Bau<u>forschung</u>

Schädigungspotential infolge erhöhtem Sulfatgehalt bei Verwendung alkalifreier Erstarrungsbeschleuniger

Т 3156

⁺ Fraunhofer IRB Verlag

T 3156

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

2008

ISBN 978-3-8167-7528-7

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

Projekt:	ZP 52-5-7.255-1204/04
Thema:	Schädigungspotential infolge erhöhtem Sulfat- gehalt bei Verwendung alkalifreier Erstarrungsbe- schleuniger
Auftraggeber:	Deutsches Institut für Bautechnik
	Deutsche Bauchemie e.V.
	Deutscher Beton- und Bautechnik-Verein e.V.
Forschergruppe:	Ruhr-Universität BochumProjektleiter: UnivProf. DrIng. Rolf Breitenbücher Sachbearbeiter: DiplIng. Björn SiebertSachbearbeiter: DiplIng. Björn SiebertProjektleiter: UnivProf. DrIng. habil. Jochen Stark Sachbearbeiter: Dr. rer. nat. Peter Nobst
Datum des Berichtes:	28.09.2007
Textseiten:	27
Anlagen:	29

Die Veröffentlichung des vorliegenden Berichtes, auch auszugsweise, bedarf unserer schriftlichen Genehmigung.

RUHR-UNIVERSITÄT BOCHUM LEHRSTUHL FÜR BAUSTOFFTECHNIK UNIVERSITÄTSSTRASSE 150 D – 44801 BOCHUM TEL.: + 49 (0) 234 / 32 - 28649

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite i

Inhaltsverzeichnis

1		AUSGANGSSITUATION 1									
2		ZIEL	SETZUNG UND VORGEHENSWEISE	2							
3		WIR	KUNGSMECHANISMEN ALKALIFREIER ERSTARRUNGSBESCHLEUNIGER	2							
4		Sc+	ÄDIGUNGSPOTENTIAL ALKALIFREIER ERSTARRUNGSBESCHLEUNIGER	3							
5		Ρκί	FVERFAHREN ZUM SULFATANGRIFF AUF BETON	5							
6		Un	ERSUCHUNGEN AN SPRITZBETONPROBEN	6							
	6.1	Α	usgangsstoffe	.6							
	6.	1.1	Zement	.6							
	6.	1.2	Gesteinskörnung	.6							
	6.	1.3	Zugabewasser	.6							
	6.	1.4	Erstarrungsbeschleuniger	.7							
	6.	1.5	Fließmittel	.7							
	6.2	z	usammensetzung des Spritzbetons	.7							
	6.3	н	erstellung von Probekörpern aus Spritzbetonplatten	.9							
	6.4	Е	inlagerung der Probekörper1	11							
	6.5	U	ntersuchungen an Spritzbetonprobekörpern1	12							
7											
		ERC	EBNISSE 1	5							
	7.1	Ero D	EBNISSE	5 5							
	7.1 7.2	Ero D L	EBNISSE	5 5 6							
	7.1 7.2 7.3	Erc D L U	EBNISSE	5 5 6 7							
	7.1 7.2 7.3 7.4	Erc D L U P	SEBNISSE	15 16 17 18							
	7.1 7.2 7.3 7.4 7.5	Erc D L U P	SEBNISSE	15 15 16 17 18							
	 7.1 7.2 7.3 7.4 7.5 7.6 	ERC D L U P R	SEBNISSE 1 ruckfestigkeit 1 ängenänderung 1 Itraschalllaufzeit 1 orositätsmessungen 1 hasenanalysen 1 EM-Untersuchungen 2	15 15 16 17 18 19 22							
8	7.1 7.2 7.3 7.4 7.5 7.6	ERC D U P R ZUS	GEBNISSE 1 ruckfestigkeit 1 ängenänderung 1 ltraschalllaufzeit 1 orositätsmessungen 1 hasenanalysen 1 EM-Untersuchungen 2 AMMENFASSUNG 2	15 15 16 17 18 19 22 23							
8 9	7.1 7.2 7.3 7.4 7.5 7.6	ERC D L P R ZUS LITE	GEBNISSE 1 ruckfestigkeit 1 ängenänderung 1 ltraschalllaufzeit 1 orositätsmessungen 1 hasenanalysen 1 EM-Untersuchungen 2 AMMENFASSUNG 2 RATUR 2	15 15 16 17 18 19 22 23 23							

Bauhaus-Universität Weimar F.A. Finger-Institut DIBt ZP 52-5-7.255-1204/04

Seite 1

1 Ausgangssituation

Seit Jahrzehnten wird Spritzbeton im konstruktiven Ingenieurbau erfolgreich eingesetzt. Wenn dabei oftmals der Beton innerhalb kürzester Zeit in großen Dicken auf vertikale Flächen oder über Kopf (z. B. bei Hangsicherungen, im Tunnelbau, u. ä.) appliziert werden muss, ist ein rasches Erstarren und eine hohe Frühfestigkeit unabdingbar. Dies wird durch den Einsatz von Erstarrungsbeschleunigern oder speziellen Spritzbetonzementen erreicht [8,10,13].

Die lange Zeit verwendeten Erstarrungsbeschleuniger auf Basis von Alkaliverbindungen [3,10] führen jedoch im Vergleich zu nicht-beschleunigtem Beton zum einen zu Festigkeitseinbußen im Endzustand, zum anderen begünstigen sie die Auslaugung des Spritzbetons mit der Folge einer Beeinträchtigung des Grundwassers und Bodens [6].

Daher wurden in den letzten Jahren verstärkt alkaliarme/-freie Erstarrungsbeschleuniger entwickelt, die i. Allg. auf Aluminiumsulfaten basieren. Die genannten Nachteile hinsichtlich der mechanischen und ökologischen Eigenschaften des Spritzbetons können damit weitestgehend ausgeschaltet werden [1,11,20]. Insbesondere haben diese Produkte gegenüber den klassischen Beschleunigern Vorteile bezüglich reduzierter Auslaugbarkeit, sodass mit diesen heutige umweltrelevante Anforderungen erfüllt werden können. Gleichzeitig wird eine ausreichend hohe Frühfestigkeit erzielt, ohne Einbußen in der Endfestigkeit zu erleiden.

Alkalifreie Erstarrungsbeschleuniger werden meist auf Basis von Aluminiumhydroxid und Sulfat hergestellt. Die Wirkung dieser Beschleuniger basiert i.d.R. auf einer erhöhten Ettringitbildung im frisch aufgespritzten Beton. Bei einer üblichen Dosierung von ca. 4 bis 8 M.-%, bezogen auf den Zementgehalt, werden zusätzlich hohe Sulfatmengen in der Größenordnung des Sulfatgehaltes im Zement in den Beton eingetragen. Bedingt durch diese erhöhten Anteile ist zumindest seitens Sulfat später das Potential für Schadreaktionen im Festbeton gegeben. Unter den Umgebungsbedingungen eines Tunnelbauwerks (Feuchtigkeit, niedrige Temperaturen) ist daraus sowohl eine sekundäre Ettringitbildung als auch eine Thaumasitbildung – soweit die weiteren notwendigen Reaktionspartner vorliegen – möglich. Dadurch könnte die Dauerhaftigkeit und auch die Standsicherheit des Bauwerkes u. U. maßgeblich beeinträchtigt werden. Andererseits weist Spritzbeton bedingt durch die spezielle Applikationstechnik eine spezifische Gefügestruktur auf. Im Allgemeinen ist davon auszugehen, dass auch kleinste Spritzschatten entstehen, die als feine Hohlräume Expansionsraum bieten und daher trotz der Volumenzunahme der Reaktionsprodukte (Ettringit) kein Sprengdruck und admit keine Schädigung ausgelöst werden.

RUHR-UNIVERSITÄT BOCHUM Lehrstuhl für Baustofftechnik

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 2

In Zukunft werden diese sulfathaltigen Erstarrungsbeschleuniger für Spritzbeton in der DIN EN 934-5 [27] geregelt. Aufgrund der noch relativ jungen Anwendung fehlen entsprechende Erfahrungswerte bzw. systematische Untersuchungen zu dieser Problematik.

Das Deutsche Institut für Bautechnik (DIBt) hat daher den Lehrstuhl für Baustofftechnik der Ruhr-Universität Bochum gemeinsam mit dem F.A. Finger-Institut der Bauhaus-Universität Weimar mit dem Forschungsvorhaben "Schädigungspotential infolge erhöhtem Sulfatgehalt bei Verwendung alkalifreier Erstarrungsbeschleuniger" (ZP 52-5-7.255-1204/04) beauftragt. Der Deutsche Beton- und Bautechnik-Verein E.V. und die Deutsche Bauchemie e.V. leisten zusätzlich seitens der einschlägigen Industrie eine finanzielle Unterstützung.

2 Zielsetzung und Vorgehensweise

Ziel des Forschungsvorhabens war es, zu untersuchen, inwieweit der durch den Einsatz alkalifreier Erstarrungsbeschleuniger erhöhte Sulfatgehalt die Dauerhaftigkeit von Spritzbeton beeinträchtigen kann. Dabei stand das Schädigungspotential infolge des erhöhten Sulfatgehaltes im Festbeton unter Berücksichtigung des spezifischen Spritzbetongefüges im Mittelpunkt der Untersuchungen.

Bei diesem Forschungsprojekt wurden über einen Zeitraum von einem Jahr an Spritzbetonprobekörpern, die mit alkalifreien Beschleunigern hergestellt und in Sulfatlösung (Na₂SO₄), Wasser und an der Luft gelagert wurden, die Druckfestigkeit, die Längenänderungen, der relative dynamische E-Modul sowie die Struktur (Rasterelektronenmikroskopie und Phasenanalyse) zu verschiedenen Zeitpunkten bestimmt und bewertet.

3 Wirkungsmechanismen alkalifreier Erstarrungsbeschleuniger

Alkalifreie Erstarrungsbeschleuniger sind i. Allg. Aluminiumsulfatlösungen oder -dispersionen, die nach dem Entwurf der DIN EN 934-5 [27] einen Gesamtalkaligehalt (Na₂O-Äquivalent) von weniger als 1 M.-% aufweisen. Der Wirkungsmechanismus dieser Beschleuniger beruht auf der Aktivierung einer erhöhten Ettringitbildung, die durch die Inhaltsstoffe, Aluminium (Al³⁺) und Sulfat (SO₄²⁻), hervorgerufen wird [12,19,20,26]:

$$2AI(OH)_{4}^{-} + 3SO_{4}^{2-} + 6Ca^{2+} + 4OH^{-} + 26H_2O \rightarrow 3CaO \cdot Al_2O_3 \cdot 3CaSO_4 \cdot 32H_2O$$
(1)

$$2AI(OH)_{3} + 3SO_{4}^{2-} + 6Ca^{2+} + 6OH^{-} + 26H_{2}O \rightarrow 3CaO \cdot AI_{2}O_{3} \cdot 3CaSO_{4} \cdot 32H_{2}O$$
(2)

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 3

Neben dem Beschleuniger stellt auch der Klinker eine Aluminatquelle dar und trägt damit zur Bildung von Ettringit bei:

$$3CaO \cdot Al_2O_3 + 3SO_4^{2-} + 3Ca^{2+} + 32H_2O \rightarrow 3CaO \cdot Al_2O_3 \cdot 3CaSO_4 \cdot 32H_2O$$
(3)

Im Gegensatz zur Erstarrungsregelung von Zementen durch Zugabe eines Sulfatträgers, bei der eine Erstarrungsverzögerung durch Bildung einer feinen Ettringithülle auf den Oberflächen der C₃A-Körner erreicht wird, bewirken alkalifreie Beschleuniger ein enormes Wachstum von prismatischen Ettringitkristallen (2 bis 7 μ m) [17]. Dieser in großen Mengen ausgebildete Ettringit überbrückt zum einen die Zwischenräume im erstarrenden Zementleim und bindet zum anderen eine erhöhte Wassermenge im Gefüge, was ein schnelles Erstarren des Betons hervorruft [11,12,17,25,26]. Mit zunehmender Dosiermenge verstärkt sich das Ettringitwachstum, so dass sich die Erstarrungszeiten zunehmend verkürzen [2,12,17]. Bei maximaler Dosiermenge läuft das Erstarren bei Verwendung von alkalifreien Beschleunigern aber im Vergleich zu alkalihaltigen Beschleunigern geringfügig langsamer ab [17]. Gleichzeitig wird durch die Zugabe von Erstarrungsbeschleuniger auf Basis von Aluminiumsulfat die Haupthydratation des C₃S sowie – aufgrund der Minderung des Al₂O₃/SO₃-Verhältnisses – die Bildung von Monosulfat verzögert [12,26].

