Bau<u>forschung</u>

# Querkrafttragfähigkeit von Stahlbetondecken mit integrierten Leitungsführungen

T 3135

<sup>1</sup> Fraunhofer IRB Verlag

# T 3135

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

2007

ISBN 978-3-8167-7353-5

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

#### Fraunhofer IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de



BAUINGENIEURWESEN Fachgebiet Massivbau und Baukonstruktion Prof. Dr.-Ing. Jürgen Schnell

Erwin-Schrödinger-Straße 67663 Kaiserslautern Gebäude 14, Zimmer 515 Telefon (0631) 2 05 - 21 57 Telefax (0631) 2 05 - 35 55

e-mail: jschnell@rhrk.uni-kl.de

# Bericht 05026CT/516: Abschlussbericht der DBV Forschungsvorhaben DBV 250 und DBV 259

Auftraggeber:

Deutscher Beton- und Bautechnik Verein e.V. Kurfürstenstraße 129 10785 Berlin

Sachbearbeiterin:

Dipl.-Ing. Catherina Thiele, Tel. 0631/205-2010

Datum:

30. Juni 2006

Prof. Dr.-Ing. Jürgen Schnell

Dipl.-Ing. Catherina Thiele

# Inhalt

| 1    | Einleitung                                                                  | 1  |  |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------------|----|--|--|--|--|--|--|--|
| 2    | Begründung des Forschungsvorhabens                                          | 1  |  |  |  |  |  |  |  |
| 2.1  | Allgemeines                                                                 | 1  |  |  |  |  |  |  |  |
| 2.2  | Normung – Bauteile ohne rechnerisch erforderliche Querkrafttragfähigkeit    |    |  |  |  |  |  |  |  |
| 2.3  | Literaturrecherche                                                          | 3  |  |  |  |  |  |  |  |
| 3    | Experimentelle Untersuchungen - Vorüberlegungen                             | 5  |  |  |  |  |  |  |  |
| 3.1  | Allgemeines                                                                 | 5  |  |  |  |  |  |  |  |
| 3.2  | Versuchskörper                                                              | 5  |  |  |  |  |  |  |  |
| 3.2. | 1 a/d – Verhältnis                                                          | 5  |  |  |  |  |  |  |  |
| 3.2. | 2 Längsbewehrungsgrad                                                       | 5  |  |  |  |  |  |  |  |
| 3.2. | 3 Prinzipieller Versuchsaufbau                                              | 6  |  |  |  |  |  |  |  |
| 3.3  | Versuchsprogramm                                                            | 6  |  |  |  |  |  |  |  |
| 3.3. | 1 Versuchsreihe 1 und 2 DBV 250                                             | 6  |  |  |  |  |  |  |  |
| 3    | .3.1.1 Versuchsparameter Versuchsreihe 1                                    | 6  |  |  |  |  |  |  |  |
| 3    | .3.1.2 Versuchsparameter Versuchsreihe 2                                    | 7  |  |  |  |  |  |  |  |
| 3.3. | 2 Versuchsreihe 3 - DBV 259                                                 | 8  |  |  |  |  |  |  |  |
| 4    | Baustoffe                                                                   | 9  |  |  |  |  |  |  |  |
| 4.1  | Beton                                                                       | 9  |  |  |  |  |  |  |  |
| 4.1. | 1 Allgemeines                                                               | 9  |  |  |  |  |  |  |  |
| 4.1. | 2 Versuchsserie 1                                                           | 9  |  |  |  |  |  |  |  |
| 4.1. | 3 Versuchsreihe 2                                                           | 10 |  |  |  |  |  |  |  |
| 4.1. | 4 Versuchsreihe 3                                                           | 11 |  |  |  |  |  |  |  |
| 4    | .1.4.1 Rechteckige Öffnungen, Lage der Öffnung im Bauteil, Gruppenanordnung | 11 |  |  |  |  |  |  |  |
| 4    | .1.4.2 Öffnungen im Momentennullpunkt                                       | 11 |  |  |  |  |  |  |  |
| 4    | .1.4.3 Zusatzbeanspruchung durch zentrische Zugkraft                        | 13 |  |  |  |  |  |  |  |
| 4    | .1.4.4 Nachträglich ergänzte Querschnitte -Ortbetonergänzung                | 14 |  |  |  |  |  |  |  |
| 4.2  | Betonstahl                                                                  | 14 |  |  |  |  |  |  |  |
| 5    | Versuchsbeschreibung                                                        | 15 |  |  |  |  |  |  |  |
| 5.1  | Versuchsreihe 1 und 2                                                       | 15 |  |  |  |  |  |  |  |
| 5.1. | 1 Versuchsaufbau                                                            | 15 |  |  |  |  |  |  |  |
| 5.1. | 2 Messtechnik                                                               | 15 |  |  |  |  |  |  |  |
| 5.1. | 3 Versuchsdurchführung                                                      | 17 |  |  |  |  |  |  |  |
| 5.2  | Versuchsreihe 3                                                             | 17 |  |  |  |  |  |  |  |
| 5.2. | 1 Allgemeines                                                               | 17 |  |  |  |  |  |  |  |
| 5.2. | 2 Öffnungen im Momentennullpunkt                                            | 17 |  |  |  |  |  |  |  |
| 5.2. | 3 Versuche an Elementplatten                                                | 18 |  |  |  |  |  |  |  |

| 5.2  | 2.4 Versuche mit zusätzlicher Zugnormalkraft            | 20 |
|------|---------------------------------------------------------|----|
| 6    | Versuchsauswertungen                                    | 22 |
| 6.1  | Versuchsreihe 1 und 2                                   | 22 |
| 6.1  | .1 Versagen                                             | 22 |
| 6.1  | .2 Messergebnisse                                       | 22 |
| 6.1  | .3 Fotogrammetrie                                       | 26 |
| 6.1  | .4 Übersicht Traglasten                                 | 27 |
| 6.2  | Versuchsreihe 3                                         | 31 |
| 6.2  | 2.1 Lage der Öffnung in Bauteillängsrichtung            | 31 |
| 6.2  | 2.2 Versuche mit Zugkraft                               | 32 |
| 6.2  | 2.3 Rechteckige Öffnungen                               | 34 |
| 6.2  | 2.4 Öffnungsabstand bei mehreren Öffnungen              | 35 |
| 6.2  | 2.5 Öffnungen im Momentennullpunkt                      | 36 |
| 6.2  | 2.6 Untersuchungen an Elementdecken                     | 37 |
| 7    | Parameterstudien                                        | 38 |
| 7.1  | Finite- Element Programm ATENA                          | 38 |
| 7.2  | Einzelöffnungen                                         | 39 |
| 7.3  | Lage der Öffnung in Tragrichtung                        | 40 |
| 7.4  | Öffnungsabstand                                         | 41 |
| 7.5  | Rechteckige Öffnungen                                   | 42 |
| 8    | Bemessungsgleichungen                                   | 46 |
| 9    | Literatur                                               | 47 |
| 10   | Anhang                                                  | 49 |
| 10.1 | Darstellung der Bruchbilder                             | 49 |
| 10.2 | Versuchsreihe 1 und 2                                   | 49 |
| 10   | 2.1 Referenzversuche                                    | 49 |
| 10   | 2.2 Versuche mit Einzelöffnungen                        | 50 |
| 10   | .2.3 Erste Tastversuche mit zwei Öffnungen              | 57 |
| 10   | 2.4 Tastversuche mit Stahlfaserbeton                    | 57 |
| 10   | 2.5 Versuche mit zentrischer Zugkraft                   | 58 |
| 10   | 2.6 Versuche im Momentennullpunkt                       | 60 |
| 10   | 2.7 Lage der Öffnung im Bauteil in Bauteillängsrichtung | 61 |
| 10.3 | Versuchsreihe 3                                         | 63 |
| 10   | .3.1 Referenzversuche                                   | 63 |
| 10   | .3.2 Gruppenanordnung                                   | 64 |
| 10   | .3.3 Rechteckige Öffnungen                              | 65 |

# Zusammenfassung

Auf Grund der fehlenden Bemessungsgrundlagen für die Querkrafttragfähigkeit von Stahlbetondecken mit integrierten Leitungsführungen wurde an der TU Kaiserslautern ein vom Deutschen Beton- und Bautechnikverein e.V. unterstütztes Forschungsvorhaben durchgeführt.

Die Nutzung von Stahlbetondecken als Installationsraum nimmt immer mehr zu. Dabei werden Leerrohre, Kanäle oder Rohre zur Gebäudetemperierung in die Betondecken einbetoniert,



allerdings finden diese Querschnitts- Bild 1-1: Versagensbild eines Bauteilversuchs schwächungen in den statischen Berechnungen nicht immer ausreichend Beachtung.

Ziel dieses Forschungsvorhabens war es, Grundlagen für die Bemessung von durch Rohre geschwächten Decken zu schaffen und den Statischen Nachweis mit Hilfe von modifizierten Bemessungsgleichungen möglich zu machen.

Betrachtet wurden hier einzelne kreisrunde und rechteckige Öffnungen, sowie die Gruppenanordnung von mehreren Öffnungen. Dazu wurde eine Vielzahl von Bauteilversuchen an Stahlbetonplattenstreifen durchgeführt. Diese wurden mit Hilfe von FE- Berechnungen nachvollzogen. Parameterstudien halfen bei der Definition von Bemessungsgleichungen.

#### **Ergebnisse**

Die in DIN 1045-1:2001-07 angegebene Bemessungsgleichung (Gl. 70) für die Querkrafttragfähigkeit ohne Querkraftbewehrung  $V_{Rd,ct}$  wird zur Berücksichtigung der Öffnungen um einen Abminderungsfaktor erweitert. Für Verhältnisse d $_{\emptyset}$ /d zwischen 0,2 und 0,5 gilt:

$$\begin{split} V_{\text{Rd,ct,red}} = k \cdot V_{\text{Rd,ct}} & \text{mit:} \quad k = k_{\varnothing} = 1 - \frac{d_{\varnothing}}{d} \quad \text{für kreisrunde Öffnungen} \\ & k = k_{\Box} = 0,95 - \frac{d_o}{d} - (\frac{d_o}{d} - 0,03) \cdot \text{ln} \left(\frac{d_o}{b_o}\right) \text{für rechteckige Öffnungen} \\ & d_{\varnothing} : \text{Durchmesser der runden Öffnung} \\ & d \quad : \text{Statische Höhe} \\ & d_o \quad : \text{Höhe der rechteckigen Öffnung} \end{split}$$

b<sub>o</sub> : Breite der rechteckigen Öffnung

#### <u>Anwendungsgrenzen</u>

- Bei Anordnung von mehreren runden Einzelöffnungen muss zur Anwendung der oben angegebenen Gleichung der Achsabstand der Öffnungen mindestens dem 3-fachen Öffnungsdurchmesser entsprechen.
- 2. Der Achsabstand von Öffnungen zu Einzellasten sollte mindestens der Statischen Höhe d des Querschnitts entsprechen.
- 3. Die Traglastabminderung durch Öffnungen im Durchstanzbereich soll in einem weiteren Forschungsvorhaben geklärt werden. Bis auf weiteres kann nur empfohlen werden Durchstanzbereiche von jeglicher Schwächung freizuhalten.
- 4. Bei kreisrunden Einzelöffnungen deren Mittelachse zwischen Querschnittsmitte und gedrücktem Rand liegt, kann der Faktor  $k_{\emptyset}$  um 0,1 erhöht werden.

# 1 Einleitung

Im Rahmen der vom Deutschen Beton- und Bautechnik- Verein finanzierten Forschungsvorhaben DBV 250 und DBV 259 wurden Untersuchungen an Stahlbetondecken mit integrierten Leitungsführungen durchgeführt.

In diesem Bericht werden Vorgehensweise und Ergebnisse beider Forschungsvorhaben beschrieben.

# 2 Begründung des Forschungsvorhabens

# 2.1 Allgemeines

Immer häufiger werden Stahlbetondecken nicht nur als tragendes Bauteil in Anspruch genommen, sondern als Installationsraum genutzt. Es werden beispielsweise luft- oder wasserführende Rohre in Decken einbetoniert, die je nach Bedarf zum Kühlen oder Heizen der angrenzenden Räume genutzt werden. Diese Systeme machen sich die hohe Wärmespeicherkapazität von Beton zunutze.

In zunehmendem Maße werden wegen des Wegfalls abgehängter Decken Leerrohre für z.B. Elektroleitungen in den Massivdecken verlegt.

Bisher existieren weder konstruktive Hinweise zur Anordnung der Rohre noch Bemessungsregeln für die Querkrafttragfähigkeit im Bereich der Öffnungen.

Dies führt regelmäßig zu Problemen wie Konzentration von Leitungen im Anschluss an Schächte, Betonierfehler und Tragfähigkeitsverlust im Bereich enger Leitungsführungen. Oft wird auch die traglastmindernde Wirkung einzelner Öffnungen nicht beachtet.



Bild 2-1: Diverse Leitungsführungen in einer Stahlbetondecke

Mit diesem Forschungsvorhaben sollen konstruktive Anwendungsgrenzen für Leitungsführungen in Stahlbetondecken wie Abstand der Öffnungen untereinander, Lage der Öffnung in Bauteillängsrichtung und Höhenlage der Öffnung im Querschnitt definiert werden. Weiteres Ziel ist die Ermittlung und Beschreibung des Widerstandswertes von durch integrierte Leitungsführungen geschwächten Stahlbetonplatten ohne Querkraftbewehrung.

Dabei sollen die folgenden Parameter Beachtung finden:

- □ Höhenlage der Öffnung im Bauteil,
- □ Verhältnis Öffnungshöhe oder Öffnungsdurchmesser zur Statischen Höhe,
- Lage der Öffnung im Bauteillängsrichtung,
- □ Einfluss einer zusätzlichen Beanspruchung durch zentrische Zugkraft,
- □ Gruppenanordnung von Öffnungen,
- D Öffnungen im Bereich von Momentennullpunkten,
- Einfluss der Öffnungen bei nachträglich ergänzten Querschnitten.

Dem Tragwerksplaner sollen Hilfsmittel in Form von Bemessungsdiagrammen zur Verfügung gestellt werden. Auch auf eine "vorsichtshalber" eingelegte Zusatzbewehrung kann verzichtet werden. Gleichzeitig soll dem sorglosen Umgang mit geschwächten Querschnitten entgegengewirkt werden.

Erste Tastversuche wurden bereits in [1] vorgestellt. Weiterführend wurden in [2] und [3] erste Ergebnisse aus dem aktuellen Stand der Forschung diskutiert.

#### 2.2 Normung – Bauteile ohne rechnerisch erforderliche Querkrafttragfähigkeit

Die Grundlage für die rechnerische Querkrafttragfähigkeit für Bauteile ohne Querkraftbewehrung nach DIN 1045-1:2001-07 bildet der empirische Produktansatz gemäß Model Code 90.

$$V_{Rd,ct} = \left[0, 10 \cdot \kappa \cdot \eta_1 \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3} - 0, 12 \cdot \sigma_{cd}\right] \cdot b_w \cdot d$$
(2.1)

mit:

• Vorfaktor 0,10

Versuchsauswertungen mit verschiedenen statistischen Verfahren ergeben auf charakteristischem Niveau einen Vorfaktor c<sub>k</sub> von etwa 0,14 und auf Niveau des Mittelwertes etwa den Faktor c<sub>m</sub>=0,2. Teilt man diesen Vorfaktor durch den Teilsicherheitsbeiwert von Beton  $\gamma_c$ =1,5 folgt der Bemessungswert von c<sub>d</sub>=0,14/1,5=0,093. Im Normengremium wurde der Vorfaktor c<sub>d</sub>, in Hinblick auf mögliche Schnittgrößenumlagerungen, die in Experimenten auf Grund der statisch bestimmten Lagerung nicht vorhanden waren, zu 0,10 festgelegt.

Maßstabsfaktor κ

$$\kappa = 1 + \sqrt{200/d} \tag{2.2}$$

• Ungerissene Druckzone und Längsbewehrungsgrad  $(100 \cdot \rho_1)^{\frac{1}{3}}$ 

$$\rho_{\rm l} = \frac{A_{\rm sl}}{b_{\rm w} \cdot d} \le 0,02$$
 (2.3)

- Einfluss der Betonzugfestigkeit  $f_{ck}^{\overline{3}}$
- Wirkung einer Längsspannung  $(-0, 12 \cdot \sigma_{cd})$

In DIN 1045-1 sind keine Hinweise zur Berücksichtigung von Querschnittsschwächungen durch integrierte Leitungen enthalten.

#### 2.3 Literaturrecherche

Vorliegende Untersuchungen beschäftigen sich fast ausschließlich mit Öffnungen in Stegen von Unterzügen und Plattenbalken.

Soweit röhrenartige Aussparungen in Decken untersucht werden, handelt es sich entweder um große Durchmesser in kreuzweise gespannten Ortbetondecken mit Hohlkörpern, die aufwändige Zulagebewehrungen erfordern oder um einachsig gespannte Hohlkörperdecken, die als Fertigteile die Lasten überwiegend parallel zu den Hohlräumen abtragen.

In [4] werden von Hottmann und Schäfer Verfahren zur Bemessung von Trägern mit kleinen und großen Stegöffnungen und zum Bemessen von Scheiben entwickelt. Als Grundlage dient die Methode der Stabwerkmodelle. Für relevante Anwendungsfälle werden Modelle entworfen und umfassend erläutert.

Aster untersucht in [5] das Tragverhalten von 40 cm dicken Stahlbetonhohlplatten, die in Ortbetonbauweise mit Verdrängungskörpern hergestellt werden. Die Versuche werden an Hohlplattenstreifen mit verschiedenen Bewehrungsanordnungen (Hutbügel, Trogbügel, X-Bügel) durchgeführt. Vorrangiges Ziel der Untersuchungen ist es hier, die Biegesteifigkeit rechtwinklig zu den Rohrachsen zu bestimmen, die für das Berechnungsverfahren für vierseitig gelagerte Hohlplatten benötigt wird. Die Tragfähigkeit wird durch Bewehrungsanordnung sichergestellt. Es werden Näherungslösungen vorgestellt, die sich an der Bemessung von Vierendeelträgern anlehnen.

In einer umfassenden Arbeit behandelt Twelmeier [6] das Trag- und Verformungsverhalten von Stahlbetonbalken mit großen Stegöffnungen. Alle Versuchskörper wurden mit Querbewehrung ausgeführt. Es werden auch Träger mit Lochgruppen untersucht. Dabei werden vereinfachte Näherungslösungen vorgestellt, die auch auf der Analogie zum Vierendeelträger beruhen. Zur Bemessung von Gruppen kreisförmiger Öffnungen werden in dieser Arbeit Stabwerke gewählt.

