeschichtet 2,9 W/m ² K	<u>4</u> /12/ <u>4,</u> Luft, ε=0,1 1,8 W/m²K	4/12/4, 90% Argon, ε=0,1 1,5 W/m²K	4/12/4, 90% Krypton, ε=0,04 1.0 W/m ² K
70	0,07	0,20	0,23	0.28
50	0,10	0,20	0,23	0,27
	4/16/4, Luft, unbeschichtet 2,7 W/m ² K	4/16/4, Luft, ε=0,1 1,6 W/m²K	4/16/4, 90% Argon, ε=0,1 1,3 W/m²K	<u>4</u> /16/ <u>4</u> , 90% Krypton, ε=0,04 1,0 W/m²K
70	0,09	0,22	0,25	0,27
50	0,11	0,22	0,24	0,26

Abschlußbericht Anlage 3 Blatt 1

Anlage 3

In Anlage 3 sind die absoluten (Tabelle 3 bis Tabelle 13) und relativen Änderungen (Tabelle 14 bis Tabelle 23) der U-Werte von Mehrscheiben-Isoliergläsern durch Sprossenkonstruktionen angegeben. Die Berechnungen wurden für unterschiedliche Sprossenteilungen durchgeführt. Die relativen Änderungen sind bezogen auf die U-Werte von Mehrscheiben-Isoliergläsern ohne Sprossen und werden als prozentuale Werte angegeben.

Für die Berechnung der absoluten und relativen Änderungen der U-Werte von Mehrscheiben-Isoliergläsern wurde ein Fenster mit den Standardmaßen 1,23 m x 1,48 m und eine Rahmenbreite von 0,112 m angenommen. Die Rahmenbreite entspricht der Rahmenbreite der geprüften Holz- bzw. Aluminium-Fenster.

Für die Berechnungen wurden verschiedene Sprossenteilungen angenommen. Die Klassifizierung der Sprossenteilungen ist in Tabelle 1, die Größe der durch die Sprossenteilungen entstehenden Glasfelder ist in Tabelle 2 angegeben. Bild 1 zeigt die Definition der Glasfeldgröße.

Tabelle 1 Klassifizierung der Sprossenteilungen

Klassifizierung	Anzahl waagrechter Sprossen	Anzahl senkrechter Sprossen
w1 / s0	1	0
w0 / s1	0	1
w1 / s1	1	1
w2 / s1	2	1
w1 / s2	1	2
w2 / s2	2	2
w3 / w3	3	3

Tabelle 2 Glasfeldgröße

Klassifizierung	Breite des Glasfeldes in mm	Höhe des Glasfeldes in mm
w1 / s0	1006	628
w0 / s1	503	1256
w1 / s1	503	628
w2 / s1	503	419
w1 / s2	335	628
w2 / s2	335	419
w3 / w3	252	314

Abschlußbericht Anlage 3 Blatt 2

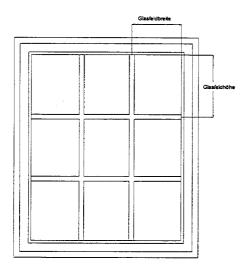


Bild 1 Definition der Glasfeldgröße

Tabelle 3 Änderung des U-Wertes (in W/m²K) von Mehrscheiben-Isolierglas durch eine Sprosse im Scheibenzwischenraum

Sprosse	оргозос ин со		MIG	
Тур	Isolierglas		min	max
w1/s0	Luft 0,9	SZR 12	0,02	0,07
		SZR 16	0,01	0,06
	Luft 0,1	SZR 12	0,02	0,08
		SZR 16	0,01	0,06
	Argon 0,1	SZR 12	0,01	0,07
		SZR 16	0,01	0,06
	Krypton 0,04	SZR 12	0,01	0,07
		SZR 16	0,01	0,05
w0/s1	Luft 0,9	SZR 12	0,00	0,09
		SZR 16	0,01	0,07
	Luft 0,1	SZR 12	0,00	0,10
		SZR 16	0,01	0,07
	Argon 0,1	SZR 12	0,00	0,09
		SZR 16	0,01	0,07
	Krypton 0,04	SZR 12	0,00	0,08
		SZR 16	0,01	0,07

Sprosse			MIG	
Тур	Isolierglas		min	max
w1/s1	Luft 0,9	SZR 12	0,00	0,15
		SZR 16	0,02	0,13
	Luft 0,1	SZR 12	0,00	0,17
		SZR 16	0,02	0,13
	Argon 0,1	SZR 12	0,00	0,17
		SZR 16	0,02	0,13
	Krypton 0,04	SZR 12	0,00	0,15
		SZR 16	0,02	0,12
w2/s1	Luft 0,9	SZR 12	0,00	0,22
		SZR 16	0,03	0,19
	Luft 0,1	SZR 12	0,00	0,24
		SZR 16	0,03	0,19
	Argon 0,1	SZR 12	0,00	0,24
		SZR 16	0,03	0,18
	Krypton 0,04	SZR 12	0,00	0,21
	· · · · · · · · · · · · · · · · · · ·	SZR 16	0,02	0,17
w1/s2	Luft 0,9	SZR 12	0,00	0,23
		SZR 16	0,04	0,20
	Luft 0,1	SZR 12	0,00	0,26
		SZR 16	0,03	0,20
	Argon 0,1	SZR 12	0,00	0,26
		SZR 16	0,03	0,19
	Krypton 0,04	SZR 12	0,00	0,23
	-	SZR 16	0,02	0,18
w2/s2	Luft 0,9	SZR 12	0,00	0,30
		SZR 16	0,05	0,26
•	Luft 0,1	SZR 12	0,00	0,33
		SZR 16	0,04	0,26
	Argon 0,1	SZR 12	0,00	0,33
		SZR 16	0,03	0,25
	Krypton 0,04	SZR 12	0,00	0,29
		SZR 16	0,03	0,23

Sprosse			MIG	
Тур	Isolierglas		min	max
w3/s3	Luft 0,9	SZR 12	0,00	0,44
		SZR 16	0,07	0,38
	Luft 0,1	SZR 12	0,00	0,49
		SZR 16	0,06	0,38
	Argon 0,1	SZR 12	0,00	0,48
		SZR 16	0,05	0,36
	Krypton 0,04	SZR 12	0,00	0,43
		SZR 16	0,05	0,34

Tabelle 4 Änderung des U-Wertes (in W/m²K) von Mehrscheiben-Isolierglas durch eine aufgeklebte Sprosse ohne Dichtband (Typ 1)

Sprosse			Alu-We	ichholz	Δlu-H:	artholz	Weic	hholz	Hart	holz	D	VC	N/I o	etall
Тур	Isolierglas		min		-m				1					
w1/s0	Luft 0,9	SZR 12	<u> </u>	Max	min	max	min	max	min	max	min	max	min	max
W 1/30	Luit 0,9		-0,03	-0,01	-0,02	0,00	-0,04	-0,02	-0,03	-0,01	-0,08	-0,01	0,01	0,01
	1	SZR 16	-0,03	-0,01	-0,02	0,00	-0,04	-0,02	-0,03	-0,01	-0,07	-0,01	0,01	0,01
	Luft 0,1	SZR 12	-0,01	0,00	-0,01	0,00	-0,02	-0,01	-0,01	0,00	-0,04	0,00	0,00	0,00
		SZR 16	-0,01	0,00	-0,01	0,00	-0,01	-0,01	-0,01	0,00	-0,03	0,00	0,00	0,00
	Argon 0,1	SZR 12	-0,01	0,00	-0,01	0,00	-0,01	0,00	-0,01	0,00	-0,03	0,00	0,00	0,00
		SZR 16	-0,01	0,00	0,00	0,00	-0,01	0,00	-0,01	0,00	-0,02	0,00	0,00	0,00
	Krypton 0,04	SZR 12	0,00	0,00	0,00	0,00	-0,01	0,00	0,00	0,00	-0,01	0,00	0,00	0,00
		SZR 16	0,00	0,00	0,00	0,00	-0,01	0,00	0,00	0,00	-0,02	0,00	0,00	0,00
w0/s1	Luft 0,9	SZR 12	-0,04	-0,01	-0,02	-0,01	-0,05	-0,02	-0,03	-0,01	-0,10	-0,01	0,01	0,01
		SZR 16	-0,03	-0,01	-0,02	-0,01	-0,04	-0,02	-0,03	-0,01	-0,09	-0,01	0,01	0,01
	Luft 0,1	SZR 12	-0,02	-0,01	-0,01	0,00	-0,02	-0,01	-0,01	-0,01	-0,04	-0,01	0,00	0,00
		SZR 16	-0,01	0,00	-0,01	0,00	-0,02	-0,01	-0,01	0,00	-0,04	0,00	0,00	0,00
	Argon 0,1	SZR 12	-0,01	0,00	-0,01	0,00	-0,01	-0,01	-0,01	0,00	-0,03	0,00	0,00	0,00
		SZR 16	-0,01	0,00	-0,01	0,00	-0,01	-0,01	-0,01	0,00	-0,03	0,00	0,00	0,00
	Krypton 0,04	SZR 12	-0,01	0,00	0,00	0,00	-0,01	0,00	-0,01	0,00	-0,02	0,00	0,00	0,00
		SZR 16	-0,01	0,00	0,00	0,00	-0,01	0,00	-0,01	0,00	-0,02	0,00	0,00	0,00
w1/s1	Luft 0,9	SZR 12	-0,06	-0,02	-0,04	-0,01	-0,09	-0,04	-0,06	-0,02	-0,17	-0,03	0,01	0,02
		SZR 16	-0,06	-0,02	-0,04	-0,01	-0,08	-0,04	-0,06	-0,02	-0,16	-0,02	0,01	0,02
	Luft 0,1	SZR 12	-0,03	-0,01	-0,02	0,00	-0,04	-0,02	-0,03	-0,01	-0,08	-0,01	0,01	0,01
		SZR 16	-0,02	-0,01	-0,01	0,00	-0,03	-0,01	-0,02	-0,01	-0,06	-0,01	0,00	0,01
	Argon 0,1	SZR 12	-0,02	-0,01	-0,01	0,00	-0,03	-0,01	-0,02	-0,01	-0,06	-0,01	0,00	0,01
		SZR 16	-0,02	0,00	-0,01	0,00	-0,02	-0,01	-0,02	-0,01	-0,05	-0,01	0,00	0,00
	Krypton 0,04	SZR 12	-0,01	0,00	-0,01	0,00	-0,01	-0,01	-0,01	0,00	-0,03	0,00	0,00	0,00
		SZR 16	-0,01	0,00	-0,01	0,00	-0,02	-0,01	-0,01	0,00	-0,03	0,00	0,00	0,00

Sprosse	prosse			ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P\	/C	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w3/s3	Luft 0,9	SZR 12	-0,18	-0,06	-0,12	-0,03	-0,24	-0,11	-0,17	-0,07	-0,48	-0,08	0,04	0,06
		SZR 16	-0,17	-0,05	-0,11	-0,03	-0,22	-0,10	-0,16	-0,07	-0,45	-0,07	0,04	0,05
	Luft 0,1	SZR 12	-0,07	-0,03	-0,05	-0,01	-0,10	-0,04	-0,07	-0,03	-0,22	-0,03	0,02	0,02
		SZR 16	-0,07	-0,02	-0,04	-0,01	-0,08	-0,03	-0,06	-0,02	-0,17	-0,02	0,01 .	0,02
	Argon 0,1	SZR 12	-0,05	-0,02	-0,03	-0,01	-0,07	-0,03	-0,05	-0,02	-0,16	-0,02	0,01	0,02
		SZR 16	-0,04	-0,01	-0,03	-0,01	-0,06	-0,03	-0,04	-0,02	-0,13	-0,02	0,01	0,01
	Krypton 0,04	SZR 12	-0,03	-0,01	-0,02	0,00	-0,04	-0,02	-0,03	-0,01	-0,09	-0,01	0,01	0,01
		SZR 16	-0,03	-0,01	-0,02	0,00	-0,04	-0,02	-0,03	-0,01	-0,09	-0,01	0,01	0,01

ROSENHEIM

Tabelle 5 Änderung des U-Wertes (in W/m²K) von Mehrscheiben-Isolierglas durch eine aufgeklebte Sprosse mit Dichtband (Typ 1)

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P\	/C	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w1/s0	Luft 0,9	SZR 12	-0,05	-0,02	-0,04	-0,01	-0,05	-0,02	-0,04	-0,02	-0,09	-0,01	-0,02	0,00
	•	SZR 16	-0,05	-0,02	-0,04	-0,01	-0,04	-0,02	-0,04	-0,01	-0,08	-0,01	-0,02	0,00
	Luft 0,1	SZR 12	-0,02	-0,01	-0,02	-0,01	-0,02	-0,01	-0,02	-0,01	-0,04	0,00	-0,01	0,00
		SZR 16	-0,02	-0,01	-0,01	0,00	-0,02	-0,01	-0,01	0,00	-0,03	0,00	-0,01	0,00
	Argon 0,1	SZR 12	-0,02	0,00	-0,02	0,00	-0,01	-0,01	-0,01	0,00	-0,03	0,00	-0,01	0,00
		SZR 16	-0,01	0,00	-0,01	0,00	-0,01	0,00	-0,01	0,00	-0,03	0,00	0,00	0,00
	Krypton 0,04	SZR 12	-0,01	0,00	-0,01	0,00	-0,01	0,00	-0,01	0,00	-0,02	0,00	0,00	0,00
		SZR 16	-0,01	0,00	-0,01	0,00	-0,01	0,00	-0,01	0,00	-0,02	0,00	0,00	0,00
w0/s1	Luft 0,9	SZR 12	-0,06	-0,02	-0,05	-0,02	-0,06	-0,02	-0,05	-0,02	-0,11	-0,01	-0,02	0,00
		SZR 16	-0,06	-0,02	-0,05	-0,02	-0,05	-0,02	-0,05	-0,02	-0,11	-0,02	-0,02	0,00
	Luft 0,1	SZR 12	-0,03	-0,01	-0,02	-0,01	-0,03	-0,01	-0,02	-0,01	-0,05	-0,01	-0,01	0,00
		SZR 16	-0,02	-0,01	-0,02	-0,01	-0,02	-0,01	-0,02	-0,01	-0,04	-0,01	-0,01	0,00
	Argon 0,1	SZR 12	-0,02	-0,01	-0,02	-0,01	-0,02	-0,01	-0,02	-0,01	-0,04	0,00	-0,01	0,00
		SZR 16	-0,02	-0,01	-0,01	0,00	-0,02	-0,01	-0,01	0,00	-0,03	0,00	-0,01	0,00
	Krypton 0,04	SZR 12	-0,01	0,00	-0,01	0,00	-0,01	0,00	-0,01	0,00	-0,02	0,00	0,00	0,00
····		SZR 16	-0,01	0,00	-0,01	0,00	-0,01	0,00	-0,01	0,00	-0,02	0,00	0,00	0,00
w1/s1	Luft 0,9	SZR 12	-0,11	-0,04	-0,09	-0,03	-0,10	-0,04	-0,09	-0,03	-0,20	-0,03	-0,04	-0,01
		SZR 16	-0,10	-0,03	-0,09	-0,03	-0,09	-0,04	-0,08	-0,03	-0,18	-0,03	-0,04	0,00
	Luft 0,1	SZR 12	-0,05	-0,02	-0,04	-0,02	-0,04	-0,02	-0,04	-0,01	-0,09	-0,01	-0,02	0,00
		SZR 16	-0,04	-0,01	-0,03	-0,01	-0,03	-0,01	-0,03	-0,01	-0,07	-0,01	-0,01	0,00
	Argon 0,1	SZR 12	-0,03	-0,01	-0,04	-0,01	-0,03	-0,01	-0,03	-0,01	-0,07	-0,01	-0,01	0,00
		SZR 16	-0,03	-0,01	-0,02	-0,01	-0,03	-0,01	-0,02	-0,01	-0,06	-0,01	-0,01	0,00
	Krypton 0,04	SZR 12	-0,02	-0,01	-0,02	0,00	-0,02	-0,01	-0,01	0,00	-0,04	0,00	-0,01	0,00
		SZR 16	-0,02	-0,01	-0,02	0,00	-0,02	-0,01	-0,02	-0,01	-0,04	-0,01	-0,01	0,00