4 Schädigungspotential alkalifreier Erstarrungsbeschleuniger

Aus Sulfattreiben können sich im Beton noch keine Risse und Gefügeauflockerungen bilden, solange die expansive Ettringitbildung im erstarrenden, d. h. noch nicht festen Beton stattfindet. Im Betongefüge steht zu diesem Zeitpunkt noch ausreichend Expansionsraum zur Verfügung bzw. der Widerstand gegen diese Expansion ist gering. Mit der Verwendung alkalifreier Erstarrungsbeschleuniger auf Aluminiumsulfatbasis ergeben sich jedoch für einen möglichen, zeitlich nachlaufenden Schädigungsmechanismus durch Sulfattreiben (Sekundärreaktion) im erhärteten Beton zwei besonders begünstigende Randbedingungen [19]:

 Entsprechend der üblichen Dosiermengen an alkalifreien Beschleunigern wird Sulfat in nennenswerter Höhe in den Beton eingetragen. Die übliche Zugabemenge dieser Erstarrungsbeschleuniger liegt etwa bei 4,0 bis 8,0 % der Zementmasse [16]. In der Regel werden die Erstarrungsbeschleuniger in flüssiger Form mit einem Feststoffgehalt von 40 bis 60 M.-% eingesetzt. Die maximale Dosierung wird nach der derzeitigen Fassung von

Bauhaus-Universität Weimar F.A. Finger-Institut DIBt ZP 52-5-7.255-1204/04

Seite 4

DIN EN 934-5 [27] auf 12 M.-% des Zementgehalts begrenzt. In DIN EN 197-1 wird der Sulfatgehalt des Zements – wie seit Jahrzehnten auch in der deutschen DIN 1164 – zur Vermeidung von Treibschäden auf maximal 3,5 bzw. 4,0 M.-% limitiert. Bei einem Sulfatanteil von rd. 50 bis 70 M.-% im Feststoff gelangt demnach mit alkalifreien Erstarrungsbeschleunigern in etwa noch einmal soviel Sulfat in den Beton wie durch den Zement allein. Wenn durch die Zugabe eines aluminiumsulfathaltigen Betonzusatzmittels der Gesamtsulfatgehalt im Beton sich annähernd verdoppelt und zusätzlich der Aluminiumgehalt signifikant erhöht wird, kann sich dadurch das Potential für eine schädigende (intern hervorgerufene) Ettringitbildung drastisch erhöhen. Darüber hinaus kann das Gefährdungspotential auch durch sulfathaltiges Grundwasser ansteigen, wenn die von außen eindringenden Sulfationen den Gesamtsulfatgehalt im Beton auf ein für die sekundäre Ettringitbildung günstiges Niveau anheben [14]. Bei Übersättigung der Porenlösung mit SO₄²und Al³⁺-Ionen kann schließlich das Wachstum von Ettringitkristallen eintreten, die in kleinen Poren einen hohen Druck auf die Porenwände bis hin zur Rissbildung ausüben können [21,22]. Mit zunehmendem Anteil an topochemisch gebildeten und richtungsorientiert wachsenden Ettringitkristallen nimmt der Grad der Schädigung durch Treibrisse und damit auch die Dehnung zu [15]. Unter besonderen Bedingungen können allerdings auch die Reaktionsprodukte größere Poren im Betongefüge – soweit vorhanden – füllen, ohne nennenswerte Treibschäden zu verursachen [7]. Die für die Ettringitbildung benötigten Ca^{2+} -Ionen stammen aus Ca(OH)₂, das bei der Hydratation des C₃S und C₂S ausreichend gebildet wird. Bei gleichzeitig äußerem Angriff durch MgSO4 lässt sich außerdem eine deutliche Dekalzifikation der CSH-Phasen und ein Aufweichen des Betongefüges feststellen [8]. Im Fall von Na₂SO₄ läuft der Angriff etwas schwächer ab, ein Abbau der CSH-Phasen ist hier nicht festzustellen. [19]

Der gesamte Sulfatgehalt liegt im gesamten Betongefüge bereits fein verteilt vor, so dass

 entgegen einer externen Sulfateinwirkung – eine Betonschädigung durch Sulfatangriff
 von Transportphänomenen weitgehend unabhängig ist. Das bedeutet, dass auch ein ho her Diffusionswiderstand des Betons kein Hindernis für den Sulfatangriff und eine daraus
 folgende Schädigung des Betons darstellt. In Untersuchungen zum äußeren Sulfatangriff
 auf Beton mit alkalifreiem Beschleuniger zeigte sich bei homogener Verteilung des Be schleunigers im Beton ein deutlich schnelleres Sulfattreiben als bei inhomogener Vertei lung [19].

LEHRSTUHL FÜR BAUSTOFFTECHNIK **RUHR-UNIVERSITÄT BOCHUM**

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 5

Unter den beschriebenen Umständen kann bei Einsatz von alkalifreien Beschleunigern in Beton, ähnlich wie bei Verwendung gipshaltiger Gesteinskörnungen, von einem inneren Sulfatangriff gesprochen werden.

Neben der treibenden Ettringitbildung kann Sulfat im Betongefüge in Gegenwart von entsprechenden Mengen an Silikaten und reaktionsfähigem Carbonat zu Thaumasit reagieren (CaCO₃·CaSO₄·CaSiO₃·15H₂O) [9,23]. Silikat liegt im Zementstein in den CSH-Phasen unabdingbar vor. Als Quelle für das Calciumcarbonat können z. B. der verwendete Zement, carbonathaltiges Wasser oder die Gesteinskörnung in Betracht kommen. Die Schädigung liegt bei Thaumasitbildung darin, dass die festigkeitsbildenden CSH-Phasen, die einen Großteil des Zementsteingefüges ausmachen, mehr oder weniger aufgeweicht werden, was zu einer nahezu vollständigen Entfestigung des Zementsteingefüges führen kann. Über die Mechanismen der Thaumasitbildung im Beton bestehen zurzeit noch offene Fragen [23]. Eine bevorzugte Bildung von Thaumasit wird bei einer Umgebungstemperatur zwischen 5 und 15 °C und hoher Feuchtigkeit beobachtet. Die im Erdreich vorherrschenden mittleren Temperaturen in Deutschland liegen etwa bei 9 °C, so dass dort angrenzende Bauwerke diesbezüglich besonders gefährdet sind [23].

Den oben genannten ungünstigen Randbedingungen steht das Porensystem von Spritzbetonen gegenüber, das sich erfahrungsgemäß im Vergleich zu Rüttelbetonen anders einstellt. Unter Umständen stellt Spritzbeton aufgrund seiner gröberen Porenradienverteilung auch im erhärteten Zustand ausreichenden Expansionsraum für eine nachträgliche Ettringitbildung zur Verfügung, so dass zumindest diesbezüglich das Risiko einer Betonschädigung herabgesetzt wird oder sogar ausbleibt.

Prüfverfahren zum Sulfatangriff auf Beton 5

Als gängigstes Prüfverfahren zur Bestimmung des Sulfatwiderstands von Beton werden Dehnungsmessungen herangezogen. Dabei werden Längenänderungen von Probekörpern, die Sulfatlösungen ausgesetzt sind, über mehrere Monate ermittelt [18]. Auftretende Dehnungen bzw. Treiberscheinungen resultieren maßgeblich aus dem Wachstum von voluminösen Ettringitkristallen, die sich in kleineren Poren oder vorhandenen Rissen bilden [24]. Aufgrund verschiedenster ablaufender Reaktionsmechanismen bei einem Sulfatangriff konnte jedoch bislang keine direkte Abhängigkeit zwischen der gebildeten Ettringitmenge und der Dehnung eines Probekörpers nachgewiesen werden [4,5]. Eine gute Korrelation der Ergebnisse zeigt sich zwischen Dehnungsmessungen und Messungen der Ionenchromatographie, des pH-

14

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 6

Wertes und der Leitfähigkeit [18]. Bei auftretenden Treiberscheinungen sind aber i. Allg. eingehende mikroskopische und mineralogische Untersuchungen des Mikrogefüges wie z. B. durch XRD unabdingbar.

Für die praktische Anwendung ist auch die Veränderung der Druckfestigkeit und des dynamischen E-Moduls von Beton bei Sulfatangriff von Bedeutung. Treibschädigungen, die zu Gefügeauflockerungen und Rissen führen, spiegeln sich auch in diesen beiden Parametern wider.

6 Untersuchungen an Spritzbetonproben

6.1 Ausgangsstoffe

6.1.1 Zement

Für die Herstellung der Spritzbetone wurden insgesamt zwei Zemente nach DIN EN 197-1 verwendet:

- CEM I 42,5 R mit einem Gehalt an C₃A von 8,3 M.-%, um primär eine sekundäre Ettringitbildung zu erfassen,
- CEM II/A-LL 42,5 R mit einem Anteil an Kalksteinfüller von 9,5 M.-%, um die Möglichkeit einer Thaumasitbildung zu erfassen.

Technische Angaben zu den Zementen sind in Tabelle A- 1 und Tabelle A- 2 im Anhang dokumentiert.

6.1.2 Gesteinskörnung

Die Spritzbetone wurden mit quarzitischer Gesteinskörnung (Rheinsand und Rheinkies) im Sieblinienbereich B8 aus den Laborbeständen der Ruhr-Universität Bochum und Quarzmehl (Typ 3) der Fa. Euroquarz GmbH (Werk Dorsten) hergestellt.

6.1.3 Zugabewasser

Das Zugabewasser wurde aus dem Trinkwassernetz der Stadt Bochum entnommen.

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 7

6.1.4 Erstarrungsbeschleuniger

In die Untersuchungen wurden vier Erstarrungsbeschleuniger von unterschiedlichen Herstellern einbezogen. Die Erstarrungsbeschleuniger unterscheiden sich z. T. im Sulfat- und Aluminiumgehalt, wie Tabelle 1 zu entnehmen ist. Weitere technische Angaben zu den verwendeten Erstarrungsbeschleunigern sind in Tabelle A- 3 im Anhang dokumentiert.

Bezeichnung	BE1	BE2	BE3	BE4	
Al ³⁺ (nach Analyse)	M%	5,72	6,3	4,77	6,43
SO ₄ ²⁻ (nach Analyse)	M%	25,0	17,3	25,8	18,1
Summe Al ³⁺ + SO ₄ ²⁻	M%	30,7	23,6	30,5	24,6
Al ³⁺ (im Produkt)	Mol	0,21	0,23	0,18	0,24
SO ₄ ²⁻ (im Produkt)	Mol	0,26	0,18	0,27	0,19
Molverhältnis SO4 ²⁻ / Al ³⁺		1,22	0,77	1,53	0,80

Für Erstarrungsbeschleuniger auf Basis von reinem $AI_2(SO_4)_3$ ist das Molverhältnis theoretisch 1,5. Geringere Werte bedeuten eine Erhöhung des Al-Gehaltes im Beschleuniger, z. B. durch Zugabe von Aluminiumhydroxiden.