Ramm diskutiert in [7] das Statische System, die lokalen Schnittgrößen, den Tragfähigkeitsnachweis und die konstruktive Durchbildung im Öffnungsbereich von Verbund- und Stahlbetonträgern. Weiterhin werden das lokale Verformungsgeschehen und die dadurch beeinflussten Schnittgrößenverläufe behandelt.

Mansur beschreibt in [8] die Arbeiten von Hanson, Somes und Corley, die sich mit der Tragfähigkeit von Stahlbetonplattenbalken mit Stegöffnungen ohne Querkraftbewehrung beschäftigen. Anhand von Versuchsergebnissen wird der Einfluss von Öffnungsgröße, -form und Lage der Öffnung diskutiert. Sie stellten fest, dass eine Öffnung sehr nahe am Auflager keine Traglastreduzierung mit sich bringt. Bei weiterer Entfernung vom Auflager stellt sich eine kontinuierliche Abminderung der Tragfähigkeit bis zu einem konstanten Werte ein. Eine weitere Entfernung von Auflager hat dann keine Traglastabminderung zur Folge. Die vertikale Position der Öffnung im Bauteil hat nach Ihrer Aussage keinen signifikanten Einfluss auf die Tragfähigkeit, wobei die Vergrößerung des Durchmessers einen linearen Traglastabfall mit sich bringt. Bei runden Öffnungen mit einem Durchmesser kleiner 25 % der Querschnittshöhe und quadratischen Öffnungen mit einer Öffnungshöhe kleiner als 33 % der Querschnittshöhe konnte keine Traglastabminderung festgestellt werden. Reineck stellt in [10] und [11] ein mechanisches Modell für Platten ohne Querkraftbewehrung vor, das auch Grundlage der Bemessungsverfahren in DIN 1045-1:2001-07 geworden ist. Die Tragfähigkeit wird in einem so genannten Zahnmodell in vier Traganteile unterteilt. Rissreibung, Biegung des in die Druckzone eingespannten Zahns, Dübelwirkung der Längsbewehrung und Querkraftabtrag in der Druckzone haben Anteile an der Querkrafttragfähigkeit des Querschnitts. Über einen Riss hinweg können Kräfte übertragen werden. Diese sind abhängig von der gegenseitigen Verschiebungen der benachbarten Rissufer. Diese hängen wiederum von den vorhandenen Rissabständen und Rissbreiten ab, die vom Verbundverhalten und der Beanspruchung der Bewehrung abhängig sind. Die Einspannung des Betonzahnes in die Biegedruckzone beansprucht die Zugfestigkeit des Betons. Maßgebende Einflussparameter auf die Tragfähigkeit sind hier die Betonfestigkeitsklasse, der Längsbewehrungsgrad und die einwirkende Normalkraft.

Es ist nicht möglich, die genannten Traganteile getrennt zu betrachten. Die Aktivierung der Einspannung des Zahnes in die Betondruckzone geht mit einer Verschiebung der Rissufer einher und damit mit einer Aktivierung der Rissreibung. Der Einfluss von Öffnungen im Querschnitt wird von Reineck nicht betrachtet.

Im Forschungsbericht Teilvorgefertigte Deckensysteme im Wohnungsbau berichtet Hegger [12] über Versuche an vorgespannten Elementplattenstreifen mit Aussparungen ohne Querkraftbewehrung. Die durchgeführten Versuche brachten die folgenden Ergebnisse:

- Bei einem Öffnungsdurchmesser entsprechend der halben Querschnittshöhe ist eine Traglastabminderung von ca. 50 % zu beobachten.
- □ Bei kleinen Öffnungen wurde eine Traglasterhöhung bei auflagernaher Öffnungslage beobachtet.
- □ Bei Anordnung von mehreren Öffnungen wird die Tragfähigkeit durch Spannungsüberlagerungen herabgesetzt.
- $\Box \quad \text{Es wird ein Vergrößerungsfaktor für die auftretenden Schubspannungen zu} \\ \frac{1}{\alpha_R} = \frac{h}{(h + d_R)} \text{ mit } h = \text{Plattendicke und } d_R = \text{Durchmesser der Öffnung gewählt.}$

In [13] wird das Tragverhalten von Stahlbetonträgern mit großen Öffnungen erforscht. Vorrangig wird hier die Querkraftverteilung auf die Öffnungsgurte untersucht, die zu einem neuen Bemessungsvorschlag für Träger mit großen Öffnungen führt. Darüber hinaus werden Nachweise zur Sicherstellung der Gebrauchstauglichkeit vorgeschlagen.

Die vorliegenden Untersuchungen ergeben insgesamt keine ausreichenden Anhaltspunkte für die Tragfähigkeit von Platten ohne Querkraftbewehrung mit integrierten Lüftungskanälen. Für die in jedem Fall zu führenden Statischen Nachweise fehlen bisher ein belastbares Rechenmodell bzw. nachvollziehbare Anwendungsregeln.

# 3 Experimentelle Untersuchungen - Vorüberlegungen

## 3.1 Allgemeines

Alle nachfolgend beschriebenen Versuche wurden im Labor für Konstruktiven Ingenieurbau der Technischen Universität Kaiserslautern durchgeführt. Im Rahmen des Forschungsvorhabens DBV 250 und DBV 259 wurden insgesamt 73 Versuche gefahren.

Diese gliederten sich wie folgt:

- 6 Tastversuche wurden im Vorfeld der Forschungsvorhaben durchgeführt.
- 15 + 20 Versuche im Rahmen des Forschungsvorhabens DBV 250

In zwei Versuchsreihen wurden Parameter wie das Verhältnis zwischen Öffnungsdurchmesser und Statischer Höhe, Längsbewehrungsgrad, Betonfestigkeit und Höhen lage der Öffnung im Querschnitt variiert.

• 33 Versuche im Rahmen des Forschungsvorhabens DBV 259

Dabei wurden rechteckige Öffnungen, Gruppenanordnungen von Öffnungen, die Lage der Öffnungen in Tragrichtung, Öffnungen im Bereich von Momentennullpunkten, nachträglich ergänzte Querschnitte und die zusätzliche Beanspruchung durch zentriche Zugkraft betrachtet.

Im Folgenden wird das Vorgehen bei der Auswahl der Versuchsparameter und der Versuchsdurchführung beschrieben. Weiterhin werden die Materialparameter und die Ergebnisse dargestellt.

## 3.2 Versuchskörper

#### 3.2.1 a/d – Verhältnis

Kani beschreibt in seinen Forschungsarbeiten ([15],[16]) das Verhalten von Stahlbetonbalken mit unterschiedlichen Längsbewehungsgraden und Schubschlankheiten. Die Schubschlankheit berechnet sich aus dem Quotienten des Abstands der Lasteinleitung zum Auflager und der der Statischen Höhe d.

Bei Verhältnissen von a/d = 2,5 in Kombination mit hohen Längsbewehrungsgraden wird das Verhältnis des tatsächlich im Versuch erreichten Moment  $M_{test}$  zum berechneten aufnehmbaren Moment  $M_{cal}$  minimal. Das Querkraftversagen tritt vor dem Biegeversagen ein.

Mit Verhältnissen a/d in den durchgeführten Versuchen zwischen 3,54 und 5,08 konnten sowohl realitätsnahe Belastungssituationen nachgestellt werden als auch vorzeitiges Biegeversagen verhindert werden.

#### 3.2.2 Längsbewehrungsgrad

Vorrangiges Interesse bestand in der Ermittlung der Querkrafttragfähigkeit, der durch Öffnungen geschwächten Plattenquerschnitte. Die Versuche wurden deshalb so konzipiert, dass ein ausreichend großer Abstand zwischen Biegeversagen und Querkraftversagen der Platte bestand. Dies erforderte relativ hohe Längsbewehrungsgrade von ca. 1,8 %.

Als Querbewehrung wurden jeweils 20 % der Längsbewehrung eingelegt (DIN 1045-1 13.3.2). Diese wirkt wie in der realen Decke als Sollbruchstelle für Biegerisse.

## 3.2.3 Prinzipieller Versuchsaufbau

Untersucht wurden 40 cm Breite Plattenstreifen mit einbetonierten Plastik-Rohren in verschiedenen Durchmessern. Die "Original - Lüftungsrohre", z.B. von der Firma Kiefer ([1],[14]) bestehen aus Aluminium. Der Eigentraganteil der einbetonierten Rohre sollte wegen der allgemeinen Gültigkeit der Ergebnisse so gering wie möglich gehalten werden.



Abbildung 3-1: Versuchsaufbau

Ein Versuchskörper wurde zur optimalen Materialnutzung jeweils für zwei Versuche benutzt. Als Statisches System wurde bei allen Versuchen ein Einfeldträger mit Einzellast in Feldmitte gewählt. In Abbildung 3-1 ist beispielhaft einer der Versuchskörper dargestellt. Die jeweils farbig zugeordneten Lasteinleitungen und Auflagerpunkte zeigen die Statischen Systeme der beiden durchgeführten Versuche.

Die Öffnungen wurden jeweils zwischen Lasteinleitung und Auflager angeordnet. Die genauen Abstände der Öffnungen zum Auflager, Stützweiten und Längsbewehrungsgrade können den folgenden Tabellen (Tabelle 3-1, Tabelle 3-2, Tabelle 3-3) entnommen werden.

Als Referenzversuche wurden mit allen Plattendicken Versuche ohne Öffnungen durchgeführt. Da diese Referenzversuche die Basis für den Vergleich der Versuchsergebnisse und somit für die Erstellung eines Bemessungsmodells dienen, wurden teilweise mehrere Versuche durchgeführt. Dadurch konnte das Vorhandensein eines Ausreißers bei einem Referenzversuch ausgeschlossen werden.

# 3.3 Versuchsprogramm

# 3.3.1 Versuchsreihe 1 und 2 DBV 250

Im Rahmen des Forschungsvorhabens DBV 250 wurden 2 Versuchsserien mit insgesamt 29 Versuchen durchgeführt. Die Versuche wurden wie folgt bezeichnet: T\_Laufende Nummer\_Öffnungsnenndurchmesser\_Lage der Öffnung im Querschnitt (z.B. T3\_100\_Mitte).

Zur Definition eines Widerstandwertes der Querkrafttragfähigkeit wurden die Traglasten der Referenzversuche mit den Versuchen mit geschwächtem Querschnitt verglichen. Mit der Variation der Querschnittshöhe (20, 25, 30 und 35 mm) und des Öffnungsdurchmessers (40, 50, 75, 105, und 125 mm) konnte eine Vielzahl von Verhältnissen d<sub>Ø</sub>/d (Öffnungsdurchmesser / Statischer Höhe) mit Versuchsergebnissen abgedeckt werden. Weiterhin wurde die Höhenlage der Öffnungen im Querschnitt variiert.

# 3.3.1.1 Versuchsparameter Versuchsreihe 1

In der ersten Versuchsreihe wurden Plattenstreifen mit einer Breite von 40 cm und Dicken von 30 cm und 35 cm untersucht. Dabei wurde das Tragverhalten von runden Einzelöffnun-

gen untersucht. Die Höhenlage der Öffnungen im Querschnitt wurde variiert. Die Stützweite der Dreipunktbiegeversuche betrug in dieser Versuchsreihe 2,10 m. In der nachfolgenden Tabelle sind die Versuchsparameter der ersten Versuchsreihe dargestellt.

|              |               | f <sub>c</sub> am Versuchstag | statische Höhe | Außendurchmesser            |      |
|--------------|---------------|-------------------------------|----------------|-----------------------------|------|
| Versuchsname | Versuchsdatum | [14/11111-]                   | a [mm]         | Offnung d <sub>Ø</sub> [mm] | a⊘/a |
| T1_70_unten  | 18.03.2004    | 32,4                          | 248            | 75                          | 0,30 |
| T1_ohne      | 18.03.2004    | 32,4                          | 248            | 0                           | 0,00 |
| T2_70_mitte  | 19.03.2004    | 32,8                          | 248            | 75                          | 0,30 |
| T2_70_oben   | 19.03.2004    | 32,8                          | 248            | 75                          | 0,30 |
| T3_100_mitte | 16.03.2004    | 31,6                          | 248            | 105                         | 0,42 |
| T3_100_oben  | 16.03.2004    | 31,6                          | 248            | 105                         | 0,42 |
| T4_100_unten | 18.03.2004    | 32,4                          | 248            | 105                         | 0,42 |
| T4_120_oben  | 18.03.2004    | 32,4                          | 248            | 125                         | 0,50 |
| T5_120_mitte | 17.03.2004    | 32,0                          | 248            | 125                         | 0,50 |
| T5_Kiefer    | 17.03.2004    | 32,0                          | 248            | 80                          | 0,32 |
| T6_70_mitte  | 08.03.2004    | 28,5                          | 297            | 75                          | 0,25 |
| T6_70_unten  | 09.03.2004    | 28,9                          | 297            | 75                          | 0,25 |
| T7_70_oben   | 15.03.2004    | 31,2                          | 297            | 0                           | 0,00 |
| T8_100_mitte | 15.03.2004    | 31,2                          | 297            | 105                         | 0,35 |
| T8_100_oben  | 16.03.2004    | 31,6                          | 297            | 105                         | 0,35 |

Tabelle 3-1: Übersicht Versuchsreihe 1

#### 3.3.1.2 Versuchsparameter Versuchsreihe 2

Die Plattendicken betrugen in der zweiten Versuchsserie 20 und 25 cm. Auch in der zweiten Versuchsreihe wurden lediglich runde Öffnungen untersucht. Die Öffnungsdurchmesser und Deckendicken wurden so kombiniert, dass möglichst viele Verhältnisse  $d_{\emptyset}$ /d mit Versuchen abgedeckt werden konnten. Zwei Versuchskörper wurden mit zwei nebeneinander angeordneten Öffnungen ausgeführt. Die Würfelfestigkeit betrug ca. 53. N/mm<sup>2</sup>. Die Stützweite betrug bei dieser Versuchsserie 1,70 m.

|              |               | f <sub>c</sub> am Versuchstag | statische Höhe | Außendurchmesser | -l /-l            |
|--------------|---------------|-------------------------------|----------------|------------------|-------------------|
| Versuchsname | Versuchsdatum | [[4/1111-]                    | u [mm]         | Offnung aø [mm]  | a <sub>∅</sub> /a |
| T9_75_mitte  | 15.07.2004    | 52,91                         | 167            | 75               | 0,45              |
| Т9_О         | 16.07.2004    | 52,92                         | 167            | 0                | 0,00              |
| T10_40_oben  | 15.07.2004    | 52,91                         | 167            | 40               | 0,24              |
| T10_75_oben  | 15.07.2004    | 52,91                         | 167            | 75               | 0,45              |
| T11_40_mitte | 15.07.2004    | 52,91                         | 167            | 40               | 0,24              |
| T11_50_oben  | 14.07.2004    | 52,9                          | 167            | 50               | 0,30              |
| T12_40_unten | 14.07.2004    | 52,9                          | 167            | 40               | 0,24              |
| T12_50_unten | 14.07.2004    | 52,9                          | 167            | 50               | 0,30              |
| T13_75_mitte | 20.07.2004    | 53,75                         | 217            | 75               | 0,35              |
| T13_O        | 20.07.2004    | 53,75                         | 217            | 0                | 0,00              |
| T14_75_oben  | 20.07.2004    | 53,75                         | 217            | 75               | 0,35              |
| T14_75_unten | 20.07.2004    | 53,75                         | 217            | 75               | 0,35              |
| T15_15_75    | 21.07.2004    | 54,71                         | 217            | 75               | 0,35              |
| T15_25_75    | 21.07.2004    | 54,71                         | 217            | 75               | 0,35              |

Tabelle 3-2: Übersicht Versuchsreihe 2

#### 3.3.2 Versuchsreihe 3 - DBV 259

Ziel der dritten Versuchsreihe war die Klärung der folgenden Einflüsse auf die Tragfähigkeit:

- D Öffnungsgeometrie, Untersuchung von rechteckigen Öffnungen,
- □ Gruppenanordnung von Öffnungen, Öffnungsabstand,
- □ Lage der Öffnung in Tragrichtung,
- D Öffnungen im Bereich von Momentennullpunkten,
- □ nachträglich ergänzte Querschnitte,
- □ zusätzliche Beanspruchung durch zentrische Zugkraft

In der nachfolgenden Tabelle sind die Parameter der durchgeführten Bauteilversuche der Versuchsreihe 3 dargestellt. Die Stützweite betrug bei allen Versuchen 1,7 m

| Veruchs-<br>bezeichnung | statische<br>Höhe d      | d <sub>ö</sub> | d <sub>ö/d</sub> | Anzahl<br>der<br>Öffnungen |                            |
|-------------------------|--------------------------|----------------|------------------|----------------------------|----------------------------|
|                         |                          |                |                  |                            |                            |
| Gruppenanordn           | ung der Öfl              | inungen        | ì                |                            | Abstand der<br>Öffnungen   |
| T_305                   | 217                      | 75             | 0,35             | 2                          | 2*d <sub>ö</sub>           |
| Т 306                   | 217                      | 75             | 0.35             | 2                          | 3*d <sub>ö</sub>           |
| T_307                   | 217                      | 50             | 0.23             | 2                          | 2*d.                       |
| T_308                   | 217                      | 50             | 0.23             | 2                          | 2*d,                       |
| 1_300                   | 217                      | 50             | 0,23             | 2                          | U Uõ                       |
| Rechteckige Öf          | fnungen                  |                |                  |                            | Breite der<br>Öffnung      |
| T 309                   | 217                      | 50             | 0.23             | 1                          | 150                        |
| T 310                   | 217                      | 50             | 0,23             | 1                          | 250                        |
| T_311                   | 217                      | 20             | 0,09             | 1                          | 150                        |
| T_312                   | 217                      | 20             | 0,09             | 1                          | 250                        |
| T_313                   | 217                      | 20             | 0,09             | 1                          | 150                        |
| T_314                   | 217                      | 20             | 0,09             | 1                          | 250                        |
| l and den Öttern        |                          |                |                  |                            | Abstand der<br>Öffnung vom |
| T 215                   | 19 III Баше              |                |                  | 1                          | Aunagerrand                |
| T 216                   | 217                      | - 75           | - 0.25           | 1                          | - 70                       |
| T_317                   | 217                      | 75             | 0,35             | 1                          | 220                        |
| T_318                   | 217                      | 75             | 0,35             | 1                          | 145                        |
| T_319                   | 217                      | 50             | 0.23             | 1                          | 270                        |
| T 320                   | 217                      | 50             | 0.23             | 1                          | 170                        |
| T 321                   | 217                      | 50             | 0,23             | 1                          | 295                        |
| T_322                   | 217                      | 50             | 0,23             | 1                          | 70                         |
| zentrischer Zug         | kraft                    |                |                  |                            | eingeleitete<br>Zugkraft   |
| LBV 01                  | 217                      | -              | -                | -                          | 190                        |
| LBV 02                  | 217                      | -              | -                | -                          | -                          |
| LBV 03                  | 217                      | 75             | 0,35             | 1                          | 170                        |
| LBV 04                  | 217                      | 50             | 0,23             | 1                          | 140                        |
| LBV 05                  | 217                      | 40             | 0,18             | 1                          | 160                        |
| LBV 06                  | 217                      | 75             | 0,35             | 1                          | 150                        |
|                         | 200                      |                | -                | 1                          |                            |
| T 224                   | 209                      | -              | - 0.24           | 1                          | -                          |
| T_324                   | 209                      | 75             | 0,24             | 1                          | -                          |
| T_326                   | 203                      | 40             | 0,30             | 1                          |                            |
| nachträglich erg        | Abstand der<br>Öffnungen |                |                  |                            |                            |
| PL1_1                   | 187                      | 16             | 0,09             | 6                          | 2*d <sub>ö</sub>           |
| PL1_2                   | 187                      | -              | -                | -                          |                            |
| PL2_1                   | 187                      | 16             | 0,09             | 6                          | 2,5*d <sub>ö</sub>         |
| PL2 2                   | 187                      | 25             | 0,13             | 6                          | 2,5*d <sub>ö</sub>         |
| <br>PL3_1               | 187                      | 25             | 0.13             | 6                          | 2*d.                       |
| PI 3 2                  | 197                      | 32             | 0.17             | 6                          | _ ⊶₀<br>2*d.               |
| FLJ_Z                   | 107                      | 32             | 0,17             | 0                          | z u <sub>ö</sub>           |

