Bau<u>forschung</u>

Rechnerische Untersuchungen an Produkten aus Faserzement-Tafeln

Bemessung von Faserzement-Tafeln nach neuer und alter Windlast-Norm T 3143

¹ Fraunhofer IRB Verlag

T 3143

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

2007

ISBN 978-3-8167-7397-9

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

Forschungsvorhaben

Rechnerische Untersuchungen an Produkten aus Faserzement-Tafeln

Bemessung von Faserzement-Tafeln nach neuer und alter Windlast-Norm

Dieser Bereicht umfasst 43 Textseiten und 31 Anlagenseiten

Institut für Bautechnik und Holzbau Univ.-Prof. Dr.-Ing. N. A. Fouad Appelstraße 9A 30167 Hannover INHALT

1	ZWECK UND ZIEL
2	HINTERGRÜNDE ZUR NEUEN WINDLASTNORM DIN 1055-4 4 2.1 Windlastannahmen für Konstruktionen aus Faserzementtafeln nach DIN 1055-4 (08.86) und DIN 1055-4 (03.05)
3	BESCHREIBUNG EINER BEISPIEL- KONSTRUKTION
4	DURCHGEFÜHRTE BERECHNUNGEN164.1 Bemessung von Faserzement-Tafeln nach dem herkömmlichen Verfahren und mit den Windlastannahmen nach DIN 1055-4, Ausgabe August 1986174.1.1 Windlasten nach DIN 1055-4 (08/86)174.1.2 Nachweis für Winddruck184.1.3 Nachweis auf Windsog (Punktlagerung)204.2 Bemessung von Faserzement-Tafeln mit der FEM und mit denWindlastannahmen nach DIN 1055-4, Ausgabe August 1986244.2.1 Programmschritte254.3 Vergleich der Berechnungsergebnisse274.3.1 Bemessung für Winddruckbelastung274.3.2 Bemessung für Windsogbelastung28
5	SICHERHEITSKONZEPT NACH DIN 1055-100 29 5.1 Nachweise nach dem Verfahren der Teilsicherheitsbeiwerte 29 5.2 Sicherheitsniveau nach alter Normengeneration bei Faserzementprodukten31 31 5.2.1 Ableitung eines Teilsicherheitsbeiwerts für Faserzementprodukte 32 5.2.2 Berücksichtigung von Überwachungsmaßnahmen bei der Angabe des Teilsicherheitsbeiwertes 35
6	VERGLEICH DER WINDEINWIRKUNGEN NACH ALTER UND NEUER NORM36
	 6.1 Ergebnisse für den beispielhaft untersuchten Konstruktionsaufbau
7	ZUSAMMENFASSUNG40
8	SUMMARY42
9	LITERATURVERZEICHNIS
Uni	versitat Hannover – Institut für Bautechnik und Holzbau Prof. DrIng. N. A. Fouad

1 ZWECK UND ZIEL

Zur Beseitigung von Handelshemmnissen wurden in Europa harmonisierte technische Spezifikationen eingeführt. Die Bauproduktenrichtlinie verpflichtet hierbei die Mitgliedstaaten zur Umsetzung dieser Regelungen und gegebenenfalls auch zur Rücknahme dem entgegenstehender nationaler Regeln.

In den zurzeit gültigen bauaufsichtlichen Zulassungen für ebene Faserzement-Tafeln werden zur Bemessung Mindestanforderungen an die Biegefestigkeiten im Bruchzustand festgelegt. Aus den Biegebruchfestigkeiten werden für die Bemessung der Tafeln (unter Berücksichtigung von Sicherheitsbeiwerten und Abminderungsfaktoren) zulässige Biegespannungen für die Bemessung festgeschrieben.

Mit den neueren Normengenerationen erfolgt der Übergang der Bemessung von einem globalen Sicherheitssystem zu einem auf Teilsicherheitswerten beruhenden semiprobabilistischen Sicherheitssystem. Im Wesentlichen soll der Anwendungsbereich der bisher bewährten Faserzementprodukte bei Anwendung der neuen Regelungen jedoch gleich sein.

Im Rahmen der Forschungsarbeit wurde ermittelt, welcher Teilsicherheitsbeiwert für Faserzementprodukte anzunehmen ist, wenn ein dem alten Sicherheitsniveau entsprechendes Bemessungsniveau vorliegen soll.

Hierzu wurden vergleichende Bemessungen mit einem herkömmlichen Bemessungsverfahren und mit der Methode der finiten Elemente für einen beispielhaften Konstruktionsaufbau durchgeführt. Abschließend wurde dargestellt, wie sich die Einwirkungen und somit auch die Bemessung bei Ansatz der Windeinwirkungen nach der alten Windlastnorm DIN 1055-4, Ausgabe August 1986 und der aktuellen Norm DIN 1055-4, Ausgabe März 2005 in Abhängigkeit des Aufbauortes, der absoluten Gebäudehöhe für den Beispielaufbau verändert. Ergänzend wurden die im Rahmen der DIN 1055-4, Ausgabe März 2005 angegebenen Vereinfachungen bei hinterlüfteten Konstruktionen berücksichtigt.

2 HINTERGRÜNDE ZUR NEUEN WINDLASTNORM DIN 1055-4

Die bisher gültige alte DIN 1055-4 (08.86) [4] geht in ihrem Konzept auf ein seit 1938 in Deutschland angewendetes Konzept zur Ermittlung der ungünstigen Wirkungen des natürlichen Windes auf die Tragkonstruktion zurück: es wird ein einheitliches Windgeschwindigkeit für das gesamte Geltungsgebiet angegeben, die Böenwirkung wird durch eine geeignete Böengeschwindigkeit erfasst, die Zunahme des Geschwindigkeitsdruckes mit der Höhe über Grund erfolgt nach einer Treppenkurve.

Bereits in den Erläuterungen zur DIN 1055-4 (08.86) [4] wird ausgeführt, dass die für ganz Deutschland angenommene einheitliche Windgeschwindigkeit in den Regionen verschieden häufig auftritt. So wird in [4] berichtet, dass die angegebene Windgeschwindigkeit in Süddeutschland etwa einmal in 50 Jahren auftritt, in der Norddeutschen Tiefebene etwa einmal in 10 Jahren und entlang der Nord- und Ostseeküste einmal pro Jahr erreicht wird. Dies führte zu regional sehr unterschiedlichen Sicherheitsniveaus.

Die letzte Ausgabe der DIN 1055-4 (08.86) [4] wurde daher bereits vom damaligen Arbeitsausschuss als eine Zwischenlösung angesehen und sollte durch eine "wirklichkeitsnahe und allgemeingültige Beschreibung der Windwirkungen bei beliebigen Baukonstruktionen, ersetzt werden [13]. Für turmartige Bauwerke (Schornsteine, Antennentragwerke) wurden daher bereits 1986 bzw. 1991 neuere Windlastnormen herausgegeben.. Diese Normen berücksichtigten bereits regional unterschiedliche Windzonen (Windzonenkarte) und somit ein gleichförmigeres Sicherheitsniveau im Anwendungsgebiet.

Mit der neuen DIN 1055-4 [5] wurde schlussendlich die notwendige Anpassung der Windlasten im konstruktiven Ingenieurbau unter Berücksichtigung des neuen Sicherheitskonzepts für die Tragwerksplanung nach DIN 1055-100, [3] durchgeführt. Hierbei wurde Deutschland in vier Windzonen mit unterschiedlich anzusetzenden Windgeschwindigkeiten gegliedert, die jeweils eine charakteristische Windgeschwindigkeit mit einer statistischen Wiederkehrperiode von einmal in 50 Jahren entsprechen. Die so ermittelte charakteristische Windeinwirkung wird somit mit einer Wahrscheinlichkeit von 98% während einer Bezugsdauer von einem Jahr nicht überschritten.

2.1 Windlastannahmen für Konstruktionen aus Faserzementtafeln nach DIN 1055-4 (08.86) und DIN 1055-4 (03.05)

Auf der Grundlage des neuen Teilsicherheitskonzeptes nach DIN 1055-100 und der Windlastannahmen nach DIN 1055-4, Ausgabe März 2005 werden die Einwirkungen durch Windlasten gegenüber der alten Normengeneration von mehr Parametern bestimmt. Die Vorgehensweisen sind zusammenfassend in Abbildung 1 dargestellt.

Abbildung 1: Ermittlung der charakteristischen Windeinwirkungen auf Faserzement-Tafeln nach alter und neuer Norm DIN 1055-4

2.1.1 Bestimmung der Windeinwirkung für hinterlüftete Faserzementkonstruktionen nach der alten DIN 1055-4 (08.86)

In der alten Windlastnorm wurden auf die Besonderheiten bei der Bestimmung der Windlasten für hinterlüftete Konstruktionen nicht eingegangen. Nur in den Erläuterungen zur DIN 1055-4 (08.86) [4] wurde zu den hinterlüfteten Konstruktionen erläutert:

"Die für die Gebäudeseitenwände angegebenen Sogbeiwerte, insbesondere die Spitzenwerte, gelten für "winddichte" Fassadenausbildungen. Bei vorgehängten Fassadenelementen, d.h. sogenannten hinterlüfteten Fassaden, ändern sich die Verhältnisse, insbesondere an den Bauwerkskanten.

... Auch über die Verteilung des Drucks bzw. Sogs auf die hinterlüftete Fassade einerseits und die diese tragenden Teile des Bauwerks andererseits konnte nichts Allgemeingültiges angegeben werden. Es empfiehlt sich, bei der Bemessung dieser Bauteile jeweils den vollen Druck bzw. Sog anzusetzen"

Unter Berücksichtigung der obigen Ausführungen sind somit die Einwirkungen auf die hinterlüfteten Faserzementtafeln wie für einen nicht hinterlüfteten Baukörper zu bestimmen.

Einfluss der Bemessungshöhe

In der alten DIN 1055-4 [4] wird für den Staudruck q ein höhenabhängiger Wert angegeben. Der Verlauf des Staudruckes ist nicht stetig, an den signifikanten Bemessungspunkten (8m, 20m, 100m) treten Sprünge in den Bemessungswerten auf.

Höhe z über Gelände	z ≤ 8 m 8 m < z ≤ 20 m 2		20 m < z ≤ 100 m	100m < z	
Windgeschwindigkeit in m/s	28,3	35,8	42	45,6	
Staudruck q in KN/m ²	0,5	0,8	1,1	1,3	

 Tabelle 1:
 Staudruck q in Abhängigkeit von Höhe über Gelände

Einfluss der Geometrie des Gebäudes

Für die Bestimmung der Windsogbeanspruchung an den windparallelen Seiten wird für den Außendruckbeiwert c_p das Verhältnis der Höhe "h" zur windparallelen Seite des Bauwerks "a" als maßgebender Faktor angegeben (Abbildung 2). Für folgende Werte des Verhältniswertes h/a wird für c_p angegeben:

•	h / a ≤ 0,25;	c _p = -0,5 [./.]
---	---------------	-----------------------------

• h / a ≥ 0,5; c_p = -0,7 [./.]

Für die hierbei nicht definierten Fälle zwischen h / a \leq 0,25 und \geq 0,5 darf linear interpoliert werden.

Der Außendruckbeiwert c_p für die windabgewandte (Sog)Seite wird mit einem konstanten Wert c_p = -0,5; für die windzugewandte (Druck)Seite mit c_p = +0,8 angegeben.

