Auswirkungen erhöhter Dehnungen der Biegezugbewehrung auf die Schubtragfähigkeit von Stahlbetonbauteilen nach Eurocode 2

T 3048

[†] Fraunhofer IRB Verlag

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

Im Originalmanuskript enthaltene Farbvorlagen, wie z.B. Farbfotos, können nur in Grautönen wiedergegeben werden. Liegen dem Fraunhofer IRB Verlag die Originalabbildungen vor, können gegen Berechnung Farbkopien angefertigt werden. Richten Sie Ihre Anfrage bitte an die untenstehende Adresse.

© by Fraunhofer IRB Verlag

2004, ISBN 3-8167-6597-1

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.IRBbuch.de

TECHNISCE UNIVERSITÄT MÜNCHEN INSTITUT FÜR BAUSTOFFE UND KONSTRUKTION LEHRSTUHL FÜR MASSIVBAU

Auswirkung erhöhter Dehnungen der Biegezugbewehrung auf die Schubtragfähigkeit von Stahlbetonbauteilen nach Eurocode 2

Konrad Zilch Florian Spitra

Forschungsbericht September 2003

gefördert durch das Deutsche Institut für Bautechnik

Univ.-Prof. Dr.-Ing. Konrad Zilch Dipl.-Ing. Florian Spitra

Lehrstuhl für Massivbau Technische Universität München D-80290 München

Tel:: 089 / 289 – 23038 Fax.: 089 / 289 – 23046 Email: massivbau@mb.bv.tum.de

Inhaltsverzeichnis

Querkrafttragfähigkeit bei erhöhten Dehnungen	4
Kurzfassung	4
Abstract	4
Résumé	5
V orbemerkung	6 7
Elliederung der Forschungsarbeit	/ و
	0
Querkraftmodelle	9
Zahn- und Kammmodell	9 0
Modelle auf Basis der Bruchmechanik	9 10
	. 1 0
Einflusse auf die Querkrafttragfahigkeit	. 1 1
Querkrafttraganteile	.13
Schubübertragung in der Druckzone	.13
Rissverzahnung und Rissreibung	.14
Dübelwirkung der Längsbewehrung	.17
Einflugg des Momenten Querkraft Verhöltnigges	. 19
Elimuss des Momenten-Querkraft- verhähtnisses	. 22
Querkraftmodell von Schmidhuber	.24
Kritik an den verwendeten Grundlagen	.25
Querkraftmodell von Zink	.26
Kritik an den verwendeten Grundlagen	.27
Querkraftmodell nach Fischer	.29
Kritik an den verwendeten Grundlagen	.30
Ouerkraftmodell für große Rissbreiten	32
Biegebemessung	32
Verbundmodell	.33
Verbundmodell von Kreller	34
Verifizierung des Verbundmodells	36
Eigenschaften des Querkraftmodells	37
Parameterbereich der äußeren Einwirkungen	40
Bemessungsgleichung der DIN 1045-1	42
Simulation von Versuchsergebnissen	46
Ergebnisse der Parameterstudie	55
Fazit	55
Anhang	55
Literaturverzeichnis	55

Querkrafttragfähigkeit bei erhöhten Dehnungen

Konrad Zilch, Florian Spitra

Kurzfassung

In diesem Forschungsvorhaben soll gezeigt werden, dass auch bei Stahldehnungen von bis zu 25 ‰ in der Biegezugbewehrung eine ausreichende Querkrafttragfähigkeit gemäß EC 2 / DIN 1045-1 vorhanden ist. Hierfür werden zunächst die verschiedenen Mechanismen der Querkrafttragfähigkeit erläutert, danach werden zwei aus der Literatur bekannte Querkraftmodelle diskutiert. Zur Beurteilung der Querkrafttragfähigkeit bei erhöhten Dehnungen der Biegezugbewehrung wird ein neues Querkraftmodell vorgestellt. Unter Verwendung des neuen Querkraftmodells wird durch eine Simulation von Versuchsergebnissen der relevante Parameterbereich untersucht. Anhand einer Parameterstudie an einem statischen System wird gezeigt, dass für den in der Praxis relevanten Parameterbereich auch bei Dehnungen von bis zu 25 ‰ in der Biegezugbewehrung eine ausreichende Querkrafttragfähigkeit gemäß EC 2 / DIN 1045-1 gegeben ist.

Abstract

This study concerns shear resistance of reinforced concrete members with maximum strain of 25 ‰ in the flexural reinforcement according to the design codes EC 2 / DIN 1045-1. First of all, different mechanisms of shear resistance are described and then well-known shear models are discussed. For evaluation of the shear resistance with high strain in the flexural reinforcement a new shear model is introduced. Using the new shear model a simulation of test results investigated the practical relevant parameter range. Based on a parameter study the shear resistance of reinforced concrete members with maximum strain of 25 ‰ in the flexural reinforcement according to EC 2 / DIN 1045-1 is proved.

Résumé

Ce projet de recherche démontre qu'une capacité portante de la force transversale suffisante existe encore concernant des dilatations d'acier jusqu'à 25 ‰ dans l'armature longitudinale de flexion conformément à EC2/DIN 1045- 1. Par conséquent, les différents mécanismes de la capacité portante de la force transversale sont d'abord expliqués, puis deux modèles de force portante connus de la littérature sont discutés. De plus, pour le jugement de la capacité portante de la force transversale concernant des dilatations augmentées de l'armature longitudinale de flexion un nouveau modèle de force transversale est présenté. En utilisant ce nouveau modèle de force transversale la zone de paramètres relevante est examinée par une simulations d'essais. L'étude de paramètres relevante en pratique une capacité portante de la force transversale existe également en ce qui concerne les dilatations jusqu'à 25 ‰ dans l'aramature longitudinale de flexion selon EC 2 / DIN 1045- 1.

Vorbemerkung

Mit Einführung der DIN 1045-1 [1] wurde die durch den Eurocode 2 [2] zulässige maximale Stahldehnung der Biegezugbewehrung von 20 ‰ auf 25 ‰ erhöht. Bei der Neufassung des Eurocode 2 kann davon ausgegangen werden, dass auch hier die zulässige Stahldehnung der Biegezugbewehrung auf 25 ‰ festgelegt wird. Außerdem wird die zukünftige Bemessungsgleichung für die Ermittlung der Querkrafttragfähigkeit von Bauteilen ohne Querkraftbewehrung sich an der Bemessungsgleichung der DIN 1045-1 orientieren. Aus diesem Grund wurde bei den hier durchgeführten Untersuchungen eine maximale Stahldehnung der Biegezugbewehrung von 25 ‰ angesetzt und zur Ermittlung der Bemessungsquerkraft die Tragfähigkeit nach der DIN 1045-1 berechnet. In Bild 1 ist noch einmal der Verlauf der Bemessungsquerkraft nach DIN 1045-1 und EC 2 in Abhängigkeit des Bewehrungsgrades für ein Plattenbauteil mit einer statischen Nutzhöhe von 205 mm dargestellt.

Bild 1: Vergleich Bemessungsquerkraft DIN 1045-1 und EC 2

Des Weiteren werden in dieser Forschungsarbeit nur plattenförmige Stahlbetonbauteile ohne Querkraftbewehrung behandelt, da die Voraussetzungen der erhöhten Dehnungen in der Biegezugbewehrung bis 25 ‰ bei Balken nicht erfüllt ist.

Einleitung

Im Zuge der Einführung der neuen Bemessungsnorm für den Stahlbetonbau DIN 1045-1 ist bei der Biegebemessung eine Stahldehnung von bis zu 25 ‰ zulässig. Dadurch ist es möglich geworden den Verbundbaustoff Stahlbeton besser auszunutzen, d.h. eine wirtschaftlichere Biegebemessung im Grenzzustand der Tragfähigkeit zu erreichen. Fraglich ist jedoch, wie sich die erhöhten Dehnungen auf die Querkrafttragfähigkeit im Grenzzustand der Tragfähigkeit auswirken. In diesem Forschungsbericht werden die Ergebnisse der durchgeführten Untersuchungen erläutert, die sich mit der Querkrafttragfähigkeit bei Stahldehnungen bis zu 25 ‰ beschäftigen.

Bisher wurde noch nicht genauer untersucht, ob im Grenzzustand der Tragfähigkeit die Nachweise der Biegetragfähigkeit und der Querkrafttragfähigkeit unabhängig von einander geführt werden dürfen. Auf der Widerstandsseite ist das Vorhandensein einer Interaktion zwischen dem Querkraft- und dem Biegewidertand des Querschnitts mechanisch nachvollziehbar. Auf einen Interaktionsnachweis wird aber in der DIN 1045-1 aufgrund einer vereinfachten Beweisführung verzichtet. Bei der Formulierung der Bemessungsgleichung für den Querkraftnachweis ohne Querkraftbewehrung, welche auf dem Ansatz des Model Code 90 [3] basiert, wurde eine statistische Auswertung anhand einer Versuchsdatenbank mit über 300 Querkraftversuchen durchgeführt. Dabei wurde bewusst auf eine Vorauswahl von geeigneten und weniger geeigneten Versuchen verzichtet. Somit deckt die Bemessungsgleichung aus der DIN 1045-1 die Schubversagensarten Biegeschubversagen, Schubzugbruch und Druckstrebenbruch über den Parameterbereich der Versuchsdatenbank mit ausreichender Sicherheit gemäß DIN 1055-100 ab.

Im folgenden Bericht soll gezeigt werden, dass die Annahme einer ausreichenden Querkrafttragfähigkeit auch bei einer vorhanden Stahldehnung von bis zu 25 ‰ gerechtfertigt ist. Die Konsequenz für den Verbundbaustoff Stahlbeton, ist eine größere Rissbreite im gerissenen Querschnitt und eine kleinere Druckzone aufgrund einer erhöhten zulässigen Stahldehnung in der Biegezugbewehrung. Beides wirkt sich ungünstig auf den Querkraftwiderstand des Querschnitts aus. Bei gewissen statischen Systemen, wie zum Beispiel Durchlaufträgern, kommt es vor, dass die maximale Biegebeanspruchung mit der maximalen Querkraftbeanspruchung zusammenfällt. Deshalb soll in der folgenden Arbeit gezeigt werden, dass für einen Querschnitt im Grenzzustand der Biegetragfähigkeit immer noch eine ausreichende Sicherheit für die zulässige Querkraftbelastung nach DIN 1045-1 besteht. Dabei wird zuerst eine Querschnittsanalyse durchgeführt. Und danach an einem statischen System der praxisrelevante Parameterbereich untersucht.

Gliederung der Forschungsarbeit

Die Arbeit gliedert sich in drei Teile. Im Ersten werden bestehende Querkraftmodelle vorgestellt und diskutiert. Hierbei wird auf die verschiedenen Tragmechanismen, welche zur Abtragung der Querkraft herangezogen werden, genauer eingegangen.

Im zweiten Teil wird ein neues Querkraftmodell speziell für große Rissbreiten vorgestellt. Dieses Querkraftmodell ist erforderlich, da der Bruchzustand mit großen Dehnungen nicht mit bisherigen Querkraftmodellen vereinbar ist.

Eine Auswertung anhand von Parameterstudien des Querkraftmodells für große Rissbreiten findet sich im dritten Teil. Hieraus wird erkennbar sein, dass auch für Dehnungen bis 25 ‰ eine ausreichende Querkrafttragfähigkeit durch die Bemessung nach DIN 1045-1 erreicht wird.

Querkraftmodelle

In diesem Kapitel werden stellvertretend für eine Vielzahl von existierenden Querkraftmodellen zwei exemplarisch vorgestellt und erläutert. Vorweg werden zum besseren Verständnis drei Grundmodelle der Querkrafttragfähigkeit und die Tragwirkung einzelner Querkraftabtragungsmechanismen erklärt.

Bis heute gibt es noch kein allgemein akzeptiertes Modell zur Beschreibung des Schubtragverhaltens von Stahlbetonbauteilen. So herrscht vor allem Uneinigkeit in der Bedeutung der einzelnen Tragmechanismen Rissreibung, Dübelwirkung und Schubkraftübertragung in der Druckzone.

Zahn- und Kammmodell

Das Kammmodell basiert auf der von Kani [4] entwickelten Vorstellung, dass sich bei steigender Belastung eine kamm- bzw. zahnartige Tragstruktur ausbildet. Hierbei ist die Druckzone der Kammrücken, und die durch Biegerisse separierten Zähne sind eingespannte Kragarme. Die Verbundkräfte zwischen Beton und Biegezugbewehrung beanspruchen dann den Kragarm als Einzellast. Bei Überschreitung der Betonzugfestigkeit in den Kragarmeinspannungen fallen diese nacheinander aus und es bildet sich ein Druckbogen mit Zugband. Durch fortschreitenden Ausfall wird der Bogen so stark geschwächt, dass es zum Gesamtversagen kommt. Modifikationen des Kammmodells berücksichtigen die Rissverzahnung und Verdübelungswirkung der Biegezugbewehrung.

Modelle auf Grundlage der Druckzonenfestigkeit

Alle Modelle auf Basis der Druckzonenfestigkeit gehen davon aus, dass Schubkräfte nur über die Druckzone übertragen werden, also keine Verdübelungswirkung oder Rissverzahnung stattfindet. Das heißt, dass sich auch hier wie bei Kani, ein Bogen mit Zugband einstellt. Dieser wird dann durch immer weiterwachsende Biegerisse so stark geschwächt, dass es schließlich zum Gesamtversagen kommt.

Die einzelnen Modelle unterscheiden sich durch die Annahme und Herleitung der Druckfestigkeit der Betondruckzone in Abhängigkeit des dortigen Spannungszustandes.

Diese Schubdruckfestigkeit wird nach Walther [5] durch eine Funktion in Abhängigkeit der Schubschlankheit beschrieben und mit Hilfe des Mohrschen Bruchkriteriums hergeleitet.

Bild 1: Biegeverformungen in Bereich des Schubrisses nach Walther [5]

Modelle auf Basis der Bruchmechanik

Als eines der ersten bruchmechanischen Modelle kann das Modell von Hawkins, Wyss und Mattock [6] betrachtet werden. Sie gehen von einem stabilen Risswachstum in der Phase der Mikrorissbildung aus und ermitteln aus einer Energiebetrachtung, die auf dem Bruchkriterium von Griffith beruht, eine kritische Risslänge c und kritische Risserweiterungskraft G. Mit deren Hilfe leiten sie zwei Beziehungen für die Querkraft her, zum einen für ungerissene Bauteile unter Biegung, zum anderen für gerissene Bauteile unter Biegung. Schwierigkeiten erkennen sie in der Ermittlung von G, da G auf Basis direkter Zugversuche gewonnen werden muss und z. B. nicht über Biegezugversuche ermittelt werden kann. Die Formel zur Bestimmung der Querkraft für gerissene Bauteile unter Biegung beinhaltet zudem einen Abminderungsfaktor, der nur über eine Regressionsanalyse erhalten wird.

Einflüsse auf die Querkrafttragfähigkeit

Nachfolgende Aufzählung ist [7] entnommen.

- 1. Art der Belastung:
 - Einzellast, Verkehrslast, Eigengewicht
- 2. Laststellung und Schlankheit des Balkens:
 - bezogener Abstand a/d einer Einzellast vom Auflager bzw. das bezogene Momenten-Querkraft-Verhältnis M/Qd
 - Schlankheit l/d bei Balken mit Gleichlast
- 3. Art der Lasteintragung und Lagerung:
 - direkte oder indirekte
 - unten angehängte Lasten
- 4. Längsbewehrung:
 - Bewehrungsgrad, besonders im Abstand 3d vom Auflager
 - Dehnung der Längsbewehrung (Stahlgüte)
 - Verbundgüte, beeinflusst die Aufteilung der Längsbewehrung
 - Verankerung und Abstufung der Längsbewehrung
- 5. Betongüte
 - Betonzugfestigkeit
 - Betondruckfestigkeit
- 6. Kornaufbau des Betons:
 - maximale Korngröße → Kornverzahnung (aggregate interlock)

- 7. Querschnittsform:
 - Verhältnis b/b_o bei Plattenbalken
 - Stegbreite b_w bei profilierten Balken
- 8. Absolute Balkenhöhe:
 - Ähnlichkeitsgesetze gelten nicht vollständig

9. System des Tragwerks:

• Einfeldbalken oder Durchlaufträger

Querkrafttraganteile

Nachfolgend werden Traganteile ohne Anspruch auf Vollständigkeit aufgezählt, die in bisherigen Modellen zur Querkrafttragfähigkeit ohne Querkraftbewehrung verwendet werden.

Schubübertragung in der Druckzone

Haupttragwirkung bei der Querkraftbeanspruchung von nicht schubbewehrten Stahlbetonbalken ist die Querkrafttragfähigkeit der Druckzone. Betrachtet man die Querkraftsteifigkeit des kritischen Bereichs, so dominiert die ungerissene Druckzone im Vergleich zu der viel größeren, gerissenen Zugzone. Daraus lässt sich schließen, dass über die Druckzone ein wesentlicher Anteil der Querkraft abgetragen wird.

$$\sigma_{l,II} = \frac{\sigma_x}{2} \pm \sqrt{\left(\frac{\sigma_x}{2}\right)^2 + \tau_{xy}^2}$$
(1)
Nulllinie: Bauteilrand:

$$\sigma_I = f_{ct} \qquad \sigma_{II} = \sigma_x = f_c$$

$$\sigma_x = 0 \qquad \rightarrow \tau_{xy} = 0$$

$$\rightarrow \tau_{xy} = \sigma_I = f_{ct}$$

Aus Versuchsbeobachtungen hat Zink [8] festgestellt, dass die Verlängerung der Risswurzel die Nulllinie unter 45° schneidet (vergleiche hierzu Bild 16). Am Ende der Risswurzel entspricht die Spannung genau der Betonzugfestigkeit, folglich gilt für die Hauptzugspannung $\sigma_I = f_{ct}$. Dabei steht die Hauptzugspannung senkrecht zur Risswurzel und ist somit ebenfalls 45° gegenüber der Horizontalen gedreht. Berücksichtigt man, dass in der Grenzschicht zwischen der Druck- und der Zugzone die Längsspannung null beträgt, so entspricht die Schubspannung τ_{xy} der zentrischen Zugfestigkeit f_{ct}. Am freien Bauteilrand der Druckzone entspricht im Grenzzustand der Tragfähigkeit der Hauptdruckspannung τ_{xy} gleich null. Der Schubspannungsverlauf zwischen Bauteilrand und Nulllinie wird als parabelförmig angenommen.

Die Schubtragfähigkeit der Druckzone V_0 erhält man durch Integration des Schubspannungsverlauf $\tau(x)$ über die Druckzonenhöhe x_d und über die Bauteilbreite b(x).

$$V_0 = \int_{0}^{x_d b} \int_{0}^{z_{dt}} \tau_{xy}(x) \, dx \, dy = \frac{2}{3} b \cdot x_d \cdot f_{ct}$$
(2)

Die Höhe der Betondruckzone x_d ist abhängig von der Biegebelastung des Querschnitts. Um nicht in Widerspruch mit der Elastizitätstheorie zu geraten, hat die Gleichung (2) nur eine Gültigkeit so lange die Druckzonenhöhe kleiner als die halbe Bauteilhöhe ist. Bei größeren relativen Druckzonenhöhen kann dann nicht mehr die Balkentheorie und die Annahme einer ebenen Dehnungsverteilung angesetzt werden, sondern es müsste nach der Scheibentheorie gerechnet werden.