Tabelle 3-3: Versuchsparameter Versuchsreihe 3

## 4 Baustoffe

#### 4.1 Beton

#### 4.1.1 Allgemeines

Zur Herstellung aller Versuchskörper wurde sowohl Transportbeton als auch in den Prüfhallen gemischter Beton verwendet. Zu jeder Versuchsreihe wurden Probewürfel (Kantenlänge 150 mm) und Zylinder hergestellt, die zur Bestimmung der Betondruckfestigkeit des E-Moduls und der Spaltzugfestigkeit nach DIN 1048 benutzt wurden. Zur Bestimmung der Betonfestigkeit am jeweiligen Versuchstag erfolgten über die Dauer der Versuchsreihen mehrerer Prüfungen. Die Bestimmung des E-Modul und der Spaltzugfestigkeit wurde nur einmal pro Versuchsreihe vorgenommen.

In den folgenden Abschnitten werden die Ergebnisse der Betonprüfungen dargestellt.

#### 4.1.2 Versuchsserie 1

| Hers | tellungsdatum:* | 16.02.2004  |       |        |            |                 |
|------|-----------------|-------------|-------|--------|------------|-----------------|
|      | Prüfdatum:      | 08.03.2004  |       |        |            |                 |
|      | Alter:          | 21          | Tage  |        |            |                 |
|      |                 |             |       |        |            |                 |
|      |                 |             |       |        |            |                 |
|      | Proben-Nr.      | Abmessungen | Masse | Dichte | Bruchlast  | Druckfestigkeit |
|      |                 | [mm]        | [kg]  | g/cm³  | [kN]       | [N/mm²]         |
|      | 1               | 150*150*150 | 7,908 | 2,343  | 627        | 27,87           |
|      | 2               | 150*150*150 | 7,880 | 2,335  | 653        | 29,02           |
|      | 3               | 150*150*150 | 7,912 | 2,344  | 641        | 28,49           |
|      |                 |             |       |        | Mittelwert | 28,46           |

Tabelle 4-1: Betondruckfestigkeit Versuchsserie 1, Prüfung 1

| Γ | Herstellungsdatur | n:* 16.02.2004 |       |                   |            |                      |
|---|-------------------|----------------|-------|-------------------|------------|----------------------|
| Γ | Prüfdatu          | m: 18.03.2004  |       |                   |            |                      |
|   | Alt               | er: 31         | Tage  |                   |            |                      |
|   |                   |                |       |                   |            |                      |
|   |                   |                |       |                   |            |                      |
|   | Proben-Nr         | Abmessungen    | Masse | Dichte            | Bruchlast  | Druckfestigkeit      |
|   |                   | [mm]           | [kg]  | g/cm <sup>3</sup> | [kN]       | [N/mm <sup>2</sup> ] |
|   | 1                 | 150*150*150    | 7,793 | 2,309             | 742        | 32,98                |
|   | 2                 | 150*150*150    | 7,769 | 2,302             | 728        | 32,36                |
|   | 3                 | 150*150*150    | 7,796 | 2,310             | 719        | 31,96                |
| Г |                   |                |       |                   | Mittelwert | 32 43                |

Tabelle 4-2: Betondruckfestigkeit Versuchsserie 1, Prüfung 2

| Hers | tellungsdatum:* | 16.02.2004  |       |                   |            |                 |
|------|-----------------|-------------|-------|-------------------|------------|-----------------|
|      | Prüfdatum:      | 07.04.2004  |       |                   |            |                 |
|      | Alter:          | 51          | Tage  |                   |            |                 |
|      |                 |             |       |                   |            |                 |
|      |                 |             |       |                   |            |                 |
|      | Proben-Nr.      | Abmessungen | Masse | Dichte            | Bruchlast  | Druckfestigkeit |
|      |                 | [mm]        | [kg]  | g/cm <sup>3</sup> | [kN]       | [N/mm²]         |
|      | 1               | 150*150*150 | 7,915 | 2,345             | 880        | 39,11           |
|      | 2               | 150*150*150 | 7,791 | 2,308             | 889        | 39,51           |
|      | 3               | 150*150*150 | 7,789 | 2,308             | 922        | 40,98           |
|      |                 |             |       |                   | Mittelwert | 39.87           |

Tabelle 4-3: Betondruckfestigkeit Versuchsserie 1, Prüfung 3

Die E – Modul - Prüfung ergab einen Wert von 26.197 N/mm<sup>2</sup>.

#### 4.1.3 Versuchsreihe 2

Die Ergebnisse der Betonprüfungen der zweiten Versuchsserie sind in den nachfolgenden Tabellen angegeben.

| Hers | tellungsdatum:* | 21.06.2004  |       |                   |            |                 |
|------|-----------------|-------------|-------|-------------------|------------|-----------------|
|      | Prüfdatum:      | 14.07.2004  |       |                   |            |                 |
|      | Alter:          | 23          | Tage  |                   |            |                 |
|      |                 |             |       |                   |            |                 |
|      |                 |             |       |                   |            |                 |
|      | Proben-Nr.      | Abmessungen | Masse | Dichte            | Bruchlast  | Druckfestigkeit |
|      |                 | [mm]        | [kg]  | g/cm <sup>3</sup> | [kN]       | [N/mm²]         |
|      | 1               | 150*150*150 | 7,896 | 2,340             | 1177       | 52,31           |
|      | 2               | 150*150*150 | 7,893 | 2,339             | 1202       | 53,42           |
|      | 3               | 150*150*150 | 7,873 | 2,333             | 1192       | 52,98           |
|      |                 |             |       |                   | Mittelwert | 52,90           |

#### Tabelle 4-4: Betondruckfestigkeit Versuchsserie 2, Prüfung1

| Hers | tellungsdatum:* | 21.06.2004  |       |        |            |                 |
|------|-----------------|-------------|-------|--------|------------|-----------------|
|      | Prüfdatum:      | 19.07.2004  |       |        |            |                 |
|      | Alter:          | 28          | Tage  |        |            |                 |
|      |                 |             |       |        |            |                 |
|      |                 |             |       |        |            |                 |
|      | Proben-Nr.      | Abmessungen | Masse | Dichte | Bruchlast  | Druckfestigkeit |
|      |                 | [mm]        | [kg]  | g/cm³  | [kN]       | [N/mm²]         |
|      | 1               | 150*150*150 | 7,884 | 2,336  | 1231       | 54,71           |
|      | 2               | 150*150*150 | 7,908 | 2,343  | 1164       | 51,73           |
|      | 3               | 150*150*150 | 7,882 | 2,335  | 1179       | 52,40           |
|      |                 |             |       |        | Mittelwert | 52,95           |

Tabelle 4-5: Betondruckfestigkeit Versuchsserie 2, Prüfung 2

| Hers | tellungsdatum:* | 21.06.2004  |       |        |            |                 |
|------|-----------------|-------------|-------|--------|------------|-----------------|
|      | Prüfdatum:      | 21.07.2004  |       |        |            |                 |
|      | Alter:          | 30          | Tage  |        |            |                 |
|      |                 |             |       |        |            |                 |
|      |                 |             |       |        |            |                 |
|      | Proben-Nr.      | Abmessungen | Masse | Dichte | Bruchlast  | Druckfestigkeit |
|      |                 | [mm]        | [kg]  | g/cm³  | [kN]       | [N/mm²]         |
|      | 1               | 150*150*150 | 7,890 | 2,338  | 1239       | 55,07           |
|      | 2               | 150*150*150 | 7,935 | 2,351  | 1225       | 54,44           |
|      | 3               | 150*150*150 | 7,886 | 2,337  | 1229       | 54,62           |
|      |                 |             |       |        | Mittelwert | 54,71           |

Tabelle 4-6: Betondruckfestigkeit Versuchsserie 2 Prüfung 3

Die E-Modul- Prüfung ergab einen E-Modul von 33.100 N/mm<sup>2</sup>.

## 4.1.4 Versuchsreihe 3

#### 4.1.4.1 Rechteckige Öffnungen, Lage der Öffnung im Bauteil, Gruppenanordnung

| Her | stellungsdatum: | 03.02.2005  |       |                   |            |                 |
|-----|-----------------|-------------|-------|-------------------|------------|-----------------|
|     | Prüfdatum:      | 22.03.2005  |       |                   |            |                 |
|     | Alter:          | 47          | Tage  |                   |            |                 |
|     |                 |             |       |                   |            |                 |
|     |                 |             |       |                   |            |                 |
|     | Proben-Nr.      | Abmessungen | Masse | Dichte            | Bruchlast  | Druckfestigkeit |
|     |                 | [mm]        | [kg]  | g/cm <sup>3</sup> | [kN]       | [N/mm²]         |
|     | 1               | 150*150*150 | 7,671 | 2,273             | 867        | 38,53           |
|     | 2               | 150*150*150 | 7,712 | 2,285             | 834        | 37,07           |
|     | 3               | 150*150*150 | 7,670 | 2,273             | 836        | 37,16           |
|     |                 |             |       |                   | Mittelwert | 37,59           |

#### Tabelle 4-7: Betondruckfestigkeit erste Prüfung

| Hers | tellungsdatum:* | 03.02.2005  |       |        |            |                 |
|------|-----------------|-------------|-------|--------|------------|-----------------|
|      | Prüfdatum:      | 07.04.2005  |       |        |            |                 |
|      | Alter:          | 63          | Tage  |        |            |                 |
|      |                 |             |       |        |            |                 |
|      |                 |             |       |        |            |                 |
|      | Proben-Nr.      | Abmessungen | Masse | Dichte | Bruchlast  | Druckfestigkeit |
|      |                 | [mm]        | [kg]  | g/cm³  | [kN]       | [N/mm²]         |
|      | 1               | 150*150*150 | -     | -      | 881        | 39,16           |
|      | 2               | 150*150*150 | -     | -      | 875        | 38,89           |
|      | 3               | 150*150*150 | -     | -      | 872        | 38,76           |
|      |                 |             |       |        | Mittelwert | 38,93           |

Tabelle 4-8: Betondruckfestigkeit zweite Prüfung

Der E-Modul betrug 27.099 N/mm<sup>2</sup> und die mittlere Betonzugfestigkeit f<sub>ctm</sub> 3,03 N/mm<sup>2</sup>.

#### 4.1.4.2 Öffnungen im Momentennullpunkt

Der Beton für diese Versuchsreihe wurde im Labor für konstruktiven Ingenieurbau hergestellt.

| Hers | stellungsdatum: |     | 07.06.2005          |        |       |          |            |                 |
|------|-----------------|-----|---------------------|--------|-------|----------|------------|-----------------|
|      | Prüfdatum:      |     | 05.0                | 7.2005 |       |          |            |                 |
|      | Alter:          |     |                     | 28     | Tage  |          |            |                 |
|      |                 |     |                     |        |       |          |            |                 |
|      |                 |     |                     |        |       |          |            |                 |
|      | Proben-Nr.      | Abr | Abmessungen<br>[mm] |        | Masse | Dichte   | Bruchlast  | Druckfestigkeit |
|      |                 | L   | В                   | Н      | [~9]  | [g/ciii] | [KN]       |                 |
|      | CT2             | 150 | 150                 | 150    | 7,750 | 2,296    | 808        | 35,91           |
|      | CT2             | 150 | 150                 | 150    | 7,800 | 2,311    | 758        | 33,69           |
|      |                 |     |                     |        |       |          |            |                 |
|      |                 |     |                     |        |       |          | Mittelwert | 34,80           |

Tabelle 4-9: Betondruckfestigkeit Versuchskörper T326

#### Schlussbericht DBV 250 und DBV 259

| Hers | stellungsdatum:   |                   | 07.06.2005          |                   |                         |                         |                   |                         |
|------|-------------------|-------------------|---------------------|-------------------|-------------------------|-------------------------|-------------------|-------------------------|
|      | Prüfdatum:        |                   | 06.0                | 7.2005            |                         |                         |                   |                         |
|      | Alter:            |                   |                     | 29                | Tage                    |                         |                   |                         |
|      |                   |                   |                     |                   |                         |                         |                   |                         |
|      |                   |                   |                     |                   |                         |                         |                   |                         |
|      | Proben-Nr.        | Abr               | Abmessungen<br>[mm] |                   | Masse                   | Dichte                  | Bruchlast         | Druckfestigkeit         |
|      |                   | L                 | В                   | Н                 | [rg]                    | [g/cm <sup>2</sup> ]    | נגואן             | [[%/11111-]             |
|      |                   |                   |                     |                   |                         |                         |                   |                         |
|      | CT4               | 150               | 150                 | 150               | 7,780                   | 2,305                   | 830               | 36,89                   |
|      | CT4<br>CT4        | 150<br>150        | 150<br>150          | 150<br>150        | 7,780<br>7,780          | 2,305<br>2,305          | 830<br>834        | 36,89<br>37,07          |
|      | CT4<br>CT4<br>CT4 | 150<br>150<br>150 | 150<br>150<br>150   | 150<br>150<br>150 | 7,780<br>7,780<br>7,810 | 2,305<br>2,305<br>2,314 | 830<br>834<br>845 | 36,89<br>37,07<br>37,56 |

#### Tabelle 4-10: Betondruckfestigkeit Versuchskörper T325

| Hers | Herstellungsdatum: |     | 07.0                | 6.2005 |       |          |             |                 |
|------|--------------------|-----|---------------------|--------|-------|----------|-------------|-----------------|
|      | Prüfdatum:         |     | 05.0                | 7.2005 |       |          |             |                 |
|      | Alter:             |     |                     | 28     | Tage  |          |             |                 |
|      |                    |     |                     |        |       |          |             |                 |
|      |                    |     |                     |        |       |          |             |                 |
|      | Proben-Nr.         | Abr | Abmessungen<br>[mm] |        | Masse | Dichte   | Bruchlast   | Druckfestigkeit |
|      |                    | L   | В                   | Н      | [~9]  | [g/ciii] | [KIN]       |                 |
|      | CT4                | 150 | 150                 | 150    | 7,770 | 2,302    | 776         | 34,49           |
|      | CT4                | 150 | 150                 | 150    | 7,780 | 2,305    | 794         | 35,29           |
|      | CT4                | 150 | 150                 | 150    | 7,680 | 2,276    | 742         | 32,98           |
|      |                    |     |                     |        |       |          | Mittalucart | 24 25           |

#### Tabelle 4-11: Betondruckfestigkeit Versuchkörper T324

| Prüfdatum: |     | 06.0                | 7.2005 |       |                      |            |                 |
|------------|-----|---------------------|--------|-------|----------------------|------------|-----------------|
| Alter:     |     |                     | 29     | Tage  |                      |            |                 |
|            |     |                     |        |       |                      |            |                 |
|            |     |                     |        |       |                      |            |                 |
| Proben-Nr. | Abr | Abmessungen<br>[mm] |        | Masse | Dichte               | Bruchlast  | Druckfestigkeit |
|            | L   | В                   | Н      | [rg]  | [g/cm <sup>2</sup> ] | ניואן      | [[%/11111-]     |
| CT4        | 150 | 150                 | 150    | 7,730 | 2,290                | 788        | 35,02           |
| CT4        | 150 | 150                 | 150    | 7,770 | 2,302                | 818        | 36,36           |
| CT4        | 150 | 150                 | 150    | 7,710 | 2,284                | 809        | 35,96           |
|            |     |                     |        |       |                      | Mittelwert | 35,78           |
|            |     |                     |        |       |                      |            |                 |

Tabelle 4-12: Betondruckfestigkeit Versuchskörper T323

Der E-Modul betrug 26.145 N/mm<sup>2</sup> und die mittlere Betonzugfestigkeit  $f_{ctm}$  2,48 N/mm<sup>2</sup>.