Berücksichtigung von Sogspitzen

Im Bereich von Bauteilkanten treten an den Schnittkanten der Wandflächen Sogspitzen auf, die durch einen erhöhten Außendruckbeiwert c_p bei den Windlastannahmen berücksichtigt werden. Für diese Flächen gilt ein Wert von $c_p = 2,0$. Im Allgemeinen ist der beeinflusste Randbereich auf eine Länge von "a/8" mit mindestens 1 Meter und maximal 2 Metern beschränkt (vgl. Abbildung 3). Unter "a" wird hierbei die zu dem Wind parallel verlaufende Gebäudeseite verstanden.

Abbildung 3:

Außendruckbeiwert cp bei Sogspitzen

2.1.2 Bestimmung der Windeinwirkung nach der neuen DIN 1055-4 (03.05)

Gegenüber den älteren Ausgaben der DIN 1055-4 wird die Windeinwirkung in Deutschland über die Windzonenkarte und dem Einfluss der Geländerauigkeit und Topographie bestimmt.

Für "durchlässige Außenwandbekleidungen", dies sind im Regelfall auch hinterlüftete Außenwandkonstruktionen, wurde in der neuen Windlastnorm ein extra Abschnitt (Abschnitt 12.1.10 in DIN 1055-4 (03/05)) aufgenommen. Wie den entsprechenden Ausführungen des Abschnitts 12.1.10 in DIN 1055-4 (03/05) zu entnehmen ist, darf der in diesem Abschnitt angegebene Winddruckbeiwert c_p jedoch nur bei gleichzeitiger Einhaltung aller angegebenen Anwendungsbedingungen angesetzt werden. Wird eine Bedingung nicht eingehalten, wäre die Anwendung dieser (vereinfachten) Windlastannahme für hinterlüftete Konstruktionen zumindest dem Normentext nach nicht möglich.

Im Abschnitt 12.1.1 der DIN 1055-4 (03/05) wird für die Außendruckbeiwerte $c_{p,e}$ erläutert:

"Die Außendruckbeiwerte gelten für nicht hinterlüftete Wand- und Dachflächen".

Zusammenfassend würde somit für hinterlüftete Wandkonstruktionen aus Faserzementtafeln, die die Anwendungsbedingungen für durchlässige Außenwandbekleidungen nicht einhalten gelten, dass die Regeln des Abschnittes 12.1.10 der DIN 1055-4 (05/05) und auch die Regeln des Abschnittes 12.1.1 der DIN 1055-4 (05/05) <u>nicht</u> gelten. Es wären demnach eigentlich auch keine Windlastannahmen möglich. Es wird daher an dieser Stelle vorgeschlagen, diese Fragestellung im Rahmen der Arbeit des Normenausschusses der Windlastnorm zu Erläuterung zu geben.

Auf der sicheren Seite liegend wird im Folgenden angenommen, dass die maximale Windlasteinwirkung auftritt, wenn die Annahmen für winddichte Konstruktionen auch für hinterlüftete Konstruktionen angenommen werden (vgl. Abschnitt 2.1.2.1). Als unterer Grenzwert der Windeinwirkung können die Windlastannahmen nach den Regeln für winddurchlässigen Konstruktionen angesehen werden (vgl. Abschnitt 2.1.2.2).

Seite 9

2.1.2.1 Windlastannahmen für winddichte Wände

Windzonen

Nach der neuen DIN 1055-4 ist Deutschland in vier verschiedenen Windzonen (WZ 1, WZ 2, WZ 3 und WZ 4) unterteilt.

Abbildung 4: Einteilung der Windzonen in Deutschland

In jeder Windzonen gilt eine unterschiedliche zeitlich gemittelte Windgeschwindigkeit v_{ref} . Aus dieser resultieren zugehörige Geschwindigkeitsdrücke von $q_{ref} = 0,32$ KN/m² für die Windzone 1 bis 0,56 KN/m² für die Windzone 4.

Die WZ 1 umfasst flächenmäßig ungefähr 45 Prozent des Gebietes der Bundesrepublik Deutschland, die WZ 2 nimmt annähernd 48 Prozent der Fläche Deutschlands ein. Die Windzone WZ 3 besteht aus etwa 5 Prozent des Gebietes der Bundesrepublik Deutschland, sie bedeckt kleine nördliche Teile Niedersachsens, Schleswig-Holsteins und Mecklenburg-Vorpommerns. Die restlichen 2 Prozent nimmt die WZ 4 ein. Sie ist ebenso wie WZ 3 nur an den Küstengebieten vertreten und maßgebend für die Inseln der Nordsee.

Abbildung 5: Prozentuale Einteilung der Windzonen in Deutschland

Geländerauigkeit und Topologie

Die Geländerauigkeit und die Topologie des zu beurteilenden Standortes werden in der DIN 1055-4 (03/05) durch ideale Geländekategorien beschrieben. Die in der Natur vorkommenden Geländeausbildungen bestehen jedoch aus Mischformen der Geländekategorien und werden durch drei Profile beschrieben:

Bezeichnung des Mischprofils	Vorkommen
Binnenland	Gesamtes Binnenland bis 5 km vor den Küsten
Küstennahe Gebiete und Inseln der Ostsee	5 km breiter Streifen entlang der Küsten zum Binnenland und Ostseeinseln
Inseln der Nordsee	Nordseeinseln

Tabelle 2:Mischprofile zur Geländeidealisierung anhand derer der höhenabhängige
Böengeschwindigkeitsdruck im Regelfall berechnet wird

Im Regelfall sind in den Windzonen Mischprofile zur Ermittlung des Böengeschwindigkeitsdrucks anzusetzen. Die Formeln zur Berechnung des höhenabhängigen Böengeschwindigkeitsdrucks werden in DIN 1055-4 (03/05), Abschnitt 10 angegeben und sind in Tabelle 4 dargestellt.

Bezeichnung des	Windzone 1	Windzone 2	Windzone 3	Windzone 4	
Mischprofils	(44,68 %)	(47,61 %)	(5,33 %)	(2,37 %)	
Binnenland	X	X	X	X	
	(44,68 %)	(47,00 %)	(4,23 %)	(1,71 %)	
Küstennahe Gebiete und	-	X	X	X	
Inseln der Ostsee		(0,61 %)	(1,10 %)	(0,62 %)	
Inseln der Nordsee	-	-	-	X (0,04 %)	

Tabelle 3:Möglichkeiten des Auftretens der Mischprofile in den Windzonen, in Klammern ist
der Anteil der Bereich an der Gesamtfläche Deutschland angegeben

Universität Hannover – Institut für Bautechnik und Holzbau

Prof. Dr.-Ing. N. A. Fouad

Höhenabhängiger Böengeschwindigkeitsdruck

Zur Bestimmung des maßgebenden Geschwindigkeitsdruckes werden in der DIN 1055-4 (03/05), [5] folgende Formeln angegeben:

Höhe	Binnenland
z ≤ 7 m	1,5 × q _{ref}
7 m < z ≤ 50 m	$1,7 \times q_{ref} (z / 10)^{0,37}$
50 m < z ≤ 300 m	$2,1 \times q_{ref} (z / 10)^{0,24}$
<u>e)</u>	

a)

Höhe	Nordseeinseln
z ≤ 2 m	1,1
2 m < z ≤ 300 m	1,5 (z / 10) ^{0,19}
b)	

Höhe	Küstennahe Gebiete, Inseln der Ostsee
z ≤ 4 m	1,8 × q _{ref}
4 m < z ≤ 50 m	2,3 × q _{ref} (z / 10) ^{0,27}
50 m < z ≤ 300 m	2,6 × q _{ref} (z / 10) ^{0,19}
2)	

c)

Tabelle 4:

Böengeschwindigkeitsdrücke in Abhängigkeit von Profil und Gebäudehöhe für

a) das Binnenland

b) die Nordseeinseln

c) die Küstennahen Gebiete und Inseln der Ostsee

Aerodynamische Beiwerte

Die Wandflächen von Gebäuden mit rechteckigen Grundriss werden in bis zu fünf Bereiche aufgeteilt.

Abbildung 6: Einteilung der Wandflächen bei vertikalen Wänden

Es existieren die Bereiche A, B, C und E als "Sogzonen" sowie der Bereich "D" als Druckzone. Jedem dieser Bereiche werden entsprechend der Lasteinzugsflächen die Außendruckbeiwerte c_{pe} zugeordnet.

Für bis zu 1 m² große Lasteinzugsflächen wird der Außendruckbeiwerte $c_{pe,1}$ angegeben, ab 10 m² große Lasteinzugsflächen ist der Außendruckbeiwerte $c_{pe,10}$ zu verwenden. Zwischenwerte sind mit einem logarithmischen Ansatz zu interpolieren.

Für die Größe der Außendruckbeiwerte für vertikale Wände rechteckiger Gebäude ist das Verhältnis der Gebäudehöhe über Grund "h" zur parallel angeströmten Windseite "d" zu beachten. In der alten DIN 1055-4 (08/86),[4] wurde die windparallel angeströmte Seite "a" benannt. Die Seiten "a" und "d" sind vom Verständnis her gleichzusetzen.

Bereich	n A		Bereich A B C		C	[)	E		
h/d	Cpe, 10	C _{pe} ,1	Cpe, 10	Cpe,1	Cpe, 10	Cpe, 1	Cpe,10	Cpe,1	Cpe,10	Cpe,1
≥ 5	- 1,4	- 1,7	- 0,8	- 1,1	- 0,5	- 0,7	+ 0,8	+1,0	-0,5	- 0,7
1	- 1,2	- 1,4	- 0,8	- 1,1	- 0,5		+ 0,8	+1,0	- 0	,5
≤ 0,25	- 1,2	- 1,4	- 0,8	- 1,1	- (0,5	+ 0,7	+1,0	-0,3	- 0,5

Abbildung 7: Außendruckbeiwerte c_{pe} für vertikale Wände rechteckiger Gebäude

2.1.2.2 Vereinfachte Windlastannahmen für Außenwandbekleidungen

Für Außenwandbekleidungen sieht die DIN 1055-4 (03/05) für (wind)durchlässige Außenwandbekleidungen besondere Regeln vor:

In DIN 1055-4 (03/05), Abschnitt 12.1.10 (3) wird ausgeführt, dass der sich aus dem Innendruck im Hinterlüftungsraum und dem Außendruck ergebende resultierende Winddruck auf die durchlässige Außenwandbekleidung mit einem Beiwert von $c_{p,net} = \pm 0.5$ berechnet werden darf. Dabei müssen folgende drei Anwendungsgrenzen eingehalten werden:

- Entlang der vertikalen Gebäudekanten ist eine dauerhaft wirksame, vertikale Luftsperre angeordnet.
- Für die Durchlässigkeit der Außenwandbekleidung gilt:

 $\frac{\text{Fläche der Öffnungen}}{\text{Fläche der Außenwandbekleidung}} \ge 0,75\%$

Die Fläche der Öffnungen muss gleichmäßig über die Gesamtfläche der Außenwandbekleidung verteilt sein.

• Die lichte Dicke der Luftschicht im Hinterlüftungsraum muss kleiner als 100 mm sein.

Nur wenn diese Bedingungen gleichzeitig erfüllt sind, kann der Außendruckbeiwert wie oben angegeben für alle Flächenbereiche angenommen werden. Im Rahmen des Berechnungsbeispiels wurde angenommen, dass die oben genannten Voraussetzung zutreffend seien und $c_{p,net} = \pm 0,5$ beträgt.