6.1.5 Fließmittel

Als Fließmittel wurde das Produkt Viscocrete SC-305 der Fa. Sika Addiment GmbH eingesetzt. Technische Angaben zu dem Fließmittel sind in Tabelle A- 4 im Anhang dokumentiert.

6.2 Zusammensetzung des Spritzbetons

Im Rahmen dieses Forschungsvorhabens wurden entsprechend dem im Forschungsantrag vorgeschlagenen Prüfrahmen insgesamt 8 Spritzbetone im Nassspritzverfahren unter Variation des Zementes und des Erstarrungsbeschleunigers sowie dessen Dosiermenge hergestellt. Die Zusammensetzung der untersuchten Spritzbetone ist in Tabelle 2 angegeben.

Bauhaus-Universität Weimar

F.A. Finger-Institut

DIBt ZP 52-5-7.255-1204/04

Seite 8

Tabelle 2: Zusammensetzung der untersuchten Spritzbetone

Zementart (Herkunft):	CEM I 42,5 R (Schwenk Zement KG Werk Allmendingen) CEM II/A-LL 42,5 R (Schwenk Zement KG Werk Mergelstetten)					
Zementgehalt:	450 kg/m³					
Wasserzementwert:	0,50					
Wassergehalt:	225 kg/m³					
Gesteinskörnung:	Quarzmehl Typ 3, Euroquarz GmbH, Werk Dorsten Rheinsand und Rheinkies (aus Lagerbestand der RUB)					
Gehalt der Gesteinskörnung:	Quarzmehl: 134 kg/m ³ 0 / 2: 759 kg/m ³ 2 / 8: 786 kg/m ³					
Sieblinie:	B8					
Fließmittel:	Sika Deutschland GmbH ViscoCrete SC-305					
Zugabemenge:	0,52 M% bez. Zemgehalt					

Der Zementgehalt von 450 kg/m³ lag im Rahmen der üblichen Zementgehalte für Nassspritzbetone im Dichtstromverfahren. Der Wasserzementwert wurde dabei zu 0,50 gewählt. Mit dem Fließmittel wurde in einem Vorversuch eine sehr weiche Konsistenz (F4) mit einem Ausbreitmaß von rd. 520 mm und einer Verarbeitbarkeitsdauer von mindestens zwei Stunden eingestellt.

In Tabelle 3 sind die untersuchten Kombinationen aus Zement, alkalifreiem Erstarrungsbeschleuniger und dessen Dosiermenge aufgelistet. Im Weiteren werden Kurzbezeichnungen nach folgendem System verwendet:

	Zement /		Beschleuniger	/ BE-Dosiermenge		
z. B.	I	/	BE1	/ 7		
entspr.	CEM I	/	BE1 (s. Tabelle 1)	/ 7 M% v. Zemgehalt		

RUHR-UNIVERSITÄT BOCHUM Lehrstuhl für Baustofftechnik

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 9

Tabelle 3: Untersuchte Variationen der Zemente, Erstarrungsbeschleuniger und deren Dosiermengen

Spritzbeton-	Zen	nent	Erstarrungsbeschleuniger [M% v. Z.]						
Bezeichnung	I	II	BE1	BE2	BE3	BE4			
I/BE1/5	Х		5						
I/BE1/10	Х		10						
I/BE2/5	Х			5					
I/BE2/10	Х			10					
I/BE3/7	Х				7				
I/BE4/7	Х					7			
II/BE1/10		Х	10						
II/BE2/10		Х		10					

6.3 Herstellung von Probekörpern aus Spritzbetonplatten

Die Spritzbetone wurden im Spritzstand (Bild 1) der Ruhr-Universität Bochum hergestellt.

Bild 1: Spritzstand der Ruhr-Universität Bochum (Mischeranlage im unteren Bereich, Spritzapparatur im oberen Bereich)

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 10

Der für die Herstellung einer Spritzbetonplatte benötigte Beton wurde entsprechend der in Tabelle 2 angegebenen Betonzusammensetzung in der im Spritzstand integrierten Mischanlage in 4 Chargen zu je 165 dm³ hergestellt. Dabei wurden jeweils die Betonausgangsstoffe zunächst ca. 60 Sekunden trocken vorgemischt. Danach wurde bei laufendem Mischer das Wasser in zwei Hälften nacheinander zugegeben, wobei im zweiten Teil das Fließmittel mit eingemischt war. Der Beton wurde insgesamt 3 Minuten gemischt.

Die 4 Frischbetonchargen wurden im Zwischensilo zwischengelagert, bevor sie über die Dosierschnecke an die Spritzbetonmaschine übergeben wurden. Von dort wurde der Frischbeton zum Spritzroboter im Dichtstromverfahren gefördert. Der Erstarrungsbeschleuniger wurde direkt an der Spritzdüse über eine BE-Pumpe (Fa. Schwing) zum Frischbeton dosiert. Das Gemisch wurde durch die an der Düse eingespeiste Luft (Luftstrom: $5 \pm 0.2 \text{ m}^3/\text{min}$, Luftdruck: 6,5 bar) auf eine mattfeuchte Holzbohlenwand (2200x1000 mm²), die im Abstand von 150 cm von der Spritzdüse entfernt angebracht war, aufgespritzt. Der Beton wurde mit kreisenden Bewegungen, senkrecht zur Auftragsfläche aufgetragen. Die Spritzbetonschichtdicke von rd. 26 cm wurde über mehrere Spritzbetonlagen kontinuierlich innerhalb von rd. 5 Minuten aufgebracht. Lediglich bei Beton I/BE1/10 wurde eine geringere Schichtdicke von rd. 18 cm hergestellt.

Die zielsichere Dosierung der Erstarrungsbeschleunigermenge konnte durch die steuerungsbedingte Kopplung des Betonstromvolumens und der Leistung der Erstarrungsbeschleunigerpumpe eingestellt werden.

Für jeden Spritzbeton wurde der Rückprall beim Betonauftrag aufgenommen. Die Ergebnisse der Rückprallmessungen sind vorab in Tabelle 4 zusammengestellt.

Tabelle 4: Rückprallanteile aller Spritzbetone

Spritzbeton	I/BE1/5	I/BE1/10	I/BE2/5	I/BE2/10	I/BE3/7	I/BE4/7	II/BE1/10	II/BE2/10
Rückprall [M%]	9,45	5,98	6,56	5,68	7,69	5,70	11,79	10,67

Die hier festgestellten Rückprallanteile von rund 5 bis 10 M.-% sind für Spritzbeton im Nassspritzverfahren (Dichtstromverfahren) als durchschnittlich oder sogar günstig einzustufen [10].

Während der ersten sieben Tage nach der Herstellung wurden alle Spritzbetonplatten durch Abdecken mit feuchten Jutetüchern nachbehandelt.

Die Herstellung und Nachbehandlung der Spritzbetone erfolgte bei einer Temperatur von $20 \pm 2^{\circ}$ C.

RUHR-UNIVERSITÄT BOCHUM Lehrstuhl für Baustofftechnik

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 11

Nach 7 Tagen wurden die Spritzbetonplatten bis zur weiteren Bearbeitung mit Folien abgedeckt.

Im Alter von vier Wochen wurden für die weiteren Untersuchungen Bohrkerne (D \approx 100 mm, L = Plattendicke) aus den Spritzbetonplatten entnommen und auf die eine Länge von 220 mm gesägt. Davon abweichend wurden die Bohrkerne des Spritzbetons I/BE1/10 aufgrund der geringeren Plattendicke auf eine Länge von 150 mm gesägt.

Es wurden jeweils 5 Bohrkerne aus jedem Spritzbeton (D \approx 100 mm, L = 160 mm bzw. L = 150 mm bei I/BE1/10) an das F.A. Finger-Institut übergeben.

Nach der Bohrkernentnahme und bis zur Lagerung in den Untersuchungsmedien wurden die Probekörper in Folie verpackt bei 20 ± 2°C gelagert.

6.4 Einlagerung der Probekörper

Im Alter von 6 Wochen erfolgte an beiden Instituten die Einlagerung der Spritzbetone in die jeweiligen Medien für die Dauer eines Jahres.

Mit der Sulfatlagerung wurde – zusätzlich zum inneren Sulfatangriff – ein weiterer, äußerer Sulfatangriff auf den Spritzbeton simuliert. Für die Sulfatlagerung wurde eine 0,22 %ige-Na₂SO₄-Lösung verwendet, die monatlich erneuert wurde. Das volumenbezogene Feststoff-Flüssigkeitsverhältnis wurde zu 1:1,6 festgelegt. Die Umgebungstemperatur für die Lagerung wurde einheitlich auf 8 °C festgelegt. Sowohl die Konzentration der Sulfatlösung als auch die Lagerungstemperatur wurden so gewählt, dass die Umgebungsbedingungen praxisnah abgebildet wurden.

Zusätzlich zu den Lagerungen in Na₂SO₄ wurden an der Ruhr-Universität Bochum von jedem Spritzbeton Probekörper bei 8 °C in Wasser bzw. an der Luft mit einer relativen Feuchte von 60 % (Klima 8/60) gelagert (Tabelle 5). Auf Grundlage der Ergebnisse aus der Wasserlagerung konnte das Schädigungspotential infolge des reinen inneren Sulfatangriffs abgeschätzt werden. Die im Klima 8/60 gelagerten Spritzbetonprobekörper dienten als Referenz für die Druckfestigkeit aller übrigen Probekörper.

Bauhaus-Universität Weimar

F.A. Finger-Institut

DIBt ZP 52-5-7.255-1204/04

Seite 12

Tabelle 5: Lagerungsart und Anzahl Probekörper je Institut

	F.A. Finger-Institut	Ruhr-Universität Bochum					
Spritz-	Anzahl Bohrkerne in Sulfatlagerung	Anzał je La	erne sart				
beton	Na_2SO_4	Na ₂ SO ₄	H ₂ O	Klima (8/60)			
I/BE1/5	5	4	4	2			
I/BE1/10	5	5	5	4			
I/BE2/5	5	4	4	2			
I/BE2/10	5	4	4	2			
I/BE3/7	5	4	4	2			
I/BE4/7	/ BE4/7 5		4	2			
II/BE1/10	5	4	4	2			
II/BE2/10	5	4	4	2			

6.5 Untersuchungen an Spritzbetonprobekörpern

Eine Übersicht über die Untersuchungen an den Spritzbetonprobekörpern zu unterschiedlichen Zeitpunkten ist in Tabelle 6 zusammengestellt.

Tabelle 6: Übersicht über	Untersuchungen an	Spritzbetonpro	bekörpern
	ontersuenungen an	opinizocionpio	bekeipein

Untersuchung	Untersuchungszeitpunkt	Institut		
Betondruckfestigkeit	5 Wochen nach Herstellung, 90 und 360 d nach Einlagerung	Ruhr Universität Bochum		
Längenänderung	0, 28, 90, 180 und 360 d nach Einlagerung			
Ultraschalllaufzeit				
(rel. dynamischer E-Modul)	0, 28, 90, 180 und 360 d nach Einlagerung	Ruhr-Universität Bochum		
(Dehnwellen-Resonanz- Messungen)		F.A. Finger-Institut		
Porosimetrie	28, 90, 180 und 360 d nach Einlagerung			
Gefügebewertung durch Röntgenbeugung	28, 90, 180 und 360 d nach Einlagerung	- F.A. Finger-Institut		
REM-Untersuchungen	28, 90, 180 und 360 d			
	nach Einlagerung			
Karbonatisierungstiefe	a 28, 90, 180 und 360 d nach Einlagerung			

Die <u>Druckfestigkeit</u> der Betone wurde an Zylindern mit den Abmessungen D = 100 mm und L = 100 mm bestimmt, die aus den eingelagerten Bohrkernen herausgesägt und anschließend

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 13

plan geschliffen wurden. Die Festigkeitsprüfungen wurden 24 Stunden nach der Präparation durchgeführt. Bis zur Prüfung wurden die Probekörper an der Luft bei 20 ±2 °C und einer relativen Feuchte von 60 % gelagert.