## 4.1.4.3 Zusatzbeanspruchung durch zentrische Zugkraft

| Her | stellungsdatum: |     | 05.08.2005          |        |       |           |            |                 |
|-----|-----------------|-----|---------------------|--------|-------|-----------|------------|-----------------|
|     | Prüfdatum:      |     | 29.0                | 8.2005 |       |           |            |                 |
|     | Alter:          |     |                     | 24     | Tage  |           |            |                 |
|     |                 |     |                     |        |       |           |            |                 |
|     |                 |     |                     |        |       |           |            |                 |
|     | Proben-Nr.      | Abr | Abmessungen<br>[mm] |        | Masse | Dichte    | Bruchlast  | Druckfestigkeit |
|     |                 | L   | В                   | Н      | [^9]  | [g/ciii-] | נגואן      |                 |
|     | CT4             | 150 | 150                 | 150    | 7,550 | 2,237     | 469        | 20,84           |
|     | CT4             | 150 | 150                 | 150    | 7,540 | 2,234     | 494        | 21,96           |
|     | CT4             | 150 | 150                 | 150    | 7,610 | 2,255     | 542        | 24,09           |
|     |                 |     |                     |        |       |           | Mittelwert | 22.30           |

#### Tabelle 4-13: Betondruckfestigkeit Versuchskörper LBV 1 + LBV 2

| Hers | stellungsdatum: | tellungsdatum: 05.08.2005 |                     |        |       |        |            |                 |
|------|-----------------|---------------------------|---------------------|--------|-------|--------|------------|-----------------|
|      | Prüfdatum:      |                           | 01.0                | 9.2005 |       |        |            |                 |
|      | Alter:          |                           |                     | 27     | Tage  |        |            |                 |
|      |                 |                           |                     |        |       |        |            |                 |
|      |                 |                           |                     |        |       |        |            |                 |
|      | Proben-Nr.      | Abr                       | Abmessungen<br>[mm] |        | Masse | Dichte | Bruchlast  | Druckfestigkeit |
|      |                 | L                         | В                   | Н      | [~9]  | [g/cm] | נגואן      |                 |
|      | CT4             | 150                       | 150                 | 150    | 7,540 | 2,234  | 545        | 24,22           |
|      | CT4             | 150                       | 150                 | 150    | 7,450 | 2,207  | 536        | 23,82           |
|      | CT4             | 150                       | 150                 | 150    | 7,480 | 2,216  | 535        | 23,78           |
|      |                 |                           |                     |        |       |        | Mittelwert | 23,94           |

#### Tabelle 4-14: Betondruckfestigkeit Versuchskörper LBV 3 + LBV 4

| Her | stellungsdatum: |     | 05.0                | 8.2005 |       |           |            |                 |
|-----|-----------------|-----|---------------------|--------|-------|-----------|------------|-----------------|
|     | Prüfdatum:      |     | 02.0                | 9.2005 |       |           |            |                 |
|     | Alter:          |     |                     | 28     | Tage  |           |            |                 |
|     |                 |     |                     |        |       |           |            |                 |
|     |                 |     |                     |        |       |           |            |                 |
|     | Proben-Nr.      | Abr | Abmessungen<br>[mm] |        | Masse | Dichte    | Bruchlast  | Druckfestigkeit |
|     |                 | L   | В                   | н      | [rg]  | [g/ciii-] | ניואן      | [[%/11111-]     |
|     | CT4             | 150 | 150                 | 150    | 7,520 | 2,228     | 516        | 22,93           |
|     | CT4             | 150 | 150                 | 150    | 7,450 | 2,207     | 494        | 21,96           |
|     | CT4             | 150 | 150                 | 150    | 7,440 | 2,204     | 505        | 22,44           |
|     |                 |     |                     |        |       |           | Mittelwert | 22.44           |

Tabelle 4-15: Betondruckfestigkeit Versuchskörper LBD 5 + LBV 6

| LBV | E-Modul [MN/m <sup>2</sup> ] | f <sub>ct,m</sub> [N/mm²] |
|-----|------------------------------|---------------------------|
| 1+2 | 30803                        | 1,77                      |
| 3+4 | 31969                        | 1,91                      |
| 5+6 | 32362                        | 1,84                      |

Tabelle 4-16: E-Modul und mittlere Betonzugfestigkeit

| Hers | stellungsdatum: |     | 13.03.2006          |     |       |           |            |                 |
|------|-----------------|-----|---------------------|-----|-------|-----------|------------|-----------------|
|      | Prüfdatum:      |     | 11.04.2006          |     |       |           |            |                 |
|      | Alter:          |     |                     | 29  | Tage  |           |            |                 |
|      |                 |     |                     |     |       |           |            |                 |
|      |                 |     |                     |     |       |           |            |                 |
|      | Proben-Nr.      | Abr | Abmessungen<br>[mm] |     | Masse | Dichte    | Bruchlast  | Druckfestigkeit |
|      |                 | L   | В                   | Н   | [rg]  | [g/ciii-] | ניואן      |                 |
|      | CT4             | 150 | 150                 | 150 | 7,724 | 2,289     | 783        | 34,80           |
|      | CT4             | 150 | 150                 | 150 | 7,640 | 2,264     | 756        | 33,60           |
|      | CT4             | 150 | 150                 | 150 | 7,755 | 2,298     | 728        | 32,36           |
|      |                 |     |                     |     |       |           | Mittelwert | 33.59           |

#### 4.1.4.4 Nachträglich ergänzte Querschnitte -Ortbetonergänzung

Tabelle 4-17: Betondruckfestigkeit der Ortbetonergänzung

Der E-Modul betrug 27671 N/mm<sup>2</sup> und die mittlere Betonzugfestigkeit f<sub>ctm</sub> 2,4 N/mm<sup>2</sup>

#### 4.2 Betonstahl

Für die Längsbewehrung wurden Stabdurchmesser 14 und 16 mm verwendet. Für die Querbewehrung Stabdurchmesser 10 und 12 mm.

Zugfestigkeit, obere Streckgrenze und E-Modul wurden an jeweils 3 Proben der Längsbewehrung bestimmt.

| Probe | Durchmesser [mm] | E-Modul [N/mm <sup>2</sup> ] | Zugfestigkeit [N/mm <sup>2</sup> ] | [N/mm <sup>2</sup> ] |
|-------|------------------|------------------------------|------------------------------------|----------------------|
| 1     | 16               | -                            | 647                                | 579                  |
| 2     | 16               | 199797                       | 650                                | 578                  |
| 3     | 16               | 194162                       | 658                                | 584                  |
|       | Mittelwert       | 196980                       | 652                                | 580                  |

In den nachfolgenden Tabellen sind die Materialkennwerte aufgeführt.

| Taballa 1-18. | Bowehrungestahlnrohen | Varsucheraiha 1  | d = 16  mm |
|---------------|-----------------------|------------------|------------|
|               | Dewennungsstamproben  | versuchsteine I, |            |

|       |                  |                              |                                    | obere Streckgrenze |
|-------|------------------|------------------------------|------------------------------------|--------------------|
| Probe | Durchmesser [mm] | E-Modul [N/mm <sup>2</sup> ] | Zugfestigkeit [N/mm <sup>2</sup> ] | [N/mm²]            |
| 1     | 14               | -                            | 668                                | 576                |
| 2     | 14               | 198185                       | 679                                | 592                |
| 3     | 14               | 205859                       | 680                                | 576                |
|       | Mittelwert       | 202022                       | 676                                | 581                |

Tabelle 4-19: Bewehrungsstahlproben Versuchsreihe 1 d=14 mm

|       |                  |                              |                                    | obere Streckgrenze |
|-------|------------------|------------------------------|------------------------------------|--------------------|
| Probe | Durchmesser [mm] | E-Modul [N/mm <sup>2</sup> ] | Zugfestigkeit [N/mm <sup>2</sup> ] | [N/mm²]            |
| 1     | 16               | 199800                       | 708                                | 630                |
| 2     | 16               | 195202                       | 712                                | 632                |
| 3     | 16               | 193665                       | 712                                | 633                |
|       | Mittelwert       | 196222                       | 710                                | 632                |

Tabelle 4-20: Bewehrungsstahlproben Versuchsserie 2, d=16 mm

|       |                  |                              |                                    | obere Streckgrenze |
|-------|------------------|------------------------------|------------------------------------|--------------------|
| Probe | Durchmesser [mm] | E-Modul [N/mm <sup>2</sup> ] | Zugfestigkeit [N/mm <sup>2</sup> ] | [N/mm²]            |
| 1     | 10               | 187637                       | 675                                | 591                |
| 2     | 10               | 196643                       | 668                                | 573                |
|       | Mittelwert       | 192140                       | 672                                | 582                |

Tabelle 4-21: Bewehrungsstahlproben Versuchsserie 3 d=10 mm

|       |                  |                              |                                    | obere Streckgrenze |
|-------|------------------|------------------------------|------------------------------------|--------------------|
| Probe | Durchmesser [mm] | E-Modul [N/mm <sup>2</sup> ] | Zugfestigkeit [N/mm <sup>2</sup> ] | [N/mm²]            |
| 1     | 16               | 196815                       | 704                                | 627                |
| 2     | 16               | 206303                       | 706                                | 629                |
| 3     | 16               | 199846                       | 709                                | 634                |
|       | Mittelwert       | 200988                       | 706                                | 630                |

Tabelle 4-22: Bewehrungsstahlproben Versuchserie 3 d=16 mm

# 5 Versuchsbeschreibung

#### 5.1 Versuchsreihe 1 und 2

#### 5.1.1 Versuchsaufbau

Der Versuchsaufbau besteht aus den Auflagerböcken (Linienlager), dem Versuchskörper und der Lasteinleitung.

Die Versuchskörper werden über ihre gesamte Breite von 40 cm auf Linienlagern gelagert. Zwischen der Lagerrolle und dem Versuchskörper dient eine Stahlplatte mit einer Dicke von 20 mm und einer Breite von 10 cm als Lastverteilung. Die Rollen der Linienlager können fixiert werden, so dass entweder ein frei drehbares Lager und ein Festlager entsteht.

Die Belastung der Versuchsträger erfolgt mit einem Lukas-Hydraulikzylinder über eine Kalotte, die auf einem massiven Stahlquader steht und die Einzellast vom Zylinder auf die Breite des Versuchskörpers verteilt. Eine Schicht aus 5 mm dickem Hartgummi dient als Ausgleichsschicht zwischen Stahlquader und Beton.



Abbildung 5-1: Versuchsaufbau

#### 5.1.2 Messtechnik

Die Messungen wurden mit dem Messverstärker Spider 8 (Hottinger Baldwin Messtechnik) und der Software Catman aufgezeichnet.

Dieses Datenerfassungsverfahren erlaubt eine kontinuierliche Aufzeichnung der Messwerte während des Versuchs. Die Aufzeichnungsrate wurde zu 1 Hz gewählt.

Die eingeleitete Kraft wird mittels einer Kraftmessdose, die zwischen Hydraulikzylinder und Versuchskörper angeordnet wurde, gemessen.

Die Verformungsmessungen wurden mit induktiven Wegaufnehmern der Firma Hottinger-Baldwin- Messtechnik durchgeführt. Die Messlänge ergab sich je nach Erfordernis zwischen 10 und 50 mm.

Die Dehnungen der Längsbewehrung wird mittels Dehnungsmessstreifen des Typs LY 6/120 gemessen.



Abbildung 5-2: Messtechnik Versuchskörper T4\_100\_unten

In Abbildung 5-2 sind beispielhaft für einen Versuchkörper die Messstellen dargestellt.

Die Biegelinie wurde mit Hilfe von 5 Wegaufnehmern in den Viertelpunkten des Trägers aufgezeichnet. Links und rechts der Öffnung sowie im Anstand von 25 cm zur Öffnungsachse wurden Wegaufnehmer in vertikaler Richtung am Plattenstreifen befestigt. Weiterhin wurde ein Wegaufnehmer am oberen Rand des Plattenstreifens im Bereich der Öffnung installiert.

Der Dehnmessstreifen an der Längsbewehrung in Feldmitte gab während der Versuche Aufschluss über den Beanspruchungsgrad der Längsbewehrung und ein eventuell bevorstehendes Biegeversagen des Trägers.

Bei zwei Versuchen wurde zusätzlich zur oben beschriebenen Messtechnik eine Messung mittels Fotogrammetrie durchgeführt. Dazu wurde ein Raster von schwarzen Messmarken auf die Betonoberfläche aufgeklebt und während des Versuchs mit drei fest installierten digitalen Kameras aufgenommen.



Bild 5-1: Fotogrammetrie

Das Auswertprogramm erkennt die Messpunkte und vergleicht die Koordinaten zweier nacheinander folgender Bilderserien. Die verwendete Technik wurde zur besseren Beobachtung der Rissentwicklung konzipiert. Zur Darstellung der Betondehnungen ist die Auflösung der Systems zu gering.

Die Messungen wurden dankenswerterweise von Herrn Lange und Herrn Dr. Schwermann von der RWTH Aachen durchgeführt.

Bei der zweiten Versuchsreihe wurden Dehnmessstreifen im Bereich der Biegedruckzone über den Öffnungen auf die Betonoberfläche appliziert.

# 5.1.3 Versuchsdurchführung

Die Belastung der Versuchskörper erfolgte weggeregelt. Die Laststeigerung betrug pro Lastschritt ca. 5-10 kN. Nach Erreichen der Ziellast kann bei Wegregelung eine Abnahme der Last beobachtet werden. Zwischen jedem Lastschritt vergingen etwa fünf Minuten. Etwa nach dieser Zeit konnte der Stillstand der Lastabnahme beobachtet werden.

Mindestens nach dem Erreichen jeder zweiten Laststufe wurden die entstandenen Risse markiert und mit der jeweils erreichten Laststufe beschriftet. Die Bruchbilder mit den eingezeichneten Rissen können dem Anhang entnommen werden.

# 5.2 Versuchsreihe 3

## 5.2.1 Allgemeines

Der Versuchsaufbau, die Messtechnik und die Versuchsdurchführung entsprechen dem im den Abschnitten 5.1.1 - 5.1.3 beschriebenen Vorgehen. Im Folgenden werden nur die von dem oben beschriebenen Verfahren abweichenden Versuchsbedingungen erläutert.

# 5.2.2 Öffnungen im Momentennullpunkt

Zur Untersuchung von Öffnungen im Momentennullpunkt wurden Versuchskörper als Einfeldträger mit Kragarm hergestellt. Die Belastung in Feldmitte entsprach der dreifachen Kragarmbelastung. Die Öffnungen wurden im Momentnullpunkt angeordnet.



Abbildung 5-3: Versuchsaugbau Öffnungen im Momentennullpunkt

Es wurden insgesamt vier Versuche durchgeführt. Ein Referenzversuch ohne Öffnungen und drei Versuche mit Öffnungsdurchmessern von 40, 50 und 75 mm.

#### 5.2.3 Versuche an Elementplatten

Die Versuchskörper wurden als Plattenstreifen mit jeweils 2 Gitterträgern aus einer Elementplatte aus einem Fertigteilwerk gewonnen. In den folgenden Bilder sind die Querschnitte der Plattenstreifen dargestellt.



Bild 5-2: Querschnitt Elementplatte 1



Bild 5-3: Querschnitt Elementplatte 2



Bild 5-4: Querschnitt Elementplatte 3

Zur Beurteilung der Fugentragfähigkeit wurde die Rautiefe der Fertigteile mit dem Sandflächenverfahren nach Kaufmann [17] bestimmt. Dabei wird eine definierte Sandmenge auf der zu prüfenden Oberfläche kreisförmig so verteilt, dass die Vertiefungen gerade gefüllt sind. Hilfsmittel dazu sind:

- □ Gefäß mit bekanntem Hohlrauminhalt
- □ Trockener Quarzsand, Körnung 0,1-0,5 mm
- □ Runde Hartholzscheibe (Durchmesser 5 cm, 1 cm dick)
- □ Zollstock



Bild 5-5: Zubehör Sandflächenverfahren

Nach Heft 525 des Deutschen Ausschuss für Stahlbetonbau ist eine Oberfläche rau, wenn der Rauigkeitsparameter  $R_t > 0.9$  ist. Der Rauigkeitsparameter  $R_t$  berechnet sich nach der folgenden Gleichung:

$$\mathsf{R}_{\mathsf{t}} = \frac{40 \cdot \mathsf{V}[\mathsf{cm}^3]}{\pi \cdot \mathsf{d}^2[\mathsf{cm}]} \tag{5.1}$$

mit V: Volumen des Sandes

d: Durchmesser des entstehenden Sandkreises

Im nachfolgenden Bild ist die Oberfläche der in den Versuchen benutzen Elementplatten dargestellt.



Bild 5-6: Oberfläche der verwendeten Elementplatten

Die Oberfläche wurde profiliert. Allerdings wäre eine Riefung senkrecht zu den Gitterträgern sinnvoller. Die entstandene Oberfläche ist sehr inhomogen. Das Sandflächenverfahren wurde deshalb an mehreren Stellen der Elementplatte angewendet. So kann eine Aussage über die mittlere Rauigkeit getroffen werden.

Zur Erfüllung der Bedingungen nach Heft 525 muss der Durchmesser des entstehenden Kreises bei einer Sandmenge von 2cl kleiner als 16,8 cm sein.

$$0,9 \geq \frac{40 \cdot 20}{\pi \cdot 16,8^2} = 0,902$$



Bild 5-7: Versuche zur Bestimmung der Rautiefe

Die Messungen ergaben sehr unterschiedliche Werte in Abhängigkeit der Lage des Kreismittelpunktes. Lag dieser beispielsweise zwischen zwei Ritzungen, so ergab sich ein Kreisdurchmesser von 10,5 cm (ohne Abbildung). Lag der Kreismittelpunkt jedoch zwischen zwei Ritzungen mit großem Abstand und wurde der Sand bewusst nur zwischen den Ritzungen verteilt so ergaben sich Durchmesser von bis zu 18 cm.

Die Rautiefe der Elementplatten liegt entsprechend der oben angegebenen Formel zwischen 2,3 und 0,79. Die Oberflächenbeschaffenheit der Elementplatten kann also im Mittel als rau angenommen werden.

#### 5.2.4 Versuche mit zusätzlicher Zugnormalkraft

Für die im Folgenden beschriebenen Versuche wurde der Versuchsaufbau erweitert. Die Zugkrafteinleitung erfolgte mit einem waagrecht angeordneten Hydraulikzylinder. Die Zugkrafteinleitung erfolgte über GEWI – Stäbe. Eine Anschlussbewehrung in den Versuchskörpern stellte die Einleitung der Zugkraft sicher.

Im nachfolgenden Bild ist der Versuchsaufbau schematisch dargestellt.

(5.2)



Abbildung 5-4: Versuchaufbau der Versuche mit Zugkraft

Zur Eintragung der Zugkraft diente ein horizontal angeordneter Zylinder. Der Zylinder wurde über eine Koppelplatte und GEWI-Stäbe mit dem Versuchskörper verbunden. Die Rückverankerung der Zugkraft erfolgte über aus dem Versuchskörper herausgeführte GEWI - Stäbe die an einen Widerlager befestigt wurden.

Auf Grund der unterschiedlichen oberen und unteren Bewehrung entstand beim Einleiten der Zugkraft eine geringe Exzentrizität.

Nach Erreichen der gewünschten Zugkraft wurde die Vertikalkraft mittels einer Hohlkolbenpresse aufgebracht.