Rissverzahnung und Rissreibung

In den meisten Querkraftmodellen wird die Rissverzahnung als weitere Komponente des Querkraftwiderstandes aufgeführt. Eines der ersten Modelle zur Erklärung der Kraftübertragung durch Rissverzahnung stammt von Walraven [9]. Er geht dabei von einem Zweiphasensystem aus. Die erste Phase bildet die Zementmatrix und die zweite Phase bilden als Kugeln idealisierte Zuschlagskörner. Der auftretende Riss, über welchen die Kräfte durch Rissverzahnung übertragen werden sollen, verläuft geradlinig durch die Zementmatrix und entlang der Oberfläche der Zuschlagskörner (Bild 2).

Bild 2: Idealisierte Struktur einer Rissebene nach Walraven [9]

Durch eine Gleitung v der Rissufer parallel zur Rissebene entstehen Kontaktflächen. Das Korn dringt in die gegenüberliegende Zementmatrix ein. Dabei entstehen Spannungen an der Kontaktfläche, die in senkrechte Druckspannungen σ und parallele Schubspannungen τ unterteilt werden können. Die übertragbaren Druck- und Schubspannungen hängen von der Rissöffnung w und der Rissgleitung v ab. Die maximale Tragfähigkeit ist dann erreicht, wenn die Kontaktfläche am größten ist. Weiterhin sind die Zuschlagseigenschaft und die Zementsteinfestigkeit weitere Parameter die zum Modellparameter Betonfestigkeit zusammen gefasst werden. Exemplarisch ist in Bild 3 für eine Betonfestigkeitsklasse B55 dieser Zusammenhang dargestellt.

Bild 3: τ und σ in Abhängigkeit von v und w im Vergleich zu Versuchsergebnissen [9]

Wichtige Einflussgröße ist hier die Betondruckfestigkeit. Wobei nicht die Festigkeit von primärer Bedeutung ist, sondern das Bruchverhalten. Bei normalfestem Beton verläuft die Rissoberfläche um die Zuschlagkörner, da diese eine höhere Festigkeit besitzen als die Zementsteinmatrix. Dadurch entsteht eine sehr raue Oberflächentopologie, welche durch aus der Zementsteinmatrix herausragende Zuschlagskörner gebildet wird. Dadurch besteht ein relativ großer Gleitwiderstand parallel zur Rissoberfläche, welcher wie in Bild 2 erkennbar ist, mit zunehmender Rissöffnung abnimmt. Bei hochfestem Beton dagegen ist die Festigkeit der Zementsteinmatrix größer als die Festigkeit der Zuschlagskörner. Folglich verläuft die Rissoberfläche durch die gebrochenen Zuschlagskörner. Die dabei entstehende Oberflächentopologie ist wesentlich glatter als die bei normalfestem Beton. Daraus ergibt sich dann auch ein geringerer Gleitwiderstand. Somit ist fraglich, ob die Tragwirkung der Rissverzahnung überhaupt in ein allgemein gültiges Querkraftmodell einfließen darf. Denn ihre Tragwirkung hängt primär vom Festigkeitsverhältnis von Zuschlag zur Zementsteinmatrix ab. Und nur bei einem Verhältnis zugunsten der Zuschlagsfestigkeit, können Querkräfte durch Rissverzahnung abgetragen werden.

So ist anzunehmen, dass die Tragwirkung durch Rissverzahnung bei Leichtbeton und hochfestem Beton vernachlässigbar klein ist, da bei diesen Betonsorten die Zementsteinmatrix eine höhere Festigkeit besitzt als die Zuschlagkörner. Folglich besitzt die Oberflächentopologie eine geringere Makrorauheit, da die Bruchfläche durch die Zuschlagskörner verläuft. Im Gegensatz zu Normalbeton, bei dem die Zuschlagskörner eine höhere Festigkeit haben und dadurch die Bruchebene so verläuft, dass die Zuschlagskörner aus der Bruchebene herausragen. Durch die größere Makrorauheit resultiert für Normalbeton eine bessere Rissverzahnung der gegenüberliegenden Rissufer. Zu Gunsten der Tragsicherheit sollte deshalb auf einen Ansatz der Rissverzahnung bei Querkraftmodellen verzichtet werden, da diese Tragwirkung von zu vielen unsicheren Faktoren abhängig ist.

Für die Aktivierung der Rissverzahnung zur Abtragung von Schubspannungen, die parallel zu einem Riss übertragen werden sollen, ist eine Parallelverschiebung der Rissufer erforderlich. Die dabei übertragbare Schubspannung ist im wesentlichen von der Rissöffnung abhängig. Voraussetzung dafür ist somit eine Gleitung der Rissufer.

Dübelwirkung der Längsbewehrung

Relativverschiebungen der Rissufer werden nicht nur von der Verzahnung der Rissufer, sondern auch von der Dübelwirkung der Längsbewehrung behindert. Dabei hängt die maximal übertragbare Verdübelungskraft von der Biegesteifigkeit der Längsbewehrung und der sie umgebenden Betondeckung sowie ihrer Betonzugkraft ab. Die Auslenkung der Längsbewehrung wird durch zwei Teile abgedeckt. Zum einen die Deformation der Bewehrungsstäbe im Beton und zum anderen die Verformung in der freien Länge, also im Riss. Für diesen freiliegenden Teil der Bewehrung formuliert Paulay [10] drei Wirkungsweisen der Verdübelung (siehe Bild 4).

Bild 4: Mechanismen der Schubkraftübertagung von Längsbewehrung nach Paulay [10]

Diese sind die Kraftübertragung durch Biegewirkung (flexure), durch reinen Schub (shear), der begrenzt ist durch die Scherfestigkeit, und die Kraftübertragung durch Schrägzugwirkung (kinking).

Beim Übergang in den gerissenen Zustand neigen sich die Biegerisse durch die gleichzeitig wirkende Querkraftbeanspruchung parallel zur Richtung der Hauptspannung σ_{II} . In Balkenlängsrichtung entsteht durch die unterschiedliche Druckbelastung, welche sich aus der unterschiedlichen Ausprägung der diagonalen Betondruckstrebe ergibt, ein Versatzmaß (Gleitung der Rissufer) zwischen der Risswurzel und dem Kreuzungspunkt des Risses mit der

Längsbewehrung. Daraus resultiert durch die Rotation des Querschnitts eine Scherbeanspruchung für die Längsbewehrung. Die dabei aktivierte Dübelkraft wird anfangs zum Abtrag der Querkraft herangezogen. Gleichzeitig belastet die Dübelkraft die auflagernahe Betondeckung. Die maximal übertragbare Betonzugkraft senkrecht zu der parallel zur Bauteilunterseite verlaufenden Grenzschicht in Höhe der Längsbewehrung begrenzt die aufnehmbare Dübelkraft. Der Dübel bzw. die Längsbewehrung verhält sich dabei wie ein elastisch gebetteter Balken. Am Rand der elastischen Bettung (hier die Rissöffnung) tritt die maximale Spannung auf. Kommt es durch weitere Laststeigerung zu einem instabilen Risswachstum in der Grenzschicht der Betondeckung, löst sich diese vom Bauteil und die Dübelwirkung der Längsbewehrung versagt (Bild 5). Im Grenzzustand der Tragfähigkeit kann die Scherbelastung, in Abhängigkeit der auftretenden Gleitung so groß sein, dass sich die Betondeckung löst und für den Querkraftwiderstand die Dübelwirkung der Längsbewehrung ausfällt. Um bei einem Querkraftmodell einen homogenen Übergang vom ungerissenen in den gerissenen Zustand zu modellieren müsste bei Berechnungen im Grenzzustand der Gebrauchstauglichkeit die Dübelwirkung der Längsbewehrung in Abhängigkeit der Rissöffnung und der Rissgleitung berücksichtigt werden.

Bild 5: Zugspannungsverteilung im Dübelriss (aus [8])

Betonzugfestigkeit

Die Zugfestigkeit und das bruchmechanische Verhalten des Betons nach deren Überschreiten, entscheiden über die Fortentwicklung des Schrägrisses während des Querkraftversagens. Auch die Verbundeigenschaften hängen von der Betonzugfestigkeit ab. Dadurch variiert die Rissöffnung des Schubrisses in Höhe der Längsbewehrung in Abhängigkeit der Betonzugfestigkeit, des Bewehrungsgrades und der Art und Anordnung der Längsbewehrung. Bei einem Anstieg der Betonzugfestigkeit kann mehr Zugkraft aus der Längsbewehrung in die Betonzugzone eingeleitet werden. Aufgrund der größeren Einleitungslänge erhöht sich der Rissabstand, aber auch die Rissöffnung wächst an. Für das Verformungsverhalten folgen daraus zwei gegenläufige Einflüsse. Zum einen nimmt die Biegesteifigkeit zwischen den Rissen durch die Mitwirkung des Betons zu (tension stiffening). Gleichzeitig erfährt aber der Querschnitt durch die größere Rissöffnung eine stärkere Rotation. Somit begünstigt eine höhere Betonzugfestigkeit durch die Erhöhung der Biegesteifigkeit das Verformungsverhalten. Die lokalen Rotationen an den Biegerissen wirken sich dagegen ungünstig auf das Verformungsverhalten aus.

Das Versagen des Betons auf Zug unterscheidet sich von einem homogenen Werkstoffen. Im Gegensatz zu Metallen entsteht bei Beton an der Rissspitze keine plastische Zone, sondern eine Bruchzone mit vielen Mikrorissen, in der zwar noch Spannungen übertragen werden, die aber kleiner als die Zugfestigkeit sind. Als Folge der Mikrorissbildung gibt es im Beton keine physikalische Rissspitze. Der von der Mikrorissbildung betroffene Bereich wird allgemein als Bruchprozesszone bezeichnet, dieser erstreckt sich von dem Punkt im Riss, an dem keine Zugspannung mehr übertragen werden kann bis zu dem Punkt mit der maximalen Spannung $\sigma_c = f_{ct}$ (Bild 6). Diese Modellbeschreibung bezeichnet sich als fiktive Rissmethode mit einer Spannungs-Rissöffnungsbeziehung.

Bild 6: Bruchprozesszone nach Hillerborg (aus [8])

Hillerborg [11] ermittelt anstelle der einzelnen Mikrorissöffnungen die Gesamtöffnung w eines fiktiven Risses, indem er den elastischen Anteil von der Gesamtverformung Δl einer Messstrecke l abzieht, die genau eine vollständige Bruchprozesszone enthält. Die Fläche der so ermittelten Spannungs-Rissöffnungsbeziehung $\sigma(w)$ entspricht der Arbeitsenergie (Bruchenergie G_f), die erforderlich ist, um einen Riss entstehen zu lassen.

Bild 7: Verformungsverhalten von Beton unter Zugbeanspruchung [8]

Bild 7: Zugspannungs-Rissöffnungsbeziehung (aus [12])

Ab einer maximalen Rissöffnung von 150 bis 160 μ m sind die über den Riss übertragbaren Spannungen vernachlässigbar klein (Bild 20). Bis zum Erreichen der Betonzugfestigkeit zeigt der Beton ein linear-elastisches Verhalten. Der Elastizitätsmodul E_{ct} bei der Zugbelastung entspricht dabei dem Elastizitätsmodul 1,15·E_c bei Druckbeanspruchung. Bei ungefähr 95 % der Zugfestigkeit kündigt sich ein Versagen durch einen Abfall der Steifigkeit an. Dieser Abfall kann aber bei Modellrechnungen vernachlässigt werden. Der dann folgende Verlauf der übertragbaren Spannung kann durch einen bilinearen oder exponentiellen Ansatz beschrieben werden. Bei der Regression der Spannungs-Rissöffnungsbeziehung sollte die Fläche unter der Spannungskurve wieder der Bruchenergie entsprechen.

In Bild 8 ist die Spannungsverteilung in der Bruchprozesszone dargestellt. Ihre Größe im Verhältnis zur Bauteildicke wirkt sich auf den Anteil der Querkraft aus, welcher über die Bruchprozesszone abgetragen wird. Bei kleinen Bauteildicken kann ein relativ großer Anteil der Querkraft über die gerissene Zugzone abgetragen werden. Mit zunehmender Bauteildicke verliert diese Tragwirkung immer mehr an Bedeutung. Dies wird im Allgemeinen als Maßstabseffekt bezeichnet und wird auch in den Bemessungsnormen der DIN 1045-1 und des EC 2 berücksichtigt.

Bild 8: Spannungsverteilung an der Rissspitze (aus [12])

Der Maßstabseffekt ist aber nicht allein von der Bauteilhöhe, sondern auch von der Dehnung der Längsbewehrung und der daraus resultierenden Rissöffnung abhängig. Somit hat auch die Art und Anordnung der Biegezugbewehrung, welche die Größe der Rissöffnung wiederum beeinflusst, eine Wirkung auf die Ausprägung der Maßstabsabhängigkeit. Bisherige Maßstabseffekte berücksichtigen diese Einflussfaktoren noch nicht.

Einfluss des Momenten-Querkraft-Verhältnisses

Die Querkrafttragfähigkeit eines Stahlbetonbauteils ist abhängig vom einwirkenden Moment im betrachteten Querschnitt. Die Rissöffnung und die Druckzonenhöhe sind abhängig vom einwirkenden Moment. Somit sinkt die Querkrafttragfähigkeit mit steigendem Moment. Dies wird in der deutschen DIN 1045-1 aber bisher noch nicht berücksichtig, obwohl schon seit den Arbeiten von Kani dieser Einfluss bekannt ist. In seinen Versuchen beobachtete er, dass die Querkrafttragfähigkeit nicht nur von der Querschnittshöhe, sondern auch von der Schubschlankheit abhängig ist. Diese Erkenntnisse mündeten in das wohlbekannte Kanische Schubtal (Bild 9). Bei Querschnitten die sich immer im ungerissenen Zustand befinden, ist es für Querkraftnachweis ausreichend, wenn nachgewiesen werden kann, dass die Hauptzugspannung kleiner als die Betonzugfestigkeit ist. Somit wird an dieser Stelle indirekt der Einfluss des Biegemomentes bei der Querkraftbemessung in der DIN 1045-1 berücksichtigt.

In Bild 10 ist das Verhältnis aus Tragfähigkeit aus der Biegebemessung und aus der Querkraftbemessung gemäß DIN 1045-1 in Abhängigkeit des Biegezugbewehrungsgrades und der Laststellung einer Einzellast auf einem Einfeldträger dargestellt. Darin ist das von Kani experimentell gewonnen "Schubtal" leicht wieder zu erkennen. Der Anstieg der Querkrafttragfähigkeit für Laststellungen kleiner als a/h = 3, der auf die Tragwirkung einer sich ausbildenden direkten Druckstrebe zurückzuführen ist, wird durch die Bemessung nach DIN 1045-1 nicht wieder gegeben.

Bild 9: Einfluss der Laststellung a /h und des Längsbewehrungsgrades μ_L auf das Verhältnis Schubbruchmoment zu rechnerischem Biegebruchmoment bei Balken ohne Schubbewehrung ("Schubtal" nach G. Kani [13])

Bild 10: Momentenausnutzung des Querschnitts (DIN 1045-1)

Querkraftmodell von Schmidhuber

Schmidhuber [14], [15] entwickelt sein Querkraftmodell aufbauend auf der Arbeit von Reineck [16]. Grundlage des Querkraftmodells sind Gleichgewichtsbetrachtungen, die für ein herausgeschnittenes "Zahnelement" dargestellt werden. Die Spannungen am Zahn werden für die verschiedenen Traganteile infolge der einwirkenden Querkraft berechnet. Der Verlauf der Rissverzahnungsspannung im Riss wird dabei im Modell rechnerisch durch einen bilinearen Ansatz berücksichtigt. Hinsichtlich der Verträglichkeitsbedingungen werden im Rahmen dieses Modells keine eigenen Untersuchungen angestellt, es wird vielmehr nur der Bruchzustand untersucht. Für die Modellbildung trifft Schmidhuber folgende Annahmen:

• Es wird von einer geraden Rissform ausgegangen. Auf eine exakte Abbildung des Rissverlaufes wird aber verzichtet. Die Rissbreite nimmt von der Risswurzel ausgehend linear zu.

• Das Ebenbleiben der Querschnitte wird vorausgesetzt.

• Für den Nachweis der Querkrafttragfähigkeit wird davon ausgegangen, dass die Einspannung des Zahns in die Druckzone ausgefallen ist, d.h. keine Tragwirkung aus dieser Komponente mehr vorhanden ist. Dies geschieht im Einklang mit den Rechenmodellen der Bemessungsnormen, in welchen auf eine rechnerische Berücksichtigung der Zugfestigkeit des Betons i.A. verzichtet wird.

Die Querkraftabtragung wird somit von der Druckzone, der Rissverzahnung und der Dübelwirkung übernommen.

Kritik an den verwendeten Grundlagen

Das aufgestellte Modell ist uneingeschränkt gültig für den Trägerbereich, der außerhalb der fächerartigen Druckfelder des Trägerauflagers und der Lasteinleitungsbereiche liegt. Dieser Bereich wird bei Schlaich/Schäfer [17] als B-Bereich bezeichnet (Bild 11). Im Bereich einer direkten Lasteinleitung breitet sich, die auf das Bauteil einwirkende Last, fächerartig in einem einachsigen Druckfeld aus, wobei die Druckfeldtrajektorien die Biegerisse kreuzen. Damit liegen innerhalb dieses Druckfeldbereichs günstigere Verhältnisse vor und werden für das Bauteilversagen nicht kritisch. Unter Annahme einer Lastausbreitung unter 45° ist allerdings dieser günstig wirkende Einfluss des Druckfelds bereits im Abstand h nicht mehr vorhanden.

Ein gesuchtes Querkraftmodell sollte aber gerade in Diskontinuitätsbereichen (Mittelauflagern von Durchlaufträgern) Gültigkeit haben. Denn voraussichtlich ist zu erwarten, dass ein gleichzeitiges Auftreten von maximaler Querkraft und maximalem Biegemoment die maßgebende Belastung aus Sicht des geringsten Bauteilwiderstands darstellt.

Bild 11: Darstellung der Trägerbereiche (aus [17])

Querkraftmodell von Zink

Zink verwendet für sein Querkraftmodell nur die Komponenten Druckzone und Betonzugfestigkeit.