An dieser Stelle sei jedoch darauf hingewiesen, dass gerade bei hinterlüfteten Außenwandbekleidungen der Befestigung und der Luftdichtheit der Wärmedämmplatten besondere Betrachtung zu schenken ist. Im Folgenden seien die Problemkreise nur angerissen:

- Im Falle luftdichter Wärmedämmung: Sicherung der Aufnahme der "Sogkräfte", die als Druckkräfte von der tragenden Wand in Richtung Belüftungsspalt wirken
- Berücksichtigung einer möglichen Abnahme der Wärmedämmfähigkeit bei geringen Durchströmungswiderständen der Wärmedämmung

3 BESCHREIBUNG EINER BEISPIEL- KONSTRUKTION

Beispielhaft sollen die Berechnungen nach alter und neuer Windlast-Norm an einer vorgehängten, hinterlüfteten Außenwandbekleidung mit einer Unterkonstruktion aus Aluminiumprofilen durchgeführt werden. Die Bekleidung der Konstruktion erfolgt beispielhaft mit Eternit-Faserzementplatten "Pelicolor". Die Gebäudehöhe des aus z. B. aus Mauerwerk errichteten rechteckigen Gebäudes beträgt 18 m, dass Verhältnis a/d bzw. h/d sei = 0,25. Der Standort des in Deutschland errichten Gebäudes ist variabel.

Faserzement-Tafeln

Kennwerte und Spezifikation:

Produkt "Pelicolor" der Eternit AG Dicke: 8 mm zul. Biegezugspannung σ : 6,0 N/mm² E-Modul: 15 000 N/mm² W = 1 m \cdot (8 mm)² / 6 = 10,667 mm³ / m

Abbildung 8: Abmessungen und Befestigung der Faserzementtafel

Unterkonstruktion

Die Aluminium-Unterkonstruktion vom TYP ATK 100 der Firma BWM wird senkrecht mit Rand- und Mittelprofilen verlegt.

Abbildung 9:

Horizontalschnitt Mittelprofil, rechts Randprofil

Querschnittswerte Mittelprofil	Querschnittswerte Randprofil
A = $159,2 \text{ mm}^2$	A = 268.8 mm^2
$I_x = 42.670 \text{ mm}^4$	$I_x = 55 \ 110 \ \text{mm}^4$
$I_y = 10530 \text{ mm}^4$	$I_y = 13760 \text{ mm}^4$
E-Modul = 70 000 N/mm ²	E-Modul = 70 000 N/mm ²

Tabelle 5:

Querschnittswerte der eingesetzten Profile

4 DURCHGEFÜHRTE BERECHNUNGEN

Für die Bemessung von Konstruktionen ist die Wahl der Methodik des Tragwerkentwurfes zu beachten. Für die Berechnung der Faserzement-Tafeln mit den Windlasten nach alter und neuer Windlastnorm wurden daher jeweils zwei Bemessungsvarianten benutzt:

- herkömmliches, per Hand durchgeführtes Bemessungsverfahren: Berechnung für "Sog" als punktgestützte Platte mit Berücksichtigung der Steifigkeit der Unterkonstruktion nach Hees [2], Berechnung der Fassadentafel als Platte mit Berücksichtigung der nachgiebigen Unterkonstruktion nach Zuber [11] (z.B. in [1] enthalten)
- Bemessungsprogramm "Alu_vT" der Fa. Eternit [9], basierend auf dem Prinzip der Finiten Elemente (FEM); das Programm berücksichtigt bei der Berechnung der auftretenden Spannungen die nachgiebige Unterkonstruktion und das aus Versuchen bei der Fa. Eternit gewonnene Kenntnisse zum Tragverhalten von Faserzement-Tafeln im Bereich von Verankerungspunkten (Versuche von Eligehausen, [10])

Im Folgenden sollen zum Verständnis der Berechnung von Faserzement-Tafeln die herkömmliche Bemessung und das Vorgehen mit dem FEM-Programm beispielhaft gezeigt werden. Für beide Verfahren wird die Bemessung zur Erläuterung nur für die Windlast nach alter DIN 1055-4 (08/86) durchgeführt und anschließend verglichen.

4.1 Bemessung von Faserzement-Tafeln nach dem herkömmlichen Verfahren und mit den Windlastannahmen nach DIN 1055-4, Ausgabe August 1986

4.1.1 Windlasten nach DIN 1055-4 (08/86)

Für das Gebäude wird ein Verhältnis von Höhe/parallel angeströmten Seiten (h/a) von h/a \leq 0,25 angesetzt.

Für die Windlasten im Flächenbereich ergeben sich nach DIN 1055-4, Ausgabe 08/86:

Winddruck W_D Windsog W_S		= $0.8 \cdot 0.8 \cdot 1.25$ = 0.8 KN/m^2 = $0.8 \cdot 0.5$ = 0.4 KN/m^2	[1]
mit:	q	Staudruck [kN/m ²] hier: Höhe = 18 m, für Höhen von 8 bis 20 m gilt: q = 0,8 kN/m ²	2
	Cp	Druckbeiwert [./.] hier: Winddruckseite +0,8 [./.] Windsogseite -0,5 [./.] (für h/a ≤ 0,25)	
	Anmer	kung: Erhöhungsfaktor für Winddruck an Einzelbauteile (Böeneinflu hier: 1.25 für Fassadenbauteile	uss)

4.1.2 Nachweis für Winddruck

Die Bemessung der Bekleidung für den Lastfall Winddruck wird entsprechend den Vorschlägen zur Berücksichtigung der nachgiebigen Unterkonstruktion nach Zuber [11] durchgeführt. Hierbei werden zunächst die Momente für einen starr gelagerten Träger ermittelt und mit einem Erhöhungsfaktor ρ =1,5 berechnet, wenn die von Zuber [11] genannte bezogene Mindeststeifigkeit der Unterkonstruktion zur Bekleidung eingehalten wird.

Abbildung 10: statisches System für Faserzementtafeln unter Lastfall "Winddruck"

Die Schnittgrößen bei der Annahme einer starren Linienlagerung ergibt sich wie folgt:

$$M_{1} = 0.07 \cdot 0.8 \cdot (605)^{2} / 1000 = 20.5 \text{ kN mm/m}$$

$$M_{R} = -0.125 \cdot 0.8 \cdot (605)^{2} / 1000 = -36.6 \text{ kN mm/m}$$
[2]

Nach dem von Zuber [11] vorgeschlagenen Berechnungsverfahren wird die Bekleidung zur Berücksichtigung der Nachgiebigkeit der Unterkonstruktion mit den 1,5-fachen Schnittgrößen, die bei der Annahme einer starren Linienlagerung ermittelt worden sind, bemessen, wenn die Anforderungen an die Mindeststeifigkeiten eingehalten werden.

n = L / ℓ	Mindeststeifigkeitsverhältnisse der Unterkonstruktion / Bekleidung (El) _{UK} / (El) _{BK}
2	5 · (1 - 0,7 · a / L) ≥ 2,0
3	15 · (1 - 1,0 · a / L) ≥ 2,0
4	29 · (1 - 1,4 · a / L) ≥ 2,0
5	47 · (1 - 2,0 · a / L) ≥ 2,0

Tabelle 6:

Einzuhaltende Mindeststeifigkeitsverhältnisse im Bereich a / $L \le 1,0$, aus [11]

Im Beispiel ist das Mittelprofil "weicher" als das Randprofil, so dass der Vergleich der Steifigkeiten mit dem maßgebenden Mittelprofil durchgeführt wird (vgl. Tabelle 5).

vorh α = (EI)_{UK} / (EI)_{BK} = (EI)_{UK} / (a · E · t³ / (12 · (1 - μ^2))); μ = 0,15 = 70 000 · 42 670 / (605 · 15 000 · 8³ / (12 · (1 - 0,15²))) = 7,54 [3]

min α für n = 3

min α = 15 · (1 - 1 · 605 / (3 · 380)) = 7,03

vorh α > min α

Die nach Zuber [11] einzuhaltende Mindeststeifigkeit ist eingehalten, die Momente unter Berücksichtigung der nachgiebigen Lagerung steigen nicht größer als " $1,5 \cdot$ Moment ermittelt aus starrer Lagerung" an.

Das betragsmäßig größte Bemessungsmoment M_B berechnet sich zu:

$$M_{\rm B} = 36,6 \text{ kN mm/m} \cdot 1,5 = 54,9 \text{ kN mm/m}$$
 [4]

Der Nachweis erfolgt zu:

vorh
$$\sigma = \frac{M_B}{W} = \frac{54.9 \text{ kN mm/m}}{10,67 \text{ mm}^3} = 5,15 \text{ N/mm}^2 \le \text{ zul. } \sigma = 6,0 \text{ N/mm}^2$$
 [5]

4.1.3 Nachweis auf Windsog (Punktlagerung)

Bei der Bemessung der Bekleidung auf den Lastfall Windsog ist davon auszugehen, dass die Faserzementtafel auf der Unterkonstruktion punktgelagert ist (durch Nieten befestigt). Die Ermittlung der Schnittgrößen wird nach Hees [2] durchgeführt. Die Schnittlasten im Bereich der zur Bemessung maßgebenden Stützstellen wurden nach [2] ersatzweise an einer gelenkig gelagerten elliptischen Ersatzplatte mit dem Radius R an der maßgebenden Stelle ermittelt.

Abbildung 11: elliptische Ersatzplatten sowie einbeschriebene Ersatzkreisringplatten mit dem Radius R, nach [2] für den Lastfall "Windsog"

Abbildung 12: Bemessungsstelle an der Lasteinleitung der Bekleidung, nach [2] für den Lastfall "Windsog"

Folgende Abmessungen gelten an der Bemessungsstelle:

 $r_0 = 3,5 \text{ mm}$ $d_1 = 11$ ℓ = 380 mm a = 605 mm r = 11 / 2 + 8 / 2 = 9,5 mm

Der Radius R der elliptischen Ersatzkreisringplatte berechnet sich zu:

$$R = \ell \cdot (0,17 - 1,14 \cdot \frac{r_0}{\ell}) \cdot (1 + 0,9 \cdot \mu \cdot (\frac{a}{\ell})^2)$$

$$R = 380 \cdot (0,17 - 1,14 \cdot \frac{3,5}{380}) \cdot (1 + 0,9 \cdot 0,15 \cdot (\frac{605}{380})^2) = 81,35 \ mm$$
[6]

Einflussfläche Ae zur Errechnung der Stützkraft F an einem mittleren Festpunkt (Abbildung 13):

Abbildung 13: Einflussflächen für die Stützkraft der Befestigungspunkte [2]

Das Bemessungsmoment m_p an der Stelle r berechnet sich mit dem in Abbildung 14 vertafelten Wert "m" zu

$$m_{\phi} = \frac{F}{4\pi} \Big[\Big(1 + \mu \Big) \cdot m + 2 \cdot \mu \Big]$$
^[7]

Abbildung 14: Beiwert "m" zur Berechnung der Bemessungsmomente m_{Φ} bei starrer Lochrandlagerung, aus [2]

 $\begin{array}{ll} \rho = r \ / \ r_0 \ = 9,5 \ / \ 3,5 \\ r_0 \ / \ R \ = 3,5 \ / \ 81,35 \end{array} = 2,71 \\ = 0,043 \end{array}$

aus Abbildung 14 wird m = 3,675 abgelesen

$$m_{\varphi} = \frac{F}{4\pi} \Big[(1+\mu) \cdot m + 2 \cdot \mu \Big]$$

$$m_{\varphi} = \frac{114,95}{4\pi} \Big[(1+0,15) \cdot 3,675 + 2 \cdot 0,15 \Big] = 41,4 \text{ N} \cdot \text{mm/m}$$
[8]

Berücksichtigung der Steifigkeit der nachgiebigen Unterkonstruktion nach [2]

Bei steifen Unterkonstruktionen stellen alle Befestigungen starre Lager für die Bekleidung dar. Bei weichen Unterkonstruktionen sind hingegen nur die Befestigungspunkte in unmittelbarer Nähe von Verankerungen der Unterkonstruktion Starrlager, alle anderen nachgiebige Lager. Es findet dann eine Umlagerung der Lasten zu den Starrlagern statt, die erheblich sein kann und beim Standsicherheitsnachweis zu berücksichtigen ist.