Die Zugkraft wurde während der Vertikallastaufbringung konstant gehalten.

# 6 Versuchsauswertungen

#### 6.1 Versuchsreihe 1 und 2

#### 6.1.1 Versagen

Die Versagensart aller Plattenstreifen war Querkraftversagen. Ausgehend von den Biegerissen im Bereich der Öffnung pflanzte sich der Versagensriss ausgehend von der Öffnung in die Druckzone des Querschnitts fort.



Bild 6-1: Versagensbild VersuchT14\_75\_unten

In Bild 6-1 ist beispielhaft ein Versagensbild dargestellt. Bei fast allen Versuchen stellte sich ein Schubriss ein, der die Öffnung kreuzte. Nur bei sehr kleinem Verhältnis von Öffnungsdurchmesser zu Statischer Höhe und Lage der Öffnung im oberen Bereich des Querschnitts entstand zwar zunächst ein Riss durch die Öffnung, der zum Versagen führende Schubriss verlagerte sich jedoch in den Bereich unterhalb der Öffnung (Bild 6-2).



Bild 6-2: Querkraftversagen unterhalb der Öffnung (T11\_50\_oben)

Die Versagensbilder aller Versuche werden im Anhang dargestellt.

#### 6.1.2 Messergebnisse

Beispielhaft werden hier die Messergebnisse des Versuches T4\_120\_oben dargestellt und erläutert. Die Messergebnisse aller Versuche können dem Anhang entnommen werden.

Das nachfolgende Diagramm zeigt das Last – Verformungsdiagramm des Versuchskörpers T4\_120\_oben. Dazu wird die Mittendurchbiegung über die aufgebrachte Kraft aufgetragen. Bei ca. 60 kN erkennt man an der Steifigkeitsänderung den Übergang von Zustand I zu Zustand II. Bei einer Last von 138 kN tritt ein plötzliches Versagen mit einem Lastabfall von 70 kN auf. Eine Bruchvorankündigung kann aus dem Last-Verformungs-Diagramm nicht abgelesen werden.



Diagramm 6-1: Kraft-Dehnungsdiagramm T4\_120\_oben

Diagramm 6-2 zeigt die Biegelinien des Versuchs bei verschiedenen Laststufen. Schon bei ca. 119 kN ist eine, im Vergleich zur Versuchsträgerseite ohne Öffnung, größere Durchbiegung zu beobachten.



Diagramm 6-2: Biegelinien Versuch T4\_120\_oben

Ein Wegaufnehmer zeichnete während des Versuches die Dehnungen der Druckzone im Bereich der Öffnungen auf. Bis zu einer Last von 100 kN wird die Druckzone wie erwartet gestaucht. Mit dem ersten Auftreten eines Schubrisses ausgehend vom oberen Öffnungsbereich geht die Stauchung der Druckzone zurück. Bei einer Dehnung von ca. 0,2 ‰ können die entstehenden Zugspannungen am oberen Querschnittsrand nicht mehr aufgenommen werden. Es entsteht ein Riss ausgehend vom oberen Querschnittsrand bis hin zur Öffnung (in Abbildung 6-1 rot dargestellt).



Diagramm 6-3: Dehnung der Druckzone im Bereich der Öffnung



Abbildung 6-1: Versuch T4\_120\_oben

Diagramm 6-4 zeigt die Dehnungen der Längsbewehrung. In Abbildung 6-1 ist die Lage der Dehnmessstreifen (DMS) im Versuchskörper entsprechend den Farben der Kurven dargestellt. DMS 3 wurde in Feldmitte angeordnet und erfährt die größte Dehnung. DMS 1 liegt im

Bereich zwischen Öffnung und Auflager. Kurz vor dem Erreichen der Traglast steigt die Dehnung überproportional an.



Diagramm 6-4: Dehnung der Längsbewehrung

Diagramm 6-5 zeigt die Messergebnisse dreier Wegaufnehmer, die die Änderungen der Versuchskörperdicke maßen. In Abbildung 6-1 ist die Lage dieser Wegaufnehmer dargestellt. Ab einer Last von etwas 110 kN ist eine deutliche Aufwölbung des Querschnitts im Bereich der Öffnung zu beobachten. Bei dieser Last entstehen auch die ersten Schubrisse ausgehend von der Öffnung.



Diagramm 6-5: Messdaten der Wegaufnehmer (Dickenänderung des Querschnitts)

#### 6.1.3 Fotogrammetrie

In Abbildung 6-2 bis Abbbildung 6-5 sind Ergebnisbilder der photogrammetrischen Messung von Versuch T5 (Öffnungsaußendurchmesser 70 mm) dargstellt. Die dargestellten Balken stellen die Abstandsänderung der Messpunkte dar. Die Extremwerte an den Rändern sind Ausreißer die z.B. durch das Lösen einzelner Messpunkte entstehen können. In Abbildung 6-4 kann man die Entstehung der ersten Biegerisse erkennen. Die Risspitze der Biegerisses auf der lastabgewandten Seite der Öffnung hat die Öffnung schon erreicht, während der Biegeriss rechts der Öffnung noch nicht so weit ausgeprägt ist.



Abbildung 6-4: T5\_Kiefer Stadium 3

Abbildung 6-5: T5\_Kiefer Stadium 4

Der Biegeriss links der Öffnung neigt sich, entwickelt sich oberhalb der Öffnung weiter und pflanzt sich bis zum Erreichen der Traglast in die Druckzone fort. Kurz vor dem Erreichen der Traglast entsteht auf der Höhe der Längsbewehrung ein Schrägriss ausgehend vom maßgebenden Versagensriss.

Im Folgenden ist in den Bildern (Abbildung 6-6 – Abbildung 6-11) die Rissentwicklung des Versuchs T5\_120\_mitte dargestellt.







Die Rissentwicklung in diesem Versuch unterscheidet sich vom oben genannten dadurch, dass der zum Versagen führende Riss sich nicht aus einem Biegeriss entwickelt sondern von der Öffnung ausgehend entsteht. Erst kurz vor Erreichen der Traglast vereinigt sich dieser Riss mit einem Biegeriss links der Öffnung und pflanzt sich dann auf Höhe der Bewehrung Richtung Lasteinleitung fort.

#### 6.1.4 Übersicht Traglasten

In Tabelle 6-1 sind die Traglasten, die Betonfestigkeiten, sowie wesentliche Kennwerte aller Versuche mit einer Einzelöffnung und die entsprechenden Referenzversuche dargestellt. Die Bestimmung der Traglastabminderung gegenüber dem Vollquerschnitt erfolgte zunächst mit zwei unterschiedlichen Vergleichslasten:

- 1. Vergleich mit dem Referenzlasten aus den Traglastversuchen
- 2. Vergleich mit dem rechnerisch ermittelten mittleren Widerstandswert  $V_{Rm,ct}$

V<sub>Rm,ct</sub> wurde nach folgender Gleichung ermittelt:

$$V_{\text{Rm,ct}} = 0, 2 \cdot \kappa \cdot \eta_1 \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3} \cdot b_w \cdot d$$
(6.1)

|                 | Versuche     |                           |       |                    |                             |                  | A          |      | E / rochporiacho |                     |
|-----------------|--------------|---------------------------|-------|--------------------|-----------------------------|------------------|------------|------|------------------|---------------------|
|                 | bezeichnung  | f                         | 0     | Α.                 | Maximallast im<br>Versuch F | statische Höhe d | Öffnung da | d∝/d | Referenzlast     | F/F ar              |
|                 | [-]          | <sup>.</sup> c<br>[N/mm²] | [-]   | [cm <sup>2</sup> ] | [kN]                        | [mm]             | [mm]       | [-]  | [-]              | - u / · u, Referenz |
| Versuchsreihe 1 | T1 70 unten  | 32.4                      | 0.009 | 91                 | 171                         | 248              | 75         | 0.30 | 0.77             | 0.80                |
| Versuchsreihe 1 | T1_ro_amon   | 32.4                      | 0,000 | 91                 | 213                         | 248              | 0          | 0,00 | 0.95             | 1.00                |
| Versuchsreihe 1 | T2 70 mitte  | 32.8                      | 0,009 | 91                 | 188                         | 248              | 75         | 0.30 | 0.85             | 0.88                |
| Versuchsreihe 1 | T2 70 oben   | 32.8                      | 0.009 | 9.1                | 218                         | 248              | 75         | 0.30 | 0.98             | 1.02                |
| Versuchsreihe 1 | T3 100 mitte | 31.6                      | 0.009 | 9.1                | 159                         | 248              | 105        | 0.42 | 0.71             | 0.75                |
| Versuchsreihe 1 | T3 100 oben  | 31.6                      | 0.009 | 9.1                | 164                         | 248              | 105        | 0.42 | 0.74             | 0.77                |
| Versuchsreihe 1 | T4 100 unten | 32.4                      | 0.016 | 16.1               | 152                         | 248              | 105        | 0.42 | 0.68             | 0.71                |
| Versuchsreihe 1 | T4 120 oben  | 32.4                      | 0.009 | 9.1                | 137                         | 248              | 125        | 0.50 | 0.62             | 0.65                |
| Versuchsreihe 1 | T5 120 mitte | 32.0                      | 0.009 | 9.1                | 129                         | 248              | 125        | 0.50 | 0.58             | 0.61                |
| Versuchsreihe 1 | T5 Kiefer    | 32,0                      | 0,009 | 9,1                | 158                         | 248              | 80         | 0,32 | 0,71             | 0,74                |
| Versuchsreihe 1 | T6 70 mitte  | 28,5                      | 0,014 | 16,1               | 218                         | 297              | 75         | 0,25 | 0,76             | 0,84                |
| Versuchsreihe 1 | T6 70 unten  | 28.9                      | 0.014 | 16.1               | 203                         | 297              | 75         | 0.25 | 0.70             | 0.79                |
| Versuchsreihe 1 | T7 70 oben   | 31,2                      | 0,014 | 16,1               | 258                         | 297              | 0          | 0,00 | 0,90             | 1,00                |
| Versuchsreihe 1 | T8 100 mitte | 31,2                      | 0,014 | 16,1               | 196                         | 297              | 105        | 0,35 | 0,68             | 0,76                |
| Versuchsreihe 1 | T8_100_oben  | 31,6                      | 0,014 | 16,1               | 187                         | 297              | 105        | 0,35 | 0,65             | 0,72                |
| Versuchsreihe 2 | T10_40_oben  | 52,91                     | 0,020 | 16,1               | 203                         | 167              | 40         | 0,24 | 0,83             | 0,91                |
| Versuchsreihe 2 | T10_75_oben  | 52,91                     | 0,020 | 16,1               | 172                         | 167              | 75         | 0,45 | 0,70             | 0,77                |
| Versuchsreihe 2 | T11_40_mitte | 52,91                     | 0,020 | 16,1               | 193                         | 167              | 40         | 0,24 | 0,79             | 0,87                |
| Versuchsreihe 2 | T11_50_oben  | 52,9                      | 0,020 | 16,1               | 211                         | 167              | 50         | 0,30 | 0,86             | 0,95                |
| Versuchsreihe 2 | T12_40_unten | 52,9                      | 0,020 | 16,1               | 192                         | 167              | 40         | 0,24 | 0,78             | 0,86                |
| Versuchsreihe 2 | T12_50_unten | 52,9                      | 0,020 | 16,1               | 177                         | 167              | 50         | 0,30 | 0,72             | 0,79                |
| Versuchsreihe 2 | T13_75_mitte | 53,75                     | 0,019 | 16,1               | 184                         | 217              | 75         | 0,35 | 0,60             | 0,73                |
| Versuchsreihe 2 | T13_O        | 53,75                     | 0,019 | 16,1               | 254                         | 217              | 0          | 0,00 | 0,82             | 1,00                |
| Versuchsreihe 2 | T14_75_oben  | 53,75                     | 0,019 | 16,1               | 244                         | 217              | 75         | 0,35 | 0,79             | 0,96                |
| Versuchsreihe 2 | T14_75_unten | 53,75                     | 0,019 | 16,1               | 187                         | 217              | 75         | 0,35 | 0,61             | 0,74                |
| Versuchsreihe 2 | T9_75_mitte  | 52,91                     | 0,020 | 16,1               | 143                         | 167              | 75         | 0,45 | 0,47             | 0,56                |
| Versuchsreihe 2 | T9_O         | 52,92                     | 0,020 | 16,1               | 223                         | 167              | 0          | 0,00 | 0,90             | 1,00                |

Tabelle 6-1: Übersicht Versuchsergebnisse

Im nachfolgenden Diagramm ist die in Tabelle 6-1 berechnete Resttragfähigkeit über dem Verhältnis von Öffnungsdurchmesser zu Statischer Höhe aufgetragen. Die mit Gleichung 6.1 berechneten Referenzlasten liegen immer etwas über den im Versuch gemessenen Werten. Deshalb ergibt sich beim Vergleich mit dem berechneten Referenzwerten eine tendenziell größere Abminderung als beim Vergleich mit den Referenzversuchen.



Diagramm 6-6: Resttragfähigkeit kø

 $k_{\emptyset} = 1 - \frac{d_{\emptyset}}{d}$  angesetzt.

Die in roter Farbe eingetragene Gerade würde einer der Querschnittsreduzierung entsprechenden Tragfähigkeitsabminderung entsprechen. In der nachfolgenden Tabelle wurden die berechneten Tragfähigkeiten mit der Traglast im Versuch verglichen. Der Abminderungsfaktor der Querkrafttragfähigkeit wurde zu

|                 | Versuchs-<br>bezeichnung | f <sub>c</sub> | ρ <sub>ι</sub> | Querschnitts-<br>breite b | A <sub>si</sub> | Maximallast<br>im Versuch<br>F <sub>u</sub> | V <sub>Rm,ct</sub> ohne<br>Abminderung | kø<br>L 1 | kø *V <sub>Rm,ct</sub> | Fu/(kø *V <sub>Rm,ct)</sub> |
|-----------------|--------------------------|----------------|----------------|---------------------------|-----------------|---------------------------------------------|----------------------------------------|-----------|------------------------|-----------------------------|
| Versuchsreihe 1 | T1 70 unten              | 32.4           | 0.009          | 0.400                     | 9.1             | 171                                         | 223                                    | 0.698     | 155                    | 1 102                       |
| Versuchsreihe 1 | T1_70_diment             | 32,4           | 0,009          | 0,400                     | 91              | 213                                         | 223                                    | 1,000     | 223                    | 0.954                       |
| Versuchsreihe 1 | T2 70 mitte              | 32.8           | 0,009          | 0 400                     | 91              | 188                                         | 224                                    | 0.698     | 156                    | 1 207                       |
| Versuchsreihe 1 | T2_70_oben               | 32.8           | 0.009          | 0 400                     | 91              | 218                                         | 224                                    | 0.698     | 156                    | 1,207                       |
| Versuchsreihe 1 | T3 100 mitte             | 31.6           | 0.009          | 0,400                     | 9.1             | 159                                         | 221                                    | 0.577     | 127                    | 1,248                       |
| Versuchsreihe 1 | T3 100 oben              | 31.6           | 0.009          | 0.400                     | 9.1             | 164                                         | 221                                    | 0.577     | 127                    | 1.289                       |
| Versuchsreihe 1 | T4 100 unten             | 32.4           | 0.016          | 0.400                     | 16.1            | 152                                         | 270                                    | 0.577     | 156                    | 0.976                       |
| Versuchsreihe 1 | T4 120 oben              | 32,4           | 0,009          | 0,400                     | 9,1             | 137                                         | 223                                    | 0,496     | 111                    | 1,244                       |
| Versuchsreihe 1 | T5 120 mitte             | 32,0           | 0,009          | 0,400                     | 9,1             | 129                                         | 222                                    | 0,496     | 110                    | 1,173                       |
| Versuchsreihe 1 | T5_Kiefer                | 32,0           | 0,009          | 0,400                     | 9,1             | 158                                         | 222                                    | 0,677     | 150                    | 1,054                       |
| Versuchsreihe 1 | T6_70_mitte              | 28,5           | 0,014          | 0,400                     | 16,1            | 218                                         | 278                                    | 0,747     | 208                    | 1,047                       |
| Versuchsreihe 1 | T6_70_unten              | 28,9           | 0,014          | 0,400                     | 16,1            | 203                                         | 279                                    | 0,747     | 209                    | 0,971                       |
| Versuchsreihe 1 | T7_70_oben               | 31,2           | 0,014          | 0,400                     | 16,1            | 258                                         | 288                                    | 1,000     | 288                    | 0,896                       |
| Versuchsreihe 1 | T8_100_mitte             | 31,2           | 0,014          | 0,400                     | 16,1            | 196                                         | 288                                    | 0,646     | 186                    | 1,054                       |
| Versuchsreihe 1 | T8_100_oben              | 31,6           | 0,014          | 0,400                     | 16,1            | 187                                         | 289                                    | 0,646     | 187                    | 1,000                       |
| Versuchsreihe 2 | T10_40_oben              | 52,91          | 0,020          | 0,400                     | 16,1            | 203                                         | 246                                    | 0,760     | 187                    | 1,086                       |
| Versuchsreihe 2 | T10_75_oben              | 52,91          | 0,020          | 0,400                     | 16,1            | 172                                         | 246                                    | 0,551     | 136                    | 1,268                       |
| Versuchsreihe 2 | T11_40_mitte             | 52,91          | 0,020          | 0,400                     | 16,1            | 193                                         | 246                                    | 0,760     | 187                    | 1,033                       |
| Versuchsreihe 2 | T11_50_oben              | 52,9           | 0,020          | 0,400                     | 16,1            | 211                                         | 246                                    | 0,701     | 172                    | 1,223                       |
| Versuchsreihe 2 | T12_40_unten             | 52,9           | 0,020          | 0,400                     | 16,1            | 192                                         | 246                                    | 0,760     | 187                    | 1,023                       |
| Versuchsreihe 2 | T12_50_unten             | 52,9           | 0,020          | 0,400                     | 16,1            | 177                                         | 246                                    | 0,701     | 172                    | 1,025                       |
| Versuchsreihe 2 | T13_75_mitte             | 53,75          | 0,019          | 0,400                     | 16,1            | 184                                         | 308                                    | 0,654     | 201                    | 0,917                       |
| Versuchsreihe 2 | T13_O                    | 53,75          | 0,019          | 0,400                     | 16,1            | 254                                         | 308                                    | 1,000     | 308                    | 0,826                       |
| Versuchsreihe 2 | T14_75_oben              | 53,75          | 0,019          | 0,400                     | 16,1            | 244                                         | 308                                    | 0,654     | 201                    | 1,213                       |
| Versuchsreihe 2 | T14_75_unten             | 53,75          | 0,019          | 0,400                     | 16,1            | 187                                         | 308                                    | 0,654     | 201                    | 0,930                       |
| Versuchsreihe 2 | T9_75_mitte              | 52,91          | 0,020          | 0,400                     | 16,1            | 143                                         | 246                                    | 0,551     | 136                    | 1,057                       |
| Versuchsreihe 2 | Т9_О                     | 52,92          | 0,020          | 0,400                     | 16,1            | 223                                         | 246                                    | 1,000     | 246                    | 0,904                       |

|           | Mittelwert: | 1,075 |
|-----------|-------------|-------|
| Standarda | 0,14        |       |
| Variation | 0.13        |       |

Tabelle 6-2: Gesamtauswertung Versuchsreihe 1 und 2

Wertet man so alle Versuche aus, erhält man im Mittel eine um 7% größere Tragfähigkeit im Versuch im Vergleich zur berechneten Traglast.