Bild 12: Querkraftabtragung nach Modell Zink

Ausgehend von einer Biegebemessung ermittelt er sich die vorhandene Druckzone x_d . In dieser kann wie vorstehend gezeigt die Querkraft V_0 übertragen werden.

$$V_0 = \frac{2}{3} \mathbf{b} \cdot \mathbf{x}_d \cdot \mathbf{f}_{ct}$$
(3)

Als zweite Komponente setzt Zink in seinem Modell die senkrecht zum Schubriss in der Rissspitze übertragbare Normalspannung an. Aufgrund eines stabilen Risswachstums muss am Ende der Rissspitze gerade noch die Betonzugfestigkeit vorhanden sein. Im Bereich der Bruchprozesszone können dann über den offenen Riss bis zu einer Rissöffnung von 150 µm noch Normalspannungen übertragen werden. Unter Annahme eines parabelförmigen Rissuferverlaufs bis zur Rissöffnung von 150 µm und der Spannungs-Rissöffnungsbeziehung ergibt sich für die Integration des Spannungsverlaufs ein Völligkeitsfaktor von 0,4 in bezug auf einen konstanten Spannungsverlauf mit der Betonzugfestigkeit.

$$b \cdot \int \sigma(w(x)) dx = 0, 4 \cdot b \cdot l_{BPZ} \cdot f_{ct}$$
(4)

Die Länge der Bruchprozesszone l_{BPZ} bestimmt Zink nach der von Hillerborg definierten charakteristischen Länge l_{ch} . Die charakteristische Länge entspricht der halben Länge eines Zugkörpers, bei dem die elastische Energie genau der Bruchenergie G_f ist. Sie ist aber keine mechanisch begründbare Größe, sondern nur ein Rechenwert, mit dem die Sprödigkeit von Beton unter Zugbeanspruchung beschrieben werden kann. Die in Versuchen ermittelte Bruchprozesszonenlänge liegt dagegen nur bei 30 % bis 50 % der rechnerisch ermittelten charakteristischen Länge.

$$G_{f} = \int_{-l_{ch}}^{l_{ch}} \sigma \cdot \varepsilon \, dl = \frac{1}{2} \cdot f_{ct} \cdot \frac{f_{ct}}{E_{ct}} \cdot 2l_{ch}$$
(5)
$$I_{ch} = \frac{E_{ct} \cdot G_{f}}{f_{ct}^{2}} = 0,0307 \, \text{mm} \cdot \frac{E_{ct}}{f_{ct}}$$
(6)

$$G_{f} = 0,0307 \,\mathrm{mm} \cdot f_{ct}$$
(6)

Weiterhin berücksichtigt Zink, dass die Rissspitze 45° geneigt zur Horizontalen verläuft. Die Resultierende V_{BPZ} Vertikalkomponente der Rissnormalspannung in der Bruchprozesszone wird als weiterer Querkrafttraganteil verwendet.

$$V_{BPZ} = 0.4 \cdot \frac{b \cdot 0.4 \cdot l_{ch} \cdot f_{ct}}{\sqrt{2}} = 0.113 \cdot b \cdot l_{ch} \cdot f_{ct}$$
(7)

Durch die Addition der Querkraftanteile aus der Druckzone und der Bruchprozesszone ergibt sich der Querkraftwiderstand des Bauteils nach Zink.

$$V_{Rd,ct} = V_0 + V_{BPZ} = \frac{2}{3} b \cdot x_d \cdot f_{ct} + 0.113 \cdot b \cdot l_{ch} \cdot f_{ct}$$
 (8)

Kritik an den verwendeten Grundlagen

Das Modell von Zink zeigt bei Nachrechnung von Querkraftversuchen sehr gute Korrelationen mit den gemessenen Bruchlasten. Trotzdem ist fraglich, ob die Höhe der Bruchprozesszone mit dem Ansatz über die charakteristische Länge richtig erfasst wird. In die Bestimmung der charakteristischen Länge fließen nur die Materialparameter E-Modul und Betonzugfestigkeit ein. Bei geringen Bauteildicken mit einer relativ geringen Betonzugfestigkeit kann es deshalb vorkommen, dass die daraus berechnete Bruchprozesszone größer als die Betonzugzone ist. Durch die starre Annahme, dass alle Rissspannungen um 45° gegenüber der Horizontalen geneigt sind, wird die Resultierende aus den vertikalen Spannungskomponenten überschätzt. Danach müssten die berechneten Querkraftwiderstände an Balken mit kleinen statischen Nutzhöhen, die in Versuchen gewonnenen Werte übersteigen. In Bild 13 ist die Zuverlässigkeit des Querkraftmodells von Zink in Abhängigkeit der statischen Nutzhöhe aufgetragen. Deutlich ist die starke Streuung im Bereich kleiner Bauteildicken zu erkennen. Die rechnerischen Werte übersteigen häufiger die Versuchswerte, als dass sie diese unterschreiten.

Bild 13: Zuverlässigkeit des Querkraftmodells von Zink [8]

Querkraftmodell nach Fischer

Bild 14: Querkraftabtragung nach Modell Fischer

Fischer [18] verwendet in seinem Querkraftmodell zur Querkraftabtragung die Komponenten Dübelwirkung H der Längsbewehrung, Rissverzahnungskomponenten senkrecht zum Riss R und parallel zum Riss W und die Zugkraft Z in der Längsbewehrung.

Für die Verdübelungskraft H verwendet Fischer den Ansatz von Baumann:

$$H = 7.6 \cdot d_s \cdot b \cdot \sqrt{12 \cdot f_{cm}}$$
⁽⁹⁾

Die erforderlichen Verformungen zur Aktivierung der Kräfte W und R aus der Rissgleitung und Rissöffnung werden aus einer Starrkörperrotation um die Rissspitze berechnet. Als Gleitung wird der von Baumann vorgeschlagene Mittelwert von v = 0,10 mm angesetzt. Für die Rissbreite wird ein Ansatz nach König und Fehling verwendet. Für den Verlauf des Schrägrisses verwendet Fischer aufgrund von Finiten-Element-Berechnungen eine Parabel 4. Ordnung. Die Parabel endet in der spannungsfreien Nulllinie. Eine weitere Bedingung für die Lage der Parabel folgt aus der Überlegung, dass ein Versagen sich dann einstellt, wenn sich ein Schrägriss bildet, der die Verbindungslinie zwischen der Längsbewehrung in Höhe des Auflagers und der Position der Einzellast schneidet. Somit muss bei einer Grenzbetrachtung der Schrägriss mit dieser Verbindungslinie eine gemeinsame Tangente haben. Daraus lässt sich der Schrägrissbeginn berechnen. Er ist nur abhängig von der Position der Einzellast und der statischen Nutzhöhe. Mit dem bekannten Rissverlauf kann die Rissöffnung und die Rissgleitung entlang des Risses ermittelt werden. Aus den Rissöffnungen lässt sich die übertragbare Normalspannung anhand einer Spannungs-Rissöffnungsbeziehung berechnen. Für die übertragbare Schubspannung in Abhängigkeit der Gleitung wird ein bilinearer Ansatz verwendet.

Bild 15: Schubspannungs-Rissgleitungsbeziehung

Die unbekannten Kräfte V_d und D werden dadurch eliminiert, in dem die Momentensumme um den Schnittpunkt der Wirkungslinien der beiden Kräfte gebildet wird. Daraus lässt sich dann die maximal übertragbare Querkraft berechnen.

Kritik an den verwendeten Grundlagen

Kritikpunkte des Modells von Fischer stellen die angesetzt Dübelwirkung der Längsbewehrung im Grenzzustand der Tragfähigkeit, die Berechnung der Rissbreite über den empirischen Ansatz von König und Fehling und der Verlauf des Schrägrisses dar.

In vielen Querkraftversuchen wurde beobachtet, dass die auftretende Gleitung den von Fischer angenommenen Mittelwert übersteigt und dass die auflagernahe Betondeckung der Scherbelastung nicht standhalten kann und sich großflächig löst. Somit ist es wie von Zink in [8] vorgeschlagen sinnvoll im Grenzzustand der Tragfähigkeit die Dübelwirkung der Längsbewehrung nicht in Rechnung zu stellen. Die Berechnung der Rissbreite nach König und Fehling [19] erfolgt mit Hilfe von empirischen Korrekturfaktoren und mit einer konstanten Verbundspannung. Für überschlägige Berechnungen liefert dieses Verfahren ausreichend gute Werte. Für die Nachrechnung von Versuchsergebnissen oder für numerische Berechnungen sollte ein genaueres Modell hierfür gewählt werden. Die Rissbreite hängt nicht nur von den Verbundbedingungen ab, sondern auch von dem Momentengradienten und der Geometrie der Betonzugzone.

Bei der Berechnung des Schrägrissverlaufs fließt die Neigung der Rissspitze nicht explizit ein. Bei dem Vorgehen von Fischer verläuft der Schubriss zuerst sehr steil, was damit zu begründen ist, dass sich der Schubriss aus einem Biegeriss entwickelt. Danach endet er fast horizontal an der Nulllinie zur Druckzone. Fischer hat dies zwar an Finiten-Element-Berechnungen verifizieren können, aber vergleicht man dies mit in der Literatur veröffentlichten Rissbildern stellt man gegenteiliges Fest. Der Schubriss verläuft in der Rissspitze meist zwischen 38° und 45° gegenüber der Horizontalen geneigt. In Bild 16 deutlich zu erkennen, wie der äußerst rechte Schubriss die Nulllinie im Grenzzustand der Tragfähigkeit unter ca. 45° schneidet. Der fast waagrecht verlaufende Teil des Schrägrisses tritt erst nach Erreichen der Höchstlast auf.

Bild 16: Rissbild bei Balken (S 4.3) aus Grimm [20]

Querkraftmodell für große Rissbreiten

Damit die Querkrafttragfähigkeit eines Querschnitts auch bei Stahldehnungen bis 25 ‰ berechnet werden kann, wird im Folgenden ein Querkraftmodell speziell für große Rissbreiten aufgestellt.

Grundprinzip des neuen Modells sollen folgende Gesichtspunkte sein:

- Schubübertragung in der Druckzone
- Ansatz der Tragwirkung in der Bruchprozesszone
- Annahme eines parabelförmigen Schubrissverlaufs (4. Ordnung)
- Ausfall der Dübelwirkung der Längsbewehrung
- Kein Ansatz der Rissverzahnung

Aus diesen Bedingungen folgt, dass zuerst für den Querschnitt eine Biegebemessung durchgeführt und im Weiteren dann über ein wirklichkeitsnahes Verbundmodell die Rissöffnung bestimmt werden muss. Aus der Druckzonenhöhe und dem Schubrissverlauf kann dann die Querkrafttragfähigkeit im Grenzzustand der Biegetragfähigkeit errechnet werden.

Biegebemessung

Um mit dem Querkraftmodell später umfangreiche Parameterstudien durchführen zu können, wird bei der Biegebemessung nicht von einer äußeren Belastung ausgegangen, sondern aus der Bauteilgeometrie, den Materialparametern und einer gegebenen Bewehrung der Biegewiderstand im Grenzzustand der Tragfähigkeit berechnet. Die daraus erhaltene Druckzonenhöhe und Stahlspannung im gerissenen Zustand fließen dann in die weiteren Berechnungen ein.

Für die Biegebemessung wird eine von der Betonfestigkeit abhängige Betonkennlinie verwendet. Damit ist es möglich, das unterschiedliche Materialverhalten der einzelnen Betonfestigkeiten wiederzugeben. Zusätzlich wird das Mitwirken des Betons auf Zug bis zum Überschreiten der zentrischen Betonzugfestigkeit berücksichtigt. Dabei wird für die Spannungsermittlung aus dem Dehnungszustand der Beton-Elastizitätsmodul von Druckbeanspruchungen verwendet.

Um bei den Berechnungen eine bessere numerische Stabilität zu erzielen, wurde für die Stahlkennlinie ein bilinearer Ansatz verwendet. Bis zum Erreichen der Fließgrenze wird ein Elastizitätsmodul von 200000 N/mm² angenommen. Danach wird eine Verfestigung des Stahls um 5 % bis zum Erreichen der rechnerischen Bruchdehnung von 25 ‰ angesetzt.

Bild 17: Spannungs-Dehnungskurven in Abhängigkeit der Betonfestigkeit nach Jahn [21]

Verbundmodell

Um eine realistische Aussage über Rissbreiten in bezug auf die vorhandene Stahldehnung und die Bauteilgeometrie treffen zu können, ist die Verbundeigenschaft zwischen Beton und Stahl von wesentlicher Bedeutung. Bei allen Verbundkonstruktionen ist eine Kraftübertragung zwischen den einzelnen Materialkomponenten Voraussetzung für die gemeinsame Tragwirkung. Dies trifft auch für den Verbundbaustoff Stahlbeton zu. Ohne die Verbundwirkung könnte die Stahlbetonbauweise nicht ihre eigentliche Tragwirkung entfalten. Diese Verbundwirkung ist auf die Ursachen Haftverbund, Reibungs- oder Gleitwiderstand und Scherverbund zurückzuführen.

In der Literatur finden sich verschiedene Verbundansätze. Prinzipiell kann man diese in zwei Gruppen einteilen. Zum einen die Verbundansätze mit einem festen Verbund und die mit verschieblichem Verbund. Bei den Verbundansätzen mit festem Verbund ist die übertragbare Verbundspannung konstant bzw. linear, aber grundsätzlich unabhängig von der Relativverschiebung zwischen Bewehrung und Beton. Diese Verbundmodelle eigenen sich für Hand- und Überschlagsrechnungen, wie zum Beispiel zur Berechnung der erforderlichen Verankerungslänge von Bewehrungsstäben. Im Gegensatz dazu wird bei dem Verbundansatz mit verschieblichem Verbund die übertragbare Verbundspannung in Abhängigkeit des vorhandenen Schlupfes angesetzt. Bereits bei sehr geringen Verschiebungen zwischen Stahl und Beton wird der Haftverbund zerstört, bis dahin ist keine Relativverschiebung zwischen Bewehrung und Beton vorhanden. Die übertragbare Verbundspannung ist nur von der Kontaktfläche abhängig. Die Kraftübertragung erfolgt danach über Reibung, vorwiegend aber durch Verzahnung der Stahlrippen und dem dazwischenliegenden Beton. Aus diesem Grund ist es zweckmäßig, von einer Verbundspannungs-Schlupf Beziehung auszugehen. Solch ein Verbundansatz besitzt auch noch für große Schlupfwerte Gültigkeit.

Für die nachfolgenden Untersuchungen wird wegen den großen zu erwartenden Relativverschiebungen zwischen der Bewehrung und dem Beton ein Verbundmodell mit verschieblichem Verbund verwendet.

Verbundmodell von Kreller

Bei dem Verbundmodell von Kreller [22] wird die Verbundspannungs-Schlupfbeziehung im aufsteigenden Ast durch die Funktion $\tau = \tau_{max} \cdot (s/s_1)^{\alpha}$ beschrieben und der weitere Verlauf durch einen Polygonzug ergänzt. Das Modell erlaubt es, entlang eines eingebetteten Stabes ein lokal veränderliches Verbundverhalten zu modellieren.

Für biegebeanspruchte Bauteile mit oberflächennaher Bewehrung werden bis zu einem Abstand von zwei Stabdurchmessern von einem Querriss
verminderte Verbundeigenschaften angenommen. Mit zunehmendem Abstand vom Querriss steigt die Verbundgüte linear an und bleibt ab einem Abstand von fünf Stabdurchmessern konstant (Bild 18).

Bild 18: Verbundspannungs-Schlupfbeziehung nach Kreller

Zwischen zwei Rissen gibt es einen Querschnitt in dem keine Relativverschiebung (Schlupf) zwischen der Bewehrung und dem umliegenden Beton vorhanden ist. Die Stahlspannung hat dort ihr Minimum. Der Abstand vom Verschiebungsnullpunkt bis zum Riss wird als Einleitungslänge a bezeichnet. Entlang dieser Strecke werden Zugkräfte aus der Bewehrung in die Zugzone des Betons eingeleitet. Die aufnehmbare Zugkraft im ungerissenen Querschnitt am Verschiebungsnullpunkt hängt von der Betonzugfestigkeit und von dem, aus der äußeren Biegebelastung resultierenden Dehnungszustand ab.

Bild 19: Momentenverlauf über einer Innenstütze

Der Verlauf der einwirkenden Biegebelastung entlang der Bauteilachse ist abhängig von der Querkraftbeanspruchung. Für eine Grenzwertbetrachtung der Rissbreite wird von einer konstanten Biegebelastung entlang der Bauteilachse ausgegangen. Dieser Momentengradient entspricht ungefähr dem Verlauf des Biegemomentes im Bereich einer Innenstützung bei einem Durchlaufträger mit Momentenausrundung (Bild 19).

Verifizierung des Verbundmodells

Zur Überprüfung der richtigen numerischen Umsetzung des Verbund- und Bemessungsmodells wurden Vergleichsrechnungen mit Literaturwerten durchgeführt. Das folgende Beispiel zur Berechnung der Rissbreite an einem Rechteckquerschnitt mit vorgegebener Stahlspannung im Rissquerschnitt ist mit seinen Angaben aus [23] entnommen und um die Ergebnisse aus der eigenen Modellrechnung in der letzten Spalte in Tabelle 1 ergänzt.

Gegeben: (Rechteckquerschnitt)

$\beta_{WN} = 25 \text{ N/m}^2$	$\mu_z = 0.5 \%$
d = 500 mm	d _s = 25 mm
c = 30 mm	$\sigma_s = 222 \text{ N/m}^2$

Tabelle 1: Vergleich verschiedener Modell zur Berechnung der Rissbreite aus Noakowski [23]

	Martin, Schießl, Schwarzkopf	CEB Model Code	Schießl, Wölfel	DIN 1045-1	Eigenes Modell (Zilch/Spitra)
Betonzugfestigkeit β_Z	2,1 MN/m ²	2,5 MN/m ²	2,1 MN/m ²	2,2 MN/m ²	2.2 MN/m ²
wirksamer Bew.grad µw	1,26 %	1,26 %	3,0 %	5,4 %	
Rissabstand a	174 mm	199 mm	134 mm	129 mm	133 mm
mittl. Stahldehnung ε_m	0.95 ‰	0,93 ‰	0,98 ‰	1,00 ‰	0,94 ‰
rechn. Rissbreite w _{cal}	0,28 mm	0,31 mm	0,22 mm	0,13 mm	0,25 mm

Bei allen fünf Modellen liegen die errechneten mittleren Stahldehnungen ε_m in einem engen Intervall. Die etwas größere Streuung bei den errechneten Rissöffnungen w_{cal} ist durch die unterschiedlichen Ansätze der Verbundspannungen zu erklären, gleiches gilt auch für die Rissabstände a. Es lässt sich aber feststellen, dass das eigene numerische Modell realitätsnahe Ergebnisse liefert und sich somit für weitere Simulationen eignet.

Eigenschaften des Querkraftmodells

Hauptkomponente für die Querkrafttragfähigkeit des neuen Modells ist die Schubübertragung in der ungerissenen Druckzone. Die Druckzonenhöhe x_d ist aus der vorhergegangenen Biegebemessung bekannt. Der Verlauf der Schubspannungen in der Druckzone wird als parabelförmig angenommen. Am Bauteilrand der Druckzone beträgt die Schubspannung τ_{xy} null und in Höhe der Nulllinie entspricht ihr Maximum der Betonzugfestigkeit f_{ct}.

Als zweite Tragkomponente wird die Tragwirkung der Bruchprozesszone angesetzt. Die Bruchprozesszone entspricht der Risswurzel des Schubrisses. Die Form des Schubrisses wird als Parabel vierter Ordnung angenommen. Die Risswurzel endet 45° gegenüber der Horizontalen geneigt an der Nulllinie. Die Rissöffnung entlang des Schubrisses wird aus einer Rotation um die Rissspitze berechnet. Die Rissöffnung in Höhe der Längsbewehrung ist aus der Verbundberechnung bekannt. Daraus lässt sich dann die Länge der Bruchprozesszone berechnen. In ihrem Bereich wird ein parabelförmiger Verlauf der Rissöffnung angenommen (Bild 21). Für die übertragbare Spannung in der Bruchprozesszone wird in Abhängigkeit von der Betonzugfestigkeit eine Spannungs-Rissöffnungsbeziehung entsprechend (Bild 20) gewählt.

Bild 20: Zugspannungs-Rissöffnungsbeziehung aus Remmel [12]

Ab einer maximalen Rissöffnung von 150 bis 160 µm sind die über den Riss übertragbaren Spannungen vernachlässigbar. Bis zum Erreichen der Betonzugfestigkeit zeigt der Beton ein linear-elastisches Verhalten. Der Elastizitätsmodul E_{ct} entspricht dabei dem Elastizitätsmodul $1,15 \cdot E_c$ bei Druckbeanspruchung. Bei ungefähr 95 % der Zugfestigkeit kündigt sich ein Versagen durch einen Abfall der Steifigkeit an. Dies kann aber bei Modellrechnungen vernachlässigt werden. Der nachfolgende Abfall der übertragbaren Spannungen kann durch einen bilinearen oder exponentiellen Ansatz beschrieben werden. Bei der Regression der Spannungs-Rissöffnungsbeziehung sollte die Fläche unter der Spannungskurve wieder der Bruchenergie entsprechen.