Von Hees [2] wurden Tafeln entwickelt, die in Abhängigkeit der Steifigkeit der Unterkonstruktion die Angabe von maximal möglichen Umlagerungen ermöglicht. Mit den Eingangsparametern kann somit auch abgelesen werden, welche minimale Steifigkeitsverhältnisse vorliegen müssen, damit sich die Bemessungsmomente nicht mehr als 10% bzw. 50% erhöhen.

Universität Hannover – Institut für Bautechnik und Holzbau

Aus den folgenden Abbildungen kann min α entnommen werden (Abbildung 15):

Abbildung 15:Mindeststeifigkeit der Unterkonstruktion min EI = K⋅a⋅min α für eine Erhöhung des
Bemessungsmomentes gegenüber der starren Lagerung um (nach [2]):
a) ≤ 10 %
b) ≤ 50 %

Mit den obigen Kennzahlen ergibt sich in Abbildung 15:

um eine Erhöhung von 10 % vorzunehmen ist min α = 23 < vorh α = 7,54 und um eine Erhöhung von 50 % vorzunehmen ist min α = 5 < vorh α = 7,54. [10]

Die vorhandene Konstruktion ist im Beispielfall steif genug, dass eine Erhöhung von 50 % der starr ermittelten Bemessungsmomente den Einfluss der nachgiebigen Lagerung beschreiben kann. Das Bemessungsmoment $m_{\Phi,nachgiebig}$ berechnet sich zu:

$$m_{\Phi,nachgiebig} = 1,5 \cdot 41,4 \text{ N} \cdot \text{mm} = 62,1 \text{ N} \cdot \text{mm}$$
 [11]

Nachweis

Der Nachweis erfolgt zu:

vorh
$$\sigma = \frac{m_{\Phi,\text{nachgiebig}}}{W} = \frac{62,1 \text{ N} \cdot \text{mm}}{10,67 \text{ mm}^3} = 5,82 \text{ N/mm}^2 \le \text{zul. } \sigma = 6,0 \text{ N/mm}^2$$
 [12]

Die Bemessung der Faserzement-Tafel ist abgeschlossen, der Ausnutzungsgrad beträgt 97 % (Lastfall Windsog).

Der Nachweis ist an dieser Stelle erbracht. Erwähnt sei, dass nach Hees [2] auch die Möglichkeit besteht, den Einfluss der nachgiebigen Unterkonstruktion noch genauer zu erfassen. Die Berechnungen zeigten, dass in diesem Fall die Erhöhung etwa 40 % betragen würde.

[9]

4.2 Bemessung von Faserzement-Tafeln mit der FEM und mit den Windlastannahmen nach DIN 1055-4, Ausgabe August 1986

Mit dem FEM-Programm "Alu_vT" [9] wurde eine dem Abschnitt 4.1 gleichartige Konstruktion generiert und mit den in Abschnitt 4.1.1 angegebenen Windlasten beansprucht.

Zur Bestimmung der Bemessungsmomente in der Faserzement-Tafel wurde nach Auskunft der Fa. Eternit neuere Ergebnisse zum Tragverhalten von Faserzement-Tafeln eingearbeitet. Versuchsergebnissen und einer gutachtlichen Stellungnahme von Prof. Eligehausen [10] folgend, werden die maßgeblichen Biegespannungen nicht im Bereich der Befestigungsmittel oder Spannungsspitzen angesetzt, sondern in einem Abstand von "5 · Plattendicke".

4.2.1 Programmschritte

Nach dem Aktivieren des Programms öffnet sich ein Generierungs-Assistent, der verschiedene Parameter abfragt, um Informationen über das System und die Belastungen für die Berechnung zu erhalten.

In den Eingabemasken werden die Unterkonstruktion, die Geometrie und die Angaben zur Faserzement-Tafel angegeben.

Generierungs-Assistent	Generierungs-Assistent
Unterkonstruktion - Hersteller BW/M Dübel + Montagetechnik Material AlMgSi 0,5 F25 E-Modul 70000.0 N / mm² zul. Spannung 115.0 N / mm²	Name Pelicolor Elastizitäts-Modul 15000.00 N / mm² Querkontraktionszahl 0.25 zul. Biegespannung 6.00 N / mm²
Zurück Weiter Abbrechen Hilfe	Abbrechen Hilfe

Abbildung 16: Eingabe FEM-Programm [9], Unterkonstruktionshersteller und Faserzementplatte

	Generierungs-Assistent	8	X
Tafelverbund Achsen-Höhe Achsen-Breite Fugen-Breite 2450 <u>+</u> mm 1220 mm 10 <u>+</u> mm Anzahl der Einzeltafeln 1 <u>+</u>	Gebäudehöhe Bereich Für Gebäude mit vorgehängter Image: Stand		
Abmessungen der Einzeltafel Tafel-Höhe Tafel-Breite Tafel-Dicke 2440 mm 1210 mm 8 \pm mm	Nähere siehe DIN 1055 Teil 4 Sog Druck 0.40 kN / m² 0.80 kN / m² DIN 1055 Rechenwert der Eigenlast 0.18 kN / m² DIN 1055		
< Zurück Weiter > Abbrechen Hilfe	<zurück weiter=""> Abbrechen</zurück>	Hilfe	

Abbildung 17: Eingabe FEM-Programm [9] Abmessungen und Windeinwirkung

Seite 26

Kapitel 4

Generierungs-Assistent		8	×
Anordnung der vertikalen T	ragprofile		
Anzahl 3 🕂	symmetrische Anordnung		
Randabstände [mm]			
links 0 📩	rechts 0 💌		
Feldabstände (mm)			
	<zurück weiter=""> Abbrechen</zurück>	Hilfe	

Abbildung 18: Eingabe FEM-Programm [9] Anordnung Tragprofile

Die Rand- und Feldtragprofile wurden aus der Serie ATK 100 eingegeben.

Generierungs-Assistent	×	Generierungs-Assistent	×
Generierungs-Assistent Rand-Tragprofil, vertikal, links Querschnittswerte Fläche 309 I-xx 57460 I-yy 241300 W-xx 1310 W-yy 4012	T 120/52 - ATK 100 mm**2 mm**4 mm**3 mm**3	Generierungs-Assistent Feld-Tragprofil, vertikal T 40/52 - ATK 100 Querschnittswerte Imm**2 Hache 159 mm**4 Hay 10530 mm**4 Wax 1148 mm**3 W-3x 520 mm**3	×
<	Zurück Weiter Abbrechen Hilfe	Zurück Weiter> Abbrechen Hilfe	

Abbildung 19: Eingabe FEM-Programm [9] Tragprofile

Generierungs-Assistent	Generierungs-Assistent
Generierungs-Assistent X Befestigungselement Niet 4*18:K15 zul. Normalkraft	Generierungs-Assistent X Lager Anzahl pro Profil Abstand 3 1195 mm Anzahl der Verankerungselemente pro Gleitpunkt pro Festpunkt 1 + 1 + zulässiger Schrägzug pro Verankerungselement 1000 +
<zurück weiter=""> Abbrechen Hilfe</zurück>	< Zurück Fertig stellen Abbrechen Hilfe

Abbildung 20: Eingabe FEM-Programm [9] Befestigungselemente

Sind alle wichtigen Parameter festgelegt, beendet der Benutzer mit dem Button "Fertig

stellen" den Generierungs-Assistenten. Auf dem Bildschirm erscheint die gewählte Konstruktion mit Abmessungen und allen Elementen einer Faserzementtafel. In der Menüleiste muss nun der Befehl "Berechnen" ausgeführt werden. Nach Durchführung der Berechnung liefert das Programm ein Ergebnisprotokoll (Abbildung 21).

Notizbuch: Ergebnisse 🔤 ? 🗴
Tragprofil-Feld Befestigungselemente Verankerungselemente Übersicht Fassadentafel Tragprofil-Rand
Maximalwert der Biegespannung zulässig <u>6.0</u> N / mm²
Windlast: Sog Windlast: Druck vorhanden 1.2 Ausnutzung 19.8
OK Abbrechen Hilfe

Abbildung 21: FEM-Programm [9] Ergebnisprotokoll

Im Protokoll werden die Ergebnisse auf sechs verschiedenen Karteikarten angegeben. Als Ergebnis für die Fassadentafel werden die für den Lastfall "Windsog" und "Winddruck" berechneten maximalen Bemessungs-Biegespannungen angegeben.

4.3 Vergleich der Berechnungsergebnisse

Die beiden oben angewendeten Berechnungsverfahren sind als linear-elastische Berechnungen durchgeführt worden. Bei beiden Verfahren ist daher das Superpositions-Prinzip gültig, dass heißt, bei sonst gleichen Randbedingungen führt eine Verdopplung der Größe der Einwirkung zu einer Verdopplung der berechneten Biegespannungen. Bei der Interpretation der Berechnungsergebnisse ist zwischen den Ergebnissen der Bemessung für Winddruck- und der für eine Windsogbelastung zu unterscheiden.

4.3.1 Bemessung für Winddruckbelastung

Die Bemessung der Faserzement-Tafeln für Winddruck zeigt, dass zwischen der Berechnung nach Zuber [11] und dem FEM-Programm [9] ein Verhältnis von:

 $\frac{\text{Verfahren nach Zuber, max. Bemessungsbiegemoment } m_{\text{Zuber, nachgiebig}}}{\text{Verfahren nach FEM-Eternit, Bemessungsbiegemoment } m_{\text{FEM, nachgiebig}}} \approx 1,10$ [13]

vorliegt. Mit dem FEM-Programm der Fa. Eternit werden somit etwas geringere Biegemomente unter Berücksichtigung der nachgiebigen Lagerung berechnet. Als ursächlich kann hierfür die im herkömmlichen Verfahren nach Zuber angenommene pauschale Erhöhung der bei starrer Lagerung ermittelten Momente bei Vorliegen der Mindeststeifigkeitsverhältnisse angesehen werden (vgl. hierzu Abschnitt 4.1.2).

4.3.2 Bemessung für Windsogbelastung

Bei der Bemessung der Faserzement-Tafeln für die Beanspruchung durch Windsog ergibt sich zwischen der Berechnung nach Hees [2] und dem FEM-Programm [9] ein Verhältnis von:

 $\frac{\text{Verfahren nach Hees, max. Bemessungsbiegemoment } m_{\text{Hees,nachgiebig}}}{\text{Verfahren nach FEM-Eternit, Bemessungsbiegemoment } m_{\text{FEM,nachgiebig}}} \approx 4,8$ [14]

Die Berechnung mit dem FEM-Programm der Fa. Eternit [9] führt somit zu deutlich geringeren Biegespannungen bei der Beanspruchung durch Windsog. Als Erklärung hierfür ist unsererseits die durch das Programm durchgeführte Kappung der Bemessungsmomente und die grundsätzlich andere Ermittlung der Momentenverläufe mit der FEM denkbar.