Fünf Wochen nach der Herstellung wurden zusätzlich zum angebotenen Untersuchungsumfang (vgl. Tabelle 6) orientierend die Druckfestigkeiten aller Spritzbetone an separaten Spritzbetonprobekörpern geprüft.

Die Druckfestigkeit wurde nach DIN EN 12390-3 bestimmt. Die Festigkeitsprüfung erfolgte an einer hydraulischen Prüfmaschine der Klasse 1 nach DIN EN ISO 7500-1.

Die <u>Längenänderungen</u> der Spritzbetonprobekörper wurden mit einem Messrahmen und mechanischer Messuhr (Ablesegenauigkeit: 0,001 mm) bestimmt. Messpunkte waren jeweils zentrisch auf den Stirnflächen angebracht. Die Spritzbetonprobekörper wurden unmittelbar vor der Messung aus der jeweiligen Lagerungsflüssigkeit herausgenommen und oberflächlich abgetrocknet. Unmittelbar nach der Messung wurden die Spritzbetonprobekörper wieder eingelagert. Die Messungen wurden bei 8 °C durchgeführt.

Die <u>Ultraschalllaufzeit</u> wurde nach DIN 12504-4:2004 an insgesamt vier Achsen (siehe Bild 2) pro Spritzbetonprobekörper gemessen.

Bild 2: Durchschallungsachsen der Spritzbetonprobekörper

Die in Flüssigkeiten eingelagerten Spritzbetonprobekörper wurden kurz vor der Ultraschalllaufzeitmessung aus der jeweiligen Flüssigkeit herausgenommen. Die überschüssige Flüssigkeit wurde händisch abgestreift. Sowohl bei den in Flüssigkeiten, als auch bei den an Luft

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 14

gelagerten Probekörpern wurde für die Prüfung ein Gel auf Wasserbasis als Ankopplungsmedium eingesetzt.

Die gemessene Ultraschalllaufzeit wurde in den relativen dynamischen E-Modul umgerechnet.

Am F.A. Finger-Institut wurde zu den unterschiedlichen Untersuchungszeitpunkten jeweils ein Spritzbetonprobekörper aus jeder Serie entnommen.

An diesen wurden unmittelbar danach axiale Dehnwellen-Resonanz-Messungen mittig über die Länge der Probekörper durchgeführt. Dabei wurden auch Masse und Abmessungen der Probekörper ermittelt. Gefügeschäden infolge eines Sulfatangriffs sollten sich dabei als Zuwachs der Ultraschalllaufzeit bzw. als Abfall des dynamischen E-Moduls abzeichnen.

Die Spritzbetonprobekörper wurden anschließend parallel zur Probenachse gesägt. Nach dem Trocknen wurde an einem Ende der Probekörperhälften quer zur Bohrkernachse eine ca. 3 cm breite Scheibe abgespalten. An der Bruchfläche des Restprobekörpers wurde die Karbonatisierungstiefe bestimmt. Aus der Randzone der Scheibe wurden Mörtelbereiche ohne sichtbare Grobkornanteile für die Gefügebewertung durch Röntgenbeugung, Porositätsmessungen und REM-Untersuchungen herausgebrochen. Durch die subjektive Auswahl der untersuchten Mörtelbereiche ist eine gewisse Streuung der Ergebnisse zu erwarten.

Die Porositätsmessungen erfolgten mit einem Quecksilberhochdruckporosimeter Autopore IV 9500 an den im Vakuum getrockneten Mörtelproben.

Die Gefügeuntersuchungen wurden an Bruchflächen von oberflächennahen Mörtelbereichen mit einem Rasterelektronenmikroskop Hitachi S 2700 im Sekundärelektronen-Modus (SE) bzw. im Rückstreu-Modus (RE) durchgeführt. Die Ausbildung der Ettringitphase im Gefüge wurde durch Mikroanalyse (ESCA) überprüft. Von ausgewählten Proben wurden dazu Anschliffe hergestellt, an denen die laterale Verteilung der Elemente S, Na, Al und Si im Gefüge mittels ESCA-mapping bestimmt und abgebildet werden konnte. Die Probenpräparation erfolgte durch Bedampfung mit Kohlenstoff.

Für die Phasenanalyse durch Röntgenbeugung wurde der Mörtel auf eine Feinheit <100 µm zerkleinert. Der Vergleich des Phasenbestandes der einzelnen Betonserien untereinander erfolgte über die Peakhöhe von ausgewählten Interferenzen. An den Proben aus der 360-Tage-Lagerung wurde durch Zugabe eines inneren Standards (ZnO) eine Quantifizierung des Phasenbestandes mittels Rietveld-Verfeinerung vorgenommen.

Bauhaus-Universität Weimar F.A. Finger-Institut DIBt ZP 52-5-7.255-1204/04

Seite 15

7 Ergebnisse

7.1 Druckfestigkeit

In Bild 3 sind Mittelwerte der Druckfestigkeiten, aus jeweils 2 bis 4 Einzelergebnissen, der untersuchten Spritzbetone nach 360 Tagen Einlagerung in NaSO₄-Lösung, Wasser und an Luft dargestellt. Zusätzlich sind die Druckfestigkeiten der einzelnen Spritzbetone unmittelbar vor Einlagerung, d. h. fünf Wochen nach Herstellung, abgebildet. Alle Einzelergebnisse sind in Tabelle A- 10 bis Tabelle A- 12 im Anhang angegeben.

Bild 3: Druckfestigkeiten der Spritzbetone vor Einlagerung (Betonalter: ~35 Tage) und nach 360-tägiger Einlagerung

Die Druckfestigkeiten der Spritzbetone lagen fünf Wochen nach Herstellung durchschnittlich in der Größenordnung von 50 N/mm² bis 55 N/mm². Nach 360 Tagen Einlagerung in Sulfatlösung, Wasser oder an Luft war bei allen Spritzbetonserien eine Nacherhärtung um 10 bis 20 N/mm² festzustellen. Die Druckfestigkeiten der Probekörper der jeweiligen Betone lagen i. Allg. mit Unterschieden von maximal ± 3 N/mm² in der gleichen Größenordnung. Lediglich

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 16

bei dem Beton II/BE2/10 erreichten die in Wasser bzw. NaSO₄ gelagerten Probekörper nur rd. 10 % geringere Druckfestigkeiten als die luftgelagerten Probekörper.

Unter Berücksichtigung der bei Spritzbetonen verfahrensbedingt auftretenden größeren Streuungen der Druckfestigkeiten lassen die Ergebnisse keine Hinweise auf einen schädigenden Sulfatangriff während der einjährigen Lagerung erkennen.

7.2 Längenänderung

Die Längenänderungen der einzelnen Probekörper unter den verschiedenen Lagerungsbedingungen sind exemplarisch in Bild A- 5 bis Bild A- 8 im Anhang dokumentiert. In Bild 4 sind die Längenänderungen der in Sulfat gelagerten Probekörper dargestellt, die weitgehend mit den Längenänderungen der entsprechenden Probekörper in Wasserlagerung übereinstimmen. Unter Berücksichtigung von Messwertstreuungen im Bereich von rd. 0,05 ‰ wurden an diesen Probekörpern in dem Versuchszeitraum von 360 Tagen Längenzunahmen von maximal 0,3 ‰ gemessen, die damit noch im üblichen Bereich für Betone unter diesen Lagerungsbedingungen liegen [1,9].

Treibschäden als Folge von innerer bzw. äußerer Sulfateinwirkung sind bei den in Wasser und in Sulfatlösung gelagerten Probekörpern daher nicht festzustellen. Die an Luft gelagerten

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 17

Probekörper verkürzten sich infolge von Schwindvorgängen im gleichen Zeitraum um rd. 0,4 bis 0,9 ‰.

7.3 Ultraschalllaufzeit

Die Ergebnisse der Ultraschall-Messungen sind in Bild A- 13 bis Bild A- 16 (Ruhr-Universität Bochum) und Tabelle A- 14 (Bauhaus-Universität Weimar) im Anhang dokumentiert.

Die relativen dynamischen E-Moduln der jeweils in Wasser und Sulfat gelagerten Probekörper stimmten zu den einzelnen Untersuchungszeitpunkten weitgehend überein. So lässt sich für alle Spritzbetonproben über den Zeitraum von 360 Tagen ein Anstieg des rel. dynamischen E-Moduls um rd. 10 % feststellen. Beispielhaft ist das Ergebnis für die in Sulfat gelagerten Proben in Bild 5 dargestellt.

Bild 5: Relativer dynamischer E-Modul der Spritzbetone in Sulfatlösung bei 8 °C (Ruhr-Universität Bochum)

Die Ergebnisse aus Bochum und Weimar stimmen qualitativ und quantitativ überein. So zeigt Bild 6 als Ergebnis von Dehnwellen-Resonanz-Messungen eine Änderung des dynamischen E-Moduls der in Sulfatlösung gelagerten Spritzbetonproben von rd. 4 bis 5 kN/mm², was einer prozentualen Änderung von etwa 10 bis 14 % entspricht. Der zeitliche Anstieg des relativen dynamischen E-Moduls ist wahrscheinlich auf die Verdichtung des Porengefüges durch

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 18

sekundäre, allerdings spannungsarme Ettringitbildung zurückzuführen, wie die Phasenanalysen und die REM-Untersuchungen bestätigen.

Bild 6: Änderung des dynamischen E-Moduls aus Dehnwellen-Resonanz-Messungen mit der Dauer der Sulfatlagerung bei 8 °C

Für die an der Luft gelagerten Probekörper konnten mit Veränderungen von etwa ±2 % keine wesentlichen Änderungen des dynamischen E-Moduls festgestellt werden. Sie liegen z. T. im Rahmen der Messprüfstreuung.

7.4 Porositätsmessungen

Die Entwicklung der Gesamtporosität von Mörtelproben aus den Spritzbetonen nach einer Lagerungsdauer von 28, 90, 180 und 360 Tagen in Sulfatlösung bei 8 °C sind in Tabelle A- 15 bzw. Bild A- 17 zusammengefasst. Unter Berücksichtigung der erhöhten Streuung der Messwerte, die durch unterschiedliche Anteile von dichten Gesteinskörnungen in den ausgewählten Mörtelproben hervorgerufen wird, lassen sich keine signifikanten Unterschiede zwischen den verschiedenen Proben mit den verschiedenen Erstarrungsbeschleunigern bzw. durch die unterschiedliche Lagerungsdauer in der Sulfatlösung feststellen.