Sprosse			Alu-We	ichholz	Alu-H	artholz	Weic	hholz	Hart	tholz	P	√C	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w2/s1	Luft 0,9	SZR 12	-0,15	-0,05	-0,13	-0,04	-0,14	-0,06	-0,12	-0,05	-0,28	-0,04	-0,06	-0,01
		SZR 16	-0,14	-0,05	-0,12	-0,04	-0,13	-0,06	-0,11	-0,05	-0,26	-0,04	-0,06	0,00
	Luft 0,1	SZR 12	-0,07	-0,02	-0,06	-0,02	-0,06	-0,02	-0,05	-0,02	-0,13	-0,01	-0,03	0,00
		SZR 16	-0,05	-0,02	-0,04	-0,01	-0,05	-0,02	-0,04	-0,02	-0,10	-0,01	-0,02	0,00
	Argon 0,1	SZR 12	-0,05	-0,02	-0,06	-0,01	-0,05	-0,02	-0,04	-0,01	-0,09	-0,01	-0,02	0,00
		SZR 16	-0,04	-0,01	-0,03	-0,01	-0,04	-0,01	-0,03	-0,01	-0,08	-0,01	-0,01	0,00
	Krypton 0,04	SZR 12	-0,03	-0,01	-0,02	-0,01	-0,02	-0,01	-0,02	-0,01	-0,05	0,00	-0,01	0,00
		SZR 16	-0,03	-0,01	-0,02	-0,01	-0,03	-0,01	-0,02	-0,01	-0,06	-0,01	-0,01	0,00
w1/s2	Luft 0,9	SZR 12	-0,16	-0,06	-0,14	-0,05	-0,16	-0,07	-0,13	-0,05	-0,30	-0,04	-0,07	-0,01
		SZR 16	-0,15	-0,05	-0,13	-0,04	-0,14	-0,06	-0,12	-0,05	-0,28	-0,05	-0,06	0,00
	Luft 0,1	SZR 12	-0,07	-0,02	-0,06	-0,03	-0,07	-0,03	-0,06	-0,02	-0,14	-0,02	-0,03	0,00
		SZR 16	-0,05	-0,02	-0,05	-0,01	-0,05	-0,02	-0,04	-0,02	-0,11	-0,02	-0,02	0,00
	Argon 0,1	SZR 12	-0,05	-0,02	-0,06	-0,01	-0,05	-0,02	-0,04	-0,02	-0,10	-0,01	-0,02	0,00
		SZR 16	-0,04	-0,01	-0,04	-0,01	-0,04	-0,02	-0,03	-0,01	-0,09	-0,01	-0,02	0,00
	Krypton 0,04	SZR 12	-0,03	-0,01	-0,02	-0,01	-0,03	-0,01	-0,02	-0,01	-0,06	-0,01	-0,01	0,00
		SZR 16	-0,03	-0,01	-0,03	-0,01	-0,03	-0,01	-0,02	-0,01	-0,06	-0,01	-0,01	0,00
w2/s2	Luft 0,9	SZR 12	-0,21	-0,07	-0,18	-0,06	-0,20	-0,08	-0,17	-0,07	-0,38	-0,05	-0,08	-0,01
		SZR 16	-0,19	-0,07	-0,17	-0,06	-0,18	-0,08	-0,16	-0,06	-0,35	-0,06	-0,08	0,00
Ì	Luft 0,1	SZR 12	-0,09	-0,03	-0,08	-0,03	-0,09	-0,03	-0,07	-0,03	-0,17	-0,02	-0,03	0,00
		SZR 16	-0,07	-0,02	-0,06	-0,02	-0,07	-0,03	-0,06	-0,02	-0,14	-0,02	-0,03	0,00
	Argon 0,1	SZR 12	-0,06	-0,02	-0,08	-0,02	-0,06	-0,02	-0,05	-0,02	-0,13	-0,01	-0,02	0,00
		SZR 16	-0,05	-0,02	-0,05	-0,01	-0,05	-0,02	-0,04	-0,02	-0,11	-0,02	-0,02	0,00
}	Krypton 0,04	SZR 12	-0,03	-0,01	-0,03	-0,01	-0,03	-0,01	-0,03	-0,01	-0,07	-0,01	-0,01	0,00
		SZR 16	-0,04	-0,01	-0,03	-0,01	-0,04	-0,01	-0,03	-0,01	-0,08	-0,01	-0,01	0,00

Sprosse	prosse		Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P۱	/C	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w3/s3	Luft 0,9	SZR 12	-0,30	-0,11	-0,26	-0,09	-0,29	-0,12	-0,24	-0,10	-0,54	-0,08	-0,12	-0,02
		SZR 16	-0,28	-0,10	-0,24	-0,08	-0,27	-0,12	-0,23	-0,09	-0,51	-0,09	-0,12	-0,01
	Luft 0,1	SZR 12	-0,13	-0,04	-0,11	-0,05	-0,13	-0,05	-0,11	-0,04	-0,25	-0,03	-0,05	-0,01
		SZR 16	-0,10	-0,03	-0,09	-0,03	-0,10	-0,04	-0,08	-0,03	-0,20	-0,03	-0,04	0,00
	Argon 0,1	SZR 12	-0,09	-0,03	-0,11	-0,03	-0,09	-0,04	-0,08	-0,03	-0,18	-0,02	-0,04	0,00
		SZR 16	-0,08	-0,03	-0,07	-0,02	-0,08	-0,03	-0,06	-0,02	-0,15	-0,02	-0,03	0,00
	Krypton 0,04	SZR 12	-0,05	-0,02	-0,04	-0,01	-0,05	-0,02	-0,04	-0,01	-0,10	-0,01	-0,02	0,00
		SZR 16	-0,05	-0,02	-0,05	-0,01	-0,05	-0,02	-0,04	-0,02	-0,11	-0,01	-0,02	0,00

Abschlußbericht

Tabelle 6 Änderung des U-Wertes (in W/m²K) von Mehrscheiben-Isolierglas durch eine aufgeklebte Sprosse ohne Dichtband und Sprosse im Scheibenzwischenraum (Typ 2)

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Har	tholz	P\	/C	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w1/s0	Luft 0,9	SZR 12	0,04	0,06	0,06	0,07	0,01	0,03	0,03	0,04	-0,04	0,03	0,09	0,11
		SZR 16	0,02	0,03	0,03	0,04	0,00	0,01	0,01	0,02	-0,05	0,01	0,06	0,07
	Luft 0,1	SZR 12	0,06	0,07	0,08	0,09	0,05	0,05	0,06	0,06	0,02	0,04	0,08	0,10
		SZR 16	0,03	0,04	0,04	0,05	0,02	0,03	0,03	0,03	0,00	0,02	0,04	0,05
	Argon 0,1	SZR 12	0,07	0,08	0,08	0,08	0,05	0,06	0,06	0,07	0,03	0,05	0,08	0,10
		SZR 16	0,04	0,05	0,04	0,05	0,03	0,03	0,03	0,03	0,01	0,02	0,04	0,05
	Krypton 0,04	SZR 12	0,06	0,08	0,06	0,07	0,05	0,06	0,05	0,06	0,04	0,05	0,07	0,08
		SZR 16	0,04	0,05	0,04	0,05	0,02	0,03	0,03	0,03	0,01	0,02	0,03	0,04
w0/s1	Luft 0,9	SZR 12	0,05	0,07	0,07	0,08	0,02	0,04	0,04	0,05	-0,05	0,03	0,11	0,13
1		SZR 16	0,02	0,04	0,04	0,05	0,00	0,02	0,02	0,03	-0,06	0,02	0,07	0,08
	Luft 0,1	SZR 12	0,08	0,09	0,10	0,11	0,06	0,07	0,07	0,08	0,02	0,05	0,11	0,13
		SZR 16	0,04	0,05	0,05	0,06	0,03	0,04	0,04	0,04	0,00	0,03	0,05	0,06
	Argon 0,1	SZR 12	0,08	0,10	0,10	0,10	0,06	0,07	0,07	0,08	0,04	0,06	0,10	0,12
		SZR 16	0,05	0,06	0,05	0,06	0,03	0,04	0,04	0,04	0,01	0,03	0,05	0,06
	Krypton 0,04	SZR 12	0,08	0,09	0,08	0,09	0,06	0,07	0,07	0,08	0,05	0,06	0,08	0,11
		SZR 16	0,05	0,06	0,05	0,06	0,03	0,03	0,03	0,04	0,02	0,03	0,04	0,05
w1/s1	Luft 0,9	SZR 12	0,09	0,12	0,13	0,15	0,03	0,06	0,07	0,10	-0,08	0,06	0,20	0,23
		SZR 16	0,04	0,07	0,07	0,09	0,00	0,03	0,03	0,05	-0,10	0,03	0,13	0,15
	Luft 0,1	SZR 12	0,14	0,16	0,17	0,20	0,11	0,12	0,13	0,14	0,04	0,10	0,19	0,23
		SZR 16	0,07	80,0	0,09	0,11	0,05	0,06	0,06	0,07	0,01	0,05	0,09	0,11
	Argon 0,1	SZR 12	0,15	0,17	0,17	0,18	0,11	0,13	0,13	0,15	0,07	0,10	0,18	0,21
		SZR 16	0,09	0,10	0,09	0,11	0,06	0,06	0,07	0,07	0,02	0,05	0,09	0,11
	Krypton 0,04	SZR 12	0,14	0,17	0,13	0,16	0,11	0,13	0,12	0,14	0,09	0,10	0,15	0,18
		SZR 16	0,08	0,10	0,09	0,10	0,05	0,06	0,06	0,07	0,03	0,05	0,07	0,09

*	
Abschlußbericht	
Anlage 3 Blatt 12	

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P۱	/C	Me	etall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w2/s1	Luft 0,9	SZR 12	0,13	0,18	0,19	0,21	0,04	0,09	0,11	0,14	-0,12	0,09	0,28	0,33
		SZR 16	0,05	0,10	0,10	0,13	-0,01	0,04	0,04	0,08	-0,14	0,04	0,18	0,21
	Luft 0,1	SZR 12	0,20	0,23	0,25	0,28	0,15	0,17	0,18	0,20	0,06	0,14	0,27	0,33
		SZR 16	0,10	0,12	0,13	0,16	0,07	0,09	0,09	0,11	0,01	0,07	0,13	0,16
	Argon 0,1	SZR 12	0,21	0,24	0,24	0,25	0,16	0,18	0,18	0,21	0,09	0,15	0,25	0,31
		SZR 16	0,12	0,15	0,13	0,16	0,08	0,09	0,09	0,10	0,03	0,07	0,12	0,15
	Krypton 0,04	SZR 12	0,20	0,24	0,19	0,23	0,16	0,18	0,17	0,20	0,13	0,15	0,22	0,26
		SZR 16	0,12	0,14	0,12	0,15	0,08	0,09	0,08	0,10	0,04	0,07	0,11	0,13
w1/s2	Luft 0,9	SZR 12	0,14	0,19	0,20	0,23	0,05	0,10	0,11	0,15	-0,13	0,09	0,31	0,36
		SZR 16	0,06	0,11	0,10	0,14	-0,01	0,05	0,04	0,08	-0,15	0,04	0,19	0,23
	Luft 0,1	SZR 12	0,21	0,24	0,26	0,30	0,17	0,19	0,19	0,22	0,06	0,15	0,29	0,35
		SZR 16	0,11	0,13	0,14	0,17	0,08	0,10	0,10	0,11	0,01	0,08	0,14	0,18
Ì	Argon 0,1	SZR 12	0,22	0,26	0,26	0,27	0,18	0,20	0,20	0,22	0,10	0,16	0,27	0,33
		SZR 16	0,13	0,16	0,14	0,17	0,08	0,10	0,10	0,11	0,03	0,08	0,13	0,16
	Krypton 0,04	SZR 12	0,22	0,26	0,21	0,25	0,17	0,19	0,18	0,22	0,14	0,16	0,23	0,28
		SZR 16	0,13	0,15	0,13	0,16	0,08	0,10	0,09	0,11	0,05	0,08	0,12	0,14
w2/s2	Luft 0,9	SZR 12	0,18	0,24	0,25	0,29	0,06	0,13	0,14	0,19	-0,16	0,12	0,39	0,45
		SZR 16	0,07	0,14	0,13	0,17	-0,01	0,06	0,06	0,10	-0,19	0,06	0,25	0,29
	Luft 0,1	SZR 12	0,27	0,31	0,34	0,38	0,21	0,24	0,25	0,28	0,08	0,19	0,37	0,44
		SZR 16	0,14	0,16	0,18	0,22	0,10	0,12	0,13	0,14	0,01	0,10	0,18	0,22
	Argon 0,1	SZR 12	0,29	0,33	0,33	0,34	0,22	0,25	0,25	0,28	0,13	0,21	0,35	0,42
		SZR 16	0,17	0,20	0,18	0,21	0,11	0,12	0,13	0,14	0,04	0,10	0,17	0,21
	Krypton 0,04	SZR 12	0,28	0,33	0,26	0,31	0,22	0,25	0,23	0,27	0,17	0,20	0,30	0,36
		SZR 16	0,16	0,20	0,17	0,20	0,10	0,12	0,11	0,13	0,06	0,10	0,15	0,18

Sprosse	Sprosse		Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P۱	/C	Ме	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w3/s3	Luft 0,9	SZR 12	0,26	0,36	0,37	0,43	0,09	0,18	0,21	0,28	-0,23	0,18	0,58	0,66
		SZR 16	0,11	0,20	0,19	0,26	-0,01	0,09	0,08	0,15	-0,28	0,08	0,37	0,42
	Luft 0,1	SZR 12	0,40	0,46	0,50	0,55	0,30	0,35	0,37	0,41	0,12	0,28	0,55	0,65
		SZR 16	0,20	0,24	0,27	0,32	0,14	0,18	0,19	0,21	0,02	0,14	0,27	0,33
	Argon 0,1	SZR 12	0,42	0,48	0,49	0,50	0,33	0,37	0,37	0,42	0,19	0,30	0,52	0,61
		SZR 16	0,25	0,30	0,26	0,31	0,16	0,18	0,19	0,21	0,05	0,15	0,25	0,30
	Krypton 0,04	SZR 12	0,41	0,48	0,39	0,46	0,32	0,36	0,35	0,40	0,25	0,30	0,44	0,52
		SZR 16	0,24	0,29	0,25	0,30	0,15	0,18	0,17	0,20	0,08	0,14	0,22	0,27

Tabelle 7 Änderung des U-Wertes (in W/m²K) von Mehrscheiben-Isolierglas durch eine aufgeklebte Sprosse mit Dichtband und Sprosse im Scheibenzwischenraum (Typ 2)

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P\	/C	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w1/s0	Luft 0,9	SZR 12	0,01	0,03	0,02	0,04	0,00	0,02	0,01	0,03	-0,05	0,03	0,05	0,06
		SZR 16	-0,01	0,02	0,00	0,02	-0,01	0,01	0,00	0,02	-0,06	0,01	0,03	0,04
	Luft 0,1	SZR 12	0,05	0,06	0,06	0,07	0,04	0,05	0,05	0,05	0,01	0,04	0,07	0,07
		SZR 16	0,03	0,04	0,03	0,04	0,02	0,03	0,02	0,03	0,00	0,02	0,03	0,04
	Argon 0,1	SZR 12	0,06	0,07	0,06	0,07	0,05	0,05	0,05	0,06	0,02	0,04	0,06	0,07
		SZR 16	0,03	0,04	0,02	0,04	0,02	0,03	0,02	0,03	0,00	0,02	0,03	0,04
	Krypton 0,04	SZR 12	0,06	0,07	0,06	0,07	0,05	0,05	0,05	0,06	0,03	0,04	0,06	0,07
		SZR 16	0,03	0,04	0,03	0,04	0,02	0,03	0,02	0,03	0,01	0,02	0,03	0,03
w0/s1	Luft 0,9	SZR 12	0,01	0,04	0,02	0,05	0,00	0,03	0,02	0,04	-0,07	0,03	0,06	0,07
		SZR 16	-0,01	0,03	0,00	0,03	-0,02	0,01	0,00	0,02	-0,07	0,01	0,03	0,04
	Luft 0,1	SZR 12	0,06	0,08	0,07	0,08	0,05	0,06	0,06	0,07	0,01	0,05	0,08	0,09
		SZR 16	0,04	0,05	0,04	0,05	0,02	0,03	0,03	0,04	-0,01	0,02	0,04	0,05
	Argon 0,1	SZR 12	0,08	0,09	80,0	0,09	0,06	0,07	0,06	0,07	0,03	0,05	0,08	0,09
		SZR 16	0,04	0,05	0,03	0,05	0,03	0,03	0,03	0,04	0,00	0,02	0,04	0,04
	Krypton 0,04	SZR 12	0,08	0,09	80,0	0,09	0,06	0,07	0,06	0,07	0,04	0,05	0,07	0,08
		SZR 16	0,04	0,05	0,04	0,05	0,03	0,03	0,03	0,04	0,01	0,02	0,04	0,04
w1/s1	Luft 0,9	SZR 12	0,01	0,07	0,03	0,08	0,00	0,05	0,03	0,07	-0,12	0,06	0,11	0,13
		SZR 16	-0,02	0,05	0,00	0,05	-0,03	0,02	-0,01	0,03	-0,13	0,02	0,06	0,08
	Luft 0,1	SZR 12	0,11	0,14	0,13	0,15	0,09	0,11	0,11	0,12	0,02	0,09	0,15	0,16
		SZR 16	0,06	0,09	0,07	0,09	0,04	0,06	0,05	0,06	-0,01	0,04	0,07	0,08
	Argon 0,1	SZR 12	0,14	0,15	0,14	0,16	0,10	0,12	0,11	0,13	0,05	0,10	0,14	0,16
		SZR 16	0,07	0,09	0,05	0,09	0,05	0,06	0,05	0,06	0,01	0,04	0,07	0,08
	Krypton 0,04	SZR 12	0,13	0,15	0,14	0,16	0,11	0,12	0,11	0,13	0,07	0,09	0,13	0,15
		SZR 16	0,07	0,09	0,07	0,09	0,05	0,06	0,05	0,06	0,02	0,04	0,06	0,07