Zusammenfassend sind die Ergebnisse der untersuchten Beispielkonstruktion – auch für die anderen Windzonen – in Anlage 1 gezeigt.

5 SICHERHEITSKONZEPT NACH DIN 1055-100

5.1 Nachweise nach dem Verfahren der Teilsicherheitsbeiwerte

Mit der Einführung der neuen Normengenerationen wird die Tragwerkszuverlässigkeit durch die Gegenüberstellung der resultierenden Bemessungswerte der Beanspruchungen E_d mit den Bauteilwiderständen R_d nachgewiesen. Der allgemeine Nachweis ist erbracht, wenn nachgewiesen wird, dass $E_d \leq R_d$ ist. Die Nachweise erfolgen hierbei in definierten Grenzzuständen und zugehörigen Bemessungssituationen.

Bemessungswerte der Einwirkungen und Beanspruchung

Die aus den Einwirkungsnormen (Normenreihe DIN 1055) vorgegebenen repräsentativen Einwirkungen F_{rep} (z.B. Eigen-, Wind- und Nutzlasten oder Kombinationen veränderlicher Einwirkungen $\psi_i \cdot Q_k$), werden mit den zugehörigen Teilsicherheitsbeiwerten γ_F multipliziert.

$$\mathbf{F}_{d} = \gamma_{\mathsf{F}} \cdot \mathbf{F}_{\mathsf{rep}} = (\gamma_{\mathsf{f}} \cdot \gamma_{\mathsf{Ed}}) \cdot \mathbf{F}_{\mathsf{rep}}$$
[15]

Der Bemessungswert der Beanspruchung des Tragwerkes E_d (z.B. Schnittkräfte, Moment oder Spannungen) hängt primär von den Bemessungswerten der Einwirkungen ab. Bei z.B. statisch unbestimmten Tragwerken besitzen auch geometrische Größen des Tragwerkes (Bezeichnung: a_d) und Baustoffeigenschaften X_d Einfluss auf den Bemessungswert der Beanspruchung. Für das allgemeine Format des Bemessungswerts einer Beanspruchung wird daher angegeben:

$$E_{d} = E(F_{d}, \dots A_{d}, \dots X_{d})$$
 [16]

Zur Erläuterung der Teilsicherheiten:

Dem Teilsicherheitskonzept folgend, werden die Unsicherheiten bei der Annahme der repräsentativen Werte der Einwirkungen γ_f und der angenommenen Modellbildung γ_{Ed} durch einen resultierenden Sicherheitsbeiwert γ_F zusammengefasst.

Der Teilsicherheitsbeiwert γ_f berücksichtigt hierbei die ungünstigen Abweichungen beim Ansatz der Einwirkungen, also die Unsicherheit in Bezug auf die Streuung der zu erwartenden Extremwerte der Einwirkungen.

Der Teilsicherheitsbeiwert γ_{Ed} berücksichtigt die vorhandenen Ungenauigkeiten der gewählten Modellannahmen für die Einwirkungen, so z. B. die idealisiert als Streckenlast zusammengefasste Windeinwirkung. Ferner berücksichtigt der Teilsicherheitsbeiwert γ_{Ed} auch die Unsicherheit in der Bestimmung der Auswirkungen, also die Abweichungen des angenommenen Tragwerkmodells vom realen Tragverhalten des Bauteils.

Bemessungswerte der Baustoffeigenschaften und des Tragwiderstands

Auf der Bauteilwiderstandsseite werden die Bemessungswerte durch die Unsicherheiten bei der Angabe von Materialeigenschaften und die Modellunsicherheiten bei der Ermittlung des Tragwiderstandes bestimmt.

Die Bemessungswerte der Baustoffeigenschaften X_d (z.B. Druckfestigkeiten) werden mit Teilsicherheitsbeiwerten γ_M und einem Umrechnungsfaktor η aus den charakteristischen Werten der Baustoffeigenschaft ermittelt. Der Zusammenhang wird in DIN 1055-100 [3] wie folgt beschrieben:

$$X_{d} = \frac{\eta \cdot X_{k}}{\gamma_{M}} = \frac{\eta \cdot X_{k}}{\gamma_{m} \cdot \gamma_{Rd}}$$
[17]

Der Teilsicherheitsbeiwert der Baustoffeigenschaften γ_m berücksichtigt die ungünstigen Abweichungen von den charakteristischen Werten, also die Streuungen der Materialkennwerte und Streuungen des Umrechnungsfaktors η . Mit dem Umrechnungsfaktors η werden die Unterschiede zwischen den am Probekörper ermittelten Eigenschaften und den bemessungsrelevanten Eigenschaften des betrachteten Bauteils berücksichtigt. Derartige Effekte können z.B. Maßstabseffekte, Feuchte- und Temperaturauswirkungen oder die Auswirkungen der Lastdauer sein (vgl. Erläuterungen zur DIN 1055-100 von Prof. Grünberg [6]).

Durch den Teilsicherheitsbeiwert γ_{Rd} werden die Modellunsicherheiten bei der Ermittlung des Tragwiderstandes, die durch Annahme des Widerstandsmodells vom realen Tragwerksverhalten auftreten, berücksichtigt.

Der Bemessungswertes des Tragwiderstandes R_d ist eine Funktion der Materialeigenschaften X_d und der geometrischen Größen "a" und kann wie folgt dargestellt werden:

$$R_{d} = R(X_{d}, \dots a_{d}, \dots)$$
 [18]

Die oben erläuterten Beziehungen zwischen den einzelnen Teilsicherheitsbeiwerten können zu der in Abbildung 22 gezeigten Grafik zusammengefasst werden.

Abbildung 22: Beziehungen zwischen den verschiedenen Teilsicherheitsbeiwerten, nach [3]

Universität Hannover – Institut für Bautechnik und Holzbau

Der Bemessungswert des Tragwiderstandes kann auch direkt aus dem charakteristischen Wert des Tragwiderstandes eines Bauproduktes oder eines Bauteils ohne Bezugnahme auf die Bemessungswerte der einzelnen Basisvariablen bestimmt werden, in diesem Fall gilt:

$$R_{d} = \frac{R_{k}}{\gamma_{R}}$$
[19]

5.2 Sicherheitsniveau nach alter Normengeneration bei Faserzementprodukten

Entsprechend dem Vorgehen beim globalen Sicherheitssystem wurden sämtliche Sicherheiten in einem globalen Sicherheitsbeiwert γ berücksichtigt. Für den Einsatz von Faserzementprodukten wurde im Rahmen von bauaufsichtlichen Zulassungsverfahren eine zulässige Biegespannung festgelegt.

Bei der Festlegung der zulässigen Biegespannung wurde bei Faserzementprodukte eine globale Sicherheit von γ = 2,5 bei Berücksichtigung des Langzeitverhaltens angesetzt. Die für jedes Material anzusetzenden Auswirkungen des Langzeitverhaltens durch Witterungseinflüsse wurden durch Abschläge auf den Prüfwert berücksichtigt.

Aus einem früheren Zulassungsverfahren eines Faserzementproduktes [7], soll die Herleitung einer dem globalen Sicherheitssystem folgenden Zulassung beispielhaft aufgezeigt werden. Aus Gründen der Vertraulichkeit wird der Markenname des Produktes nur mit "xxx" gekennzeichnet werden.

Für die Faserzementplatten "xxx" wird in der Zulassung eine zulässigen Biegespannung von $\sigma_{zul.}$ = 5,0 N/mm² angegeben. Die als 5%-Quantile einzuhaltende Biegefestigkeit parallel zur Faserrichtung wird mit $\beta_{B,quer}$ = 18,5 N/mm², rechtwinklig zur Faserrichtung wird mit $\beta_{B,längs}$ = 22,0 N/mm² angegeben.

Aus der Prüfung der Dauerhaftigkeit ergab sich abschließend, dass dieser Einfluss mit einem Faktor von ca. 0,65 (Minderung: ca. 35%) auf den "Trockenwert" der Biegefestigkeit parallel zur Faserrichtung berücksichtigt wurde [7]. Aus den oben genannten Zusammenhängen ergibt sich folgende Berechnung, die die Festlegung der zulässigen Biegefestigkeit in früheren Zulassungen verdeutlicht:

zul. Biegesp.
$$\sigma_{zul.} = 5,0 \text{ N/mm}^2 \approx \frac{0,65 \cdot 18,5 \text{ N/mm}^2}{2,5} = \frac{\text{Abmind.faktor} \cdot \beta_{B,quer}}{\gamma_{Global}}$$
 [20]

Grundsätzlich vergleichbar ist dieser Abminderungsfaktor mit dem auch in der Bemessungsnorm für Stahlbetonbauten (DIN 1045-1, [8]) bekannten Abminderungsfaktor α bei der Bestimmung des Rechenwertes der Betondruckfestigkeit f_{cd}.

$$\mathbf{f}_{cd} = \alpha \cdot \frac{\mathbf{f}_{ck}}{\gamma_{C}}$$
[21]

Hierbei wird in der DIN 1045-1 [8] für die Einflüsse aus Langzeitwirkungen und allen anderen ungünstigen Einflüssen auf die Betondruckfestigkeit ein konstanter Abminderungsfaktor α = 0,85 angesetzt.

In dem oben angegebenen globalen Sicherheitsbeiwert γ = 2,5 sind die bereits in Abschnitt 5.1 beschriebenen Sicherheitselemente auf der Einwirkungsseite und die der Widerstandsseite als "Gesamtprodukt" der einzelnen Teilsicherheiten enthalten. Die Aufteilung des globalen Sicherheitsbeiwertes in einzelne Teilsicherheitsbeiwerte wird im folgenden Abschnitt gezeigt.

5.2.1 Ableitung eines Teilsicherheitsbeiwerts für Faserzementprodukte

Für die Berechnung von Faserzementtafeln nach neuer Normengeneration ist die Ableitung eines Teilsicherheitsbeiwertes γ_M notwendig. Faserzementplatten für hinterlüftete Außenwandkonstruktionen werden in Plattenrichtung im Regelfall nur durch Windeinwirkungen beansprucht.

Beim Nachweis im Grenzzustand der Tragfähigkeit wird das Versagen des Tragwerkes bzw. eines seiner Teile beim Bruch nachgewiesen. Für ungünstig wirkende Windeinwirkungen wird in der maßgeblichen DIN 1055-100 [3] ein Teilsicherheitsbeiwert von $\gamma_F = \gamma_Q = 1,50$ angegeben (Tabelle A.3, in DIN 1055-100, [3]). An dieser Stelle sei darauf hingewiesen, dass in Tabelle A.3 bereits der zusammengefasste Teilsicherheitsbeiwert $\gamma_F = \gamma_Q = \gamma_f \cdot \gamma_{Ed} = 1,50$ angegeben wird.

Da die Biegebemessung der Faserzementplatten mit einer linear-elastischen Berechnung erfolgt, kann der globale Sicherheitsbeiwert als Produkt aller Teilsicherheitsbeiwerte geschrieben werden. Durch Multiplikation der entsprechenden Sicherheitselemente werden die Teilsicherheiten den zugehörigen Seiten zugeordnet.

