

Bemessung von Wärmedämm-**Einheitliche schalltechnische** verbundsystemen

T 3040

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

Im Originalmanuskript enthaltene Farbvorlagen, wie z.B. Farbfotos, können nur in Grautönen wiedergegeben werden. Liegen dem Fraunhofer IRB Verlag die Originalabbildungen vor, können gegen Berechnung Farbkopien angefertigt werden. Richten Sie Ihre Anfrage bitte an die untenstehende Adresse.

© by Fraunhofer IRB Verlag

2004, ISBN 3-8167-6544-0

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.IRBbuch.de

Fraunhofer Institut Bauphysik

Bauaufsichtlich anerkannte Stelle für Prüfung, Überwachung und Zertifizierung -Zulassung neuer Baustoffe, Bauteile und Bauarten - Forschung, Entwicklung, Demonstration und Beratung auf den Gebieten der Bauphysik Institutsleitung Univ.-Prof. Dr.-Ing. habil. Dr. h.c. mult. Dr. E.h. mult. Karl Gertis

IBP-Bericht B-BA 6/2002

Einheitliche schalltechnische Bemessung von Wärmedämm-Verbundsystemen IBP-Projekt-Nr.: 422096, Kurztitel: WDVS

im Auftrag des Deutschen Instituts für Bautechnik (DIBt), Berlin DIBt-Geschäftszeichen P 32-5-5.54-945/00 und des

Fachverbandes Wärmedämm-Verbundsysteme e. V. Fremersbergstraße 33, 76530 Baden-Baden

Dieser Bericht umfaßt:

55 Seiten Text 34 Bilder

4 Tabellen 9 Anhänge mit insges. 13 Seiten

Stuttgart, den 14. Juli 2003 Wb

Bearbeiter:

ساحل

Dr. rer. nat. L. Weber

Abteilungsleiter:

Dr.-Ing. P. Leistner

Bearbeiter:

) Brandstert

Dipl.-Ing. (FH) D. Brandstetter

Institutsleiter:

Prof. Dr. Dr. h.c. mult. Dr. E.h. mult. K. Gertis

Fraunhofer-Institut für Bauphysik

IBP-Bericht B-BA 6/2002

Einheitliche schalltechnische Bemessung von Wärmedämm-Verbundsystemen

im Auftrag des Deutschen Instituts für Bautechnik (DIBt), Berlin und des Fachverbandes Wärmedämm-Verbundsysteme e. V., Baden-Baden

von

L. Weber und D. Brandstetter

Fraunhofer-Institut für Bauphysik (Institutsleiter: Prof. Dr. Dr. h.c. mult. Dr. E.h. mult. K. Gertis)

Inhaltsverzeichnis

1	Aufgabenstellung	4
2	Vorgehensweise	5
3	Grundlagen	7
4	Klassifizierung der Dämmstoffe	11
5	Frequenzverlauf der Schalldämmung	12
6	Meßprogramm	14
6.1	Trägerwand	15
6.2	Genauigkeit der Messungen	16
6.3	Meßergebnisse	17
7	Einzahlangaben	18
8	Datenbank	20
8.1	Dämmsysteme	22
8.2	Trägerwände	23
9	Statistische Grundlagen	25
10	Berechnungsmodell	26
10.1	Vorbereitung	26
10.2	Einfluß der Verdübelung	33
10.3	Einfluß der Klebefläche	35
10.4	Einfluß der Trägerwand	37
10.5	Weitere Einflußgrößen	39
10.6	Berechnungsformeln	40
10.7	Ergebnisse	42
11	Tabelle für Beiblatt 1 zu DIN 4109	44
12	Anwendung des Verfahrens in der Zulassung	46
13	Fehlerbetrachtung	47
14	Luftschallverbesserungsmaß	49
15	Schall-Längsdämmung	51
16	Zusammenfassung	52
17	Literaturverzeichnis	54

Verzeichnis der verwendeten Formelzeichen in Anhang 1

1 Aufgabenstellung

Das Anbringen von Wärmedämm-Verbundsystemen (WDVS) an Außenbauteilen verbessert nicht nur die Wärmedämmung, sondern wirkt sich auch auf die Schalldämmung der Trägerwände aus. Abhängig von der Ausführung des Dämmsystems kann hierbei sowohl eine Erhöhung als auch eine Verminderung der Schalldämmung erfolgen. Die resultierende Änderung des bewerteten Schalldämm-Maßes liegt in der Praxis im Bereich von etwa -10 und +20 dB. Obgleich das akustische Grundprinzip (Masse-Feder-System) hinlänglich bekannt ist, bestehen im Detail noch zahlreiche offene Fragen, die sowohl den praktischen Einsatz als auch den Bereich der Normung und Zulassung betreffen. In dem beauftragten Forschungsvorhaben soll einen Teil dieser Fragen näher untersucht werden, wobei insbesondere folgende Ziele verfolgt werden:

- Entwicklung eines einfachen Verfahrens zur rechnerischen Vorhersage der Längs- und Durchgangsdämmung von Wänden mit WDVS. Als Eingangswerte des Vorhersagemodells dienen neben der Schalldämmung der Trägerwand die Material- und Konstruktionsdaten des WDVS. Um die wesentlichen akustischen Zusammenhänge zu ermitteln, werden im Vorfeld durch statistische Analyse der vorhandenen Meßdaten die maßgeblichen Einflußgrößen ermittelt.
- Klärung des Einflusses der verschiedenen Konstruktionsparameter (Flächenmasse des Putzes, Steifigkeit und Dicke der Dämmschicht, Art der Befestigung, etc.) auf das schalltechnische Verhalten von WDVS. Hierbei ist zu berücksichtigen, daß sich die einzelnen Parameter in ihrer akustischen Wirkung gegenseitig beeinflussen.
- Erstellung einer Tabelle mit den schalltechnischen Kennwerten von WDVS für das neu zu bearbeitende Beiblatt 1 zu DIN 4109 (Bauteilkatalog). Die Tabelle soll das Luftschallverbesserungsmaß der gebräuchlichsten Konstruktionen in Abhängigkeit von den akustisch maßgeblichen Bauteileigenschaften enthalten und als Grundlage für rechnerische Schallschutznachweise dienen (die Berechnung soll in Zukunft nach dem in EN 12354 beschriebenen Verfahren erfolgen).
- Untersuchung des Einflusses von herstellungs- und ausführungsbedingten Schwankungen der Bauteileigenschaften auf die Schalldämmung von

WDVS. Aus der Untersuchung ergeben sich Aussagen über die statistische Sicherheit von Meß- und Berechnungsergebnissen und die Höhe eventuell erforderlicher Vorhaltemaße bei rechnerischen Schallschutznachweisen.

- Untersuchung der Wechselwirkung zwischen Trägerwand und WDVS. Hierbei wird die frequenzabhängige Änderung des Schalldämm-Maßes betrachtet, die ein gegebenes WDVS an einer bestimmten Trägerwand bewirkt. Es soll geklärt werden, wie sich diese Änderung auf andere Trägerwände übertragen läßt, die sich in ihrem Aufbau (Flächenmasse, Baustoff, Lochung) von der Ausgangswand unterscheiden.
- Erarbeitung eines Vorschlags für eine Einzahlangabe zur Beschreibung der akustischen Eigenschaften von WDVS (Luftschallverbesserungsmaß). Die bislang verwendete Differenz der bewerteten Schalldämm-Maße mit und ohne WDVS ist hierzu nur bedingt geeignet, da sie sich auf wohnübliche Geräusche bezieht, während WDVS zumeist Verkehrsgeräuschen ausgesetzt sind, die ein anderes Frequenzspektrum aufweisen.

2 Vorgehensweise

Um die für die Untersuchungen erforderlichen Ausgangsdaten zu ermitteln, wurde in Zusammenarbeit mit dem Fachverband Wärmedämm-Verbundsysteme eine umfangreiche Meßreihe an ingesamt vierundzwanzig WDVS mit je drei Putzstärken durchgeführt. Alle Messungen erfolgten an der gleichen Trägerwand, so daß die Ergebnisse direkt miteinander vergleichbar waren. Prüfobjekte und Einbaubedingungen wurden so gewählt, daß sich einerseits ein repräsentativer Querschnitt über die marktüblichen Systeme ergab und andererseits durch systematische Variation der Einflußgrößen der akustische Einfluß einzelner Konstruktionsparameter ermittelt werden konnte. Die Messungen erfolgten in zweiwöchigem Zyklus in einem Wandprüfstand ohne Flankenübertragung und nahmen einen Zeitraum von mehr als einem Jahr in Anspruch. Vor dem Beginn der Meßreihe wurden Vorversuche durchgeführt, um den Einfluß des Trocknungsverhaltens und der Art des Putzauftrags auf die Schalldämmung zu bestimmen.

Wegen der Vielzahl möglicher Systemvarianten und des Einflusses der Befestigungsart und der Trägerwand auf das akustische Verhalten von WDVS reichte die durchgeführte Meßreihe alleine noch nicht aus, um einen vollständigen Satz von Ausgangsdaten zu erhalten. Deshalb wurden zusätzlich weitere Meßdaten von WDVS gesammelt und in anonymisierter Form in einer Datenbank zusammengestellt. Die gesammelten Daten stammen aus Prüfungen des Fraunhofer-Instituts für Bauphysik und der Materialprüfanstalt Braunschweig und enthalten neben der gemessenen Schalldämmung auch detaillierte Angaben über den Aufbau der geprüften Systeme.

Die angelegte Datenbank diente als Grundlage zur Entwicklung eines Berechnungsmodells, mit sich die Schalldämmung von WDVS vorhersagen läßt. Um ein möglichst einfaches und vielseitiges Verfahren zu erhalten, wurde das Modell so konzipiert, daß sich als Berechnungsergebnis die Verbesserung des bewerteten Schalldämm-Maßes durch das WDVS,

$$\Delta \mathbf{R}_{\mathbf{w}} = \mathbf{R}_{\mathbf{w},\mathbf{m}} - \mathbf{R}_{\mathbf{w},\mathbf{o}} , \qquad (1)$$

mit $R_{w,m}$ = Schalldämmung der Wand mit WDVS, $R_{w,o}$ = Schalldämmung der Wand ohne WDVS,

ergibt. Die Schalldämmung einer Wand mit WDVS wird demnach ermittelt, indem man zum bewerteten Schalldämm-Maß der Trägerwand, $R_{w,o}$, das berechnete Verbesserungsmaß des WDVS, ΔR_w , addiert. Das Schalldämm-Maß der Trägerwand kann z. B. aus DIN 4109 (Beiblatt 1, Tabelle 1) entnommen werden, wo es als Funktion der Flächenmasse angegeben ist [1], [2]. Eine höhere Genauigkeit erhält man, wenn man neben der Flächenmasse auch die Art und die Rohdichte des verwendeten Baustoffs berücksichtigt [3], [4]. Entsprechende Forschungsarbeiten finden derzeit z. B. an der Fachhochschule Stuttgart -Hochschule für Technik (HfT) statt.

Neben den beschriebenen Arbeiten, die sich mit der Durchgangsdämmung von WDVS beschäftigten, wurden außerdem Messungen zur Untersuchung der Schall-Längsdämmung durchgeführt. Hierbei erfolgten sowohl Messungen an ganzen Wänden (Kombination von Längs- und Querwand im Diagonalprüfstand des Fraunhofer-Instituts für Bauphysik) als auch an verkleinerten Modellen. Es wurden verschiedene Arten von Trägerwänden und WDVS untersucht, so daß nunmehr ein ausreichender Überblick über den Einfluß von WDVS auf die Längs- und Stoßstellendämmung von Wänden besteht. Die gewonnenen Erkenntnisse über die Schall-Längsdämmung wurden durch Messungen der Körperschall-Nachhallzeit sowie Schwingungsmessungen auf Trägerwand und Putzschicht ergänzt und untermauert. Die Untersuchungen zur Schall-Längsdämmung erfolgten größtenteils im Auftrag des Bundesamtes für Bauwesen und Raumordnung (BBR) und sind im Bericht B-BA 4/2002 (wird in Kürze fertiggestellt) ausführlich beschrieben [5]. Die Ausführungen im vorliegenden Bericht beschränken sich deshalb auf eine kurze Zusammenfassung der wichtigsten Ergebnisse.

3 Grundlagen

Wärmedämm-Verbundsysteme bestehen aus Dämmstoff-Platten (in der Regel aus Polystyrol oder Mineralfaser), die mit Klebemörtel an der Trägerwand befestigt und anschließend verputzt werden. Die Verklebung erfolgt zumeist teilflächig und kann durch eine zusätzliche Verdübelung verstärkt werden. Eine schematische Darstellung des Aufbaus ist in Bild 1 wiedergegeben.

Zur Veranschaulichung des akustischen Verhaltens von WDVS kann ein stark vereinfachtes Modell herangezogen werden, bei dem die Putzschicht und die Trägerwand durch starre Massen und die Dämmschicht durch eine Feder nachgebildet werden (siehe Bild 1). Die akustischen Eigenschaften eines solchen Systems werden durch seine Resonanzfrequenz f_R bestimmt, die sich gemäß

$$f_{\rm R} = \frac{1}{2\pi} \sqrt{s' \frac{m''_{\rm W} + m''_{\rm P}}{m''_{\rm W} \cdot m''_{\rm P}}},$$
 (2)

mit m"_w = Flächenmasse der Trägerwand,
 m"_P = Flächenmasse der Putzschicht,
 s' = E/d = dynamische Steifigkeit der Dämmschicht,
 E = Elastizitätsmodul des Dämmstoffs

berechnen läßt. Bei anisotropen Dämmstoffen, wie z. B. Mineralfaser, bezeichnet E den Elastizitätsmodul senkrecht zur Wandfläche. Da die Putzschicht zumeist sehr viel leichter als die Trägerwand ist (m"_P << m"_W), kann letztere als praktisch unbeweglich angesehen werden und GI. (2) geht in

$$f_{\rm R} \cong \frac{1}{2\pi} \sqrt{\frac{{\bf s}'}{{\bf m}''_{\rm P}}}, \qquad (3)$$

über. Als Zahlenwertgleichung geschrieben, ergibt sich hieraus der bekannte Ausdruck

$$f_R \simeq 160 \sqrt{\frac{s'}{m'_P}} Hz$$
, (4)

wobei s' in MN/m³ und m''_P in kg/m² einzusetzen ist.

In Bild 2 ist die durch ein WDVS bewirkte Verbesserung der Schalldämmung über der Frequenz aufgetragen. Die dargestellte Kurve wurde an einem System aus elastifiziertem Polystyrol mit d= 80 mm, s' = 10 MN/m³ und m"_P = 8 kg/m² gemessen. Es handelt sich um eine typische Meßkuve, wie sie in ähnlicher Form an vielen WDVS zu beobachten ist. Der Kurvenverlauf läßt sich in vier charakteristische Abschnitte unterteilen:

- Weit unterhalb der Resonanzfrequenz (f << f_R) verhalten sich Putzschicht und Trägerwand wie ein starres Gebilde. Die Putzschicht wirkt wie eine Beschwerung der Trägerwand, wodurch sich eine Verbesserung der Schalldämmung um $\Delta R = 10 \text{ lg}([\text{m''}_W + \text{m''}_P]/\text{m''}_W) \text{ dB ergibt. Wegen m''}_P << \text{m''}_W$ ist diese Verbesserung in der Praxis in den meisten Fällen vernachlässigbar ($\Delta R \cong 0$).
- Im Bereich der Resonanzfrequenz ($f \cong f_R$) schwingen Putzschicht und Trägerwand gegenphasig und mit großer Amplitude, so daß eine Verschlechterung der Schalldämmung eintritt ($\Delta R < 0$). Die Tiefe des Dämmungseinbruchs hängt von der inneren Dämpfung des Dämmstoffs ab, die durch den

8

Verlustfaktor η gekennzeichnet wird. Ein niedriger Verlustfaktor, d. h. geringe Dämpfung, bewirkt eine starke Verminderung der Schalldämmung im Resonanzbereich.

- Oberhalb der Resonanzfrequenz ($f > f_R$) tritt eine Verbesserung der Schalldämmung ein, die bei niedriger Dämpfung theoretisch mit 40 lg(f/f_R) = 12 dB/Oktave mit der Frequenz anwächst. Bei stark gedämpften Systemen ist zwar ein schwächerer Anstieg zu erwarten, doch bleiben die gemessenen Werte auch dann zumeist deutlich hinter dem theoretischen Kurvenverlauf zurück.
- Bei hohen Frequenzen (f > f_E) knickt die Meßkurve ab und die Verbesserung wird wieder kleiner. Dieser Effekt, der in dem einfachen Masse-Feder-Modell nicht zum Ausdruck kommt, ist auf Dickenschwingungen in der Dämmschicht zurückzuführen [6]. Die Frequenz, bei der dieser Effekt einsetzt, wird im folgenden als Eckfrequenz f_E bezeichnet.

Bei Dickenschwingungen handelt es sich um stehende Wellen, die dann auftreten, wenn die Dämmstoffdicke dem ganzzahligen Vielfachen einer halben Wellenlänge entspricht:

$$f_{E,n} = \frac{n}{2d} \sqrt{\frac{E}{\rho}} = \frac{n}{2} \sqrt{\frac{s'}{d\rho}}, \quad n = 1, 2, 3, ...$$
 (5)

mit ρ = Dichte des Dämmstoffs.

Die Eckfrequenz entspricht der niedrigsten Frequenz, bei der sich stehende Wellen ausbilden können. Sie ergibt sich durch Einsetzen von n = 1 in GI. (5):

$$f_{\rm E} = \frac{1}{2} \sqrt{\frac{\rm s'}{\rm d\,\rho}} \,. \tag{6}$$

In Bild 2 sind neben den gemessenen Werten noch zwei weitere Frequenzverläufe aufgetragen, die mit unterschiedlichen Modellen berechnet wurden. Die verwendeten Modelle sind oberhalb der abgebildeten Kurven dargestellt. Die Resonanzfrequenz und der Verlustfaktor wurden jeweils so angepaßt, daß sich im Bereich von f_R bzw. f_E eine möglichst gute Übereinstimmung zwischen Messung und Rechnung ergab. Die Nachbildung der Dickenschwingungen gelingt am besten bei Verwendung eines hohen Verlustfaktors, was jedoch im Bereich der Resonanzfrequenz zu einer unerwünschten Abflachung des Dämmungseinbruchs führt.

Ein befriedigende Beschreibung der gemessenen Schalldämmung im gesamten bauakustischen Frequenzbereich ist mit den dargestellten Modellen nicht möglich. Dies ist in Anbetracht der stark vereinfachten Betrachtung auch nicht überraschend. Die Putzschicht und die Trägerwand verhalten sich bei hohen Frequenzen nicht wie starre Massen, sondern wie biegsame Platten, auf denen sich Biegewellen ausbreiten können. Weitere Abweichungen ergeben sich durch die Kontaktsteifigkeit an der Klebefläche und die Entstehung von Körperschallbrükken zwischen Putzschicht und Trägerwand bei der Verwendung von Dübeln. Ersteres ist vor allem bei teilflächiger Verklebung der Fall, da hier die verbleibenden Hohlräume als Luftfeder wirken und die Steifigkeit der Dämmschicht herabsetzen. Des weiteren hat auch die Randeinspannung der Putzschicht und der Trägerwand Einfluß auf die Schalldämmung. Infolge dieser Effekte ergeben sich komplizierte akustische Verhältnisse, die auch bei Verwendung aufwendiger numerischer Berechnungsprogramme, wie etwa dem im Fraunhofer-Institut für Bauphysik vorhandenen Programm LAYERS, mit dem sich die Schalldämmung mehrlagiger, großflächiger Platten in Abhängigkeit von den Materialeigenschaften berechnen läßt, zu Problemen führen [7].

Gemäß der dargestellten Zusammenhänge erscheint es sinnvoll, eine möglichst niedrige Resonanzfrequenz des WDVS anzustreben, damit im maßgeblichen Frequenzbereich (für die Ermittlung des bewerteten Schalldämm-Maßes R_w ist dies der Bereich von 100 bis 3150 Hz) eine möglichst große Verbesserung der Schalldämmung vorhanden ist. Bezieht man allerdings die Spektrum-Anpassungswerte C und C_{tr} mit in die Betrachtung ein, so ergeben sich kompliziertere Verhältnisse, da hier der Resonanzeinbruch der Schalldämmung stärker bewertet wird und ein anderes Anregungsspektrum sowie gegebenenfalls ein erweiterter Frequenzbereich (von 50 bis 5000 Hz) zur Beurteilung herangezogen werden. Dies macht sich vor allem bei schwach gedämpften Systemen mit niedriger Resonanzfrequenz bemerkbar und kann dazu führen, daß diese Systeme, obgleich sie R_w erheblich vergrößern, bezogen auf ($R_w + C_{tr,50-5000}$) eine Ver-

schlechterung der Schalldämmung bewirken. Auf diese Zusammenhänge wird später noch genauer eingegangen.

4 Klassifizierung der Dämmstoffe

Für die durchgeführten Untersuchungen ist sinnvoll, die betrachteten Dämmstoffe anhand ihrer akustischen Eigenschaften in Klassen einzuteilen. Die beiden Hauptgruppen bilden hierbei die Mineralfaser- und die Polystyrol-Systeme, die sich durch ihren Strömungswiderstand und die Materialstruktur voneinander unterscheiden. Beim Polystyrol ist wiederum zwischen expandiertem Polystyrol-Hartschaum (EPS) und elastifiziertem expandiertem Polystyrol-Hartschaum (im folgenden als EEPS bezeichnet) zu unterscheiden. Letzteres wird nach der Herstellung einer mechanischen Vorbehandlung unterzogen, die die Elastizität des Materials erhöht. Dämmplatten aus EEPS weisen deshalb bei gleicher Dicke eine geringere dynamische Steifigkeit als EPS-Platten auf.

Bei den Mineralfaser-Dämmstoffen kommen Mineralfaser-Putzträgerplatten (MFP) und Mineralfaser-Lamellenplatten (MFL) zum Einsatz. Der wesentliche Unterschied zwischen den beiden Dämmstoffarten besteht darin, daß bei den Putzträgerplatten die Faserrichtung parallel zur Oberfläche verläuft, während sie bei den Lamellenplatten senkrecht zur Oberfläche gerichtet ist. Dies hat zur Folge, daß sich für MFL-Platten eine höhere dynamische Steifigkeit als für MFP-Platten ergibt.

Da eine weitere Differenzierung im Hinblick auf das Forschungsziel nicht sinnvoll erscheint, wird im weiteren zwischen den vier folgenden Dämmstofftypen unterschieden:

- EPS expandierte Polystyrol-Hartschaumplatten,
- EEPS elastifizierte EPS-Platten,
- MFP Mineralfaser-Putzträgerplatten,
- MFL Mineralfaser-Lamellenplatten.

12

Bei Polystyrol-Systemen, bei denen der Dämmstofftyp aus den vorliegenden Angaben nicht klar hervorging (dies betraf nur wenige Systeme), wurde die Unterscheidung anhand des Elastizitätsmoduls vorgenommen. Hierbei wurden Platten mit $E \le 1$ MPa als EEPS und Platten mit E > 1 MPa als EPS eingestuft. Gleichermaßen wurde auch bei den Mineralfaser-Systemen verfahren. Der Grenzwert von $E \le 1$ MPa wurde nach Sichtung der vorhandenen Daten anhand akustischer Kriterien festgelegt.

5 Frequenzverlauf der Schalldämmung

In Anbetracht der in Ziffer 3 beschriebenen Probleme stellt sich die Frage, wie gut sich der Frequenzverlauf der gemessenen Schalldämmung durch die vorhandenen Berechnungsmodelle nachbilden läßt. In Bild 3 ist die Verbesserung der Schalldämmung durch WDVS an vier typischen Beispielen dargestellt. Die Beispiele wurden so gewählt, daß alle Dämmstoffarten vertreten sind. Obgleich alle Meßkurven übereinstimmende Merkmale aufweisen, bestehen im Detail erhebliche Unterschiede, die die mathematische Beschreibung erheblich erschweren.

Eine weitere Voraussetzung für die rechnerische Vorhersage des Frequenzverlaufs ist, daß die nach den GI. (3) und (5) berechneten Werte für Resonanzund Eckfrequenz mit den gemessenen Werten übereinstimmen. Um dies zu überprüfen, wurde das Verhältnis aus gemessener und berechneter Resonanzfrequenz, $f_{R,g}/f_{R,b}$, in Bild 4 in Abhängigkeit von der berechneten Resonanzfrequenz aufgetragen. Hierbei wurden alle Werte herangezogen, bei denen sich $f_{R,g}$ eindeutig aus den gemessenen Schalldämmkurven ablesen ließ (insgesamt ca. 140 Werte). Die Ergebnisse weisen eine starke Streuung um den Wert $f_{R,g}/f_{R,b} = 1$ auf (bei diesem Wert stimmen Messung und Rechnung überein), lassen jedoch keinen systematischen Zusammenhang erkennen. Im Mittel stimmen die gemessenen und die berechneten Werte in etwa überein.

Eine mögliche Ursache für die auftretenden Abweichungen ist die Kontaktsteifigkeit an der Klebefläche, die gemäß

$$\mathbf{s'}_{R} = \left(\frac{1}{\mathbf{s'}_{D}} + \frac{1}{\mathbf{s'}_{K}}\right)^{-1} = \frac{\mathbf{s'}_{D}}{1 + \mathbf{s'}_{D}/\mathbf{s'}_{K}},$$
 (7)

mit s'_R = resultierende dynamische Steifigkeit der Dämmung

s'_D = dynamische Steifigkeit der Dämmplatten,

s'_K = Kontaktsteifigkeit an der Klebefläche,

die dynamische Steifigkeit der Dämmung (d. h. des aus Verklebung und Dämmplatten bestehenden Gesamtsystems) vermindert. Wie aus Gl. (7) hervorgeht, wirkt sich die Kontaktsteifigkeit in folgenden Fällen besonders stark auf die Resonanzfrequenz von WDVS aus:

- bei niedrigem Klebeflächenanteil (dann ist die Kontaktsteifigkeit wegen der vorhandenen Hohlräume besonders gering),
- bei Dämmplatten mit hoher dynamischer Steifigkeit.

Um den Einfluß der Kontaktsteifigkeit zu untersuchen, wurden die Meßdaten nach dem prozentualen Klebeflächenanteil geordnet und über der dynamischen Steifigkeit der Dämmplatten aufgetragen. Die Ergebnisse sind ebenfalls in Bild 4 dargestellt. Sie liefern keine eindeutigen Aussagen über die akustischen Zusammenhänge. Es fällt jedoch auf, daß bei vollflächiger Verklebung im Mittel die geringsten Abweichungen zwischen gemessener und berechneter Resonanzfrequenz auftreten und daß bei einem Klebeflächenanteil von 60 % die gemessene Resonanzfrequenz durchgängig über dem berechneten Wert legt. Letzteres ist noch erklärungsbedürftig.

Die gleiche Darstellung wie für die Resonanzfrequenz wurde auch für die Eckfrequenz erstellt (s. Bild 5). Auch hier sind starke Abweichungen zwischen der gemessenen und der berechneten Eckfrequenz vorhanden. Im Gegensatz zur Resonanzfrequenz ist bei der Eckfrequenz jedoch ein deutlicher Trend erkennbar: Bei niedrigen Eckfrequenzen liegt der gemessene zumeist über dem berechneten Wert, bei hohen Frequenzen ist es gerade umgekehrt. Ein Erklärung hierfür gibt es bislang ebenfalls noch nicht. Vermutlich - dies läßt sich aus den Meßergebnissen allerdings nicht zweifelsfrei ableiten - spielt bei der Lage der Eckfrequenz auch die Art des Dämmstoffs eine Rolle. So ist z. B. denkbar, daß bei Dämmstoffen mit niedrigem Strömungswiderstand in der im Material enthaltenen Luft unabhängig vom Fasergerüst ebenfalls stehende Wellen auftreten, die die Eckfrequenz verschieben. Dies muß jedoch noch näher untersucht werden.