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P۱	/C	Ме	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w2/s1	Luft 0,9	SZR 12	0,02	0,10	0,05	0,12	0,00	0,07	0,04	0,10	-0,17	0,08	0,15	0,18
		SZR 16	-0,03	0,07	-0,01	0,07	-0,04	0,03	-0,01	0,05	-0,18	0,03	0,08	0,11
	Luft 0,1	SZR 12	0,16	0,20	0,19	0,21	0,13	0,16	0,15	0,17	0,02	0,13	0,21	0,22
		SZR 16	0,09	0,12	0,10	0,13	0,06	0,08	0,07	0,09	-0,01	0,06	0,11	0,12
	Argon 0,1	SZR 12	0,20	0,22	0,20	0,23	0,15	0,17	0,16	0,18	0,07	0,14	0,21	0,22
		SZR 16	0,10	0,12	0,08	0,13	0,07	0,08	0,08	0,09	0,01	0,06	0,10	0,11
	Krypton 0,04	SZR 12	0,19	0,22	0,20	0,23	0,15	0,17	0,16	0,18	0,11	0,13	0,19	0,21
		SZR 16	0,10	0,12	0,10	0,13	0,07	0,08	0,08	0,09	0,03	0,06	0,09	0,11
w1/s2	Luft 0,9	SZR 12	0,02	0,11	0,05	0,13	0,00	0,08	0,04	0,10	-0,18	0,09	0,16	0,20
		SZR 16	-0,03	0,07	-0,01	0,07	-0,04	0,03	-0,01	0,05	-0,20	0,03	0,09	0,12
	Luft 0,1	SZR 12	0,17	0,22	0,20	0,23	0,14	0,17	0,16	0,19	0,03	0,14	0,22	0,24
		SZR 16	0,10	0,13	0,11	0,14	0,06	0,09	0,08	0,10	-0,01	0,07	0,12	0,13
	Argon 0,1	SZR 12	0,21	0,24	0,22	0,25	0,16	0,18	0,18	0,20	0,07	0,15	0,22	0,24
		SZR 16	0,11	0,13	0,08	0,14	0,07	0,09	0,08	0,10	0,01	0,07	0,11	0,12
	Krypton 0,04	SZR 12	0,21	0,24	0,21	0,25	0,16	0,18	0,17	0,19	0,11	0,14	0,20	0,23
		SZR 16	0,11	0,13	0,11	0,14	0,08	0,09	0,08	0,10	0,03	0,06	0,10	0,11
w2/s2	Luft 0,9	SZR 12	0,02	0,14	0,07	0,16	0,00	0,10	0,06	0,13	-0,23	0,12	0,21	0,25
		SZR 16	-0,04	0,09	-0,01	0,09	-0,05	0,04	-0,01	0,07	-0,25	0,04	0,11	0,16
	Luft 0,1	SZR 12	0,22	0,27	0,26	0,29	0,17	0,21	0,20	0,24	0,03	0,18	0,29	0,31
		SZR 16	0,12	0,17	0,13	0,18	0,08	0,11	0,10	0,12	-0,02	0,08	0,15	0,16
	Argon 0,1	SZR 12	0,27	0,30	0,28	0,32	0,20	0,23	0,23	0,25	0,09	0,19	0,28	0,31
		SZR 16	0,13	0,17	0,10	0,18	0,09	0,11	0,11	0,13	0,01	0,08	0,14	0,15
	Krypton 0,04	SZR 12	0,26	0,30	0,27	0,31	0,21	0,23	0,22	0,25	0,14	0,18	0,25	0,29
		SZR 16	0,14	0,17	0,14	0,17	0,10	0,11	0,11	0,12	0,04	0,08	0,13	0,14

Abschlußbericht
Anlage 3 Blatt 16

ROSENHEIM

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P۱	/C	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w3/s3	Luft 0,9	SZR 12	0,03	0,20	0,09	0,24	0,01	0,15	0,08	0,19	-0,33	0,17	0,30	0,37
		SZR 16	-0,06	0,14	-0,01	0,14	-0,08	0,06	-0,02	0,10	-0,36	0,06	0,16	0,23
	Luft 0,1	SZR 12	0,32	0,40	0,38	0,43	0,25	0,31	0,30	0,35	0,05	0,27	0,42	0,45
		SZR 16	0,17	0,25	0,19	0,26	0,11	0,16	0,14	0,18	-0,03	0,12	0,22	0,24
	Argon 0,1	SZR 12	0,39	0,45	0,41	0,47	0,29	0,34	0,33	0,37	0,13	0,28	0,42	0,45
		SZR 16	0,19	0,25	0,15	0,26	0,13	0,17	0,15	0,18	0,02	0,13	0,21	0,23
	Krypton 0,04	SZR 12	0,39	0,45	0,40	0,46	0,31	0,34	0,32	0,36	0,21	0,26	0,38	0,42
		SZR 16	0,20	0,25	0,21	0,25	0,14	0,17	0,16	0,18	0,05	0,12	0,19	0,21

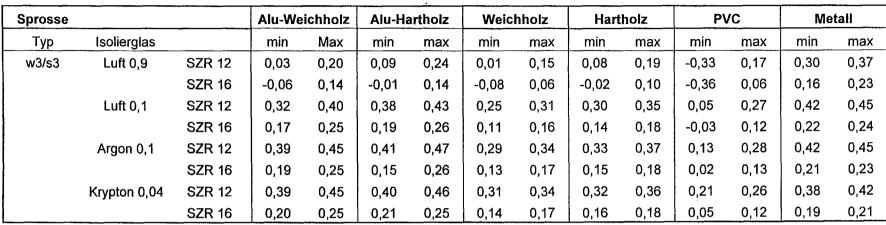


Tabelle 8 Änderung des U-Wertes (in W/m²K) von Mehrscheiben-Isolierglas durch eine aufgeklebte Sprosse ohne Dichtband und metallisch blanker Sprosse im Scheibenzwischenraum (Typ 2)

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P\	/C	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w1/s0	Luft 0,9	SZR 12	0,04	0,05	0,06	0,06	0,01	0,03	0,03	0,04	-0,04	0,03	0,09	0,10
		SZR 16	0,02	0,05	0,03	0,03	0,00	0,01	0,01	0,02	-0,05	0,01	0,05	0,06
	Luft 0,1	SZR 12	0,06	0,07	0,06	0,08	0,05	0,05	0,06	0,06	0,02	0,04	0,08	0,10
		SZR 16	0,02	0,03	0,03	0,04	0,02	0,02	0,03	0,03	0,00	0,02	0,04	0,05
	Argon 0,1	SZR 12	0,06	0,07	0,06	0,08	0,05	0,05	0,06	0,06	0,03	0,04	0,08	0,09
		SZR 16	0,03	0,03	0,03	0,03	0,02	0,03	0,03	0,03	0,01	0,02	0,04	0,04
	Krypton 0,04	SZR 12	0,06	0,07	0,06	0,07	0,05	0,06	0,05	0,06	0,04	0,04	0,07	0,08
		SZR 16	0,03	0,03	0,03	0,04	0,02	0,03	0,03	0,03	0,01	0,02	0,03	0,04
w0/s1	Luft 0,9	SZR 12	0,05	0,06	0,07	0,07	0,02	0,04	0,04	0,05	-0,05	0,03	0,11	0,13
		SZR 16	0,02	0,06	0,04	0,04	0,00	0,02	0,02	0,03	-0,06	0,02	0,07	0,08
	Luft 0,1	SZR 12	0,08	0,08	0,08	0,10	0,06	0,06	0,07	0,08	0,02	0,05	0,10	0,13
		SZR 16	0,03	0,04	0,04	0,05	0,03	0,03	0,04	0,04	0,00	0,03	0,05	0,06
	Argon 0,1	SZR 12	0,08	0,09	0,08	0,10	0,06	0,07	0,07	0,08	0,04	0,05	0,10	0,12
		SZR 16	0,04	0,04	0,04	0,04	0,03	0,03	0,04	0,04	0,01	0,03	0,05	0,06
	Krypton 0,04	SZR 12	0,07	0,09	0,08	0,09	0,06	0,07	0,07	0,08	0,05	0,05	0,08	0,10
		SZR 16	0,04	0,04	0,04	0,05	0,03	0,03	0,03	0,04	0,02	0,02	0,04	0,05
w1/s1	Luft 0,9	SZR 12	0,09	0,11	0,13	0,13	0,03	0,06	0,07	0,09	-0,08	0,06	0,19	0,23
		SZR 16	0,03	0,11	0,06	0,08	-0,01	0,03	0,03	0,05	-0,10	0,03	0,12	0,14
	Luft 0,1	SZR 12	0,14	0,15	0,14	0,17	0,11	0,11	0,13	0,14	0,04	0,09	0,18	0,22
		SZR 16	0,04	0,07	0,07	0,08	0,05	0,05	0,06	0,07	0,01	0,05	0,09	0,11
	Argon 0,1	SZR 12	0,14	0,15	0,14	0,17	0,11	0,12	0,13	0,14	0,07	0,10	0,17	0,21
		SZR 16	0,06	0,07	0,07	0,08	0,05	0,06	0,06	0,07	0,02	0,05	0,08	0,10
	Krypton 0,04	SZR 12	0,13	0,15	0,14	0,16	0,11	0,12	0,12	0,14	0,09	0,09	0,15	0,18
		SZR 16	0,06	0,07	0,07	0,08	0,05	0,06	0,06	0,07	0,03	0,04	0,07	0,09

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P۱	/C	Ме	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w2/s1	Luft 0,9	SZR 12	0,13	0,16	0,18	0,19	0,04	0,09	0,10	0,13	-0,12	0,09	0,28	0,32
		SZR 16	0,05	0,16	0,09	0,11	-0,01	0,04	0,04	0,07	-0,14	0,04	0,17	0,20
	Luft 0,1	SZR 12	0,20	0,21	0,20	0,24	0,15	0,15	0,18	0,19	0,06	0,13	0,26	0,32
		SZR 16	0,06	0,10	0,11	0,11	0,07	0,08	0,09	0,10	0,01	0,07	0,13	0,16
	Argon 0,1	SZR 12	0,20	0,22	0,20	0,24	0,16	0,17	0,18	0,20	0,09	0,14	0,25	0,30
		SZR 16	0,09	0,10	0,10	0,11	0,08	80,0	0,09	0,10	0,03	0,07	0,12	0,14
	Krypton 0,04	SZR 12	0,19	0,22	0,20	0,23	0,16	0,18	0,17	0,20	0,13	0,14	0,22	0,26
		SZR 16	0,09	0,10	0,10	0,11	0,08	0,08	0,08	0,09	0,04	0,06	0,11	0,13
w1/s2	Luft 0,9	SZR 12	0,14	0,17	0,20	0,20	0,05	0,10	0,11	0,14	-0,12	0,09	0,30	0,35
		SZR 16	0,05	0,17	0,10	0,12	-0,01	0,05	0,04	0,08	-0,16	0,05	0,18	0,21
	Luft 0,1	SZR 12	0,21	0,23	0,21	0,26	0,17	0,17	0,19	0,21	0,06	0,14	0,29	0,34
		SZR 16	0,07	0,10	0,11	0,12	0,08	0,08	0,10	0,10	0,01	0,07	0,14	0,17
	Argon 0,1	SZR 12	0,21	0,23	0,21	0,26	0,18	0,18	0,20	0,22	0,10	0,15	0,27	0,32
		SZR 16	0,10	0,10	0,11	0,12	0,08	0,09	0,10	0,10	0,03	0,07	0,12	0,15
	Krypton 0,04	SZR 12	0,20	0,23	0,21	0,25	0,17	0,19	0,18	0,21	0,14	0,15	0,23	0,28
		SZR 16	0,10	0,11	0,11	0,12	0,08	0,09	0,09	0,10	0,05	0,07	0,12	0,14
w2/s2	Luft 0,9	SZR 12	0,17	0,22	0,25	0,26	0,06	0,12	0,14	0,18	-0,16	0,12	0,38	0,44
		SZR 16	0,07	0,22	0,12	0,15	-0,01	0,06	0,05	0,10	-0,19	0,06	0,24	0,27
	Luft 0,1	SZR 12	0,27	0,29	0,27	0,33	0,21	0,21	0,25	0,27	0,08	0,18	0,36	0,43
		SZR 16	0,08	0,13	0,14	0,15	0,10	0,11	0,13	0,13	0,01	0,09	0,17	0,21
<u></u>	Argon 0,1	SZR 12	0,27	0,29	0,27	0,33	0,22	0,23	0,25	0,28	0,13	0,19	0,34	0,40
		SZR 16	0,13	0,13	0,14	0,15	0,11	0,12	0,12	0,13	0,04	0,09	0,16	0,19
	Krypton 0,04	SZR 12	0,26	0,29	0,27	0,32	0,22	0,24	0,24	0,27	0,17	0,19	0,30	0,36
		SZR 16	0,13	0,14	0,13	0,15	0,11	0,11	0,11	0,13	0,06	0,09	0,15	0,18

Sprosse			Alu-We	ichholz	Alu-H	artholz	Weic	hholz	Hart	holz	P۱	/C	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w3/s3	Luft 0,9	SZR 12	0,25	0,32	0,36	0,39	0,09	0,18	0,21	0,26	-0,23	0,18	0,56	0,64
		SZR 16	0,10	0,32	0,18	0,22	-0,01	0,09	0,08	0,14	-0,28	0,09	0,35	0,40
	Luft 0,1	SZR 12	0,40	0,41	0,40	0,48	0,30	0,31	0,37	0,39	0,11	0,27	0,54	0,63
		SZR 16	0,12	0,20	0,21	0,22	0,14	0,16	0,19	0,19	0,02	0,13	0,26	0,31
	Argon 0,1	SZR 12	0,40	0,42	0,40	0,47	0,33	0,34	0,37	0,40	0,18	0,28	0,50	0,59
		SZR 16	0,19	0,19	0,20	0,21	0,16	0,17	0,18	0,19	0,05	0,13	0,23	0,28
	Krypton 0,04	SZR 12	0,38	0,43	0,40	0,46	0,32	0,35	0,35	0,39	0,25	0,28	0,44	0,52
		SZR 16	0,19	0,20	0,20	0,22	0,16	0,16	0,17	0,19	0,08	0,13	0,22	0,27

Tabelle 9 Änderung des U-Wertes (in W/m²K) von Mehrscheiben-Isolierglas durch eine aufgeklebte Sprosse mit Dichtband und metallisch blanker Sprosse im Scheibenzwischenraum (Typ 2)

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P\	/C	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w1/s0	Luft 0,9	SZR 12	0,00	0,03	0,01	0,03	0,00	0,02	0,01	0,03	-0,05	0,03	0,05	0,06
		SZR 16	-0,03	0,01	-0,02	0,02	-0,01	0,01	0,00	0,01	-0,06	0,01	0,02	0,03
	Luft 0,1	SZR 12	0,04	0,05	0,05	0,05	0,04	0,04	0,05	0,05	0,01	0,04	0,06	0,07
		SZR 16	0,02	0,02	0,02	0,03	0,02	0,02	0,02	0,03	0,00	0,02	0,03	0,03
	Argon 0,1	SZR 12	0,05	0,05	0,05	0,06	0,05	0,05	0,05	0,05	0,02	0,04	0,06	0,07
		SZR 16	0,02	0,02	0,02	0,03	0,02	0,03	0,02	0,03	0,00	0,02	0,03	0,03
	Krypton 0,04	SZR 12	0,05	0,06	0,05	0,06	0,05	0,05	0,05	0,06	0,03	0,04	0,06	0,07
		SZR 16	0,02	0,03	0,03	0,03	0,02	0,02	0,02	0,03	0,01	0,02	0,03	0,03
w0/s1	Luft 0,9	SZR 12	0,01	0,04	0,02	0,04	0,00	0,03	0,02	0,04	-0,07	0,03	0,06	0,07
		SZR 16	-0,03	0,02	-0,02	0,02	-0,02	0,01	0,00	0,02	-0,07	0,01	0,03	0,04
	Luft 0,1	SZR 12	0,06	0,06	0,06	0,07	0,05	0,06	0,06	0,06	0,01	0,05	0,08	0,09
		SZR 16	0,02	0,03	0,03	0,03	0,02	0,03	0,03	0,03	-0,01	0,02	0,04	0,04
	Argon 0,1	SZR 12	0,06	0,06	0,07	0,07	0,06	0,06	0,06	0,07	0,03	0,05	0,08	0,09
		SZR 16	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,00	0,02	0,04	0,04
	Krypton 0,04	SZR 12	0,06	0,07	0,07	0,07	0,06	0,06	0,06	0,07	0,04	0,05	0,07	0,08
		SZR 16	0,03	0,03_	0,03	0,03	0,03	0,03	0,03	0,03	0,01	0,02	0,04	0,04
w1/s1	Luft 0,9	SZR 12	0,01	0,06	0,03	0,08	0,00	0,05	0,03	0,07	-0,12	0,06	0,10	0,12
		SZR 16	-0,06	0,03	-0,04	0,04	-0,03	0,02	-0,01	0,03	-0,13	0,02	0,05	0,08
	Luft 0,1	SZR 12	0,10	0,11	0,11	0,12	0,09	0,10	0,10	0,11	0,02	0,09	0,14	0,15
		SZR 16	0,04	0,05	0,05	0,06	0,04	0,05	0,05	0,06	-0,01	0,04	0,07	0,08
	Argon 0,1	SZR 12	0,11	0,11	0,12	0,12	0,10	0,11	0,11	0,12	0,04	0,09	0,14	0,15
		SZR 16	0,05	0,05	0,05	0,06	0,05	0,06	0,05	0,06	0,01	0,04	0,07	0,07
	Krypton 0,04	SZR 12	0,11	0,12	0,12	0,13	0,11	0,11	0,11	0,12	0,07	0,09	0,13	0,15
		SZR 16	0,05	0,06	0,06	0,06	0,05	0,05	0,05	0,06	0,02	0,04	0,06	0,07