1) Altes Normenkonzept bei Faserzementtafeln:

Lasteinwirkung	<	Bauteilwiderstand		
Lasteinwirkung	<	Abminderungsfaktor	$\frac{\mathbf{Pr} \mathbf{\hat{u}} \mathbf{f} \mathbf{w} \mathbf{e} \mathbf{r} \mathbf{f} \mathbf{M} \mathbf{a} \mathbf{t} \mathbf{e} \mathbf{r} \mathbf{i} \mathbf{a}}{\gamma_{Global}}$	[22]
2) Präzisierung der Sicherheitselemente nach DIN 1055-100:				
Lasteinwirkung	<	Abminderungsfaktor	$\frac{\text{Prüfwert Material}}{\gamma_{\text{Widerstandsseite}} \cdot \gamma_{\text{Einwirkungsseite}}}$	
Lasteinwirkung	<	Abminderungsfaktor	$\frac{\text{Prüfwert Material}}{(\gamma_{M})} \cdot (\gamma_{F})$	[23]
Lasteinwirkung	<	Abminderungsfaktor	$\frac{Pr\ddot{u}fwert\;Material}{(\gamma_{m}\cdot\gamma_{Rd})}\cdot(\gamma_{f}\cdot\gamma_{Ed})$	

Universität Hannover – Institut für Bautechnik und Holzbau

Prof. Dr.-Ing. N. A. Fouad

3) Umstellung zum Neuen Normenkonzept:

Lasteinwirkung	/	Abminderungsfaktor	Prüfwert Material		
			$\frac{1}{(\gamma_{\rm m}\cdot\gamma_{\rm Rd})} \cdot (\gamma_f\cdot\gamma_{\rm Ed})$		
Lasteinwirkung $\cdot (\gamma_f \cdot \gamma_{Ed})$	<	Abminderungsfaktor	$\frac{Prüfwert Material}{(\gamma_{m} \cdot \gamma_{Rd})}$		
Lasteinwirkung $\cdot (\gamma_F)$	<	Abminderungsfaktor	$\frac{Prüfwert Material}{(\gamma_{m} \cdot \gamma_{Rd})}$		

Durch Koeffizientenvergleich in 1) und 3) folgt zusammenfassend:

$$\gamma_{\text{Global}} = (\gamma_{\text{m}} \cdot \gamma_{\text{Rd}}) \cdot (\gamma_{f} \cdot \gamma_{\text{Ed}})$$

$$\gamma_{\text{Global}} = (\gamma_{\text{M}}) \cdot (\gamma_{F} = \gamma_{\text{Q}})$$

$$2,5 = 1,66 \cdot 1,5$$
[24]

Der für den Tragwiderstand bei Faserzement-Tafeln beträgt demnach $\gamma_M = \gamma_{FZ} = 1,66$ bzw. gerundet $\gamma_{FZ} \approx 1,65$, wenn das gleiche Sicherheitsniveau wie bisher beibehalten werden soll.

Voraussetzung für diese Herangehensweise ist, dass der Bemessungswert der Biegefestigkeit f_{bd} mit Berücksichtigung eines Dauerhaftigkeitsfaktors (Abminderungsfaktor) ausgehend von den charakteristischen Biegefestigkeiten (5%-Quantile) bestimmt wird. In Anlehnung an die Regelungen der Stahlbeton-Bemessung nach DIN 1045-1 [8] ergibt sich für die Berechnungen mit Faserzementplatten folgender Ausdruck:

$$\mathbf{f}_{\mathsf{bd}} = \alpha \cdot \frac{\mathbf{f}_{\mathsf{bk}}}{\gamma_{\mathsf{FZ}}}$$
[25]

- mit: α Abminderungsfaktor zur Berücksichtigung der Dauerhaftigkeit, Abhängig vom eingesetzten Material und ist durch Prüfprogramm im Rahmen der Zulassung (für beide Prüfrichtungen) zu bestimmen
 - γ_{FZ} Teilsicherheitsbeiwert für Faserzement
 - f_{bk} charakteristische Biegefestigkeit, ermittelt als 5%-Quantile, ohne Abzüge für Dauerhaftigkeit (für beide Prüfrichtungen)

Nach dem Sicherheitssystem der DIN 1055-100 [3] ist die Aufteilung des Teilsicherheitsbeiwertes γ_{FZ} in die einzelnen Teilsicherheiten für Unsicherheiten in der Angabe der Materialeigenschaften γ_m und den Modellunsicherheiten γ_{Rd} möglich.

Der Teilsicherheitsbeiwert γ_m kann als Funktion des Variationskoeffizienten der dominierenden Materialeigenschaft "Biegefestigkeit" nach der Sicherheitstheorie berechnet werden. Nach Hansen [12] wird für die Bauteilwiderstandsgröße angegeben:

$$\gamma_{R} = \exp \left[(-\alpha_{R} \cdot \beta + \Phi^{-1}(q) \cdot v_{R}) \right]$$

= exp [(0,8 \cdot 3,8 + \Phi^{-1}(0,05) \cdot v_{R}] [26]
= exp [1,395 \cdot v_{R}]

 α_R , β Wichtungsfaktor α_R und Zuverlässigkeitsindex β nach DIN 1055-100

$\Phi^{-1}(0,05)$ inverse Verteilungsfunktion zur Berechnung der 5% Quantile auf der Bauteilwiderstandsseite

Zusammenfassend ist der Einfluss des Variationskoeffizienten der Biegefestigkeit auf den Teilsicherheitsbeiwert γ_m in der Abbildung 23 dargestellt.

Teilsicherheitsbeiwert γm in Abhängigkeit vom Variationskoeffizienten der Biegefestigkeit

Bei üblichen an Faserzement-Tafeln durchgeführten Versuchsreihen für die Bestimmung der Biegefestigkeit wird der Variationskoeffizient der Biegefestigkeit mit ca. v \approx 0,10 angegeben. Für diesen Variationskoeffizienten berechnet sich der Teilsicherheitsbeiwert zu γ_m = 1,15. Der Sicherheitsbeiwert γ_{FZ} kann somit aufgeteilt

Universität Hannover – Institut für Bautechnik und Holzbau
werden:

$\gamma_{\rm Global}$	=	$(\gamma_{m} \cdot \gamma_{Rd})$	$\cdot (\gamma_f \cdot \gamma_{Ed})$
$\gamma_{\rm Global}$	=	$(\gamma_{\rm M} = \gamma_{\rm R} = \gamma_{\rm FZ})$	$\cdot (\gamma_F = \gamma_Q)$
2,5	=	1,65	· 1,5
2,5	=	1,15 · 1,44	· 1,5
$\gamma_{\rm Global}$	=	$(\gamma_{m} \cdot \gamma_{Rd})$	$\cdot (\gamma_Q)$

Unter Beibehaltung des bisherigen Sicherheitsniveaus können die einzelnen Teilsicherheitswerte angegeben werden

Teilsicherheitsbeiwert für Faserzement-Produkte: γ_{FZ} = 1,65 bestehend aus:

- Teilsicherheitsbeiwert γ_m = 1,15 bei einem angenommenen Variationskoeffizienten der Biegefestigkeit v = 0,1
- Teilsicherheitsbeiwert γ_{Rd} = 1,44 (Modellunsicherheiten)

5.2.2 Berücksichtigung von Überwachungsmaßnahmen bei der Angabe des Teilsicherheitsbeiwertes

Der in Abschnitt 5.2.1 angegebene Variationskoeffizient der Biegefestigkeit von v \approx 0,10 wurde aus Versuchsreihen im Rahmen der Qualitätsüberwachung entnommen.

Die durch fehlende Qualitätskontrollen in der Produktion zu erwartende erhöhte Streuung der Biegefestigkeiten könnte nach Abbildung 23 durch die Erhöhung des Teilsicherheitsbeiwert γ_m unter Beibehaltung des Teilsicherheitsbeiwert γ_{Rd} = 1,44 (Modellunsicherheiten) berücksichtigt werden.

Setzt man <u>beispielsweise</u> bei Fehlen einer – noch zu definierenden – produktionstechnischen Qualitätskontrolle eine Vergrößerung des Variationskoeffizienten der Biegefestigkeit auf v \approx 0,30 an, ergibt sich nach Abbildung 23 ein Teilsicherheitsbeiwert γ_m = 1,52. Unter Beibehaltung des Teilsicherheitsbeiwerts γ_{Rd} = 1,44 berechnet sich in diesem angenommen Fall der schlussendlich ergebende Teilsicherheitsbeiwert für Faserzement-Produkte ohne Qualitätssicherung zu:

 $\gamma_{FZ, mod}$ = 1,52 ·1,44 = 2,18

Die Größe des im Falle des Fehlens einer Qualitätskontrolle anzusetzenden Wertes des Variationskoeffizienten ist im zuständigen Sachverständigenausschuss zu diskutieren.

[27]

6 VERGLEICH DER WINDEINWIRKUNGEN NACH ALTER UND NEUER NORM

Durch die neue Windlastnormung DIN 1055-4 (03/05) [5] wurde für die Tragwerke des Bauwesens erstmalig ein einheitliches, probabilistisch basiertes Sicherheitsniveau für alle Regionen im Geltungsgebiet festgelegt. Die absolute Lasthöhe hat sich somit geändert und ist insbesondere im Norddeutschen und Ostseeraum erheblich gestiegen.

Zur Darstellung der sich nach alter und neuer Windlastnorm ergebenden Veränderungen können direkt die charakteristischen Windlasten verglichen werden. Hierzu wurde jeweils ein Faktor der Veränderung, der sich bei verschiedenen Bemessungshöhen des Gebäudes ergebenen Windlasten nach folgender Formel bestimmt:

 $Vergleichs-Faktor = \frac{Windlast nach neuer DIN 1055-4 (03/05)}{Windlast nach alter DIN 1055-4 (08/86)}$ [28]

Für den Definitionsbereich der zu vergleichenden Werte (vgl. auch Abschnitt 2.1) wurde wie folgt festgelegt:

Beschreibung der Windlast	Bemessung nach neuer Windlastnorm DIN 1055-4 (03/05)	Bemessung nach alter Windlastnorm DIN 1055-4 (08/86)	
Flächen bei denen Winddruck auftritt	Flächenbereich " D "	windzugewandte Seite (c _p = +0,8)	
Flächen bei denen Windsog an der Gebäudekante auftritt (Sogspitze)	Flächenbereich " A "	Bereich mit Sogspitzen (c _p = -2,0, Breite max. 2 m)	
Flächen bei denen Windsog außerhalb der Sogspitzen auftritt (Flächenbereich, inkl. Flächen mit geringeren Windsogflächen)	Flächenbereich "B" (Anmerkung: die weiteren Windsogbereiche "C" und "E" sind betragsmäßig immer kleiner als "B" und sind daher aus Übersichtlich- keitsgründen in den grafischen Darstellungen nicht extra aufgeführt)	Windparallele und windabgewandte Seite ($c_p = -0.5$ bzw. $c_p = -0.7$ in Abhängigkeit des Verhältnisses h/a)	

Tabelle 7: Vergleichbare Winddruck/Windsogbereiche nach alter und neuer Windlastnorm DIN 1055-4

Zur Berücksichtigung des in der alten und in der neuen Windlastnormung angegebenen Verhältnisses von h/a bzw. h/d wurden die entsprechenden Grenzfälle:

 $h/a = h/d \le 0,25$ und $h/a = h/d \ge 5$

in den Vergleichsberechnungen berücksichtigt und grafisch dargestellt.