Ingesamt ist festzustellen, daß die frequenzabhängige Berechnung der Schalldämmung von WDVS mit großer Unsicherheit behaftet ist. Sie wird deshalb im Rahmen dieses Forschungsvorhabens nicht weiter verfolgt.

6 Meßprogramm

Um Erkenntnisse über der Einfluß des Dämmstoffs und der Konstruktionsparameter auf die Schalldämmung von WDVS zu gewinnen und Ausgangsdaten für ein Berechnungsmodell bereitzustellen, wurde im Fraunhofer-Institut für Bauphysik eine Meßreihe an vierundzwanzig verschiedenen WDVS vorgenommen. Die Messungen erfolgten in einem Wandprüfstand mit unterdrückter Flankenübertragung nach DIN EN ISO 140-1 [8] (Prüfstand P2) und wurden in Anlehnung an DIN EN 20140-3 [9] durchgeführt.

Alle Systeme wurden an der gleichen Trägerwand angebracht, so daß immer die gleichen Randbedingungen (Wandabmessungen, Randeinspannung, akustische Eigenschaften der Prüfräume, etc.) vorlagen und eine gute Vergleichbarkeit der Meßergebnisse gewährleistet war. Jedes WDVS wurde nacheinander mit drei verschieden dicken Putzschichten aus Klebe- und Armierungsmörtel versehen. Um die Messungen in einem angemessenen Zeitrahmen durchführen zu können, erfolgte der Putzauftrag stufenweise, d. h. auf die bereits vorhandene Putzschicht wurde jeweils eine weitere Lage aufgebracht. Für die Flächenmassen der Putzschichten bestanden folgende Vorgaben:

1. Lage: $m''_P = 6 \pm 2 \text{ kg/m}^2$,1. + 2. Lage: $m''_P = 15 \pm 3 \text{ kg/m}^2$,1. + 2. + 3. Lage: $m''_P = 30 \pm 5 \text{ kg/m}^2$.

Nach einer Trocknungszeit von drei bis fünf Tagen (abhängig von der Gesamtdicke der Putzschicht) wurde die resultierende Schalldämmung gemessen und sofern erforderlich die nächste Putzlage aufgebracht. Hierdurch gelang es, die Belegungsdauer des Prüfstandes auf zwei Wochen je WDVS zu beschränken. Diese Vorgehensweise, obgleich aus zeitlichen Gründen unumgänglich, hatte den Nachteil, daß nur die Gesamtmasse aller drei Putzlagen beim Abriß des WDVS durch Wägung bestimmt werden konnte, während für die erste und zweite Putzlage nur Richtwerte vorlagen. Im folgenden werden Meßaufbau und Ergebnisse der durchgeführten Untersuchungen in kurzer Form beschrieben.

6.1 Trägerwand

Als Trägerwand für die untersuchten WDVS diente eine Wand aus Kalksand-Vollsteinen mit einer Rohdichte von 1813 kg/m³ und einer Dicke von 175 mm. Die Innenseite der Wand war mit einer 10 mm dicken Schicht aus Kalkgipsputz versehen. Die flächenbezogene Masse der Wand betrug 360 kg/m².

Während des durchgeführten Meßprogramms, das einen Zeitraum von etwa einem Jahr in Anspruch nahm, wurde die Schalldämmung der Trägerwand mehrfach gemessen. Wie aus den in Bild 6 dargestellten Meßkurven zu ersehen ist, verringerte sich das bewertete Schalldämm-Maß der Wand in dieser Zeit um 2 dB. Da diese Änderung bei der Auswertung der Messungen (d. h. bei der Berechnung der Differenz der Schalldämm-Maße mit und ohne WDVS) berücksichtigt wurde, ist die hierdurch verursachte Ungenauigkeit nur verhältnismäßig gering.

Bild 7 zeigt die Grenzdämmung des Prüfstands P2, in dem die Messungen durchgeführt wurden. Zum Vergleich ist außerdem die Meßkurve eingezeichnet, die für das WDVS mit der höchsten gemessenen Schalldämmung ermittelt wurde. Abgesehen von Frequenzen oberhalb von 3150 Hz ist im gesamten Frequenzbereich ein ausreichender Abstand zur Grenzdämmung vorhanden. Die Werte bei hohen Frequenzen sind von untergeordneter Bedeutung, da sie bei der Berechnung von Einzahlangaben praktisch nicht ins Gewicht fallen.

6.2 Genauigkeit der Messungen

Bei der Interpretation der Meßergebnisse (Ermittlung von Einflüssen, Ableitung mathematischer Zusammenhänge) ist es erforderlich, die statistischen Genauigkeit der vorhandenen Daten zu berücksichtigen, da ansonsten die Gefahr besteht, aus den Daten falsche Schlüsse zu ziehen. Im folgenden wird deshalb anhand einer vereinfachten Betrachtung der vorhandenen Fehlerquellen eine Abschätzung der statistischen Genauigkeit vorgenommen. Die Abschätzung bezieht sich auf das bewertete Schalldämm-Maß Rw:

- Die Meßgenauigkeit der verwendeten Prüfeinrichtung (Meßgerät und Prüf-_ stand) ist als Fehlerquelle im Vergleich zu den übrigen Störeinflüssen von untergeordneter Bedeutung. Eine Ausnahme hiervon bilden tiefe Frequenzen, bei denen wegen modaler Schallfelder in den Prüfräumen eine erhöhte Meßunsicherheit vorhanden ist.
- Die Schalldämmung der Trägerwand verringerte sich während der Meßreihe ---durch Alterung um 2 dB. Da dies wie schon erwähnt bei der Auswertung berücksichtigt wurde, ist der hierdurch verursachte Fehler im Mittel vergleichsweise gering (weniger als 1 dB).
- Durch Unterschiede bei der Trocknungsdauer der Systeme ist den durchgeführten Vorversuchen zufolge mit Schwankungen der Schalldämmung in Höhe von etwa 1 dB zu rechnen.
- Die Vorgaben hinsichtlich der Verklebung der WDVS (40 % Klebefläche, Auftragung des Klebemörtels im Rand-Wulst-Verfahren mit drei zusätzlichen Klebepunkten in Plattenmitte bzw. 60 % Klebefläche, gleichmäßige Auftragung mit 10 mm-Zahntraufel) konnten in der Praxis nur näherungsweise eingehalten werden. Der hierdurch verursachte Fehler liegt schätzungsweise ebenfalls bei etwa 1 dB.
- Die Flächenmasse der Putzschicht entsprach nicht genau den Richtwerten. Für die Gesamtmasse nach Aufbringen der 3. Lage (Richtwert 30 \pm 5 kg/m²) wurden folgende Werte ermittelt:

Minimum:	m" = 24,0 kg/m ² ,
Maximum:	m'' = 35,0 kg/m ² ,
Mittelwert:	m'' = 30,3 kg/m ² ,
Standardabweichung:	m'' = 4,1 kg/m ² .

16

Aus diesen Werten ergibt sich anhand der Verschiebung der Resonanzfrequenz ein resultierender Fehler von etwa 1 bis 2 dB.

Aus den angegebenen Einzelfehlern ergibt sich bei Anwendung des Fehlerfortpflanzungsgesetzes für das bewertete Schalldämm-Maß ein Gesamtfehler von etwa 2 bis 3 dB. Die teilweise statistische Kompensation der Einzelfehler ist hierin bereits berücksichtigt. Da es sich bei dem angegebenen Fehler um einen statistischen Wert handelt, können sich beim Vergleich einzelner Datensätze durchaus geringere Abweichungen ergeben, sofern die Daten unter gleichen Bedingungen gemessen wurden. Dies ist jedoch im allgemeinen nicht der Fall.

6.3 Meßergebnisse

Die wichtigsten Ergebnisse der durchgeführten Messungen sind in Tabelle 1 und in den Bildern 8 bis 12 dargestellt. Hier eine kurze Zusammenfassung der wesentlichen Punkte:

- Eine Verbesserung des bewerteten Schalldämm-Maßes erfolgt vor allem bei EEPS- und MFP-Systemen (die Verbesserung kann bis zu 19 dB betragen).
 Bei MFL-Systemen tritt dagegen eine Verminderung der Schalldämmung ein.
 Standard-EPS-Systeme können je nach Aufbau eine geringe Verbesserung oder Verminderung des bewerteten Schalldämm-Maßes zeigen.
- Die Resonanzfrequenz ist zur Beschreibung der akustischen Eigenschaften von WDVS alleine nicht ausreichend.
- Beim Einsatz von Dübeln ergibt sich zumeist eine Verminderung der Schalldämmung gegenüber dem unverdübelten Zustand, die bei Systemen mit niedriger Resonanzfrequenz besonders deutlich ausfällt. Bei schalltechnisch ungünstigen WDVS, wie z. B. MFL-Systemen, können Dübel unter Umständen jedoch eine geringe Verbesserung der Schalldämmung bewirken.
- Eine Erhöhung der prozentualen Klebefläche hat generell eine Verminderung der Schalldämmung zur Folge.
- Die Verbesserung der Schalldämmung durch Erhöhung der Putzmasse ist bei weichen Dämmstoffen stärker ausgeprägt als bei steifen Materialien (dies gilt nicht bei verdübelten Systemen).

 Ein Vergleich der Befestigung mit Halteleisten und der Verklebung von WDVS liefert kein eindeutiges Ergebnis.

7 Einzahlangaben

In der bauakustischen Praxis sind Einzahlangaben nach wie vor die wichtigsten Beurteilungs- und Berechnungsgrößen, da sie einfach zu handhaben sind und eine direkte Aussage über die akustische Qualität von Bauteilen im Verhältnis zueinander und im Vergleich mit Schallschutzanforderungen ermöglichen. Aus diesem Grund wird auch bei dem entwickelten Berechnungsmodell für die Schalldämmung von WDVS von Einzahlangaben ausgegangen. Hierbei stellt sich die Frage, welche Einzahlangaben für den vorliegenden Anwendungsfall am besten geeignet sind.

Zunächst ist festzustellen, daß sich das bewertete Schalldämm-Maß R_w für die Beurteilung von Außenbauteilen im allgemeinen weniger gut eignet. Hierfür gibt es zwei Gründe: Zum einen orientiert sich das bewertete Schalldämm-Maß an wohnüblichen Geräuschen (menschliche Sprache, Radio, Fernsehen, etc.), deren Frequenzspektrum in vielen Fällen näherungsweise durch rosa Rauschen (d. h. gleiche Schallenergie in allen Terzbändern) beschrieben wird. Demgegenüber sind WDVS zumeist Verkehrslärm ausgesetzt, bei dem der tieffrequente Anteil des Spektrums in der Regel erheblich stärker ausgeprägt ist. Des weiteren werden Dämmungseinbrüche, wie sie bei WDVS im Bereich der Resonanzfrequenz auftreten, durch das bewertete Schalldämm-Maß nur unzureichend berücksichtigt, so daß eine zu hohe Schalldämmung vorgetäuscht wird [10].

Diese Probleme lassen sich beheben, wenn statt R_w die Summe aus R_w und C bzw. R_w und C_{tr} herangezogen wird, die die Verminderung des A-Schallpegels durch das betrachtete Bauteil bezogen auf das jeweils zugrundeliegende Anregungsspektrum beschreibt und damit dem menschlichen Höreindruck sehr nahe kommt. Welcher der beiden Spektrum-Anpassungswerte anzuwenden ist, hängt von der Art der einwirkenden Geräusche ab. Bei Außenlärm ist in den meisten Fällen C_{tr} die maßgebende Größe (z. B. bei Geräuschen des städtischen Straßenverkehrs und bei Fluglärm).

Nach DIN EN ISO 717-1 [11] kann die Berechnung von C_{tr} für vier verschiedene Frequenzbereiche erfolgen: für 50 bis 3150 Hz, 50 bis 5000 Hz, 100 bis 3150 Hz und 100 bis 5000 Hz. Ob bis 3150 oder 5000 Hz gerechnet wird, ist in der Regel von untergeordneter Bedeutung, weil sich die beiden Terzen bei 4000 und 5000 Hz kaum auf das Ergebnis auswirken. Da bei bauakustische Messungen mittlerweile fast immer bis 5000 Hz gemessen wird, liegt es nahe, dies auch bei der Berechnung von C_{tr} so zu handhaben.

Schwieriger ist die Frage, ob auch die drei Terzen bei 50, 63 und 80 Hz in die Berechnung einbezogen werden sollen. Wird C_{tr} unter Berücksichtigung dieses Frequenzbereichs ermittelt, so ergeben sich für WDVS mit niedriger Resonanzfrequenz, bei denen die Verbesserung von R_w zumeist sehr hoch ausfällt, häufig betragsmäßig große C_{tr}-Werte mit negativem Vorzeichen (bis zu -30 dB), so daß sich die Verbesserung der Schalldämmung bezogen auf (R_w + C_{tr}) erheblich vermindert oder sogar in eine Verschlechterung übergeht. Ein Beispiel hierfür ist das in Bild 7 dargestellte WDVS (es handelt sich um ein EEPS-System mit einer dynamischen Steifigkeit von s' = 4 MN/m³, einer Dämmstoffdicke von d = 140 mm und einer Putzmasse von m"_P = 34 kg/m²), für das sich folgende Einzahlangaben ergeben: $\Delta R_w = 19 \text{ dB}$, C_{tr,50-5000} = -27 dB und $\Delta (R_w + C_{tr,50-5000}) = -3 \text{ dB}$. Dies zeigt in Übereinstimmung mit praktischen Erfahrungen, daß WDVS, selbst wenn sie rechnerisch eine Verbesserung des bewerteten Schalldämm-Maßes bewirken, die subjektiv empfundene Schalldämmung unter Umständen verschlechtern können.

Da das menschliche Gehör auch Geräusche mit einer Frequenz von 50 Hz noch deutlich wahrnimmt, wäre es im Sinne einer hörgerechten Beurteilung der Schalldämmung eigentlich angebracht, für Außenbauteile als Einzahlangabe ($R_w + C_{tr,50-5000}$) heranzuziehen. Andererseits sind Schalldämm-Messungen unter 100 Hz selbst in dafür ausgelegten Prüfständen und bei erhöhter Anzahl von Mikrofon- und Lautsprecherpositionen (Messung nach Anhang F zu DIN EN 20140-3) sehr ungenau. Dies gilt in verstärktem Maße für Messungen am Bau. Hinzu kommt, daß Messungen unter 100 Hz nicht verbindlich vorgeschrieben

sind und - da sie mit erhöhtem Aufwand verbunden sind - auch nicht immer durchgeführt werden. Auch bei einem großen Teil der für dieses Forschungsvorhaben gesammelten Meßergebnisse liegen unter 100 Hz keine Werte vor.

Aus diesen Gründen wird bei den hier durchgeführten Untersuchungen nur der Spektrum-Anpassungswert C_{tr,100-5000} verwendet, wobei zumeist auf die Angabe des Frequenzbereichs verzichtet wird. Wenn im folgenden von C_{tr} die Rede ist, ist damit also immer C_{tr,100-5000} gemeint. Hierbei ist zu berücksichtigen, daß C_{tr,100-5000} im Absolutwert oft kleiner als C_{tr,50-5000} ausfällt, was sich vor allem bei WDVS mit niedriger Resonanzfrequenz bemerkbar macht. So ergeben sich z. B. für das oben betrachtete Dämmsystem mit C_{tr,50-5000} = -27 dB und Δ (R_w + C_{tr,50-5000}) = -3 dB bezogen auf den Frequenzbereich von 100 bis 5000 Hz die Werte C_{tr,100-5000} = -9 dB und Δ (R_w + C_{tr,100-5000}) = 14 dB. Durch Weglassen des Frequenzbereichs von 50 bis 100 Hz erhält man also Einzahlangaben, die unter Umständen nicht dem tatsächlichen Höreindruck entsprechen. Für akustische Berechnungen und Vergleiche sind sie jedoch brauchbar, sofern man sich dieser Einschränkung bewußt ist.

Ob man den Frequenzbereich von 50 bis 100 Hz berücksichtigt oder nicht, ist letztlich eine Ermessensfrage. Bei der Angabe von Einzahlangaben für Außenbauteile sollten aber folgende Punkte beachtet werden:

- Wenn man auf R_w als akustischen Kennwert für Außenbauteile nicht ganz verzichten möchte, sollte auf jeden Fall ($R_w + C_{tr}$) mit angegeben werden.
- Zieht man R_w oder (R_w + C_{tr,100-5000}) als Bewertungsmaßstab heran, kann die subjektiv empfundene Schalldämmung unter Umständen geringer sein, als in dem angegebenen Wert zum Ausdruck kommt.

8 Datenbank

Die durchgeführte Meßreihe lieferte wichtige Erkenntnisse über die Schalldämmung von WDVS und stellt eine wertvolle Datengrundlage für die Entwicklung eines Berechnungsmodells dar. Als alleinige Basis eines solchen Modells reicht sie jedoch nicht schon deshalb nicht aus, weil alle Messungen an der gleichen Wand durchgeführt wurden. Aus diesem Grund wurden weitere Meßdaten gesammelt und mit allen akustisch bedeutsamen Angaben in eine Datenbank eingegeben. Die Datenbank umfaßt insgesamt 226 Messungen an 31 verschiedenen Trägerwänden, die zu etwa je einem Drittel aus der durchgeführten Meßreihe, von der Materialprüfanstalt Braunschweig (größtenteils im Auftrag des Fachverbandes Wärmedämm-Verbundsysteme) und aus früheren Messungen des Fraunhofer-Instituts für Bauphysik stammen. Alle Meßergebnisse wurden von bauakustischen Prüfstellen in Prüfständen mit unterdrückter Flankenübertragung ermittelt, so daß nach dem Stand der Technik von einer größtmöglichen Genauigkeit und Zuverlässigkeit der Daten auszugehen ist.

Die Datenbank liegt als EXCEL-Tabelle vor, wobei jede Tabellenzeile (jede Zeile enthält ca. 130 Einzelwerte) einem WDVS zugeordnet ist. Die Trägerwände und die Grenzdämmung der verschiedenen Prüfstände sind jeweils in eigenen Zeilen enthalten, wobei die Verknüpfung zusammengehöriger Datensätze (Grenzdämmung, Trägerwand und WDVS) über Kennzahlen erfolgt. Durch diese Struktur vereinfacht sich die Handhabung und Auswertung der Daten beträchtlich. Ein Auszug aus der Datenbank ist in Anhang 2 wiedergegeben. Der Auszug enthält die Kopfzeile und zwei Datenzeilen, wobei es sich bei den in den Datenzeilen enthaltenen Werten - so weit möglich und sinnvoll - um die Minima und Maxima aus allen Datensätzen handelt (kenntlich an der kursiven Schreibweise).

Eine Überprüfung des Grenzdämmungsabstandes ergab fast ausnahmslos ausreichend große Werte. Überschreitungen traten im wesentlichen nur bei tiefen und hohen Frequenzen auf. Im ersten Fall dürften die Überschreitungen hauptsächlich auf die erhöhte Streuung der Meßwerte infolge modaler Schallfelder in den Prüfräumen zurückzuführen sein, zumal vermutlich nicht alle Werte nach Anhang F zu DIN EN 20140-3 ermittelt wurden (dies gilt zumindest für die Messungen, die vor Einführung dieser Norm im Mai 1995 durchgeführt wurden). Die Überschreitungen bei hohen Frequenzen wirken sich nur in geringem Maße auf die Einzahlangaben aus und sind daher im vorliegenden Fall als unbedenklich anzusehen. Eine Grenzdämmungskorrektur ist in der Norm nicht vorgesehen und wurde deshalb nicht durchgeführt.

8.1 Dämmsysteme

Bei Beschränkung auf massive Trägerwände und nach Aussonderung unvollständiger Datensätze verblieben für die weitere Bearbeitung 200 Messungen an 28 Trägerwänden. Hierbei handelte es sich um Messungen an folgenden Dämmsystemen:

- 70 EEPS-Systeme,
- 56 EPS-Systeme,
- 25 MFP-Systeme,
- 48 MFL-Systeme,
- 1 PU-System (Polyurethan-Hartschaumplatten).

Ein Überblick über alle in der Datenbank enthaltenen Messungen ist in Bild 13 wiedergegeben. Dargestellt ist die Verbesserung der Schalldämmung als Funktion der berechneten Resonanzfrequenz $f_{R,b}$ in logarithmischer Auftragung. Läßt man die Streuung der Meßwerte zunächst außer acht, so ist ein deutlicher Zusammenhang zwischen $f_{R,b}$ und R_w , nämlich eine Verminderung der Schalldämmung mit zunehmender Resonanzfrequenz, erkennbar. Dies gilt in ähnlicher Weise auch für ($R_w + C_{tr}$). Allerdings erfolgt hier eine Abflachung des Kurvenverlaufs bei hohen Frequenzen. Außerdem fallen einige Meßpunkte auf, die weit außerhalb der übrigen Punkteschar liegen (ein Punkt mit $\Delta(R_w + C_{tr}) = -11$ dB ist nur als Fragment unterhalb der Frequenz-Achse zu erkennen). Es handelt sich hierbei um WDVS mit verhältnismäßig niedriger Resonanzfrequenz, die an leichten Trägerwänden mit niedriger Rohdichte befestigt waren und ausgeprägte Dämmungseinbrüche im Resonanzbereich aufwiesen. Möglicherweise besteht hier eine Wechselwirkung zwischen der Koinzidenz der Trägerwand und der Resonanz des WDVS.

Die geprüften WDVS wiesen folgende Eigenschaften auf:

Dämmstoffdicke:	d = 40 - 200 mm,
Rohdichte des Dämmstoffs:	ho = 14,8 - 140,7 kg/m ³ ,
dynamische Steifigkeit:	s' = 3 - 144 MN/m ³ ,
Strömungswiderstand bei MF:	r = 17,4 - 64,4 kPa s/m ² ,
berechnete Resonanzfrequenz:	f _{R.b} = 57 - 583 Hz,

22

gemessene Resonanzfrequenz:	f _{R,g} = 63 - 710 Hz,
Verbesserung von R _w :	$\Delta R_w = -8 - 19 \text{ dB}$ (Mittelwert 3 dB),
Verbesserung von (R _w + C _{tr}):	$\Delta(R_w + C_{tr}) = -11 - 14 \text{ dB}$ (Mittelwert 0 dB).

8.2 Trägerwände

Da sich die verwendeten Trägerwände in ihrem Aufbau und ihren akustischen Eigenschaften beträchtlich voneinander unterschieden, werden die wichtigsten Angaben im folgenden in einer kurzer Übersicht zusammengestellt. Die 28 in der Datenbank enthaltenen Wände bestanden aus unterschiedlichen Baustoffen, für die folgende Abkürzungen verwendet wurden:

15 KSV-Wände	(Kalksand-Vollsteine, _{ρStein} ≥ 1600 kg/m ³),
3 KS-Wände	(Kalksandsteine, _{PStein} < 1600 kg/m ³),
5 KS-R-Wände	(Kalksand-Vollsteine mit Nut- und Federsystem, d. h. ohne
	Stoßfugenvermörtelung),
1 VZ-Wand	(Verfüllziegel),
2 LBH-Wände	(Leichtbeton-Hohlblocksteine),
1 PB-Wand	(Porenbeton),
1 HLZ-Wand	(Hochlochziegel).

Die technischen und akustischen Daten der Wände lagen in folgenden Bereichen:

Dicke:	d = 115 - 300 mm,
Steinrohdichte:	ρ _{Stein} = 500 - 1813 kg/m ³ ,
Flächenmasse:	m'' = 165 - 491 kg/m ² ,
bewertetes Schalldämm-Maß:	R _w = 43 - 59 dB,
Summe aus R_w und C_{tr} :	$(R_w + C_{tr,100-5000}) = 40 - 56 \text{ dB}.$

In Bild 14 ist das bewertete Schalldämm-Maß der Trägerwände in Abhängigkeit von der Flächenmasse dargestellt. Zum Vergleich ist neben den Meßwerten auch das nach DIN 4109 berechnete Schalldämm-Maß mit eingezeichnet. Man erkennt, daß einige Meßwerte über, die Mehrzahl jedoch unter der berechneten Kurve liegen. Letzteres gilt vor allem für schwere Wände (m'' > 300 kg/m²), bei

denen die Rechnung fast immer zu große Werte liefert. Im übrigen ist auch bei Wänden mit gleicher Flächenmasse abhängig vom verwendeten Baustoff eine beträchtliche Streuung der Meßergebnisse zu verzeichnen.

Als Grundlage zur Bestimmung der in Bild 14 dargestellten Schalldämmkurve dienten die in Beiblatt 2 zu DIN 4109, Tabelle 1 angegebenen Rechenwerte, die sich nach Addition des Vorhaltemaßes von 2 dB gemäß

$$R'_{w} = \left[27 \, lg\left(\frac{m''_{W}}{m''_{0}}\right) - 15,7\right] dB \qquad \text{mit } m''_{0} = 1 \, kg/m^{2}$$
(8)

aus der Flächenmasse der Wand m"_W berechnen lassen. Bei dem Berechnungsergebnis handelt es sich um ein Schalldämm-Maß mit Flankenübertragung, das sich auf massive Flankenbauteile mit einer mittleren Flächenmasse von 300 kg/m² bezieht. Zur weiteren Verwendung muß der nach Gl. (8) ermittelte Wert zunächst in ein Schalldämm-Maß ohne Flankenübertragung umgerechnet werden. Die Umrechnung erfolgt nach Beiblatt 3 zu DIN 4109 [12] und liefert eine Kurve, die eine Unstetigkeit bei m"_W \cong 280 kg/m² aufweist. Um diese Unstetigkeit zu entfernen, wurde die Kurve durch eine Polynomapproximation geglättet, was zu dem in Bild 14 dargestellten Ergebnis führt. Die Gleichung für das verwendete Polynom lautet:

$$R_{w} = \left[27,1+0,1243 \left(\frac{m''_{W}}{m''_{0}} \right) - 0,000113 \left(\frac{m''_{W}}{m''_{0}} \right)^{2} \right] dB, \qquad (9)$$

mit $m''_{0} = 1 \text{ kg/m}^{2}.$

Das mit GI. (9) ermittelte Schalldämm-Maß stimmt gut mit den nach der ÖNORM B 8115-4 [13] berechneten Ergebnissen überein. Die in EN 12354-1 [14] angegebene Berechnungsformel liefert hingegen deutlich niedrigere Werte.

Gleichung (9) beschreibt die Schalldämmung von Wänden ohne Flankenübertragung. Das entspricht den Randbedingungen der hier betrachteten Messungen, die alle in Prüfständen mit unterdrückter Flankenübertragung vorgenommen wurden. Für praktische Berechnungen kann es hingegen günstiger sein,

24

die Schalldämmung der Trägerwand nach GI. (8) zu berechnen, da am Bau fast immer Flankenwege vorhanden sind. Mit GI. (8) erhält man insbesondere bei schweren Wänden niedrigere Schalldämm-Maße als nach GI. (9), wobei sich bei einer Flächenmasse von 200 kg/m² ein Unterschied von 1,0 dB, bei 300 kg/m² ein Unterschied von 3,0 dB und bei 400 kg/m² ein Unterschied von 4,2 dB ergibt. Genauere Angaben zur Schalldämmung homogener Wände, die im Gegensatz zu DIN 4109 unter Berücksichtigung der Materialeigenschaften ermittelt wurden, sind wie schon erwähnt der Literatur zu entnehmen [3], [4].

9 Statistische Grundlagen

Bei der Angabe statistischer Kennwerte wird oft nicht einheitlich verfahren, so daß leicht Unklarheiten entstehen können. Da die statistische Abweichung zwischen Messung die Rechnung die wichtigste Grundlage zur Beurteilung der entwickelten Berechnungsmodelle bildet, werden im folgenden die wichtigsten Begriffe erläutert und die hier verwendeten Abkürzungen beschrieben.