0,22

0,11

SZR 16

0,24

0,11

0,23

0,11

0,25

0,11

0,21

0,10

0,22

0,10

0,22

0,11

0,24

0,11

0,14

0,04

0,25

0,13

0,18

0,08

0,29

0,14

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P۱	/C	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w3/s3	Luft 0,9	SZR 12	0,03	0,19	0,09	0,22	0,01	0,15	0,08	0,19	-0,33	0,17	0,29	0,36
		SZR 16	-0,16	0,09	-0,11	0,12	-0,08	0,06	-0,02	0,10	-0,36	0,06	0,14	0,22
	Luft 0,1	SZR 12	0,27	0,32	0,31	0,34	0,25	0,29	0,30	0,32	0,04	0,27	0,42	0,44
		SZR 16	0,12	0,16	0,14	0,17	0,11	0,15	0,14	0,16	-0,03	0,12	0,20	0,22
	Argon 0,1	SZR 12	0,31	0,33	0,34	0,35	0,29	0,31	0,33	0,33	0,12	0,28	0,41	0,44
		SZR 16	0,13	0,16	0,15	0,17	0,13	0,16	0,15	0,16	0,02	0,12	0,19	0,21
	Krypton 0,04	SZR 12	0,33	0,35	0,34	0,37	0,31	0,32	0,32	0,34	0,21	0,27	0,38	0,42
		SZR 16	0,15	0,16	0,17	0,17	0,14	0,15	0,16	0,16	0,06	0,12	0,19	0,21

Tabelle 10 Änderung des U-Wertes (in W/m²K) von Mehrscheiben-Isolierglas durch eine glasteilende Sprosse (Typ 3)

Sprosse			Alu-We	ichholz	Alu-H	artholz	Weic	hholz	Hart	holz	P۱	/C	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w1/s0	Luft 0,9	SZR 12	-	-	-	-	0,04	0,07	0,06	0,09	0,05	0,08		-
		SZR 16	-	-	-	-	0,05	0,08	0,07	0,10	0,06	0,08		-
	Luft 0,1	SZR 12	-	-	-	-	0,11	0,13	0,13	0,15	0,12	0,14	_	-
		SZR 16	-	-	-	-	0,12	0,15	0,15	0,17	0,13	0,16	_	-
	Argon 0,1	SZR 12	-	-	-	-	0,13	0,15	0,15	0,17	0,14	0,16	_	-
		SZR 16	-	-	_	-	0,14	0,16	0,16	0,18	0,15	0,17	-	-
	Krypton 0,04	SZR 12	-	-	_	-	0,15	0,18	0,18	0,20	0,17	0,19	-	-
		SZR 16		-	_	-	0,15	0,18	0,17	0,19	0,16	0,18	_	-
w0/s1	Luft 0,9	SZR 12	_	-	_	_	0,05	0,09	0,08	0,11	0,06	0,10	-	-
		SZR 16	-	_	-	-	0,06	0,10	0,09	0,12	0,07	0,11	-	_
	Luft 0,1	SZR 12	-	-	-	-	0,13	0,17	0,16	0,19	0,15	0,18	-	-
		SZR 16	_	-	-	-	0,15	0,19	0,18	0,21	0,17	0,19	-	-
	Argon 0,1	SZR 12	-	-	-	-	0,16	0,19	0,19	0,21	0,17	0,20	-	-
		SZR 16	-	-	-	-	0,17	0,20	0,20	0,22	0,18	0,21	-	-
	Krypton 0,04	SZR 12	-	-	-	-	0,19	0,22	0,22	0,24	0,21	0,23	-	-
		SZR 16	-		-	-	0,19	0,22	0,22	0,24	0,20	0,23	-	
w1/s1	Luft 0,9	SZR 12	-	-	-	-	0,09	0,16	0,14	0,20	0,11	0,17	-	-
		SZR 16	-	-	-	-	0,11	0,18	0,16	0,22	0,13	0,19	-	-
	Luft 0,1	SZR 12	-	-	-	-	0,24	0,30	0,28	0,34	0,26	0,31	· -	-
		SZR 16	-	-	-	-	0,27	0,33	0,32	0,37	0,29	0,35	_	-
	Argon 0,1	SZR 12	_	-	-	-	0,28	0,34	0,33	0,38	0,30	0,36	-	-
		SZR 16	-	-	-	-	0,30	0,36	0,35	0,40	0,33	0,38	-	-
	Krypton 0,04	SZR 12	-	-	-	-	0,34	0,39	0,39	0,43	0,36	0,41	_	-
		SZR 16	-	-	_	-	0,34	0,39	0,38	0,43	0,36	0,41	_	-

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P\	/C	Ме	etall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w2/s1	Luft 0,9	SZR 12	-	-	-	-	0,13	0,24	0,20	0,29	0,16	0,24	-	_
		SZR 16	-	-	-	-	0,16	0,26	0,23	0,32	0,18	0,27		-
	Luft 0,1	SZR 12	-	-	-	-	0,34	0,43	0,41	0,48	0,37	0,45	-	-
		SZR 16	-	-	-	-	0,39	0,47	0,46	0,53	0,42	0,50	_	-
	Argon 0,1	SZR 12	-	.	-	-	0,40	0,49	0,47	0,54	0,44	0,51	_	-
		SZR 16	-	-	-	-	0,43	0,52	0,50	0,57	0,47	0,54	-	-
	Krypton 0,04	SZR 12	-	-	-	-	0,49	0,57	0,56	0,62	0,52	0,59	-	-
		SZR 16	-	-	-		0,48	0,56	0,55	0,62	0,52	0,59	· -	-
w1/s2	Luft 0,9	SZR 12	-	-	-	-	0,14	0,25	0,22	0,31	0,17	0,26	_	-
		SZR 16	-	-	-	-	0,17	0,28	0,24	0,34	0,20	0,29	-	•
	Luft 0,1	SZR 12	-	-	-	-	0,37	0,46	0,44	0,52	0,40	0,48	_	-
		SZR 16	-	-	-	-	0,42	0,51	0,49	0,57	0,45	0,53	-	-
	Argon 0,1	SZR 12	-	-	-	-	0,44	0,52	0,51	0,59	0,47	0,55	_	-
		SZR 16	-	-	-	-	0,47	0,56	0,54	0,62	0,50	0,58	_	-
	Krypton 0,04	SZR 12	-	-	-	-	0,53	0,61	0,60	0,67	0,56	0,64	-	-
······································		SZR 16	-	-	-	-	0,52	0,60	0,59	0,66	0,56	0,63	-	-
w2/s2	Luft 0,9	SZR 12	-	-	-	-	0,18	0,32	0,27	0,40	0,21	0,34	-	-
		SZR 16	_	-	-	-	0,21	0,36	0,31	0,43	0,25	0,37	-	_
ı	Luft 0,1	SZR 12	_	-	-	-	0,47	0,59	0,56	0,66	0,51	0,61	-	-
		SZR 16	-	-	-	-	0,53	0,65	0,62	0,73	0,58	0,68	-	-
	Argon 0,1	SZR 12	-	-	-	-	0,55	0,67	0,64	0,75	0,60	0,70	-	-
		SZR 16	-	-	_	-	0,59	0,71	0,69	0,78	0,64	0,74	- ,	
	Krypton 0,04	SZR 12	-	-	-	-	0,67	0,78	0,76	0,85	0,71	0,81	-	_
		SZR 16		-		-	0,66	0,77	0,75	0,85	0,71	0,81	-	_

Sprosse			Alu-We	ichholz	Alu-H	artholz	Weic	hholz	Har	tholz	P۱	/C	Ме	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w3/s3	Luft 0,9	SZR 12	-	-	-	-	0,27	0,48	0,40	0,59	0,32	0,49	-	
		SZR 16	-	-	-	-	0,32	0,53	0,45	0,64	0,37	0,54		-
	Luft 0,1	SZR 12	-	-	-	-	0,68	0,87	0,82	0,98	0,74	0,91	-	-
		SZR 16	-	••	_	-	0,78	0,96	0,92	1,07	0,84	1,00	_	-
	Argon 0,1	SZR 12	-	-	-	-	0,81	0,99	0,94	1,10	0,87	1,03	_	-
		SZR 16	-	-	-	-	0,87	1,05	1,01	1,16	0,94	1,09	-	-
	Krypton 0,04	SZR 12	-	_	_	-	0,98	1,15	1,11	1,26	1,05	1,20	_	_
		SZR 16	-	-	-	-	0,97	1,14	1,10	1,25	1,04	1,19	_	-

THE WAR AND THE WA

Tabelle 11 Änderung des U-Wertes (in W/m²K) von Mehrscheiben-Isolierglas durch eine glasteilende Sprosse (Typ 4)

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P۱	/C	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w1/s0	Luft 0,9	SZR 12	0,07	0,09	0,09	0,11	0,04	0,07	0,06	0,08	0,08	0,10	. -	-
		SZR 16	0,08	0,10	0,10	0,12	0,05	0,07	0,07	0,09	0,09	0,11	-	-
	Luft 0,1	SZR 12	0,14	0,16	0,16	0,18	0,11	0,13	0,13	0,15	0,15	0,17	-	-
		SZR 16	0,16	0,18	0,17	0,19	0,12	0,15	0,14	0,17	0,17	0,18	-	-
	Argon 0,1	SZR 12	0,16	0,18	0,18	0,20	0,13	0,15	0,15	0,17	0,17	0,19	_	-
		SZR 16	0,17	0,19	0,19	0,21	0,14	0,16	0,16	0,18	0,18	0,20	_	-
	Krypton 0,04	SZR 12	0,19	0,21	0,21	0,22	0,15	0,18	0,17	0,20	0,20	0,21		-
		SZR 16	0,19	0,21	0,20	0,22	0,15	0,18	0,17	0,19	0,20	0,21	-	
w0/s1	Luft 0,9	SZR 12	0,09	0,12	0,11	0,14	0,05	80,0	0,07	0,10	0,10	0,13	-	-
		SZR 16	0,10	0,13	0,13	0,15	0,06	0,09	0,08	0,11	0,11	0,14	-	-
	Luft 0,1	SZR 12	0,18	0,20	0,20	0,22	0,13	0,16	0,16	0,19	0,19	0,21	-	-
		SZR 16	0,20	0,22	0,22	0,24	0,15	0,18	0,18	0,21	0,21	0,23	-	-
	Argon 0,1	SZR 12	0,20	0,23	0,22	0,25	0,16	0,19	0,18	0,21	0,21	0,23	-	-
		SZR 16	0,22	0,24	0,24	0,26	0,17	0,20	0,19	0,22	0,23	0,25	-	-
	Krypton 0,04	SZR 12	0,24	0,26	0,26	0,28	0,19	0,22	0,22	0,25	0,25	0,27	-	-
		SZR 16	0,24	0,26	0,26	0,28	0,19	0,22	0,21	0,24	0,25	0,26	•	- -
w1/s1	Luft 0,9	SZR 12	0,16	0,21	0,20	0,24	0,09	0,14	0,13	0,19	0,18	0,22	-	-
		SZR 16	0,18	0,23	0,22	0,26	0,10	0,16	0,15	0,20	0,20	0,24	_	-
	Luft 0,1	SZR 12	0,31	0,36	0,35	0,39	0,23	0,29	0,28	0,33	0,33	0,37	-	-
		SZR 16	0,35	0,39	0,38	0,43	0,27	0,32	0,31	0,37	0,37	0,40	-	-
	Argon 0,1	SZR 12	0,36	0,40	0,39	0,43	0,28	0,33	0,32	0,38	0,38	0,41	-	~
		SZR 16	0,38	0,43	0,42	0,46	0,30	0,36	0,34	0,40	0,40	0,43	_	-
	Krypton 0,04	SZR 12	0,42	0,46	0,45	0,49	0,34	0,39	0,38	0,43	0,44	0,47	-	-
		SZR 16	0,41	0,46	0,45	0,49	0,33	0,39	0,38	0,43	0,44	0,47	-	<u>-</u>

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P۱	/C	Ме	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w2/s1	Luft 0,9	SZR 12	0,23	0,30	0,28	0,35	0,12	0,21	0,19	0,27	0,26	0,32	-	_
		SZR 16	0,26	0,33	0,32	0,37	0,15	0,23	0,21	0,29	0,28	0,35	-	-
	Luft 0,1	SZR 12	0,44	0,51	0,50	0,56	0,33	0,42	0,40	0,47	0,48	0,53	-	-
		SZR 16	0,50	0,57	0,55	0,61	0,38	0,47	0,45	0,52	0,53	0,58	_	-
	Argon 0,1	SZR 12	0,51	0,58	0,56	0,62	0,40	0,48	0,46	0,54	0,54	0,59	-	-
		SZR 16	0,54	0,61	0,60	0,66	0,43	0,51	0,49	0,57	0,58	0,62	-	-
	Krypton 0,04	SZR 12	0,60	0,66	0,65	0,71	0,48	0,57	0,54	0,62	0,63	0,68	-	-
		SZR 16	0,59	0,66	0,64	0,71	0,48	0,56	0,54	0,62	0,63	0,67	-	_
w1/s2	Luft 0,9	SZR 12	0,25	0,32	0,30	0,37	0,13	0,22	0,20	0,29	0,28	0,35	-	-
		SZR 16	0,28	0,35	0,34	0,40	0,16	0,25	0,23	0,31	0,31	0,37	-	-
	Luft 0,1	SZR 12	0,48	0,55	0,53	0,60	0,36	0,45	0,43	0,51	0,51	0,57	_	-
		SZR 16	0,54	0,61	0,59	0,66	0,41	0,50	0,48	0,56	0,57	0,62	-	-
	Argon 0,1	SZR 12	0,55	0,62	0,60	0,67	0,43	0,52	0,50	0,58	0,59	0,64	-	-
		SZR 16	0,59	0,66	0,64	0,71	0,46	0,55	0,53	0,61	0,62	0,67	_	-
	Krypton 0,04	SZR 12	0,64	0,72	0,70	0,77	0,52	0,61	0,59	0,67	0,68	0,73	_	-
		SZR 16	0,64	0,71	0,70	0,76	0,51	0,60	0,58	0,67	0,68	0,73	-	-
w2/s2	Luft 0,9	SZR 12	0,31	0,41	0,38	0,47	0,17	0,28	0,25	0,36	0,35	0,44	-	-
		SZR 16	0,36	0,45	0,43	0,51	0,20	0,32	0,29	0,40	0,39	0,48	-	-
	Luft 0,1	SZR 12	0,61	0,70	0,68	0,77	0,45	0,57	0,54	0,65	0,65	0,73	-	-
		SZR 16	0,68	0,77	0,75	0,84	0,52	0,64	0,61	0,72	0,72	0,79	-	-
	Argon 0,1	SZR 12	0,70	0,79	0,77	0,85	0,54	0,66	0,63	0,74	0,74	0,81	-	-
		SZR 16	0,74	0,84	0,81	0,90	0,58	0,70	0,67	0,78	0,79	0,86	-	-
	Krypton 0,04	SZR 12	0,82	0,91	0,88	0,97	0,66	0,78	0,74	0,85	0,86	0,93	-	-
		SZR 16	0,81	0,91	0,88	0,97	0,65	0,77	0,74	0,85	0,86	0,92	<u>.</u>	-

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P۱	/C	Me	etall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w3/s3	Luft 0,9	SZR 12	0,46	0,61	0,56	0,70	0,25	0,42	0,37	0,54	0,51	0,65	-	-
		SZR 16	0,53	0,66	0,63	0,76	0,30	0,47	0,43	0,59	0,57	0,70	, - -	-
	Luft 0,1	SZR 12	0,89	1,04	0,99	1,13	0,66	0,84	0,79	0,96	0,96	1,07	_	-
		SZR 16	1,00	1,14	1,10	1,23	0,76	0,94	0,89	1,06	1,06	1,17	-	~
	Argon 0,1	SZR 12	1,02	1,17	1,12	1,26	0,79	0,97	0,92	1,09	1,09	1,20	-	-
		SZR 16	1,09	1,24	1,19	1,33	0,86	1,03	0,98	1,15	1,16	1,26	-	-
	Krypton 0,04	SZR 12	1,20	1,34	1,30	1,43	0,96	1,14	1,09	1,26	1,27	1,37	_	-
		SZR 16	1,19	1,33	1,29	1,43	0,95	1,13	1,08	1,25	1,26	1,36	_	_

Tabelle 12 Änderung des U-Wertes (in W/m²K) von Mehrscheiben-Isolierglas durch eine glasteilende Sprosse (Typ 5)