Bauhaus-Universität Weimar F.A. Finger-Institut DIBt ZP 52-5-7.255-1204/04

Seite 19

7.5 Phasenanalysen

Eine Zusammenstellung der Peakhöhen von ausgewählten XRD-Interferenzen der Mörtelproben aus den Spritzbetonen gibt die Tabelle A- 16. Bei den Beugungsaufnahmen wurden für alle Mörtelproben einheitliche Präparations- und Aufnahmebedingungen eingehalten. Die relative Intensität (Ordinate) wurde dabei auf 1000 cps begrenzt. Neben dem Hauptbestandteil Quarz und unterschiedlichen Anteilen von Muskovit, Albit bzw. Orthoklas aus der Gesteinskörnung waren nur Portlandit sowie Calciumcarbonate in Form von Calcit sowie geringe Anteile an Vaterit nachweisbar. Da die verwendeten guarzitischen Gesteinskörnungen nach Vorversuchen maximal 2 % Kalkstein enthielten, wird der erhöhte Calcitgehalt in den Spritzbetonen mit Portlandzement auf eine Karbonatisierung von Portlandit zurückgeführt. Einen entsprechend erhöhten Anfangsgehalt an Calcit wiesen die Proben mit Portlandkalksteinzement auf. Als sulfathaltige Neubildungen wurden nur Ettringit und Gips festgestellt. Die Ettringitmenge stieg dabei geringfügig mit der Lagerungsdauer in der Sulfatlösung an (Bild 7). Als Ursache für den Anstieg werden dabei in erster Linie die weitere Hydratation der Aluminatphasen des Zementes (C_3A , C_4AF) und ihre Reaktion mit Sulfat gesehen. Eine ähnliche Tendenz ergibt sich für die Gipsbildung (Bild A- 18). Thaumasit konnte durch die Röntgenbeugung nicht nachgewiesen werden, obwohl der Calcitabbau während der Sulfatlagerung mit einer geringen Thaumasitbildung in Verbindung stehen könnte (Bild A- 19). Die Untersuchung der in Wasser gelagerten Proben (aus Bochum) ergab im Vergleich zu den in Sulfatlösung gelagerten Proben keine wesentlichen Abweichungen im Phasenbestand. Lediglich die Proben mit Portlandkalksteinzement wiesen einen deutlich erhöhten Peak bei $2\theta = 9,1^{\circ}$ auf. Es ist möglich, dass der Ettringitpeak von Thaumasit überlagert wird.

DIBt ZP 52-5-7.255-1204/04

F.A. Finger-Institut

Seite 20

Bild 7: Änderung des Ettringitpeaks bei 2θ = 9,1° mit der Dauer der Sulfatlagerung bei 8 °C

Zur Quantifizierung des Phasenbestandes in den Spritzbetonen wurden von den Beugungsdiagrammen der 360-Tage-Proben Rietveld-Analysen erstellt. Durch Zugabe eines inneren Standards (20 M.-% ZnO) zu den Mörtelproben konnten dabei auch die amorphen Anteile erfasst werden. Die Mineralphasen der verwendeten Gesteinskörnungen wurden an den gesondert gemahlenen Sandfraktionen ermittelt. Die Ergebnisse sind in Tabelle A- 17 enthalten. Es zeigte sich, dass die Mörtelproben noch mehr als 50 % Bestandteile der Gesteinskörnung enthielten. Nach Abzug der Phasenanteile der Gesteinskörnung ergaben sich die Phasengehalte im Zementstein entsprechend der Tabelle 7. Der Zementstein bestand damit zu ca. 80 % aus amorphen Anteilen, die hauptsächlich den C-S-H-Phasen zugeordnet werden können. Aber auch Phasenanteile unterhalb der Nachweisgrenze z.B. von Vaterit, Aragonit oder Thaumasit werden darin erfasst. Die Gehalte an den Treibphasen Ettringit und Gips waren unabhängig von der Menge und Art des Erstarrungsbeschleunigers mit Werten zwischen 2 und 4 % gering. Sie lagen damit deutlich unter den Werten, die sich aus der Umsetzung der Beschleuniger zu Ettringit berechnen lassen. Bei der Bewertung der Ergebnisse ist zu berücksichtigen, dass sich der Analysenfehler aufgrund der hohen Gehalte der inerten Gesteinskörnungen sehr stark bei der Berechnung der neugebildeten Phasen auswirkt. Für

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 21

die Proben mit Portlandkalksteinzement ergaben sich erwartungsgemäß höhere Calcitgehalte im Zementstein.

Mörtelprobe	Σ Gesteinsk.	Zementstein	Phasen im Zementstein [%]				
	i.d.Probe [%]	i.d.Probe [%]	Ettringit	Gips	Portlandit	Calcit	amorph
I/BE1/5	54.1	45.9	3.7	2.8	7.2	7.8	78.4
I/BE1/10	58.9	41.1	3.9	1.5	8.5	8.3	77.9
I/BE2/5	46.4	53.6	4.3	2.2	6.7	3.2	83.6
I/BE2/10	56.4	43.4	4.4	1.6	7.8	7.8	78.3
I/BE3/7	54.8	45.1	2.4	2.7	7.3	7.3	80.3
I/BE4/7	51.0	49.0	1.6	4.1	6.9	6.3	81.0
II/BE1/10	56.5	43.5	2.1	1.8	8.3	12.9	74.9
II/BE2/10	55.5	44.5	2.0	1.8	7.2	10.8	78.2

In Bild 8 werden die Peakhöhen der Ettringitinterferenz bei $2\theta = 9,1^{\circ}$ für die Mörtelproben der 360 Tage in Normklima, Wasser oder Sulfatlösung gelagerten Spritzbetone gegenübergestellt. Die Intensität der Ettringitpeaks für die Luftlagerung charakterisiert dabei den Ettringitgehalt bei der Erstarrung bzw. Erhärtung der Betone. Aus den im Vergleich zur Luftlagerung höheren Intensitäten der wasser- bzw. sulfatgelagerten Proben lässt sich ableiten, dass die Hydratation einschließlich der weiteren Ettringitbildung offenbar während der Nasslagerung fortgeschritten ist. Die erhöhte Ettringitmenge hat dabei allerdings nicht das Betongefüge geschädigt. Eine Differenzierung hinsichtlich des Einflusses der einzelnen Erstarrungsbeschleuniger ist jedoch aufgrund der subjektiven Faktoren bei Präparation der Mörtelproben nicht möglich.

LEHRSTUHL FÜR BAUSTOFFTECHNIK

ZP 52-5-7.255-1204/04

Bauhaus-Universität Weimar

F.A. Finger-Institut

Seite 22

Bild 8: Vergleich der Intensität des Ettringitpeaks 2θ = 9,1° in Mörtelproben in Abhängigkeit von den Lagerungsbedingungen der Spritzbetone über 360 Tage

7.6 REM-Untersuchungen

Die Gefügeaufnahmen von Mörtelproben der Spritzbetone nach 90 Tagen Sulfatlagerung werden exemplarisch in der Anlage als Bild A- 20 bis Bild A- 27 vorgestellt. Für die Beurteilung des Sulfatangriffs war in erster Linie die Verteilung des Schwefels in der Randzone bzw. im Inneren der Mörtelproben interessant. Die Gefügeaufnahmen von angeschliffenen Mörtelproben in Bild A- 28 bis Bild A- 43 werden dazu durch farbliche Darstellung der Schwefelverteilung mittels ESCA-mapping ergänzt. Die weitgehend homogene Verteilung des Schwefels bestätigt die schnelle und gleichmäßige Bildung von feinkristallinem Ettringit während der Erstarrung durch die spontane Reaktion des Beschleunigers mit Ca(OH)₂. Die deutlichen Schwefelanreicherungen in Poren der wasser- bzw. sulfatgelagerten Spritzbetone sind offensichtlich auf eine nachträgliche, sekundäre Ettringitbildung infolge fortschreitender Hydratation zurückzuführen, denn die Poren der an Luft gelagerten Proben sind leer. Bei letzteren wurde die Hydratation demnach aufgrund des verringerten Feuchteangebotes deutlich verlangsamt. Der sekundäre Ettringit, der in den Poren in Form dicht gepackter Bündel aus Ettringitnadeln auftritt, ist in Bezug auf eine Gefügeschädigung ungefährlich.

Bauhaus-Universität Weimar F.A. Finger-Institut DIBt ZP 52-5-7.255-1204/04

Seite 23

Durch die partielle Entwässerung des Ettringits im Hochvakuum des REM schrumpfen die Kristalle, so dass um sie herum ein charakteristischer ringförmiger Hohlraum entsteht. Die zahlreichen Risse in den Gefügeaufnahmen, die meist an und zwischen den Gesteinskörnern verlaufen, enthalten dagegen keine Ausscheidungen von Ettringit, so dass sie wahrscheinlich nicht durch Treibprozesse, sondern durch die mechanische Beanspruchung bei der Probenpräparation entstanden sind. Für die geringere Schwefelkonzentration in der Randzone einiger Proben (Bild A- 28 bis Bild A- 33) ist offenbar eine schmale, bis zu 50 µm tiefe Karbonatisierungsschicht an der Probenoberfläche, in der das für die Ettringitbildung notwendige Ca(OH)₂ verarmt ist, verantwortlich. Auch die mit alkoholischer Phenolphthaleinlösung ermittelte Karbonatisierungstiefe lag nach 360 Tage Lagerung in Wasser bzw. in Sulfatlösung unter 1 mm.

8 Zusammenfassung

Mit dem Forschungsvorhaben sollte das Schädigungspotential von alkalifreien Erstarrungsbeschleunigern auf der Basis von Aluminiumsulfat in Spritzbetonen unter Einsatzbedingungen, die in der Praxis auftreten können, untersucht werden. Dazu war vorgesehen, aus der Veränderung mechanischer Kennwerte wie der Festigkeit, des dynamischen E-Moduls und der Längenänderung während einer Lagerungsdauer von 360 Tagen in Wasser bzw. in Natriumsulfatlösung bei 8 °C auf eine Schädigung infolge des erhöhten Sulfatgehaltes der Spritzbetone zu schließen und ggf. mögliche Schadensursachen durch begleitende Gefügeuntersuchungen aufzuklären. Im Ergebnis der Untersuchungen lassen sich jedoch an den Spritzbetonen mit verschiedenen alkalifreien Erstarrungsbeschleunigern selbst bei hohen Dosierungen bis 10 M.-% bezogen auf den Zementgehalt weder makroskopische noch mikroskopische Schäden als Folge einer Bildung von sekundärem Ettringit bzw. Thaumasit feststellen. Eine Differenzierung der verschiedenen Erstarrungsbeschleunigertypen sowie eine evtl. erforderliche Begrenzung der Zugabemengen im Hinblick auf einen Sulfatangriff sind auf Grundlage der vorliegenden Ergebnisse nicht möglich.

Die primäre Ettringitbildung aus den Erstarrungsbeschleunigern ist offenbar mit der Erstarrung und der nachfolgenden Wasserlagerung bei 20 °C weitgehend abgeschlossen. Eine nachträgliche Bildung von Ettringit während der Langzeitlagerung bei 8 °C findet i. Allg. nur in den Poren des Spritzbetons statt und verursacht damit keine schädigenden Gefügespannungen. Die gleichmäßige Verteilung der flüssigen Beschleuniger in der Betonmischung und die höhere Porosität der Spitzbetone wirken sich dabei günstig auf die Ausbildung spannungsarmer Gefüge aus. Die beobachtete Erhöhung der Durchschallungsgeschwindigkeit bzw. die

RUHR-UNIVERSITÄT BOCHUM Lehrstuhl für Baustofftechnik

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 24

Zunahme des dynamischen E-Moduls wird in erster Linie auf die Verfüllung der Poren während der Lagerung zurückgeführt.

Auf Grundlage der vorliegenden Ergebnisse ist in Spritzbeton bei dem Einsatz von alkalifreien Erstarrungsbeschleunigern, die den untersuchten Produkten entsprechen, nicht von einem Gefährdungspotential und letztlich einem negativen Einfluss auf die Dauerhaftigkeit von Spritzbetonen auszugehen.