Bild 21: Rissuferverlauf in der Bruchprozesszone aus Remmel [12]

Die Dübelwirkung der Längsbewehrung wird nicht berücksichtigt. In Versuchen wurde beobachtet, dass sich beim Erreichen des Grenzzustands der Tragfähigkeit aufgrund der hohen Scherbelastung die auflagernahe Betondeckung vom Bauteil in Höhe der Längsbewehrung ablöst und dadurch die Dübelwirkung der Längsbewehrung für den Querkraftwiderstand vor Erreichen des Grenzzustands der Biegetragfähigkeit ausfällt.

Des Weiteren wird auf einen Ansatz der Rissverzahnung im Schubriss verzichtet. Für die Aktivierung von Schubspannungen parallel zu einem Riss, ist eine Gleitung der Rissufer erforderlich. Die dabei übertragbaren Schubspannungen sind im wesentlichen von der Rissöffnung abhängig. Die Gleitung baut sich von null beginnend, ab der Risswurzel bis zum Maximum im Bereich der Längsbewehrung auf. Im Bereich der Längsbewehrung ist wegen der großen Rissöffnungen im Bruchzustand keine Schubspannungsübertragung mehr möglich und im Bereich der Risswurzel fehlt die aktivierende Rissgleitung. Nur in einem sehr kleinen Bereich sind beide Voraussetzungen erfüllt und eine Schubübertragung durch Rissverzahnung ist gegeben. Dieser Bereich wird hier aber vernachlässigt.

Parameterbereich der äußeren Einwirkungen

Für die Querkraftbemessung ohne Querkraftbewehrung kommen grundsätzlich nicht alle Bauteile in Betracht. Die DIN 1045-1 sieht für biegebeanspruchte Balken eine Mindestquerkraftbewehrung vor. Nur bei Platten ist es zulässig, auf eine Querkraftbewehrung ganz zu verzichten. Die Abgrenzung zwischen Platten und Balken erfolgt in der DIN 1045-1 über das Verhältnis von Bauteilbreite zu Bauteilhöhe. Ein Bauteil wird ab einem Verhältniswert von vier zu der Bauteilkategorie der Platten gezählt. Der Verzicht auf eine Mindestquerkraftbewehrung kann damit begründet werden, dass bei flächigen Bauteilen zufällig auftretende Fehlstehlen durch Umlagerungsmöglichkeiten im Querschnitt nicht unmittelbar zum Bauteilversagen führen. Außerdem führt die bei Balken sehr kompakt angeordnete Bewehrung zu einem höheren Bewehrungsgrad, so dass die auftretenden Dehnungen der Biegezugbewehung nicht in dem hier zu untersuchenden Parameterbereich liegen.

Platten werden zur horizontalen Begrenzung von Bauwerken verwendet. Sie spannen meist über mehrere Felder und sind zur Verbesserung der Tragfähigkeit an gemeinsamen Stützstellen biegesteif miteinander verbunden. Für die weiteren Untersuchungen wird als statisches Grundsystem ein Durchlaufträger mit zwei Feldern der Spannweite I verwendet. Für die Schnittgrößen an der Mittelstütze gilt folgender Zusammenhang:

$$M = q \cdot \frac{l^2}{8} \tag{10}$$

$$V = 0.625 \cdot q \cdot l \tag{11}$$

Der in der Praxis auftretende Parameterbereich der Spannweite I reicht von 6,0 m bis 10,0 m. Die Bauteilhöhe h beträgt dabei in Abhängigkeit von der Spannweite und der äußeren Belastung zwischen 0,15 m und 0,40 m. Die Bauteilhöhe wirkt sich über das Eigengewicht auch auf die Belastung der Konstruktion aus. Im konstruktiven Hochbau wird im Allgemeinen eine Betonfestigkeitsklasse von C 30/37 und als Bewehrungsstahl ein BSt 500 M bzw. BSt 500 S verwendet. Bei Platten kommen aus Gründen des schnelleren Bauablaufs Bewehrungsmatten zum Einsatz. Die Durchmesser der einzelnen Bewehrungsstäbe liegen dabei zwischen 5,0 und 7,0 mm. Im Bereich von großen Stützmomenten werden zusätzlich zur Mattenbewehrung häufig einzelne Bewehrungsstäbe erforderlich. Diese übersteigen in der Regel nicht den Durchmesser von 16,0 mm. Die bei typischen Deckenkonstruktionen abzutragenden Verkehrslasten sind in Tabelle 2 aufgeführt. In Tabelle 3 sind alle Parameterbereiche der nachfolgenden Tragfähigkeitsuntersuchungen zusammengefasst.

Decken	p [KN/m]²
Wohnräume (mit ausreichender Querverteilung der Lasten)	1,5
Büroräume	2,0
Garagen und Parkhäuser	3,5
Geschäfts- und Warenhäuser	5,0
Werkstätten und Fabriken (unterer Grenzwert)	7,5

Tabelle 2: Verkehrslasten nach DIN 1055 T 3 (Auszug)

Parameter	unterer Grenzwert	oberer Grenzwert	Einheit
Spannweite	6,0	10,0	m
Bauteilhöhe	0,15	0,40	m
Betonfestigkeit	20	50	N/mm ²
Verkehrslast	1,5	10	kN/m²
Bewehrungsdurchmesser	5,0	16,0	mm

Tabelle 3: Zusammenstellung der zu untersuchenden Parameterbereiche

Bemessungsgleichung der DIN 1045-1

Gemäß der DIN 1045-1 wird die Querkraftbemessung unabhängig von der vorhergegangenen Biegebemessung durchgeführt. Es wird zwar der Bewehrungsgrad, nicht aber die Art der Bewehrung oder die Dehnung in der Biegezugbewehrung berücksichtigt.

In der DIN 1045-1 wird die Querkrafttragfähigkeit durch folgende Bemessungsgleichung berechnet:

$$V_{DIN1045-1} = 0,10 \cdot \kappa \cdot (100 \cdot \rho_l \cdot f_{ck})^{\frac{1}{3}} b_w d$$
(12)

$$\kappa = 1 + \sqrt{\frac{200}{d}} \le 2.0$$
Maßstabsfaktor

$$\rho_l = \frac{A_s}{b_v d} \le 0,02$$
Längsbewehrungsgrad

 f_{ck} Betondruckfestigkeit (Zylindrische)

Die Bemessungsgleichung der DIN 1045-1 für Querkraftbeanspruchung basiert auf der Bemessungsgleichung des Model Code 90, und der Koeffizient 0,10 wurde durch Auswertung einer Versuchsdatenbank hergeleitet. Problematisch ist hierbei, dass fast alle Versuche an Einfeldträgern durch geführt wurden, bei denen die maximale Biegebelastung nicht mit der maximalen Querkraftbelastung zusammen fällt. Und zur Lasteinleitung wurden meist nur Einzellasten, anstatt in der Praxis vorkommende Gleichlasten, angesetzt. Somit wird hier von einer Verifizierung des Querkraftmodels anhand von Versuchsergebnissen abgesehen.

In Bild 22 ist ein Ausschnitt aus der Auswertung der Versuchsdatenbank [24] dargestellt. Deutlich ist zu erkennen, dass die meisten Versuchsergebnisse einen zugehörigen Bewehrungsgrad zwischen 0,5 % und 2,0 % haben. Die meisten Versuche wurden an Balken durchgeführt, die aufgrund ihrer Verwendung einen höheren Bewehrungsgrad haben.

Bild 22: Auszug aus der Versuchsdatenbank [24]

In

Tabelle 4 ist der Bewehrungsgrad für die beiden Betonfestigkeitsklassen C 30/37 und C 40/50 aufgelistet. Für den hier betrachteten Dehnungsbereich der Längsbewehrung von $\varepsilon > 10$ ‰ beträgt der Bewehrungsgrad maximal 1,0 %. Und für eine Stahldehnung von $\varepsilon = 25$ ‰ beträgt der Bewehrungsgrad maximal nur $\rho_1 = 0,5$ %, vergleicht man dies mit Bild 22, so erkennt man, dass für diesen Parameterbereich der Längsbewehrung kaum Versuchsergebnisse vorliegen. Außerdem wurden die meisten Versuche an Einfeldträgern ausgeführt. Ein Querkraftversagen tritt nur im auflagernahen Bereich auf. Hierbei ist der Querschnitt aber nicht mit seinem maximal aufnehmbaren Biegemoment belastet, folglich ist die Dehnung in der Längsbewehrung auch nicht besonders hoch. Maximale Querkraftbelastung und maximales Biegemoment wirken zum Beispiel an Mittelauflagern von Durchlaufträgern oder an Rahmenecken gleichzeitig.

μ	Ŵ	σ _{yd} [MPa]	e _{yd} [%0]	ρ _ι [%] C30/37	ρ _ι [%] C 40/50
0,01	0,0101	456,5	25,0	0,04	0,05
0,02	0,0203	456,5	25,0	0,08	0,10
0,03	0,0306	456,5	25,0	0,11	0,15
0,04	0,0410	456,5	25,0	0,15	0,20
0,05	0,0515	456,5	25,0	0,19	0,26
0,06	0,0621	456,5	25,0	0,23	0,31
0,07	0,0728	456,5	25,0	0,27	0,36
0,08	0,0836	456,5	25,0	0,31	0,42
0,09	0,0946	456,5	25,0	0,35	0,47
0,10	0,1058	454,9	23,3	0,40	0,53
0,11	0,1170	452,4	20,6	0,44	0,59
0,12	0,1285	450,4	18,5	0,49	0,65
0,13	0,1401	448,6	16,6	0,53	0,71
0,14	0,1519	447,1	15,0	0,58	0,77
0,15	0,1638	445,9	13,7	0,62	0,83
0,16	0,1759	444,7	12,5	0,67	0,90
0,17	0,1882	443,7	11,4	0,72	0,96
0,18	0,2007	442,8	10,5	0,77	1,03
0,19	0,2134	442,0	9,6	0,82	1,09
0,20	0,2263	441,3	8,9	0,87	1,16
$\mu = \frac{M}{bd^2 f_{cd}} A_s = \omega bd \frac{f_{cd}}{\sigma_{sd}} \rho_I = \frac{A_s}{bd} = \omega \frac{f_{cd}}{\sigma_{sd}}$					

Tabelle 4: Auszug aus der Bemessungstabelle DIN 1045-1

Simulation von Versuchsergebnissen

Für den folgenden Abschnitt wurden durch eine Simulation basierend auf gleichverteilten Zufallszahlen 300 Versuchskörper erzeugt, und ihre Querkrafttragfähigkeit im Grenzzustand der Biegetragfähigkeit errechnet.

In Bild 23 sind die für die Simulation verwendeten Zufallszahlen dargestellt. Diese wurden durch einen Zufallsgenerator erzeugt. Problematisch ist häufig, das die Zufallsgeneratoren, die auf einen deterministischen Algorithmus basieren, keine gleichverteilten Zufallszahlen erzeugen, wie es zum Beispiel "Weißes Rauschen" ergeben würde. Die hier zufällig erzeugten Zahlentupel sind annährend gleichmäßig über den Grundraum verteilt. Die vereinzelt auftretende Clusterbildung hat bei der hier durchgeführten Simulation von "nur" 300 Versuchskörpern keinen relevanten Einfluss auf die Simulationsergebnisse.

Bild 23: 5000 Zufallstupel in [0,1] x [0,1]

Die Versuchskörper sollten alle 1,0 m breite Plattenstreifen darstellen und als Biegezugbewehrung entweder Bewehrungsstäbe mit einem Durchmesser von 8 mm oder 12 mm haben. Der Parameterbereich der untersuchten Betondruckfestigkeit erstreckte sich von 20 N/mm² bis 50 N/mm². Als zu untersuchende statische Nutzhöhe wurde ein Bereich von 150 mm bis 400 mm gewählt (vgl. Tabelle 3). Die zwischen null und eins gleichverteilten Zufallszahlen wurden durch lineare Transformationen in den entsprechenden Parameterbereich überführt, so dass die obere und untere Grenzen den Parameterraumgrenzen entsprechen. Die Ergebnisse sind im Anhang aufgeführt.

Durch die Anzahl der gewählten Bewehrungsstäbe wurde für den Bewehrungsgrad ein Parameterbereich von 0,001 bis 0,012 erzeugt. Die Generieder Bauteilgeometrie, der Betondruckfestigkeit und des rung Bewehrungsgrades erfolgte jeweils unabhängig voneinander. Nur bei der Wahl des Stabdurchmessers der Biegezugbewehrung wurde bei Bewehrungsgraden kleiner 0,004 der Schwerpunkt auf einen Stabdurchmesser von 8 mm gelegt. In den folgenden Diagrammen sind die Versuchsergebnisse mit 8 mm Durchmesser der Biegezugbewehrung als Vollkreis und die Versuchsergebnisse mit 12 mm Durchmesser der Biegezugbewehrung als Kreuz markiert.

Die zur Ermittlung der rechnerischen Querkrafttragfähigkeit erforderlichen Materialkennwerte sind auf ihrem jeweiligen Bemessungsniveau gemäß DIN 1045-1 in die Berechnung eingegangen. Somit entspricht das Ergebnis der Berechnung dem erforderlichen Bemessungsniveau der Querkrafttragfähigkeit. Bei der Bildung des Verhältniswertes V_{cal}/V_{DIN} ist ein Wert größer 1,0 gleichbedeutend mit einer ausreichenden Tragwerkssicherheit gegen Querkraftversagen. Kleinere Verhältniswerte bedeuten nicht, dass die Querkrafttragfähigkeit grundsätzlich nicht ausreicht um die Bemessungsquerkraft abzutragen, sondern es ist eine geringere als von der DIN 1055-100 [25] geforderte Tragwerkssicherheit vorhanden.

Der in Bild 24 dargestellte Zusammenhang zwischen Stahldehnung in der Biegezugbewehrung und dem Bewehrungsgrad der Biegezugbewehung entspricht dem in Tabelle 4 hergeleiteten Zusammenhang zwischen Dehnung ε_{yd} und Bewehrungsgrad ρ_l . Die Streuungen in Bild 24 sind auf die unterschiedlichen Betondruckfestigkeiten zurückzuführen. Somit erstreckt sich der relevante Parameterbereich von Stahldehnungen von über 2.0 % bis zu einem von der Betondruckfestigkeit abhängigen Bewehrungsgrad von 0,005. Die Größe des Bewehrungsstabdurchmessers hat auf die Ergebnisse in Bild 24 keinen Einfluss. Anhand dieser soll nur gezeigt werden, dass für Bewehrungsgrade kleiner 0,004 hauptsächlich Bewehrungsstäbe mit einem Durchmesser von 8 mm und für größer Bewehrungsgrade Bewehrungsstäbe mit einem Durchmesser von 12 mm verwendet wurden.

Bild 24: Simulierter Zusammenhang zwischen Bewehrungsgrad und Stahldehnung

Die Ergebnisse in Bild 25 und Bild 26 zeigen durch den konstanten Verlauf und die geringe Streuung um den Verhältniswert von V_{cal}/V_{DIN} gleich 1,0, dass der Einfluss der Betondruckfestigkeit und der statischen Nutzhöhe auf die Querkrafttragfähigkeit durch die Bemessungsgleichung der DIN 1045-1 richtig wiedergegeben wird. In Bild 25 ist ein Anstieg des Verhältnisses V_{cal}/V_{DIN} im Bereich von statischen Nutzhöhen kleiner als 200 mm zu beobachten. Dies bedeutet, dass hier die Querkrafttragfähigkeit des Bauteils durch die Bemessungsgleichung der DIN 1045-1 zu stark unterschätzt wird. Beseitigt werden könnte dieser Mangel, wenn der für den Maßstabseinfluss eingeführte Faktor κ in der Bemessungsvorschrift nicht nach obenhin auf 2,0 begrenzt wäre. Die Bemessungsgleichung des Britisch Standard BS 8110, welche ähnlich wie die der DIN 1045-1 aufgebaut ist, sieht keine Beschränkungen des Maßstabsfaktors bei kleinen Bauteilhöhen vor.

Die Streuungen des Verhältniswertes V_{cal}/V_{DIN} , welche zum Teil auch unter dem für die Bemessungssicherheit relevanten Wert von 1,0 liegen, sind auf den Einfluss anderer Parameter zurückzuführen, die nicht in die Bemessungsgleichung der DIN 1045-1 eingehen. In den folgenden Diagrammen werden diese Einflüsse dargestellt und untersucht.

Bild 25: Simulationsergebnisse in Abhängigkeit der Betondruckfestigkeit

Bild 26: Simulationsergebnisse in Abhängigkeit der stat. Nutzhöhe

Bild 27: Simulationsergebnisse in Abhängigkeit des Bewehrungsgrades

In Bild 27 ist das Verhältnis der Bemessungsquerkraft zur rechnerischen Querkrafttragfähigkeit in Abhängigkeit des Bewehrungsgrades der Biegezugbewehrung dargestellt. Bei der Erzeugung der Versuchswerte wurde der Schwerpunkt auf einen Bewehrungsgrad kleiner 0,006 gelegt. Anhand von Tabelle 4 ist zu erkennen, dass für diesen Parameterbereich die Stahldehnung in der Biegezugbewehrung über 2,0 % beträgt. Die Versuchswerte, welche in Bild 25 und Bild 26 einen Verhältniswert V_{cal}/V_{DIN} von kleiner 1,0 hatten und beliebig über den jeweiligen Parameterbereich verteilt waren, sammeln sich bei der Betrachtung in Abhängigkeit des Bewehrungsgrades konzentriert im Parameterbereich von Bewehrungsgraden kleiner als 0,005. Somit wird die Vermutung bestätigt, dass kleine Bewehrungsgrade, wie sie bei Platten vorkommen, bei der Fragestellung nach ausreichender Querkrafttragfähigkeit auch bei Stahldehnungen von über 2,0 % in der Biegezugbewehrung genauer untersucht werden müssen.

Bild 28: Simulationsergebnisse in Abhängigkeit der Stahldehnung

Betrachtet man wie in Bild 28 aufgezeichnet den Einfluss der Stahldehnung in der Biegezugbewehrung auf die Querkraftragfähigkeit, so ist deutlich eine kleinere Streuung der Versuchswerte als in den vorherigen Darstellungen aber auch eine abnehmende Tendenz des Verhältnisses V_{cal}/V_{DIN} mit Zunahme der Stahldehnung zu erkennen. Hierbei lässt sich ebenfalls festhalten, dass die Versuchswerte mit einem Durchmesser von 12 mm der Biegezugbewehrung niedrigere Sicherheiten haben als diejenigen bei gleicher Stahldehnung mit 8 mm.

Somit lässt sich festhalten, dass der Einfluss des Bewehrungsgrades der Biegezugbewehrung und der Stahldehnung in der Biegezugbewehrung auf die Bemessungsquerkrafttragfähigkeit in der Bemessungsgleichung der DIN 1045-1 durch die einfließenden Parameter nicht ausreichend erfasst wird.

Bild 29: Simulationsergebnisse in Abhängigkeit der Rissweite

Bild 30: Simulierter Zusammenhang zwischen Stahldehnung und Rissweite Das Simulationsergebnis in Bild 29 zeigt den Zusammenhang zwischen dem Verhältnis V_{cal}/V_{DIN} und der Rissweite des Bauteils im Grenzzustand der Biegetragfähigkeit. Die rechnerische Querkrafttragfähigkeit für ein hier betrachtetes Bauteil ergibt sich aus den Traganteilen der Betondruckzone und der Bruchprozesszone (BPZ). Letztere ist stark abhängig von der Betonzugfestigkeit und der Rissweite. Mit zunehmender Rissweite verringert sich der Traganteil der BPZ an der Querkrafttragfähigkeit des Bauteils immer mehr. Dieses ist deutlich in Bild 29 zu erkennen. Die zu beobachtenden Streuungen sind auf die unterschiedliche Betonzugfestigkeiten und die Größe der Betondruckzone zurückzuführen, da diese beiden Parameter ebenfalls nicht explizit in die Bemessungsgleichung der DIN 1045-1 einfließen.