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P۱	/C	Me	tall
Тур	Isolierglas	" ·	min	Max	min	max	min	max	min	max	min	max	min	max
w1/s0	Luft 0,9	SZR 12	-0,03	0,03	0,00	0,04	-0,02	-0,01	0,01	0,02	-0,01	0,04	0,08	0,11
		SZR 16	-0,01	0,04	0,02	0,06	0,00	0,01	0,03	0,03	0,00	0,04	0,09	0,13
	Luft 0,1	SZR 12	0,08	0,10	0,11	0,12	0,08	0,08	0,11	0,11	0,08	0,13	0,16	0,21
		SZR 16	0,11	0,12	0,13	0,14	0,10	0,10	0,13	0,13	0,10	0,14	0,18	0,23
:	Argon 0,1	SZR 12	0,12	0,12	0,14	0,15	0,10	0,11	0,13	0,14	0,10	0,15	0,19	0,24
		SZR 16	0,13	0,14	0,15	0,17	0,12	0,12	0,15	0,15	0,12	0,16	0,20	0,25
	Krypton 0,04	SZR 12	0,15	0,16	0,16	0,19	0,14	0,14	0,17	0,17	0,14	0,19	0,22	0,28
		SZR 16	0,15	0,16	0,16	0,19	0,14	0,14	0,17	0,17	0,14	0,18	0,21	0,27
w0/s1	Luft 0,9	SZR 12	-0,04	0,03	0,00	0,05	-0,03	-0,01	0,01	0,02	-0,02	0,05	0,10	0,14
		SZR 16	-0,02	0,05	0,02	0,07	-0,01	0,01	0,03	0,04	0,00	0,06	0,12	0,16
	Luft 0,1	SZR 12	0,10	0,12	0,14	0,15	0,09	0,10	0,13	0,13	0,10	0,16	0,20	0,26
		SZR 16	0,14	0,15	0,17	0,18	0,13	0,13	0,16	0,16	0,12	0,18	0,22	0,29
	Argon 0,1	SZR 12	0,14	0,15	0,17	0,19	0,13	0,13	0,17	0,17	0,13	0,19	0,23	0,30
		SZR 16	0,17	0,17	0,19	0,21	0,15	0,15	0,18	0,19	0,15	0,20	0,24	0,31
	Krypton 0,04	SZR 12	0,19	0,20	0,21	0,24	0,18	0,18	0,21	0,22	0,17	0,24	0,27	0,34
	***************************************	SZR 16	0,19	0,20	0,21	0,24	0,18	0,18	0,21	0,22	0,17	0,23	0,27	0,34
w1/s1	Luft 0,9	SZR 12	-0,07	0,06	0,00	0,09	-0,04	-0,02	0,03	0,04	-0,03	0,08	0,17	0,24
		SZR 16	-0,03	0,09	0,04	0,12	-0,01	0,01	0,06	0,07	0,00	0,10	0,20	0,27
	Luft 0,1	SZR 12	0,17	0,21	0,25	0,25	0,16	0,17	0,23	0,24	0,17	0,27	0,36	0,46
		SZR 16	0,24	0,26	0,29	0,31	0,22	0,22	0,28	0,29	0,22	0,32	0,40	0,51
	Argon 0,1	SZR 12	0,25	0,26	0,30	0,32	0,23	0,23	0,29	0,30	0,23	0,33	0,41	0,52
		SZR 16	0,29	0,30	0,33	0,36	0,26	0,27	0,32	0,33	0,26	0,36	0,43	0,55
	Krypton 0,04	SZR 12	0,33	0,35	0,36	0,42	0,31	0,31	0,37	0,38	0,30	0,41	0,47	0,60
		SZR 16	0,33	0,35	0,36	0,42	0,31	0,31	0,37	0,38	0,30	0,40	0,47	0,59

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P\	/C	Me	tali
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w2/s1	Luft 0,9	SZR 12	-0,10	0,08	0,00	0,13	-0,06	-0,03	0,04	0,06	-0,04	0,12	0,25	0,35
		SZR 16	-0,04	0,13	0,06	0,18	-0,01	0,02	0,09	0,10	0,00	0,14	0,29	0,39
	Luft 0,1	SZR 12	0,25	0,31	0,35	0,36	0,24	0,25	0,34	0,34	0,24	0,39	0,51	0,66
		SZR 16	0,34	0,37	0,42	0,44	0,31	0,32	0,41	0,41	0,31	0,45	0,57	0,72
	Argon 0,1	SZR 12	0,35	0,38	0,43	0,45	0,32	0,33	0,42	0,43	0,32	0,48	0,58	0,74
		SZR 16	0,41	0,42	0,47	0,51	0,38	0,38	0,47	0,48	0,37	0,51	0,62	0,78
	Krypton 0,04	SZR 12	0,47	0,49	0,52	0,59	0,44	0,44	0,53	0,55	0,43	0,59	0,68	0,86
		SZR 16	0,47	0,49	0,52	0,59	0,44	0,44	0,53	0,55	0,43	0,57	0,67	0,85
w1/s2	Luft 0,9	SZR 12	-0,11	0,09	0,00	0,14	-0,07	-0,03	0,04	0,06	-0,04	0,12	0,27	0,38
		SZR 16	-0,05	0,14	0,06	0,19	-0,01	0,02	0,09	0,11	0,00	0,15	0,31	0,42
	Luft 0,1	SZR 12	0,27	0,33	0,38	0,39	0,25	0,27	0,36	0,37	0,26	0,42	0,55	0,71
	•	SZR 16	0,37	0,40	0,45	0,48	0,34	0,35	0,44	0,45	0,34	0,49	0,61	0,78
	Argon 0,1	SZR 12	0,38	0,41	0,46	0,49	0,35	0,36	0,45	0,46	0,35	0,51	0,63	0,80
		SZR 16	0,45	0,46	0,51	0,55	0,41	0,41	0,50	0,52	0,40	0,55	0,67	0,85
	Krypton 0,04	SZR 12	0,50	0,53	0,56	0,64	0,48	0,48	0,57	0,59	0,47	0,64	0,73	0,93
		SZR 16	0,51	0,53	0,56	0,64	0,48	0,48	0,57	0,59	0,46	0,62	0,72	0,91
w2/s2	Luft 0,9	SZR 12	-0,14	0,11	0,00	0,18	-0,09	-0,04	0,05	0,08	-0,05	0,16	0,34	0,48
		SZR 16	-0,06	0,17	0,08	0,24	-0,02	0,03	0,12	0,14	0,00	0,19	0,39	0,53
	Luft 0,1	SZR 12	0,33	0,42	0,47	0,50	0,32	0,34	0,46	0,46	0,33	0,53	0,70	0,89
		SZR 16	0,46	0,51	0,58	0,59	0,42	0,44	0,56	0,57	0,42	0,61	0,77	0,98
	Argon 0,1	SZR 12	0,47	0,51	0,58	0,61	0,44	0,45	0,58	0,59	0,44	0,65	0,80	1,01
		SZR 16	0,56	0,58	0,64	0,69	0,51	0,52	0,64	0,65	0,50	0,69	0,84	1,06
	Krypton 0,04	SZR 12	0,64	0,66	0,71	0,80	0,60	0,60	0,73	0,75	0,59	0,80	0,93	1,16
		SZR 16	0,65	0,66	0,71	0,79	0,60	0,60	0,72	0,75	0,58	0,78	0,91	1,15

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P۱	/C	Ме	tall
Тур	Isolierglas		min	Max	min	max	min	 max	min	max	min	max	min	max
w3/s3	Luft 0,9	SZR 12	-0,20	0,16	0,00	0,27	-0,12	-0,06	0,07	0,12	-0,08	0,23	0,49	0,70
		SZR 16	-0,08	0,25	0,11	0,35	-0,02	0,04	0,17	0,21	0,00	0,27	0,57	0,77
	Luft 0,1	SZR 12	0,47	0,62	0,67	0,73	0,46	0,50	0,68	0,68	0,48	0,77	1,03	1,30
		SZR 16	0,65	0,75	0,84	0,86	0,61	0,64	0,82	0,83	0,61	0,89	1,13	1,42
	Argon 0,1	SZR 12	0,67	0,75	0,86	0,88	0,63	0,66	0,85	0,86	0,64	0,94	1,17	1,46
		SZR 16	0,79	0,84	0,94	0,98	0,73	0,76	0,94	0,96	0,73	1,01	1,23	1,54
	Krypton 0,04	SZR 12	0,94	0,95	1,04	1,14	0,87	0,89	1,07	1,10	0,86	1,16	1,36	1,69
		SZR 16	0,94	0,95	1,04	1,13	0,86	0,89	1,07	1,09	0,85	1,13	1,34	1,67

Tabelle 13 Änderung des U-Wertes (in W/m²K) von Mehrscheiben-Isolierglas durch eine glasteilende Sprosse (Typ 5)

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P۱	/C	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w1/s0	Luft 0,9	SZR 12	-0,02	0,02	0,01	0,04	_	-	-	-	-0,02	0,05	0,06	0,11
		SZR 16	-0,01	0,03	0,03	0,05	-	-	-	-	0,00	0,06	0,07	0,12
	Luft 0,1	SZR 12	0,09	0,10	0,12	0,13	-	-	_	-	0,08	0,15	0,16	0,20
		SZR 16	0,12	0,12	0,14	0,15	-	-	-	-	0,11	0,17	0,18	0,22
	Argon 0,1	SZR 12	0,12	0,13	0,14	0,16	-	-	-	-	0,11	0,18	0,18	0,22
		SZR 16	0,14	0,15	0,15	0,18	-	-	-	-	0,13	0,19	0,19	0,24
	Krypton 0,04	SZR 12	0,16	0,18	0,17	0,21	-	_	-	· -	0,15	0,21	0,21	0,26
		SZR 16	0,15	0,17	0,17	0,20	-		_	_	0,15	0,21	0,21	0,26
w0/s1	Luft 0,9	SZR 12	-0,03	0,02	0,02	0,05	-	-	_	-	-0,02	0,06	0,07	0,14
		SZR 16	-0,01	0,04	0,03	0,06	-	-	-	-	0,00	0,07	0,09	0,15
	Luft 0,1	SZR 12	0,12	0,12	0,15	0,16	-	-	_	-	0,10	0,18	0,20	0,24
		SZR 16	0,15	0,15	0,17	0,19	-	-	-	-	0,13	0,21	0,22	0,27
	Argon 0,1	SZR 12	0,15	0,16	0,18	0,20	-	-	-	-	0,14	0,22	0,23	0,28
		SZR 16	0,17	0,18	0,19	0,22	-	-	-	-	0,16	0,23	0,24	0,30
	Krypton 0,04	SZR 12	0,19	0,22	0,22	0,26	-	-	-	-	0,19	0,27	0,27	0,32
		SZR 16	0,19	0,21	0,21	0,25	-	_	<u>-</u>		0,18	0,26	0,26	0,32
w1/s1	Luft 0,9	SZR 12	-0,05	0,04	0,03	0,08	-	-	-	-	-0,04	0,10	0,12	0,24
		SZR 16	-0,01	0,07	0,06	0,11	-	-	-	-	-0,01	0,13	0,16	0,26
	Luft 0,1	SZR 12	0,20	0,22	0,26	0,28	-	-	-	-	0,18	0,32	0,34	0,43
		SZR 16	0,26	0,26	0,30	0,33	-	-	-	-	0,23	0,36	0,39	0,47
	Argon 0,1	SZR 12	0,27	0,28	0,31	0,35	-	-	-	-	0,24	0,38	0,40	0,49
		SZR 16	0,30	0,31	0,34	0,38	-	-	-	-	0,27	0,41	0,42	0,52
	Krypton 0,04	SZR 12	0,34	0,38	0,38	0,45	-	-	- '	-	0,32	0,47	0,47	0,57
		SZR 16	0,34	0,37	0,38	0,44	-	-	-	-	0,32	0,45	0,46	0,56

п
2
Ξ
Ξ
5
7
_
۶
on apross
7
<u></u>
9
d
ŭ
U
4
=
ĉ
×
ū
Ċ
2
7
5
9
=
4
Chouse I and Gett AA
5
=
_
ĕ
ž
_
3
2
Ξ
Ξ
"
'n
=
silliuss von sprossellkonstruktionen auf den walilledurchiga
ē
4
5
õ
7
ò
Ξ
Ξ
ing you rensu
4
ũ
Š
2
-

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Har	holz	P\	/C	Me	etall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w2/s1	Luft 0,9	SZR 12	-0,07	0,05	0,04	0,11	-	-	-	-	-0,05	0,15	0,18	0,34
		SZR 16	-0,02	0,10	0,08	0,15	-	-	-	-	-0,01	0,18	0,22	0,37
	Luft 0,1	SZR 12	0,29	0,31	0,37	0,39	-	-	-	-	0,25	0,45	0,49	0,61
		SZR 16	0,37	0,37	0,43	0,48	-	-	-	-	0,33	0,51	0,55	0,68
	Argon 0,1	SZR 12	0,39	0,39	0,44	0,50	-	-	-	-	0,34	0,54	0,57	0,69
		SZR 16	0,43	0,44	0,48	0,54	-	-	-	-	0,39	0,58	0,61	0,74
	Krypton 0,04	SZR 12	0,49	0,53	0,54	0,64	-	-	-	-	0,46	0,66	0,67	0,81
		SZR 16	0,48	0,52	0,54	0,62	_				0,46	0,65	0,66	0,80
w1/s2	Luft 0,9	SZR 12	-0,07	0,06	0,04	0,12	-	-	-	_	-0,05	0,16	0,19	0,37
		SZR 16	-0,02	0,10	0,09	0,16	-	-	-	-	-0,01	0,20	0,24	0,40
	Luft 0,1	SZR 12	0,31	0,33	0,40	0,42	-	-	-	-	0,27	0,49	0,52	0,66
		SZR 16	0,40	0,40	0,46	0,51	-	-	-	-	0,35	0,56	0,60	0,73
	Argon 0,1	SZR 12	0,42	0,43	0,48	0,54	-	-	_	-	0,37	0,59	0,62	0,75
		SZR 16	0,46	0,48	0,52	0,59	-	-] -	-	0,42	0,63	0,66	0,79
	Krypton 0,04	SZR 12	0,53	0,58	0,59	0,69	-	-	-	-	0,50	0,72	0,72	0,87
		SZR 16	0,52	0,57	0,58	0,67		••		-	0,49	0,70	0,71	0,86
w2/s2	Luft 0,9	SZR 12	-0,09	0,07	0,05	0,16	_	-	-	-	-0,07	0,20	0,24	0,47
		SZR 16	-0,03	0,13	0,11	0,21	-	-	-	-	-0,01	0,25	0,30	0,51
	Luft 0,1	SZR 12	0,39	0,42	0,50	0,53	-	-	-	-	0,34	0,61	0,66	0,83
		SZR 16	0,50	0,51	0,58	0,64	-	-	-	-	0,44	0,70	0,75	0,92
	Argon 0,1	SZR 12	0,52	0,53	0,60	0,67	_	-	-	-	0,46	0,73	0,77	0,94
		SZR 16	0,58	0,60	0,65	0,73	_	-	-	-	0,53	0,78	0,83	1,00
	Krypton 0,04	SZR 12	0,67	0,72	0,74	0,85	-	-	-	-	0,63	0,90	0,91	1,10
		SZR 16	0,66	0,70	0,73	0,84	-		_		0,62	0,88	0,90	1,09

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P۱	/C	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w3/s3	Luft 0,9	SZR 12	-0,13	0,11	0,07	0,23	-	-	-	-	-0,10	0,29	0,35	0,68
		SZR 16	-0,04	0,19	0,16	0,30	-	-	_	-	-0,02	0,36	0,44	0,75
	Luft 0,1	SZR 12	0,55	0,62	0,73	0,75	-	-	-	-	0,50	0,88	0,96	1,21
		SZR 16	0,71	0,74	0,85	0,93	-	-	_	-	0,64	1,00	1,09	1,33
	Argon 0,1	SZR 12	0,75	0,77	0,88	0,95	-	-	-	-	0,67	1,06	1,12	1,37
		SZR 16	0,84	0,85	0,96	1,04	-	-	-	-	0,76	1,13	1,21	1,45
	Krypton 0,04	SZR 12	0,97	1,02	1,08	1,22	-	-	-	-	0,90	1,30	1,34	1,59
		SZR 16	0,96	1,00	1,07	1,19	_	_	_	-	0,89	1,26	1,32	1,57

Einfluss von Sprossenkonstruktionen auf den Wärmedurchgang von Fenstern

Tabelle 14 relative Änderung des U-Wertes (in %) von Mehrscheiben-Isolierglas durch eine Sprosse im Scheibenzwischenraum

Sprosse			MIG	
Тур	Isolierglas		min	max
w1/s0	Luft 0,9	SZR 12	1	2
		SZR 16	0	2
	Luft 0,1	SZR 12	1	4
		SZR 16	1	4
	Argon 0,1	SZR 12	1	5
		SZR 16	1	4
	Krypton 0,04	SZR 12	1	7
		SZR 16	1	5
w0/s1	Luft 0,9	SZR 12	0	3
		SZR 16	0	3
	Luft 0,1	SZR 12	0	5
	•	SZR 16	1	5
	Argon 0,1	SZR 12	0	6
		SZR 16	1	5
	Krypton 0,04	SZR 12	0	8
		SZR 16	1	6
w1/s1	Luft 0,9	SZR 12	1	5
		SZR 16	1	5
	Luft 0,1	SZR 12	2	9
		SZR 16	1	9
	Argon 0,1	SZR 12	2	11
		SZR 16	1	10
	Krypton 0,04	SZR 12	3	15
		SZR 16	2	11