Betrachtet wird stets die Abweichung zwischen gemessenen und berechneten Werten, die (am Beispiel des bewerteten Schalldämm-Maßes R_w) gemäß

 $A = R_{w,g} - R_{w,b},$ (10) mit $R_{w,g}$ = gemessene Schalldämmung, mit $R_{w,b}$ = berechnete Schalldämmung,

gebildet wird. Die Abweichung wird für jeden Meßwert ermittelt, so daß sich N einzelne Werte A_j mit j = 1 ... N ergeben (N bezeichnet die Gesamtzahl der Meßwerte), für die folgende statistische Kennwerte berechnet werden:

- größte Abweichung A_{max},
- mittlere Abweichung \overline{A} ,
- Standardabweichung σ,
- quadratisch gemittelte Abweichung \overline{A}^{q} .

Während die Standardabweichung

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{j=1}^{N} (A_j - \overline{A})^2}$$
(11)

die Streuung der Abweichungen um ihren Mittelwert \overline{A} beschreibt, stellt die quadratisch gemittelte Abweichung

$$\overline{A}^{q} = \sqrt{\frac{1}{N} \sum_{j=1}^{N} A^{2}}$$
(12)

ein Maß für die Abweichung vom angestrebten Sollwert A = 0 dar. Für $\overline{A} = 0$ stimmen σ und \overline{A}^{q} bis auf den Faktor $\sqrt{N/(N-1)}$, der bei der großen Anzahl betrachteter Meßwerte praktisch nicht ins Gewicht fällt, überein. In diesem Fall, der z. B. bei allen Regressionsgeraden gegeben ist, wird auf die Angabe von \overline{A}^{q} daher zumeist verzichtet.

Unter Annahme einer Normalverteilung liegen im statistischen Mittel

- 68,0% aller Abweichungen im Bereich $\overline{A} \pm \sigma$,
- 95,5% aller Abweichungen im Bereich $\overline{A} \pm 2\sigma$,
- 99,7% aller Abweichungen im Bereich $\overline{A} \pm 3\sigma$.

10 Berechnungsmodell

10.1 Vorbereitung

Bei Außenwänden mit WDVS handelt es sich um zweischalige Bauteile, deren akustisches Verhalten sowohl von den Eigenschaften der Trägerwand als auch von denen des Dämmsystems abhängt. Um zu einem einfachen und allgemein verwendbaren Berechnungsmodell zu gelangen, kann man die resultierende Schalldämmung der Wand näherungsweise aus zwei voneinander unabhängigen Anteilen zusammensetzen, die arithmetisch addiert werden: $R = R_o + \Delta R,$ (13) mit R_o = Schalldämm-Maß der Wand ohne WDVS, mit ΔR = Verbesserung der Schalldämmung durch das WDVS.

Hierbei wird angenommen, daß ΔR nur vom Aufbau des WDVS, nicht aber von der Beschaffenheit der Wand abhängt. Dies gilt unter folgenden Voraussetzungen:

- Die Flächenmasse des Außenputzes ist sehr viel kleiner als die der Trägerwand.
- Der f
 ür die Schalld
 ämmung ma
 ßgebliche Frequenzbereich (einschlie
 ßlich der Resonanzfrequenz des WDVS) liegt
 über der Koinzidenzfrequenz der Tr
 ägerwand.
- Die Wand weist keine Dickenschwingungen auf, wie sie z. B. bei Wänden aus Lochsteinen oder Steinen mit niedriger Rohdichte auftreten können.
- Die akustische Kopplung zwischen WDVS und Trägerwand ist gering (niedrige Steifigkeit der Dämmschicht, keine Körperschallbrücken).

Werden eine oder mehrere dieser Bedingungen verletzt, gilt Gl. (13) nur noch näherungsweise. Außerdem ist zu beachten, daß die Gleichung strenggenommen nur frequenzabhängig (also z. B. für Terzwerte), nicht aber für Einzahlangaben verwendet werden darf. Da man sich in der Praxis zumeist für Einzahlangaben interessiert, stellt dies einen erheblichen Nachteil dar. Frequenzabhängige Berechnungen sind nicht nur erheblich aufwendiger, sondern erfordern auch spezielle Berechnungsprogramme, mit denen aus den ermittelten Spektren anschließend Einzahlangaben gebildet werden. Außerdem ist die frequenzabhängige Berechnung der Schalldämmung bei WDVS mit erheblichen Problemen verbunden und liefert nur ungenaue Ergebnisse (die Ursachen hierfür werden in Ziffer 3 und 5 erläutert).

Aus diesen Gründen wird GI. (13) einer weiteren Vereinfachung unterzogen und statt auf Terzwerte auf Einzahlangaben angewandt. Man erhält auf diese Weise die bereits in Ziffer 2 erwähnte GI. (1), die die Grundlage des hier entwickelten Berechnungsmodells darstellt. Um die Gültigkeit von GI. (1) zu überprüfen, kann man, ausgehend von der gemessenen Verbesserung der Schalldämmung durch

ein WDVS, mit GI. (13) die Schalldämmung verschiedener Trägerwände berechnen, die sich ergäbe, wenn diese Wände mit dem entsprechenden WDVS versehen würden. Wenn GI. (1) zutrifft, so müßte die resultierende Verbesserung des bewerteten Schalldämm-Maßes, ΔR_w , bei allen Trägerwänden gleich groß sein. Das beschriebene Verfahren zur Verifizierung von GI. (1) beruht zwar nur auf dem Vergleich einer weniger genauen mit einer genauen Berechnungsformel und hat deshalb nicht den gleichen Stellenwert wie ein meßtechnischer Nachweis, als Abschätzung der zu erwartenden Abweichungen ist es aber dennoch brauchbar.

Das Verfahren wurde für zwei typische WDVS (Systeme 1 und 2 aus Bild 3) durchgeführt, wobei jedes der beiden Systeme mittels GI. (13) rechnerisch mit allen in der Datenbank vorhandenen Trägerwänden kombiniert wurde. Während System 1 mit $f_{R,b}$ = 441 Hz eine verhältnismäßig hohe Resonanzfrequenz aufwies, war die Resonanzfrequenz des zweiten Systems mit $f_{R,b}$ = 119 Hz vergleichsweise niedrig. Die Ergebnisse der durchgeführten Berechnungen sind in Bild 15 dargestellt. Während ΔR_w bei dem WDVS mit hoher Resonanzfrequenz nur wenig von der Schalldämmung der Trägerwand $R_{w,o}$ abhängt (die HLZ-Wand mit R_w = 43 dB ist als Ausnahme anzusehen), wird es bei niedriger Resonanzfrequenz mit zunehmendem $R_{w,o}$ deutlich kleiner. Hieraus läßt sich schließen, daß GI. (1) bei WDVS mit hoher Resonanzfrequenz in der Regel problemlos anwendbar ist, während es bei WDVS mit niedriger Resonanzfrequenz zu Abweichungen (im betrachteten Beispiel maximal etwa ±2 dB) kommen kann. Ein ähnliches Ergebnis erhält man auch für die Verbesserung von ($R_w + C_{tr}$), wobei die Abweichungen noch etwas größer ausfallen als bei ΔR_w .

Die ermittelten Abweichungen bei der Anwendung von GI. (1) sind in Anbetracht der starken Vereinfachung, die eine Berechnung mit Einzahlangaben mit sich bringt, als vertretbar anzusehen. Außerdem können sie im Berechnungsmodell durch entsprechende Korrekturen teilweise aufgefangen werden. Im übrigen besteht im Hinblick auf das Ziel dieses Forschungsverfahrens - der Entwicklung eines Ingenieurverfahrens, das auch ohne akustische Fachkenntnisse und ohne spezielle Software angewendet werden kann - zur Verwendung von Einzahlangaben keine Alternative. Im Berechnungsmodell wird die Zielgröße (die Verbesserung des bewerteten Schalldämm-Maßes ΔR_w) als mathematische Funktion mehrerer Ausgangswerte gebildet. Als wichtigster Ausgangswert dient die Resonanzfrequenz des WDVS, wobei natürlich nur der nach GI. (4) berechnete Wert $f_{R,b}$, und nicht der Meßwert zur Verfügung steht. Daß die Resonanzfrequenz eine geeignete Größe zur Beschreibung der Schalldämmung darstellt, ist z. B. aus Bild 13 zu ersehen und wird auch durch frühere Arbeiten bestätigt [6], [15]. Für akustische Berechnungen ist es jedoch günstiger, statt von $f_{R,b}$ vom Logarithmus $lg(f_{R,b})$ auszugehen, was schon deshalb naheliegt, weil für die Schalldämmung fast immer logarithmische Gesetze gelten. Neben der Resonanzfrequenz sind noch weitere akustische Einflußgrößen, wie z. B. die Verdübelung und die Klebefläche, vorhanden, die ebenfalls im Berechnungsmodell berücksichtigt werden müssen [16], [17], [18]. Hierauf wird später noch ausführlich eingegangen.

Um einen ersten Eindruck zu gewinnen, welcher Zusammenhang zwischen $f_{R,b}$ und ΔR_w besteht, kann man wieder GI. (13) verwenden, wobei abermals von gemessenen R_o - und ΔR -Spektren ausgegangen wird. Diesmal wird jedoch nicht R_o variiert, sondern ΔR terzweise entlang der Frequenzachse verschoben, wodurch eine Verschiebung der Resonanzfrequenz erfolgt, wie sie sich bei einer Veränderung des Elastizitätsmoduls der Dämmplatten bei ansonsten unveränderten Eigenschaften des WDVS ergeben würde (die Eckfrequenz wird in gleicher Weise mit verschoben, die Kurvenform von ΔR bleibt unverändert). Man erhält auf diese Weise ΔR_w in Abhängigkeit von $f_{R,b}$ für die betrachtete Trägerwand.

Die beschriebene Berechnung wurde für vier typische WDVS (Systeme 1 bis 4 in Bild 3) und eine bauübliche KSV-Wand (Beschreibung in Bild 16) durchgeführt. Hierbei wurden die bei der Verschiebung der Spektren an den Rändern des betrachteten Frequenzbereichs entstehenden Lücken mit den Werten aus den benachbarten Terzen aufgefüllt. In Bild 17 sind Beispiele für verschobene Spektren und in Bild 18 die aus den Spektren berechneten Einzahlangaben dargestellt. Man erkennt, daß zwischen ΔR_w und $lg(f_{R,b})$ entgegen dem ersten Eindruck kein linearer Zusammenhang besteht, sondern daß die Kurve bei hohen Frequenzen erheblich flacher verläuft. Bei $\Delta(R_w + C_{tr})$ tritt oberhalb von etwa

250 Hz sogar ein leichter Anstieg ein, so daß eine Erhöhung der Resonanzfrequenz in diesem Bereich zu einer Verbesserung der Schalldämmung führt.

Da eine geeignete mathematische Beschreibung des Zusammenhangs zwischen ΔR_w und $lg(f_{R,b})$ großen Einfluß auf die Berechnungsgenauigkeit hat, wurden zunächst an der Gesamtheit aller Daten - verschiedene Funktionen zur Approximation der Meßwerte erprobt. Bild 19 zeigt drei Beispiele für die Approximation von $\Delta(R_w + C_{tr})$. Bei Verwendung einer Regressionsgeraden (oben im Bild) ergibt sich für die Standardabweichung zwischen Messung und Rechnung ein Wert von $\sigma = 3,6$ dB. Verwendet man statt dessen ein Polynom vierter Ordnung (Mitte) oder einen Linienzug mit drei Segmenten (unten), so verringert sich die Standardabweichung jeweils auf $\sigma = 3,2$ dB. Der Linienzug hat bei gleicher Genauigkeit gegenüber dem Polynom den Vorteil, daß er auch außerhalb des Wertebereichs der Meßdaten sinnvolle Werte liefert und somit gegebenenfalls eine Extrapolation ermöglicht. Aus diesem Grund wurde zur Entwicklung des Berechnungsmodell ein Linienzug herangezogen.

Bei der Approximation von Meßdaten mit einem Linienzug wird der betrachtete Frequenzbereich in Intervalle unterteilt, in den jeweils Geraden verlaufen. Die Geraden werden so angepaßt, daß die Abweichung zwischen Messung und Rechnung minimal wird. Hierbei ist die Randbedingung einzuhalten, daß die Geraden an den Intervallgrenzen zusammentreffen müssen, so daß ein stetiger, lückenloser Linienzug entsteht. Die Genauigkeit einer solchen Approximation hängt davon ab, aus wievielen Segmenten der Linienzug gebildet wird und wo die Intervallgrenzen verlaufen. Im vorliegenden Fall stellen drei Segmente einen sinnvollen Kompromiß zwischen Berechnungsaufwand und Berechnungsgenauigkeit dar. Es werden folgende Intervalle verwendet, die eine gute Beschreibung der Meßdaten ermöglichen:

- 1. Intervall: $f_{R,b} < 125$ Hz,
- 2. Intervall: 125 Hz \leq f_{R,b} < 250 Hz,
- 3. Intervall: $f_{R,b} \ge 250 \text{ Hz}.$

Der derart gebildete Linienzug wird durch vier Koeffizienten beschrieben: die Steigungen der Geraden in den beiden äußeren Intervallen und die Funktionswerte an den Intervallgrenzen. Für die praktische Anwendung, bei der die einfache Handhabung und einheitliche Darstellung im Vordergrund stehen, ist es jedoch günstiger, für jedes der Intervalle eine Geradengleichung der Form

$$\Delta R_{w} = (a \lg(f_{R,b}) + b) dB$$
(14)

anzugeben, so daß man insgesamt sechs dimensionslose Koeffizienten (die Werte von a und b für jeden der drei Frequenzbereiche) erhält. Für $\Delta(R_w + C_{tr})$ ergibt sich der äquivalente Ausdruck

$$\Delta(\mathsf{R}_{\mathsf{w}} + \mathsf{C}_{\mathsf{tr}}) = (\mathsf{a} \, \mathsf{lg}(\mathsf{f}_{\mathsf{R},\mathsf{b}}) + \mathsf{b}) \, \mathsf{dB}, \tag{15}$$

wobei die Koeeffizienten a und b natürlich andere Werte aufweisen.

Die Anwendung dieser Approximation auf die Meßdaten ist in Bild 20 und in Tab. 2 dargestellt. Die Approximation läßt sich als stark vereinfachtes Berechnungsmodell auffassen, bei dem die Schalldämmung allein von der Resonanzfrequenz abhängt und keine weiteren Einflüsse berücksichtigt werden. Die hierbei erreichte Genauigkeit, $\sigma = 3,1$ dB für ΔR_w und $\sigma = 3,2$ dB für $\Delta (R_w + C_{tr})$, kann somit als Maßstab für die Qualität eines detaillierten Modells herangezogen werden.

Die Entwicklung des Modells erfolgte parallel sowohl für ΔR_w als auch für $\Delta (R_w + C_{tr})$. Weil für beide Größen die gleichen akustischen Gesetze gelten, wurden beidesmal die gleichen Berechnungsformeln verwendet und nur die Koeffizienten unterschiedlich angepaßt. Leichte Trägerwände mit niedriger Rohdichte, bei denen eine Wechselwirkung mit dem WDVS erfolgen kann [19], wurden zunächst ausgespart (dies betraf 13 WDVS an 4 verschiedenen Trägerwänden). In die Validierung des fertigen Modells wurden die Daten jedoch einbezogen, wobei sich zeigte, daß - abgesehen von einigen extremen Abweichungen bei $\Delta(R_w + C_{tr})$ - auch die meisten leichten Wände von dem Modell erfaßt werden. Ebenso wie mit den leichten Wänden wurde auch mit dem Polyurethan-System verfahren (es handelte sich um das einzige System dieser Art in der Datenbank). Polystyrol- und Mineralfaser-Systeme wurden wegen ihrer unterschiedlichen Materialeigenschaften getrennt betrachtet.

Wie in Ziffer 5 gezeigt wurde, bestehen zwischen der berechneten und der gemessenen Resonanzfrequenz von WDVS, f_{R,b} und f_{R,q}, beträchtliche Abweichungen. Es ist daher interessant zu untersuchen, wie stark sich die Streuung der Meßwerte verringert, wenn man sie über f_{R,g} statt über f_{R,b} aufträgt. Um einen direkten Vergleich der beiden Darstellungen zu ermöglichen, wurden hierbei nur solche Werte berücksichtigt, bei denen sich f_{R,g} eindeutig aus den Meßkurven ablesen ließ, so daß sowohl $f_{R,g}$ als auch $f_{R,b}$ zur Verfügung standen (unter Einbeziehung der leichten Wände waren dies etwa 150 Werte). In Bild 21 werden die beiden Darstellungen am Beispiel von ΔR_w miteinander verglichen. Man erkennt, daß die Streuung der Meßwerte bei Auftragung über f_{R.g} deutlich geringer ist. Dies ist auch an den an die Daten angepaßten Linienzügen zu erkennen, die ebenfalls in Bild 21 eingezeichnet sind. Bei Auftragung von ΔR_w über f_{R,g} beträgt die Standardabweichung zwischen Linienzug und Meßwerten nur σ = 2,6 dB, während sie bei Auftragung über f_{R,b} auf σ = 3,2 dB anwächst. Mit der berechneten Resonanzfrequenz lassen sich die Meßdaten also erheblich genauer als mit der berechneten Frequenz beschreiben. Leider läßt sich diese Erkenntnis für das Berechnungsmodell nicht nutzen, weil zwischen f_{R.g} und f_{R.b} kein eindeutiger Zusammenhang besteht. Die einzige Möglichkeit um die Übereinstimmung zwischen f_{R,g} und f_{R,b} zu verbessern, besteht nach derzeitigem Kenntnisstand darin, die dynamische Steifigkeit der Dämmschicht und die Flächenmasse der Putzschicht, aus denen die Resonanzfrequenz berechnet wird, so genau wie möglich zu bestimmen.

In diesem Zusammenhang stellt sich außerdem die Frage, welcher Fehler entsteht, wenn die Resonanzfrequenz nicht nach der genauen Formel in Gl. (2) sondern, wie in der Praxis üblich, nach der vereinfachten Formel in Gl. (4) berechnet wird. Die Abweichung zwischen den beiden Formeln beträgt

$$\frac{f_{R,v}}{f_{R,g}} = \sqrt{\frac{1}{1 + m''_{P}/m''_{W}}},$$
(16)

mit f_{R,v} = nach vereinfachter Formel berechnete Resonanzfrequenz,
 f_{R,g} = nach genauer Formel berechnete Resonanzfrequenz,
 m"_P = Flächenmasse der Putzschicht,
 m"_w = Flächenmasse der Trägerwand.

Nach GI. (16) ergibt sich bei Verwendung der vereinfachten Formel grundsätzlich eine zu niedrige Resonanzfrequenz, was zu einer Überschätzung der durch das WDVS bewirkten Verbesserung der Schalldämmung führt. Die Größe des Fehlers hängt vom Verhältnis der Flächenmassen von Putzschicht und Wand, m"_P/m"_W ab. Aus Bild (22), wo GI. (16) in Kurvenform dargestellt ist, läßt sich entnehmen, daß man mit GI. (4) eine 5 % zu niedrige Resonanzfrequenz erhält, wenn die Putzmasse 10 % der Wandmasse beträgt. Wie sich dieser Fehler auf die Verbesserung der Schalldämmung auswirkt, hängt von der Höhe der Resonanzfrequenz ab: Bei hohen Frequenzen ist der Einfluß auf ΔR_w gering, bei niedrigen Frequenzen ergeben sich große Fehler. Im ungünstigsten Fall beträgt die Abweichung von ΔR_w bei einem Massenverhältnis von m"_P/m"_W = 0,1 etwa 0,7 dB. Da sich GI. (16) für kleine Werte von m"_P/m"_W näherungsweise linear verhält, ergeben sich für m"_P/m"_W = 0,05 und 0,2 maximale Fehler von etwa 0,4 und 1,4 dB. In Anbetracht der übrigen Fehlerquellen dürften diese Abweichungen in der Praxis im allgemeinen keine Rolle spielen.

10.2 Einfluß der Verdübelung

Bei der Verwendung von Dübeln werden die Putzschicht und die Trägerwand mechanisch miteinander verbunden. Die hierbei entstehenden Körperschallbrücken können sich abhängig von der Frequenz in unterschiedlicher Weise auf die Schalldämmung auswirken:

- Für f << f_R , wo WDVS und Trägerwand eine starre Einheit bilden, ist keine Änderung der Schalldämmung zu erwarten.
- Im Bereich der Resonanzfrequenz, $f \cong f_R$, erfolgt eine Verminderung der Schwingungsamplitude und damit eine Verbesserung der Schalldämmung.
- Für $f > f_R$, tritt infolge der verstärkten Kopplung zwischen der Putzschicht und der Wand eine Verschlechterung der Schalldämmung ein.

In Bild 23 ist die Verminderung der Schalldämmung von WDVS durch Dübel, $\Delta R_D = R_o - R_m$ (R_o und R_m bezeichen das Schalldämm-Maß ohne und mit Dübeln), über der Frequenz aufgetragen. Die oben beschriebenen Zusammenhänge sind zwar im Prinzip erkennbar, im Detail bestehen jedoch erhebliche

Abweichungen. Zur Entwicklung einer Berechnungsformel wurde deshalb von Einzahlangaben ausgegangen.

Um den Einfluß von Dübeln auf ΔR_w und $\Delta (R_w + C_{tr})$ zu untersuchen, wurden aus der Datenbank alle Messungen herausgesucht, die sich hinsichtlich der Verdübelung voneinander unterschieden, aber ansonsten unter gleichen Bedingungen (gleichartiges WDVS, gleiche Trägerwand) durchgeführt wurden. Es wurden 25 Paare von Messungen ermittelt, die diese Bedingung erfüllten. Aus den Schalldämm-Maßen des unverdübelten und des verdübelten Systems, $R_{w,u}$ und $R_{w,v}$, wurde gemäß

$$\Delta \mathbf{R}_{\mathbf{w},\mathbf{D}} = \mathbf{R}_{\mathbf{w},\mathbf{u}} - \mathbf{R}_{\mathbf{w},\mathbf{v}} \tag{17}$$

jeweils die durch die Verdübelung hervorgerufene Verminderung von R_w berechnet. In gleicher Weise wurde auch bei ($R_w + C_{tr}$) verfahren. Nachdem eine Auftragung von $\Delta R_{w,D}$ über $f_{R,b}$ (hier nicht dargestellt) keinen einfachen Zusammenhang der beiden Größen erkennen ließ, wurde statt dessen die Verbesserung des unverdübelten Systems, $\Delta R_{w,u}$, als Abszisse gewählt. Die entsprechende Darstellung ist in Bild 24 wiedergegeben. Man erhält einen näherungsweise linearen Zusammenhang, der im Rahmen der statistischen Genauigkeit für alle Arten von Dämmstoffen gilt (den Abweichungen bei den MFP-Systemen wurde nicht weiter nachgegangen, da für diesen Dämmstoff nur drei Meßwerte vorliegen). Der Zusammenhang zwischen $\Delta R_{w,D}$ und $\Delta R_{w,u}$ wird durch die in Bild 24 eingezeichnete Regressionsgerade beschrieben:

$$\Delta R_{w,D} = 0.34 \ \Delta R_{w,u} + 0.4 \ dB, \tag{18}$$

mit $\Delta R_{w,D}$ = Verminderung von R_w durch zusätzliche Verdübelung, $\Delta R_{w,u}$ = Verbesserung von $R_{w,o}$ durch das unverdübelte WDVS, $R_{w,o}$ = bewertetes Schalldämm-Maß der Wand ohne WDVS.

Für $(R_w + C_{tr})$ erhält man in gleicher Weise:

$$\Delta(R_w + C_{tr})_D = 0.46 \ \Delta(R_w + C_{tr})_u + 1.2 \ dB.$$
(19)
Welchen Einfluß die Anzahl der Dübel auf die Schalldämmung hat, ließ sich anhand der vorliegenden Daten nicht entscheiden, da die überwiegende Anzahl von Systemen mit 4 Dübeln/m² befestigt war und die wenigen Systeme mit abweichender Dübelzahl (bis zu 10 Dübeln/m²) sich hinsichtlich der Schalldämmung nicht von den übrigen Systemen unterschieden. Aus diesem Grund konnte die Anzahl der Dübel im Berechnungsmodell nicht berücksichtigt werden, obwohl ein Einfluß auf die Schalldämmung zu vermuten ist. Um dies zu klären, sind zusätzliche, systematische Untersuchungen erforderlich.

Der durch die ermittelten Regressionsgeraden beschriebene Zusammenhang entspricht dem nach den obigen Überlegungen zu erwartenden akustischen Verhalten. Dies bedeutet, daß bei WDVS mit niedriger Resonanzfrequenz (d. h. großem ΔR_w) durch zusätzliche Verdübelung eine starke Verminderung der Schalldämmung gegenüber dem unverdübelten Zustand eintritt. Im Gegensatz dazu haben Dübel bei Systemen mit hoher Resonanzfrequenz einen vergleichsweise geringen Einfluß auf die Schalldämmung. Bei akustisch ungünstigen WDVS mit $\Delta R_w < 0$ bewirken sie sogar eine akustische Verbesserung.

10.3 Einfluß der Klebefläche

Wärmedämm-Verbundsysteme werden meist nur teilflächig mit der Trägerwand verklebt, wobei der prozentuale Anteil der Klebefläche in der Regel zwischen 20 und 100 % liegt. Wie die vorliegenden Daten betätigen, ist ein Klebeflächenanteil von 40 % in der Praxis am häufigsten anzutreffen. Bei Vergrößerung des Klebeflächenanteils erhöht sich die Kontaktsteifigkeit an der Klebefläche, was nach Gl. (7) eine Erhöhung der resultierenden dynamischen Steifigkeit der Dämmung bewirkt. Hierdurch verschiebt sich die Resonanzfrequenz des WDVS zu höheren Frequenzen, wodurch sich eine Verminderung der Schalldämmung ergibt.

Die Verschiebung der Resonanzfrequenz ist bei Dämmplatten mit hoher dynamischer Steifigkeit stärker ausgeprägt als bei weichen Platten. Andererseits weisen WDVS mit steifer Dämmschicht in der Regel eine hohe Resonanzfrequenz auf, so daß sich eine Frequenzverschiebung nach Ziffer 10.1 nur wenig auf die Schalldämmung auswirkt. Bei weichen Dämmplatten mit niedriger Reso-

nanzfrequenz ist es hingegen umgekehrt: Zwar ist die durch Änderung der Klebefläche verursachte Verschiebung der Resonanzfrequenz nur verhältnismäßig gering, doch haben hier schon kleine Frequenzverschiebungen starke Auswirkungen auf die Schalldämmung. In erster Näherung kann daher angenommen werden, daß sich eine Änderung der Klebefläche bei allen WDVS in gleicher Weise auf die Schalldämmung auswirkt. Dies gilt zumindest so lange, bis weitere Erkenntnisse über den Einfluß der Klebefläche vorliegen. Die derzeit vorhandenen Daten erlauben hierzu keine sichere Aussage.

In den Bildern 25 und 26 ist an zwei Beispielen dargestellt, wie sich eine Erhöhung der Klebefläche unter ansonsten gleichen Bedingungen auf die Schalldämmung von WDVS auswirkt. Die Resonanzfrequenz wird in beiden Fällen nach oben verschoben, wodurch sich die Schalldämmung des Systems verschlechtert. Im Gegensatz zur Verdübelung führt eine Erhöhung der Klebefläche also immer zur Verminderung der Schalldämmung.

Um den Einfluß des Klebeflächenanteils auf ΔR_w zu ermitteln, wurde ebenso wie in Ziffer 10.2 vorgegangen, d. h. es wurden Messungen herausgesucht, bei denen abgesehen von der Verklebung alle übrigen Bedingungen übereinstimmten. Hierbei wurden 13 Paare von Messungen aufgefunden, die sich nur hinsichtlich der Klebefläche voneinander unterschieden. Bei einem der beiden Systeme betrug der Klebeflächenanteil jeweils 40 %. Klebeflächen unter 40 % waren nicht vertreten. Die durch Vergrößerung der Klebefläche hervorgerufene Verminderung der Schalldämmung, $\Delta R_{w,K}$, wurde daher auf einen Klebeflächenanteil von 40 % bezogen:

$$\Delta \mathbf{R}_{\mathbf{w},\mathbf{K}} = \mathbf{R}_{\mathbf{w},\mathbf{n}} - \mathbf{R}_{\mathbf{w},\mathbf{h}} , \qquad (20)$$

- mit $R_{w,n}$ = Schalldämm-Maß bei niedrigem Klebeflächenanteil (im vorliegenden Fall 40 %),
 - R_{w,h} = Schalldämm-Maß bei hohem Klebeflächenanteil.