In Bild 30 wird der Einfluss des Durchmessers der Biegezugbewehrung auf die Querkrafttragfähigkeit verdeutlicht. Die in Abhängigkeit der Stahldehnung in der Biegezugbewehrung dargestellte Rissweite des Versuchskörpers im Grenzzustand der Biegetragfähigkeit verläuft näherungsweise parabel-

förmig. Dabei ist ein starker Anstieg der Rissweiten ab einer Stahldehnung in der Biegezugbewehrung von 2,0 % zu beobachten. Die Rissweiten der simulierten Versuchskörper mit Biegezugbewehrung mit 8 mm Stabdurchmesser sind bei gleicher Stahldehnung der Biegezugbewehrung kleiner als die Rissweiten bei Versuchskörpern mit Biegezugbewehrung mit 8 mm Stabdurchmesser. Bei der nochmaligen Betrachtung der Ergebnisse von Bild 28 und der Unterscheidung bei den Versuchswerten nach dem Durchmesser der Biegezugbewehrung, zeigt sich, dass für 8 mm die Querkrafttragfähigkeit auch bei Stahldehnungen von bis zu 2,5 % in der Biegezugbewehrung gegeben ist. Als Erklärung hierfür wird Bild 29 und Bild 30 herangezogen, da Bild 30 aus diesen beiden hergeleitet werden kann. Aufgrund der Darstellung in Bild 30 kann festgehalten werden, dass die Rissweite abhängig vom Durchmesser der Biegezugbewehrung und der Stahldehnung der Biegezugbewehrung ist. Und in Bild 29 ist zu erkennen, dass die Querkrafttragfähigkeit mit zunehmender Rissweite sinkt. Damit bei gegebener Stahldehnung der Biegezugbewehrung das Verhältnis V_{cal}/V_{DIN} den für die Bemessung relevanten Wert von 1,0 erreicht, muss ein Durchmesser der Biegezugbewehrung so gewählt werden, dass die Rissweite im Grenzzustand der Biegetragfähigkeit kleiner als 0,7 mm bleibt. Dieser Wert für die zulässige Rissweite wurde aus Bild 29 bestimmt, kann aber nur als Näherung dienen, da dieser Wert in Abhängigkeit von der Betonzugfestigkeit und der Betondruckzonengröße berechnet werden muss.

Ergebnisse der Parameterstudie

Die Ergebnisse der Parameterstudie sind im Folgenden auszugsweise wiedergegeben. Dabei sollen die nachfolgenden Diagramme exemplarisch verdeutlichen, dass die Querkrafttragfähigkeit unter Berücksichtigung aller Bemessungsregeln der DIN 1045-1 auch im Bereich von Stahldehnungen bis zu 25 ‰ in der Biegezugbewehrung gegeben ist. Die Berechnung der rechnerischen Querkrafttragfähigkeit V_{cal} erfolgte wie auch bei der vorherigen Simulationsanalyse mit Materialkennwerten auf Bemessungsniveau gemäß DIN 1045-1. Die rechnerische Querkrafttragfähigkeit V_{cal} ist abhängig von der gleichzeitigen Biegebeanspruchung des Querschnittes. Die geringste Querkrafttragfähigkeit ergibt sich im Grenzzustand der Biegetragfähigkeit (Bild 31). Errechnet sich bei einer Bauteilbemessung die erforderliche Biegebewehrung nicht aus dem Nachweis der Biegetragfähigkeit, sondern aus dem Nachweis der Querkrafttragfähigkeit, so wird die Biegetragfähigkeit des Querschnitts nur zu einem Teil ausgenutzt. Dadurch erhöht sich die Querkrafttragfähigkeit des Querschnitts über den Wert im Grenzzustand der Biegetragfähigkeit hinaus, denn mit sinkendem Ausnutzungsgrad der Biegetragfähigkeit nimmt auch die Rissbreite ab und folglich vergrößert sich der Querkrafttraganteil der Bruchprozesszone. Das verwendete Querkraftmodell wurde speziell für große Rissbreiten entwickelt und verliert mit Abnahme der Rissbreite unter 0,5 mm immer mehr an Gültigkeit.

Bild 31: Verlauf der Querkrafttragfähigkeit in Abhängigkeit der Biegebelastung (Beispiel 1)

Bild 32: Verlauf der Querkrafttragfähigkeit in Abhängigkeit der Biegebelastung (Beispiel 2)

Bild 33: Verlauf der Querkrafttragfähigkeit in Abhängigkeit der Biegebelastung (Beispiel 3)

Die drei Beispiele in Bild 31, Bild 32 und Bild 33 zeigen die Aufteilung der rechnerischen Querkrafttragfähigkeit V_{cal} auf die beiden Traganteile Druckzone und Bruchprozesszone (BPZ) in Abhängigkeit der Biegemomentenauslastung. Hierbei beziehen sich die Prozentangaben auf der x-Achse auf das maximal aufnehmbare Bemessungsmoment im Grenzzustand der Tragfähigkeit. Mit zunehmender Rissweite nimmt der Traganteil der Bruchprozesszone ab. Durch die Zunahme der Stahldehnung mit steigender Biegebelastung bis zum Erreichen des Grenzzustands der Tragfähigkeit. Im Bereich von Biegeauslastungen von über 92 % verläuft die rechnerische Querkrafttragfähigkeit stark abfallend. Denn wie aus dem Verlauf der Stahldehnungen in den zu den drei Beispielen zugehörigen Bildern Bild 34, Bild 35 und Bild 36 zu erkennen ist, steigt die Stahldehnung ab einer Auslastung von über 92 % sehr stark an, welches dann zu einer Verkleinerung der Betondruckzone und der Vergrößerung der Rissweite führt.

Bild 34: Verlauf der Stahldehnung und der Rissweite in Abhängigkeit der Biegebelastung (zu Beispiel 1)

Bild 35: Verlauf der Stahldehnung und der Rissweite in Abhängigkeit der Biegebelastung (zu Beispiel 2)

Bild 36: Verlauf der Stahldehnung und der Rissweite in Abhängigkeit der Biegebelastung (zu Beispiel 3)

Vergleicht man die Ergebnisse von Beispiel 1 (Bild 31 und Bild 34) und Beispiel 2 (Bild 32 und Bild 35), so führt die Verkleinerung des Bewehrungsgrades der Biegebewehrung bei sonst gleichen Bedingungen zu einer Erhöhung der Stahldehnung in der Biegebewehrung im Grenzzustand der Tragfähigkeit damit auch zu einer Vergrößerung der Rissweite. Durch die Verkleinerung des Bewehrungsgrades der Biegebewehrung verringert sich aber auch die Bemessungsquerkrafttragfähigkeit. Dabei fällt aber die Abnahme der rechnerischen Querkrafttragfähigkeit V_{cal} größer aus als der Rückung der Bemessungsquerkrafttragfähigkeit V_{DIN}. Dieser Sicherheitsmangel kann aber bei einem Bewehrungsgrade der Biegebewehrung von 0,22 % durch die Verwendung eines kleineren Stabdurchmessers in der Biegebewehrung ausgeglichen werden. Der Stabdurchmesser der Biegebewehrung hat keinen Einfluss auf den Dehnungszustand und die Biegetragfähigkeit (unter Vernachlässigung der Betonzugfestigkeit). Somit bleibt auch die Querkrafttragfähigkeit der Betonzugfestigkeit). Somit bleibt auch kleineren Stabdurchmesser verringert sich aber die Rissweite im Grenzzustand der Tragfähigkeit und damit vergrößert sich die Querkrafttragfähigkeit der Bruchprozesszone derart, dass die rechnerische Querkrafttragfähigkeit V_{cal} größer als die Bemessungsquerkrafttragfähigkeit V_{DIN} wird.

In Bild 35 und Bild 36 ist der Verlauf der Stahldehnung der Biegezugbewehrung identisch. Der Verlauf der Rissweite dagegen unterschiedlich. Die Rissweite geht durch die Verwendung eines Stabdurchmessers von 8 mm auf 61 % der Rissweite im Grenzzustand der Tragfähigkeit bei der Verwendung von 12 mm als Stabdurchmesser der Biegezugbewehrung zurück.

Der Einfluss des Bewehrungsgrades auf die Querkrafttragfähigkeit ist in Bild 37 dargestellt. Aus der Biegebemessung ergibt sich in Abhängigkeit der äußeren Belastung ein erforderlicher Bewehrungsgrad der Biegezugbewehrung. Mit zunehmendem Bewehrungsgrad vergrößert sich die Druckzonenhöhe. Da über die Druckzone ein Hauptteil der Querkraft abgetragen wird, folgt aus einem größeren Bewehrungsgrad auch eine größere Querkrafttragfähigkeit. Der zusätzliche Querkraftabtrag über die Bruchprozesszone ist abhängig von der Rissbreite und damit hauptsächlich vom vorhandenen Durchmesser der Biegebewehrung.

Bild 37: Querkrafttragfähigkeit V_{cal} in Abhängigkeit des Bewehrungsgrades Die in Bild 37 aufgetragene rechnerische Querkrafttragfähigkeit V_{cal} bezieht sich auf einen Querschnitt im Grenzzustand der Biegetragfähigkeit. Bei einem Vergleich der Querkrafttragfähigkeit V_{cal} mit der Bemessungsquerkraft $V_{Rd,ct}$ nach DIN 1045-1 zeigt sich, dass für einen Bewehrungsgrad kleiner als 0,005 bei einem Stabdurchmesser von 16 mm die Tragfähigkeit nicht ausreichend gegeben ist. Wird dagegen ein kleinerer Durchmesser verwendet, so ist eine ausreichende Sicherheit vorhanden (Bild 38). Für größere Bewehrungsgrade als 0,005 übersteigt die rechnerische Querkrafttragfähigkeit V_{cal} die Bemessungsquerkraft $V_{Rd,ct}$. Bei der Herleitung der Bemessungsformel für die Querkraft wurde wegen mangelnder Versuche an Bauteilen mit sehr kleinen Bewehrungsgraden die Lücke in der Tragsicherheit nicht berücksichtigt.

Bei der Bemessung von Stahlbetonbauteilen sind in der DIN 1045-1 nicht nur die Nachweise im Grenzzustand der Tragfähigkeit vorgeschrieben, sondern es sind auch die Nachweise im Grenzzustand der Gebrauchstauglichkeit zu führen. Diese dienen dazu die Gebrauchstauglichkeit und die Dauerhaftigkeit des Stahlbetonbauteils über die vorgesehene Nutzungsdauer zu gewährleisten. Von besonderer Bedeutung ist hier der Nachweis der Rissbreitenbegrenzung. Dadurch sollen große Rissweite aus ästhetischen Gründen und zur Sicherstellung eines dauerhaften Korrosionsschutzes der Biegezugbewehrung verhindert werden. Gemäß DIN 1045-1 kann Anstelle des expliziten Nachweis der Rissöffnung vereinfacht die Begrenzung der Stahlspannung in der Biegezugbewehrung unter quasi-ständiger Belastung nachgewiesen werden. Für Stahlbetonbauteile unter normalen Umweltbedingungen ist die Rissweite auf 0,3 mm zu begrenzen. Bei gegebener Belastung wird anhand der Spannung der Biegezugbewehrung unter quasiständiger Belastung die Obergrenze für den zulässigen Durchmesser der Biegebewehrung unter Verwendung von Tabelle 5 bestimmt.

Stahlspannung	Grenzdurchmesser der Stäbe in mm in Abhängigkeit vom Rechenwert der Rissbreite w				
[N/mm²]	$w_k = 0,4 \text{ mm}$	$w_k = 0,3 \text{ mm}$	$w_k = 0.2 \text{ mm}$		
160	56	42	28		
200	36	28	18		
240	25	19	13		
280	18	14	9		
320	14	11	7		
360	11	8	6		
400	9	7	5		
450	7	5	4		

Tabelle 5: Grenzdurchmesser bei Betonstählen (DIN 1045-1 Tabelle 20)

In der hier durchgeführten Parameterstudie ist die Verkehrslast aber nicht primäre Eingangsgröße in die Berechnung. Aus diesem Grund muss zuerst angesetzte Verkehrslast aus der Bemessung herausgerechnet werden. Die aufnehmbare Biegebelastung aus Verkehrslast ermittelt sich aus der Differenz zwischen Biegewiderstand im Grenzzustand der Tragfähigkeit und der Einwirkung aus Eigengewicht. Für die Berechnung der quasiständigen Einwirkung wird dann die Verkehrslast zu 80% angesetzt (Gültig für Ausstellungs- und Lagerräume, Geschäfts- und Warenhäuser) und die vorhandene Spannung in der Biegezugbewehrung berechnet. Mit diesem Ergebnis kann dann aus Tabelle 5 die Obergrenze des zulässigen Bewehrungsstabdurchmesser bestimmt werden.

Bild 38: Querkrafttragfähigkeit V_{cal} in Abhängigkeit des Bewehrungsdurchmessers

In Bild 38 ist für einen gegebenen Querschnitt die errechnete Querkrafttragfähigkeit beim Erreichen der maximalen Biegetragfähigkeit in Abhängigkeit vom Durchmesser der Biegebewehrung dargestellt. Der Querkrafttraganteil der Druckzone ist nur abhängig vom Bewehrungsgrad. Dagegen vergrößert sich die Querkrafttragfähigkeit der Bruchprozesszone mit kleiner werdendem Bewehrungsdurchmesser bei konstantem Bewehrungsgrad. Die durchgezogene Linie stellt den Bereich der Stabdurchmesser dar, für die der Rissbreitennachweis auf Basis der Spannungsbegrenzung in der Biegezugbewehrung erfüllt wird. Für sehr kleine Bewehrungsgrade ist im Bereich von großen Durchmessern die Bemessungsquerkraft V_{Rd,ct} größer als die rechnerische Querkrafttragfähigkeit. Das Zusammentreffen von kleinem Bewehrungsgrad und großem Stabdurchmesser wird durch den Nachweis der Rissbreite aber ausgeschlossen. Außerdem kommen bei Platten als Bewehrungselemente meistens Bewehrungsmatten mit Stabdurchmessern bis maximal 7,0 mm zum Einsatz. Nur im Bereich des sehr kleinen Bewehrungsgrades von $\rho < 0,003$ ist die Querkrafttragfähigkeit auch im Bereich der zulässigen Stabdurchmesser nur unwesentlich größer als die Bemessungsquerkraft. Nachfolgende Untersuchungen werden aber zeigen, dass dieser Parameterbereich in der Praxis nicht relevant ist.

Bild 39: Erforderlicher Bewehrungsgrad in Abhängigkeit der Verkehrslast

Betrachtet man ein konkretes statisches System, so sind Moment und Querkraft miteinander gekoppelt. Damit lässt sich aus der maximalen Querkrafttragfähigkeit eine größtmögliche Biegebelastung berechnen, und umgekehrt.

In Bild 39 ist der erforderliche Bewehrungsgrad p in Abhängigkeit der Verkehrslast q aufgezeichnet. Das Eigengewicht geht dabei ebenfalls in die Berechnungen mit ein. Die erforderliche Biegezugbewehrung wird zum einen aus dem Nachweis der Biegetragfähigkeit und zum anderen aus dem Nachweis der Querkrafttragfähigkeit ohne Querkraftbewehrung so ermittelt, dass keine Querkraftbewehung erforderlich ist. Es lässt sich feststellen, dass sich bei dem gewählten System die erforderliche Bewehrung aus dem Nachweis der Biegetragfähigkeit errechnet. Somit ist die einwirkende Querkraft immer kleiner als der Bemessungstragfähigkeit aus dem Querkraftnachweis ohne Querkraftbewehrung.

In Bild 40 ist zu erkennen, dass für diesen Parameterbereich des Bewehrungsgrades die rechnerische Querkrafttragfähigkeit V_{cal} größer als die einwirkende Querkraft ist. Ab einer Verkehrslast von 2,0 kN/m und einem daraus folgenden Bewehrungsgrad der Biegezugbewehrung von 0,005 ist die rechnerische Querkraftragfähigkeit V_{cal} auch größer als die Bemessungsquerkraft gemäß DIN 1045-1. Diese Werte sind sehr stark vom gewählten statischen System abhängig. Bei einem Zweifeldträger nimmt das einwirkende Moment quadratisch mit zunehmender Spannweite und die einwirkende Querkraft nur linear zu. Somit wird das Verhältnis aus einwirkender Querkraft und Bemessungswiderstand nach DIN 1045-1 immer kleiner und das Verhältnis aus rechnerischer Querkrafttragfähigkeit V_{cal} und Bemessungswiderstand nach DIN 1045-1 immer größer.

Bild 40: Vergleich der einwirkenden Querkraft mit der rechnerischen Querkrafttragfähigkeit

Bild 41: Rissweite w_{cal} in Abhängigkeit des Bewehrungsdurchmessers

Abschließend ist in Bild 41 der Zusammenhang zwischen der Rissbreite im Grenzzustand der Tragfähigkeit und des verwendeten Bewehrungsdurchmessers für jeweils konstante Bewehrungsgrade dargestellt. Deutlich ist ein Ansteigen der Rissbreite mit größer werdendem Stabdurchmesser zu erkennen. Bei einem konstanten Bewehrungsgrad nimmt die wirksame Oberfläche der Bewehrung mit der Verwendung von größeren Stabdurchmessern ab. Somit ist bei großen Stabdurchmessern eine größere Einleitungslänge erforderlich, um den gleichen Teil der Biegezugkraft in die Betonzugzone einzuleiten, als bei kleineren Stabdurchmessern. Aus der größeren Einleitungslänge folgt eine Zunahme der Rissbreite. Somit beeinflusst die Wahl der Bewehrungsdurchmesser die Querkrafttragfähigkeit der Bruchprozesszone. Der Nachweis der Rissbreite im Grenzzustand der Gebrauchstauglichkeit schränkt die Wahl des Bewehungsdurchmessers ein und sorgt damit für eine ausreichende Querkrafttragfähigkeit auch bei Stahldehnungen bis 25 ‰.

Fazit

Die durchgeführten Untersuchungen zeigen, dass bei der Querkraftbemessung nach DIN 1045-1 unter Berücksichtigung aller Bemessungs- und Konstruktionsregeln eine ausreichende Sicherheit auch bei Dehnungen der Biegezugbewehrung bis 25 ‰ besteht. Große Bedeutung haben gerade die Nachweise der Gebrauchstauglichkeit, denn durch die Wahl eines geeigneten Bewehrungsstabdurchmesser werden nicht nur die Rissweiten im Grenzzustand der Gebrauchstauglichkeit begrenzt, sondern auch im Grenzzustand der Tragfähigkeit. Dadurch ist eine ausreichende Querkraftragfähigkeit der Bruchprozesszone gewährleistet, welche die von der Art der Biegzugbewehrung unabhängige Querkrafttragfähigkeit der Betondruckzone soweit erhöht, dass die Querkrafttragfähigkeit des gesamtem Bauteils mit einer ausreichenden Sicherheit der Bemessungsquerkraft der DIN 1045.1 entspricht bzw. übersteigt.

In noch fehlenden Versuchen sollte gerade der kritische Bereich von sehr kleinen Bewehrungsgraden näher untersucht werden, da sich in der Literatur fast ausschließlich Versuchsergebnisse mit Bewehrungsgraden größer als 0,004 finden. Auch der Einfluss einer in Längsrichtung wirkenden Normalkraft auf die Querkrafttragfähigkeit müsste noch genauer betrachtet werden.