Bochum, den 28.09.2007

Univ. Prof. Dr.-Ing. R. Breitenbücher

Univ. Prof. Dr.-Ing. habil. J. Stark

Dipl.-Ing. B. Siebert

Dr. rer. nat. P. Nobst

DIBt ZP 52-5-7.255-1204/04

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 25

9 Literatur

- Barker A.P., Hobbs D.W.: Performance of Portland limestone cements in mortar prisms immersed in sulfate solutions at 5°C. Cement & Concrete Composites 21 (1999) Nr. 2, S. 129–137.
- [2] Cerulli, C.; Pistolesi, C.; Maltese, C.: Alkali-rich and alkali-free accelerators for shotcrete: physical, chemical and mechanical effects on cement hydration.
 Proceedings of 23rd ICMA, Jany, L.; Nisperos, A. (Ed.), San Diego, California, 2002, S. 1-17.
- [3] Dörrer, H.; Löschnig, P.: Alkalifreie Erstarrungsbeschleuniger eine neue Generation von Spritzbetonbeschleunigern; Tagungsband ibausil, Bauhaus-Universität Weimar, 2003
- [4] Gollop, R.S.; Taylor, H.F.W.: Microstructural and microanalytical studies of sulphate attack: I. Ordinary Portland cement paste. Cement Concrete Research 22 (1992), S. 1027-1038.
- [5] Gollop, R.S.; Taylor, H.F.W.: Microstructural and microanalytical studies of sulphate attack: III. Sulfate-resisting Portland cement. Reactions with sodium and magnesium sulphate solutions. Cement Concrete Research 25 (1995), S. 1581-1590.
- [6] Huber, H.; Gantner, J.; Kusterle, W.: Spritzbeton mit alkalifreier Erstarrungsbeschleunigung - umweltneutraler Spritzbeton. Zement und Beton 1/94.
- [7] Kalousek, G.L.; Benton, E.J.: Mechanism of seawater attack on cement paste. ACI 67 (1970), S. 187-192.
- [8] Lea, F.W.: Lea's Chemistry of Cement and Concrete, P.C. Hewlett (Ed.), London, Großbritannien, 1998.
- [9] Lipus, K.; Puntke, S.: Sulfatwiderstand unterschiedlich zusammengesetzter Betone; beton 2 & 3, 2003.
- [10] Maidl, B.: Handbuch für Spritzbeton; Verlag Ernst & Sohn Berlin, 1992.
- [11] Maltese, C.; Pistolesi, C.; Bravo, A.; Cella, F.; Cerulli, T.; Salvioni, D.: Effects of setting regulators on the efficiency of an inorganic acid based alkali-free accelerator reating with a Portland cement. Cement & Concrete Research 37 (2007), S. 528-536.

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 26

- [12] Maltese, C.; Pistolesi, C.; Bravo, A.; Cella, F.; Cerulli, T.; Salvioni, D.: A case history: Effects of moisture on the setting behaviour of a Portland cement reacting with an alkali-free accelerator. Cement & Concrete Research 37 (2007), S. 856-865.
- [13] Manns, W.; Schellhorn, H.: Spezialzement für Spritzbeton. beton 9, 2001.
- [14] Mulenga, D.: Zum Sulfatangriff auf Beton und Mörtel einschließlich der Thaumasitbildung; Dissertation Bauhaus-Universität Weimar, 2002.
- [15] Odler, I.; Colan-Subauste, J.: Investigations on cememnt expansion associated with ettringite formation. Cement & Concrete Research 29 (1999), S. 731-735.
- [16] Oppikofer, R.; Sommer, M.: Neue Abbindebeschleuniger-Technologie für Spritzbetonapplikationen; Tunnel 2, 2001.
- [17] Paglia, C.; Wombacher, F.; Böhni, H.: The influence of alkali-free and alkaline Shotcrete accelerators within cement systems, I. Characterization of the setting behaviour. Cement & Concrete Research 31 (2001) Nr.6, S. 913-918.
- [18] Paglia, C.; Wombacher, F.; Böhni, H., Sommer, M.: An evaluation of the sulphate resistance of cementitious material accelerated with alkali-free and alkaline admixtures – Laboratory vs. field. Cement & Concrete Research 32 (2002) Nr.6, S. 665-671.
- [19] Paglia, C.; Wombacher, F.; Böhni, H.: The influence of alkali-free and alkaline shotcrete accelerators within cement systems – Influence of the temperature on the sulphate attack mechanism and damage. Cement & Concrete Research 33 (2003), S. 387-395.
- [20] Paglia, C.; Wombacher, F.J.; Böhni, H.K.: Influence of Alkali-Free and Alkaline Shotcrete Accelerators within Cement Systems: Hydration, Microstructure, and Strength Development, ACI Materials Journal, 9/10 2004, S. 353-357.
- [21] Ping, X.; Beaudoin, J.J.: Mechanism of sulphate expansion: I. Thermodynamic principle of crystallization pressure. Cement & Concrete Research 22 (1992), S. 631-640.
- [22] Ping, X.; Beaudoin, J.J.: Mechanism of sulphate expansion: II. Validation of thermodynamic theory. Cement & Concrete Research 22 (1992), S. 845-854.
- [23] Stark, J.; Wicht, B.: Anorganische Bindemittel; Schriften der Bauhaus-Universität Weimar, 1998.

LEHRSTUHL FÜR BAUSTOFFTECHNIK

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 27

- [24] Wicht, B.; Stark, J.: Dauerhaftigkeit von Beton 100. FIB F.A. Finger-Institut für Baustoffkunde, Weimar, 1995.
- [25] Xu, Q.; Stark, J.: Zur frühen Hydratation eines Portlandzementes bei Zugabe eines alkalifreien Erstarrungsbeschleunigers, Tagungsband ibausil, Bauhaus-Universität Weimar, 2003.
- [26] Xu, Q.; Stark, J.: Quantifizierung der Zementhydratation bei Verwendung eines alkalifreien Erstarrungsbeschleunigers. ZKG International 58 (2005), H. 10, S. 68-79.
- [27] DIN EN 934-5 Zusatzmittel für Beton, Mörtel und Einpressmörtel; Teil 5: Zusatzmittel für Spritzbeton; Definitionen, Anforderungen und Konformitätskriterien; Deutsche Fassung prEN934-5:2003, Entwurf August 2003.

-

RUHR-UNIVENZUCH LEHRSTUHL FÜR BAUSTOFFTECHNIK **RUHR-UNIVERSITÄT BOCHUM**

DIBt ZP 52-5-7.255-1204/04

Bauhaus-Universität Weimar

F.A. Finger-Institut

Seite 28

10 Anhang

Technische Angaben zu Ausgangsstoffen

Tabelle A-1: Technische Angaben zu den verwendeten Zementen [M.-%] (Teil 1)

	CEM I 42,5 R	CEM II/A-LL 42,5 R
CO ₂	2,1	5,0
Unlösl.	0,70	k. A.
Glühverl.	2,50	5,24
SiO ₂	20,15	18,84
AI_2O_3	5,36	5,37
Fe ₂ O ₃	2,90	2,50
CaO	63,33	62,57
MgO	1,88	1,26
SO ₃	2,88	3,44
K ₂ O	1,13	0,81
Na₂O	0,06	0,06
P ₂ O5	0,34	0,16
TiO ₂	0,25	0,27
Summe:	100,78	100,52
CaO _{max.}	64,63	60,71
KST	94,9	99,1
SM	2,44	2,39
ТМ	1,85	2,15
CaO _{frei}	1,0	0,4
Na₂O-Äquiv.	0,80	0,59
CI	0,021	0,039

Tabelle A- 2:	Technische Angaben zu den verwendeten Zementen	[M%]	(Teil 2)
---------------	--	------	----------

Parameter		CEM I 42,5 R	CEM II/A-LL 42,5 R	
Mahlfeinheit Blaine		cm²/g	3740	4400
H ₂ O-Anspruch		M%	28,8	28,0
Erstarrungsbeginn		Min.	155	120
Raumbeständigkeit Le Chatelier		mm	1,0	1,0
Druckfostiakoit	2 Tage	N/mm²	31,6	30,8
Diuckiesligkeit	28 Tage	N/mm²	61,4	60,1

DIBt ZP 52-5-7.255-1204/04

Bauhaus-Universität Weimar

F.A. Finger-Institut

Seite 29

	-				-
Bezeichnung		BE1	BE2	BE3	BE4
Konsistenz		Dispersion	Dispersion	Dispersion	Lösung
Dichte (It. Angabe)	g/cm³	1,43	1,43	1,43	1,42
Feststoffgehalt (It. Angabe)	M%	53	k. A.	k. A.	k. A.
pH-Wert (It. Angabe)		2,3	ca. 3	2,1-3,1	k.A.
empf. Zugabe (It. Angabe)	% v.Z.	4-10	3-6	3-10	5,7 -10
pH-Wert (gemessen) *		2,2	3,1	2,2	3,4
Ca (nach Analyse)	M%	0,06	0,01	0,01	0,02
Al (nach Analyse)	M%	5,72	6,3	4,77	6,43
S (nach Analyse)	M%	8,32	5,76	8,59	6,04
SO ₄	M%	25,0	17,3	25,8	18,1
Summe AI+SO ₄	M%	30,7	23,6	30,5	24,6
AI (im Produkt)	Mol	0,212	0,233	0,177	0,238
SO ₄ (im Produkt)	Mol	0,26	0,18	0,27	0,19
Mol-Verhältnis SO₄/Al	Ist	1,22	0,77	1,53	0,80
Mol-Verhältnis Al ₂ (SO ₄) ₃	Soll		1,	,5	
berechnete Zusammensetzung als Festst		off			
$AI_2(SO_4)_3$	M%	90	70	100	70
AI(OH) ₃ * (Annahme)	M%	10	30	0	30
Feststoff aus Analyse	M%	31,02	27,15	30,54	34,62
Feststoffgehalt gemessen	M%	48,75	46,81	43,46	40,55

Tabelle A- 3: Technische Angaben zu den verwendeten Erstarrungsbeschleunigern

* Zugabe von Al(OH)₃ (bzw. als AlO(OH) oder Al₂O₃) drängt Hydrolyse des Al₂(SO₄)₃ in Wasser zu Al(OH)₃

+ H₂SO₄ zurück

DIBt ZP 52-5-7.255-1204/04

Bauhaus-Universität Weimar

F.A. Finger-Institut

Seite 30

Tabelle A- 4: Herstellerangaben zu dem verwendeten Fließmittel

Bezeichnung	FM
Produkt	ViscoCrete SC-305
Hersteller	Sika Addiment GmbH
Basis	synthetische Dispergierungsmittel und verzögernde, stabilisierende Wirkstoffe
Dichte [kg/dm ³]	1,1
pH-Wert	Ca. 4,3
Empfohlener Dosierbereich [M% bez. Zemgehalt]	0,4 bis 1,8

Druckfestigkeiten

Tabelle A- 5: Ergebnisse der Festbetonrohdichte und Druckfestigkeitsprüfungen fünf Wochen nach Herstellung (Teil 1)

Spritzbeton	Probekörper - Nr.:	Einzelwert Rohdichte Pi [kg/m³]	Mittelwert Rohdichte P ^m [kg/m³]	Einzelwert Druckfestigkeit f _{em.i} [N/mm²]	Mittelwert Druckfestigkeit f _{cm,m} [N/mm²]	
	2	2.280		54,7		
I/BE1/5	15a	2.280	2.280	53,3	53,6	
	15b	2.270		52,9		
I/BE1/10	18	2.270	2.270	50,9	50,9	
	13	2.270		40,3		
I/BE2/5	11a	2.270	2.270	51,3	49,5	
	11b	2.270		56,8		
	5	2.250		57,7		
I/BE2/10	15a	2.260	2.260	59,4	57,7	
	15b	2.260		56,1		
	12	2.280		53,1		
I/BE3/7	14a	2.280	2.280	52,0	52,2	
	14b	2.270		51,1		
	4	2.260		51,7		
I/BE4/7	3a	2.270	2.260	51,8	49,6	
	3b	2.260		45,4		

DIBt ZP 52-5-7.255-1204/04

Bauhaus-Universität Weimar

F.A. Finger-Institut

Seite 31

Tabelle A- 6: Ergebnisse der Festbetonrohdichte und Druckfestigkeitsprüfungen fünf Wochen nach Herstellung (Teil 2)