Bei Auftragung von $\Delta R_{w,K}$ über dem hohen Klebeflächenanteil erhält man den in Bild 27 dargestellten Zusammenhang, der sich durch eine Regressionsgerade annähern läßt. Die Gleichung für die Regressionsgerade lautet:

36

$$\Delta R_{w,K} = (0.052 \text{ F} - 2.1) \text{ dB}, \qquad (21)$$

Für $(R_w + C_{tr})$ ergibt sich folgende Gleichung:

$$\Delta (R_w + C_{tr})_K = (0.043 \text{ F} - 1.7) \text{ dB}.$$
(22)

Bei einem Klebeflächenanteil von 40 % liefern GI. (21) und (22) den Wert Null. Bei niedrigerem Klebeflächenanteil ergibt sich eine Verbesserung, bei höherem eine Verschlechterung der Schalldämmung.

10.4 Einfluß der Trägerwand

Wie in Ziffer 10.1 gezeigt wurde, hängt die Verbesserung von R_w und $(R_w + C_{tr})$ durch WDVS bis zu einem gewissen Grad von der Schalldämmung der Trägerwand ab. Dies ist nicht (wie dies bei leichten Wänden der Fall sein kann) auf die gegenseitige Beeinflussung von WDVS und Wand zurückzuführen, sondern hängt damit zusammen, daß sich die resultierende Schalldämmung durch Addition zweier frequenzabhängiger Größen (der Schalldämmung der Trägerwand R_o und der Verbesserung ΔR) ergibt. Bei schweren Wänden weist R_o eine andere Frequenzabhängigkeit als bei leichten Wänden auf, was bei gleichem ΔR zu unterschiedlichen Werten von ΔR_w führt. Liegt die Resonanzfrequenz des WDVS z. B. einer Stelle, wo die Trägerwand eine hohe Schalldämmung hat, so ist dies akustisch unschädlich. Ist die Schalldämmung der Trägerwand im Bereich der Resonanzfrequenz hingegen gering, so verstärken sich die negativen Einflüsse und das bewertete Schalldämm-Maß vermindert sich. Nach Ziffer 10.1 hängt dieser Effekt in starkem Maße von der Höhe der Resonanzfrequenz ab. Während der Einfluß der Trägerwand bei hohen Resonanzfrequenzen gering ist, vermindert sich ΔR_w bei niedrigen Frequenzen mit zunehmender Schalldämmung der Trägerwand erheblich.

Um dem Einfluß der Trägerwand auf ΔR_w unter möglichst praxisnahen Bedingungen zu ermitteln, wurden die vorhandenen Meßwerte nach der Resonanzfrequenz des WDVS in Terzbändern geordnet und die Einflüsse von Verdübelung und Klebefläche nach den in Ziffer 10.2 und 10.3 abgeleiteten Beziehungen

rechnerisch eliminiert. Da sich die Resonanzfrequenzen innerhalb einer Terz maximal um den Faktor $\sqrt[3]{2} \approx 1,26$ voneinander unterscheiden (dies entspricht im ungünstigsten Fall, d. h. bei niedriger Resonanzfrequenz, einer Differenz von ΔR_w in Höhe von 3,5 dB), kann man davon ausgehen, daß alle WDVS in einer Terz in etwa die gleichen akustischen Eigenschaften haben. Trägt man für diese Systeme ΔR_w über dem bewerteten Schalldämm-Maß der Trägerwand, R_{w.o}, auf, so erhält man den Einfluß der Trägerwand für die jeweilige Terz. Zur Kennzeichnung dieses Einflusses wird im folgenden die Größe $\Delta R_{w,T}$ verwendet, die der Steigung einer an die jeweiligen Terzwerte angepaßten Regressionsgeraden entspricht ($\Delta R_{w,T}$ bezeichnet die Änderung von ΔR_w , die sich ergibt, wenn R_{w,o} um 1 dB erhöht wird). In Bild 28 ist die beschriebene Vorgehensweise am Beispiel der Terzen mit den Mittenfrequenzen 160 Hz und 500 Hz dargestellt. In gleicher Weise erhält man für jede Terz zwischen 80 und 500 Hz (für 63 Hz lagen nicht genügend Meßwerte für eine Auswertung vor) eine Regressionsgerade mit unterschiedlicher Steigung $\Delta R_{w,T}$. Trägt man die ermittelten $\Delta R_{w,T}$ -Werte über der Resonanzfrequenz des WDVS auf, so erhält man den in Bild 29 dargestellten Zusammenhang. Abgesehen von dem Wert bei 315 Hz, der über den anderen Werten liegt, ergibt sich zwischen $\Delta R_{w,T}$ und f_{R,b} näherungsweise ein linearer Zusammenhang, der durch die eingezeichnete Regressionsgerade (bei deren Berechnung auch der Wert bei 315 Hz berücksichtigt wurde) beschrieben wird. Ein ähnlicher Zusammenhang besteht auch zwischen $\Delta(R_w +$ C_{tr})_T und f_{R.b}.

Um $\Delta R_{w,T}$ in Abhängigkeit von $R_{w,o}$ zu berechnen, benötigt man noch einen Ausgangswert, an dem $\Delta R_{w,T}$ im Mittel den Wert Null aufweist. Für den Ausgangswert wurde im vorliegenden Fall, unabhängig von der Resonanzfrequenz des WDVS, mehr oder weniger willkürlich $R_{w,o} = 53$ dB gewählt. Dieser Wert entspricht der mittleren Schalldämmung aller betrachteten Trägerwände unter Berücksichtigung der Anzahl der an den einzelnen Wänden geprüften WDVS. Bei der Erprobung des Berechnungsmodells erwies sich dieser pragmatische Ansatz nachträglich als gerechtfertigt. Für $\Delta R_{w,T}$ ergibt sich damit folgender Ausdruck:

$$\Delta R_{w,T} = (1,4 \, \lg(f_{R,b}) - 3,6) \, (R_{w,o} - 53 \, dB), \tag{23}$$

- mit $\Delta R_{w,T}$ = Zunahme von ΔR_w bei Änderung von $R_{w,o}$ in bezug auf den Ausgangswert bei 53 dB,
 - f_{R,b} = berechnete Resonanzfrequenz des WDVS,
 - $R_{w,o}$ = bewertetes Schalldämm-Maß der Wand ohne WDVS.

Für $\Delta(R_w + C_{tr})_T$ ergibt sich entsprechend:

$$\Delta(R_w + C_{tr})_T = (1,3 \, \lg(f_{R,b}) - 3,4) \, (R_{w,o} - 53 \, dB).$$
(24)

10.5 Weitere Einflußgrößen

Neben der Verdübelung, der Klebefläche und der Schalldämmung der Trägerwand gibt es noch weitere Einflußgrößen, die sich auf die akustischen Eigenschaften von WDVS auswirken können. Dies gilt insbesondere für den Strömungswiderstand des Dämmstoffs, der unterem anderem die innere Dämpfung beeinflußt, und die Rohdichte, die Einfluß auf die Dickenschwingungen in der Dämmschicht hat. Angaben über diese beiden Größen liegen zumeist nur für Mineralfaser-Platten vor, weshalb sich die folgenden Betrachtungen auf Mineralfaser-Systeme beschränken.

Im Gegensatz zu den bisher betrachteten Einflußgrößen ist beim Strömungswiderstand und der Rohdichte weitgehend unklar, wie sie sich auf die Schalldämmung von WDVS auswirken und wie sie mit anderen Größen zusammenwirken. Eine Datenanalyse in der bisher durchgeführten Form, bei der nach Messungen gesucht wird, die bis auf die betrachtete Größe in allen Werten übereinstimmen, ist hier nicht möglich, da nicht genügend Daten zur Verfügung stehen. Um zu überprüfen, ob überhaupt ein Einfluß vorhanden ist, wurde die Verbesserung der Schalldämmung daher für alle verfügbaren Messungen über dem Strömungswiderstand und der Rohdichte aufgetragen. Wenn sich die übrigen Einflüsse im Mittel gegenseitig aufheben, so sollte auf diese Weise ein Trend zu erkennen sein. Aus der entsprechenden Darstellung in Bild 30 ist zu entnehmen, daß zwischen Strömungswiderstand und Schalldämmung (zumindest bei den MFL-Systemen) ein deutlicher Zusammenhang besteht, während dies bei der Rohdichte so weit erkennbar nicht der Fall ist. Zur Berücksichtigung des Strömungswiderstandes r wurde zum fertigen Berechnungsmodell eine Korrektur der Form $K_S = (a r + b) dB$ hinzugefügt. Durch numerische Anpassung der Parameter a und b (für MFP- und MFL-Systeme wurden jeweils eigene Werte verwendet) konnte die Berechnungsgenauigkeit bei MFP-Systemen im Mittel um 0,4 dB und bei MFL-Systemen sogar um 0,9 dB verbessert werden. Für den Parameter a ergaben sich hierbei ähnliche Werte wie für die Steigung der in Bild 30 eingezeichneten Regressionsgeraden, was den verwendeten Berechnungsansatz bestätigt. Die beschriebene Vorgehensweise wurde gewählt, weil

- die akustischen Zusammenhänge unklar sind und die verwendete Korrektur auf empirischen Annahmen beruht und
- die Berechnung wenn auch mit verminderter Genauigkeit auf diese Weise gegebenenfalls auch ohne Berücksichtigung des Strömungswiderstandes durchgeführt werden kann.

Um die ermittelten Ergebnisse abzusichern und zu ergänzen, muß der Zusammenhang zwischen dem Strömungswiderstand und der Schalldämmung von WDVS mit Mineralfaser-Dämmschicht noch genauer untersucht werden.

10.6 Berechnungsformeln

Nachdem in Ziffer 10.1 bis 10.5 die akustischen Grundlagen gelegt wurden, erfolgt nun die mathematische Formulierung des Berechnungsmodells. Für die Durchführung der Berechnung werden folgende Ausgangswerte benötigt:

- Resonanzfrequenz des WDVS f_R. Kann nach GI. (4) aus der dynamischen Steifigkeit der Dämmschicht s' und der Flächenmasse der Putzschicht m"_P berechnet werden.
- Bewertetes Schalldämm-Maß der Trägerwand R_{w,o}. Zur Berechnung von R_{w,o} aus der Flächenmasse m''_W kann z. B. Gl. (8) oder (9) herangezogen werden.
- Angaben über die Verdübelung des WDVS (verdübelt oder nicht verdübelt, die Zahl der Dübel geht nicht in die Berechnung ein).
- Prozentuale Klebefläche F.

 Bei Mineralfaser-Systemen gegebenenfalls der längenbezogene Strömungswiderstand r.

Um die Verbesserung des bewerteten Schalldämm-Maßes der Trägerwand durch das WDVS zu berechnen, wird folgende Formel verwendet:

$$\Delta \mathbf{R}_{w} = \Delta \mathbf{R}_{w,S} - \mathbf{K}_{D} - \mathbf{K}_{K} - \mathbf{K}_{T} - \mathbf{K}_{S}, \qquad (25)$$

- mit $\Delta R_{w,S}$ = Verbesserung unter Standardbedingungen (unverdübelt, 40 % Klebefläche, Trägerwand mit $R_{w,o}$ = 53 dB),
 - K_D = Korrektur zur Berücksichtigung von Dübeln,
 - K_K = Korrektur zur Berücksichtigung der Klebefläche,
 - K_T = Korrektur für die Schalldämmung der Trägerwand,
 - K_S = Korrektur zur Berücksichtigung des Strömungswiderstandes bei Mineralfaser-Dämmstoffen.

Die Berechnung von $\Delta R_{w,S}$ erfolgt gemäß

$$\Delta R_{w,S} = (a \, lg(f_R) + b) \, dB, \qquad (26)$$

wobei abhängig von der Lage der Resonanzfrequenz ($f_R < 125$ Hz, 125 Hz $\leq f_R < 250$ Hz oder $f_R \geq 250$ Hz) unterschiedliche Koeffizienten verwendet werden. Außerdem wird zwischen Polystyrol- und Mineralfaser-Dämmstoffen unterschieden. Eine Zusammenstellung der verwendeten Berechnungsformeln einschließlich aller benötigten Koffizienten ist in den Anhängen 3 und 4 enthalten.

Für die in GI. (25) enthaltenen Korrekturwerte gelten folgende Formeln:

$$K_{D} = \begin{cases} 0 & \text{ohne Dübel,} \\ 0,34 \ \Delta R_{w,S} + 0,4 \ dB & \text{mit Dübeln,} \end{cases}$$
(27)

$$K_{K}$$
 = (0,052 F - 2,1) dB, (28)
mit F = prozentuale Klebefläche in %.

$$K_T = (-1,4 \, \lg(f_R) + 3,6) \, (R_{w,o} - 53 \, dB),$$
 (29)

$$K_{S} = \begin{cases} (-0,11 r + 3,8) dB & \text{für MFP-Systeme,} \\ (-0,38 r + 9,8) dB & \text{für MFL-Systeme,} \end{cases}$$
mit r = längenbezogener Strömungswiderstand in kPa s/m². (30)

Für die Schalldämmung der Wand mit WDVS erhält man mit der berechneten Verbesserung:

$$\mathbf{R}_{\mathbf{w}} = \mathbf{R}_{\mathbf{w},\mathbf{o}} + \Delta \mathbf{R}_{\mathbf{w}} . \tag{31}$$

Für $\Delta(R_w + C_{tr})$ ergeben sich gleichartige Formeln mit anderen Koeffizienten. Die entsprechenden Angaben sind in Anhang 4 zusammengestellt.

In den Bildern (31) und (32) ist die nach GI. (26) berechnete Verbesserung $\Delta R_{w,S}$ (Verbesserung unter Standardbedingungen) in Abhängigkeit von der berechneten Resonanzfrequenz aufgetragen (die Kurven für Polystyrol-Systeme sind in Bild (31), die für Mineralfaser-Systeme in Bild (32) dargestellt). Neben den berechneten Kurven sind in den Bildern zum Vergleich auch die gemessenen Werte eingezeichnet. Da die Meßwerte im Gegensatz zu den Berechnungsergebnissen unter unterschiedlichen Bedingungen (Verdübelung, Klebefläche, etc.) ermittelt wurden, sind die Abweichungen zwischen Messung und Rechnung verhältnismäßig groß. Die volle Berechnungsgenauigkeit wird erst unter Einbeziehung der entsprechenden Korrekturen nach den Gleichungen (27) bis (30) erreicht. Da die Korrekturen gegenüber den Standardbedingungen zumeist eine Verminderung der Schalldämmung bewirken, liegt $\Delta R_{w,S}$ über dem Mittelwert der Meßergebnisse.

10.7 Ergebnisse

Um die Genauigkeit des entwickelten Modells zu untersuchen, wurde die Schalldämmung der in der Datenbank enthaltenen WDVS berechnet und mit den gemessenen Werten verglichen. Die Ergebnisse dieser Untersuchung sind in Tab. 3 und Bild 33 dargestellt. Bei Berücksichtigung aller vorhandenen Meßwerte ergibt sich für ΔR_w zwischen Messung und Rechnung eine Standardabweichung von σ = 2,0 dB (die Standardabweichungen für die verschiedenen Dämmstoffe liegen zwischen 1,9 und 2,5 dB), wobei die größten Unterschiede

42

-4,4 dB und 5,7 dB betragen. Durch die Einbeziehung von leichten Trägerwänden in die Statistik ändert sich an diesem Ergebnis nichts.

Beschränkt man sich auf schwere Trägerwände, erhält man für $\Delta(R_w + C_{tr})$ eine ähnliche statistische Genauigkeit wie für ΔR_w . Bezieht man jedoch leichte Wände mit niedriger Rohdichte ($\rho < 1000 \text{ kg/m}^3$) in die Betrachtung ein, so erfolgt ein Anstieg der Standardabweichung um 0,6 dB. Wie sich in Bild 33 erkennen läßt, ist dieser Anstieg auf nur wenige Meßwerte zurückzuführen, die weit unter den übrigen Werten liegen. Es handelt sich in allen Fällen um EEPS-Systeme mit einem ausgeprägten Dämmungseinbruch bei tiefen Frequenzen, der sich in ΔR_w nur abgeschwächt bemerkbar macht, während er in $\Delta(R_w + C_{tr})$ voll zur Geltung kommt.

Um zu klären, wie stark sich Änderungen der Ausgangswerte auf das Berechnungsergebnis auswirken, wurden rechnerische Untersuchungen durchgeführt, die in Tab. 4 wiedergegeben sind. Hierbei ergaben sich für ΔR_w folgende Ergebnisse:

- Erfolgt die Berechnung ohne Berücksichtigung des Strömungswiderstandes,
 d. h. mit K_S = 0, so erhöht sich die Standardabweichung bei MFP-Systemen um 0,4 dB und bei MFL-Systemen um 0,9 dB. Die Ergebnisse für die übrigen Dämmstoffarten bleiben hiervon unberührt, da sie nicht vom Strömungswiderstand abhängen.
- Die oben genannten statistischen Angaben bezogen sich auf Berechnungen, bei denen für das bewertete Schalldämm-Maß der Trägerwand, $R_{w,o}$, Meßwerte in die Berechnungsformel eingesetzt wurden. Wenn man die Schalldämmung eines geplanten Bauwerks berechnen möchte, stehen in der Regel jedoch keine Meßwerte zur Verfügung, sondern man wird die Schalldämmung der Trägerwand aus ihrer Flächenmasse bestimmen. Um zu untersuchen, wie sich dies auf die Berechnungsgenauigkeit auswirkt, wurde die Berechnung von ΔR_w statt mit gemessenen versuchsweise mit berechneten Werten von $R_{w,o}$ durchgeführt. Da alle vorliegenden Meßwerte aus Prüfständen mit unterdrückter Flankenübertragung stammen, wurde zur Berechnung von $R_{w,o}$ die an diese Bedingung angepaßte Massekurve in Gl. (9) verwendet. Setzt man die nach Gl. (9) ermittelten Werte in das Berech-

nungsmodell für WDVS ein, so ergibt sich bei Einbeziehung aller Meßdaten eine Standardabweichung von 3,2 dB, was einer Verschlechterung der Berechnungsgenauigkeit von 1,2 dB entspricht. Die starke Verschlechterung ist zunächst überraschend, wird jedoch verständlich, wenn man die großen Abweichungen (auch systematischer Art) zwischen den gemessenen und berechneten Werten von $R_{w,o}$ in Bild 14 in Betracht zieht. Möglicherweise läßt sich $R_{w,o}$ mit modifizierten Massekurven (unter Berücksichtigung von Art und Rohdichte des Baustoffs) genauer bestimmen. Die Verbesserungsmöglichkeiten sind aber begrenzt, da die Meßwerte - wie auch Ringversuche zeigen - selbst bei gleichartigen Wänden beträchtliche Streuungen aufweisen und am Bau durch unterschiedliche Einbaubedingungen mit zusätzlichen Abweichungen zu rechnen ist.

- Statt R_{w,o} aus der Flächenmasse der Trägerwand zu berechnen, kann man auch - unabhhängig von der Flächenmasse - einen konstanten Wert von R_{w,o} = 53 dB in die Berechnungsformel für WDVS einsetzen. Hierdurch nimmt K_T den Wert Null an, so daß die Schalldämmung der Trägerwand nicht mehr in das Berechnungsergebnis eingeht. Auf diese Weise erhält man (bezogen auf alle vorhandenen Meßwerte) eine Standardabweichung von σ = 2,4 dB, so daß es in der Praxis unter Umständen günstiger sein kann, diese Vorgehensweise zu wählen.

Vergleicht man die Berechnungsgenauigkeit des detaillierten Modells mit den Ergebnissen des vereinfachten Berechnungsverfahrens in Tab. 2 (bei diesem Verfahren wird ΔR_w ohne Berücksichtigung weiterer Einflußgrößen nur aus der Resonanzfrequenz ermittelt), so wird bei Anwendung des detaillierten Modells eine Verbesserung der statistischen Genauigkeit um 1,1 dB erreicht. Der etwas höhere Berechnungsaufwand für das detaillierte Modell ist also durchaus gerechtfertigt. Dies gilt auch dann, wenn man den Einfluß der Trägerwand vernachlässigt und die Berechnung mit K_T = 0 durchführt.

11 Tabelle für Beiblatt 1 zu DIN 4109

Da es geplant ist, bei der Überarbeitung von Beiblatt 1 zu DIN 4109 auch eine Berechnungstabelle für die Schalldämmung von WDVS mit aufzunehmen, wurde ein Vorschlag für eine solche Tabelle erarbeitet und in Anhang 5 dargestellt. Die Berechnung der in der Tabelle angegebenen Werte erfolgte mit dem entwikkelten Berechnungsmodell, wobei auch die Korrektur K_T für die Schalldämmung der Trägerwand berücksichtigt wurde. Wegen der in Ziffer 10.7 beschriebenen Probleme ist diese Korrektur jedoch mit Vorsicht anzuwenden, da sie unter Umständen eine Verschlechterung der Berechnungsgenauigkeit bewirken kann (dies ist dann der Fall, wenn die Schalldämmung nicht gemessen, sondern aus der Flächenmasse der Wand berechnet wird). Die Frequenzeinteilung der Tabelle wurde so vorgenommen, daß sich ΔR_w gegenüber dem exakten Berechnungsergebnis mit einer Genauigkeit von etwa ±1 dB ablesen läßt. Hinzu kommt noch ein möglicher von Fehler von maximal ±0,5 dB durch die Rundung auf ganzzahlige Pegel.

Da sich durch die beschriebene Festlegung der Frequenzbänder für die Bandgrenzen ungewohnte Werte ergaben, wurde auf Wunsch der Auftraggeber eine weitere Fassung der Tabelle mit gerundeten Frequenzen erstellt. Bei dieser Fassung der Tabelle, die in Anhang 6 dargestellt ist, wurde die Frequenzeinteilung in der bei der Zulassung von WDVS üblichen Weise vorgenommen. Hierdurch ergibt sich für die verschiedenen Frequenzbänder eine unterschiedliche Ablesegenauigkeit zwischen etwa $\pm 0,5$ und $\pm 1,5$ dB, was in der Praxis als ausreichend anzusehen ist.

Das ermittelte Berechnungsergebnis wird auf den Bereich von -8 dB $\leq \Delta R_w \leq$ 19 dB begrenzt, was dem Minimum und Maximum aller in der Datenbank enthaltenen Werte entspricht. Hierin kommen zugleich die Anwendungsgrenzen des Berechnungsverfahrens zum Ausdruck, welche sich im wesentlichen auf den Wertebereich des dem Verfahren zugrundeliegenden Datensatzes erstrecken. Eine Beschreibung des Wertebereichs der vorliegenden Daten ist in Ziffer 8.1 und 8.2 wiedergegeben. Zwar ist eine Extrapolation des Modells über die Grenzen des Wertebereichs hinaus prinzipiell möglich und in vielen Fällen vermutlich auch hinreichend genau. Mit zunehmendem Abstand von den Bereichsgrenzen nimmt die Zuverlässigkeit des Berechnungsverfahrens jedoch stark ab, da es hier nicht mehr durch Meßdaten abgesichert ist. In diesem Fall sollte vom Einsatz des Verfahrens abgesehen und statt dessen ein meßtechnischer Nachweis geführt werden.

Da es sich lediglich um einen Vorschlag handelt, der im NABau vermutlich noch überarbeitet werden wird, wurde die Tabelle zunächst nur für ΔR_w erstellt. Wenn geklärt ist, ob und wie die verschiedenen Spektrum-Anpassungswerte in DIN 4109 aufgenommen werden, kann eine gleichartige Tabelle in einfacher Weise auch für $\Delta(R_w + C_{tr})$ berechnet werden. Die Tabelle enthält bislang noch kein Vorhaltemaß zur Berücksichtigung der Ergebnisunsicherheit, so daß ein solches gegebenenfalls noch eingearbeitet werden muß (siehe hierzu auch die Ausführungen in Ziffer 12).

12 Anwendung des Verfahrens in der Zulassung

Zum Einsatz des Berechnungsverfahrens in der Zulassung eignet sich am besten die in Ziffer 11 beschriebene Tabelle für Beiblatt 1 zu DIN 4109. Da das Verfahren zwischen verschiedenen Dämmstoffarten unterscheidet und neben der Resonanzfrequenz noch von weiteren Einflußgrößen (Verdübelung, prozentuale Klebefläche, Strömungswiderstand und Schalldämmung der Trägerwand) abhängt, ist die bislang übliche Zusammenfassung der Berechnungsergebnisse in einer einzigen Tabelle nicht möglich. Es werden statt dessen vier Tabellen benötigt, aus denen die zur Bestimmung von ΔR_w erforderlichen Werte abgelesen werden. Die erste Tabelle enthält die Verbesserung des bewerteten Schalldämm-Maßes unter Standardbedingungen (die Verdübelung ist bereits berücksichtigt), in den übrigen Tabellen sind Korrekturen zur Berücksichtigung der anderen oben genannten Einflußgrößen enthalten. Die Berechnung von ΔR_w erfolgt auf einfache Weise, indem die Korrekturen von dem Standardwert subtrahiert werden. Vorschläge für die einzelnen Tabellen sind den Anhängen 5 und 6 zu entnehmen.

Die Tabellen in den Anhängen 5 und 6 enthalten noch keinen Sicherheitsabschlag, so daß von den Werten in der ersten Tabelle (der Tabelle für ΔR_w) ein geeignetes Vorhaltemaß abgezogen werden muß. Da die Standardabweichung zwischen Messung und Rechnung nach Ziffer 10.7 etwa 2 dB beträgt (zwischen den verschiedenen Arten von WDVS bestehen diesbezüglich nur verhältnismäßig geringe Unterschiede), erscheint ein Vorhaltemaß in dieser Höhe angemessen. Dies gilt auch unter dem Gesichtspunkt, daß DIN 4109 für andere Bauteile, wie z. B. Wände, ein gleich hohes Vorhaltemaß vorsieht. Andererseits ist zu

46

bedenken, daß bei Wänden mit WDVS eine zweifache Anwendung des Vorhaltemaßes (für die Trägerwand und für das Dämmsystem) erfolgt, so daß sich ein Abzug von insgesamt 4 dB ergibt. Ob dies gerechtfertigt und in der Praxis sinnvoll ist, ist eine Ermessensfrage, die hier nicht geklärt werden kann, sondern im DIBt-SVA B2 oder im NABau entschieden werden muß.

Um zu sehen, wie sich die mit dem entwickelten Berechnungsmodell ermittelten Ergebnisse von den in bisherigen Zulassungen enthaltenen Werten unterscheiden, wurde eine Vergleichsberechnung durchgeführt. Hierzu wurde die Wertetabelle aus einer Zulassung herangezogen und unter Beibehaltung der vorhandenen Frequenz- und Schalldämmklassen neu berechnet. Ein Problem hierbei bestand darin, daß sich die Tabelle auf R'w,R.o (Rechenwert des bewerteten Schalldämm-Maßes mit Nebenwegen) bezieht, während das neue Berechnungsmodell Rw.o (Meßwert ohne Nebenwege) als Eingangsgröße benötigt. Um vergleichbare Werte zu erhalten, mußte $R'_{w,R,o}$ in $R_{w,o}$ umgerechnet werden. Dies erfolgte, indem für R'w,R,o gemäß Tabelle 2 in Beiblatt 1 zu DIN 4109 die zugehörige Flächenmasse ermittelt und daraus nach Gl. (9) Rw.o berechnet wurde. Um die in der Zulassungstabelle dargestellte Größe $\Delta R_{w,R}$ (Rechenwert von ΔR_w) zu ermitteln, wurden von dem berechneten ΔR_w -Wert 2 dB subtrahiert. Die Berechnung erfolgte für unverdübelte EPS- oder EEPS-Systeme (die Berechnung stimmt in beiden Fällen überein) mit einer prozentualen Klebefläche von 40 %. Aus den in Anhang 7 dargestellten Ergebnissen ist zu entnehmen, daß das neue Berechnungsverfahren für ΔR_w bei leichten Trägerwänden um bis zu 4 dB höhere, bei schweren Wänden hingegen um bis zu 3 dB niedrigere Werte als bisher liefert.