Universität Hannover – Institut für Bautechnik und Holzbau

6.1 Ergebnisse für den beispielhaft untersuchten Konstruktionsaufbau

Für den als Beispielaufbau gewählten Konstruktionsaufbau wird für die exemplarisch ausgewählte Windzone 2, Profil Binnenland¹ folgende Darstellung erhalten:

Windzone 2, Binnenland, Cp für Beispielkonstruktion

Abbildung 24: Verhältniswert zwischen vergleichbaren Winddruck- und Windsogbereichen am Beispiel der in Abschnitt 3 beschriebnen Beispielkonstruktion bei Ansatz der Windlasten für eine winddichte Konstruktion für Windzone 2, Binnenland, (Faktor = Werte Neue Windlastnorm / Werte Alte Windlastnorm)

Auswertung für die exemplarisch dargestellten Ergebnisse der Windzone 2, Profil Binnenland für die Beispielkonstruktion:

Windsogbereiche:

Aus Abbildung 24 ist ersichtlich, dass die Windsogbeanspruchung im Bereich "B" nach der neuen DIN 1055-4 (03/05) erheblich größer ausfällt (gemittelter Faktor für Windzone 2, Profil Binnenland: \approx 2). Nach der alten Windlastnormung wurde dieser Bereich mit deutlich geringeren Windlasten bemessen, das Sicherheitsniveau war somit in diesem Bereich auch deutlich geringer.

In der alten Windlastnormung wurde der Sogspitzenbereich (Bereich "A") mit einem pauschalen Wert c_p = -2 angesetzt. Die nach der neuen Windlastnorm berechnete Sogspitze im Bereich "A" weist geringere Windlasten auf, so dass der Verhältniswert bis zu einer Bemessungshöhe von etwa 100 m Werte < 1 aufweist.

1

Zur Erinnerung: bei Einhaltung dieser Windbeanspruchung wird etwa 93% der Grundfläche Deutschlands abgedeckt, vgl. Abbildung 5

Winddruckbereich:

Die Werte für den Windruckbereich "D" weisen bis zu einer Höhe von etwa 50 m bzw. 60 m ein Faktor von \approx 1 bzw. \leq 1 auf. Der Winddruckbereich weist somit gegenüber der alten Norm geringere Windlasten auf.

Die Ergebnisse der Untersuchungen für die weiteren Windzonen und Profile sind der Anlage 2, Seite 1 bis 8 zu entnehmen.

6.2 Ergebnisse bei Betrachtung der Windlastannahmen bei möglichen Grenzfällen

6.2.1 Oberer Grenzfall – maximale Windlast bei Lasteinzugsflächen ≤ 1 m²

Die Windlastberechnung nach neuer Norm maximiert sich, wenn kleinflächige Faserzement-Tafeln mit Lasteinzugsflächen von A < 1 m² vorliegen. Die Ergebnisse unter Annahme eines c_{pe} -Wertes für die Lasteinzugsfläche 1 m² für die - wiederum exemplarisch ausgewählte Windzone 2, Profil Binnenland - ist in Abbildung 25 gezeigt.

Abbildung 25: Maximalwert des Verhältniswertszwischen vergleichbaren Winddruck- und Windsogbereichen bei Annahme einer Lasteinzugsfläche von 1 m² (c_{pe,1}) bei Ansatz der Windlasten für eine winddichte Konstruktion für Windzone 2, Binnenland, (Faktor = Werte Neue Windlastnorm / Werte Alte Windlastnorm)

Das Lastniveau steigt in diesem Fall gegenüber dem in Abbildung 24 dargestellten Fall (Beispielkonstruktion) nochmals an. Die Ergebnisse der Untersuchungen für die weiteren Windzonen und Profile sind der Anlage 3, Seite 1 bis 8 zu entnehmen.

6.2.2 Unterer Grenzfall – minimale Windlast bei durchlässigen Außenwandbekleidungen

Bei hinterlüfteten Konstruktionen, die die Anforderungen an durchlässige Konstruktionen nach Abschnitt 12.1.10 der DIN 1055-4 (03/05) erfüllen, darf ein Winddruckbeiwert von c_p = +/- 0,5 für die Außenwandbekleidung angenommen werden.

Die Ergebnisse eines für derartige Konstruktionen angesetzten c_{pe}-Werts für die - wiederum exemplarisch ausgewählte Windzone 1, Profil Binnenland - ist in Abbildung 26 gezeigt.

Windzone 2, Binnenland, Cp - Konstruktionen nach DIN 1055-4 (03/05), Abs. 12.1.10

Abbildung 26: Maximalwert des Verhältniswerts zwischen vergleichbaren Winddruck- und Windsogbereichen auf die Bekleidung bei Annahme der Regelungen für durchlässige Außenwandbekleidungen nach DIN 1055-4 (03-05), Abs. 12.1.10, Ansatz der Windlasten für eine winddichte Konstruktion für Windzone 2, Binnenland, (Faktor = Werte Neue Windlastnorm / Werte Alte Windlastnorm)

Das anzusetzende Lastniveau sinkt gegenüber den Annahmen für winddichte Konstruktionen stark ab. Im Vergleich zur alten Windlastnorm wird nur noch im Windsogbereich "B" der Wert der alten Norm überschritten.

Die Ergebnisse der Untersuchungen für die weiteren Windzonen und Profile sind der Anlage 4, Seite 1 bis 8 zu entnehmen.

7 ZUSAMMENFASSUNG

Im Auftrag des Deutschen Instituts für Bautechnik wurden Untersuchungen zur Bemessung von Faserzement-Tafeln nach alter und neuer Normengeneration durchgeführt. Die Ergebnisse der Untersuchungen lassen sich wie folgt zusammenfassen:

Zur Frage der Windeinwirkungen

Faserzement-Tafeln werden neben der Eigenlast hauptsächlich durch den Lastfall "Wind" beansprucht. Mit der Einführung der neuen Windlastnormung DIN 1055-4 (03/05) wurde in Deutschland erstmals ein gleichmäßiges Sicherheitsniveau bei der Bestimmung der Windlasten erzielt. Durch die Anpassung an das geforderte Sicherheitsniveau musste insbesondere im Bereich der nördlicheren Gebiete Deutschlands eine deutliche Erhöhung der Windlasten gegenüber der alten Windlastnorm vorgenommen werden.

Unter Berücksichtigung der nach neuer Normung vorgenommenen Verfeinerung bei der Angabe der Außendruckbeiwerte (c_{pe} -Werte) zeigte sich, dass im Windsogbereich "B" nach neuer Norm im Regelfall erheblich höhere Windlasten als nach alter Norm angenommen werden müssen. Der jeweilige Wert der Erhöhung ist hierbei von der Windzone, der Bemessungshöhe und der jeweils anzusetzenden Lasteinzugsfläche zur Bestimmung des c_p -Wertes abhängig (vgl. Anlagen 2 bis 4).

Unter Ansatz der Regelungen für winddurchlässige Außenwandbekleidungen nach DIN 1055-4 (03/05), Abs. 12.1.10 kann die Beanspruchung durch Wind auf die Außenwandbekleidung erheblich verringert werden. Hierbei ist jedoch zu beachten, dass in diesem Fall auch im Hinterlüftungsraum Windbeanspruchungen auftreten, die aufzunehmen sind.

Da Faserzement-Tafeln meist als hinterlüftete Konstruktionen angewendet werden, wurde in Abschnitt 2.1.1 und 2.1.2 auch auf die grundsätzliche Anwendbarkeit der Windlast-Normung für diesen Konstruktionsausführung eingegangen. Demnach wurden und werden die Windlastannahmen für hinterlüftete Konstruktion bislang noch relativ ungenau beschrieben.

Zum Berechnungsverfahren für Faserzement-Tafeln

Die Berechnung von Faserzement-Tafeln kann durch unterschiedliche, ingenieurmäßige Berechnungen erfolgen. Nach der Durchführung vergleichender Berechnungen mit herkömmlichen Methoden (Hees, Zuber) und einem FEM-Programm (Programm der Fa. Eternit) wurden die Ergebnisse verglichen.

Es zeigte sich, dass die Anwendung des FEM-Programms, bei dem neuere Forschungsergebnisse zum Tragverhalten bei Faserzement-Tafeln eingearbeitet wurden, zu wirtschaftlicheren Bemessungen führen kann (vgl. Abschnitt 4).

Zum Teilsicherheitsbeiwert

Zur Erzielung eines mit der alten Normengeneration vergleichbaren Sicherheitsniveaus ist bei den Faserzement-Tafeln ein Teilsicherheitsbeiwert γ_{FZ} = 1,65 anzusetzen. Der Sicherheitsbeiwert ist hierbei auf die infolge von Dauerhaftigkeitsprüfungen abgeminderte, charakteristische Biegefestigkeit anzuwenden (vgl. Abschnitt 5.2).

Weiterhin wurde in Abschnitt 5.2.2 dargelegt, wie sich eine möglicherweise nicht vorhandene Qualitätssicherung der Produktion auf den anzusetzenden Teilsicherheitsbeiwert γ_{FZ} auswirken kann.

8 SUMMARY

On request of the Deutsches Institut für Bautechnik analyses of fibre-cement plates were carried out in conformity with the old and new generation of standards.

Impact of Wind

Fibre-cement plates are stressed mainly by the loading case 'wind' apart from their own permanent weight. With the implementation of the new wind load standard DIN 1055-4 (03/05), a standardized level of security for the classification of wind loads was introduced in Germany. In conformity with the postulated level of security particularly in Northern Germany a clear increase in wind loads compared with the old wind load standard had to be implemented.

In consideration of the improvement according to new standard of the external pressure level (c_{pe} -value) it could be shown that according to the new standard, as a rule, considerably higher wind loads must be assumed for the lee-side areas "B" than would be expected according to the old standard. The increase varies depending on the wind zone, the height of dimensioning and the areas of load impact for the assessment of the c_p -value. (cf. enclosures 2 to 4).

By taking into consideration DIN 1055-4 (03/05), par. 12.1.10 concerning external wall panelling the stress on external wall panelling caused by wind can be reduced considerably. At this point attention must be paid to the strain caused by wind on the back ventilation space to be absorbed.

As fibre-cement plates are widely used in back ventilated structures, paragraphs 2.1.1 and 2.1.2 dwell on the basic applicability of the wind load standard upon this type of construction. Thus the aplication of wind load in ventilated structures has been described rather imprecisely to date.

Method of Calculation for Fibre-Cement Plates

Calculation of fibre-cement plates is carried out by means of different methods of engineering calculation. After computation was carried out with the conventional method of comparative calculation (Hees, Zuber) on one hand and aided by a FEM-programme on the other hand (programme by Eternit), the results were compared. The implementation of the FEM-programme incorporating new results of research as to the load bearing properties of fibre-cement plates can lead to a much more economic dimensioning (cf. par. 4).

Partial Safety Factor

To achieve a level of security for fibre-cement plates comparable with the old set of standards, a partial safety factor γ_{FZ} = 1,65 should be used. The safety factor has to be applied to the diminished characteristic bending strength, owing to tests of long-term stability.

Paragraph 5.2.2 shows how a lack of quality assurance during the production process takes effect on the safety factor γ_{FZ} to be applied.