In der nachfolgenden Auswertung soll jetzt die Höhenlage der Öffnung im Querschnitt Beachtung finden. Die oben durchgeführte Auswertung erfolgt nun getrennt für die Öffnungslage im unteren Querschnittsbereich, im oberen Querschnittsbereich und bei mittiger Lage im Querschnitt.

|                 | Versuchs-<br>bezeichnung | f <sub>c</sub><br>[N/mm²] | ρ <sub>ι</sub><br>[-] | Querschnitts-<br>breite b | A <sub>si</sub><br>[cm²] | Maximallast<br>im Versuch<br>F <sub>u</sub><br>[kN] | V <sub>Rm,ct</sub> ohne<br>Abminderung | kø<br>[-] | kø <sup>∗</sup> V <sub>Rm,ct</sub><br>[kN] | F <sub>u</sub> /(k <sub>ø</sub> *V <sub>Rm,ct)</sub> |
|-----------------|--------------------------|---------------------------|-----------------------|---------------------------|--------------------------|-----------------------------------------------------|----------------------------------------|-----------|--------------------------------------------|------------------------------------------------------|
| Versuchsreihe 1 | T1_70_unten              | 32,4                      | 0,009                 | 0,400                     | 9,1                      | 171                                                 | 223                                    | 0,698     | 155                                        | 1,102                                                |
| Versuchsreihe 1 | T4_100_unten             | 32,4                      | 0,016                 | 0,400                     | 16,1                     | 152                                                 | 270                                    | 0,577     | 156                                        | 0,976                                                |
| Versuchsreihe 1 | T6_70_unten              | 28,9                      | 0,014                 | 0,400                     | 16,1                     | 203                                                 | 279                                    | 0,747     | 209                                        | 0,971                                                |
| Versuchsreihe 2 | T12_40_unten             | 52,9                      | 0,020                 | 0,400                     | 16,1                     | 192                                                 | 246                                    | 0,760     | 187                                        | 1,023                                                |
| Versuchsreihe 2 | T12_50_unten             | 52,9                      | 0,020                 | 0,400                     | 16,1                     | 177                                                 | 246                                    | 0,701     | 172                                        | 1,025                                                |
| Versuchsreihe 2 | T14_75_unten             | 53,75                     | 0,019                 | 0,400                     | 16,1                     | 187                                                 | 308                                    | 0,654     | 201                                        | 0,930                                                |
|                 |                          |                           |                       |                           |                          |                                                     |                                        |           |                                            |                                                      |
|                 |                          |                           |                       |                           |                          |                                                     |                                        |           | Mittelwert:                                | 1,004                                                |
|                 |                          |                           |                       |                           |                          |                                                     |                                        | Standarda | abweichung:                                | 0,06                                                 |
|                 |                          |                           |                       |                           |                          |                                                     |                                        | Variation | skoeffizient:                              | 0,06                                                 |

Tabelle 6-3: Auswertung der Versuche mit Öffnungen im unteren Querschnittsbereich

Versuchsauswertungen

(6.2)

|                 | Versuchs-<br>bezeichnung | f <sub>c</sub> | ρι    | Querschnitts-<br>breite b | A <sub>si</sub> | Maximallast<br>im Versuch<br>F <sub>u</sub> | V <sub>Rm,ct</sub> ohne<br>Abminderung | kø    | kø *V <sub>Rm,ct</sub> | F <sub>u</sub> /(kø *V <sub>Rm,ct)</sub> |
|-----------------|--------------------------|----------------|-------|---------------------------|-----------------|---------------------------------------------|----------------------------------------|-------|------------------------|------------------------------------------|
|                 | [-]                      | [N/mm²]        | [-]   | [m]                       | [cm²]           | [KN]                                        | [KN]                                   | -     | [KN]                   | [-]                                      |
| Versuchsreihe 1 | T2_70_mitte              | 32,8           | 0,009 | 0,400                     | 9,1             | 188                                         | 224                                    | 0,698 | 156                    | 1,207                                    |
| Versuchsreihe 1 | T3_100_mitte             | 31,6           | 0,009 | 0,400                     | 9,1             | 159                                         | 221                                    | 0,577 | 127                    | 1,248                                    |
| Versuchsreihe 1 | T5_120_mitte             | 32,0           | 0,009 | 0,400                     | 9,1             | 129                                         | 222                                    | 0,496 | 110                    | 1,173                                    |
| Versuchsreihe 1 | T5_Kiefer                | 32,0           | 0,009 | 0,400                     | 9,1             | 158                                         | 222                                    | 0,677 | 150                    | 1,054                                    |
| Versuchsreihe 1 | T6_70_mitte              | 28,5           | 0,014 | 0,400                     | 16,1            | 218                                         | 278                                    | 0,747 | 208                    | 1,047                                    |
| Versuchsreihe 1 | T8_100_mitte             | 31,2           | 0,014 | 0,400                     | 16,1            | 196                                         | 288                                    | 0,646 | 186                    | 1,054                                    |
| Versuchsreihe 2 | T11_40_mitte             | 52,91          | 0,020 | 0,400                     | 16,1            | 193                                         | 246                                    | 0,760 | 187                    | 1,033                                    |
| Versuchsreihe 2 | T13_75_mitte             | 53,75          | 0,019 | 0,400                     | 16,1            | 184                                         | 308                                    | 0,654 | 201                    | 0,917                                    |
| Versuchsreihe 2 | T9_75_mitte              | 52,91          | 0,020 | 0,400                     | 16,1            | 143                                         | 246                                    | 0,551 | 136                    | 1,057                                    |
|                 |                          |                |       |                           |                 |                                             |                                        |       |                        |                                          |

|           | Mittelwert:               | 1,088 |
|-----------|---------------------------|-------|
| Standarda | 0,10                      |       |
| Variation | skoeffizient <sup>.</sup> | 0.09  |

Tabelle 6-4: Auswertung der Versuche mit Öffnungen im mittleren Querschnittsbereich

|                 | Versuchs-<br>bezeichnung | f <sub>c</sub><br>[N/mm²] | ρ <sub>ι</sub><br>[-] | Querschnitts-<br>breite b | A <sub>si</sub><br>[cm²] | Maximallast<br>im Versuch<br>F <sub>u</sub><br>[kN] | V <sub>Rm,ct</sub> ohne<br>Abminderung | kø<br>[-] | kø *V <sub>Rm,ct</sub> | F <sub>u</sub> /(kø *V <sub>Rm,ct)</sub> |
|-----------------|--------------------------|---------------------------|-----------------------|---------------------------|--------------------------|-----------------------------------------------------|----------------------------------------|-----------|------------------------|------------------------------------------|
| Versuchsreihe 1 | T2_70_oben               | 32,8                      | 0,009                 | 0,400                     | 9,1                      | 218                                                 | 224                                    | 0,698     | 156                    | 1,397                                    |
| Versuchsreihe 1 | T3_100_oben              | 31,6                      | 0,009                 | 0,400                     | 9,1                      | 164                                                 | 221                                    | 0,577     | 127                    | 1,289                                    |
| Versuchsreihe 1 | T4_120_oben              | 32,4                      | 0,009                 | 0,400                     | 9,1                      | 137                                                 | 223                                    | 0,496     | 111                    | 1,244                                    |
| Versuchsreihe 1 | T7_70_oben               | 31,2                      | 0,014                 | 0,400                     | 16,1                     | 258                                                 | 288                                    | 1,000     | 288                    | 0,896                                    |
| Versuchsreihe 1 | T8_100_oben              | 31,6                      | 0,014                 | 0,400                     | 16,1                     | 187                                                 | 289                                    | 0,646     | 187                    | 1,000                                    |
| Versuchsreihe 2 | T10_40_oben              | 52,91                     | 0,020                 | 0,400                     | 16,1                     | 203                                                 | 246                                    | 0,760     | 187                    | 1,086                                    |
| Versuchsreihe 2 | T10_75_oben              | 52,91                     | 0,020                 | 0,400                     | 16,1                     | 172                                                 | 246                                    | 0,551     | 136                    | 1,268                                    |
| Versuchsreihe 2 | T14_75_oben              | 53,75                     | 0,019                 | 0,400                     | 16,1                     | 244                                                 | 308                                    | 0,654     | 201                    | 1,213                                    |
|                 |                          |                           |                       |                           |                          |                                                     |                                        |           |                        |                                          |

Mittelwert: 1,174 Standardabweichung: 0,17

Variationskoeffizient: 0,14

Die oben aufgeführten Auswertungen zeigen, dass bei Lage der Öffnungen im unteren Querschnittsbereich eine größere Traglastabminderung als bei Lage der Öffnungen im mittleren oder oberen Querschnittsbereich. Bei Lage der Öffnung im unteren Teil des Trägers wird ein mittleres Verhältnis von 1,0 der berechneten zu den tatsächlichen Traglasten erreicht. Das bedeutet, dass für die ungünstigste Öffnungslage im untern Trägerbereich die mittlere Traglast mit dem Abminderungsfaktor k<sub>ø</sub> berechnet werden kann.

Damit ergibt sich die folgende Bemessungsgleichung für Querschnitte mit kreisrunden Öffnungen mit Verhältnissen von Öffnungsdurchmesser zu statischer Höhe zwischen 0,2 und 0,5 zu:

$$V_{\text{Rd,ct},\emptyset} = k_{\emptyset} \cdot \left[ 0, 10 \cdot \kappa \cdot \eta_{1} \cdot \left( 100 \cdot \rho_{1} \cdot f_{ck} \right)^{1/3} \right] \cdot b_{w} \cdot d$$

$$k_{\emptyset} = 1 - \frac{d_{\emptyset}}{d}$$
(6.3)

Bei Einzelöffnungen deren Mittelachse zwischen Querschnittsmitte und gedrücktem Rand liegt, kann der Faktor  $k_{\emptyset}$  entsprechend Tabelle 6-4 und Tabelle 6-5 um 0,1 erhöht werden:

$$k_{\varnothing} = 1 - \frac{d_{\varnothing}}{d} + 0, 1$$

Tabelle 6-5: Auswertung der Versuche mit Öffnungen im oberen Querschnittsbereich
## 6.2 Versuchsreihe 3

#### 6.2.1 Lage der Öffnung in Bauteillängsrichtung

Tabelle 6-6 zeigt die Traglasten und die wesentlichen Versuchsparameter der Versuche zur Bestimmung des Einflusses der Lage der Öffnung in Bauteillängsrichtung. Da die Versuchsreihen 1 und 2 gezeigt haben, dass die ungünstigste Positionierung bezüglich der Traglast im unteren Querschnittsbereich liegt, wurden die Öffnungen der im folgenden betrachteten Versuche ebenfalls im unteren Querschnittsbereich angeordnet. Der Abstand von Lasteinleitung zu Lagerachse betrug 85 cm.

|                 | Versuchs-<br>bezeichnung | f <sub>c</sub>       | ρι    | Querschnitts-<br>breite b | A <sub>si</sub>    | Abstand der<br>Öffnungsachse<br>von der<br>Auflagerachse | Maximallast<br>im Versuch<br>F <sub>u</sub> | V <sub>Rm,ct</sub> | statische Höhe d | Aussendurch-<br>messer<br>Öffnung d <sub>ø</sub> | d <sub>⊘</sub> /d | F <sub>u</sub> / rechnerischer<br>Referenzlast |
|-----------------|--------------------------|----------------------|-------|---------------------------|--------------------|----------------------------------------------------------|---------------------------------------------|--------------------|------------------|--------------------------------------------------|-------------------|------------------------------------------------|
|                 | [-]                      | [N/mm <sup>2</sup> ] | [-]   | [m]                       | [cm <sup>2</sup> ] | [mm]                                                     | [kN]                                        | [kN]               | [mm]             | [mm]                                             | [-]               | [-]                                            |
| Versuchsreihe 3 | T_315                    | 38                   | 0,019 | 0,40                      | 16,1               | -                                                        | 245                                         | 271                | 217              | 0                                                | 0,00              | 0,90                                           |
| Versuchsreihe 3 | T_316                    | 38                   | 0,019 | 0,40                      | 16,1               | 120                                                      | 195                                         | 271                | 217              | 75                                               | 0,35              | 0,72                                           |
| Versuchsreihe 3 | T_317                    | 38                   | 0,019 | 0,40                      | 16,1               | 195                                                      | 185                                         | 271                | 217              | 75                                               | 0,35              | 0,68                                           |
| Versuchsreihe 3 | T_318                    | 38                   | 0,019 | 0,40                      | 16,1               | 270                                                      | 168                                         | 271                | 217              | 75                                               | 0,35              | 0,62                                           |
| Versuchsreihe 3 | T_319                    | 38                   | 0,019 | 0,40                      | 16,1               | 320                                                      | 204                                         | 271                | 217              | 50                                               | 0,23              | 0,75                                           |
| Versuchsreihe 3 | T_320                    | 38                   | 0,019 | 0,40                      | 16,1               | 220                                                      | 210                                         | 271                | 217              | 50                                               | 0,23              | 0,77                                           |
| Versuchsreihe 3 | T_321                    | 38                   | 0,019 | 0,40                      | 16,1               | 445                                                      | 195                                         | 271                | 217              | 50                                               | 0,23              | 0,72                                           |
| Versuchsreihe 3 | T_322                    | 38                   | 0,019 | 0,40                      | 16,1               | 120                                                      | 231                                         | 271                | 217              | 50                                               | 0,23              | 0,85                                           |



Die Versuchsergebnisse zeigen bereits eine klare Tendenz. Die Tragfähigkeit des Querschnitts fällt mit zunehmender Entfernung vom Auflager ab.

Die in Diagramm 6-7 eingetragenen Geraden zeigen den angestrebten Faktor für die Restragfähigkeit des geschwächten Querschnitts an. Nur Versuche mit großem Abstand von Öffnung zu Auflagerachse liegen geringfügig unterhalb des berechneten Wertes der Querkrafttragfähigkeit.



Diagramm 6-7: Lage der Öffnungen in Bauteillängsrichtung

Der auf die Stützweite bezogene Abstand der Öffnungen zur Auflagerlinie betrug in den Versuchsserien 1 und 2 etwa 0,5. In Versuchsreihe 3 betrug der größte betrachtete bezogene Öffnungsabstand 0,52.

In Kapitel 7.3 werden Parameterstudien mit der FE –Methode vorgestellt, die weitere Ergebnisse zum Einfluss der Lage der Öffnung liefern sollen. Hauptsächlich soll geklärt werden, ob die Traglast bei weiterer Näherung an die Lasteinleitung weiter abfällt.

#### 6.2.2 Versuche mit Zugkraft

In Tabelle 6-7 werden die Ergebnisse der durchgeführten Versuche dargestellt.

| Veruchs-<br>bezeichnung | statische<br>Höhe d | d <sub>ö</sub> | d <sub>ö</sub> /d | eingeleitete<br>Zugkraft | Betonfestigkeit<br>am Versuchstag<br>f <sub>cm</sub> | Traglast im<br>Versuch |
|-------------------------|---------------------|----------------|-------------------|--------------------------|------------------------------------------------------|------------------------|
|                         | [mm]                | [mm]           | [-]               | [kN]                     | [N/mm³]                                              | [kN]                   |
| LBV 01                  | 217                 | -              | -                 | 190                      | 22,3                                                 | 177                    |
| LBV 02                  | 217                 | -              | -                 | -                        | 23,9                                                 | 190                    |
| LBV 03                  | 217                 | 75             | 0,35              | 170                      | 23,9                                                 | 105                    |
| LBV 04                  | 217                 | 50             | 0,23              | 140                      | 23,9                                                 | 126                    |
| LBV 05                  | 217                 | 40             | 0,18              | 160                      | 22,4                                                 | 155                    |
| LBV 06                  | 217                 | 75             | 0,35              | 150                      | 22,4                                                 | 110                    |

Tabelle 6-7: Versuchsparameter und Traglasten - Versuche mit Zugkraft

Der Vergleich der Traglasten der Referenzversuche LBV 1 und LBV 2 zeigt eine Traglastdifferenz von ca. 12 kN. Das entspricht einer Abminderung um 6,5%.