Sprosse			MIG	
Тур	Isolierglas		min	max
w2/s1	Luft 0,9	SZR 12	2	8
		SZR 16	1	7
	Luft 0,1	SZR 12	3	13
		SZR 16	2	12
	Argon 0,1	SZR 12	3	16
		SZR 16	2	14
	Krypton 0,04	SZR 12	4	21
		SZR 16	2	16
w1/s2	Luft 0,9	SZR 12	2	8
		SZR 16	1	7
	Luft 0,1	SZR 12	3	15
}		SZR 16	2	13
	Argon 0,1	SZR 12	3	17
,		SZR 16	2	15
	Krypton 0,04	SZR 12	4	23
		SZR 16	2	18
w2/s2	Luft 0,9	SZR 12	2	10
		SZR 16	2	9
	Luft 0,1	SZR 12	4	18
		SZR 16	2	17
	Argon 0,1	SZR 12	4	22
		SZR 16	3	19
	Krypton 0,04	SZR 12	5	29
		SZR 16	3	22

Sprosse			MIG	
Тур	Isolierglas		min	max
w3/s3	Luft 0,9	SZR 12	4	15
		SZR 16	က	4
	Luft 0,1	SZR 12	9	27
		SZR 16	4	25
	Argon 0,1	SZR 12	9	32
		SZR 16	4	28
	Krypton 0,04	SZR 12	∞	43
		SZR 16	5	33

 Tabelle 15
 relative Änderung des U-Wertes (in %) von Mehrscheiben-Isolierglas durch eine aufgeklebte Sprosse ohne Dichtband (Typ 1)

Sprosse			Alu-Weichholz		Alu-Hartholz		Weichholz		Hartholz		PVC		Metall	
Тур	Isolierglas	·	min	Max	min	max	min	max	min	max	min	max	min	max
w1/s0	Luft 0,9	SZR 12	-1	0	-1	0	-1	-1	-1	0	-3	0	.0	0
		SZR 16	-1	0	-1	0	-1	-1	-1	0	-3	0	0	0
	Luft 0,1	SZR 12	-1	0	0	0	-1	0	-1	0	-2	0	0	0
		SZR 16	-1	0	0	0	-1	0	-1	0	-2	0	0	0
	Argon 0,1	SZR 12	-1	0	0	0	-1	0	-1	0	-2	0	0	0
		SZR 16	-1	0	0	0	-1	0	-1	0	-2	0	0	0
	Krypton 0,04	SZR 12	0	0	0	0	-1	0	0	0	-1	0	0	0
		SZR 16	0	0	0	0	-1	0	0	0	-2	0	0	0
w0/s1	Luft 0,9	SZR 12	-1	0	-1	0	-2	-1	-1	0	-3	0	-1	0
		SZR 16	-1	0	-1	0	-2	-1	-1	0	-3	0	-1	0
	Luft 0,1	SZR 12	-1	0	-1	0	-1	0	-1	0	-2	0	-1	0
		SZR 16	-1	0	0	0	-1	0	-1	0	-2	0	-1	0
	Argon 0,1	SZR 12	-1	0	0	0	-1	0	-1	0	-2	0	0	0
		SZR 16	-1	0	0	0	-1	0	-1	0	-2	0	0	0
	Krypton 0,04	SZR 12	-1	0	0	0	-1	0	-1	0	-2	0	0	0
		SZR 16	-1	0	0	0	-1	0	-1	0	-2	0	0	0
w1/s1	Luft 0,9	SZR 12	-2	-1	-1	0	-3	-1	-2	-1	-6	-1	0	1
		SZR 16	-2	-1	-1	0	-3	-1	-2	-1	-6	-1	0	1
	Luft 0,1	SZR 12	-1	-1	-1	0	-2	-1	-1	-1	-4	-1	0	0
		SZR 16	-2	0	-1	0	-2	-1	-1	0	-4	-1	0	0
	Argon 0,1	SZR 12	-1	0	-1	0	-2	-1	-1	0	-4	-1	0	0
		SZR 16	-1	0	-1	0	-2	, -1	-1	0	-4	0	0	0
	Krypton 0,04	SZR 12	-1	0	-1	0	-1	-1	-1	0	-3	0	0	0
		SZR 16	-1	0	-1	0	-1	-1	-1	0	-3	0	0	0

Sprosse			Alu-We	ichholz	Alu-H	artholz	Weic	hholz	Har	tholz	P	vc	Me	etall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w2/s1	Luft 0,9	SZR 12	-3	-1	-2	0	-4	-2	-3	-1	-9	-1	1	1
		SZR 16	-3	-1	-2	0	-4	-2	-3	-1	-8	-1	1	1
	Luft 0,1	SZR 12	-2	-1	-1	0	-3	-1	-2	-1	-6	-1	0	1
İ		SZR 16	-2	-1	-1	0	-3	-1	-2	-1	-6	-1	0	1
	Argon 0,1	SZR 12	-2	-1	-1	0	-2	-1	-2	-1	-5	-1	0	1
		SZR 16	-2	-1	-1	0	-2	-1	-2	-1	-5	-1	0	0
	Krypton 0,04	SZR 12	-1	0	-1	0	-2	-1	-1	0	-5	0	0	0
		SZR 16	-1	0 _	-1	0	-2	-1	-1	-1	-5	-1	0	0
w1/s2	Luft 0,9	SZR 12	-3	-1	-2	-1	-5	-2	-3	-1	-9	-1	1	1
		SZR 16	-3	-1	-2	-1	-4	-2	-3	-1	-9	-1	1	1
	Luft 0,1	SZR 12	-2	-1	-1	0	-3	-1	-2	-1	-7	-1	1	1
		SZR 16	-2	-1	-1	0	-3	-1	-2	-1	-6	-1	0	1
	Argon 0,1	SZR 12	-2	-1	-1	0	-3	-1	-2	-1	-6	-1	0	1
		SZR 16	-2	-1	-1	0	-3	-1	-2	-1	-6	-1	0	1
	Krypton 0,04	SZR 12	-2	0	-1	0	-2	-1	-1	-1	-5	-1	0	1
		SZR 16	-2	0	-1	0	-2	-1	-2	1	-5	-1	0	1
w2/s2	Luft 0,9	SZR 12	-4	-1	-3	-1	-6	-3	-4	-2	-12	-2	1	1
		SZR 16	-4	-1	-3	-1	-6	-3	-4	-2	-11	-2	1	1
	Luft 0,1	SZR 12	-3	-1	-2	0	-4	-2	-3	-1	-8	-1	1	1
		SZR 16	-3	-1	-2	0	-4	-1	-2	-1	-8	-1	1	1
	Argon 0,1	SZR 12	-2	-1	-2	0	-3	-1	-2	-1	-7	-1	1	1
		SZR 16	-2	-1	-2	0	-3	-1	-2	-1	-7	-1	0	1
	Krypton 0,04	SZR 12	-2	-1	-1	0	-3	-1	-2	-1	-6	-1	1	1
		SZR 16	-2	-1	-1_	0	-3	-1	-2		-6	-1	0	1

Sprosse			Alu-Wei	ichholz	Alu-Hartholz	ırtholz	Weichholz	zlohi	Hartholz	holz	P	PVC	Me	Metall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w3/s3	Luft 0,9	SZR 12	φ	-2	4	-	ထု	4	မှ	₅ -	-17	6-	-	2
		SZR 16	ဖ ှ	7	4	7	ထု	4	9	-7	-16	ဗု	₩.	2
	Luft 0,1	SZR 12	4	-5	ကု	7	9	-5	4	-5	-12	-7	_	_
		SZR 16	4	7	-5	7	-5	-5	4	7	7	-5	τ-	_
	Argon 0,1	SZR 12	4	7	?	77	-5	-5	ကု	7	-10	7	٢	_
		SZR 16	ကု	7	7	7	رې	-5	ဇှ	7	-10	7	_	-
	Krypton 0,04	SZR 12	ကု	7	?	0	4	-5	ကု	7	ဝှ	7	-	_
		SZR 16	-3	-	-2	0	4	-5	ကု	7	တု	7	-	-

Anlage 3 Blatt 41

Tabelle 16 relative Änderung des U-Wertes (in %) von Mehrscheiben-Isolierglas durch eine aufgeklebte Sprosse mit Dichtband (Typ 1)

Sprosse		·	Alu-We	ichholz	Alu-H	artholz	Weic	hholz	Har	tholz	P	VC	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w1/s0	Luft 0,9	SZR 12	-2	-1	-1	0	-2	-1	-1	-1	-3	0	-1	0
		SZR 16	-2	-1	-1	0	-2	-1	-1	-1	-3	0	-1	0
	Luft 0,1	SZR 12	-1	0	-1	0	-1	0	-1	0	-2	0	0	0
		SZR 16	-1	0	-1	0	-1	0	-1	0	-2	0	Ó	0
	Argon 0,1	SZR 12	-1	0	-1	0	-1	0	-1	0	-2	0	0 -	0
		SZR 16	-1	0	-1	0	-1	0	-1	0	-2	0	0	0
	Krypton 0,04	SZR 12	-1	0	-1	0	-1	0	-1	0	-2	0	0	0
		SZR 16	-1	0	-1	0	-1	0	-1	0	-2	0	0	0
w0/s1	Luft 0,9	SZR 12	-2	-1	-2	-1	-2	-1	-2	-1	-4	-1	-1	0
		SZR 16	-2	-1	-2	-1	-2	-1	-2	-1	-4	-1	-1	0
ļ	Luft 0,1	SZR 12	-1	0	-1	-1	-1	-1	-1	0	-3	0	-1	0
		SZR 16	-1	0	-1	0	-1	0	-1	0	-3	0	-1	0
	Argon 0,1	SZR 12	-1	0	-2	0	-1	0	-1	0	-3	0	0	0
		SZR 16	-1	0	-1	0	-1	0	-1	0	-2	0	0	0
	Krypton 0,04	SZR 12	-1	0	-1	0	-1	0	-1	0	-2	0	0	0
		SZR 16	-1	0	-1	0	-1	0	-1	0	-2	0	0	0
w1/s1	Luft 0,9	SZR 12	-4	-1	-3	-1	-4	-1	-3	-1	-7	-1	-1	0
		SZR 16	-4	-1	-3	-1	-3	-1	-3	-1	-7	-1	-2	0
	Luft 0,1	SZR 12	-3	-1	-2	-1	-2	-1	-2	-1	-5	-1	-1	0
		SZR 16	-2	-1	-2	-1	-2	-1	-2	-1	-5	-1	-1	0
	Argon 0,1	SZR 12	-2	-1	-3	-1	-2	-1	-2	-1	-4	0	-1	0
		SZR 16	-2	-1	-2	-1	-2	-1	-2	-1	-4	-1	-1	0
	Krypton 0,04	SZR 12	-2	-1	-2	0	-2	-1	-1	0	-4	0	-1	0
		SZR 16	-2	1	-2	. 0	-2	-1	-2	1	-4	0	-1	0

	Тур	Isolierglas		min	Max_	min	max								
	w2/s1	Luft 0,9	SZR 12	-5	-2	-5	-2	-5	-2	-4	-2	-10	-1	-2	0
			SZR 16	-5	-2	-4	-2	-5	-2	-4	-2	-10	-2	-2	0
		Luft 0,1	SZR 12	-4	-1	-3	-1	-4	-1	-3	-1	-7	-1	-1	0
			SZR 16	-3	-1	-3	-1	-3	-1	-3	-1	-7	-1	-1	0
		Argon 0,1	SZR 12	-3	-1	-4	-1	-3	-1	-3	-1	-6	-1	-1	0
١			SZR 16	-3	-1	-3	-1	-3	-1	-2	-1	-6	-1	-1	0
-		Krypton 0,04	SZR 12	-3	-1	-2	-1	-2	-1	-2	-1	-5	0	-1	0
			SZR 16	-3	1	-2	-1	-3	-1	-2	-1	-6	-1	-1	0
	w1/s2	Luft 0,9	SZR 12	-6	-2	-5	-2	-5	-2	-5	-2	-11	-1	-2	0
Ì			SZR 16	-6	-2	-5	-2	-5	-2	-5	-2	-10	-2	-2	0
		Luft 0,1	SZR 12	-4	-1	-3	-1	-4	-1	-3	-1	-8	-1	-2	0
			SZR 16	-4	-1	-3	-1	-3	-1	-3	-1	-7	-1	-1	0
		Argon 0,1	SZR 12	-3	-1	-4	-1	-3	-1	-3	-1	-7	-1	-1	0
			SZR 16	-3	-1	-3	-1	-3	-1	-3	-1	-7	-1	-1	0
		Krypton 0,04	SZR 12	-3	-1	-2	-1	-3	-1	-2	-1	-6	-1	-1	0
			SZR 16	-3	-1	-2	-1	-3	-1	-2	1	-6	-1	-1	0
	w2/s2	Luft 0,9	SZR 12	-7	-3	-6	-2	-7	-3	-6	-2	-13	-2	-3	0
			SZR 16	-7	-2	-6	-2	-7	-3	-6	-2	-13	-2	-3	0
		Luft 0,1	SZR 12	-5	-2	-4	-2	-5	-2	-4	-2	-10	-1	-2	0
			SZR 16	-4	-1	-4	-1	-4	-2	-4	-1	-9	-1	-2	0
١		Argon 0,1	SZR 12	-4	-1	-5	-1	-4	-2	-3	-1	-8	-1	-2	0
			SZR 16	-4	-1	-4	-1	-4	-2	-3	-1	-8	-1	-2	0
		Krypton 0,04	SZR 12	-3	-1	-3	-1	-3	-1	-3	-1	-7	-1	-1	0
				1		1		1		1		1	_	1 .	_

Alu-Hartholz

Weichholz

Hartholz

-3

-1

PVC

Alu-Weichholz

SZR 16

Sprosse

Metall

0

Sprosse			Alu-Wei	chholz	Alu-Hartholz	rtholz	Weichholz	zlodi	Hartholz	polz	PVC	ည	Metall	all
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w3/s3	Luft 0,9	SZR 12	-10	4	6-	ကု	-10	4	ဝှ	ဗု	-19	ကု	4	7
		SZR 16	-10	4	6	ကု	-10	4	ထု	ကု	-19	ကု	4	0
	Luft 0,1	SZR 12	-7	-5	φ	ကု	2-	ကု	φ	7	-14	7	ကု	0
		SZR 16	φ	-2	φ	-5	φ	ကု	τĊ	ņ	-13	ņ	ကု	0
	Argon 0,1	SZR 12	φ	-5	-7	-5	φ	-5	ς	7	-12	7	7	0
		SZR 16	φ	-5	-5	-5	φ	-,5	ιĊ	-5	-12	7	-5	0
	Krypton 0,04	SZR 12	ၯ	-2	4	7	လု	-5	4	7	-10	Υ.	7	0
		SZR 16	-5	-2	-5	-1	-5	-2	-4	-2	-11	-1	-2	0

Tabelle 17 relative Änderung des U-Wertes (in %) von Mehrscheiben-Isolierglas durch eine aufgeklebte Sprosse ohne Dichtband und Sprosse im Scheibenzwischenraum (Typ 2)

Sprosse	-		Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	Ρ'	vc	Ме	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w1/s0	Luft 0,9	SZR 12	1	2	2	2	0	1	1	2	-1	1	3	4
		SZR 16	1	1	1	1	0	0	0	1	-2	0	2	2
	Luft 0,1	SZR 12	3	4	4	5	3	3	3	4	1	2	5	6
		SZR 16	2	2	3	3	1	2	2	2	0	1	3	3
	Argon 0,1	SZR 12	4	5	5	5	3	4	4	4	2	3	5	7
		SZR 16	3	4	3	4	2	2	2	3	1	2	3	4
	Krypton 0,04	SZR 12	6	8	6	7	5	6	5	6	4	5	7	8
		SZR 16	4	4	4	_5	2	3	3	3	1	2	3	4
w0/s1	Luft 0,9	SZR 12	2	2	3	3	1	1	1	2	-2	2	1	5
		SZR 16	1	1	1	2	0	1	1	1	-2	1	0	3
	Luft 0,1	SZR 12	4	5	5	6	3	4	4	4	1	4	3	7
		SZR 16	3	3	3	4	2	2	2	3	0	3	2	4
	Argon 0,1	SZR 12	5	6	6	7	4	5	5	5	3	5	4	8
		SZR 16	4	5	4	5	2	3	3	3	1	3	2	5
	Krypton 0,04	SZR 12	8	9	8	9	6	7	7	8	5	8	5	11
		SZR 16	4	6	5	6	3	3	3	4	2	4	2	5
w1/s1	Luft 0,9	SZR 12	3	4	5	5	1	2	3	3	-3	2	7	8
		SZR 16	1	3	2	3	0	1	1	2	-4	1	5	5
	Luft 0,1	SZR 12	8	9	9	11	6	7	7	8	2	5	10	13
		SZR 16	4	5	6	7	3	4	4	5	0	3	6	7
	Argon 0,1	SZR 12	10	11	11	12	8	8	9	10	4	7	12	14
		SZR 16	7	8	7	.9	4	5	5	6	2	4	7	8
	Krypton 0,04	SZR 12	14	17	13	16	11	13	12	14	9	10	15	18
		SZR 16	8	10	8	10	5	6	6	7	3	5	7	9