Anhang

Nummer	Stabanzahl d _s =12mm	stat. Nutzhöhe [mm]	Betondruck- festigkeit [N/mm ²]	Bew. Grad [%]	Querkraft V _{Cal} [MN/m]	Querkraft V _{DIN} [MN/m]	Rissöffnung [mm]	Stahl- dehnung [‰]
1	6.1	335	29.6	0.206	0.102	0.109	1.163	23.8
2	9.5	230	46.0	0.466	0.121	0.124	0.894	19.5
3	8.6	304	37.9	0.319	0.122	0.126	1.024	23.7
4	6.6	338	26.9	0.221	0.103	0.108	1.130	24.0
5	9.9	362	39.4	0.311	0.144	0.145	1.048	24.0
6	9.1	165	34.8	0.621	0.126	0.092	0.416	10.2
7	9.7	226	23.5	0.488	0.118	0.099	0.759	8.6
8	7.1	295	38.3	0.274	0.113	0.118	1.030	23.2
9	9.7	260	22.7	0.423	0.117	0.104	0.986	9.8
10	6.8	295	46.2	0.260	0.120	0.123	1.030	23.6
11	9.5	305	39.4	0.352	0.134	0.133	0.940	22.3
12	8.5	268	31.9	0.357	0.122	0.113	0.799	17.5
13	7.1	312	39.4	0.256	0.117	0.122	1.055	23.8
14	6.7	176	24.1	0.431	0.092	0.077	0.619	10.2
15	5.1	307	20.6	0.186	0.082	0.087	1.146	21.9
16	5.4	178	32.2	0.346	0.078	0.079	0.841	18.4
17	7.5	174	23.4	0.487	0.107	0.078	0.442	8.5
18	6.9	321	42.9	0.244	0.123	0.125	1.057	23.6
19	5.7	298	20.6	0.217	0.092	0.089	0.951	18.8
20	6.0	246	41.0	0.276	0.095	0.105	1.057	24.4
21	6.7	358	43.8	0.212	0.134	0.131	1.052	23.4
22	8.2	285	36.6	0.327	0.117	0.120	0.984	22.4
23	6.9	314	25.2	0.249	0.107	0.104	0.955	20.1
24	5.0	336	21.9	0.169	0.082	0.092	1.328	24.2
25	8.3	177	20.4	0.529	0.103	0.078	0.604	6.4
26	7.2	191	21.8	0.427	0.099	0.080	0.584	9.1
27	8.9	159	47.2	0.633	0.113	0.099	0.604	14.3
28	6.8	152	20.8	0.508	0.096	0.067	0.397	6.9
29	5.8	394	36.2	0.166	0.120	0.123	1.185	24.5
30	6.8	200	48.5	0.385	0.096	0.106	0.948	23.3
31	5.5	271	39.6	0.231	0.100	0.105	1.036	22.9
32	6.7	345	24.8	0.219	0.105	0.107	1.074	22.5
33	6.1	237	37.5	0.290	0.092	0.101	1.024	23.7
34	5.7	178	47.9	0.364	0.085	0.093	0.931	22.8
35	5.7	353	32.6	0.182	0.107	0.112	1.171	23.8

Tabelle 6: Simulationsergebnisse (d_s=12mm)
<u> </u>	754 15.1
<u>37</u> 7.8 199 46.3 0.442 0.104 0.109 0.8	365 20.8
<u>38 5.8 387 25.8 0.169 0.101 0.109 1.2</u>	294 23.6
<u>39</u> 9.6 <u>355</u> <u>33.1</u> 0.305 0.141 0.134 0.9	945 21.6
40 6.3 189 38.8 0.375 0.087 0.092 0.8	396 20.5
41 9.6 373 34.0 0.292 0.140 0.139 1.0)44 23.4
42 9.9 225 34.6 0.496 0.129 0.113 0.6	379 13.2
43 6.6 233 37.4 0.322 0.095 0.103 0.9	991 23.3
44 8.2 273 38.9 0.340 0.115 0.120 0.9	996 22.9
<u>45 6.1 203 34.2 0.340 0.088 0.092 0.8</u>	383 19.9
46 9.6 266 32.6 0.407 0.130 0.118 0.7	785 15.5
47 9.7 361 39.2 0.305 0.142 0.144 1.0)63 24.3
48 9.0 252 44.1 0.405 0.123 0.124 0.8	392 21.7
49 9.2 394 49.7 0.265 0.169 0.159 0.9	94 23.2
50 8.8 263 23.2 0.377 0.123 0.102 0.6	383 11.5
51 7.5 252 22.8 0.336 0.109 0.094 0.7	/31 12.9
52 8.4 384 44.2 0.247 0.149 0.147 1.0)50 24.0
53 9.8 252 26.3 0.438 0.133 0.108 0.6	640 11.1
54 8.1 194 22.2 0.473 0.107 0.085 0.5	585 8.3
55 8.2 200 23.8 0.464 0.117 0.089 0.4	80 9.2
56 8.7 203 47.3 0.483 0.110 0.115 0.8	385 19.3
57 6.0 338 26.1 0.202 0.096 0.104 1.2	208 24.2
58 7.6 321 47.0 0.267 0.133 0.134 1.0)19 23.5
59 8.8 369 21.5 0.271 0.137 0.115 0.7	'98 15.4
60 5.8 217 25.0 0.303 0.086 0.083 0.8	18 16.1
61 7.0 399 43.0 0.200 0.142 0.140 1.0	89 24.5
62 5.5 179 39.9 0.348 0.078 0.086 0.9	67 22.9
63 8.5 259 29.0 0.372 0.118 0.108 0.7	'87 15.1
64 8.4 158 26.6 0.605 0.116 0.080 0.3	68 7.6
65 5.5 275 23.0 0.226 0.087 0.088 0.9	86 20.2
66 6.4 197 44.6 0.365 0.090 0.100 0.9	58 23.5
67 8.1 381 24.7 0.240 0.125 0.119 0.9	92 20.4
68 6.4 231 26.4 0.311 0.095 0.090 0.8	05 16.5
69 5.1 197 49.4 0.293 0.087 0.096 0.9	82 23.9
70 6.6 172 23.4 0.434 0.090 0.074 0.6	06 9.7
71 7.9 378 23.1 0.237 0.123 0.115 0.9	60 19.3
72 10.0 370 26.8 0.304 0.151 0.129 0.8	01 17.2
73 6.5 324 30.9 0.226 0.105 0.111 1.1	05 24.0
74 7.8 259 23.3 0.341 0.113 0.097 0.7	18 13.0
75 8.2 194 41.1 0.479 0.106 0.105 0.8	08 16.8
76 9.7 267 27.9 0.411 0.133 0.112 0.7	10 12.9
77 7.7 309 20.4 0.282 0.120 0.100 0.7	31 13.9
78 5.2 222 32.6 0.265 0.078 0.089 1.0	81 24.0
79 7.5 271 29.2 0.312 0.111 0.105 0.8	60 18.4
80 6.6 384 35.5 0.195 0.123 0.126 1.1	55 24.5

81	7.7	331	43.5	0.262	0.131	0.132	1.025	23.9
82	7.1	188	25.0	0.426	0.097	0.083	0.637	10.8
83	6.2	271	41.0	0.260	0.103	0.111	1.063	24.4
84	7.4	273	49.1	0.304	0.123	0.125	0.967	23.1
85	9.4	154	26.3	0.688	0.125	0.081	0.327	6.2
86	7.8	333	23.1	0.264	0.120	0.108	0.847	17.1
87	5.8	225	45.5	0.294	0.094	0.104	1.011	23.9
88	6.3	256	24.3	0.278	0.096	0.091	0.850	17.0
89	7.0	351	46.3	0.226	0.139	0.135	1.023	23.0
90	5.4	155	42.0	0.397	0.074	0.079	0.893	21.1
91	6.6	358	49.9	0.210	0.140	0.137	1.058	24.6
92	8.6	158	35.3	0.615	0.117	0.088	0.448	10.5
93	9.8	175	27.7	0.635	0.131	0.091	0.384	7.5
94	6.7	292	37.9	0.260	0.107	0.114	1.070	24.2
95	8.2	267	32.5	0.346	0.118	0.112	0.832	18.4
96	9.3	341	30.7	0.308	0.138	0.127	0.884	19.7
97	7.3	351	22.7	0.236	0.114	0.108	0.956	19.1
98	9.6	179	26.2	0.608	0.123	0.090	0.468	7.4
99	6.1	342	28.9	0.201	0.102	0.108	1.170	23.7
100	6.5	220	42.3	0.335	0.094	0.104	0.987	23.5
101	15.1	299	46.3	0.571	0.203	0.162	0.605	15.8
102	14.1	319	35.7	0.501	0.180	0.149	0.735	13.6
103	5.7	161	24.4	0.399	0.079	0.069	0.676	11.3
104	5.7	263	26.5	0.244	0.088	0.092	1.018	21.5
105	19.3	243	27.8	0.899	0.193	0.135	0.709	4.6
106	10.7	234	32.6	0.518	0.150	0.116	0.517	11.8
107	13.9	175	23.6	0.896	0.146	0.097	0.549	3.6
108	5.4	245	30.9	0.249	0.082	0.092	1.100	24.1
109	9.1	169	21.9	0.606	0.108	0.080	0.576	5.8
110	19.8	228	33.3	0.980	0.193	0.141	0.693	5.3
111	7.4	310	22.0	0.269	0.115	0.101	0.803	15.8
112	16.6	390	39.6	0.480	0.213	0.179	0.792	16.0
113	13.3	230	23.8	0.652	0.141	0.111	0.942	5.9
114	8.9	288	41.2	0.348	0.124	0.128	0.990	23.6
115	6.2	211	37.7	0.335	0.088	0.097	0.971	22.6
116	15.5	389	42.7	0.451	0.210	0.179	0.785	18.7
117	6.5	399	48.4	0.185	0.150	0.142	1.049	24.1
118	7.2	388	44.1	0.211	0.144	0.140	1.058	23.8
119	15.5	371	45.9	0.474	0.199	0.180	0.867	19.2
120	8.2	390	35.1	0.237	0.133	0.136	1.114	24.8
121	5.3	307	30.0	0.196	0.091	0.100	1.197	23.6
122	13.6	219	45.4	0.702	0.187	0.136	0.416	12.2
123	9.5	256	42.8	0.420	0.130	0.126	0.842	20.2
124	18.8	211	47.7	1.009	0.190	0.152	0.614	8.3
125	10.4	317	22.0	0.370	0.125	0.114	1.193	10.9