13 Fehlerbetrachtung

Die Ergebnisgenauigkeit des entwickelten Berechnungsmodells hängt wesentlich von der Zuverlässigkeit der verwendeten Eingangswerte ab. Der Einfluß der Eingangswerte auf das Berechnungsergebnis wurde deshalb mittels einer vereinfachten Fehlerrechnung untersucht. Hierzu wurde zunächst durch statistische Auswertung vorhandener Meßdaten die Streuung der verschiedenen Eingangswerte abgeschätzt. (Bei der Schalldämmmung der Trägerwand wurde zwischen

gemessenen und berechneten Werten unterschieden, da bei der Berechnung der Schalldämmung nach DIN 4109 gemäß Bild 14 mit erheblichen Abweichungen zu rechnen ist. Die Streuung der Meßwerte wurde nach DIN EN 20140-2 [20], die der berechneten Werte durch Auswertung der in Bild 14 dargestellten Ergebnisse bestimmt.) Anhand der Streuung der Eingangswerte wurde dann für vier typische WDVS (je ein EEPS-, EPS-, MFP- und MFL-System, die Konstruktionsparameter wurden durch Mittelung der in der Datenbank enthaltenen Werte festgelegt) numerisch die resultierenden Fehler der berechneten ΔR_w -Werte bestimmt.

Die Streuung der Eingangswerte, eine Beschreibung der vier untersuchten WDVS und die Ergebnisse der Fehlerrechnung sind in Anhang 8 wiedergegeben. Bei EEPS-, EPS- und MFP-Systemen stellen die dynamische Steifigkeit der Dämmung und die Flächenmasse der Putzschicht (die beiden Werte bestimmen die Resonanzfrequenz des WDVS) die wichtigste Fehlerquelle dar. Bei EEPS- und MFP-Systemen tritt außerdem die Schalldämmung der Trägerwand als wesentliche Fehlerquelle hinzu. Dies gilt besonders dann, wenn die Schalldämmung der Trägerwand aus der Flächenmasse berechnet wird. In diesem Fall ruft sie bei allen Arten von Systemen den größten Einzelfehler hervor. Ein Ausnahme hiervon bilden MFL-Systeme, bei denen die genannten Eingangswerte nur verhältnismäßig geringen Einfluß haben und die Genauigkeit der Ergebnisse vor allem vom längenbezogenen Strömungswiderstand abhängt.

Die aus den Einzelfehlern nach dem Fehlerfortpflanzungsgesetz berechneten Gesamtfehler sind von gleicher Größenordnung wie die zwischen Messung und Rechnung tatsächlich vorgefundenen Abweichungen, was die bei der Fehlerrechnung verwendeten Abschätzungen betätigt (die mittlere Abweichung zwischen gemessenen und berechneten Werten bezogen auf alle vorhandenen Datensätze ist in den Tabellen 3 und 4 dargestellt). Für EPS- und MFL-Systeme ergibt die Fehlerrechnung etwas zu kleine Werte, was vermutlich damit zusammenhängt, daß die Rechnung für ein einzelnes System mit durchschnittlichen Eigenschaften erfolgte. Da am Rand des Wertebereichs größere Abweichungen auftreten, ist das Berechnungsergebnis kleiner als der im Mittel vorhandene Fehler.

14 Luftschallverbesserungsmaß

Derzeit wird auf europäischer Ebene an einer Norm über die Messung und Bewertung der Verbesserung der Schalldämmung durch Vorsatzschalen - dem sogenannten Luftschallverbesserungsmaß - gearbeitet [21]. Ein Vorschlag für die Berechnung des Luftschallverbesserungsmaßes liegt bereits vor. Unklar ist jedoch noch, mit welchen Ergebnissen bei Anwendung des Verfahrens auf WDVS in der Praxis zu rechnen ist. Aus diesem Grund wurde für die in der Datenbank enthaltenen Meßdaten das Luftschallverbesserungsmaß berechnet und statistisch ausgewertet. Die Berechnung erfolgte nach dem im Normentwurf ISO/TC 43/SC 2 N 011 beschriebenen Verfahren. Hierbei wird die gemessene Verbesserung der Schalldämmung terzweise zum Schalldämm-Maß einer genormten Referenzwand addiert und anschließend berechnet, wie stark sich hierdurch das bewertete Schalldämm-Maß dieser Wand erhöht. Das Luftschallverbesserungsmaß des betrachteten WDVS entspricht der Differenz der bewerteten Schalldämm-Maße der Referenzwand mit und ohne WDVS. Das Schalldämm-Maß der im Normentwurf ISO/TC 43/SC 2 N 011 vorgesehenen Referenzwand (Wand mit niedriger Koinzidenzfrequenz nach Annex B) ist in Bild 34 dargestellt.

Durch die beschriebene Vorgehensweise wird berücksichtigt, daß das gleiche WDVS, wenn es an verschiedenen Trägerwänden angebracht wird, eine unterschiedlich starke Erhöhung des bewerteten Schalldämm-Maßes bewirken kann (auf die Ursachen für dieses Verhalten wurde in Ziffer 10.1 ausführlich eingegangen). Indem man die Verbesserung der Schalldämmung rechnerisch auf eine genormte Referenzwand bezieht, erreicht man, daß sich alle Meßwerte, egal an welcher Wand sie tatsächlich ermittelt wurden, direkt miteinander vergleichen lassen. Das Luftschallverbesserungsmaß kann sowohl für R_w, als auch für die Summe von R_w und C bzw. R_w und C_{tr} ermittelt werden. Da sich die beiden Spektrum-Anpassungswerte jeweils für vier verschiedene Frequenzbereiche bestimmen lassen, sind bei der Berechnung des Luftschallverbesserungsmaßes folgende Einzahlangaben möglich:

 $-\Delta R_w$,

- $\Delta(R_w + C_{100-3150}),$
- $\Delta(R_w + C_{100-5000}),$

50

- $\Delta(R_w + C_{50-3150}),$
- $\Delta(R_w + C_{50-5000}),$
- $\Delta(R_w + C_{tr,100-3150}),$
- $\Delta(R_w + C_{tr, 100-5000}),$
- $\Delta(R_w + C_{tr,50-3150}),$
- $\Delta(R_w + C_{tr,50-5000}).$

Für die Integration in DIN 4109 und die Festlegung von Anforderungen ist insbesondere von Interesse, welches Verhältnis bei WDVS zwischen den verschiedenen Einzahlangaben besteht. Aus diesem Grund wurden aus der Datenbank alle Messungen herausgesucht, die den Frequenzbereich von 50 bis 5000 Hz umfaßten und somit eine Berechnung sämtlicher Einzahlangaben erlaubten. Es handelte sich um insgesamt 130 Messungen, von denen 31 an EEPS-, 40 an EPS-, 24 an MFP- und 35 an MFL-Systemen durchgeführt wurden (Messungen an leichten Trägerwänden mit niedriger Rohdichte wurden ausgespart). Für diese Messungen wurden jeweils die oben angegebenen Einzahlangaben berechnet und anschließend die statistischen Kennwerte der berechneten Werte bestimmt. Die hierbei ermittelten Ergebnisse sind in Anhang 9 dargestellt und lassen sich folgendermaßen zusammenfassen:

- Die Terzen bei 4000 und 5000 Hz haben nur geringen oder gar keinen Einfluß auf die Berechnung der Einzahlangaben.
- Die unter Berücksichtigung des Frequenzbereichs von 50 bis 80 Hz berechneten Einzahlangaben sind im Mittel immer kleiner als die übrigen Werte (in einigen Fällen verschwindet der Unterschied)
- Bezieht man das Luftschallverbesserungsmaß statt auf R_w auf (R_w + C) oder (R_w + C_{tr}), so ergeben sich generell geringere Verbesserungen der Schalldämmung. Bei Systemen mit niedriger Resonanzfrequenz ist der Unterschied besonders groß (bezogen auf (R_w + C_{tr,50-5000}) beträgt er 9,1 dB bei EEPS- und 10,1 dB bei MFP-Systemen). Werden die Terzen unter 100 Hz ausgespart, vermindert sich die Differenz (auf 6,2 dB bei EEPS- und 3,5 dB bei MFP-Systemen).
- Bei Systemen mit hoher Resonanzfrequenz unterscheiden sich die verschiedenen Einzahlangaben weniger stark (bei MFL-Systemen beträgt die Differenz zwischen ΔR_w und $\Delta (R_w + C_{tr,100-5000})$ nur 1,6 dB).

 Für MFP-Systeme ergibt sich die höchste, für MFL-Systeme die geringste Verbesserung der Schalldämmung. Bei Einbeziehung der Spektrum-Anpassungswerte relativiert sich der Unterschied jedoch (9,8 dB bei ΔR_w, 1,3 dB bei Δ(R_w + C_{tr,100-5000})).

15 Schall-Längsdämmung

Da über die Schall-Längsdämmung von Wänden mit WDVS an anderer Stelle ausführlich berichtet wird [5, 22], erfolgt hier nur eine kurze Zusammenfassung der wichtigsten Ergebnisse. Die im Fraunhofer-Institut für Bauphysik durchgeführten Untersuchungen ergaben, daß WDVS die Schall-Längsdämmung von Außenwänden nur in sehr geringem Maß beeinflussen. Entscheidend für das akustische Verhalten ist nicht die Schallübertragung innerhalb des Dämmsystems (diese ist nahezu bedeutungslos), sondern die Rückwirkung auf die Trägerwand, der im Bereich der Resonanzfrequenz Schallenergie entzogen wird, so daß sich in diesem Frequenzbereich eine Verbesserung der Längsdämmung ergibt. Dieser Effekt ist jedoch so schwach (maximal 1 bis 2 dB), daß er sich im Bereich der Meßunsicherheit befindet und in der Praxis so gut wie keine Rolle spielt. Bei praktischen Berechnungen kann man daher näherungsweise davon ausgehen, daß sich WDVS nicht auf die Schall-Längsdämmung von Außenwänden auswirken. Dies gilt allerdings mit folgenden Einschränkungen:

- Alle durchgeführten Messungen erfolgten an T-Stößen mit einschaligen Querwänden. Ob die ermittelten Ergebnisse auch bei zweischaligen Querwänden mit durchlaufendem WDVS gelten, ist unklar. Dieser Fall dürfte in der Praxis jedoch recht selten vorkommen.
- Es wurde selbstverständlich vorausgesetzt, daß das WDVS auf der Außenseite der Längswand angebracht wird. Innendämmungen verhalten sich akustisch völlig anders und können die Längsdämmung unter Umständen beträchtlich verschlechtern.
- Die beschriebenen Ergebnisse gelten unter der Voraussetzung, daß das WDVS eine sehr viel kleinere Flächenmasse als die Trägerwand aufweist.

16 Zusammenfassung

Um bessere Kenntnisse über die akustischen Eigenschaften von Wärmedämm-Verbundsystemen (WDVS) zu erhalten, wurden im Rahmen des beauftragten Forschungsvorhabens systematische Schalldämm-Messungen an 72 verschiedenen Systemen durchgeführt. Außerdem wurden alle in der Materialprüfanstalt Braunschweig und im Fraunhofer-Institut für Bauphysik vorhandenen Meßergebnisse gesammelt, ausgewertet und in eine Datenbank eingegeben, die nach Fertigstellung etwa 200 Datensätze umfaßte. Auf der Grundlage dieser Datenbank wurde ein akustisches Berechnungsmodell entwickelt, mit dem die Verbesserung der Schalldämmung von Wänden durch WDVS bezogen auf das bewertete Schalldämm-Maß R_w sowie die Summe von R_w und C_{tr,100-5000} bestimmt wurde. Um die Schalldämmung einer Wand mit WDVS zu ermitteln, ist die berechnete Verbesserung zum Schalldämm-Maß dieser Wand zu addieren.

Die wichtigste Ausgangsgröße zur Berechnung der Schalldämmung bildet die Resonanzfrequenz des WDVS, die sich aus der dynamischen Steifigkeit der Dämmplatten und der Flächenmasse der Putzschicht ergibt. Daneben wurden nach vorangehender Datenanalyse noch folgende weiteren Einflußgrößen in das Berechnungsmodell aufgenommen: die Befestigung des WDVS an der Trägerwand (mit oder ohne Dübel, prozentualer Klebeflächenanteil), das Schalldämm-Maß der Wand (bei hoher Schalldämmung der Wand fällt die Verbesserung durch das WDVS geringer aus) und der Strömungswiderstand des Dämmstoffs (letzterer nur bei Mineralfaser-Systemen). Außerdem wurde eine Unterscheidung zwischen WDVS mit Polystyrol- und Mineralfaserdämmung vorgenommen.

Im günstigsten Fall wird mit dem entwickelten Berechnungsmodell bezogen auf den gesamten vorhandenen Datenbestand eine Berechnungsgenauigkeit von 2,0 dB erreicht (bei dieser Angabe handelt es sich um die Standardabweichung zwischen gemessenen und berechneten Werten). Hierbei ist allerdings zu berücksichtigen, daß bei den Berechnungen von der gemessenen Schalldämmung der Wände ausgegangen wurde. Wird stattdessen die nach DIN 4109 aus der Flächenmasse der Wände berechnete Schalldämmung in das Modell eingegeben (dies dürfte in der Praxis den Normalfall darstellen), so verringert sich die

52

Berechnungsgenauigkeit um mehr als 1 dB. In diesem Fall erweist es sich unter Umständen als günstiger, den Wandeinfluß gar nicht zu berücksichtigen, wodurch sich eine Berechnungsgenauigkeit vom immerhin noch 2,4 dB ergibt.

Neben der Erstellung der Datenbank und der Entwicklung des Berechnungsmodells wurden noch folgende Aufgaben bearbeitet:

- Erstellung einer Tabelle f
 ür Beiblatt 1 zu DIN 4109, mit der sich die Verbesserung der Schalld
 ämmung schnell und einfach absch
 ätzen l
 ä
 ßt.
- Berechnung des Luftschallverbesserungsmaßes von WDVS nach einem europäischen Normentwurf. Hierbei zeigte sich, daß die Verbesserung der Schalldämmung erheblich geringer ausfällt, wenn statt R_w die Größe (R_w + C_{tr}) betrachtet wird. Dies gilt vor allem bei Systemen mit niedriger Resonanzfrequenz, wenn auch die Terzen von 50 bis 80 Hz in die Berechnung einbezogen werden.
- Messungen der Schall-Längsleitung an Außenwänden mit und ohne WDVS.
 Die durchgeführten Untersuchungen ergaben, daß sich WDVS unter üblichen Baubedingungen kaum auf die Schall-Längsdämmung auswirken.

Der Einfluß von Fenstern auf die Schalldämmung von Wänden mit WDVS wurde nicht betrachtet, da hierauf bereits an anderer Stelle ausführlich eingegangen wird [6, 16, 23]. Obgleich es nicht möglich war, alle Fragen vollständig zu klären, konnte der Kenntnisstand über die akustischen Eigenschaften von WDVS beträchtlich erweitert werden. Dies gilt insbesondere für die Auswirkungen verschiedener Einflußgrößen auf das Schalldämm-Maß. Außerdem steht nun ein akustisch fundiertes und statistisch abgesichertes Berechnungsmodell zur Verfügung, mit dem sich die Verbesserung der Schalldämmung durch WDVS mit einer für die meisten praktischen Anwendungen ausreichenden Genauigkeit vorherbestimmen läßt.

Danksagung

Wir danken Herrn Dipl.-Phys. K. Paulmann von der Materialprüfanstalt Braunschweig für die Überlassung umfangreicher Meßdaten über Wärmedämm-Verbundsysteme.

17 Literaturverzeichnis

- [1] DIN 4109: 1989, Schallschutz im Hochbau Anforderungen und Nachweise. Beuth-Verlag, Berlin.
- [2] Beiblatt 1 zu DIN 4109: 1989, Schallschutz im Hochbau Ausführungsbeispiele und Rechenverfahren. Beuth-Verlag, Berlin.
- [3] Sonntag, E., Metzen, H. A.: Die Schalldämmung homogener Einfachwände in Abhängigkeit vom Gesamt-Verlustfaktor, Teil 1: Physikalisches Berechnungsmodell bei gegebenem Verlustfaktor. wksb 44 (1999), H. 44, S. 38 -42.
- [4] Metzen, H. A., Sonntag, E.: Die Schalldämmung homogener Einfachwände in Abhängigkeit vom Gesamt-Verlustfaktor, Teil 2: Verlustfaktor und Massekurven für ein Prüfstandsmodell. wksb 45 (2000), H. 45, S. 23 - 29.
- [5] Zhang, Y., Weber, L., Brandstetter, D.: Untersuchung der Schall-Längsdämmung von Außenwänden mit Wärmedämm-Verbundsystemen. IBP-Bericht B-BA 4/2002 im Auftrag des Bundesamtes für Bauwesen und Raumordnung (BBR), in Bearbeitung.
- [6] Scholl, W.: Schalldämmung mit Wärmedämm-Verbundsystemen, Teil 1: Systeme mit elastifizierten Polystyrol-Dämmplatten. Bauphysik 21 (1999), H. 1, S. 20 - 28.
- [7] Frommherz, J.: Modellierung der Schalldämmung von Wärmedämm-Verbundsystemen mit LAYERS. Diplomarbeit im Studiengang Bauphysik der Fachhochschule Stuttgart - Hochschule für Technik und dem Fraunhofer-Institut für Bauphysik, Stuttgart (2001).
- [8] DIN EN ISO 140-1: 1998, Messung der Schalldämmung in Gebäuden und von Bauteilen, Teil 1: Anforderungen an Prüfstände mit unterdrückter Flankenübertragung. Beuth-Verlag, Berlin.
- [9] DIN EN 20140-3: 1995, Messung der Schalldämmung in Gebäuden und von Bauteilen, Teil 3: Messung der Luftschalldämmung von Bauteilen in Prüfständen. Beuth-Verlag, Berlin.
- [10] L. Weber, S. Koch: Anwendung von Spektrum-Anpassungswerten Teil 1: Luftschalldämmung. Bauphysik 21 (1999), H. 4, S. 167 - 170.
- [11] DIN EN ISO 717-1: 1997, Bewertung der Schalldämmung in Gebäuden und von Bauteilen Teil 1: Luftschalldämmung. Beuth-Verlag, Berlin.

- [12] Beiblatt 3 zu DIN 4109: 1996, Schallschutz im Hochbau Berechnung von R'_{w,R} für den Nachweis der Eignung nach DIN 4109 aus Werten des im Labor ermittelten Schalldämm-Maßes R_w. Beuth-Verlag, Berlin.
- [13] ÖNORM B 8115-4: 1992, Schallschutz und Raumakustik im Hochbau -Maßnahmen zur Erfüllung der schalltechnischen Anforderungen. ON, Wien.
- [14] EN12354-1: 2000, Bauakustik Berechnung der akustischen Eigenschaften von Gebäuden aus den Bauteileigenschaften - Teil 1: Luftschalldämmung zwischen Räumen. Europäisches Komitee für Normung (CEN), Brüssel.
- [15] Scholl, W.: Schallschutz mit Wärmedämm-Verbundsystemen aus elastifiziertem Polystyrol (System "Marmorit Warm-Wand polimell"). Bericht B-BA 2/1998 des Fraunhofer-Instituts für Bauphysik, Stuttgart (1998).
- [16] Paulmann, K.: Neue Untersuchungen zur Luftschalldämmung von Wänden mit Wärmedämm-Verbundsystemen. Bauphysik 16 (1994), H. 4, S. 115 121.
- [17] Rückward, W.: Einfluß von Wärmedämm-Verbundsystemen auf die Luftschalldämmung. Bauphysik 4 (1982), H. 2, S. 54 - 56.
- [18] Rückward, W.: Luftschalldämmung von Wärmedämm-Verbundsystemen leichte und schwere Putzschichten im Vergleich. Bauphysik 4 (1982), H.
 5, S. 161 - 165.
- [19] Weber, L., Zhang, Y., Brandstetter, D.: Influence of wall construction on the acoustical behaviour of ETHICS. Fortschritte der Akustik - DAGA 2002 (2002), noch nicht erschienen.
- [20] DIN EN 20140-2: 1993, Messung der Schalldämmung in Gebäuden und von Bauteilen, Teil 2: Angaben von Genauigkeitsanforderungen. Beuth-Verlag, Berlin.
- [21] ISO/TC 43/SC 2 N 011: 2002, Acoustics Measurement of sound insulation in buildings and of building elements - Part 16: Laboratory measurement of the sound reduction improvement by acustical linings. DIN Deutsches Institut für Normung e. V., Berlin.
- [22] Weber, L., Brandstetter, D., Scholl, W.: Schallschutz bei Wärmedämm-Verbundsystemen. Fortschritte der Akustik - DAGA 2001 (2001), S. 222 -223.
- [23] VDI 2719: 1987, Schalldämmung von Fenstern und deren Zusatzeinrichtungen. Beuth-Verlag, Berlin.

Dämmsystem	Umfang	Zunahme vo	Zunahme von R _w [dB] bei Erhöhung von m" _P von			
	Stich-	6 auf 1	5 kg/m ²	6 auf 30	0 kg/m ²	
	probe	Mittelwert	σ	Mittelwert	σ	
EPS, o. D.	4	2,3	1,0	5,3	1,7	
EPS, m. D.	2	1,5	0,7	4,5	0,7	
EEPS, o. D.	2	7,0	1,4	12,5	2,1	
EEPS, m. D.	2	3,0	0,0	2,5	0,7	
MFL-WD, o. D.	3	0,7	0,6	1,7	0,6	
MFL-WD, m. D.	2	0,5	0,7	3,5	0,7	
MFP-WV, o. D.	2	5,0	0,0	10,5	0,7	
MFP-WV, m. D.	2	3,5	0,7	4,0	1,4	
MFP-HD, m. D.	2	3,0	0,0	5,0	0,0	

Einfluß der Putzmasse auf R_w (Ergebnisse Meßreihe)

EPS	expandierte Polystyrol-Hartschaumplatte
EEPS	elastifizierte EPS-Platte
MFL-WD	Mineralfaser-Lamellenplatte Typ WD
MFP-WV	Mineralfaser-Putzträgerplatte Typ WV
MFP-HD	Mineralfaser-Putzträgerplatte Typ HD
o. D.	ohne Dübel
m. D.	mit Dübeln

Tabelle 1Zunahme des bewerteten Schalldämm-Maßes bei Vergrößerung
der Flächenmasse der Putzschicht m"P. Mittelwert und Stan-
dardabweichung für die verschiedenen Systeme (Systeme mit
Halteleisten nicht berücksichtigt).

Fraunhofer-Institut für Bauphysik

Angaben für Linienzug (vereinfachtes Modell)

Frequenzbereich für f _R	Koeffizienten für den Linienzug [-]					
	ΔF	Rw	∆(R _w	+ C _{tr})		
	а	b	а	b		
f _{R,b} < 125 Hz	-24,8	57,9	-28,7	60,5		
125 Hz ≤ f _{R,b} < 250 Hz	-29,1	66,9	-15,9	33,6		
f _{R,b} ≥ 250 Hz	-1,9	1,7	4,7	-15,8		

Anwendungs-	Einzahl-	st	atistisch	e Kenn	werte [d	B]
bereich	angabe	A _{min}	A _{max}	Ā	σ	\overline{A}^{q}
Wände mit	∆R _w	-7,4	8,3	0,0	3,1	3,1
$ ho \ge 1000 \text{ kg/m}^3$	$\Delta(R_w + C_{tr})$	-7,6	8,6	0,0	2,8	2,8
alle Träger-	ΔR _w	-7,4	8,1	0,0	3,1	3,1
wände	$\Delta(R_w + C_{tr})$	-13,4	8,8	0,0	3,2	3,2

Tabelle 2Koeffizienten (oben) und statistische Kennwerte (unten) für die
Approximation der Meßdaten durch einen Linienzug aus drei
Segmenten (siehe Bild 20). Vereinfachte Berechnung ohne Un-
terscheidung der Dämmstoffe und ohne Berücksichtigung von
Dübeln, Klebefläche und Trägerwand. Die Betrachtung umfaßt
alle vorhandenen Meßdaten. Die verwendete Berechnungsformel
lautet: $\Delta R_w = (a lg(f_{R,b}) + b) dB.$

Dämm-	Trägerwände	stat	istische k	Cennwerte	e für ∆R _w	[dB]
system		A _{min}	A _{max}	Ā	σ	Āq
EEPS	$ ho \ge 1000 \text{ kg/m}^3$	-4,4	3,2	0,0	1,9	1,9
EPS	$ ho \ge 1000 \text{ kg/m}^3$	-3,3	5,4	-0,3	1,9	1,9
MFP	$ ho \ge 1000 \text{ kg/m}^3$	-4,0	4,2	0,0	2,5	2,5
MFL	$ ho \ge 1000 \text{ kg/m}^3$	-3,3	5,7	0,3	2,1	2,1
alle Systeme	$ ho \ge 1000 \text{ kg/m}^3$	-4,4	5,7	0,0	2,0	2,0
alle Systeme	alle Wände	-4,4	5,7	-0,1	2,0	2,0

Statistische Genauigkeit des Berechnungsmodells

Dämm-	Trägerwände	statistis	sche Kenr	nwerte für	[•] ∆(R _w + (C _{tr}) [dB]
system		A _{min}	A _{max}	Ā	σ	\overline{A}^{q}
EEPS	$\rho \ge 1000 \text{ kg/m}^3$	-5,7	3,7	-0,1	2,0	2,0
EPS	$ ho \ge 1000 \text{ kg/m}^3$	-3,2	5,5	0,0	2,0	1,9
MFP	$\rho \ge 1000 \text{ kg/m}^3$	-4,7	5,8	0,0	2,7	2,7
MFL	$ ho \ge 1000 \text{ kg/m}^3$	-3,3	4,2	0,2	1,8	1,8
alle Systeme	$\rho \ge 1000 \text{ kg/m}^3$	-5,7	5,8	0,0	2,0	2,0
alle Systeme	alle Wände	-13,8	5,8	-0,3	2,6	2,6

Tabelle 3 Statistische Genauigkeit der mit dem Berechnungsmodell ermittelten Ergebnisse für ∆R_w (oben) und ∆(R_w + C_{tr}) (unten) bei Anwendung auf unterschiedliche Arten von Dämmsystemen. Die Berechnung erfolgte unter Berücksichtigung aller im Berechnungsmodell vorgesehenen Korrekturen (Verdübelung, Klebefläche, Trägerwand und Strömungswiderstand). Für die Schalldämmung der Trägerwand wurden gemessene Werte eingesetzt.