Bei einer Bemessung nach DIN 1045-1 wird die Zugkraft im Querschnitt durch eine Abminderung der Querkrafttragfähigkeit in Abhängigkeit der Zugkraft im Querschnitt wie folgt berücksichtigt:

$$V_{Rd,ct} = \begin{bmatrix} 0,10 \cdot \kappa \cdot \eta_{1} \cdot (100 \cdot \rho_{1} \cdot f_{ck})^{1/3} - 0,12 \cdot \sigma_{cd} \end{bmatrix} \cdot b_{w} \cdot d$$

$$= 0,10 \cdot \kappa \cdot \eta_{1} \cdot (100 \cdot \rho_{1} \cdot f_{ck})^{1/3} \cdot b_{w} \cdot d - 0,12 \cdot \sigma_{cd} \cdot b_{w} \cdot d$$
(6.4)

mit  $\sigma_{cd} = \frac{N_{Ed}}{A_c} = \frac{N_{Ed}}{b_w \cdot h}$  ergibt sich:

$$V_{Rd,ct} = 0,10 \cdot \kappa \cdot \eta_1 \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3} \cdot b_w \cdot d - 0,12 \cdot N_{Ed} \cdot \frac{d}{h}$$
(6.5)

Auf Niveau des Mittelwertes ergibt sich aus Gleichung 3.4:

$$\begin{split} V_{\text{Rm,ct}} &= c_{k} \cdot \gamma_{c} \cdot \kappa \cdot \eta_{1} \cdot \left(100 \cdot \rho_{1} \cdot f_{ck}\right)^{1/3} \cdot b_{w} \cdot d - 0, 12 \cdot N_{\text{Ek}} \cdot \frac{d}{h} \\ &= 0, 14 \cdot 1, 5 \cdot \kappa \cdot \eta_{1} \cdot \left(100 \cdot \rho_{1} \cdot f_{ck}\right)^{1/3} \cdot b_{w} \cdot d - 0, 12 \cdot N_{\text{Ek}} \cdot \frac{d}{h} \\ &= 0, 2 \cdot \kappa \cdot \eta_{1} \cdot \left(100 \cdot \rho_{1} \cdot f_{ck}\right)^{1/3} \cdot b_{w} \cdot d - 0, 12 \cdot N_{\text{Ek}} \cdot \frac{d}{h} \end{split}$$
(6.6)

Nach Gleichung 3.5 ergibt sich die Abminderung der Querkrafttragfähigkeit zu:

$$\Delta V_{\text{Rm,ct}} = -0.12 \cdot N_{\text{Ek}} \cdot \frac{d}{h}$$

$$= -0.12 \cdot 190 \cdot \frac{21.7}{25.0} = -19.8 \text{ kN}$$
(6.7)

Die rechnerische Querkrafttragfähigkeit V<sub>Rm,ct,cal</sub> ermittelt sich rechnerisch zu:

$$\begin{split} V_{\text{Rm,ct}} &= 0, 2 \cdot \kappa \cdot \eta_1 \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3} \cdot b_w \cdot d - 0, 12 \cdot N_{\text{Ek}} \cdot \frac{d}{h} \\ &\kappa = 1 + \sqrt{200/d} = 1 + \sqrt{200/217} = 1, 92 \le 2, 0 \\ &\rho_1 = \frac{A_{sl}}{b_w \cdot d} = \frac{16,01}{0,4 \cdot 0,218} = 0,0184 \le 0,02 \\ &f_{ck} = f_{cm} - 8 = 22 - 8 = 14 \text{ N/mm}^2 \\ &= 0, 2 \cdot 1, 92 \cdot \left(100 \cdot 0,0184 \cdot 14\right)^{1/3} \cdot 0, 4 \cdot 0, 217 - 0, 12 \cdot 0, 19 \cdot \frac{0,217}{0,25} = \\ &= 0,098 - 0,0198 = 0,078 \text{ MN} = 78 \text{ kN} \end{split}$$

In der nachfolgenden Tabelle wurde die rechnerische Traglast  $V_{Rm,ct,cal}$  nach Gleichung 3.7 für alle Versuche ermittelt und mit der im Versuch ermittelten Traglast  $V_{Test}$  verglichen.

Der Abminderunsfaktor  $k_{\emptyset}$  für einzelne kreisrunde Öffnungen wurde entsprechend den vorhergehenden Auswertungen zu

$$k_{\emptyset} = 1 - \frac{d_{\emptyset}}{d}$$
(6.9)

angesetzt.

| Veruchs-<br>bezeichnung | statische<br>Höhe d | d <sub>ö</sub> | d <sub>ö</sub> /d | eingeleitete<br>Zugkraft | Betonfestigkeit<br>am Versuchstag<br>f <sub>cm</sub> | Querkraft im<br>Versuch V <sub>Test</sub> k <sub>ø</sub> |      | $V_{Rm,ct,cal}$ | V <sub>Test</sub> /V <sub>Rm,ct,cal</sub> |
|-------------------------|---------------------|----------------|-------------------|--------------------------|------------------------------------------------------|----------------------------------------------------------|------|-----------------|-------------------------------------------|
|                         | [mm]                | [mm]           | [-]               | [kN]                     | [N/mm³]                                              | [kN]                                                     | [-]  | [kN]            | [-]                                       |
| LBV 01                  | 217                 | -              | -                 | 190                      | 22,3                                                 | 88,5                                                     |      | 79              | 1,115                                     |
| LBV 02                  | 217                 | -              | -                 | -                        | 23,9                                                 | 95                                                       |      | 103             | 0,925                                     |
| LBV 03                  | 217                 | 75             | 0,35              | 170                      | 23,9                                                 | 52,5                                                     | 0,65 | 56              | 0,944                                     |
| LBV 04                  | 217                 | 50             | 0,23              | 140                      | 23,9                                                 | 63                                                       | 0,77 | 68              | 0,929                                     |
| LBV 05                  | 217                 | 40             | 0,18              | 160                      | 22,4                                                 | 77,5                                                     | 0,82 | 67              | 1,149                                     |
| LBV 06                  | 217                 | 75             | 0,35              | 150                      | 22,4                                                 | 55                                                       | 0,65 | 55              | 1,004                                     |

| Mittelwert             | 1,01 |
|------------------------|------|
| Standardabweichung     | 0,10 |
| Variationskoeffiziernt | 9,75 |

Tabelle 6-8. Vergleich der Bruchlasten mit den berechneten Werten

Die Auswertung in Tabelle 6-8 zeigt, dass der gefundene Abminderungsfaktor  $k_{\emptyset}$  auch bei den Nachweisen von Querschnitten mit Zugbeanspruchung Anwendung finden kann.

#### 6.2.3 Rechteckige Öffnungen

Im Rahmen des Forschungsvorhabens 259 wurden 6 Versuche mit rechteckigen Öffnungen durchgeführt. Die Ergebnisse dieser Versuche und die Versuchsparameter können der nachfolgenden Tabelle entnommen werden.

Bei den Versuchskörpern T\_309 bis T\_312 wurde die Öffnung im unteren Querschnittsbereich angeordnet. Die Öffnungen in den Versuchskörpern T\_313 und T\_314 wurden im oberen Trägerbereich angeordnet.

|                 | Versuchs-   |                      |       | Querschnitts- |                    | Vor a obne  | Breite der | Maximallast im         |                  |                |      | F., / rechnerische |
|-----------------|-------------|----------------------|-------|---------------|--------------------|-------------|------------|------------------------|------------------|----------------|------|--------------------|
|                 | bezeichnung | f <sub>c</sub>       | ρι    | breite b      | A <sub>sl</sub>    | Abminderung | Öffnung    | Versuch F <sub>u</sub> | statische Höhe d | Öffnungshöhe w | w/d  | Referenzlast       |
|                 | [-]         | [N/mm <sup>2</sup> ] | [-]   | [m]           | [cm <sup>2</sup> ] | [kN]        | [mm]       | [kN]                   | [mm]             | [mm]           | [-]  | [-]                |
| Versuchsreihe 3 | T_315       | 38                   | 0,019 | 0,400         | 16,100             | 271         | -          | 245                    | 217              | 0              | 0,00 | 0,90               |
| Versuchsreihe 3 | T_309       | 38                   | 0,019 | 0,400         | 16,100             | 271         | 150        | 157                    | 217              | 50             | 0,23 | 0,58               |
| Versuchsreihe 3 | T_310       | 38                   | 0,019 | 0,400         | 16,100             | 271         | 250        | 119                    | 217              | 50             | 0,23 | 0,44               |
| Versuchsreihe 3 | T_311       | 38                   | 0,019 | 0,400         | 16,100             | 271         | 150        | 186                    | 217              | 25             | 0,12 | 0,69               |
| Versuchsreihe 3 | T_312       | 38                   | 0,019 | 0,400         | 16,100             | 271         | 250        | 159                    | 217              | 25             | 0,12 | 0,59               |
| Versuchsreihe 3 | T_313       | 38                   | 0,019 | 0,400         | 16,100             | 271         | 150        | 188                    | 217              | 25             | 0,12 | 0,69               |
| Versuchsreihe 3 | T_314       | 38                   | 0,019 | 0,400         | 16,100             | 271         | 250        | 182                    | 217              | 25             | 0,12 | 0,67               |

Tabelle 6-9: Versuchsparameter der Versuche mit rechteckigen Öffnungen

Das nachfolgend dargestellte Diagramm zeigt den Abminderungsfaktor, der sich bei Vergleich der im Versuch ermittelten Tragfähigkeit  $F_u$  zur rechnerischen Tragfähigkeit  $V_{Rm,ct}$  ergibt. Die gestrichelt eingetragenen Linien entsprechen dem Abminderungsfaktor für runde Öffnungen mit einem Außendurchmesser von 50 bzw. 25 mm.



Diagramm 6-8: Einfluss der Öffnungsbreite auf die Traglast

Die Versuchsergebnisse zeigen, dass mit zunehmender Öffnungsbreite die Traglast deutlich abfällt. Es ist zu vermuten, dass eine quadratische Öffnung mit der Kantenlänge a eine größere Traglastabminderung als eine runde Öffnung mit dem Außendurchmesser a verursacht.

Aufgrund der geringen Versuchsanzahl wurden hier FE-Berechnungen durchgeführt, die Abminderungsfaktoren für rechteckige Öffnungen in Abhängigkeit von der Öffnungshöhe und der Öffnungsbreite definieren sollen.

## 6.2.4 Öffnungsabstand bei mehreren Öffnungen

Vier Versuche mit jeweils zwei Öffnungen sollten erste Aussagen über die gegenseitige Beeinflussung mehrere Öffnungen geben. Ziel der Versuche war es einen Öffnungsabstand zu definieren, bei dem die Tragfähigkeit der Einzelöffnung erreicht wird.

|                 | Versuchs-   |       | Querschnitts- |                    | V <sub>Rm,ct</sub> ohne | Öffnungs- |      | Maximallast im         |                  | Aussendurchmesser |      | F <sub>u</sub> / rechnerische |
|-----------------|-------------|-------|---------------|--------------------|-------------------------|-----------|------|------------------------|------------------|-------------------|------|-------------------------------|
|                 | bezeichnung | ρι    | breite b      | A <sub>sl</sub>    | Abminderung             | abstand f | f/d⊘ | Versuch F <sub>u</sub> | statische Höhe d | Öffnung d⊘        | d⊘/d | Referenzlast                  |
|                 | [-]         | [-]   | [m]           | [cm <sup>2</sup> ] | [kN]                    | [mm]      | [-]  | [kN]                   | [mm]             | [mm]              | [-]  | [-]                           |
| Versuchsreihe 3 | T_315       | 0,019 | 0,400         | 16,1               | 271                     | -         | •    | 245                    | 217              | 0                 | 0,00 | 0,90                          |
| Versuchsreihe 3 | T_307       | 0,019 | 0,400         | 16,1               | 271                     | 100       | 2    | 187                    | 217              | 50                | 0,23 | 0,69                          |
| Versuchsreihe 3 | T_308       | 0,019 | 0,400         | 16,1               | 271                     | 150       | 3    | 212                    | 217              | 50                | 0,23 | 0,78                          |
| Versuchsreihe 3 | T_305       | 0,019 | 0,400         | 16,1               | 271                     | 150       | 2    | 161                    | 217              | 75                | 0,35 | 0,59                          |
| Versuchsreihe 3 | T_306       | 0,019 | 0,400         | 16,1               | 271                     | 225       | 3    | 164                    | 217              | 75                | 0,35 | 0,61                          |

Tabelle 6-10: Versuchsparameter und Ergebnisse der Versuche mit mehreren Öffnungen

In Diagramm 6-9 ist der mit Versuchen gefundene Abminderungsfaktor  $k_{\emptyset}$  in Abhängigkeit des Verhältnisses von Öffnungsabstand zu Öffnungsdurchmesser aufgetragen. Man erkennt hier, dass bei Versuch T\_308 mit einem Öffnungsdurchmesser von 50 mm und einem Öffnungsachsabstand entsprechend dem 3-fachen Öffnungsdurchmesser die Tragfähigkeit eines Querschnitts mit nur einer Öffnung erreicht wurde.



Diagramm 6-9: Abminderungsfaktor der Querkrafttragfähigkeit kø in Abhängigkeit vom bezogenen Öffnungsabstand f/dø

Finite- Element- Simulationen sollen diese Versuche bestätigen und einen entsprechenden Öffnungsabstand zur Sicherstellung der Tragfähigkeit einer Einzelöffnung oder einen zusätzlichen Abminderungsfaktor bei Unterschreitung des Mindestabstandes ableiten.

#### 6.2.5 Öffnungen im Momentennullpunkt

Tabelle 6-11 zeigt die Versuchsparameter und Ergebnisse der vier durchgeführten Versuche zur Klärung des Einflusses von Öffnungen im Momentennullpunkt.

Hier ist zu beachten, dass im Gegensatz zu den bisher ausgewerteten Versuchen die im Versuch ermittelten Traglasten über den berechneten liegen. Als Referenzwert wurde deshalb auf der sicheren Seite liegend die Tragfähigkeit des tatsächlichen Referenzversuchs angesetzt.

|                 | Versuchs-<br>bezeichnung | f <sub>c</sub>       | ρι    | Querschnitts-<br>breite b | A <sub>sl</sub>    | V <sub>Rm,ct</sub> ohne<br>Abminderung | Maximale<br>Querkraft im<br>Versuch F <sub>u</sub> | statische Höhe d | Öffnungsdurch-<br>messer d <sub>⊘</sub> | d⊘/d | F <sub>u</sub> / Maximale<br>Querkraft aus dem<br>Referenzversuch |
|-----------------|--------------------------|----------------------|-------|---------------------------|--------------------|----------------------------------------|----------------------------------------------------|------------------|-----------------------------------------|------|-------------------------------------------------------------------|
|                 | [-]                      | [N/mm <sup>2</sup> ] | [-]   | [m]                       | [cm <sup>2</sup> ] | [kN]                                   | [kN]                                               | [mm]             | [mm]                                    | [-]  | [-]                                                               |
| Versuchsreihe 3 | T_323                    | 35,8                 | 0,011 | 0,400                     | 9,050              | 108                                    | 131,5                                              | 209              | 0                                       | 0,00 | 1,00                                                              |
| Versuchsreihe 3 | T_324                    | 34,2                 | 0,011 | 0,400                     | 9,050              | 106                                    | 98,5                                               | 209              | 50                                      | 0,24 | 0,75                                                              |
| Versuchsreihe 3 | T_325                    | 37,2                 | 0,011 | 0,400                     | 9,050              | 109                                    | 76,5                                               | 209              | 75                                      | 0,36 | 0,58                                                              |
| Versuchsreihe 3 | T_326                    | 34,8                 | 0,011 | 0,400                     | 9,050              | 106                                    | 122,5                                              | 209              | 40                                      | 0,19 | 0,93                                                              |

Tabelle 6-11: Versuchsparameter und Ergebnisse der Versuche mit Öffnungen im Momentennullpunkt

Wie Diagramm 6-10 zu entnehmen ist entspricht die in den Versuchen beobachtete Abminderung gut dem angenommenen Abminderungsfaktor  $k_{\emptyset}$  nach Gleichung 6.2, der als gestrichelte Linie in das Diagramm eingetragen wurde.



Diagramm 6-10: Tragfähigkeitsabminderung bei Öffnungen im Momentennullpunkt

Der gefundene Abminderungsfaktor  $k_{\emptyset}$  kann auch im Bereich von Momentennullpunkten angewendet werden.

#### 6.2.6 Untersuchungen an Elementdecken

Aus den Versuchen an Elementdecken mit Öffnungen konnten keinerlei Ergebnisse bezüglich der Tragfähigkeitsreduzierung der Verbundfuge durch Öffnungen gewonnen werde. Bei den sechs durchgeführten Versuchen trat jeweils ein Biegeversagen auf. Zwar sind Schubrisse ausgehend von den Öffnungen zu erkennen, doch die Rauigkeit der Fuge und die vorhandenen Gitterträger verhinderten ein vorzeitiges Querkraftversagen.

# 7 Parameterstudien

#### 7.1 Finite- Element Programm ATENA

Die Parameterstudien zu den oben beschriebenen Versuchen wurden mit dem Finite-Element Programm ATENA [19] durchgeführt.

In Atena steht dem Anwender das Werkstoffmodell SBETA (**S**tahl**bet**onan**a**lyse) zur Verfügung. Dieses macht es möglich, den Verbundwerkstoff Stahlbeton wirklichkeitsnah abzubilden.

Folgende Materialeigenschaften werden in SBETA berücksichtigt:

- □ nichtlineares Verhalten unter Druckbeanspruchung mit Berücksichtung von Verfestigungs- und Entfestigungbereichen,
- □ Bruchverhalten von Beton unter Zugbeanspruchung auf Basis nichtlinearen Bruchmechanik,
- □ Berücksichtigung eines bilinearen Festigkeitsverlustes,
- □ Abminderung der Druckfestigkeit nach Aufreißen des Elementes,
- □ Berücksichtigung von "tension stiffening" –Effekten,
- □ Abminderung der Schubfestigkeit nach dem Reißen,
- □ Rissmodelle "Fixed Crack Modell" und "Rotated Crack Model".

Die Abbildung der Bewehrung erfolgt im FE- Modell diskret mit Stabelementen. Diese besitzen nur eine einaxiale Steifigkeit in Längsrichtung und werden in die Betonelemente eingebettet.

Die Verbindung zwischen Beton- und Bewehrungselementen wird über Verbundspannungs-Schlupf-Beziehungen beschrieben. Dazu stehen in ATENA zwei Modelle zur Verfügung:

- □ CEB-FIP Model Code1990
- □ Bigaj

Für die Lösung nichtlinearer Probleme kann ATENA auf folgende implizierte Berechnungsverfahren zurückgreifen:

- □ Newton- Raphson Verfahren
- □ Bogenlängenverfahren

Ein eindimensionales Strahloptimierungssverfahren (Line Search) kann mit den oben genannten Lösungsalgorithmen kombiniert werden.

Alle Finite-Element Berechnungen wurden wie die Traglastversuche verschiebungsgesteuert durchgeführt. Anfangs wurden vergleichende Berechnungen mit verschiedenen Lösungsalgorithmen durchgeführt. Dabei wurden unter Verwendung des Bogenlängenverfahrens in Kombination mit dem Line Search Algorithmus die in Bezug auf die Rechenzeit wirtschaftlichsten Ergebnisse geliefert.

Im folgenden werden einige Ergebnisse der FE-Berechnungen im Vergleich zu den Versuchsergebnissen dargestellt.

# 7.2 Einzelöffnungen

Im Folgenden werden die Ergebnisse der Parameterstudien zur Bestimmung der Tragfähigkeit von Querschnitten mit Einzelöffnungen dargestellt.

Die folgenden Parameter wurden bei der Parameterstudie variiert:

- □ Bauteildicke,
- □ Öffnungsdurchmesser,
- □ Öffnungslage im Querschnitt:



Abbildung 7-1: Lage der Öffnungen im Querschnitt

□ Bewehrungsgrad.