126 6.2 390 40.1 0.739 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.143 0.741 7.4 128 13.6 185 44.0 0.836 0.179 0.123 0.347 9.5 129 14.7 237 38.9 0.701 0.164 0.137 0.707 10.1 130 17.7 281 45.0 0.586 0.166 0.138 0.754 13.3 131 19.3 264 35.2 0.596 0.166 0.138 0.754 13.3 132 13.9 264 35.2 0.596 0.161 0.172 1.170 9.7 134 9.2 192 49.7 0.544 0.114 0.118 0.681 14.0 135 11.3 267 33.5 0.260 0.107 0.113 1.066 24.1 136 6.	400	0.0	200	40.4	0.000	0.440	0.140	1 001	DAE
127 19.2 23.3 40.2 0.93 0.191 0.150 0.701 7.4 128 13.6 185 44.0 0.836 0.179 0.123 0.347 9.5 129 14.7 237 38.9 0.701 0.164 0.137 0.707 10.1 130 17.7 281 45.4 0.712 0.166 0.165 0.740 11.9 131 19.6 367 32.4 0.665 0.201 0.172 1.770 9.7 134 9.2 192 49.7 0.544 0.114 0.115 0.812 18.0 135 11.3 267 47.7 0.479 0.143 0.141 0.901 19.7 136 5.1 270 33.0 0.212 0.086 0.123 13.9 137 15.5 343 37.0 0.511 0.197 0.113 1.066 24.1 140 9.6 161 30.3	120	8.2	390	40.1	0.239	0.142	0.142	1.081	24.5
128 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.7 28.1 45.4 0.711 0.164 0.165 0.740 11.9 131 19.3 319 48.0 0.684 0.218 0.183 0.754 13.3 132 13.9 264 35.2 0.596 0.166 0.136 0.666 10.9 133 19.6 367 32.4 0.605 0.201 0.172 1.170 9.7 134 9.2 192 49.7 0.544 0.114 0.141 0.901 19.7 136 11.3 267 47.7 0.479 0.143 0.141 0.901 19.7 136 9.7 346 23.1 0.317 0.113 0.662 14.0 137 15.5 343 0.700 0.028 0.659 13.4 144 9.6	12/	19.2	233	40.2	0.931	0.191	0.150	0.701	1.4
129 14.7 237 38.9 0.701 0.164 0.137 0.707 10.1 130 17.7 281 45.4 0.712 0.196 0.165 0.740 11.9 131 19.3 319 264 35.2 0.596 0.166 0.136 0.686 10.9 133 19.6 367 32.4 0.605 0.201 0.172 1.170 9.7 134 9.2 192 49.7 0.444 0.114 0.901 19.7 135 11.3 267 47.7 0.479 0.143 0.411 0.901 19.7 136 9.7 346 23.1 0.315 0.137 0.118 0.861 14.0 137 15.5 343 37.0 0.511 0.197 0.161 0.723 13.9 138 5.1 270 33.0 0.212 0.088 0.853 7.8 140 9.6 161 30.3 <	128	13.0	185	44.0	0.830	0.179	0.123	0.347	9.5
130 17.7 281 45.4 0.712 0.196 0.765 0.740 119 131 19.3 319 480 0.684 0.218 0.185 0.764 133 132 139 264 35.2 0.596 0.166 0.136 0.686 10.9 133 19.6 367 32.4 0.605 0.201 0.172 1.170 9.7 134 9.2 192 49.7 0.544 0.114 0.115 0.812 18.0 135 11.3 267 47.7 0.479 0.143 0.141 0.901 19.7 136 9.7 346 23.1 0.315 0.137 0.118 0.861 14.0 137 15.5 34.3 37.0 0.511 0.197 0.113 1.066 24.1 140 9.6 161 30.3 0.673 0.130 0.188 0.353 7.8 141 8.263 264	129	14.7	237	38.9	0.701	0.164	0.137	0.707	10.1
131 19.3 319 48.0 0.684 0.186 0.186 0.184 0.784 13.3 132 13.9 264 35.2 0.596 0.166 0.136 0.686 10.9 133 19.6 367 32.4 0.605 0.201 0.172 1.170 9.7 134 9.2 192 49.7 0.443 0.141 0.901 19.7 136 9.7 346 23.1 0.315 0.137 0.118 0.861 14.0 137 15.5 343 37.0 0.511 0.197 0.161 0.723 13.9 138 5.1 270 33.0 0.212 0.089 0.128 23.8 139 6.8 297 35.5 0.260 0.107 0.113 1.066 24.1 140 9.6 161 30.3 0.673 0.130 0.088 0.353 7.8 141 8.8 263 0.264	130	17.7	281	45.4	0.712	0.196	0.165	0.740	11.9
132 13.9 264 35.2 0.596 0.166 0.136 0.586 10.9 133 19.6 367 32.4 0.605 0.201 0.172 1.170 9.7 134 9.2 192 49.7 0.544 0.114 0.115 0.812 18.0 135 11.3 267 47.7 0.479 0.143 0.141 0.901 19.7 136 9.7 346 23.1 0.315 0.137 0.118 0.861 14.0 137 15.5 343 37.0 0.511 0.197 0.161 0.723 13.9 138 6.1 270 33.0 0.212 0.086 0.363 7.8 140 9.6 161 30.3 0.673 0.130 0.088 0.353 7.8 141 8.8 263 26.4 0.379 0.122 0.106 0.742 13.2 142 8.0 153 41.6 <t< td=""><td>131</td><td>19.3</td><td>319</td><td>48.0</td><td>0.684</td><td>0.218</td><td>0.183</td><td>0.754</td><td>13.3</td></t<>	131	19.3	319	48.0	0.684	0.218	0.183	0.754	13.3
133 19,6 367 32,4 0.605 0.201 0.172 1.70 9,7 134 9.2 192 49,7 0.544 0.114 0.115 0.812 18.0 135 11.3 267 47.7 0.479 0.143 0.141 0.901 19.7 136 9.7 346 23.1 0.315 0.137 0.118 0.861 14.0 137 15.5 343 37.0 0.511 0.197 0.161 0.723 13.9 138 5.1 270 33.0 0.212 0.087 0.096 1.128 23.8 140 9.6 161 30.3 0.673 0.130 0.088 0.353 7.8 141 8.8 263 26.4 0.379 0.122 0.106 0.742 13.2 142 8.0 153 41.6 0.593 0.100 0.899 1.76 144 10.1 179 49.2 <t< td=""><td>132</td><td>13.9</td><td>264</td><td>35.2</td><td>0.596</td><td>0.166</td><td>0.136</td><td>0.686</td><td>10.9</td></t<>	132	13.9	264	35.2	0.596	0.166	0.136	0.686	10.9
134 9.2 192 49.7 0.344 0.114 0.115 0.812 18.0 135 11.3 267 47.7 0.479 0.143 0.141 0.901 19.7 136 9.7 346 23.1 0.315 0.137 0.118 0.861 14.0 137 15.5 343 37.0 0.511 0.197 0.161 0.723 13.9 138 5.1 270 33.0 0.212 0.087 0.096 1.128 23.8 140 9.6 161 30.3 0.673 0.130 0.088 0.353 7.8 141 8.8 263 26.4 0.379 0.122 0.106 0.742 13.2 142 8.0 153 41.6 0.593 0.100 0.089 0.659 13.4 143 9.9 388 45.5 0.288 0.160 0.157 1.031 24.6 144 10.1 179	133	19.6	367	32.4	0.605	0.201	0.172	1.170	9.7
135 11.3 267 47.7 0.479 0.143 0.141 0.901 19.7 136 9.7 346 23.1 0.315 0.137 0.118 0.861 14.0 137 15.5 343 37.0 0.511 0.197 0.161 0.723 13.9 138 5.1 270 33.0 0.212 0.087 0.096 1.128 23.8 139 6.8 297 35.5 0.260 0.107 0.113 1.066 24.1 140 9.6 161 30.3 0.673 0.130 0.088 0.353 7.8 141 8.8 263 26.4 0.379 0.122 0.106 0.742 13.2 142 8.0 153 41.6 0.593 0.100 0.089 0.659 13.4 143 9.9 388 45.5 0.288 0.160 0.157 1.031 24.6 144 10.1 179	134	9.2	192	49.7	0.544	0.114	0.115	0.812	18.0
136 9.7 346 23.1 0.315 0.137 0.181 0.861 14.0 137 15.5 343 37.0 0.511 0.197 0.161 0.723 13.9 138 5.1 270 33.0 0.212 0.087 0.096 1.128 23.8 139 6.8 297 35.5 0.260 0.107 0.113 1.066 24.1 140 9.6 161 30.3 0.673 0.130 0.088 0.353 7.8 141 8.8 263 26.4 0.379 0.122 0.106 0.742 13.2 142 8.0 153 41.6 0.593 0.100 0.089 0.659 13.4 143 9.9 388 45.5 0.288 0.160 0.157 1.031 24.6 144 10.1 179 49.2 0.635 0.130 0.113 0.592 14.9 145 6.9 195 <	135	11.3	267	4/./	0.479	0.143	0.141	0.901	19.7
137 15.5 343 37.0 0.511 0.197 0.161 0.723 13.9 138 5.1 270 33.0 0.212 0.087 0.096 1.128 23.8 139 6.8 297 35.5 0.260 0.107 0.113 1.066 24.1 140 9.6 161 30.3 0.673 0.122 0.106 0.742 13.2 142 8.0 153 41.6 0.593 0.100 0.089 0.659 13.4 143 9.9 388 45.5 0.288 0.160 0.157 1.031 24.6 144 10.1 179 49.2 0.635 0.130 0.113 0.592 14.9 145 6.9 195 36.0 0.399 0.093 0.095 0.860 17.6 144 10.1 179 26.9 20.9 0.31 0.114 0.125 0.721 1.9 145 6.9	136	9.7	346	23.1	0.315	0.137	0.118	0.861	14.0
138 5.1 270 33.0 0.212 0.087 0.096 1.128 23.8 139 6.8 297 35.5 0.260 0.107 0.113 1.066 24.1 140 9.6 161 30.3 0.673 0.130 0.088 0.353 7.8 141 8.8 263 26.4 0.379 0.122 0.106 0.742 13.2 142 8.0 153 41.6 0.593 0.100 0.089 0.659 13.4 143 9.9 388 45.5 0.288 0.160 0.157 1.031 24.6 144 10.1 179 49.2 0.635 0.130 0.113 0.592 14.9 145 6.9 195 36.0 0.399 0.093 0.095 0.869 11.7 147 13.6 386 38.3 0.398 0.189 0.165 0.813 19.0 148 11.4 314	137	15.5	343	37.0	0.511	0.197	0.161	0.723	13.9
139 6.8 297 35.5 0.260 0.107 0.113 1.066 24.1 140 9.6 161 30.3 0.673 0.130 0.088 0.353 7.8 141 8.8 263 26.4 0.379 0.122 0.106 0.742 13.2 142 8.0 153 41.6 0.593 0.100 0.089 0.659 13.4 143 9.9 388 45.5 0.288 0.160 0.157 1.031 24.6 144 10.1 179 49.2 0.635 0.130 0.113 0.592 14.9 145 6.9 195 36.0 0.399 0.093 0.095 0.860 17.6 144 10.1 179 269 20.9 0.331 0.116 0.095 0.689 11.7 147 13.6 386 38.3 0.398 0.189 0.165 0.813 19.0 148 11.4	138	5.1	270	33.0	0.212	0.087	0.096	1.128	23.8
140 9.6 161 30.3 0.673 0.130 0.088 0.353 7.8 141 8.8 263 26.4 0.379 0.122 0.106 0.742 13.2 142 8.0 153 41.6 0.593 0.100 0.089 0.659 13.4 143 9.9 388 45.5 0.288 0.160 0.157 1.031 24.6 144 10.1 179 49.2 0.635 0.130 0.113 0.592 14.9 145 6.9 195 36.0 0.399 0.093 0.095 0.860 17.6 146 7.9 269 20.9 0.331 0.116 0.095 0.869 11.7 147 13.6 386 38.3 0.398 0.189 0.165 0.813 19.0 148 11.4 314 26.3 0.412 0.141 0.123 0.949 12.0 149 16.8 195	139	6.8	297	35.5	0.260	0.107	0.113	1.066	24.1
141 8.8 263 26.4 0.379 0.122 0.106 0.742 13.2 142 8.0 153 41.6 0.593 0.100 0.089 0.659 13.4 143 9.9 388 45.5 0.288 0.160 0.157 1.031 24.6 144 10.1 179 49.2 0.635 0.130 0.113 0.592 14.9 145 6.9 195 36.0 0.399 0.093 0.095 0.689 11.7 146 7.9 269 20.9 0.331 0.116 0.095 0.689 11.7 147 13.6 386 38.3 0.398 0.189 0.165 0.813 19.0 148 11.4 314 26.3 0.412 0.141 0.125 0.949 12.0 149 16.8 195 22.4 0.972 0.173 0.109 0.533 2.8 150 12.9 300	140	9.6	161	30.3	0.673	0.130	0.088	0.353	7.8
142 8.0 153 41.6 0.593 0.100 0.089 0.659 13.4 143 9.9 388 45.5 0.288 0.160 0.157 1.031 24.6 144 10.1 179 49.2 0.635 0.130 0.113 0.592 14.9 145 6.9 195 36.0 0.399 0.093 0.095 0.860 17.6 146 7.9 269 20.9 0.311 0.116 0.095 0.689 11.7 147 13.6 386 38.3 0.398 0.189 0.165 0.813 19.0 148 11.4 314 26.3 0.412 0.141 0.125 0.949 12.0 149 16.8 195 22.4 0.972 0.173 0.109 0.533 2.8 150 12.9 300 39.7 0.486 0.166 0.146 0.772 15.9 151 19.0 268	141	8.8	263	26.4	0.379	0.122	0.106	0.742	13.2
143 9.9 388 45.5 0.288 0.160 0.157 1.031 24.6 144 10.1 179 49.2 0.635 0.130 0.113 0.592 14.9 145 6.9 195 36.0 0.399 0.093 0.095 0.860 17.6 146 7.9 269 20.9 0.331 0.116 0.095 0.689 11.7 147 13.6 386 38.3 0.398 0.189 0.165 0.813 19.0 148 11.4 314 26.3 0.412 0.141 0.125 0.949 12.0 149 16.8 195 22.4 0.972 0.173 0.109 0.533 2.8 150 12.9 300 39.7 0.486 0.166 0.146 0.772 15.9 151 19.0 268 49.6 0.802 0.206 0.171 0.698 11.6 152 6.7 323	142	8.0	153	41.6	0.593	0.100	0.089	0.659	13.4
14410.117949.20.6350.1300.1130.59214.91456.919536.00.3990.0930.0950.86017.61467.926920.90.3310.1160.0950.68911.714713.638638.30.3980.1890.1650.81319.014811.431426.30.4120.1410.1250.94912.014916.819522.40.9720.1730.1090.5332.815012.930039.70.4860.1660.1460.77215.915119.026849.60.8020.2060.1710.69811.61526.732341.00.2350.1210.1231.04623.315316.137824.10.4810.1750.1481.2748.915419.334437.40.6330.1980.1741.07110.915519.919045.01.1800.1900.1430.5856.215618.115345.91.3320.1830.1210.3675.415718.835732.90.5950.1940.1681.15510.11587.538349.40.2230.1570.1471.00322.91598.723443.50.4230.1180.1190.85920.5 <td>143</td> <td>9.9</td> <td>388</td> <td>45.5</td> <td>0.288</td> <td>0.160</td> <td>0.157</td> <td>1.031</td> <td>24.6</td>	143	9.9	388	45.5	0.288	0.160	0.157	1.031	24.6
145 6.9 195 36.0 0.399 0.093 0.095 0.860 17.6 146 7.9 269 20.9 0.331 0.116 0.095 0.689 11.7 147 13.6 386 38.3 0.398 0.189 0.165 0.813 19.0 148 11.4 314 26.3 0.412 0.141 0.125 0.949 12.0 149 16.8 195 22.4 0.972 0.173 0.109 0.533 2.8 150 12.9 300 39.7 0.486 0.166 0.146 0.772 15.9 151 19.0 268 49.6 0.802 0.206 0.171 0.698 11.6 152 6.7 323 41.0 0.235 0.121 0.123 1.046 23.3 153 16.1 378 24.1 0.481 0.175 0.148 1.274 8.9 154 19.3 344 37.4 0.633 0.198 0.174 1.071 10.9 155 19.9 190 45.0 1.180 0.190 0.143 0.585 6.2 156 18.1 153 45.9 1.332 0.183 0.121 0.367 5.4 157 18.8 357 32.9 0.595 0.194 0.168 1.155 10.1 158 7.5 383 49.4 0.223 0.157 0.147 1.003 22.9 <	144	10.1	179	49.2	0.635	0.130	0.113	0.592	14.9
146 7.9 269 20.9 0.331 0.116 0.095 0.689 11.7 147 13.6 386 38.3 0.398 0.189 0.165 0.813 19.0 148 11.4 314 26.3 0.412 0.141 0.125 0.949 12.0 149 16.8 195 22.4 0.972 0.173 0.109 0.533 2.8 150 12.9 300 39.7 0.486 0.166 0.146 0.772 15.9 151 19.0 268 49.6 0.802 0.206 0.171 0.698 11.6 152 6.7 323 41.0 0.235 0.121 0.123 1.046 23.3 153 16.1 378 24.1 0.481 0.174 1.071 10.9 154 19.3 344 37.4 0.633 0.198 0.174 1.071 10.9 155 19.9 190 45.0	145	6.9	195	36.0	0.399	0.093	0.095	0.860	17.6
14713.638638.30.3980.1890.1650.81319.014811.431426.30.4120.1410.1250.94912.014916.819522.40.9720.1730.1090.5332.815012.930039.70.4860.1660.1460.77215.915119.026849.60.8020.2060.1710.69811.61526.732341.00.2350.1210.1231.04623.315316.137824.10.4810.1750.1481.2748.915419.334437.40.6330.1980.1741.07110.915519.919045.01.1800.1900.1430.5856.215618.115345.91.3320.1830.1210.3675.415718.835732.90.5950.1940.1681.15510.11587.538349.40.2230.1570.1471.00322.91598.723443.50.4230.1180.1190.85920.516014.628437.00.5810.1780.1450.68312.01616.718842.40.4050.0920.0970.87820.81627.224042.80.3380.1050.1120.98123.4 <td>146</td> <td>7.9</td> <td>269</td> <td>20.9</td> <td>0.331</td> <td>0.116</td> <td>0.095</td> <td>0.689</td> <td>11.7</td>	146	7.9	269	20.9	0.331	0.116	0.095	0.689	11.7
14811.431426.30.4120.1410.1250.94912.014916.819522.40.9720.1730.1090.5332.815012.930039.70.4860.1660.1460.77215.915119.026849.60.8020.2060.1710.69811.61526.732341.00.2350.1210.1231.04623.315316.137824.10.4810.1750.1481.2748.915419.334437.40.6330.1980.1741.07110.915519.919045.01.1800.1900.1430.5856.215618.115345.91.3320.1830.1210.3675.415718.835732.90.5950.1940.1681.15510.11587.538349.40.2230.1570.1471.00322.91598.723443.50.4230.1180.1190.85920.516014.628437.00.5810.1780.1450.68312.01616.718842.40.4050.0920.0970.87820.81627.224042.80.3380.1670.1671.03124.91648.630731.20.3170.1260.1190.87919.5	147	13.6	386	38.3	0.398	0.189	0.165	0.813	19.0
14916.819522.40.9720.1730.1090.5332.815012.930039.70.4860.1660.1460.77215.915119.026849.60.8020.2060.1710.69811.61526.732341.00.2350.1210.1231.04623.315316.137824.10.4810.1750.1481.2748.915419.334437.40.6330.1980.1741.07110.915519.919045.01.1800.1900.1430.5856.215618.115345.91.3320.1830.1210.3675.415718.835732.90.5950.1940.1681.15510.11587.538349.40.2230.1570.1471.00322.91598.723443.50.4230.1180.1190.85920.516014.628437.00.5810.1770.1471.00322.91598.723443.50.4230.1180.1190.85920.516014.628437.00.5810.1770.1450.68312.01616.718842.40.4050.0920.0970.87820.81627.224042.80.3380.1050.1120.98123.4	148	11.4	314	26.3	0.412	0.141	0.125	0.949	12.0
15012.930039.70.4860.1660.1460.77215.915119.026849.60.8020.2060.1710.69811.61526.732341.00.2350.1210.1231.04623.315316.137824.10.4810.1750.1481.2748.915419.334437.40.6330.1980.1741.07110.915519.919045.01.1800.1900.1430.5856.215618.115345.91.3320.1830.1210.3675.415718.835732.90.5950.1940.1681.15510.11587.538349.40.2230.1570.1471.00322.91598.723443.50.4230.1180.1190.85920.516014.628437.00.5810.1780.1450.68312.01616.718842.40.4050.0920.0970.87820.81627.224042.80.3380.1050.1120.98123.416311.537848.10.3450.1670.1671.03124.91648.630731.20.3170.1260.1190.85321.01659.120435.50.5030.1180.1060.68213.4	149	16.8	195	22.4	0.972	0.173	0.109	0.533	2.8
151 19.0 268 49.6 0.802 0.206 0.171 0.698 11.6 152 6.7 323 41.0 0.235 0.121 0.123 1.046 23.3 153 16.1 378 24.1 0.481 0.175 0.148 1.274 8.9 154 19.3 344 37.4 0.633 0.198 0.174 1.071 10.9 155 19.9 190 45.0 1.180 0.190 0.143 0.585 6.2 156 18.1 153 45.9 1.332 0.183 0.121 0.367 5.4 157 18.8 357 32.9 0.595 0.194 0.168 1.155 10.1 158 7.5 383 49.4 0.223 0.157 0.147 1.003 22.9 159 8.7 234 43.5 0.423 0.118 0.119 0.859 20.5 160 14.6 284 37.0 0.581 0.178 0.145 0.683 12.0 161 6.7 188 42.4 0.405 0.092 0.097 0.878 20.8 162 7.2 240 42.8 0.338 0.105 0.112 0.981 23.4 163 11.5 378 48.1 0.345 0.167 1.031 24.9 164 8.6 307 31.2 0.317 0.126 0.119 0.879 19.5 165	150	12.9	300	39.7	0.486	0.166	0.146	0.772	15.9
1526.732341.00.2350.1210.1231.04623.315316.137824.10.4810.1750.1481.2748.915419.334437.40.6330.1980.1741.07110.915519.919045.01.1800.1900.1430.5856.215618.115345.91.3320.1830.1210.3675.415718.835732.90.5950.1940.1681.15510.11587.538349.40.2230.1570.1471.00322.91598.723443.50.4230.1180.1190.85920.516014.628437.00.5810.1780.1450.68312.01616.718842.40.4050.0920.0970.87820.81627.224042.80.3380.1050.1120.98123.416311.537848.10.3450.1670.1671.03124.91648.630731.20.3170.1260.1190.87919.51659.120435.50.5030.1180.1060.68213.416615.138047.50.4480.2020.1820.85321.01678.315549.10.6060.1020.0960.72215.7<	151	19.0	268	49.6	0.802	0.206	0.171	0.698	11.6
15316.137824.10.4810.1750.1481.2748.915419.334437.40.6330.1980.1741.07110.915519.919045.01.1800.1900.1430.5856.215618.115345.91.3220.1830.1210.3675.415718.835732.90.5950.1940.1681.15510.11587.538349.40.2230.1570.1471.00322.91598.723443.50.4230.1180.1190.85920.516014.628437.00.5810.1780.1450.68312.01616.718842.40.4050.0920.0970.87820.81627.224042.80.3380.1050.1120.98123.416311.537848.10.3450.1670.1671.03124.91648.630731.20.3170.1260.1190.87919.51659.120435.50.5030.1180.1060.68213.416615.138047.50.4480.2020.1820.85321.01678.315549.10.6060.1020.0960.72215.716816.437528.90.4950.1770.1571.24410.8	152	6.7	323	41.0	0.235	0.121	0.123	1.046	23.3
15419.334437.40.6330.1980.1741.07110.915519.919045.01.1800.1900.1430.5856.215618.115345.91.3320.1830.1210.3675.415718.835732.90.5950.1940.1681.15510.11587.538349.40.2230.1570.1471.00322.91598.723443.50.4230.1180.1190.85920.516014.628437.00.5810.1780.1450.68312.01616.718842.40.4050.0920.0970.87820.81627.224042.80.3380.1050.1120.98123.416311.537848.10.3450.1670.1671.03124.91648.630731.20.3170.1260.1190.87919.51659.120435.50.5030.1180.1060.68213.416615.138047.50.4480.2020.1820.85321.01678.315549.10.6060.1020.0960.72215.716816.437528.90.4950.1770.1571.24410.816917.023349.50.8250.2240.1540.38211.1 <td>153</td> <td>16.1</td> <td>378</td> <td>24.1</td> <td>0.481</td> <td>0.175</td> <td>0.148</td> <td>1.274</td> <td>8.9</td>	153	16.1	378	24.1	0.481	0.175	0.148	1.274	8.9
15519.919045.01.1800.1900.1430.5856.215618.115345.91.3320.1830.1210.3675.415718.835732.90.5950.1940.1681.15510.11587.538349.40.2230.1570.1471.00322.91598.723443.50.4230.1180.1190.85920.516014.628437.00.5810.1780.1450.68312.01616.718842.40.4050.0920.0970.87820.81627.224042.80.3380.1050.1120.98123.416311.537848.10.3450.1670.1671.03124.91648.630731.20.3170.1260.1190.87919.51659.120435.50.5030.1180.1060.68213.416615.138047.50.4480.2020.1820.85321.01678.315549.10.6060.1020.0960.72215.716816.437528.90.4950.1770.1571.24410.816917.023349.50.8250.2240.1540.38211.11705.228132.20.2110.0890.0981.14623.6	154	19.3	344	37.4	0.633	0.198	0.174	1.071	10.9
15618.115345.91.3320.1830.1210.3675.415718.835732.90.5950.1940.1681.15510.11587.538349.40.2230.1570.1471.00322.91598.723443.50.4230.1180.1190.85920.516014.628437.00.5810.1780.1450.68312.01616.718842.40.4050.0920.0970.87820.81627.224042.80.3380.1050.1120.98123.416311.537848.10.3450.1670.1671.03124.91648.630731.20.3170.1260.1190.87919.51659.120435.50.5030.1180.1060.68213.416615.138047.50.4480.2020.1820.85321.01678.315549.10.6060.1020.0960.72215.716816.437528.90.4950.1770.1571.24410.816917.023349.50.8250.2240.1540.38211.11705.228132.20.2110.0890.0981.14623.6	155	19.9	190	45.0	1.180	0.190	0.143	0.585	6.2
15718.835732.90.5950.1940.1681.15510.11587.538349.40.2230.1570.1471.00322.91598.723443.50.4230.1180.1190.85920.516014.628437.00.5810.1780.1450.68312.01616.718842.40.4050.0920.0970.87820.81627.224042.80.3380.1050.1120.98123.416311.537848.10.3450.1670.1671.03124.91648.630731.20.3170.1260.1190.87919.51659.120435.50.5030.1180.1060.68213.416615.138047.50.4480.2020.1820.85321.01678.315549.10.6060.1020.0960.72215.716816.437528.90.4950.1770.1571.24410.816917.023349.50.8250.2240.1540.38211.11705.228132.20.2110.0890.0981.14623.6	156	18.1	153	45.9	1.332	0.183	0.121	0.367	5.4
1587.538349.40.2230.1570.1471.00322.91598.723443.50.4230.1180.1190.85920.516014.628437.00.5810.1780.1450.68312.01616.718842.40.4050.0920.0970.87820.81627.224042.80.3380.1050.1120.98123.416311.537848.10.3450.1670.1671.03124.91648.630731.20.3170.1260.1190.87919.51659.120435.50.5030.1180.1060.68213.416615.138047.50.4480.2020.1820.85321.01678.315549.10.6060.1020.0960.72215.716816.437528.90.4950.1770.1571.24410.816917.023349.50.8250.2240.1540.38211.11705.228132.20.2110.0890.0981.14623.6	157	18.8	357	32.9	0.595	0.194	0.168	1.155	10.1
1598.723443.50.4230.1180.1190.85920.516014.628437.00.5810.1780.1450.68312.01616.718842.40.4050.0920.0970.87820.81627.224042.80.3380.1050.1120.98123.416311.537848.10.3450.1670.1671.03124.91648.630731.20.3170.1260.1190.87919.51659.120435.50.5030.1180.1060.68213.416615.138047.50.4480.2020.1820.85321.01678.315549.10.6060.1020.0960.72215.716816.437528.90.4950.1770.1571.24410.816917.023349.50.8250.2240.1540.38211.11705.228132.20.2110.0890.0981.14623.6	158	7.5	383	49.4	0.223	0.157	0.147	1.003	22.9
16014.628437.00.5810.1780.1450.68312.01616.718842.40.4050.0920.0970.87820.81627.224042.80.3380.1050.1120.98123.416311.537848.10.3450.1670.1671.03124.91648.630731.20.3170.1260.1190.87919.51659.120435.50.5030.1180.1060.68213.416615.138047.50.4480.2020.1820.85321.01678.315549.10.6060.1020.0960.72215.716816.437528.90.4950.1770.1571.24410.816917.023349.50.8250.2240.1540.38211.11705.228132.20.2110.0890.0981.14623.6	159	8.7	234	43.5	0.423	0.118	0.119	0.859	20.5
1616.718842.40.4050.0920.0970.87820.81627.224042.80.3380.1050.1120.98123.416311.537848.10.3450.1670.1671.03124.91648.630731.20.3170.1260.1190.87919.51659.120435.50.5030.1180.1060.68213.416615.138047.50.4480.2020.1820.85321.01678.315549.10.6060.1020.0960.72215.716816.437528.90.4950.1770.1571.24410.816917.023349.50.8250.2240.1540.38211.11705.228132.20.2110.0890.0981.14623.6	160	14.6	284	37.0	0.581	0.178	0.145	0.683	12.0
1627.224042.80.3380.1050.1120.98123.416311.537848.10.3450.1670.1671.03124.91648.630731.20.3170.1260.1190.87919.51659.120435.50.5030.1180.1060.68213.416615.138047.50.4480.2020.1820.85321.01678.315549.10.6060.1020.0960.72215.716816.437528.90.4950.1770.1571.24410.816917.023349.50.8250.2240.1540.38211.11705.228132.20.2110.0890.0981.14623.6	161	6.7	188	42.4	0.405	0.092	0.097	0.878	20.8
16311.537848.10.3450.1670.1671.03124.91648.630731.20.3170.1260.1190.87919.51659.120435.50.5030.1180.1060.68213.416615.138047.50.4480.2020.1820.85321.01678.315549.10.6060.1020.0960.72215.716816.437528.90.4950.1770.1571.24410.816917.023349.50.8250.2240.1540.38211.11705.228132.20.2110.0890.0981.14623.6	162	7.2	240	42.8	0.338	0.105	0.112	0.981	23.4
1648.630731.20.3170.1260.1190.87919.51659.120435.50.5030.1180.1060.68213.416615.138047.50.4480.2020.1820.85321.01678.315549.10.6060.1020.0960.72215.716816.437528.90.4950.1770.1571.24410.816917.023349.50.8250.2240.1540.38211.11705.228132.20.2110.0890.0981.14623.6	163	11.5	378	48.1	0.345	0.167	0.167	1.031	24.9
1659.120435.50.5030.1180.1060.68213.416615.138047.50.4480.2020.1820.85321.01678.315549.10.6060.1020.0960.72215.716816.437528.90.4950.1770.1571.24410.816917.023349.50.8250.2240.1540.38211.11705.228132.20.2110.0890.0981.14623.6	164	8.6	307	31.2	0.317	0.126	0.119	0.879	19.5
16615.138047.50.4480.2020.1820.85321.01678.315549.10.6060.1020.0960.72215.716816.437528.90.4950.1770.1571.24410.816917.023349.50.8250.2240.1540.38211.11705.228132.20.2110.0890.0981.14623.6	165	9.1	204	35.5	0.503	0.118	0.106	0.682	13.4
1678.315549.10.6060.1020.0960.72215.716816.437528.90.4950.1770.1571.24410.816917.023349.50.8250.2240.1540.38211.11705.228132.20.2110.0890.0981.14623.6	166	15.1	380	47.5	0.448	0.202	0.182	0.853	21.0
16816.437528.90.4950.1770.1571.24410.816917.023349.50.8250.2240.1540.38211.11705.228132.20.2110.0890.0981.14623.6	167	8.3	155	49.1	0.606	0.102	0.096	0.722	15.7
16917.023349.50.8250.2240.1540.38211.11705.228132.20.2110.0890.0981.14623.6	168	16.4	375	28.9	0.495	0.177	0.157	1.244	10.8
170 5.2 281 32.2 0.211 0.089 0.098 1.146 23.6	169	17.0	233	49.5	0.825	0.224	0.154	0.382	11.1
	170	5.2	281	32.2	0.211	0.089	0.098	1.146	23.6