Spritzbeton	Probekörper – Nr.:	Einzelwert Rohdichte Pi [kg/m³]	Mittelwert Rohdichte P _m [kg/m³]	Einzelwert Druckfestigkeit [^{6m,i}	Mittelwert Druckfestigkeit f _{em,m} [N/mm²]	
	5	2.250		56,9		
II/B1/10	12a	2.260	2.250	57,3	56,4	
	12b	2.250		54,9		
	11	2.240		53,7		
II/B2/10	10a	2.240	2.260	55,4	54,6	
	10b	2.280		54,8		

Tabelle A- 7: Ergebnisse der Festbetonrohdichte und Druckfestigkeitsprüfungen 90 d nach Einlagerung (Teil 1)

Spritzbeton	Probekörper - Nr.:	Lagerungsart	Einzelwert Rohdichte Pi kg/m³]	Mittelwert Rohdichte P ^m [kg/m³]	Einzelwert Druckfestigkeit f _{em.i} [N/mm²]	Mittelwert Druckfestigkeit f _{cm,m} N/mm²]	
	3a		2.280		70,0		
	3b	Na ₂ SO ₄	2.270	2.290	67,3	69.0	
	8a		2.300		69,6	00,0	
	8b		2.300		69,1		
I/BE1/5	4a		2.290	2.290	71,1	70,1	
1/BE 1/5	4b	H.O	2.290		69,8		
	5a	1120	2.280		69,0		
	5b		2.290		70,3		
	1a	Klima	2.250	2 260	67,6		
	1b	(8/60)	2.260	2.200	71,1	09,0	
	3	Na SO	2.280	2 280	62,2	64.2	
	8	Na ₂ 504	2.280	2.200	66,1	64,2	
I/BE1/10	5		2.280	2 200	64,3	64.0	
	14	1120	2.290	2.290	65,5	04,9	
	7	Klima	2.250	2.250	58,5	61.0	
	1	(8/60)	2.250	2.200	63,5	01,0	

LEHRSTUHL FÜR BAUSTOFFTECHNIK

DIBt ZP 52-5-7.255-1204/04

Bauhaus-Universität Weimar

F.A. Finger-Institut

Seite 32

Tabelle A- 8: Ergebnisse der Festbetonrohdichte und Druckfestigkeitsprüfungen 90 d nach Einlagerung (Teil 2)

Spritzbeton	Probekörper – Nr.:	Lagerungsart	Einzelwert Rohdichte Pi kg/m³]	Mittelwert Rohdichte P ^m [kg/m³]	Einzelwert Druckfestigkeit f _{em.i} [N/mm²]	Mittelwert Druckfestigkeit f _{an,m} N/mm²]
	6a		2.230		65,4	
	6b	Na ₂ SO ₄	2.250	2 250	67,5	66.8
	7a	1102004	2.260	2.200	70,0	00,0
	7b		2.250		64,3	
I/BE2/5	3a		2.240		66,3	
	3b	H.O	2.240	2 260	70,0	66 5
	5a	a H ₂ O	2.250	2.200	69,5	00,5
	5b		2.310		60,5	
	2a	Klima	2.280	2 280	67,1	69.1
	2b	(8/60)	2.280	2.200	71,0	09,1
	3a		2.290		70,3	
	3b	Na ₂ SO ₄	2.280	2.270	62,4	66,6
	8a		2.250		69,0	
	8b		2.280		64,6	
I/RE2/10	7a		2.270		72,5	
	7b	H.O	2.280	2 280	68,4	70.1
	10a	1120	2.270	2.200	68,9	70,1
	10b		2.280		70,4	
	2a	Klima	2.240	2 250	69,8	70.1
	2b	(8/60)	2.250	2.200	70,5	70,1
	3a		2.280		66,6	
	3b	Na ₂ SO ₄	2.280	2 280	64,1	63.1
	4a		2.280	2.200	57,3	03,1
	4b		2.280		64,4	
I/BE3/7	2a		2.280		60,6	
	2b	ЦО	2.280	2 200	68,0	65.0
	5a		2.270	2.200	67,3	05,0
	5b		2.280		64,3	
	6a	Klima	2.250	0.050	63.3	64.0
	6b	(8/60)	2.250	2.250	66,3	04,ð

LEHRSTUHL FÜR BAUSTOFFTECHNIK

DIBt ZP 52-5-7.255-1204/04

Bauhaus-Universität Weimar

F.A. Finger-Institut

Seite 33

Tabelle A- 9:Ergebnisse der Festbetonrohdichte und Druckfestigkeitsprüfungen 90 d nach
Einlagerung (Teil 3)

Spritzbeton	Probekörper – Nr.:	Lagerungsart	Einzelwert Rohdichte Pi [kg/m³]	Mittelwert Roh- dichte Բա [kg/m³]	Einzelwert Druckfestigkeit f _{em.i} [N/mm²]	Mittelwert Druckfestigkeit f _{em,m} [N/mm²]
	7a		2.270		54,1	
	7b	Na ₂ SO ₄	2.280	2.280	58,8	56.8
	10a		2.280		58,2	00,0
	10b		2.270		56,2	
I/BF4/7	5a		2.280		52,3	
	5b	H ₂ O	2.290	2 280	57,7	56.9
	6a		2.270	2.200	58,1	50,9
	6b		2.280		59,7	
	11a	Klima	2.240	2.240	58,0	FQ C
	11b	(8/60)	2.250	2.240	59,1	50,0
	7a	Na ₂ SO ₄	2.280	2.280	68,3	65,1
	7b		2.260		62,5	
-	8a		2.280		66,1	
	8b		2.280		63,7	
	2a		2.280		64,7	66,5
II/BE1/10	2b		2.280	2 200	67,3	
	10a	H ₂ U	2.270	2.280	66,6	
	10b		2.270		67,2	
	6a	Klima	2.250	0.040	67,4	07.0
	6b	(8/60)	2.250	2.240	66,6	67,0
	1a		2.270		69,5	
	1b	Na ₂ SO ₄	2.280	0.070	66,5	07.0
	5a		2.270	2.270	69,1	67,9
	5b		2.280		66,5	
	2a		2.270		70,9	
II/BE2/10	2b		2.270	0.070	66,5	00.0
	3a	H ₂ O	2.280	2.270	67,1	68,9
	3b		2.280		71.3	
	4a	Klima	2.220		63.2	
	4b	(8/60)	2.220	2.220	67,4	65,3

LEHRSTUHL FÜR BAUSTOFFTECHNIK

DIBt ZP 52-5-7.255-1204/04

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 34

Tabelle A- 10: Festbetonrohdichten und Druckfestigkeiten 360 d nach Einlagerung (Teil 1)

Spritzbeton	Probekörper – Nr.:	Lagerungsart	Einzelwert Rohdichte p _i [kg/m³]	Mittelwert Rohdichte P _m [kg/m³]	Einzelwert Druckfestigkeit f _{em.i} [N/mm²]	Mittelwert Druckfestigkeit f _{cm,m} [N/mm²]	
	6a		2.120		69,1		
	6b	Na-SO.	2.300	2 260	70,4	65.9	
	13a	- Na ₂ SO ₄ -	2.310	2.200	68,6	05,9	
	13b		2.300		68,5		
I/BE1/5	11a		2.320		71,1		
	11b		2.310	2 210	70,7	60.2	
	14a	Π ₂ Ο	2.310	2.310	71,4	69,2	
	14b		2.300		65,9		
	7a	Klima	2.250	2 260	64,8	63.5	
	7b	(8/60)	2.260	2.200	62,1	03,5	
	15		2.360		65,8		
	16	Na ₂ SO ₄	2.300	2,320	65,9	67,2	
	17		2.300		66,0		
I/RE1/10	10		2.300		68,4		
	11	H ₂ O	2.310	2,240	63,9	69,8	
	20		2.110		69,2		
	9	Klima	2.230	2 240	67,9	68.6	
	19	(8/60)	2.250	2,240	69,3	00,0	
	14a		2.300		66,8		
	14b	Na-SO.	2.300	2 310	67,7	69.2	
	17a	1102004	2.310	2.510	70,0	00,2	
	17b		2.320		68,3		
	10a		2.310		69,8		
I/BE2/5	10b	H.O	2.300	2 300	68,1	68,2	
	16a	1120	2.300	2.300	66,2		
	16b		2.300		68,8		
	4a	Klima	2.240	2 220	73,2	60.0	
	4b	(8/60)	2.220	2.200	66,4	09,9	

DIBt ZP 52-5-7.255-1204/04

Bauhaus-Universität Weimar

Seite 35

Tabelle A- 11:	Festbetonrohdichten	und Druckfestiakeiten	360 d nach	Einlagerung	(Teil 2)
		and Brackicoughenten		Ennagorang	(1011 -)

Spritzbeton	Probekörper – Nr.:	Lagerungsart	Einzelwert Rohdichte p _i [kg/m³]	Mittelwert Rohdichte P _m [kg/m³]	Einzelwert Druckfestigkeit f _{em.i} [N/mm²]	Mittelwert Druckfestigkeit f _{em,m} [N/mm²]		
-	12a		2.310		68,2			
	12b	Na ₂ SO ₄	2.310	2.300	67,1	66,8		
	16a		2.300		64,7			
	160		2.270		67,1			
I/BE2/10	13a 13h		2.310		64.8			
-	17a	H ₂ O	2.310	2.300	67 1	65,0		
-	17b		2.300		64.5			
-	9a	Klima	2.240	0.050	70.1	70.4		
-	9b	(8/60)	2.260	2.250	70,2	70,1		
	10a		2.310		68,7			
-	10b		2.300		61,6			
-	13a	Na ₂ SO ₄	2.290	2.300	66.5	66,0		
	13b		2.300		67,1			
	8a		2.320		68,5	68,6		
I/BE3/7	8b		2.310		68.8			
-	9a	H₂O	2.300	2.310	69,1			
-	9b		2 310		68.0			
-	17a	Klima	2 250		66.3			
	17b	(8/60)	2.250	2.250	68.8	67,6		
	12a	· · /	2.300		58.9			
-	12b		2.300		57.4			
-	13a	Na ₂ SO ₄	2 300	2.300	57.8	57,5		
-	13b		2 310		55.8	-		
-	15a		2 300		58.4			
I/BE4/7	15h		2 310		60.4			
	162	H ₂ O	2 300	2.300	50, 4 50 5	60,2		
-	16h		2 300		62.6			
	142	Klima	2.300		62.2			
-	14b	(8/60)	2.250	2.250	61.4	61,8		

DIBt ZP 52-5-7.255-1204/04

Bauhaus-Universität Weimar

F.A. Finger-Institut

Seite 36

Tabelle A- 12	Festbetonrohdichten	und Druckfestigkeiten	360 d nach	Finlagerung (Teil 3)
		and Druckiestigheiten		

Spritzbeton	Probekörper – Nr.:	Lagerungsart	Einzelwert Rohdichte p _i [kg/m³]	Mittelwert Rohdichte P ^m [kg/m³]	Einzelwert Druckfestigkeit f _{em.i} [N/mm²]	Mittelwert Druckfestigkeit f _{cm,m} [N/mm²]	
	13a		2.290		69,3		
	13b	No SO	2.280	2 200	60,2	65.4	
II/BE1/10	14a	Ma ₂ 304	2.290	2.290	65,0	65,4	
	14b		2.290		67,1		
	11a		2.280		65,3		
	11b	ЦО	2.300	2 200	67,0	65.0	
	15a	$\Pi_2 U$	2.300	2.300	63,0	05,0	
	15b		2.300		65,0		
	9a	Klima	2.230	0.000	67,4	62.6	
	9b	(8/60)	2.230	2.230	59,7	03,0	
	6a		2.300		64,4		
	6b	No SO	2.300	2 300	62,5	62.3	
	13a	Na ₂ 304	2.300	2.300	60,6	02,5	
	13b		2.310		61,7		
	7a		2.300		64,9		
II/BE2/10	7b	H ₂ O	2.310	2 300	65,8	62.7	
	12a	1120	2.300	2.000	58,9	02,1	
	12b		2.300		61,0		
	9a	Klima	2.250	2 240	69,0	69.8	
	9b	(8/60)	2.230	2.240	70, 7	00,0	