Fraunhofer-Institut für Bauphysik

Einfluß der Ausgangswerte auf die statistische Genauigkeit

Dämm-	Trägerwände	statistische Kennwerte für ∆R _w [dB]				
system		Berechnung ohne Strömungswiderstand				
		A _{min}	A _{max}	Ā	σ	\overline{A}^{q}
MFP	$ ho \ge 1000 \text{ kg/m}^3$	-5,5	4,1	-0,2	3,0	2,9
MFL	$ ho \ge 1000 \text{ kg/m}^3$	-6,1	5,7	0,0	3,0	3,0

Dämm-	Trägerwände	statistische Kennwerte für ∆R _w [dB]				
system		Verwendung berechneter R _{w,o} -Werte				
		A _{min}	A _{max}	Ā	σ	Āq
alle Systeme	$ ho \ge 1000 \text{ kg/m}^3$	-4,0	8,6	1,7	2,6	3,1
alle Systeme	alle Wände	-8,3	8,6	1,5	2,9	3,2

Dämm-	Trägerwände	statistische Kennwerte für ∆R _w [dB]				
system		Berechnung mit R _{w,o} = 53 dB				
		A _{min}	A _{max}	Ā	σ	\overline{A}^{q}
alle Systeme	$ ho \ge 1000 \text{ kg/m}^3$	-5,4	7,8	0,0	2,3	2,3
alle Systeme	alle Wände	-6,7	7,8	0,1	2,4	2,4

- Tabelle 4Statistische Genauigkeit bei der Berechnung von ∆Rw bei Ver-
wendung unterschiedlicher Ausgangswerte. Es wurden folgende
Fälle betrachtet:
 - oben: Berechnung ohne Strömungswiderstand, d. h. mit $K_S = 0$. Da bei den übrigen Systemen keine Änderungen eintreten, wurden nur die Mineralfaser-Systeme betrachtet.
 - Mitte: Verwendung des nach GI. (9) berechneten statt des gemessenen Schalldämm-Maßes der Trägerwand.
 - unten: Berechnung mit $R_{w,o} = 53 \text{ dB}$, d. h. $K_T = 0$.

WDVS-Aufbau und Berechnungsmodell

Bild 1 Aufbau einer Außenwand mit WDVS (oben) und einfaches, eindimensionales Masse-Feder-Modell zur Berechnung des grundlegenden akustischen Verhaltens (unten).

Berechnungsmodelle für den Frequenzverlauf der Schalldämmung

Berechnung ohne Dickenschwingungen (starre Masse mit idealer, masseloser Feder und idealem Dämpfer)

Berechnung mit Dickenschwingungen (Dämmschicht als elastisches Kontinuum mit Elastizitätsmodul E, Verlustfaktor η und Dichte ρ)

Bild 2 Verbesserung der Schalldämmung durch ein WDVS in Abhängigkeit von der Frequenz. Vergleich einer typischen Meßkurve mit zwei vereinfachten Berechnungsmodellen (siehe oben).

Verbesserung der Schalldämmung durch WDVS (Beispiele)

Sys-		Dämmung			f _{R,b}	ΔR_w	Träge	erwand
tem	Mate-	Dicke	s'	[kg/m ²]	[Hz]	[dB]	Mate-	m''
Nr.	rial	[mm]	[MN/m ³]				rial	[kg/m ²]
1	EPS	80	60	8	441	-4	KSV	360
2	EEPS	80	6	11	119	10	KSV	349
3	MFL	120	56	11	365	-3	KSV	326
4	MFP	80	5	8	127	3	KSV	360

Bild 3 Verbesserung der Schalldämmung von Wänden durch WDVS in Abhängigkeit von der Frequenz (Beispiele). Nähere Angaben zu den dargestellten Meßkurven sind der Bildbeschriftung zu entnehmen. Es handelt sich in allen Fällen um unverdübelte WDVS.

Vergleich von gemessener und berechneter Resonanzfrequenz

Bild 4 Verhältnis aus gemessener und berechneter Resonanzfrequenz in Abhängigkeit von der berechneten Resonanzfrequenz (oben) und der dynamischen Steifigkeit der Dämmschicht (unten). Im ersten Fall sind die Meßdaten nach der Art des Dämmstoffs, im zweiten nach dem Klebeflächenanteil geordnet.

Vergleich von gemessener und berechneter Eckfrequenz

Bild 5 Verhältnis aus gemessener und berechneter Eckfrequenz in Abhängigkeit von der berechneten Eckfrequenz. Die durchgezogene Linie ist eine für den gesamten Datenbestand (insgesamt 90 Werte) berechnete Regressionsgerade.

Schalldämmung der Trägerwand für die WDVS-Meßreihe

Bild 6 Schalldämm-Maß der Trägerwand im Prüfstand P2 in Abhängigkeit von der Frequenz zu verschiedenen Zeiten im Verlauf der WDVS-Meßreihe. Die dargestellten Messungen erfolgten ohne WDVS. Zwischen dem Anfang und dem Ende der Meßreihe nahm das bewertete Schalldämm-Maß der Wand um 2 dB ab.

Grenzdämmung des Prüfstands

Bild 7 Grenzdämmung des Prüfstands P2 in Abhängigkeit von der Frequenz. Zum Vergleich sind außerdem die Schalldämmung der Trägerwand und die Schalldämmung der Wand mit WDVS (es handelt sich um das WDVS mit der höchsten gemessenen Schalldämmung) eingezeichnet.

Verbesserung von R_w durch WDVS (Überblick Meßreihe)

Resonanzfrequenz f_{R,b} [Hz]

EPS	expandierte Polystyrol-Hartschaumplatte
EEPS	elastifizierte EPS-Platte
MFL-WD	Mineralfaser-Lamellenplatte Typ WD
MFP-WV	Mineralfaser-Putzträgerplatte Typ WV
MFP-HD	Mineralfaser-Putzträgerplatte Typ HD
o. D.	ohne Dübel
m. D.	mit Dübeln

Bild 8 Verbesserung des bewerteten Schalldämm-Maßes durch WDVS in Abhängigkeit von der berechneten Resonanzfrequenz. Überblick über alle im Rahmen der WDVS-Meßreihe geprüften Systeme.

Verbesserung von (R_w + C_{tr}) durch WDVS (Überblick Meßreihe)

Resonanzfrequenz f_{R,b} [Hz]

EPS	expandierte Polystyrol-Hartschaumplatte
EEPS	elastifizierte EPS-Platte
MFL-WD	Mineralfaser-Lamellenplatte Typ WD
MFP-WV	Mineralfaser-Putzträgerplatte Typ WV
MFP-HD	Mineralfaser-Putzträgerplatte Typ HD
o. D.	ohne Dübel
m. D.	mit Dübeln

Bild 9 Verbesserung von ($R_w + C_{tr,100-5000}$) durch WDVS in Abhängigkeit von der berechneten Resonanzfrequenz. Überblick über alle im Rahmen der WDVS-Meßreihe geprüften Systeme.

Einfluß der Verdübelung auf Rw (Ergebnisse Meßreihe)

EPS	expandierte Polystyrol-Hartschaumplatte
EEPS	elastifizierte EPS-Platte
MFL-WD	Mineralfaser-Lamellenplatte Typ WD
MFP-WV	Mineralfaser-Putzträgerplatte Typ WV

Bild 10 Verminderung des zuvor durch das WDVS verbesserten Schalldämm-Maßes R_w durch zusätzliche Verdübelung (4 Dübel/m²). Auftragung für verschiedene Systeme in Abhängigkeit von der Flächenmasse der Putzschicht. Stichprobenumfang: zwei Messungen bei EPS, je eine Messung bei den übrigen Systemen. Für (R_w + C_{tr,100-5000}) erhält man ähnliche Ergebnisse wie für R_w. Die Größe ΔR_{w,D} ist folgendermaßen definiert:

> $\Delta R_{w,D} = R_{w,u} - R_{w,v}$ mit Index u = unverdübeltes WDVS Index v = verdübeltes WDVS

Einfluß der Klebefläche auf R_w (Ergebnisse Meßreihe)

EPS expandierte Polystyrol-Hartschaumplatte

MFL-WD Mineralfaser-Lamellenplatte Typ WD

MFP-WV Mineralfaser-Putzträgerplatte Typ WV

Bild 11 Verminderung des durch das WDVS verbesserten Schalldämm-Maßes R_w bei Erhöhung der prozentualen Klebefläche von 40 % auf 60 % (MFL-WD) bzw. 40 % auf 100 % (übrige Systeme). Auftragung für verschiedene Systeme in Abhängigkeit von der Flächenmasse der Putzschicht. Stichprobenumfang: eine Messung je System. Für (R_w + C_{tr,100-5000}) erhält man ähnliche Ergebnisse wie für R_w. Die Größe ∆R_{w,K} ist folgendermaßen definiert:

 $\Delta R_{w,K} = R_{w,n} - R_{w,h}$ mit Index n = niedriger Klebeflächenanteil Index h = hoher Klebeflächenanteil

Einfluß der Putzmasse auf R_w (Ergebnisse Meßreihe)

Systeme 1 - 7	EPS-Hartschaumplatten
Systeme 8 - 11	elastifizierte EPS-Platten
Systeme 12 - 16	Mineralfaser-Lamellenplatten Typ WD
Systeme 17 - 19	Mineralfaser-Putzträgerplatte Typ HD
Systeme 20 - 23:	Mineralfaser-Putzträgerplatte Typ WV
Systeme 7 und 19	Befestigung mit Halteleisten

Bild 12 Erhöhung des bewerteten Schalldämm-Maßes R_w bei Vergrößerung der Flächenmasse der Putzschicht von m'' = 6 kg/m² auf m'' = 15 kg/m² (linke Balken) bzw. auf m'' = 30 kg/m² (rechte Balken). Folgerungen aus den dargestellten Ergebnissen:

Überblick über die Meßergebnisse in der Datenbank

Bild 13 Verbesserung von R_w (oben) und $(R_w + C_{tr,100-5000})$ (unten) durch WDVS in Abhängigkeit von der berechneten Resonanzfrequenz. Überblick über alle in der Datenbank enthaltenen Messungen an Massivwänden (insgesamt 200 Messungen). Die ausgefüllten Symbole bezeichnen Messungen, die an leichten Wänden mit niedriger Rohdichte ($\rho < 1000 \text{ kg/m}^3$) durchgeführt wurden.

Schalldämm-Maß der Trägerwände

Bild 14 Bewertetes Schalldämm-Maß der Trägerwände in Abhängigkeit von ihrer Flächenmasse. Zum Vergleich ist außerdem das nach DIN 4109 berechnete Schalldämm-Maß eingezeichnet (durchgezogene Linie). Die verwendete Berechnungsformel und die in der Bildbeschriftung verwendeten Abkürzungen werden in Ziffer 8.2 erläutert.

Bild 15 Verbesserung von R_w (links) und (R_w + C_{tr,100-5000}) (rechts) durch zwei WDVS (Systeme 1 und 2 aus Bild 3) in Abhängigkeit vom bewerteten Schalldämm-Maß der Trägerwand. Die dargestellten Werte wurden auf der Grundlage gemessener Schalldämm-Maße berechnet, indem die beiden betrachteten WDVS mittels GI. (13) rechnerisch mit allen in der Datenbank vorhandenen Trägerwänden kombiniert wurden. Aus den berechneten Spektren wurden dann anschließend die zugehörigen Einzahlangaben gebildet. Bei den eingezeichneten Linien handelt es sich um Regressionsgeraden, die zur Verdeutlichung vorhandener Tendenzen dienen.

Bild 16 Schalldämm-Maß der für die Berechnungen in Bild 18 verwendeten Trägerwand in Abhängigkeit von der Frequenz. Es handelt sich um eine 175 mm dicke KSV-Wand (Steinrohdichte 1813 kg/m³) mit einer Flächenmasse von 360 kg/m². Die zugehörigen Einzahlangaben betragen $R_w = 52$ dB und $C_{tr, 100-5000} = -4$ dB.

Frequenzverschiebung eines ΔR -Spektrums

Bild 17 Verschiebung eines ΔR -Spektrums entlang der Frequenzachse um vier Terzen (oben ΔR , unten $R = R_0 + \Delta R$, mit R_0 = Schalldämm-Maß ohne WDVS). Beispiel zur Veranschaulichung der in Bild 18 dargestellten Berechnungsergebnisse. Zur Verbesserung der Übersicht wurde die Abszisse um den Faktor 2 gestaucht.

Zusammenhang zwischen ΔR_w und f_R (vereinfacht)

Verschiedene Funktionen zur Approximation der Meßdaten

Bild 19

Erprobung verschiedener mathematischer Funktionen zur Approximation der Meßdaten am Beispiel von $\Delta(R_w + C_{tr})$. Die mittlere Abweichung ist in allen Fällen Null.

oben:	Regressions-
	gerade
	(σ = 3,6 dB)
Mitte:	Polynom vier-
	ter Ordnung
	$(\sigma = 3, 2 \text{ dB})$
unten:	Linienzug mit
	drei Segmen-
	ten
	(σ = 3,2 dB)

B-BA 6/2002

Approximation von ΔR_w durch einen Linienzug (vereinfachtes Modell)

Bild 20 Approximation von ΔR_w (oben) und Δ(R_w + C_{tr}) (unten) durch einen Linienzug aus drei Segmenten. Vereinfachte Berechnung ohne Unterscheidung der Dämmstoffe und ohne Berücksichtigung von Dübeln, Klebefläche und Trägerwand. Die ausgefüllten Symbole bezeichnen Messungen an leichten Wänden mit niedriger Rohdichte (ρ < 1000 kg/m³). Die Koeffizienten zur Berechnung des Linienzugs und die statistischen Kennwerte sind Tab. 2 zu entnehmen.

Auftragung von ΔR_w über gemessener und berechneter Resonanzfrequenz

Bild 21 Auftragung von ΔR_w über der gemessenen Resonanzfrequenz $f_{R,g}$ (oben) und der berechneten Frequenz $f_{R,b}$ (unten). Neben den Meßdaten ist jeweils ein an die Daten angepaßter Linienzug eingezeichnet. Für die Standardabweichung zwischen Meßwerten und Linienzug ergibt sich bei Auftragung über $f_{R,g}$ ein Wert von σ = 2,6 dB. Bei Auftragung über $f_{R,b}$ erhält man σ = 3,2 dB.

B-BA 6/2002

Abweichung zwischen vereinfachter und genauer Berechnung von f_{R,b}

Bild 22 Verhältnis der mit der vereinfachten GI. (4) und der genauen GI. (2) berechneten Resonanzfrequenzen, f_{R,v}/f_{R,g}, in Abhängigkeit vom Verhältnis der Flächenmassen von Putzschicht und Trägerwand, m"_P/m"_W. Die dargestellte Kurve wurde nach GI. (16) berechnet.

Verminderung der Schalldämmung durch Dübel (Frequenzspektrum)

Sys-		Dämmu	ng	m" _{Putz}	f _{R,b}	∆R _{w,u}	Träge	erwand
tem	Mate-	Dicke	s'	[kg/m ²]	[Hz]	[dB]	Mate-	m''
Nr.	rial	[mm]	[MN/m ³]				rial	[kg/m ²]
1	EPS	80	60	8	441	-4	KSV	360
2	EEPS	140	4	16	81	13	KSV	360
3	MFP	80	5	8	127	7	KSV	360
4	MFL	140	37	16	247	-7	KSV	360

Bild 23 Verminderung des zuvor durch das WDVS verbesserten Schalldämm-Maßes durch zusätzliche Verdübelung (4 Dübel/m²) in Abhängigkeit von der Frequenz. Nähere Angaben zu den dargestellten Beispielen sind der Bildbeschriftung zu entnehmen (der Ausdruck $\Delta R_{w,u}$ bezeichnet die Verbesserung von R_w durch das unverdübelte System).

Verminderung der Schalldämmung durch Dübel (Einzahlangaben)

Bild 24 Verminderung der zuvor durch WDVS verbesserten Einzahlangaben R_w (oben) und $(R_w + C_{tr})$ (unten) durch Dübel in Abhängigkeit von der Verbesserung in unverdübeltem Zustand. Darstellung von Messungen an 50 WDVS (25 Paare gleichartiger Systeme, die sich nur hinsichtlich der Verdübelung voneinander unterschieden). Die Anzahl der Dübel lag zwischen 4 und 10 je m².

Einfluß der Klebefläche auf die Schalldämmung (Beispiel)

Bild 25 Schalldämmung einer Wand mit WDVS in Abhängigkeit von der Frequenz bei unterschiedlichem Klebeflächenanteil. Die Verbesserung der Schalldämmung beträgt $\Delta R_w = 7 \, dB$ bei 40 % Klebefläche und $\Delta R_w = 3 \, dB$ bei 100 % Klebefläche. Technische Angaben zu Trägerwand und WDVS:

> Trägerwand: 175 mm KSV, m^{''} = 360 kg/m², R_w = 52 dB, WDVS: 80 mm MFP, s['] = 5 MN/m³, m^{''}_{Putz} = 8 kg/m², unverdübelt.</sup>

Einfluß der Klebefläche auf die Schalldämmung (Beispiel)

Bild 26 Schalldämmung einer Wand mit WDVS in Abhängigkeit von der Frequenz bei unterschiedlichem Klebeflächenanteil. Die Verbesserung der Schalldämmung beträgt $\Delta R_w = -2 \, dB$ bei 40 % Klebefläche und $\Delta R_w = -5 \, dB$ bei 100 % Klebefläche. Technische Angaben zu Trägerwand und WDVS:

> Trägerwand: 175 mm KSV, m'' = 360 kg/m², R_w = 54 dB, WDVS: 80 mm EPS, s' =60 MN/m³, m''_{Putz} = 16 kg/m², unverdübelt.

B-BA 6/2002

Einfluß der Klebefläche auf die Schalldämmung

Bild 28 Verbesserung von R_w und $(R_w + C_{tr})$ durch WDVS in Abhängigkeit vom bewerteten Schalldämm-Maß der Trägerwand $R_{w,o}$. Dargestellt sind alle Systeme, deren Resonanzfrequenzen in den Terzbändern mit den Mittenfrequenzen 160 Hz (links) bzw. 500 Hz (rechts) liegen. Um eine Vergleichbarkeit der Meßdaten zu gewährleisten, wurde der Einfluß der Verdübelung und der Klebefläche nach Ziffer 10.2 und 10.3 rechnerisch eliminiert. Die mit $\Delta R_{w,T}$ bezeichnete Steigung der eingezeichneten Regressionsgeraden gibt an, wie stark sich ΔR_w bei der jeweiligen Resonanzfrequenz (= Terzmittenfrequenz) im Mittel erhöht, wenn $R_{w,o}$ um 1 dB zunimmt.

Einfluß von $R_{w,o}$ auf ΔR_w (Abhängigkeit von der Resonanzfrequenz)

Bild 29 Änderung von ∆R_w (oben) und ∆(R_w + C_{tr}) (unten) bei Zunahme des bewerteten Schalldämm-Maßes der Trägerwand um 1 dB in Abhängigkeit von der Resonanzfrequenz des WDVS. Ergebnis der in Bild 28 dargestellten Auswertung der Meßdaten in Terzbändern.

Bild 30 Verbesserung von R_w in Abhängigkeit vom längenbezogenen Strömungswiderstand (oben) und der Rohdichte (unten). Die eingezeichneten Regressionsgeraden sollen die vorhandenen Zusammenhänge veranschaulichen. Da die dargestellten Meßwerte von zahlreichen verschiedenen Einflußgrößen abhängen, weisen sie eine starke Streuung auf.

Verbesserung von ΔR_w unter Standardbedingungen

Bild 31 Für Standardbedingungen berechnete Verbesserung $\Delta R_{w,S}$ (oben) und $\Delta (R_w + C_{tr})_S$ (unten) als Funktion der Resonanzfrequenz für Polystyrol-Systeme. Neben den Berechnungsergebnissen (durchgezogene Linie) sind zum Vergleich auch die vorhandenen Meßdaten eingezeichnet, wobei die ausgefüllten Symbole Messungen an leichten Wänden mit niedriger Rohdichte ($\rho < 1000 \text{ kg/m}^3$) bezeichnen.

Verbesserung von ΔR_w unter Standardbedingungen

Bild 32 Für Standardbedingungen berechnete Verbesserung $\Delta R_{w,S}$ (oben) und $\Delta (R_w + C_{tr})_S$ (unten) als Funktion der Resonanzfrequenz für Mineralfaser-Systeme. Neben den Berechnungsergebnissen (durchgezogene Linie) sind zum Vergleich auch die vorhandenen Meßdaten eingezeichnet, wobei die ausgefüllten Symbole Messungen an leichten Wänden mit niedriger Rohdichte ($\rho < 1000 \text{ kg/m}^3$) bezeichnen.

Abweichung zwischen Messung und Rechnung

Bild 33 Differenz zwischen gemessenen und berechneten Werten von ΔR_w (oben) und $\Delta(R_w + C_{tr})$ (unten) in Abhängigkeit von der Resonanzfrequenz. Die Berechnung erfolgte unter Berücksichtigung aller im Berechnungsmodell vorgesehenen Korrekturen (Verdübelung, Klebefläche, Trägerwand und Strömungswiderstand). Für die Schalldämmung der Trägerwand wurden gemessene Werte eingesetzt. Die ausgefüllten Symbole bezeichnen Messungen, die an leichten Wänden mit niedriger Rohdichte ($\rho < 1000 \text{ kg/m}^3$) durchgeführt wurden.

Referenzwand zur Berechnung des Luftschallverbesserungsmaßes

50

63

80

Bild 34 Schalldämm-Maß der Referenzwand aus dem Normentwurf ISO/TC 43/SC 2 N 011 (Wand mit niedriger Koinzidenzfrequenz nach Annex B) in Abhängigkeit von der Frequenz. Die Wand dient als standardisiertes Bauteil, auf das die ermittelten Meßwerte bei der Berechnung des Luftschallverbesserungsmaßes von Vorsatzschalen bezogen werden.

Anhang 1 Verzeichnis der wichtigsten Formelzeichen.

Formel- zeichen	Einheit	Bedeutung
A _{max}	diverse	größte Abweichung zwischen Messung und Rechnung
A _{min}	diverse	betragsmäßig größte negative Abweichung
Ā	diverse	mittlere Abweichung
\overline{A}^{q}	diverse	quadratisch gemittelte Abweichung
С	dB	Spektrum-Anpassungswert nach DIN EN ISO 717-1
C _{tr}	dB	Spektrum-Anpassungswert nach DIN EN ISO 717-1 *
d	m	Dicke der Dämmschicht
E	N/m ²	Elastizitätsmodul des Dämmstoffs
F	%	prozentuale Klebefläche
f _E	Hz	Eckfrequenz für Dickenschwingungen
f _{E,b}	Hz	berechnete Eckfrequenz für Dickenschwingungen
f _{E,g}	Hz	gemessene Eckfrequenz für Dickenschwingungen
f _R	Hz	Resonanzfrequenz des WDVS
f _{R,b}	Hz	berechnete Resonanzfrequenz des WDVS
f _{R,g}	Hz	gemessene Resonanzfrequenz des WDVS
K _D	dB	Korrektur für den Einfluß von Dübeln auf R _w
K _K	dB	Korrektur für den Einfluß der Klebefläche auf R _w
K _S	dB	Korrektur für den Einfluß des Strömungswiderstandes
Κ _T	dB	Korrektur für den Einfluß der Trägerwand auf ∆R _w
m" _P	kg/m ²	Flächenmasse der Putzschicht
m''w	kg/m ²	Flächenmasse der Trägerwand
r	kPas/m ²	längenbezogener Strömungswiderstand (nur bei MF)
R	dB	Schalldämm-Maß (Terzspektrum)
Ro	dB	Schalldämm-Maß der Wand ohne WDVS (Terzspektrum)
R _w	dB	bewertetes Schalldämm-Maß
R _{w,m}	dB	bewertetes Schalldämm-Maß der Wand mit WDVS
R _{w,o}	dB	bewertetes Schalldämm-Maß der Wand ohne WDVS

Fortsetzung Anhang 1

Formel-	Einheit	Bedeutung
zeichen		
S'	MN/m ³	dynamische Steifigkeit der Dämmung
∆R	dB	Verbesserung von R durch das WDVS (Terzspektrum)
ΔR_D	dB	Verminderung von R bei Befestigung mit Dübeln
∆R _K	dB	Verminderung von R bei Vergrößerung der Klebefläche
∆R _w	dB	Verbesserung von R _w durch das WDVS
∆R _{w,D}	dB	Verminderung von R _w bei Befestigung mit Dübeln
∆R _{w,K}	dB	Verminderung von R _w bei Vergrößerung der Klebefläche
∆R _{w,S}	dB	für Standardbedingungen berechneter ∆R _w -Wert
∆R _{w,T}	dB	Zunahme von ∆R _w bei Änderung von R _{w,o}
$\Delta(R_w+C_{tr})$	dB	Verbesserung von (R _w +C _{tr}) durch das WDVS
η	-	Verlustfaktor des Dämmstoffs
ρ	kg/m ³	Dichte von Dämmstoff oder Mauerwerk
PStein	kg/m ³	Steinrohdiche
σ	diverse	Standardabweichung
* wenn nic	cht anders	erwähnt, handelt es sich immer um C _{tr,100-5000} (Frequenz-
bereich	100 - 5000	0 Hz)

verwendete Indizes

- D Dübel
- K Klebefläche
- S Strömungswiderstand
- T Trägerwand
- h hoher Klebeflächenanteil

- m mit WDVS
- n niedriger Klebeflächenanteil
- o ohne WDVS
- u unverdübelt
- v verdübelt

Anhang 2 Auszug aus der WDVS-Datenbank. Bei den kursiv gedruckten Zahlen handelt es sich um die Minima und Maxima aus allen Datensätzen.