In Diagramm 7-1 werden die Ergebnisse der ATENA Rechnungen dargestellt. Der Abminderungsfaktor der Querkrafttragfähigkeit wird über das Verhältnis von Öffnungsdurchmesser zu Statischer Höhe aufgetragen. Bei der Darstellung der Versuchsergebnisse wurde unterschieden bezüglich der Höhenlage der Öffnung im Querschnitt.



Diagramm 7-1: Abminderungsfaktor für Einzelöffnungen

Wie schon bei den Bauteilversuchen festgestellt bewirken Öffnungen im unteren Querschnittsbereich eine größer Traglastabminderung als Öffnungen im oberen Querschnittsbereich. Der in Gleichung 4.4 definierte Abminderungsfaktor kann unabhängig von der Höhenlage der Öffnung Anwendung finden.

# 7.3 Lage der Öffnung in Tragrichtung

Auch die Versuchsnachrechnungen zur Bestimmung des Einflusses vom Öffnungsabstand zum Auflager brachten ein mit den Versuchen übereinstimmendes Bild. In Diagramm 7-2 sind die Ergebnisse der FE- Berechnungen dargestellt. Hieraus ergibt sich für alle überprüften Verhältnisse von Öffnungsdurchmesser zu Statischer Höhe, dass die bei dem hier geprüften statischen System die Öffnung ungünstiger auswirkt, je weiter sie vom Auflager entfernt ist.



Diagramm 7-2: Abminderungsfaktor in Abhängigkeit von der Lage der Öffnung im Querschnitt

Die durchgezogen dargestellten Linien markieren jeweils den rechnerisch ermittelten Abminderungsfaktor. Die Versuche bzw. FE- Berechnungen sind farblich entsprechend dargestellt. Beispielhaft sollen hier die gelb dargestellten Versuche bzw. FE- Berechnungen betrachtet werden. Bei auflagernaher Anordnung der Öffnung werden hier noch mehr als 90 % der Traglast des Vollquerschnitts. Bei weiterer Entfernung der Öffnung vom Auflager fällt die Traglast auf 80 % des Vollquerschnitts ab.

Beim vorhandenen Versuchsaufbau nimmt bei Entfernung vom Auflager die Momentenbeanspruchung zu. Im realen Bauteil wird im Regelfall die Querkraft mit zunehmendem Abstand vom Auflager kleiner. In den Versuchen wurden die ungünstigen Öffnungsanordnungen weit entfernt vom Auflager getestet. Der Abstand der Öffnungen von der Einzellast betrug mindestens die Statische Höhe des Querschnitts.

# 7.4 Öffnungsabstand

Ziel der Untersuchungen von Bauteilen mit mehreren Öffnungen ist die Definition eines Mindestabstands der Öffnungen, bei dem die Tragfähigkeit einer Einzelöffnung erreicht wird.

In Diagramm 7-3 wurden für vier Verhältnisse von Öffnungsdurchmesser zu Statischer Höhe die Abminderungsfaktoren für Einzelöffnungen eingetragen. Der Abminderungsfaktor der Versuche bzw. FE- Berechnungen mit mehreren Öffnungen wurde über dem Verhältnis von Öffnungsabstand zu Öffnungsdurchmesser aufgetragen.



Diagramm 7-3: Einfluss des Öffnungsabstand auf die Tragfähigkeit

Es lässt sich die Tendenz erkennen, dass bei einem Achsabstand der Öffnungen entsprechend dem dreifachen Öffnungsdurchmesser die Tragfähigkeit bei Anordnung einer Einzelöffnung erreicht wird. Bei Nichteinhaltung der Mindestabstände muss der Tragwiderstand weiter verringert werden. Zur Definition liegen bisher jedoch nicht genügend Versuchsergebnisse vor.



Abbildung 7-2: Atena Ausgabe: Hauptdehnungen und Risse bei Maximallast

Sowohl in den Versuchen, als auch bei den Atena- Berechnungen (siehe Abbildung 7-2) war zu beobachten, dass das Versagen dann eintritt, wenn die Schrägrisse die jeweils nächste

Öffnung erreicht haben. Der Beton zwischen den Öffnungen kann dann keinen Anteil an der Lastabtragung beisteuern.

# 7.5 Rechteckige Öffnungen

Zur Ermittlung der Querkrafttragfähigkeit bei Einzelöffnungen wurden Parameterstudien für drei Verhältnisse von Öffnungshöhe  $d_{\ddot{o}}$  zu Statischer Höhe d durchgeführt. Dabei wurden Öffnungshöhe, Statische Höhe, Längsbewehrungsgrad, Abstand der Öffnung von Auflager und die Feldlänge der Versuchskörper variiert. Die Ergebnisse der Parameterstudien sind in Diagramm 7-4, Diagramm 7-5, und Diagramm 7-6 dargestellt.



Abbildung 7-3: Darstellung der verwendeten Bezeichnungen

In Abbildung 7-3 sind die in den nachfolgend dargestellten Diagrammen verwendeten Bezeichnungen dargestellt.



Diagramm 7-4: Abminderungsfaktor der Querkrafttragfähigkeit für dö/d=0,125

Die rot- gestrichelt dargestellte Linie zeigt jeweils den Abminderungsfaktor für das im Diagramm angegebene Verhältnis Öffnungshöhe zu Statischer Höhe für kreisrunde Öffnungen. Bei allen betrachteten Querschnittsabminderungen ist zu erkennen, dass die quadratische Öffnung ( $b_{\ddot{o}}/d_{\ddot{o}}=1$ ) eine größere Abminderung hervorruft, als die entsprechende kreisrunde

Parameterstudien

Öffnung. Dies liegt an der geometrischen Unstetigkeit im Bereich der Öffnungsecken, was zu Spannungsspitzen führt und somit eine frühere Rissbildung begünstigt.

Die Berechnung des in den Diagrammen dargestellten Abminderungsfaktors erfolgte nach folgender Gleichung:



$$k_{\Box} = 0,95 - \frac{d_o}{d} - (\frac{d_o}{d} - 0,03) \cdot \ln\left(\frac{d_o}{b_o}\right)$$
 (7.1)

Diagramm 7-5: Abminderungsfaktor der Querkrafttragfähigkeit für dö/d=0,18



Diagramm 7-6: Abminderungsfaktor der Querkrafttragfähigkeit für dö/d=0,23

Im Folgenden werden nun die durchgeführten Versuche mit dem vorgeschlagenen Abminderungsfaktor verglichen. Diagramm 7-7 zeigt die sich aus den sechs Bauteilversuchen ergebenden Wertepaare und jeweils den berechneten Abminderungsfaktor.



Diagramm 7-7: Vergleich berechneten Abminderungsfaktors mit den Versuchsergebnissen

Die Bauteilversuche stimmen gut mit dem berechneten Abminderungsfaktor überein. Somit kann Gleichung (7-1) für rechteckige Öffnungen Anwendung finden. Auch hier wurde ein Abstand zwischen Öffnung und Lasteinleitung von mindestens der Statischen Höhe eingehalten, was auch bei einer Bemessung berücksichtigt werden muss.

## 8 Bemessungsgleichungen

Es wird vorgeschlagen, die in DIN 1045-1 angegebene Bemessungsgleichung für die Querkrafttragfähigkeit ohne Querkraftbewehrung  $V_{Rd,ct}$  wurden zur Berücksichtigung der Öffnungen um einen Abminderungsfaktor zu erweitern:

$$\begin{split} \mathsf{V}_{\mathsf{Rd},\mathsf{ct},\mathsf{red}} &= \mathsf{k} \cdot \mathsf{V}_{\mathsf{Rd},\mathsf{ct}} \quad \text{für } 0,2 \leq \frac{\mathsf{d}_{\varnothing}}{\mathsf{d}} \leq 0,5 \\ \text{mit} \quad \mathsf{k} = \mathsf{k}_{\varnothing} = 1 - \frac{\mathsf{d}_{\varnothing}}{\mathsf{d}} \quad \text{für kreisrunde Öffnungen} \\ & \mathsf{k} = \mathsf{k}_{\Box} = 0,95 - \frac{\mathsf{d}_{\breve{o}}}{\mathsf{d}} - (\frac{\mathsf{d}_{\breve{o}}}{\mathsf{d}} - 0,03) \cdot \ln\left(\frac{\mathsf{d}_{\breve{o}}}{\mathsf{b}_{\breve{o}}}\right) \text{für rechteckige Öffnungen} \\ & \mathsf{d}_{\varnothing} : \text{Durchmesser der runden Öffnung} \\ & \mathsf{d} : \text{Statische H\"{o}he} \\ & \mathsf{d}_{\breve{o}} : \text{H\"{o}he \text{ der rechteckigen}} \breve{O}\text{ffnung} \end{split}$$

bö : Breite der rechteckigen Öffnung



Diagramm 8-1: Bemessungsdiagramm für rechteckige Öffnungen

Bei Anordnung von mehreren runden Einzelöffnungen muss zur Anwendung der oben angegebenen Gleichung der Achsabstand der Öffnungen mindestens dem 3-fachen Öffnungsdurchmesser entsprechen.

Öffnungen im Bereich von Mittelauflagern stellen besonders kritische Bereiche dar. Hier überlagern sich maximale Momente mit maximalen Querkräften.

Der Abstand von Öffnungen zu Einzellasten sollte mindestens der Statischen Höhe d des Querschnitts entsprechen, bzw. dieser Bereich sollte von Öffnungen freigehalten werden.

Die Traglastabminderung durch Öffnungen im Durchstanzbereich soll in einem weiteren Forschungsvorhaben geklärt werden. Momentan kann nur empfohlen werden. Durchstanzbereiche von jeglicher Schwächung freizuhalten.

Die mechanischen Hintergründe der gefundenen Zusammenhänge sollen in einer Dissertation die an der TU Kaiserslautern erstellt wird erläutert werden

### 9 Literatur

- [1] Schnell, J.; Thiele, C.: Tastversuche zur Tragfähigkeit von Stahlbetonplatten ohne Querkraftbewehrung mit integrierten Luftkanälen. Festschrift Schnütgen: Entwicklungen in Beton- und Faserbetonbau sowie in verwandten Gebieten, Ruhruniversität Bochum, August 2003
- [2] Schnell, J.; Thiele, C.: Concrete Slabs with Air Ducts, Keep Concrete Attractive, fib-Symposium, Budapest, Mai 2005
- [3] Schnell, J.; Thiele, C.: Abminderung der Querkrafttragfähigkeit von Stahlbetondecken im Bereich von Leitungsführungen, Neu-Ulm, 15. Februar 2006 Kongressunterlagen 50. Beton-Tage S118-119.
- [4] Hottmann, H.; Schäfer, K.: Bemessen von Stahlbetonbalken und Wandscheiben mit Öffnungen. Deutscher Ausschuss für Stahlbeton, Heft 459, Beuth Verlag GmbH 1996
- [5] Aster, H.: Vierseitig gelagerte Stahlbetonhohlplatten. Deutscher Ausschuss für Stahlbeton, Heft 213, Beuth Verlag GmbH 1970
- [6] Twelmeier, H.; Dallmann, R.; Fischer, Th.; Göttsche, J.: Einfluss von großen Stegaussparungen auf das Trag- und Verformungsverhalten von Stahlbetonträgern. IRB Verlag 1985
- [7] Ramm, W.: Über die Anwendung des Traglastverfahrens bei Durchlaufträgern mit großen Stegöffnungen im Verbund- und Stahlbetonbau. Vorträge Deutscher Bautechnik-Tag 2003, Ernst und Sohn 2003
- [8] Mansur, M. A.: Effect of Openings on the Behaviour and Strenth of R/C Beams in Shear. Cement and Concrete Composites 20, 1998
- [9] Kiefer, C.: Betonkernkühlung mit Zuluft. Technik am Bau 6/2002
- [10] Reineck, K.-H.: Ein mechanisches Modell für Stahlbetonbauteile ohne Stegbewehrung. Bauingenieur 66(1991) S.157-165
- [11] Reineck, K.-H.: Ein mechanisches Modell für das Tragverhalten von Stahlbetonbauteilen ohne Stegbewehrung. Bauingenieur 66(1991) S.323-332
- [12] Hegger, J.; Will, N.; Bülte, S.: Teilvorgefertigte Deckensysteme im Wohnungsbau. Abschlussbericht (BBR Z6-5.4.00-15)
- [13] Schnellenbach-Held, M.; Ehmann, S.: Stahlbetonträger mit großen Öffnungen. Betonund Stahlbetonbau 97, 2002, Heft 3
- [14] Schröder, D.: Betonkernkühlung mit Zuluft. Heizung Lüftung/klima Haustechnik, Heft 2 /2002, S7 54
- [15] Kani, G.: Was wissen wir heute über die Schubbruchsicherheit? Der Bauingenieur 43, Heft 5
- [16] Kani, G.N.J.: Basic Facts Concerning Shear Failure. Journal of the American Concrete Institute. 1966, Heft 63,6, S. 675-692

- [17] Kaufmann, N.: Das Sandflächenverfahren. Strassenbau-Technik 3/71 S,171-135.
- [18] Erläuterungen zu DIN 1045-1, Deutscher Ausschuss für Stahlbetonbau, Heft 525
- [19] Cervenka Consulting: ATENA Program Documentation
- [20] Kupfer, H.; Hilsdorf, H.K.; Rüsch, H.: Behaviour of Concrete under Biaxial Stresses. Journal of the American Concrete Institute 1969, Heft 66, S. 656-666

# 10 Anhang

## 10.1 Darstellung der Bruchbilder

Im Folgenden werden die Bruchbilder der Versuche dargestellt. Auf den Bilder ist jeweils der Zustand des Betonkörpers nach Erreichen der Traglast dargestellt. Die abgebildeten Fotos zeigen jeweils einen Ausschnitt der Versuchskörper vom Auflager bis zur Lasteinleitung.



Abbildung 10-1: Darstellung der Bruchbilder

### 10.2 Versuchsreihe 1 und 2

#### 10.2.1 Referenzversuche

Die nachfolgend dargestellten Bilder zeigen die Bruchbilder der durchgeführten Referenzversuche.



Abbildung 10-2: Bruchbild Versuch T1\_ohne Öffnung h=30 cm



Abbildung 10-3: Versuch T7\_70\_oben h=35 cm



Abbildung 10-4: Versuch T9\_ohne Öffnung h=20 cm



Abbildung 10-5: Versuch T10\_40\_oben h=20 cm



Abbildung 10-6: Versuch T13\_ohne Öffnung h=25 cm

# 10.2.2 Versuche mit Einzelöffnungen





Abbildung 10-8: Versuch T2 70\_mitte



Abbildung 10-9: Versuch T2\_70\_unten



Abbildung 10-10: Versuch T3\_100\_oben







Abbildung 10-12: Versuch T4\_100\_unten



Abbildung 10-13: Versuch T4\_120\_oben



Abbildung 10-14: Versuch T5\_120\_mittig



Abbildung 10-15: Versuch T5\_Kiefer



Abbildung 10-16: Versuch T6\_70\_mittig



Abbildung 10-17: Versuch T6\_70\_unten



Abbildung 10-18: Versuch T8\_100\_mittig



Abbildung 10-19: Versuch T8\_100\_oben



Abbildung 10-20: Versuch T9\_75\_mittig



Abbildung 10-21: Versuch T10\_75\_oben



Abbildung 10-22: Versuch T11\_40 unten



Abbildung 10-23: Versuch T11\_50\_oben



#### Abbildung 10-24: Versuch T12\_40\_unten



Abbildung 10-25: Versuch T12\_50\_unten



Abbildung 10-26: Versuch T13\_75\_mitte



Abbildung 10-27: Versuch T14\_75\_oben



Abbildung 10-28: Versuch T14\_75\_unten

## 10.2.3 Erste Tastversuche mit zwei Öffnungen

In der zweiten Versuchsreihe wurden zwei Versuche mit zwei Öffnungen durchgeführt. Dabei betrug der Achsabstand der Öffnungen dem 3,0- bzw 4,3- fachen Öffnungsdurchmesser.



Abbildung 10-29: Versuch T15\_25\_15



Abbildung 10-30: Versuch T15\_75\_25

#### 10.2.4 Tastversuche mit Stahlfaserbeton

Die Bruchbilder der Beiden in Stahlfaserbeton hergestellten Versuche sind in den folgenden Abbildungen dargestellt.



Abbildung 10-31: Versuch T16\_25\_75\_mitte\_SFB



Abbildung 10-32: Versuch T16\_25\_ohne Öffnung\_SFB

Die Bruchbilder werden in den folgenden Bildern dargestellt. Die nicht unterstrichenen Zahlen entstanden bei der Zugkrafteinleitung, während alle weiteren Risse bei Querbelastung mit einem Unterstrich gekennzeichnet wurden.



### 10.2.5 Versuche mit zentrischer Zugkraft

Abbildung 10-33: Bruchbild Versuch LBV 1



Abbildung 10-34: Bruchbild Versuch LBV 2



Abbildung 10-35: Bruchbild Versuch LBV 3



Abbildung 10-36: Bruchbild Versuch LBV 4



Abbildung 10-37: Versuch LBV 05



Abbildung 10-38: Versuch LBV 06

#### 10.2.6 Versuche im Momentennullpunkt

Im Folgenden sind die Bruchbilder der durchgeführten Versuche dargestellt.



Abbildung 10-39: Versuch T\_323



Abbildung 10-40: Versuch T324



Abbildung 10-41: Versuch T325



Abbildung 10-42: Versuch T\_326





Abbildung 10-43: Versuch T\_316



Abbildung 10-44: Versuch T\_317



Abbildung 10-45: Versuch T\_318



Abbildung 10-46: Versuch T 319



Abbildung 10-47: Versuch T\_320



Abbildung 10-48: Versuch T\_321



Abbildung 10-49: Versuch T\_322



Abbildung 10-50: Versuch T\_327

# 10.3 Versuchsreihe 3

#### 10.3.1 Referenzversuche



Abbildung 10-51: Versuch T\_302



## Abbildung 10-52: Versuch T\_303



Abbildung 10-53: Versuch T\_315

### 10.3.2 Gruppenanordnung



#### Abbildung 10-54: Versuch T\_305



### Abbildung 10-55: Versuch T\_306



Abbildung 10-56: Versuch T 307



Abbildung 10-57:Versuch T\_308

# 10.3.3 Rechteckige Öffnungen



Abbildung 10-58: Versuch T\_309



Abbildung 10-59: Versuch T\_310



Abbildung 10-60: Versuch T\_311



Abbildung 10-61: Versuch T\_312



Abbildung 10-62: Versuch T313