Sprosse			Alu-We	eichholz	Alu-Ha	artholz	Weic	hholz	Har	tholz	P\	VC	Me	etall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w2/s1	Luft 0,9	SZR 12	5	6	6	7	2	3	4	5	-4	3	10	12
		SZR 16	2	4	3	5	0	2	1	3	-5	1	.7	8
	Luft 0,1	SZR 12	11	12	14	15	8	10	10	11	3	8	15	18
		SZR 16	6	8	9	10	5	6	6	7	1	5	9	11
	Argon 0,1	SZR 12	14	16	16	17	11	12	12	14	6	10	17	20
		SZR 16	10	11	10	12	6	7	7	8	2	6	10	12
	Krypton 0,04	SZR 12	20	24	19	23	16	18	17	20	13	15	22	26
		SZR 16	11	14	12	15	7	9	8	10	4	7	11	13
w1/s2	Luft 0,9	SZR 12	5	7	7	8	2	3	4	5	-4	3	11	13
		SZR 16	2	4	4	5	0	2	2	3	-6	2	7	8
	Luft 0,1	SZR 12	12	13	15	17	9	10	11	12	4	8	16	19
		SZR 16	7	8	9	11	5	6	6	7	1	5	9	11
	Argon 0,1	SZR 12	15	17	18	18	12	13	13	15	7	11	18	22
		SZR 16	10	12	11	13	7	8	8	9	2	6	10	13
	Krypton 0,04	SZR 12	22	26	21	25	17	19	18	22	14	16	23	28
		SZR 16	12	15	13	16	8	9	9	10	4	7	11	14
w2/s2	Luft 0,9	SZR 12	6	8	9	10	2	4	5	7	-6	4	14	16
		SZR 16	3	5	- 5	6	0	2	2	4	-7	2	9	11
	Luft 0,1	SZR 12	15	17	19	21	12	13	14	15	4	10	20	25
		SZR 16	9	10	12	14	6	8	8	9	1	6	12	14
	Argon 0,1	SZR 12	19	22	22	23	15	17	17	19	9	14	23	28
		SZR 16	13	16	14	17	8	10	10	11	3	8	13	16
	Krypton 0,04	SZR 12	28	33	26	31	22	25	23	27	17	20	30	36
		SZR 16	16	19	16	20	10	12	11	13	6	10	15	18

RO	
OSEN	
HHI	
X	

Sprosse			Alu-We	ichholz	Alu-H	artholz	Weic	hholz	Hart	holz	P\	vc	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w3/s3	Luft 0,9	SZR 12	9	12	13	15	3	6	7	10	-8	6	20	23
		SZR 16	4	7	7	9	0	3	3	6	-10	3	13	15
	Luft 0,1	SZR 12	22	25	27	30	17	19	20	23	6	15	30	36
		SZR 16	13	15	18	21	9	12	12	14	1	9	18	21
	Argon 0,1	SZR 12	28	32	32	34	22	25	25	28	12	20	34	41
		SZR 16	19	23	20	24	12	14	15	16	4	11	19	23
	Krypton 0,04	SZR 12	41	48	39	46	32	36	35	40	25	30	44	52
		SZR 16	23	28	24	29	15	17	17	19	8	14	21	26

Tabelle 18 relative Änderung des U-Wertes (in %) von Mehrscheiben-Isolierglas durch eine aufgeklebte Sprosse mit Dichtband und Sprosse im Scheibenzwischenraum (Typ 2)

Sprosse			Alu-We	ichholz	Alu-H	artholz	Weid	hholz	Hart	tholz	P	vc	Ме	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w1/s0	Luft 0,9	SZR 12	0	1	1	1	0	1	0	1	-2	1	2	2
		SZR 16	0	1	0	1	0	0	0	1	-2	0	1	1
	Luft 0,1	SZR 12	3	3	3	4	2	3	3	3	0	2	4	4
		SZR 16	2	3	2	3	1	2	1	2	0	1	2	2
	Argon 0,1	SZR 12	4	5	4	5	3	4	3	4	1	3	4	5
	•	SZR 16	2	3	2	3	2	2	2	2	0	1	2	3
	Krypton 0,04	SZR 12	6	7	6	7	5	5	5	6	3	4	6	7
		SZR 16	3	4	3	4	2	3	2	3	1	2	3	3
w0/s1	Luft 0,9	SZR 12	0	1	1	2	0	1	1	1	-2	1	1	2
		SZR 16	0	1	0	1	-1	0	0	1	-3	1	0	2
	Luft 0,1	SZR 12	3	4	4	5	3	3	3	4	1	4	3	5
ļ		SZR 16	2	3	3	3	1	2	2	2	0	2	2	3
	Argon 0,1	SZR 12	5	6	5	6	4	4	4	5	2	5	4	6
		SZR 16	3	4	2	4	2	3	2	3	0	3	2	3
	Krypton 0,04	SZR 12	8	9	8	9	6	7	6	7	4	7	-5	8
		SZR 16	4	5	4	5	3	3	3	3	1	3	2	4
w1/s1	Luft 0,9	SZR 12	0	2	1	3	0	2	1	2	-4	2	4	4
		SZR 16	-1	2	0	2	-1	1	0	1	-5	1	2	3
	Luft 0,1	SZR 12	6	8	7	8	5	6	6	7	1	5	8	9
]		SZR 16	4	6	4	6	3	4	3	4	-1	3	5	5
	Argon 0,1	SZR 12	9	10	9	11	7	8	8	8	3	6	10	10
		SZR 16	5	7	4	7	4	5	4	5	1	3	6	6
	Krypton 0,04	SZR 12	13	15	14	16	11	12	11	13	7	9	13	15
		SZR 16	7	8	7	9	5	6	5	6	2	4	6	7

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P\	/C	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w2/s1	Luft 0,9	SZR 12	1	3	2	4	0	3	1	3	-6	3	5	6
	-	SZR 16	-1	2	0	2	-1	1	0	2	-7	1	3	4
	Luft 0,1	SZR 12	9	11	10	12	7	9	8	10	1	7	12	12
		SZR 16	6	8	6	8	4	5	5	6	-1	4	7	8
	Argon 0,1	SZR 12	13	15	14	15	10	11	11	12	4	9	14	15
		SZR 16	8	10	6	10	5	6	6	7	1	5	8	9
	Krypton 0,04	SZR 12	19	22	20	23	15	17	16	18	11	13	19	21
		SZR 16	10	12	10	12	7	88	8	9	3	6	9	10
w1/s2	Luft 0,9	SZR 12	1	4	2	5	0	3	2	4	-6	3	6	7
		SZR 16	-1	3	0	3	-2	1	0	2	-7	1	3	5
	Luft 0,1	SZR 12	9	12	11	13	7	9	9	10	1	8	12	13
		SZR 16	6	9	7	9	4	6	5	6	-1	4	7	8
	Argon 0,1	SZR 12	14	16	15	17	11	12	12	13	5	10	15	16
		SZR 16	8	10	6	11	5	7	7	8	1	5	9	9
	Krypton 0,04	SZR 12	21	24	21	25	16	18	17	19	11	14	20	23
·		SZR 16	11	13	11	13	7	9	8	9	3	6	10	11
w2/s2	Luft 0,9	SZR 12	1	5	2	6	0	4	2	5	-8	4	7	9
		SZR 16	-2	3	0	3	-2	2	0	2	-9	2	4	6
	Luft 0,1	SZR 12	12	15	14	16	9	12	11	13	2	10	16	17
		SZR 16	8	11	9	11	5	7	6	8	-1	5	10	10
	Argon 0,1	SZR 12	18	20	19	21	13	15	15	17	6	13	19	20
		SZR 16	10	13	8	14	7	9	8	10	1	7	11	12
	Krypton 0,04	SZR 12	26	30	27	31	21	23	22	25	14	18	25	29
····		SZR 16	14	17	14	17	9	11	10	12	4	8	12	14

Sprosse			Alu-We	ichholz	Alu-H	artholz	Weic	hholz	Hart	holz	P	VC	Me	etall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w3/s3	Luft 0,9	SZR 12	1	7	3	9	0	5	3	7	-12	6	11	13
		SZR 16	-2	5	0	5	-3	2	-1	4	-13	2	6	9
	Luft 0,1	SZR 12	18	22	21	24	14	17	16	19	3	15	23	25
		SZR 16	11	16	12	17	7	11	9	12	-2	8	14	15
	Argon 0,1	SZR 12	26	30	27	31	19	23	22	25	9	19	28	30
		SZR 16	15	19	12	20	10	13	12	14	1	10	16	18
	Krypton 0,04	SZR 12	39	45	40	46	31	34	32	36	21	26	38	42
		SZR 16	20	24	21	25	14	16	15	18	5	12	18	21

Tabelle 19 relative Änderung des U-Wertes (in %) von Mehrscheiben-Isolierglas durch eine aufgeklebte Sprosse ohne Dichtband und metallisch blanker Sprosse im Scheibenzwischenraum (Typ 2)

Sprosse			Alu-We	eichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P۱	VC	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w1/s0	Luft 0,9	SZR 12	1	2	2	2	0	1	1	1	-1	1	3	4
		SZR 16	1	2	1	1	0	0	0	1	-2	0	2	2
	Luft 0,1	SZR 12	3	4	3	4	3	3	3	3	1	2	5	6
		SZR 16	1	2	2	2	1	2	2	2	0	1	3	3
	Argon 0,1	SZR 12	4	5	4	5	3	4	4	4	2	3	5	6
		SZR 16	2	2	2	3	2	2	2	2	1	2	3	3
	Krypton 0,04	SZR 12	6	7	6	7	5	6	5	6	4	4	7	8
		SZR 16	3	3	3	4	2 _	3	3	3	1	2	3	4
w0/s1	Luft 0,9	SZR 12	2	2	3	3	1	1	1	2	-2	2	1	5
		SZR 16	1	2	1	2	0	1	1	1	-2	1	1	3
	Luft 0,1	SZR 12	4	5	4	5	3	3	4	4	1	4	3	7
		SZR 16	2	2	3	3	2	2	2	2	0	2	2	4
	Argon 0,1	SZR 12	5	6	5	6	4	5	5	5	3	5	4	8
		SZR 16	3	3	3	3	2	3	3	3	1	3	2	4
	Krypton 0,04	SZR 12	7	9	8	9	6	7	7	8	5	7	5	10
		SZR 16	4	4	4	4	3	3	3	4	2	3	2	5
w1/s1	Luft 0,9	SZR 12	3	4	4	5	1	2	3	3	-3	2	7	8
		SZR 16	1	4	2	3	0	1	1	2	-4	1	4	5
	Luft 0,1	SZR 12	8	8	8	9	6	6	7	8	2	5	10	12
		SZR 16	3	4	5	5	3	4	4	4	0	3	6	7
	Argon 0,1	SZR 12	9	10	9	11	8	8	9	9	4	6	11	14
		SZR 16	5	5	- 5	6	4	5	5	5	1	4	6	8
	Krypton 0,04	SZR 12	13	15	14	16	11	12	12	14	9	9	15	18
		SZR 16	6	7	7	8	5	6	6	6	3	4	7	9

Sprosse			Alu-We	ichholz	Alu-H	artholz	Weic	hholz	Har	tholz	P	vc	Ме	etall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w2/s1	Luft 0,9	SZR 12	4	6	6	7	2	3	4	4	-4	3	10	11
		SZR 16	2	6	3	4	О	2	1	3	-5	2	6	7
	Luft 0,1	SZR 12	11	12	11	13	8	9	10	11	3	7	15	18
		SZR 16	4	6	7	7	5	5	6	6	1	4	8	10
	Argon 0,1	SZR 12	13	14	13	16	11	11	12	14	6	9	16	20
		SZR 16	7	7	8	8	6	7	7	8	2	5	9	11
	Krypton 0,04	SZR 12	19	22	20	23	16	18	17	20	13	14	22	26
		SZR 16	9	10	10	11	8	8	8	9	4	6	11	13
w1/s2	Luft 0,9	SZR 12	5	6	7	7	2	3	4	5	-4	3	10	12
		SZR 16	2	6	4	4	0	2	2	3	-6	2	7	8
	Luft 0,1	SZR 12	12	13	12	14	9	9	11	12	3	8	16	19
		SZR 16	4	7	7	8	5	5	6	7	1	5	9	11
	Argon 0,1	SZR 12	14	16	14.	17	12	12	13	15	7	10	18	21
		SZR 16	8	8	8	9	7	7	8	8	2	5	10	12
	Krypton 0,04	SZR 12	20	23	21	25	17	19	18	21	14	15	23	28
		SZR 16	10	11	10	12	8	9	9	10	5	7	11	14
w2/s2	Luft 0,9	SZR 12	6	8	9	9	2	4	5	6	-5	4	13	15
		SZR 16	2	8	4	6	0	2	2	4	-7	2	9	10
	Luft 0,1	SZR 12	15	16	15	18	12	12	14	15	4	10	20	24
		SZR 16	5	9	9	10	6	7	8	8	1	6	11	14
	Argon 0,1	SZR 12	18	19	18	22	15	15	17	18	8	13	23	27
		SZR 16	10	10	11	11	8	9	10	10	3	7	12	15
	Krypton 0,04	SZR 12	26	29	27	32	22	24	24	27	17	19	30	36
		SZR 16	12	14	13	15	10	11	11	13	6	9	15	18

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P۱	VC	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w3/s3	Luft 0,9	SZR 12	9	11	12	13	3	6	7	9	-8	6	20	23
		SZR 16	4	12	6	8	-1	3	3	5	-10	3	13	15
	Luft 0,1	SZR 12	22	23	22	26	17	17	20	21	6	15	30	35
		SZR 16	8	13	14	14	9	10	12	12	1	9	17	20
	Argon 0,1	SZR 12	27	28	27	32	22	22	25	27	12	19	34	39
		SZR 16	15	15	16	17	12	13	14	15	4	10	18	22
	Krypton 0,04	SZR 12	38	43	40	46	32	35	35	39	25	28	44	52
		SZR 16	18	20	19	22	15	16	17	18	8	13	21	26

Abschlußbericht

Tabelle 20 relative Änderung des U-Wertes (in %) von Mehrscheiben-Isolierglas durch eine aufgeklebte Sprosse mit Dichtband und metallisch blanker Sprosse im Scheibenzwischenraum (Typ 2)

Sprosse			Alu-We	eichholz	Alu-H	artholz	Weic	hholz	Hart	holz	P	vc	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w1/s0	Luft 0,9	SZR 12	0	1	1	1	0	1	0	1	-2	1	2	2
		SZR 16	-1	1	-1	1	0	0	0	1	-2	0	1	1
	Luft 0,1	SZR 12	2	3	3	3	2	2	3	3	0	2	4	4
		SZR 16	1	2	1	2	1	1	1	2	0	1	2	2
	Argon 0,1	SZR 12	3	3	4	4	3	3	3	4	1	3	4	5
		SZR 16	2	2	2	2	2	2	2	2	0	1	2	3
	Krypton 0,04	SZR 12	5	6	5	6	5	5	5	6	3	4	6	7
		SZR 16	2	2	3	3	2	2	2	_ 2	1	2	3	3
w0/s1	Luft 0,9	SZR 12	0	1	1	2	0	1	1	1	-2	1	1	2
		SZR 16	-1	1	-1	1	-1	0	0	1	-3	1	0	2
	Luft 0,1	SZR 12	3	3	4	4	3	3	3	3	0	3	3	5
		SZR 16	2	2	2	2	1	2	2	2	0	2	2	3
	Argon 0,1	SZR 12	4	4	4	5	4	4	4	4	2	4	4	6
		SZR 16	2	2	2	3	2	2	2	2	0	2	2	3
	Krypton 0,04	SZR 12	6	7	7	7	6	6	6	7	4	6	5	8
		SZR 16	3	3	3	3	3	3	3	3	1	3	2	4
w1/s1	Luft 0,9	SZR 12	0	2	1	3	0	2	1	2	-4	2	4	4
		SZR 16	-2	1	-1	1	-1	1	0	1	-5	1	2	3
	Luft 0,1	SZR 12	5	6	6	6	5	5	6	6	1	5	8	8
		SZR 16	3	4	3	4	3	3	3	4	-1	3	4	5
	Argon 0,1	SZR 12	7	8	8	8	7	7	8	8	3	6	9	10
		SZR 16	4	4	4	4	4	4	4	4	0	3	5	6
	Krypton 0,04	SZR 12	11	12	12	13	11	11	11	12	7	9	13	15
		SZR 16	5	5	6	6	5	5	5	5	2	4	6	7

	l
	ł
_	
	l
	1
	l
	1
	I
	l

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Har	holz	P۱	/C	Ме	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w2/s1	Luft 0,9	SZR 12	1	3	2	4	0	3	1	3	-6	3	5	6
		SZR 16	-3	2	-2	2	-1	1	0	2	-7	1	3	4
	Luft 0,1	SZR 12	8	9	9	9	7	8	8	9	1	7	11	12
		SZR 16	4	5	4	5	4	5	5	5	-1	4	6	7
	Argon 0,1	SZR 12	11	11	11	12	10	10	11	11	4	9	13	15
		SZR 16	5	6	6	6	5	6	6	6	1	5	7	8
	Krypton 0,04	SZR 12	16	18	17	19	15	16	16	17	11	13	19	21
		SZR 16	8	8	8	8	7	7	8	8	3	6	9	10
w1/s2	Luft 0,9	SZR 12	1	4	2	4	0	3	2	4	-6	3	6	7
		SZR 16	-3	2	-2	2	-2	1	0	2	-7	1	3	4
	Luft 0,1	SZR 12	8	9	9	10	7	9	9	9	1	8	12	13
		SZR 16	4	5	5	6	4	5	5	6	-1	4	7	8
	Argon 0,1	SZR 12	11	12	12	12	11	11	12	12	5	10	14	16
		SZR 16	6	7	6	7	5	7	6	7	1	5	8	9
	Krypton 0,04	SZR 12	18	19	18	20	16	17	17	19	12	14	20	23
		SZR 16	8	8	9	9	7	8	8	8	3	6	10	11
w2/s2	Luft 0,9	SZR 12	1	4	2	5	0	3	2	5	-8	4	7	9
		SZR 16	-4	2	-3	3	-2	2	0	2	-9	2	4	5
	Luft 0,1	SZR 12	10	12	12	13	9	11	11	12	2	10	16	17
		SZR 16	5	7	6	7	5	6	6	7	-1	5	9	10
	Argon 0,1	SZR 12	14	15	16	16	13	14	15	15	6	12	18	20
		SZR 16	7 .	8	8	9	7	8	8	9	1	6	10	11
	Krypton 0,04	SZR 12	22	24	23	25	21	22	22	24	14	18	25	29
		SZR 16	10	11	11	11	9	10	10	11	4	8	12	14