Iau- fen- de Nr. Prüf- stelle S-Nr. P-Nr. Ob- jekt- Nr. Ref Nr. Bezug Datum Bemerkungen 41 IBP 8588 255/98 8588-41 W0018 T0004 G0002 11.06.91 - 41 IBP 8588 255/98 8588-41 W0018 T0004 G0002 11.06.91 - 42 MPA BS - 2001/0197-4 W0019 T0004 G0002 13.07.01 WDVS zusätzl. mit Halteleisten befe 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Verklebung Immension Imme	
Image: Periodic de Nr. Jekt- Nr. Nr. Nr. Nr. Nr. 41 IBP 8588 255/98 8588-41 W0018 T0004 G0002 11.06.91 - 41 IBP 8588 255/98 8588-41 W0019 T0004 G0002 11.06.91 - 42 MPA BS - 2001/0197-4 W0019 T0004 G0002 13.07.01 WDVS zusätzl. mit Halteleisten before 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Verklebung Kleb- gung Kleb- gung Kleb- gung Stein gung I	
Nr. Dicke Jungaterial Jung	
Dicke [mm] Material Material Bundle 41 IBP 8588 255/98 8588-41 W0018 T0004 G0002 11.06.91 - 41 IBP 8588 255/98 8588-41 W0018 T0004 G0002 11.06.91 - 42 MPA BS - 2001/0197-4 - W0019 T0004 G0002 13.07.01 WDVS zusätzi. mit Halteleisten befe 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Verklebung Maserules: Kleb- Anbrin- gung See Mas-se [imm_a] [m[16](m_a) 16 17 18 19 20 21 22 23 24 25 26 Verklebung Masc- gung gung gung gung se 30 30 30 30 30 30 30 30	
Material Material Material Material Material 41 IBP 8588 255/98 8588-41 W0018 T0004 G0002 11.06.91 - 42 MPA BS - 2001/0197-4- W0019 T0004 G0002 13.07.01 WDVS zusätzl. mit Halteleisten befe 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Verklebung Putz Alles Kleb- Anbrin- Gewebe Mas- 10 (imma) 16 17 18 19 20 21 22 23 24 25 26 Verklebung Naterial Immagerial	
A1 IBP 8588 255/98 8588-41 W0018 T0004 G0002 11.06.91 - 42 MPA BS - 2001/0197-4 - W0019 T0004 G0002 13.07.01 WDVS zusätzl. mit Halteleisten befe 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Verklebung Putz Stein Putz Alt de cura in it de cura in it. (innen) .	
41 IBP 8588 255/98 8588-41 W0018 T0004 G0022 11.06.91 - 42 MPA BS 2001/0197-4 W0019 T0004 G0002 13.07.01 WDVS zusätzl. mit Halteleisten befe 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Verklebung Putz Alles Kleb- Anbrin- Gewebe Mas- (innen)	
41 IBP 8588 255/98 8588-41 W0018 T0004 G0002 11.06.91 - 42 MPA BS - 2001/0197-4 W0019 T0004 G0002 13.07.01 WDVS zusätzl. mit Halteleisten befr 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Verklebung Putz Stein Putz Alles Kleb- Anbrin- Gewebe Mas- [mm istore <	
Marketal Marketal <th< td=""><td>etiat</td></th<>	etiat
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Material Material (innen) Material Material (innen) Material Material (innen) Dickle [mm] Material (innen) Dickle [mm] Material (innen) Dickle [mm] Material (innen) Dickle [mm] Material (innen) Material (innen) Materinen Material	Jugi
Dicke [mm] Material	
Dicke [mm] Material Material Material Material Dicke [mm] Material Material Material Material Material Dicke [mm] Material Material Material Material Material Material Material Material Material Material Massenbez. Massenbez. Maschenweite Maschenweite Maschenweite Maschenweite Maschenweite Maschenweite	
Dicke [mm] Material Material Dicke [mm] Material Material Material Dicke [mm] Dicke [mm] Material	
Dicke [mm] Material Dicke [mm] Material Dicke [mm] Dicke [mm] m" [kg/m ²] Dicke [mm] Material Material Material Maschenweite [mm ²] m" [g/m ²] m" [kg/m ²]	
Dicke [mm] Material Material Material Material massenbez massenbez massenbez Material Material Material Maschenwe [mm²] m" [kg/m²] m" [kg/m²]	
Dicke [r Material Material Dicke [r Material massen Material Maschei m" [g/m" m" [rg/m"	
Mate Mate Mass Mass Mass Mass Mass Mass Mass Mas	
1 KGP 115 KSV 630 5- 181 165 3 KM P-W 20 4	
15 GP 300 LBH 1813 15 KZP ? 481 12 KM Voll 100 ?	
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	
Dämmung Putz auf WDVS Verdü- Mes-	
Unterputz Gewebe Oberputz Alles belung sung	
Projection and a construction of the second se	
40 EPS 14,8 3 17 3 KM 6 6 x 6 160 2 LP 3 1,4 6 Schra 2 R P2	
200 MFL-WD 140,7 144 64 30 KZP 35 ? ? 18 MP 13 ? 42 - 11 R P2	
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	
R_w C C_{tr} ΔR_w $\Delta (R_w + C)$ $\Delta (R_w + C_{tr})$	
<u>44</u> -11 -10 -10 -10 -20 -20 -20 -28 -8 -8 -8 -8 -8 -8 -11 -11 -7 -7 73 0 1 0 1 -2 -2 -3 -3 19 18 18 12 12 14 14 7 7	

Fortsetzung Anhang 2

64	65	66	67	68	69	70	71	7:	2 7	37	4	75	76	77	78	79	8	0 0	81
									Te	rzpeg	el R [d	IB]							
				<u> </u>	1		<u> </u>	Τ					T			Τ		Τ	
												l							
																- Childholm			
50	63	80	100	125	160	200	250) 31	5 40	0 5	00 6	30 8	00	1000	1250	160	0 20	00 2	500
18,7	23,2	42.3	18,7	27,3	27,0	<u>30,2</u> 61.0	27, 61	0 67	<u>,3 3</u> 1 7	$\frac{3}{4}$ $\frac{3}{7}$	5,8 3 32 7	8,4 4 70 8	$\frac{2,7}{0.6}$	52,0	60,8 86.0	86	5 6	0,1 0 7 8 0	13,3 10,2
70,0	1 -10, 7	72,0	01,4	00,7	01,2	07,0		01 0/	,,,,,,	<u>, + / /</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	7,010	0,01	07,0	00,0		,/ 0	<u>,,,,, ,</u>	0,2
							~		~		~				•	-7			
82	83	84		50 0	5/ 6	8 8	Grei	90 nzdän	91	92 Isahsi	93	94 [dB] (/	$R_{c} =$	- 9 	6 Rw mi	9/ if G =	98 Grer	99 zdäm.	-
							.			Jeaner	. 2	[] (2			1 499 111		0.0		
		·			r	·					ı			<u> </u>				· · · · ·	
3150	4000	5000		:n e	3 9	0 1	nn	125	160	200	250	315	40	ດ່ຽ	nla	30	800	1000	
66.7	69.2	59.0	-1	2.1 -	7.7 -	0.8 -	3.5	8.0	9.6	6.2	2.5	3.4	2	5 4	4.5	3.8	4.3	5.2	1
92,6	95,1	88,6	2	7,9 3	3,6 3	6,8 3	3,3	36,5	38,9	47,9	51,0	55,7	58	3 6	1,0 5	8,2	53,8	41,8	
100	101	102	103	104	105	106	107	108	109	110	111	112	113	11	4 1 [.]	15	116	117	
mung	und M	l = Wa	nd)					R	980-	7		Freque	enza	bhäng	giges	Verb	essei	ungs-	
								na froc	INZ-										
	[1	- <u> </u>	<u> </u>			1
								net	sen								1		
								ech	nes										
1250	1600	2000	2500	3150	4000	5000		<u>Å</u>	ger		50	63	80	10	0 1:	25	160	200	
3,2	3,8	2,4	1,4	-0,7	-0,5	-4,0		57	63		-15,7	-18,7	-14,	2 -20	,2 -14	4,1 -	11,8	-9,2	
39,8									1 740		AC -					421	15.7	20.7	l
	30,4	32,7	21,3	22,2	24,4	25,6		200	710		16,6	4,1	5,	3 10	2	2, 7			
	30,4	32,7	21,3	22,2	24,4	25,6		_ 283	710	211	16,6	4,1	5,	3 10	2	<u>, , , , , , , , , , , , , , , , , , , </u>		ليريب يكترين من	
118	119	120	121	122,2 122	123	124	125	12	6 12	7 1: 7 1:	16,6	<u>4,1</u> 29 1	5, 30	<u>3 70</u> 131		<u>,,,,</u>			
118 maß /	119 A R [dB]	120 (ΔR =	121 R _m -R	122,2 0 mit n	123 1 = Wai	125,6 124 nd mit	125 WDV	12 12 12	6 12 1 0 = W	7 12 /and o	16,6 28 1. hne W	<u>4,1</u> 29 1 DVS)	5, 30	<u>3 70</u> 131		<u>,,,,</u>			
118 maß /	119 R [dB]	120 (ΔR =	121 R _m -R	122,2 0 mit n	123 1 = Wa	124 124 nd mit	125 WDV	12 12 12	6 12 1 0 = W	7 1: /and o	16,6 28 1 hne W	<u>4,1</u> 29 1 DVS)	<u>5,</u> 30	<u>131</u>	2 3	2, 7			
118 maß /	119 \ R [dB	120 (ΔR =	121 R _m -R	122,2 0 mit n	123 1 = Wa	124 124 nd mit	125 WDV	12 /S uno	6 12 1 0 = W	7 1: /and o	16,6 28 1 hne W	<u>4,1</u> 29 1 DVS)	<u>5,</u> 30	131	2 3	<u>,,,</u>			
118 maß /	119 \ R [dB	120 (ΔR =	121 • R _m -R	122,2 0 mit n	123 1 = Wa	124 nd mit	125 WDV	12 12 12 15 und	6 12 1 0 = W	7 12 /and o	16,6 28 1. hne W	29 1: /DVS)	30	131	2	<u>,,,</u>			
118 maß /	119 \R [dB	<u>120</u> (ΔR =	121 R _m -R	122,2 • mit n	123 n = Wa	124 nd mit	125 WDV	12 /S und	6 12 6 12 1 0 = W	7 1: /and o	16,6 28 1 hne W	<u>4,1</u> 29 1 DVS)	30	131		<u>,,,</u>	<u> </u>		
118 maß /	119 \ R [dB	<u>120</u> (ΔR =	121 R _m -R	122 o mit m	123 1 = Wa	124 nd mit	125 WDV	12 12 12 12 12	6 12 1 0 = W	/ 12 /and o	16,6 28 1. hne W	29 1 DVS)	30	131		<u>,,,,</u>	<u> </u>		
118 maß / 250	119 \R [dB] 315 -10.7	<u>120</u> (ΔR = 400 -12.8	121 Rm -R 500	122 • mit n 630	<u>123</u> 1 = Wa 800	124 nd mit	125 WDV	12 /S und 0 160	6 12 1 0 = W	2 1 7 1: /and o	<u>16,6</u> 28 1. hne W	29 1 DVS) 50 40	00 +	131 5000 15.0		<u>,,,</u>	<u> </u>		

Anhang 3 Formeln und Koeffizienten zur Berechnung von ΔR_w .

Benötigte Ausgangsdaten

f_R Resonanzfrequenz des WDVS in Hz

 $R_{w,o}$ bewertetes Schalldämm-Maß der Wand ohne WDVS in dB

- F prozentuale Klebefläche in %
- r längenbezogener Strömungswiderstand in kPa s/m² (nur bei Mineralfaser)

Berechnungsformeln

$$\Delta \mathbf{R}_{w} = \Delta \mathbf{R}_{w,S} - \mathbf{K}_{D} - \mathbf{K}_{K} - \mathbf{K}_{T} - \mathbf{K}_{S}$$
(3.1)

$$\Delta R_{w,S} = (a \, \lg(f_R) + b) \, dB \tag{3.2}$$

$$K_{D} = \begin{cases} 0 & \text{ohne Dübel} \\ 0,34 \ \Delta R_{w,S} + 0,4 \ dB & \text{mit Dübeln} \end{cases}$$
(3.3)

$$K_{\rm K} = (0,052 \ {\rm F} - 2,1) \ {\rm dB}$$
 (3.4)

$$K_T = (-1, 4 \lg(f_R) + 3, 6) (R_{w,o} - 53 dB)$$
 (3.5)

$$K_{S} = \begin{cases} (-0,11 r + 3,8) dB & \text{für MFP-Systeme} \\ (-0,38 r + 9,8) dB & \text{für MFL-Systeme} \end{cases}$$
(3.6)

Frequenz-	Koel	fizienten	nten für Gl. (3.2) [-]				
bereich für f _R	Polys	tyrol-	Minera	<u>a und</u>			
	Systeme		Syst	<u>GI. (3</u>			
	а	b	a	b			
f _R < 125 Hz	-35,1	79,7	-35,9	82,4			
125 Hz ≤ f _R < 250 Hz	-26,7	62,0	-36,5	83,7			
f _R ≥ 250 Hz	-2,4	3,8	5,4	-16,7			

Koeffizienten 1 und b für 61. (3.2)

Schalldämmung der Wand mit WDVS

$$R_w = R_{w,o} + \Delta R_w$$

(3.7)

Anhang 4 Formeln und Koeffizienten zur Berechnung von ($\Delta R_w + C_{tr}$).

Benötigte Ausgangsdaten

- f_R Resonanzfrequenz des WDVS in Hz
- R_{w.o} bewertetes Schalldämm-Maß der Wand ohne WDVS in dB
- Ctr,o Spektrum-Anpassungswert Ctr,100-5000 der Wand ohne WDVS in dB
- F prozentuale Klebefläche in %
- r längenbezogener Strömungswiderstand in kPa s/m² (nur bei Mineralfaser)

Berechnungsformeln

$\Delta(R_{w} + C_{tr}) = \Delta(R$	w +C _{tr}) _S - K _D - I	(_K - K _T - K _S	(4.1)
-------------------------------------	--	--	-------

$$\Delta(\mathsf{R}_{\mathsf{w}} + \mathsf{C}_{\mathsf{tr}})_{\mathsf{S}} = (\mathsf{a} \, \mathsf{Ig}(\mathsf{f}_{\mathsf{R}}) + \mathsf{b}) \, \mathsf{d}\mathsf{B} \tag{4.2}$$

$$K_{D} = \begin{cases} 0 & \text{ohne Dübel} \\ 0,46 \ \Delta(R_{w} + C_{tr})_{S} + 1,2 \ dB & \text{mit Dübeln} \end{cases}$$
(4.3)

$$K_{\rm K} = (0,043 \ {\rm F} - 1,7) \ {\rm dB}$$
 (4.4)

$$K_T = (-1,3 lg(f_R) + 3,4) (R_{w,o} - 53 dB)$$
 (4.5)

$$K_{S} = \begin{cases} (-0, 12 r + 3, 7) dB & für MFP-Systeme \\ (-0, 27 r + 6, 9) dB & für MFL-Systeme \end{cases}$$
(4.6)

Frequenz-	Koe	Koeffizienten			
bereich für f _R	Polys Syst	styrol- eme	Minera	lfaser- teme	<u>a und b für</u> Gl. (4.2)
	a	b	a	b	
f _R < 125 Hz	-38,3	81,0	-45,5	98,1	
125 Hz ≤ f _R < 250 Hz	-16,4	35,0	-24,8	54,6	
f _R ≥ 250 Hz	6,8	-20,6	9,8	-28,4	

Schalldämmung der Wand mit WDVS

$$(R_w + C_{tr}) = (R_{w,o} + C_{tr,o}) + \Delta(R_w + C_{tr})$$
(4.7)

Anhang 5 Tabelle für Beiblatt 1 zu DIN 4109.

Verbesserung des bewerteten Schalldämm-Maßes von Wänden durch Wärmedämm-Verbundsysteme (WDVS)

Die Verbesserung ΔR_w kann aus der nachfolgenden Tabelle entnommen werden. Außer von der Resonanzfrequenz des WDVS (Berechnungsformel siehe unten) hängt sie von der Art des Dämmstoffs und der Befestigung der Dämmplatten (mit oder ohne Dübel) ab. Von der angegebenen Verbesserung sind folgende Korrekturen zu subtrahieren:

- K_K Korrektur für die prozentuale Klebefläche.
- K_S Korrektur für den längenbezogenen Strömungswiderstand des Dämmstoffs (nur bei Mineralfaser-Systemen). Bei der Bestimmung von K_S ist zwischen Mineralfaser-Putzträgerplatten (MFP) und Mineralfaser-Lamellenplatten (MFL) zu unterscheiden.
- K_T Korrektur für das bewertete Schalldämm-Maß der Trägerwand.

Resonanzfrequenz	Verbesserung ∆R _w [dB]						
f _R [Hz]	Poly	styrol	Mineralfaser				
	ohne	mit	ohne	mit			
	Dübel	Dübeln	Dübel	Dübeln			
f _R <u>≤</u> 54 Hz	19	12	19	12			
54 Hz < f _R <u>≤</u> 61 Hz	18	11	19	12			
61 Hz < f _R ≤ 70 Hz	16	10	17	11			
70 Hz < f _R ≤ 79 Hz	14	9	15	10			
79 Hz < f _R ≤ 90 Hz	12	8	13	8			
90 Hz < f _R ≤ 102 Hz	10	6	11	7			
102 Hz < f _R ≤ 116 Hz	8	5	9	6			
116 Hz < f _R ≤ 132 Hz	6	4	7	4			
132 Hz < f _R <u>≤</u> 150 Hz	5	3	5	3			
150 Hz < f _R ≤ 170 Hz	3	2	3	2			
170 Hz < f _R ≤ 194 Hz	2	1	1	0			
194 Hz < f _R ≤ 220 Hz	0	0	-1	-1			
220 Hz < f _R ≤ 250 Hz	-1	-1	-3	-2			
250 Hz < f _R	-2	-2	-3	-2			

Die Korrekturen sind in Anhang 5, Seite 2 aufgeführt.

Formel zur Berechnung der Resonanzfrequenz:

$$f_R \cong 160 \ \sqrt{\frac{s'}{m''_P}} \ Hz$$

s' = dynamische Steifigkeit der Dämmplatten in MN/m³

m"_P = Flächenmasse der Putzschicht in kg/m²

B-BA 6/2002 Anhang 5 Seite 2

Fortsetzung Anhang 5

Korrektur K_K für die prozentuale Klebefläche.

prozentuale	K _K [dB]
Klebefläche [%]	
20	-1
40	0
60	1
80	2
100	3

Korrektur K_S für den längenbezogenen Strömungswiderstand des Dämmstoffs (nur bei Mineralfaser-Systemen).

längenbezogener Strömungs-	K _S [dB]			
widerstand r [kPa s/m ²]	MFP	MFL		
10	3	6		
15	2	4		
20	2	2		
25	1	0		
30	0	-2		
35	0	-4		
40	-1	-6		

Korrektur K_T für die Schalldämmung der Trägerwand.

<u>Hinweis:</u> Bei Berechnung von R_{w,o} aus der Flächenmasse nach DIN 4109 können sich u. U. große Abweichungen ergeben.

Resonanzfrequenz	K _T [dB] in Abhängigkeit vom bewerteten							
f _R [Hz]	Scha	ılldämm-N	Maß der ⁻	Frägerwa	nd R _{w,o} [dB]		
	43 - 45	46 - 48	49 - 51	52 - 54	55 - 57	58 - 60		
f _R ≤ 54 Hz	-11	-7	-4	0	4	7		
54 Hz < f _R <u>≤</u> 75 Hz	-10	-6	-3	0	3	6		
75 Hz < f _R ≤ 104 Hz	-8	-5	-3	0	3	5		
104 Hz < f _R ≤ 145 Hz	-6	-4	-2	0	2	4		
145 Hz < f _R ≤ 200 Hz	-4	-3	-1	0	1	3		
200 Hz < f _R ≤ 280 Hz	-2	-2	-1	0	1	2		
280 Hz < f _R ≤ 390 Hz	-1	0	0	0	0	0		
390 Hz < f _R ≤ 540 Hz	1	1	0	0	0	-1		
540 Hz < f _R	2	1	1	0	-1	-1		

Der für ΔR_w ermittelte Wert ist auf den Bereich von -8 dB $\leq \Delta R_w \leq$ 19 dB zu begrenzen.

Anhang 6 Tabelle für Beiblatt 1 zu DIN 4109 (modifizierte Fassung auf Wunsch des DIBt-Sachverständigenausschusses B2).

Verbesserung des bewerteten Schalldämm-Maßes von Wänden durch Wärmedämm-Verbundsysteme (WDVS)

Die Verbesserung ΔR_w kann aus der nachfolgenden Tabelle entnommen werden. Außer von der Resonanzfrequenz des WDVS (Berechnungsformel siehe unten) hängt sie von der Art des Dämmstoffs und der Befestigung der Dämmplatten (mit oder ohne Dübel) ab. Von der angegebenen Verbesserung sind folgende Korrekturen zu subtrahieren:

- K_K Korrektur für die prozentuale Klebefläche.
- K_S Korrektur für den längenbezogenen Strömungswiderstand des Dämmstoffs (nur bei Mineralfaser-Systemen). Bei der Bestimmung von K_S ist zwischen Mineralfaser-Putzträgerplatten (MFP) und Mineralfaser-Lamellenplatten (MFL) zu unterscheiden.
- K_T Korrektur für das bewertete Schalldämm-Maß der Trägerwand.

Resonanzfrequenz	Verbesserung ΔR_w [dB]						
f _R [Hz]	Poly	styrol	Mineralfaser				
	ohne	mit	ohne	mit			
	Dübel	Dübeln	Dübel	Dübeln			
f _R <u>≤</u> 60 Hz	17	11	19	12			
60 Hz < f _R ≤ 70 Hz	16	10	17	11			
70 Hz < f _R ≤ 80 Hz	14	9	15	10			
80 Hz < f _R ≤ 90 Hz	12	8	13	8			
90 Hz < f _R ≤ 100 Hz	10	6	12	7			
100 Hz < f _R ≤ 120 Hz	8	5	9	6			
120 Hz < f _R ≤ 140 Hz	6	3	7	4			
140 Hz < f _R <u>≤</u> 160 Hz	4	2	4	2			
160 Hz < f _R ≤ 180 Hz	3	1	2	1			
180 Hz < f _R <u>≤</u> 200 Hz	1	0	1	0			
200 Hz < f _R <u><</u> 220 Hz	0	0	-1	-1			
220 Hz < f _R ≤ 240 Hz	-1	-1	-2	-2			
240 Hz < f _R	-2	-2	-3	-2			

Die Korrekturen sind in Anhang 6, Seite 2 aufgeführt.

Formel zur Berechnung der Resonanzfrequenz:

$$f_R \cong 160 \sqrt{\frac{s'}{m''_P}} Hz$$

s' = dynamische Steifigkeit der Dämmplatten in MN/m³

m"_P = Flächenmasse der Putzschicht in kg/m²

B-BA 6/2002 Anhang 6 Seite 2

Fortsetzung Anhang 6

Korrektur K_K für die prozentuale Klebe-fläche.

prozentuale	K _K [dB]
Klebefläche [%]	
20	-1
40	0
60	1
80	2
100	3

Korrektur K_S für den längenbezogenen Strömungswiderstand des Dämmstoffs (nur bei Mineralfaser-Systemen).

längenbezogener Strömungs-	K _S [dB]			
widerstand r [kPa s/m ²]	MFP	MFL		
10	3	6		
15	2	4		
20	2	2		
25	1	0		
30	0	-2		
35	0	-4		
40	-1	-6		

Korrektur K_T für die Schalldämmung der Trägerwand.

<u>Hinweis:</u> Bei Berechnung von $R_{w,o}$ aus der Flächenmasse nach DIN 4109 können sich u. U. große Abweichungen ergeben.

Resonanzfrequenz	K _T [dB] in Abhängigkeit vom bewerteten							
f _R [Hz]	Scha	ılldämm-l	Maß der	Frägerwa	nd R _{w,o} [dB]		
	43 - 45	46 - 48	49 - 51	52 - 54	55 - 57	58 - 60		
f _R <u>≤</u> 60 Hz	-10	-7	-3	0	3	7		
60 Hz < f _R <u>≤</u> 80 Hz	-9	-6	-3	0	3	6		
80 Hz < f _R ≤ 100 Hz	-8	-5	-3	0	3	5		
100 Hz < f _R ≤ 140 Hz	-6	-4	-2	0	2	4		
140 Hz < f _R <u>≤</u> 200 Hz	-4	-3	-1	0	1	3		
200 Hz < f _R <u><</u> 300 Hz	-2	-1	-1	0	1	1		
300 Hz < f _R <u><</u> 400 Hz	0	0	0	0	0	0		
400 Hz < f _R ≤ 500 Hz	1	1	0	0	0	-1		
500 Hz < f _R	2	1	1	0	-1	-1		

Der für ΔR_w ermittelte Wert ist auf den Bereich von -8 dB $\leq \Delta R_w \leq$ 19 dB zu begrenzen.

Anhang 7 Vergleich des entwickelten Berechnungsmodells mit den in bisherigen Zulassungen enthalten Wertetabellen für ΔR_w .

a)	Wertetabelle	aus einer	Zulassung	(Beispiel	Heidelberger	Dämmsysteme)	
,			U	`			

R' _{w,R,o} der Mas-	Ko	Korrekturwerte $\Delta R_{w,R}$ zur Luftschalldämmung in dB in Abhängigkeit von der										
sivwand ohne	Re	sonanz	freque	nz f _{res} i	n Hz							
WDVS in dB	<u>≤</u> 60	<u><</u> 70	<u>< 80</u>	<u>≤</u> 90	<u>≤</u> 100	<u>≤</u> 120	<u>≤</u> 140	<u>< 160</u>	<u>< 180</u>	<u>≤</u> 200	<u>≤</u> 220	<u>≤</u> 240
43 - 47	17	15	13	11	9	7	5	4	3	2	1	0
48 - 51	14	12	10	8	7	5	3	2	1	0	-1	-1
52 - 54	12	10	8	6	5	4	2	1	0	-1	-2	-2
55 - 58	9	7	5	3	3	2	0	-1	-2			

 b) Berechnungsergebnisse mit dem neuen Modell. (Die Berechnung erfolgte für EPS- oder EEPS-Systeme mit einer prozentualen Klebefläche von 40 % ohne Dübel. Die ermittelten Werte wurden auf ∆R_w ≤ 19 dB begrenzt. Des weiteren wurden 2 dB Vorhaltemaß subtrahiert.)

R' _{w,R,o} der Mas-	Ко	Korrekturwerte $\Delta R_{w,R}$ zur Luftschalldämmung in dB in Abhängigkeit von der										
sivwand ohne	Re	sonanz	freque	nz f _{res} i	n Hz							
WDVS in dB	<u>≤</u> 60	<u>≤</u> 70	<u>≤</u> 80	<u>≤</u> 90	<u>≤</u> 100	<u>≤</u> 120	<u>≤</u> 140	<u>≤</u> 160	<u>≤ 180</u>	<u>≤</u> 200	<u>≤</u> 220	<u>≤</u> 240
43 - 47	17	17	17	14	12	10	7	5	3	1	0	-2
48 - 51	14	12	10	9	7	5	3	1	0	-1	-2	-3
52 - 54	9	8	6	4	3	2	0	-1	-2	-3	-4	-5
55 - 58	6	5	4	3	1	0	-2	-3	-3	-4	-5	-5

c) Differenz zwischen den obigen Wertetabellen (Tabelle b - Tabelle a).

R' _{w,R,o} der Mas-	Dif	Differenz der Korrekturwerte ∆R _{w,R} zur Luftschalldämmung in dB in										
sivwand ohne	Ab	Abhängigkeit von der Resonanzfrequenz f _{res} in Hz										
WDVS in dB	<u>≤</u> 60	<u><</u> 70	<u>< 80</u>	≤ 90	<u>≤</u> 100	<u>< 120</u>	<u>≤</u> 140	<u>≤ 160</u>	<u>≤</u> 180	<u><</u> 200	<u>≤</u> 220	<u>≤</u> 240
43 - 47	0	2	4	3	3	3	2	1	0	-1	-1	-2
48 - 51	0	0	0	1	0	0	0	-1	-1	-1	-1	-2
52 - 54	-3	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-3
55 - 58	-3	-2	-1	0	-2	-2	-2	-2	-1			

Fehler bei der Berechnung von ΔR_w infolge der Streuung der Ein-Anhang 8 gangswerte (Fehlerabschätzung am Beispiel von vier typischen WDVS). Neben den resultierenden Fehlern (oben) sind auch die zugrundegelegte Streuung der Eingangswerte (Mitte) und der Aufbau der betrachteten WDVS (unten) dargestellt. Bei der Schalldämmung der Trägerwand wird zwischen gemessenen und nach DIN 4109 berechneten Werten unterschieden.

System	Durch Stre	euung der ar	erufener	Gesamtfehler				
	Fehler voi	n∆R _w [dB]	:	von ∆R _w [dB]				
	s'	m" _P	F	r	R _{w,o}	R _{w,o}	für $\sigma(R_{w,o})$	für σ(R _{w,o})
					σ = 1,5 dB	σ = 3,7 dB	= 1,5 dB	= 3,7 dB
EEPS	1,2	1,1	0,4	0,0	1,1	2,7	2,0	3,2
EPS	0,9	0,8	0,4	0,0	0,4	1,0	1,3	1,6
MFP	1,3	1,1	0,4	0,2	1,2	3,1	2,1	3,5
MFL	0,2	0,2	0,4	0,8	0,1	0,3	0,9	1,0
alle *							1,6	2,2

* Mittelwert unter Berücksichtigung der Anzahl der untersuchten Systeme

Eingangswert	Standardabweichung
S'	σ = 16 %
m" _P	σ = 14 %
F	σ = 15 %
r	σ = 7 %
R _{w,o}	σ = 1,5 dB bei Messung von R _{w,o}
	σ = 3,7 dB bei Berechnung von R _{w,o} aus m" nach DIN 4109

System	s' [MN/m ³]	f _{R,b} [Hz]	∆R _w [dB]
EEPS	7	113	7,1
EPS	30	234	-1,7
MFP	5	96	10,5
MFL	60	331	-1,9

folgende Werte stimmen bei allen Systemen überein:

 $m''_{P} = 14 \text{ kg/m}^{2}$

F

r

= 50% (unverdübelt)

σ

= 30 kPa s/m² (nur bei MF-Systemen)

- $R_{w,o} = 53 \, dB$
- △R_w Verbesserung von R_w durch das WDVS
- s' dynamische Steifigkeit der Dämmschicht
- m"_P Flächenmasse der Putzschicht
- längenbezogener Strömungswiderstand r
- R_{w,o} bewertetes Schalldämm-Maß der Trägerwand
- F prozentuale Klebefläche

Standardabweichung f_{R,b} berechnete Resonanzfrequenz
Anhang 9 Luftschallverbesserungsmaß von WDVS (Statistik).