9 LITERATURVERZEICHNIS

[1]	Wagner, P.: "Handbuch für Entwurf, Konstruktion & Montage von vorgehängten hinterlüfteten Fassaden (VHF)", Wagner-System GmbH, Mai 1997
[2]	Hees, G.; Robert, A.:"Vorgehängte Außenwandbekleidungen", Mauerwerk- Kalender 1991, Seiten 582-602
[3]	DIN 1055-100: Einwirkungen auf Tragwerke, Grundlagen der Tragwerksplanung, Sicherheitskonzept und Bemessungsregeln
[4]	DIN 1055-4: Lastannahmen für Bauten, Verkehrslasten, Windlasten bei nicht schwingungsanfälligen Bauwerken, August 1986
[5]	DIN 1055-4: Einwirkungen auf Tragwerke – Teil 4: Windlasten, März 2005
[6]	Grünberg, J.: Grundlagen der Tragwerksplanung – Sicherheitskonzept und Bemssungsregeln für den konstruktiven Ingenieurbau, Erläauterungen zu DIN 1055-100, Hrsg.:Deutsches Institut für Normung e.V., Beuth Verlag 2004
[7]	Antrag zur Erteilung einer allgemeinen bauaufsichtlichen Zulassung für Faserzementtafeln "xxx" zur Verwendung als Außenwandbekleidung, Institut für Bautechnik, Berlin, April 1993
[8]	DIN 1045-1: Stahlbeton- und Spannbetontragwerke, Ausgabe Juli 2001
[9]	FEM-Programm "Alu_vT", Version 3.00, Eternit AG, Mai 2006
[10]	ELIGEHAUSEN, R; "Gutachtliche Stellungnahme zur Frage der Eignung des TERGO-Hinterschnittdübels zur rückseitigen Befestigung 12mm dicker Eternit- Fassadenplatten", November 1999
[11]	Zuber, E.: Einfluss nachgiebiger Fassadenunterkonstruktionen auf Bekleidung und Befestigung, Mitteilungen des Deutschen Instituts für Bautechnik, Berlin, Seite 45 bis 51, Nr. 2 vom 2. April 1979
[12]	Hansen, M.: Zur Auswirkung von Überwachungsmaßnahmen auf die Zuverlässigkeit von Betonbauteilen, Dissertation am Fachbereich Bauingenieur- und Vermessungswesen an der Universität Hannover, erschienen in der Reihe: Berichte des Instituts für Massivbau, Hrsg.: UnivProf. DrIng. J. Grünberg, Univ Prof. DrIng. N. A. Fouad, Fraunhofer IRB Verlag, Stuttgart, 2004
[13]	NIEMANN, HJ.: "Anwendungsbereich und Hintergrund der neuen DIN 1055 Teil 4", Seiten 35-45, Oktober 2002

ANLAGE

Spannungsberechnungen der Faserzement-Tafeln für die Beispielkonstruktion

1

Berechnungs- methode	DII (1)	N 1055-4 (08/ 8 m, h/a = 0,2	86) 25)		DIN 1 (18 m	055-4 (03/05) 1, h/d = 0,25)		
Nachweis	Spa	nnungsnach	weis		Bemessung im G	irenzzustand	der Tragfähi	gkeit
	Spannung aus Wind <u>druck</u> be- anspruchung [N/mm ²]	Spann Spann Wind <u>sog</u> bea [N/n	ng aus nspruchung mr²]	Windzone		Bemessungs- spannung aus Wind <u>druck</u> - beanspruchung [N/mm²]	Bemessungs Wind <u>sog</u> bea [N/n	spannung aus inspruchung im²]
		Randbereich	Flächenbereich		Bereich	D	A (Randbereich)	B (Flächenbereich)
konservativ nach				WZ1 A ₁ =44,7 %	Profil			
Hees				$\sum W_n = 44,7 \%$	Binnenland	5,60	-19,27	-14,14
pun				WZ2	Profil			
Zuber				A ₂ =47,6 %	Binnenland	6,82	-23,49	-17,24
			C C L	$\Sigma W_{n} = 92,3 \%$	Küste u. Ostseelnseln	8,70	-29,96	-21,99
	5,15	-23,29	-5,8'2	WZ3	Profil	сс о		22.00
				$A_3 = 5,3\%$ $\Sigma W_2 = 97.6\%$	Binnenland Kriste u. Ostseelnseln	0,22 10 49	-20,30 -36.11	-26.50
				WZ4	Profil	5	- 	00001
					Binnenland	9,80	-33,72	-24,75
				A4=2,4%	Küste u. Ostseelnseln	12,50	-43,02	-31,57
				$\Sigma W_{n} = 100 \%$	Nordseeinseln	13,89	-47,80	-35,08
	Spannung aus					Spannung aus		
	Wind <u>druck</u> be- anspruchung [N/mm ²]	Spann Wind <u>sog</u> bea [N/n	Ing aus Inspruchung 1m²]	Windzone		Wind <u>druck</u> be- anspruchung [N/mm²]	Spannu Wind <u>sog</u> bea [N/n	Ing aus Inspruchung Im²]
		Randbereich	Flächenbereich		Bereich	D	A (Randbereich)	B (Flächenbereich)
nach				WZ1 A,=44.7 %	Profil			
FEM-				$\sum W_n = 44,7 \%$	Binnenland	5,10	-3,90	-2,85
Programm				WZ2	Profil			
"Alu_vT"				A ₂ =47,6 %	Binnenland	6,30	-4,80	-3,45
				Σ W _n = 92,3 %	Küste u. Ostseelnseln	7,95	-6,00	-4,50
	4,70	-4,70	-1,20	WZ3	Profil	C L 1		00 7
				A ₃ =5,3%	Binnenland	0,50	-5,70	-4,20
				$2 W_n = 97, 0 \%$	Kuste u. Ustseeinsein	9,00	cc' /-	-0,40
				VV 24	Profil Binnenland	0 00	-6.75	-4 95
				A ₄ =2,4%	Küste u. Ostseelnseln	11,40	-8,70	-6,45
				$\Sigma W_{n} = 100 \%$	Nordseeinseln	12,60	-9,60	-7,05

ANLAGE 2

Vergleich der Windeinwirkungen nach alter und neuer Windlastnormung DIN 1055-4, in Klammern ist der Anteil der Bereich an der Gesamtfläche Deutschland angegeben.

Berechnung mit einem c_{pe} – Wert für die Beispielkonstruktion (Lasteinzugsfläche ca. 3 m²)

Bezeichnung des Mischprofils	Windzone 1	Windzone 2	Windzone 3	Windzone 4
	(44,00 /0)	(47,01 /0)	(5,55 /0)	(2,37 /0)
Binnenland	Anlage 2, Seite 1	Anlage 2, Seite 2	Anlage 2, Seite 4	Anlage 2, Seite 6
	(44,68 %)	(47,00 %)	(4,23 %)	(1,71 %)
Küstennahe Gebiete und Inseln der Ostsee	-	Anlage 2, Seite 3	Anlage 2, Seite 5	Anlage 2, Seite 7
		(0,61 %)	(1,10 %)	(0,62 %)
Inseln der Nordsee	-	-	-	Anlage 2, Seite 8
				(0,04 %)

WZ 1, Binnenland, Cp für Beispielkonstruktion

WZ 2, Binnenland, Cp für Beispielkonstruktion

WZ 2, Küstennahe Gebiete und Inseln der Ostsee, Cp für Beispielkonstruktion

WZ 3, Binnenland, Cp für Beispielkonstruktion

Anlage 2, Seite 4

WZ 3, Küstennahe Gebiete und Inseln der Ostsee, Cp für Beispielkonstruktion

Anlage 2, Seite 6

WZ 4, Küstennahe Gebiete und Inseln der Ostsee, Cp für Beispielkonstruktion

Anlage 2, Seite 7

WZ 4, Nordseeinseln, Cp für Beispielkonstruktion

Anlage 2, Seite 8

ANLAGE 3

Vergleich der Windeinwirkungen nach alter und neuer Windlastnormung DIN 1055-4, in Klammern ist der Anteil der Bereich an der Gesamtfläche Deutschland angegeben.

Berechnung mit einem c_{pe,1} – Wert (Lasteinzugsfläche: 1 m²)

Bezeichnung des	Windzone 1	Windzone 2	Windzone 3	Windzone 4
Mischprofils	(44,68 %)	(47,61 %)	(5,33 %)	(2,37 %)
Binnenland	Anlage 3, Seite 1	Anlage 3, Seite 2	Anlage 3, Seite 4	Anlage 3, Seite 6
	(44,68 %)	(47,00 %)	(4,23 %)	(1,71 %)
Küstennahe Gebiete und Inseln der Ostsee	-	Anlage 3, Seite 3	Anlage 3, Seite 5	Anlage 3, Seite 7
		(0,61 %)	(1,10 %)	(0,62 %)
Inseln der Nordsee	-	-	-	Anlage 3, Seite 8
				(0,04 %)

Anlage 3, Seite 1

Bemessungshöhe in Meter

Faktor

<u>WZ 2, Binnenland, Cp für 1m²</u>

Anlage 3, Seite 2

WZ 2, Küstennahe Gebiete und Inseln der Ostsee, Cp für 1m²

Anlage 3, Seite 3

<u>WZ 3, Binnenland, Cp für 1m²</u>

WZ 3, Küstennahe Gebiete und Inseln der Ostsee, Cp für 1m²

Bemessungshöhe in Meter

<u>WZ 4, Binnenland, Cp für 1m²</u>

Bemessungshöhe in Meter

Faktor

WZ 4, Küstennahe Gebiete und Inseln der Ostsee, Cp für 1m²

<u>WZ 4, Nordseeinseln, Cp für 1m²</u>

ANLAGE 4

Vergleich der Windeinwirkungen nach alter und neuer Windlastnormung DIN 1055-4, in Klammern ist der Anteil der Bereich an der Gesamtfläche Deutschland angegeben.

Berechnung mit den Annahmen für winddurchlässige Außenwandkonstruktionen nach DIN 1055-4 (03/05), Abs. 12.1.10

(Lasteinzugsfläche: beliebig)

Bezeichnung des	Windzone 1	Windzone 2	Windzone 3	Windzone 4
Mischprofils	(44,68 %)	(47,61 %)	(5,33 %)	(2,37 %)
Binnenland	Anlage 4, Seite 1	Anlage 4, Seite 2	Anlage 4, Seite 4	Anlage 4, Seite 6
	(44,68 %)	(47,00 %)	(4,23 %)	(1,71 %)
Küstennahe Gebiete und Inseln der Ostsee	-	Anlage 4, Seite 3	Anlage 4, Seite 5	Anlage 4, Seite 7
		(0,61 %)	(1,10 %)	(0,62 %)
Inseln der Nordsee	-	-	-	Anlage 4, Seite 8
				(0,04 %)

WZ 1, Binnenland, Cp für durchlässige AW-Bekleidungen

WZ 2, Binnenland, Cp für durchlässige AW-Bekleidungen

WZ 2, Küstennahe Gebiete und Inseln der Ostsee, Cp für durchlässige AW-Bekleidungen

WZ 3, Binnenland, Cp für durchlässige AW-Bekleidungen

WZ 3, Küstennahe Gebiete und Inseln der Ostsee, Cp für durchlässige AW-Bekleidungen

WZ 4, Binnenland, Cp für durchlässige AW-Bekleidungen

WZ 4, Küstennahe Gebiete und Inseln der Ostsee, Cp für durchlässige AW-Bekleidungen

WZ 4, Nordseeinseln, Cp für durchlässige AW-Bekleidungen

ANLAGE 5

Teilsicherheitsbeiwert γ_{m} in Abhängigkeit des Variationskoeffizienten der Biegefestigkeit

Teilsicherheitsbeiwert γ_m in Abhängigkeit vom Variationskoeffizienten der Biegefestigkeit