171	16.6	255	49.6	0.735	0.228	0.159	0.414	12.7
172	13.4	295	37.9	0.513	0.184	0.144	0.596	14.1
173	8.3	317	39.8	0.296	0.127	0.129	1.015	23.8
174	9.6	375	45.5	0.289	0.155	0.153	1.033	24.6
175	8.8	257	42.2	0.388	0.121	0.123	0.911	21.7
176	9.9	395	45.8	0.284	0.165	0.159	1.008	23.5
177	18.9	383	35.5	0.559	0.200	0.179	1.139	11.9
178	16.7	162	45.0	1.167	0.181	0.121	0.362	6.3
179	13.9	237	37.6	0.664	0.161	0.133	0.662	10.4
180	10.0	240	36.9	0.470	0.131	0.119	0.752	15.1
181	9.0	378	31.3	0.269	0.132	0.133	1.074	23.2
182	18.2	154	28.2	1.337	0.180	0.103	0.327	2.4
183	18.4	173	43.9	1.203	0.174	0.130	0.579	5.9
184	17.9	276	22.8	0.734	0.185	0.131	0.916	4.7
185	12.1	153	39.6	0.898	0.153	0.101	0.316	7.6
186	6.4	260	39.9	0.278	0.102	0.109	1.028	23.6
187	10.1	252	42.8	0.454	0.131	0.128	0.863	18.6
188	18.5	234	42.4	0.896	0.188	0.151	0.689	8.3
189	8.2	338	34.7	0.274	0.125	0.127	1.040	23.7
190	17.8	180	26.7	1.120	0.177	0.112	0.502	3.0
191	6.8	154	27.5	0.500	0.090	0.074	0.587	9.9
192	19.1	234	45.2	0.923	0.195	0.156	0.664	8.6
193	14.5	343	46.7	0.480	0.184	0.171	0.876	19.3
194	14.1	268	24.9	0.593	0.149	0.123	1.065	7.1
195	11.2	173	49.9	0.731	0.149	0.115	0.447	12.9
196	18.1	223	45.5	0.917	0.188	0.151	0.632	8.8
197	11.2	371	31.4	0.342	0.164	0.142	0.806	18.1
198	17.3	151	45.2	1.295	0.181	0.118	0.335	5.5
199	12.2	154	34.4	0.900	0.149	0.096	0.315	6.3
200	8.0	311	22.1	0.292	0.123	0.104	0.748	14.6

Nummer	Stabanzahl d _s =8mm	stat. Nutzhöhe [mm]	Betondruck- festigkeit [N/mm²]	Bew. Grad [%]	Querkraft V _{Cal} [MN/m]	Querkraft V _{DIN} [MN/m]	Rissöffnung [mm]	Stahl- dehnung [‰]
1	15.6	315	21.6	0.248	0.122	0.099	0.647	17.0
2	14.9	177	34.6	0.424	0.118	0.087	0.398	15.9
3	13.8	233	46.1	0.297	0.115	0.107	0.745	23.7
4	7.4	199	20.2	0.186	0.064	0.062	0.740	21.5
5	12.6	305	20.2	0.208	0.102	0.089	0.735	19.2
6	14.4	267	27.8	0.270	0.110	0.098	0.702	20.4
7	12.4	244	20.9	0.256	0.097	0.081	0.618	15.9
8	11.5	324	29.1	0.179	0.116	0.100	0.761	23.5
9	12.9	348	25.3	0.186	0.117	0.103	0.775	23.9
10	11.8	201	37.6	0.295	0.091	0.090	0.750	23.4
11	12.4	264	21.1	0.236	0.098	0.084	0.667	17.5
12	11.8	294	42.6	0.202	0.127	0.110	0.769	23.5
13	13.0	323	39.0	0.202	0.132	0.115	0.792	23.7
14	12.5	346	41.6	0.181	0.144	0.119	0.777	23.3
15	11.5	344	31.9	0.167	0.126	0.106	0.755	23.2
16	14.6	338	22.1	0.217	0.117	0.101	0.739	20.2
17	11.2	285	37.3	0.197	0.114	0.102	0.797	23.0
18	10.0	279	22.8	0.181	0.090	0.083	0.770	23.4
19	11.6	219	27.2	0.265	0.089	0.083	0.708	20.2
20	8.0	224	35.3	0.180	0.085	0.080	0.791	23.5
21	14.4	365	22.3	0.198	0.124	0.104	0.723	22.4
22	11.9	182	35.9	0.329	0.086	0.083	0.704	21.7
23	13.9	358	20.6	0.195	0.120	0.100	0.699	21.0
24	14.7	395	30.9	0.188	0.146	0.122	0.757	23.9
25	11.7	170	46.6	0.344	0.090	0.086	0.700	23.2
26	13.0	372	28.5	0.176	0.131	0.110	0.758	23.4
27	14.4	324	32.3	0.223	0.124	0.112	0.800	24.0
28	12.8	367	29.7	0.175	0.129	0.110	0.785	24.4
29	13.7	181	29.5	0.381	0.110	0.081	0.408	15.0
30	15.6	273	46.7	0.287	0.136	0.121	0.734	23.3
31	12.4	150	33.9	0.414	0.096	0.072	0.430	15.9
32	10.2	394	27.9	0.130	0.125	0.104	0.800	24.1
33	10.0	278	26.0	0.181	0.094	0.086	0.772	23.6
34	8.1	387	22.2	0.105	0.104	0.088	0.833	23.5
35	11.8	202	27.0	0.292	0.089	0.080	0.646	18.1
36	11.2	355	23.2	0.158	0.109	0.096	0.799	24.1
37	10.3	369	28.1	0.140	0.118	0.101	0.812	24.5
38	15.3	374	24.4	0.206	0.130	0.111	0.746	23.8
39	9.9	384	22.1	0.130	0.106	0.094	0.855	24.7

Tabel	le 7:	Simu	lationserg	gebnisse	$(d_s =$	8 mm)
-------	-------	------	------------	----------	----------	-------

40	8.3	181	35.0	0.229	0.074	0.073	0 759	22.5
41	15.4	152	49.0	0.512	0.074	0.089	0.422	18.9
42	92	245	20.0	0.012	0.079	0.073	0.717	21.1
43	8.8	250	23.5	0.176	0.082	0.076	0.764	22.9
44	10.2	268	24 7	0.191	0.090	0.084	0 769	23.9
45	15.8	243	26.7	0.328	0.130	0.095	0.447	15.9
46	15.4	357	47 1	0.217	0 161	0.135	0 779	24.5
47	10.1	299	217	0.170	0.092	0.084	0 790	23.7
48	12.6	347	21.5	0.182	0.110	0.096	0.762	23.6
49	7.7	215	36.0	0.179	0.083	0.079	0.792	23.8
50	10.4	286	37.0	0.182	0.114	0.099	0.773	22.5
51	13.1	316	38.7	0.208	0.132	0.114	0.772	22.7
52	15.4	161	49.7	0.481	0.118	0.093	0.460	20.4
53	14.7	254	29.6	0.291	0.110	0.098	0.695	20.2
54	9.4	336	23.6	0.141	0.099	0.089	0.823	24.0
55	7.1	181	24.1	0.198	0.062	0.061	0.751	22.8
56	6.5	243	22.6	0.134	0.070	0.067	0.815	23.4
57	15.5	317	30.6	0.246	0.126	0.112	0.740	24.7
58	7.6	348	20.5	0.110	0.092	0.080	0.824	22.6
59	11.3	217	47.0	0.262	0.106	0.098	0.735	23.6
60	8.8	373	26.1	0.119	0.112	0.094	0.805	24.7
61	14.1	300	40.3	0.236	0.127	0.116	0.809	24.6
62	15.0	221	22.7	0.340	0.124	0.085	0.371	12.6
63	15.2	218	47.6	0.349	0.115	0.109	0.718	23.8
64	15.1	352	24.5	0.216	0.126	0.108	0.721	22.7
65	9.6	393	21.4	0.122	0.109	0.093	0.819	23.1
66	13.2	237	26.1	0.280	0.100	0.088	0.654	18.3
67	11.0	391	34.0	0.142	0.140	0.113	0.784	24.5
68	7.7	271	21.1	0.143	0.076	0.073	0.833	23.9
69	9.7	194	41.3	0.252	0.089	0.085	0.733	23.1
70	13.1	310	28.3	0.213	0.116	0.102	0.727	23.3
71	8.8	202	22.6	0.219	0.070	0.069	0.750	20.5
72	15.5	310	40.0	0.250	0.138	0.121	0.758	23.0
73	14.6	259	48.5	0.282	0.132	0.117	0.719	22.8
74	10.1	394	31.1	0.129	0.131	0.107	0.805	24.7
75	13.8	310	43.0	0.224	0.136	0.119	0.779	23.6
76	9.3	265	22.4	0.177	0.084	0.078	0.768	23.2
77	12.1	298	25.8	0.204	0.106	0.094	0.743	23.5
78	14.3	269	49.7	0.267	0.137	0.119	0.718	22.7
79	9.9	193	26.6	0.258	0.076	0.073	0.722	20.4
80	15.5	364	45.7	0.215	0.162	0.136	0.782	24.0
81	10.4	340	33.4	0.154	0.125	0.104	0.764	24.3
82	13.6	194	38.0	0.353	0.097	0.092	0.684	21.5
83	15.7	266	34.4	0.296	0.116	0.108	0.758	23.2
84	12.3	374	35.0	0.165	0.135	0.116	0.842	23.8

85	15.0	207	34.8	0.364	0.116	0.096	0.522	18.8
86	14.4	347	23.6	0.208	0.122	0.104	0.717	22.5
87	11.6	168	36.7	0.348	0.084	0.078	0.674	21.0
88	9.1	232	21.3	0.197	0.078	0.072	0.723	21.5
89	12.4	394	38.7	0.158	0.155	0.123	0.784	22.6
90	13.8	314	38.5	0.222	0.131	0.115	0.785	23.2
91	15.2	215	30.6	0.355	0.121	0.094	0.467	16.9
92	13.0	215	43.8	0.304	0.105	0.100	0.738	23.6
93	7.7	291	26.0	0.132	0.091	0.080	0.779	23.6
94	8.7	260	25.5	0.168	0.086	0.079	0.777	23.1
95	9.8	174	38.3	0.281	0.079	0.077	0.747	23.1
96	9.4	317	32.8	0.148	0.112	0.097	0.805	22.1
97	13.4	356	31.3	0.189	0.134	0.113	0.746	23.8

Literaturverzeichnis

- [1] DIN 1045-1: Tragwerke aus Beton, Stahlbeton und Spannbeton; Teil1: Bemessung und Konstruktion; Juli 2001
- [2] DIN V ENV 1992-1: Eurocode 2: Planung von Stahlbeton- und Spannbetontragwerken; Teil 1-1: Grundlagen und Anwendungsregeln für den Hochbau; Juni 1992
- [3] CEB-FIB Model Code 90: Design Code; Comité Euro-International du Beton; Thomas Telford; London;1993
- [4] Kani, G.N.J.: The Riddle of Shear Failure and Its Solution; ACI Journal; Vol. 61; No. 4; p. 441 477; 1964
- [5] Walther, R.: Über die Berechnung der Schubtragfähigkeit von Stahlund Spannbetonbalken; Beton- und Stahlbetonbau 57; Ernst & Sohn; Heft 11; p. 261 – 271; 1962
- [6] Hawkins, N.M.; Wyss A.N.; Mattock, A.H.: Fracture Analysis of Cracking in Concrete Beams; Journal of the Structural Divison; ASCE; ST 5; p. 101 - 1030; May 1977
- [7] Leonhardt, F.: Vorlesung über Massivbau, Teil 1: Grundlagen zur Bemessung im Stahlbetonbau; Springer Verlag Berlin; 1984
- [8] Zink, M.: Zum Biegeschubversagen schlanker Bauteile aus Hochleistungsbeton mit und ohne Vorspannung; B. G. Teubner Stuttgart – Leipzig; 2000
- [9] Walraven, J.C.: Aggragate Interlock: A theoretical and experimental analysis; Doctoral Thesis; Delft University of Technology; 1980
- [10] Paulay, T.; Park, R.; Philips, M.H.: Horizontal construction joints in cast in place reinforced concrete; Shear in reinforced concrete; ACI Puplication SP-42 Vol. II; p. 599 – 616; 1974
- [11] Hillerborg, A.: Analysis of one Single Crack; Fracture Mechanics of Concrete; Elsevier Science Publishers; Amsterdam; 1983

- [12] Remmel, G.: Zum Zug- und Schubtragverhalten von Bauteilen aus hochfestem Beton; DAfStb Heft 444; Beuth Berlin; 1994
- [13] Kani, G.N.J.: Basic Facts Concerning Shear Failure; ACI Journal; Vol. 63; No. 6; p. 675 692; 1966
- [14] Schmidhuber, Ch.: Grundsätzliche Neumodellierung des Schubtragverhaltens mit CFK-Lamellen verstärkter Bauteile; Dissertation; Technische Universität München; eingereicht 2002
- [15] Zilch, K.; Schmidhuber, Ch.: Festlegung der Schubbereichsgrenzen bei der Verstärkung von Stahlbetonplatten und Stahlbetonbalken mit aufgeklebten CFK-Lamellen; Forschungsbericht des Lehrstuhl für Massivbau; Technische Universität München; 2001
- [16] Reineck, K.-H.: Ein mechanisches Modell f
 ür den Querkraftbereich von Stahlbetonbauteilen; Dissertation; Universit
 ät Stuttgart; 1990
- [17] Schlaich, J.; Schäfer, K.: Konstruieren im Stahlbetonbau; In: Beton-Kalender 2; p. 787 – 1005; Ernst & Sohn; 1984
- [18] Fischer, J.: Versagensmodell f
 ür schubschlanke Balken; DAfStb Heft 480; Beuth Berlin; 1987
- [19] König, G.; Fehling, E.: Zur Rissbreitenbeschränkung im Stahlbetonbau; Beton- und Stahlbetonbau 83; Ernst & Sohn; Heft 6; p. 161 – 170; 1988
- [20] Grimm, R.: Einfluß bruchmechanischer Kenngrößen auf das Biegeund Schubtragverhalten hochfester Betone; DAfStb Heft 477; Beuth Berlin; 1997
- [21] Jahn, Th.: Die Approximation des nichtlinearen Spannungs-Stauchungs-Verhaltens von Beton durch Polynome; Ernst & Sohn; Beton- und Stahlbetonbau 92; Heft 6; p. 156 – 160; 1997
- [22] Kreller, H.: Zum nichtlinearen Trag- und Verformungsverhalten von Stahlbetonstabtragwerken unter Last- und Zwangseinwirkungen; Dissertation; Universität Stuttgart; 1989

- [23] Noakowski, P.: Nachweise für Verankerungen, Verformungen,Zwangsbeanspruchungen und Rissbreite; DAfStb Heft 394; Beuth Berlin; 1988
- [24] Hegger, J.; König, G.; Zilch, K.; Reineck, K.-H. et al.: Überprüfung und Vereinheitlichung der Bemessungsansätze für querkraftbeanspruchte Stahlbeton- und Spannbetonbauteile aus normalfestem und hochfestem Beton nach DIN 1045-1; Abschlussbericht und Datenbank des Gemeinschaftsforschungsvorhabens DIBt IV 1-5-876/98; RWTH Aachen, Universität Leipzig, TU München, Universität Stuttgart; Dezember 1999.
- [25] DIN 1055-100: Einwirkungen auf; Teil 100: Grundlagen der Tragwerksplanung, Sicherheitskonzept und Bemessungsregeln; März 2001