Einfluss von Sprossenkonstruktionen auf den Wärmedurchgang von Fenstern

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hart	holz	P\	/C	Me	etall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w3/s3	Luft 0,9	SZR 12	1	7	3	8	0	5	3	7	-11	6	10	13
		SZR 16	-6	3	-4	4	-3	2	-1	4	-13	2	5	8
1	Luft 0,1	SZR 12	15	18	17	19	14	16	16	18	2	15	23	25
		SZR 16	7	10	9	11	7	9	9	10	-2	8	13	14
	Argon 0,1	SZR 12	21	22	23	23	19	21	22	22	8	18	27	29
		SZR 16	10	12	11	13	10	13	12	13	1	10	15	17
	Krypton 0,04	SZR 12	33	35	34	37	31	32	32	34	21	27	38	42
		SZR 16	15	16	16	17	14	15	15	16	6	12	18	21

ROSENHEIM

 Tabelle 21
 relative Änderung des U-Wertes (in %) von Mehrscheiben-Isolierglas durch eine glasteilende Sprosse (Typ 3)

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz _	Hart	holz	ΡV	vc	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w1/s0	Luft 0,9	SZR 12	-	-	-	_	1	3	2	3	2	3		-
		SZR 16	-	-	-	-	2	3	3	4	2	3	-	-
	Luft 0,1	SZR 12	-	-	-	-	6	7	7	8	6	8	-	-
		SZR 16	-	-		_	8	10	9	11	9	10	-	-
	Argon 0,1	SZR 12	-	-	-	_	9	10	10	11	9	11	-	-
		SZR 16	-	-	-	-	11	13	12	14	11	13	-	-
	Krypton 0,04	SZR 12	-	-	-	-	15	18	18	20	17	19	-	-
		SZR 16	-	-	_	-	15	17	17	19	16	18		-
w0/s1	Luft 0,9	SZR 12	-	_	-	-	2	3	3	4	2	4	-	-
		SZR 16	-	-	-	-	2	4	3	5	3	5	-	-
	Luft 0,1	SZR 12	-	-	-	-	7	9	9	10	8	10	-	-
		SZR 16	-	-	-	-	10	12	12	13	11	13	-	-
	Argon 0,1	SZR 12	-	-	_	-	11	13	12	14	11	14	-	-
		SZR 16	-	-	_	-	13	16	15	17	14	17	-	-
	Krypton 0,04	SZR 12	-	-	-	-	19	22	22	24	21	24	-	-
		SZR 16	_		-	-	19	22	21	24	20	24	_	
w1/s1	Luft 0,9	SZR 12	-	-	-	-	3	6	5	7	4	6	_	-
		SZR 16	-	-	-	-	4	7	6	8	5	7	-	-
	Luft 0,1	SZR 12	-	-	-	-	13	16	16	19	14	17	-	-
		SZR 16	-	-	-	-	18	21	21	24	19	22	-	-
	Argon 0,1	SZR 12	-	-	-	-	19	23	22	25	20	24	-	-
		SZR 16	-	-	-	-	24	28	27	31	25	29	-	-
	Krypton 0,04	SZR 12	-	-	_	~	34	39	39	43	36	41	-	-
		SZR 16	-	-	-	-	33	38	38	42	35	40		_

Abschlußbericht

Anlage 3 Blatt 57

Krypton 0,04

SZR 12

SZR 16

Sprosse			Alu-We	ichholz	Alu-H	artholz	Weic	hholz	Hart	holz	P۱	/C	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w3/s3	Luft 0,9	SZR 12	-	_	-	-	9	17	14	21	11	17	-	-
		SZR 16	-	-	-	-	12	19	17	23	13	20	_	•
	Luft 0,1	SZR 12	-	-	-	_	38	48	45	54	41	50	· _	
		SZR 16	-	-	-	-	50	62	59	69	55	65	-	
	Argon 0,1	SZR 12	-	-	-	-	54	66	63	73	58	69	-	.
		SZR 16	_	-	-	-	68	81	78	90	73	85	_	-
	Krypton 0,04	SZR 12	_	-	-		98	115	111	126	105	120	-	-
		SZR 16	_	_	_	_	95	111	108	123	102	116	-	-

Tabelle 22 relative Änderung des U-Wertes (in %) von Mehrscheiben-Isolierglas durch eine glasteilende Sprosse (Typ 4)

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hari	holz	P	/C	Me	tall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w1/s0	Luft 0,9	SZR 12	3	3	3	4	1	. 2	2	3	3	4	.=	-
		SZR 16	3	4	4	4	2	3	2	3	3	4	-	-
	Luft 0,1	SZR 12	8	9	9	10	6	7	7	8	8	9	-	-
		SZR 16	10	11	11	12	8	9	9	11	11	12	-	
	Argon 0,1	SZR 12	11	12	12	13	8	10	10	11	11	12	-	-
		SZR 16	13	15	15	16	10	12	12	14	14	15		-
	Krypton 0,04	SZR 12	19	21	21	22	15	18	17	20	20	21	-	-
		SZR 16	18	20	20	22	15	17	17	19	19	21	_	-
w0/s1	Luft 0,9	SZR 12	3	4	4	5	2	3	3	4	4	4	-	-
		SZR 16	4	5	5	5	2	3	3	4	4	5	-	-
	Luft 0,1	SZR 12	10	11	11	12	7	9	9	10	10	11	-	_
		SZR 16	13	14	14	16	10	12	11	13	13	15	-	-
	Argon 0,1	SZR 12	13	15	15	16	10	13	12	14	14	16	-	-
		SZR 16	17	19	18	20	13	16	15	17	18	19	-	-
	Krypton 0,04	SZR 12	24	26	26	28	19	22	22	25	25	27	-	-
		SZR 16	23	26	25	27	18	22	21	24	24	26	_	-
w1/s1	Luft 0,9	SZR 12	6	7	7	8	3	5	5	6	6	8	-	-
		SZR 16	7	8	8	10	4	6	5	7	7	9	_	-
	Luft 0,1	SZR 12	17	20	19	22	13	16	15	18	18	20	_	-
		SZR 16	22	25	25	27	17	21	20	24	24	26		-
	Argon 0,1	SZR 12	24	27	26	29	18	22	21	25	25	28	-	-
		SZR 16	29	33	32	35	23	28	27	31	31	34	_	-
	Krypton 0,04	SZR 12	42	46	45	49	34	39	38	43	44	47		-
		SZR 16	41	45	44	48	33	38	37	42	43	46	_	-

Sprosse			Alu-We	ichholz	Alu-Ha	artholz	Weic	hholz	Hari	holz	P\	vc	Me	tali
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w2/s1	Luft 0,9	SZR 12	8	10	10	12	4	7	7	9	9	11	-	-
		SZR 16	10	12	12	14	5	9	8	11	10	13	-	-
	Luft 0,1	SZR 12	25	28	27	31	18	23	22	26	26	29	_	-
		SZR 16	32	36	35	39	25	30	29	34	34	37	_	-
	Argon 0,1	SZR 12	34	39	37	42	26	32	31	36	36	40	-	-
		SZR 16	42	47	46	51	33	40	38	44	45	48	-	-
	Krypton 0,04	SZR 12	60	66	65	71	48	57	54	62	63	68	· -	-
		SZR 16	58	65	63	69	47	55	53	61	61	66	_	_
w1/s2	Luft 0,9	SZR 12	9	11	11	13	5	8	7	10	10	12	-	-
		SZR 16	10	13	13	15	6	9	8	12	11	14	-	-
	Luft 0,1	SZR 12	26	31	30	33	20	25	24	28	28	32	1_	-
		SZR 16	35	39	38	42	27	32	31	36	37	40	-	-
	Argon 0,1	SZR 12	37	42	40	45	28	35	33	39	39	43	-	-
		SZR 16	46	51	50	55	36	43	41	48	48	52	-	-
	Krypton 0,04	SZR 12	64	72	70	77	52	61	59	67	68	73	-	-
· · · · · · · · · · · · · · · · · · ·		SZR 16	63	70	68	75	50	59	57	65	66	71	-	-
w2/s2	Luft 0,9	SZR 12	11	14	13	17	6	10	9	13	12	15	-	-
		SZR 16	13	16	16	19	7	12	11	15	14	17	-	-
	Luft 0,1	SZR 12	34	39	37	42	25	32	30	36	36	40	-	-
		SZR 16	44	50	48	54	34	41	39	46	47	51	-	-
	Argon 0,1	SZR 12	46	53	51	57	36	44	42	49	49	54	_	-
		SZR 16	58	65	63	70	45	54	52	60	61	66	-	-
	Krypton 0,04	SZR 12	82	91	88	97	66	78	74	85	86	93	-	-
		SZR 16	80	89	86	95	64	75	72	83	84	90	-	_

Sprosse			Alu-We	ichholz	Alu-H	artholz	Weic	hholz	Hari	holz	P\	/C	Me	etall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w3/s3	Luft 0,9	SZR 12	16	21	20	24	9	15	13	19	18	23	-	_
		SZR 16	19	24	23	28	11	17	16	22	21	26		_
	Luft 0,1	SZR 12	49	57	55	62	37	46	44	53	53	59	_	-
		SZR 16	64	74	71	80	49	61	58	68	68	76	-	-
	Argon 0,1	SZR 12	68	78	75	84	53	65	61	72	73	80	_ `	-
		SZR 16	85	96	92	103	66	80	76	89	90	98		-
	Krypton 0,04	SZR 12	120	134	130	143	96	114	109	126	127	137	_	-
		SZR 16	117	131	127	140	93	111	106	122	123	133	_	•

Tabelle 23 relative Änderung des U-Wertes (in %) von Mehrscheiben-Isolierglas durch eine glasteilende Sprosse (Typ 5)

Sprosse			Alu-Weichholz		Alu-Hartholz		Weichholz		Hartholz		PVC		Metali	
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w1/s0	Luft 0,9	SZR 12	-1	1	0	1	-1	0	0	1	-1	2	2	4
		SZR 16	-1	1	1	2	0	0	1	1	0	2	3	5
	Luft 0,1	SZR 12	4	5	6	7	4	4	6	6	4	8	9	12
		SZR 16	7	8	9	10	7	7	8	8	6	11	11	15
	Argon 0,1	SZR 12	8	9	9	11	7	. 7	9	9	7	12	12	16
		SZR 16	10	11	12	14	9	9	11	12	9	14	15	20
	Krypton 0,04	SZR 12	15	18	16	21	14	14	17	17	14	21	21	28
		SZR 16	15	17	16	20	14	14	16	17	14	21	21	27
w0/s1	Luft 0,9	SZR 12	-1	1	0	2	-1	0	1	1	-1	2	-1	5
		SZR 16	-1	2	1	3	0	0	1	2	0	3	0	6
	Luft 0,1	SZR 12	6	7	8	9	5	5	7	7	5	10	5	15
		SZR 16	9	10	11	12	8	8	10	11	8	13	8	19
	Argon 0,1	SZR 12	10	11	11	14	9	9	11	11	9	15	9	20
		SZR 16	13	14	14	17	12	12	14	15	11	18	11	24
	Krypton 0,04	SZR 12	19	22	21	26	18	18	21	22	17	27	17	34
		SZR 16	18	21	20	25	17	17	20	21	17	26	17	33
w1/s1	Luft 0,9	SZR 12	-3	2	0	3	-2	-1	1	1	-1	4	4	9
		SZR 16	-1	3	2	5	0	0	2	3	0	5	6	10
	Luft 0,1	SZR 12	10	12	14	15	9	10	13	13	9	17	19	26
		SZR 16	15	17	19	22	14	14	18	19	14	23	25	33
	Argon 0,1	SZR 12	16	18	20	23	15	15	20	20	15	25	27	35
		SZR 16	23	24	25	30	20	21	25	26	20	31	33	43
	Krypton 0,04	SZR 12	33	38	36	45	31	31	37	38	30	47	47	60
		SZR 16	32	36	36	43	30	30	36	37	30	45	45	58

Sprosse			Alu-We	ichholz	Alu-H	artholz	Weic	hholz	Har	tholz	P'	VC	Me	etall
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w2/s1	Luft 0,9	SZR 12	-4	3	0	5	-2	-1	1	2	-2	5	6	12
		SZR 16	-2	5	2	6	0	1	3	4	0	7	8	14
	Luft 0,1	SZR 12	14	17	19	22	13	14	19	19	13	25	27	36
		SZR 16	22	24	27	31	20	21	26	27	20	33	36	47
	Argon 0,1	SZR 12	23	26	28	33	22	22	28	29	22	36	38	50
		SZR 16	32	34	36	42	29	29	36	37	29	45	47	61
	Krypton 0,04	SZR 12	47	53	52	64	44	44	53	55	43	66	67	86
		SZR 16	46	51	51	61	43	43	52	54	42	63	65	83
w1/s2	Luft 0,9	SZR 12	-4	3	0	5	-2	-1	1	2	-2	6	7	13
		SZR 16	-2	5	2	7	0	1	3	4	0	7	9	15
	Luft 0,1	SZR 12	15	18	21	23	14	15	20	20	14	27	29	39
		SZR 16	24	26	29	33	22	22	28	29	22	36	39	50
	Argon 0,1	SZR 12	25	28	31	36	23	24	30	31	23	39	41	54
		SZR 16	35	37	39	46	31	32	39	40	31	48	51	66
	Krypton 0,04	SZR 12	50	58	56	69	48	48	57	59	47	72	72	93
		SZR 16	50	55	55	66	47	47	56	58	46	69	70	90
w2/s2	Luft 0,9	SZR 12	-5	4	0	6	-3	-1	2	3	-2	7	-8	17
		SZR 16	-2	6	3	9	-1	1	4	5	0	9	11	19
	Luft 0,1	SZR 12	18	23	26	29	18	19	25	26	18	34	36	49
		SZR 16	30	33	37	42	27	28	36	37	27	45	48	63
	Argon 0,1	SZR 12	31	35	39	44	29	30	38	39	29	49	52	67
		SZR 16	43	46	50	57	39	40	49	51	39	61	64	82
	Krypton 0,04	SZR 12	64	72	71	85	60	60	73	75	59	90	91	116
		SZR 16	63	69	70	82	59	59	71	73	57	86	89	113

Me	tall	
n	max	
2	24	
3	28	'
3	72	
)	92	
5	98	
3	120	
4	169	

Sprosse		Alu-Weichholz		Alu-Harthoiz		Weichholz		Hartholz		PVC		Metall		
Тур	Isolierglas		min	Max	min	max	min	max	min	max	min	max	min	max
w3/s3	Luft 0,9	SZR 12	-7	6	0	9	-4	-2	3	4	-3	10	12	24
		SZR 16	-3	9	4	13	-1	1	6	8	-1	13	16	28
	Luft 0,1	SZR 12	26	34	37	42	25	27	38	38	26	49	53	72
		SZR 16	42	48	54	60	39	42	53	54	40	65	70	92
	Argon 0,1	SZR 12	45	51	57	64	42	44	57	57	43	71	75	98
		SZR 16	62	66	73	81	57	59	73	74	56	88	93	120
	Krypton 0,04	SZR 12	94	102	104	122	87	89	107	110	86	130	134	169
		SZR 16	92	98	102	117	85	87	105	107	83	124	130	163