Luftschallverbesserungsmaß von 130 WDVS (31 EEPS-, 40 EPS-, 24 MFP- und 35 MFL-Systeme). Die angegebenen Werte wurden nach dem europäischen Normentwurf ISO/TC 43/SC 2 N 011 aus der gemessenen Verbesserung der Schalldämmung berechnet.

Dämm-	statist.	Verbesserung [dB]								
system	Kennwert	$\Delta R_{w} \qquad \Delta (R_{w} + C) \qquad \Delta (R_{w} + C_{tr})$								
			100 - 3150 Hz	100 - 5000 Hz	50 - 3150 Hz	50 - 5000 Hz	100 - 3150 Hz	100 - 5000 Hz	50 - 3150 Hz	50 - 5000 Hz
EEPS	A _{min}	-1	-3	-3	-3	-3	-8	-8	-8	-8
	A _{max}	18	16	16	6	6	13	13	2	2
	Ā	5,9	2,4	2,3	1,2	1,2	-0,3	-0,3	-3,2	-3,2
	σ	4,1	4,3	4,3	2,7	2,7	4,2	4,2	2,4	2,4
	A _{min}	-6	-7	-7	-7	-7	-6	-6	-6	-6
EPS	A _{max}	16	12	12	5	5	11	11	1	1
	<u>Ā</u>	2,1	0,1	0,1	-0,9	-0,9	-1,0	-1,0	-3,1	-3,1
	σ	5,9	5,0	5,0	3,5	3,5	3,9	3,9	1,6	1,6
	Amin	0	-2	-2	-2	-2	-3	-3	-8	-8
MFP	A _{max}	16	15	14	8	7	13	13	2	2
	Ā	7,3	5,7	5,7	3,0	3,0	3,8	3,8	-2,8	-2,8
	σ	4,2	4,4	4,3	2,6	2,5	4,4	4,4	2,3	2,3
MFL	A _{min}	-8	-8	-8	-8	-8	-6	-6	-7	-7
	A _{max}	4	0	0	0	0	0	0	-1	-1
	Ā	-2,5	-3,8	-3,8	-3,8	-3,8	-3,5	-3,5	-4,1	-4,1
	σ	3,4	2,5	2,5	2,5	2,5	1,8	1,8	1,6	1,6
	Amin	-8	-8	-8	-8	-8	-8	-8	-8	-8
alle	A _{max}	18	16	16	8	7	13	13	2	2
	Ā	2,7	0,6	0,6	-0,4	-0,5	-0,6	-0,6	-3,3	-3,3
	σ	5,9	5,3	5,3	3,8	3,7	4,3	4,3	2,0	2,0

Bauforschung für die Praxis

Einfluss des Nutzerverhaltens auf den Energieverbrauch in Niedrigenergie- und Passivhäusern

W. Richter, T. Ender, T.Hartmann, A. Kremonke, u.a. Hrsg.: TU Dresden, Fakultät Maschinenwesen, Institut für Thermodynamik und Technische Gebäudeausrüstung, Bereich TGA Band 63: 2003, 127 S., zahlr. Abb., Tab., Lit., ISBN 3-8167-6345-6 € 35,— [sFr 58,—]

Baukostensenkung durch Anwendung innovativer Wettbewerbsmodelle

Udo Blecken, Lothar Boenert Hrsg.: Universität Dortmund, Lehrstuhl Baubetrieb, Fakultät Bauwesen Band 62: 2003, 350 S., zahlr. Abb., Tab., Lit., ISBN 3-8167-6338-3 € 50,- [sFr 82,-]

☐ Flachdachsanierung über durchfeuchteter Dämmschicht Ralf Spilker

Aachener Institut für Bauschadensforschung und angewandte Bauphysik gGmbH AlBau Band 61: 2003, 260 S., zahlr. farbige Abb., ISBN 3-8167-6183-6 € 45,-- [sFr 74,--]

Bauqualität – Verfahrensqualität und Produktqualität bei Projekten des Wohnungsbaus

Hannes Weeber, Simone Bosch Band 60: 2003, 170 S., Abb., Tab., ISBN 3-8167-4259-9 € 45,-- [sFr 74,-]

□ Brandschutzkosten im Wohnungsbau Karl Deters Band 59: 2001, 245 S., Abb., Tab., ISBN 3-8167-4258-0 \in 50,-- [sFr 82,--]

🗌 Gemeinschaftliches Wohnen im Alter

R. Weeber, G. Wölfle, V. Rösner Band 58: 2001, 175 S., Abb., Tab., ISBN 3-8167-4257-2 € 46,-- [sFr 76,--]

Entwicklung eines Bewertungssystems für ökonomisches und ökologisches Bauen und gesundes Wohnen

C.J. Diederichs, P. Getto, S. Streck Band 57: 2002, 230 S., mit CD-ROM, Abb., Tab., ISBN 3-8167-4256-4 € 50,– [sFr 82,–]

□ Vergabeverfahren und Baukosten

Hannes Weeber, Simone Bosch Band 56: 2001, 192 S., Abb., Tab., ISBN 3-8167-4255-6 € 50,– [sFr 82,–]

□ Konzepte für die praxisorientierte Instandhaltungsplanung im Wohnungsbau Ralf Spilker, Rainer Oswald Band 55: 2000, 71 S., 5 Abb., zahlr. Tab., ISBN 3-8167-4254-8 € 22,- [sFr 37,-]

Bewährung innen wärmegedämmter Fachwerkbauten

Reinhard Lamers, Daniel Rosenzweig, Ruth Abel Band 54: 2000, 173 S., 123 Abb., ISBN 3-8167-4253-X € 25,- [sFr 41,60]

□ Überprüfbarkeit und Nachbesserbarkeit von Bauteilen – untersucht am Beispiel der genutzten Flachdächer Rainer Oswald, Ralf Spilker, Klaus Wilmes

Band 53: 1999, 133 S., 49 Abb., 4 Tab., ISBN 3-8167-4252-1 € 37,- [sFr 61,-]

□ Bauschadensfibel für den privaten Bauherrn und Hauskäufer Rainer Oswald, Ruth Abel, Volker Schnapauff Band 52: 1999, 140 S., 19 Abb., 3 Tab., fester Einband, ISBN 3-8167-4251-3 € 25,- [sFr 41,60]

Balkone – kostengünstig und funktionsgerecht

Hannes Weeber, Margit Lindner Band 51: 1999, 146 S., 102 Abb., 26 Tab., ISBN 3-8167-4250-5 € 38,– [sFr 62,50]

□ Kostenfaktor Erschließungsanlagen

Hannes Weeber, Michael Rees Band 50: 1999, 226 S., 107 Abb., 15 Tab., ISBN 3-8167-4249-1 € 50,-- [sFr 82,--]

🗆 Eigenleistung beim Bauen

R. Weeber, H. Weeber, S. Kleebaur, u.a. Band 49: 1999, 154 S., 25 Abb., 12 Tab., ISBN 3-8167-4248-3 € 22,- [sFr 37,-]

□ Kosteneinsparung durch Bauzeitverkürzung

Barbara Bredenbals, Heinz Hullmann Band 48: 1999, 174 S., 38 Abb., 36 Tab., ISBN 3-8167-4247-5 € 37,-- [sFr 61,--]

□ Das wärme- und feuchteschutztechnische Verhalten von stählernen Fassadendurchdringungen

Lutz Franke, Gernod Deckelmann Band 47: 1998, 74 S., 38 Abb., 13 Tab., ISBN 3-8167-4246-7 € 15,– [sFr 25,80]

□ Kostengünstige bauliche Maßnahmen zur Reduzierung des Energieverbrauchs im Wohnungsbestand

R. Oswald, R. Lamers, V. Schnapauff, u.a. Band 46: 1998, 100 S., 57 Abb., ISBN 3-8167-4245-9 € 17,– [sFr 28,80]

□ Sicherung des baulichen Holzschutzes

Horst Schulze Band 45: 1998, 168 S., 136 Abb., 10 Tab., ISBN 3-8167-4244-0 € 22,- [sFr 37,-]

Fraunhofer IRB Verlag

□ Luftdichtigkeit von industriell errichteten Wohngebäuden in den neuen Bundesländern Wolfgang Richter, Dirk Reichel

Band 44: 1998, 88 S., 34 Abb., 15 Tab., ISBN 3-8167-4243-2 € 15,– [sFr 25,80]

Leitfaden Kostendämpfung im Geschoßwohnungsbau

Karl Deters, Joachim Arlt Band 43: 1998, 162 S., 135 Abb., 34 Tab., ISBN 3-8167-4242-4 € 22,- [sFr 37,-]

Langzeitbewährung und Entwicklungstendenzen von Kunststoff-Bauprodukten im Wohnungsbau

Dieter Arlt, Rainer Weltring Band 42: 1998, 137 S., 90 Abb., 7 Graph., ISBN 3-8167-4241-6 € 20,-- [sFr 33,40]

Gebrauchsanweisung für Häuser

Volker Schnapauff, Silke Richter-Engel Band 40: 1997, 116 S., 4 Abb., 7 Tab., ISBN 3-8167-4239-4 € 19,-- [sFr 31,90]

Ergänzender Neubau in bestehenden Wohnsiedlungen

H. Weeber, R. Weeber, M. Lindner, u. a. Band 39: 1997, 194 S., 230 Abb., ISBN 3-8167-4238-6 € 25,-- [sFr 41,60]

Lüftung in industriell errichteten Wohnhäusern

Wilfried Jank Band 37: 1997, 66 S., 17 Abb., 12 Tab., ISBN 3-8167-4236-X € 15,-- [sFr 25,80]

Bestellscheim

Fax 07 11 / 970 - 25 08 oder -25 07

Fraunhofer IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau IRB Postfach 80 04 69, 70504 Stuttgart

Telefon 07 11 / 970 - 2500 E-Mail: irb@irb.fraunhofer.de www.IRBbuch.de

Abcondor

E-Mail	
Straße/PF	: :::: :mt-Ar
PLZ/Ort	
Datum	
Unterschrift	1/200

☐ Auswirkungen der neuen Wärmeschutzverordnung auf den Schallschutz von Gebäuden Siegfried Koch, Werner Scholl Band 36: 1997, 72 S., 33 Abb., 2 Tab., ISBN 3-8167-4235-1 € 15,- [sFr 25,80]

□ Baukostensenkung durch gesicherte Schadensbeurteilung an haufwerksporigen Leichtbetonelementen der industriell errichteten Wohnbauten der ehemaligen DDR Mirko Neumann, Mathias Reuschel Band 35: 1997, 320 S., 227 Abb., 105 Tab., ISBN 3-8167-4234-3 € 41,-- [sFr 68,--]

□ Verhinderung von Emissionen aus Baustoffen durch Beschichtungen Lutz Franke, Martin Wesselmann Band 34: 1997, 68 S., 11 Abb., 9 Tab., ISBN 3-8167-4233-5 \in 15,- [sFr 25,80]

□ Wirksamkeit von Lüftungsgeräten – Zuluftversorgung von Wohnungen mit dezentralen Lüftungseinrichtungen Wolfgang Richter, Dirk Reichel Band 33: 1996, 161 S., Abb., Tab., ISBN 3-8167-4232-7 € 22,- [sFr 37,-]

□ Wärmedämmverbundsysteme (WDVS) im Wohnungsbau Institut für Bauforschung e.V., Hannover Band 32: 1997, 250 S., 128 Abb., 20 Tab., ISBN 3-8167-4231-9 € 30,- [sFr 50,40]

 Niedrigenergiehäuser unter Verwendung des Dämmstoffes Styropor
Teil 1: Konstruktionsempfehlungen und optimierte Anschlußsituationen (Details)
W.-H. Pohl, S. Horschler, R. Pohl
Teil 2: Quantitative Darstellung der
Wirkung von Wärmebrücken
Gerd Hauser, Horst Stiegel
Band 31: 1997, 294 S., 169 Abb.,

ISBN 3-8167-4230-0 € 14,-- [sFr 24,30] □ Fenster – Sanierung und Modernisierung

Hans-Rudolf Neumann Band 30: 1997, 134 S., 90 Abb., 11 Tab., ISBN 3-8167-4229-7 € 20,- [sFr 33,40]

□ Schäden an nicht industriell hergestellten Wohnbauten der neuen Bundesländer

R. Oswald, R. Spilker, V. Schnapauff, u. a. Band 29: 1996, 116 S., 66 Abb., 30 Tab., ISBN 3-8167-4228-9 € 17,- [sFr 28,80]

Die Berechnung von Flachdecken über Zustands- und Einflußflächen Max Baerschneider

Band 26: 1996, 380 S., 196 Tab., zweibändig, ISBN 3-8167-4225-4 € 49,– [sFr 80,–]

Feuchtetransportvorgänge in Stein und Mauerwerk – Messung und Berechnung

M. Krus, H.-M. Künzel, K. Kießl Band 25: 1996, 75 S., 31 Abb., 2 Tab., ISBN 3-8167-4224-6 € 15,– [sFr 25,80] □ Wohngebäudesanierung und Privatisierung Hannes Weeber, Michael Rees Band 24: 1996, 107 S., 51 Abb., 17 Tab., ISBN 3-8167-4223-8 € 20,- [sFr 33,40]

Der Feuchtehaushalt von Holz-Fachwerkwänden Helmut Künzel Band 23: 1996, 85 S., 32 Abb., 10 Tab.,

€ 15,— [sFr 25,80]

□ Neue Konstruktionsalternativen für recyclingfähige Wohngebäude Barbara Bredenbals, Wolfgang Willkomm Band 22: 1996, 110 S., 26 Abb., 3 Tab., ISBN 3-8167-4221-1 € 17,- [sFr 28,80]

□ Standsicherheit der Wohnbauten in Fertigteilbauweise in den neuen Bundesländern

E. Cziesielski, N. Fouad, F.-U. Vogdt Band 21: 1996, 226 S., 71 Abb., ISBN 3-8167-4220-3 € 30,- [sFr 50,40]

□ Sicherheit von Glasfassaden X. Shen, H. Techen, J. D. Wörner Band 20: 1996, 38 S., 26 Abb., 4 Tab., ISBN 3-8167 4219-X € 12,- [sFr 20,70]

□ Kostengünstige Umnutzung aufgegebener militärischer Einrichtungen für Wohnzwecke, Wohnergänzungseinrichtungen und andere Nutzungen B. Jacobs, J. Kirchhoff, J. Mezler Band 19: 1996, 204 S., zahlreiche Abb., ISBN 3-8167-4218-1 € 28,- [sFr 46,70]

Gefährdungspotentiale asbesthaltiger Massenbaustoffe in den neuen Bundesländern

Klaus Bergner, unter Mitarbeit von Franka Stodollik und Hans-Otto Eckler Band 17: 1996, 75 S., 26 Abb., 9 Tab., ISBN 3-8167-4216-5 € 15,– [sFr 25,80]

🗆 Transparent gedämmte Altbauten

G. H. Bondzio, K. Brandstetter, P. Sulzer, u.a. Band 15: 1996, 130 S., 44 Abb., 7 Tab., ISBN 3-8167-4214-9 € 22,- [sFr 37,-]

□ Kosten und Techniken für das Ȇberwintern« erhaltenswerter Bausubstanz

Michael Rees, Hannes Weeber Band 14: 1995, 190 S., zahlreiche Abb., ISBN 3-8167-4213-0 € 25,-- [sFr 41,60]

□ Körperschalldämmung von Sanitärräumen

Karl Gösele, Volker Engel Band 11: 1995, 76 S., zahlreiche Abb., ISBN 3-8167-4210-6 € 15,-- [sFr 25,80]

Alle Bände (außer Band 52) mit kartoniertem Einband

□ Bauschäden an Holzbalkendecken in Feuchtraumbereichen Gertraud Hofmeister Band 9: 1995, 210 S., zahlreiche Abb., ISBN 3-8167-4208-4 € 25,- [sFr 41,60]

 □ Ökologische Auswirkungen von Hochhäusern
Band 8: 1995, 418 S., 114 Abb., ISBN 3-8167-4207-6
€ 50,- [sFr 82,-]

□ Abfallvermeidung in der Bauproduktion Barbara Bredenbals, Wolfgang Willkomm Band 6: 1994, 198 S., 75 Abb., 16 Tab., ISBN 3-8167-4205-X € 25,- [sFr 41,60]

□ Niveaugleiche Türschwellen bei Feuchträumen und Dachterrassen R. Oswald, A. Klein, K. Wilmes Band 3: 1994, 56 S., 48 Abb., ISBN 3-8167-4202-5 € 12,- [sFr 20,70]

□ Wohnbauten in Fertigteilbauweise in den neuen Bundesländern R. Oswald, V. Schnapauff, R. Lamers, u. a. Band 2: 1995, 333 S., 515 Abb., ISBN 3-8167-4201-7

€ 40,- [sFr 66,70]

□ Heizung und Lüftung im Niedrigenergiehaus Gerhard Hausladen, Peter Springl Band 1: 1994, 214 S., 74 Abb., 17 Tab., ISBN 3-8167-4200-9 € 25,- [sFr 41,60]

□ Informieren Sie mich bitte laufend über Neuerscheinungen

Bestellschein

Fax 07 11 / 970 - 25 08 oder -25 07

Fraunhofer IRB Verlag Fraunhofer-Informationszentrum Raum und Bau IRB Postfach 80 04 69, 70504 Stuttgart

Telefon 07 11 / 970 - 2500 E-Mail: irb@irb.fraunhofer.de www.IRBbuch.de

Absender

	[bxp]
E-Mail	zeige.
Straße/PF	mt-An
PLZ/Ort	Gesa
Datum)4 [BfP
Unterschrift	1/200

Schadenfreies Bauen

– Titelauswahl –

Herausgegeben von Günter Zimmermann und Ralf Ruhnau

🗌 Gründungsschäden

Klaus Hilmer, Manfred Knappe Band 34: 2004, ca. 172 S., zahlr. Abb. und Tab., ISBN 3-8167-6347-2 ca. € 46,– [sFr 76,–]

Schäden an Balkonen

Nils Oster Band 33: 2004, 148 S., 79 Abb., 9 Tab., ISBN 3-8167-6313-8 € 39,-- [sFr 65,20]

□ Schäden durch mangelhaften Wärmeschutz

Michael Bonk, Frank Anders Band 32: 2004, 130 S., 92. Abb., 2 Tab., ISBN 3-8167-6307-3 € 39,-- [sFr 65,20]

Die vorsorgliche Beweissicherung im Bauwesen

Georg Philipps, Frank Stollhoff, Jürgen Wieck Band 31: 2004, 211 S., 29 Grafiken, 83 Abb., 9 Tab., ISBN 3-8167-6306-5 € 49,-- [sFr 80,--]

Schäden an Tragwerken aus Stahl

Peter Oehme, Werner Vogt Band 30: 2003, 152 S., 148 Abb., 7 Tab., ISBN 3-8167-6133-X € 39,- [sFr 65,20]

🗆 Schäden an Holzfußböden

Andreas O. Rapp, Bernhard Sudhoff Band 29: 2003, 176 S., 80 Abb., 17 Tab., ISBN 3-8167-6170-4 € 46,– [sFr 76,–]

Schäden an Holztragwerken

Georg Dröge, Thomas Dröge Band 28: 2003, 169 S., 80. Abb., 2 Tab., ISBN 3-8167-6156-9 € 46,– [sFr 76,–]

Mangelhafter Schallschutz von Gebäuden

Herwig Baumgartner, Roland Kurz Band 27: 2003, 256 S., 143 Abb., 29 Tab., ISBN 3-8167-5797-9 € 58,– [sFr 94,–]

Schäden an polymeren Beschichtungen

Robert Engelfried Band 26: 2001, 146 S., 94 Abb., 14 Tab., ISBN 3-8167-5795-2 € 40,- [sFr 66,70]

□ Schäden an Belägen und Bekleidungen mit Keramik- und Werksteinplatten Günter Zimmermann

Band 25: 2001, 190 S., 175 Abb., 16 Tab., ISBN 3-8167-5791-X € 48,— [sFr 79,—]

□ Schäden an Installationsanlagen Heinz Wirth, Stefan Wirth

Band 24: 2001, 256 S., 114 Abb., 33 Tab., ISBN 3-8167-5790-1 € 57,- [sFr 92,-]

🗆 Schäden an Türen und Toren

Ralf Schumacher Band 23: 2001, 368 S., 291 Abb., 32 Tab., ISBN 3-8167-4169-X € 71,- [sFr 114,-]

Schäden an elastischen und textilen Bodenbelägen

Hans-Joachim Scheewe Band 22: 2001, 232 S., 80 Abb., 50 Tab., ISBN 3-8167-4168-1 € 50,-- [sFr 82,--]

Schäden an Glasfassaden und -dächern

Peter Küffner, Oliver Lummertzheim Band 21: 2000, 132 S., 106 Abb., 6 Tab., ISBN 3-8167-4165-7 € 40,-- [sFr 66,70]

🗌 Schäden

an Wärmedämm-Verbundsystemen Erich Cziesielski, Frank Ulrich Vogdt Band 20: 2000, 202 S., 75 Konstruktionsskizzen, 28 Tab., 98, teilw. farb. Fotos, ISBN 3-8167-4164-9 € 50,-- [sFr 82,--]

🗆 Schäden an Dränanlagen

Wilfried Muth Band 17: 2., überarb. und erw. Aufl. 2003, 128 S., 157 Abb., 13 Tab., ISBN 3-8167-6261-1 € 36,-- [sFr 59,50]

🗆 Tauwasserschäden

Richard Jenisch, Martin Stohrer Band 16: 2., überarb. Aufl. 2001, 129 S., 66 Abb., 6 Tab., ISBN 3-8167-5792-8 € 37,– [sFr 61,–]

Schäden an Estrichen

Klaus G. Aurnhammer Band 15: 2., erg. Aufl. 1999, 216 S., 44 Abb., 17 Tab., ISBN 3-8167-4162-2 € 46,– [sFr 76,–]

Schäden an Tragwerken aus Stahlbeton Bernhard Brand, Gerhard Glatz

Band 14: 2., erw. Aufl. 2004, ca. 220 S., 129 Abb., 24 Tab., ISBN 3-8167-6422-3 ca. € 49,– [sFr 80,–]

Schäden an Außenwänden aus Ziegelund Kalksandstein-Verblendmauerwerk

Helmut Klaas, Erich Schulz Band 13: 2., überarb. Aufl. 2002, 224 S., 162 Abb., 13 Tab., ISBN 3-8167-6114-3 € 49,– [sFr 80,–]

Schäden an Metallfassaden und -dachdeckungen

Franz Lubinski, Fritz Röbbert, Uwe Nagel, u.a. Band 12: 2., erw. Aufl. 2001, 410 S., 303, teilw. farb. Abb., 22 Tab., ISBN 3-8167-4166-5 € 76,– [sFr 122,–]

Fraunhofer IRB Verlag

🗌 Schäden an Fassadenputzen

Helmut Künzel Band 9: 2., erw. Aufl. 2000, 142 S., 97 Abb., 3 Tab., ISBN 3-8167-4167-3 € 38,– [sFr 62,50]

Schäden an Abdichtungen in Innenräumen

Erich Cziesielski, Michael Bonk Band 8: 2., überarb. und erw. Aufl. 2003, 111 S., 76 Abb., 5 Tab., ISBN 3-8167-6197-6 € 35,— [sFr 58,—]

🗆 Rissschäden an Mauerwerk

Werner Pfefferkorn, Helmut Klaas Band 7: 3., überarb. Aufl. 2002, 292 S., 290 Abb., 18 Tab., ISBN 3-8167-5793-6 € 53,– [sFr 86,–]

Schäden an Industrieböden

Erich Cziesielski, Thomas Schrepfer Band 4: 2., erw. Aufl. 1999, 169 S., 69 Abb., 33 Tab., ISBN 3-8167-4163-0 € 46,- [sFr 76,-]

Schäden an Flachdächern und Wannen aus wasserundurchlässigem Beton Gottfried C.O. Lohmeyer Band 2: 3., neu bearb. Aufl. 2001, 272 S., 171 Abb., 28 Tab., ISBN 3-8167-5794-4

€ 50,— [sFr 82,—]

🔲 Gesamtausgabe Bände 1 – 34

2004, alle Bände mit festem Einband und Register-CD-ROM, ISBN 3-8167-6447-9 € 1368,- [sFr 2066,-]

Bestellschein

Fax 07 11 / 970 - 25 08 oder -25 07

Fraunhofer IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau IRB Postfach 80 04 69, 70504 Stuttgart

Telefon 07 11 / 970 - 2500 E-Mail: irb@irb.fraunhofer.de www.IRBbuch.de

Absender	
······	gxd
E-Mail	zeige.
Straße/PF	mt-An
PLZ/Ort	Gesai
Datum	14 StB
Unterschrift	1/200

Bauschadensfälle • mit Register-CD-ROM •

Herausgegeben von Günter Zimmermann und Ralf Schumacher

Diese Sammlung von Bauschäden hilft, Schäden zu vermeiden.

Von der kunststoffmodifizierten Bitumendickbeschichtung einer Kellerwand bis zu Schäden an einer Dachdeckung mit Titanzinkblechen: Die »Bauschadensfälle« bieten Ihnen wesentliche Erkenntnisse zur Analyse der Ursachen von Schäden und zu deren fachgerechten Sanierung. Die Beispiele zeigen auf, welche Schäden für ein Bauteil typisch sind und wie Sie einen Schaden von Anfang an vermeiden können.

Die beiliegende Register-CD-ROM erschließt den gesamten Inhalt der Fachbuchreihen »Bauschadensfälle«, »Bauschäden-Sammlung« und »Schadenfreies Bauen«. Mit Hilfe eines »elektronischen Bibliothekars« nutzen Sie Ihre Schadensbibliothek zeitsparend und effektiv. Aus den Inhalten:

- Dächer
- Tragwerke
- Außenwände, Keller und Fenster
- Außenwände, Fenster und Balkone
- Außenwände und Erker
- Innenwände
- Fußböden und Treppen
- Fußböden und Decken
- Estriche und Fußböden
- Entwässerungs- und Lüftungsanlagen
- Wärmeschutz
- Bautenschutz
- Becken und Wannen
- Schwimmbäder
- Heizungsanlagen
- Installationen
- Raumlufttechnische Anlagen
- Behälter und Sperrwerke
- Masten
- Baumängelgutachten nach neuem Baurecht
- Mangelverantwortung und Verjährung nach neuem Baurecht in BGB und VOB/B

Die Reihe »Bauschadensfälle» ist auch im Abonnement beziehbar. Auf Wunsch erhalten Sie automatisch jedes halbe Jahr den neuesten Band zu einem deutlich ermäßigten Preis zugestellt. Sie sparen Zeit und Kosten. Ihre Fachbibliothek bleibt lückenlos und jederzeit auf dem neuesten Stand. Bestellschein

□ Band 1:

2002, 206 Seiten ISBN 3-8167-6110-0 € 39,-- [sFr 65,20]

- □ Band 2: 2002, 205 Seiten ISBN 3-8167-6152-6 € 39,- [sFr 65,20]
- □ Band 3: 2003, 208 Seiten ISBN 3-8167-6215-8 € 39,-- [sFr 65,20]
- Band 4:

2003, 208 Seiten ISBN 3-8167-6271-9 € 39,- [sFr 65,20]

- **Band 5:** 2004, 207 Seiten
 - ISBN 3-8167-6366-9 € 39,- [sFr 65,20]

Sie sparen € 19,50 bei Abnahme der

□ Bände 1-5: ISBN 3-8167-6457-6 € 175,50 [sFr 265,--]

□ Abonnement:

€ 35,10 pro Band

Jeder Band mit Register-CD-ROM, zahlr., durchgehend farb. Abbildungen, Tabellen, festem Einband

Fax 07 11 / 970 - 25 08 oder -25 07

Fraunhofer-Informationszentrum

Postfach 80 04 69, 70504 Stuttgart

Fraunhofer IRB Verlag

Telefon 07 11 / 9 70 - 25 00 E-Mail: irb@irb.fraunhofer.de

Raum und Bau IRB

www.IRBbuch.de

E-Mail...... Straße/PF PLZ/Ort Datum Unterschrift

Absender

Fraunhofer IRB Verlag