LEHRSTUHL FÜR BAUSTOFFTECHNIK

Bauhaus-Universität Weimar

F.A. Finger-Institut

DIBt ZP 52-5-7.255-1204/04

Seite 37

Längenänderungen

Bild A-1: Längenänderung des Spritzbetons I/BE1/5 (Mittelwerte)

Längenänderung [%]

		Lagerungsart							
		H_2O	NaSO ₄	Luft					
[d]	0	0,00	0,00	0,00					
bu	28	-0,01	0,08	-0,59					
Jeru	90	-0,03	0,00	-0,70					
Jag	180	0,00	-0,01	-0,68					
Ē	360	-0,10	0,00	-0,79					

Längenänderung des Spritzbetons I/BE1/10 (Mittelwerte) Bild A- 2:

DIBt ZP 52-5-7.255-1204/04

Bauhaus-Universität Weimar

F.A. Finger-Institut

Seite 38

Bild A- 4: Längenänderung des Spritzbetons I/BE2/10 (Mittelwerte)

LEHRSTUHL FÜR BAUSTOFFTECHNIK

Bauhaus-Universität Weimar

F.A. Finger-Institut

DIBt ZP 52-5-7.255-1204/04

Luft

Seite 39

Längenänderung des Spritzbetons I/BE3/7 (Mittelwerte) Bild A- 5:

Bild A- 6: Längenänderung des Spritzbetons I/BE4/7 (Mittelwerte)

DIBt ZP 52-5-7.255-1204/04

F.A. Finger-Institut

Seite 40

Bild A-7: Längenänderung des Spritzbetons II/BE1/10 (Mittelwerte)

Bild A-8: Längenänderung des Spritzbetons II/BE2/10 (Mittelwerte)

LEHRSTUHL FÜR BAUSTOFFTECHNIK

Bauhaus-Universität Weimar

DIBt ZP 52-5-7.255-1204/04

Seite 41

Relativer dynamischer E-Modul

F.A. Finger-Institut

Bild A- 9: Relativer dynamischer E-Modul des Spritzbetons I/BE1/5 (Mittelwerte)

Bild A- 10: Relativer dynamischer E-Modul des Spritzbetons I/BE1/10 (Mittelwerte)

Bild A- 11: Relativer dynamischer E-Modul des Spritzbetons I/BE2/5 (Mittelwerte)

Bild A- 12: Relativer dynamischer E-Modul des Spritzbetons I/BE2/10 (Mittelwerte)

Bild A- 13: Relativer dynamischer E-Modul des Spritzbetons I/BE3/7 (Mittelwerte)

Bild A- 14: Relativer dynamischer E-Modul des Spritzbetons I/BE4/7 (Mittelwerte)

Bild A- 15: Relativer dynamischer E-Modul des Spritzbetons II/BE1/10 (Mittelwerte)

80%

Bild A- 16: Relativer dynamischer E-Modul des Spritzbetons II/BE2/10 (Mittelwerte)

RUHR-UNIVERSITÄT BOCHUM RUHR-UNIVEKSIIAI PARA

DIBt ZP 52-5-7.255-1204/04

-

Bauhaus-Universität Weimar

F.A. Finger-Institut

Seite 45

Dehnwellen-Resonanz-Messungen

Tabelle A- 13: Schallgeschwindigkeit nach Sulfatlagerung bei 8 °C

Droho	0 d	28 d	90 d	180 d	360 d
FIDE		Schall	geschwindigkeit	v _L [m/s]	•
I/BE1/5_1	4189	4414			
I/BE1/5_2	4238		4558		
I/BE1/5_3	4205			4340	
I/BE1/5_4	4236				4500
I/BE1/10_1	4120	4385			
I/BE1/10_2	4111		4482		
I/BE1/10_3	4117			4433	
I/BE1/10_4	4147				4479
I/BE2/5_1	4264	4512			
I/BE2/5_2	4207		4483		
I/BE2/5_3	4229			4364	
I/BE2/5_4	4216				4420
I/BE2/10_1	4131	4376			
I/BE2/10_2	4119		4432		
I/BE2/10_3	4180			4338	
I/BE2/10_4	4150				4408
I/BE3/7_1	4153	4352			
I/BE3/7_2	4168		4509		
I/BE3/7_3	4117			4343	
I/BE3/7_4	4138				4429
I/BE4/7_1	4164	4388			
I/BE4/7_2	4149		4440		
I/BE4/7_3	4132			4290	
I/BE4/7_4	4143				4375
II/BE1/10_1	4154	4353			
II/BE1/10_2	4193		4491		
II/BE1/10_3	4161			4314	
II/BE1/10_4	4158				4426
II/BE2/10_1	4156	4377			
II/BE2/10_2	4135		4438		
II/BE2/10_3	4201			4298	
II/BE2/10_4	4187				4438

DIBt ZP 52-5-7.255-1204/04

-

Bauhaus-Universität Weimar

LEHRSTUHL FÜR BAUSTOFFTECHNIK

F.A. Finger-Institut

Seite 46

Tabelle A- 14: Dynamischer E-Modul nach Sulfatlagerung bei 8 °C

Droho	0 d	28 d	90 d	180 d	360 d		
Probe		E	-Modul E _{Dyn} [N/m	_{Dyn} [N/mm ²]			
I/BE1/5_1	35,07	36,92					
I/BE1/5_2	36,23		39,33				
I/BE1/5_3	36,03			39,79			
I/BE1/5_4	36,31				41,57		
I/BE1/10_1	34,21	35,84					
I/BE1/10_2	34,07		37,25				
I/BE1/10_3	34,33			38,40			
I/BE1/10_4	34,40				39,59		
I/BE2/5_1	35,61	37,66					
I/BE2/5_2	35,36		38,38				
I/BE2/5_3	35,28			39,78			
I/BE2/5_4	34,89				39,62		
I/BE2/10_1	34,11	35,95					
I/BE2/10_2	33,76		37,19				
I/BE2/10_3	34,45			37,91			
I/BE2/10_4	33,89				38,75		
I/BE3/7_1	34,76	36,27					
I/BE3/7_2	35,45		38,43				
I/BE3/7_3	35,00			39,41			
I/BE3/7_4	34,19				39,38		
I/BE4/7_1	33,97	35,82					
I/BE4/7_2	34,22		37,52				
I/BE4/7_3	34,36			38,47			
I/BE4/7_4	34,71				39,24		
II/BE1/10_1	34,18	35,69					
II/BE1/10_2	34,72		37,52				
II/BE1/10_3	34,40			37,98			
II/BE1/10_4	34,40				38,62		
II/BE2/10_1	34,29	36,08					
II/BE2/10_2	33,61		36,99				
II/BE2/10_3	34,51			38,13			
II/BE2/10_4	34,41				39,01		

Bauhaus-Universität Weimar

DIBt ZP 52-5-7.255-1204/04

F.A. Finger-Institut

Seite 47

Porositätsmessungen

 Tabelle A- 15: Gesamtporosität von Mörtelproben aus den Spritzbetonen nach unterschiedlicher

 Lagerungsdauer in Sulfatlösung bei 8°

Zement	I	I	I	I	I	I	Ш	П	Mittel-	Stand
SBE	BE1	BE1	BE2	BE2	BE3	BE4	BE1	BE2	wert	Abw.
Zugabe [%]	5	10	5	10	7	7	10	10	Vol-%	Vol-%
Dauer [d]			Ges	amtporos	sität [Vol-	%]				
28	11,05	12,09	8,34	11,49	12,73	10,91	11,63	11,98	11,28	1,32
90	9,20	9,86	10,59	9,69	9,92	9,70	10,65	11,58	10,15	0,75
180	10,16	11,03	9,79	10,98	10,39	7,40	12,54	13,02	10,66	1,73
360	8,97	9,97	8,88	9,54	7,07	10,63	11,41	10,37	9,6	1,33
Mittelwert	9,84	10,34	9,40	10,43	10,03	9,66	11,56	11,74		
StandAbw.	0,954	1,044	0,994	0,961	2,321	1,593	0,780	1,095		

Bild A- 17: Gesamtporosität in Mörtelproben aus den Spritzbetonen nach 28, 90, 180 und 360 Tage Lagerung in Sulfatlösung bei 8 °C

DIBt ZP 52-5-7.255-1204/04

Bauhaus-Universität Weimar

Seite 48

F.A. Finger-Institut

Röntgendiffraktometrie

Tabelle A- 16: XRD-Peakhöhen (in cps) ausgewählter Interferenzen (2-Theta in Grad) von Mörtel-
proben der Spritzbetone nach unterschiedlicher Lagerungsdauer in Sulfatlösung
bzw. nach 360 Tagen in Wasser (w)

Probe	Expos.	Ettringit	Ettringit	Gips	СН	СН	Calc	Vat	Arag	Quarz	Musk	Albit	Mikroklin
	Tage	9,1°	15,85°	11,7°	18,1°	34,0°	29,4°	27,0°	26,2°	20,8°	8,9°	28,0°	27,5°
	28	30	15	5	110	380	200	270	100	1000	20	100	210
	90	30	20	10	130	300	220	270	0	>1000	20	80	150
I/BE1/5	180	50	50	15	120	250	270	270	0	1000	0	160	370
	360	60	40	25	230	440	180	110	0	>1000	0	130	170
	360w	100		50		480	130	160					
	28	20	20	15	150	300	210	340	120	920	10	220	100
	90	25	10	10	150	270	160	370	80	>1000	0	120	60
I/BE1/10	180	40	25	25	160	300	240	250	120	850	20	160	220
	360	100	90	30	160	350	210	120	0	950	30	110	280
	360w	80		60		340	180	100					
	28	15	10	25	190	350	230	310	100	950	10	130	170
	90	30	20	15	110	230	220	360	0	>1000	25	200	190
I/BE2/5	180	30	30	20	160	290	230	220	110	>1000	20	210	210
	360	90	50	50	230	390	170	110	0	>1000	15	190	250
	360w	80		50		410	190	100					
	28	20	20	15	110	240	180	300	0	>1000	20	80	150
	90	40	15	20	160	190	230	310	0	950	25	170	160
I/BE2/10	180	60	30	30	120	260	290	160	0	>1000	15	80	350
	360	90	50	50	160	320	170	120	60	>1000	30	210	90
	360w	100		70		290	200	100					
	28	30	20	25	130	330	330	230	0	880	15	180	200
	90	60	40	15	120	250	350	220	110	930	0	100	160
I/BE3/7	180	50	30	25	100	230	320	150	0	>1000	0	210	110
	360	80	60	40	130	320	230	90	0	970	0	100	300
	360w	90		70		260	90	90			-		
	28	40	30	50	100	250	360	220	0	800	0	80	160
	90	40	40	50	100	240	300	210	0	800	15	80	90
I/BE4/7	180	50	30	50	100	250	270	170	0	>1000	0	100	340
	360	80	50	60	130	310	180	120	0	960	0	170	160
	360w	80		70		300	180	140					
	28	35	30	30	130	260	410	290	180	990	15	60	640
	90	25	20	25	110	220	570	260	130	810	20	120	100
II/BE1/10	180	30	25	20	120	180	390	310	200	>1000	25	80	120
	360	100	70	50	200	430	270	140	0	>1000	0	150	230
	360w	120		70		350	180	130					
	28	30	25	20	110	250	430	280	190	>1000	30	80	140
	90	50	25	30	110	230	490	200	110	1000	30	120	300
II/BE2/10	180	60	25	50	130	280	480	150	120	920	0	410	130
	360	80	60	50	170	370	250	150	50	1000	0	160	160
	360w	120		60		260	300	80					

RUHR-UNIVERSITÄT BOCHUMLEHRSTUHL FÜR BAUSTOFFTECHNIKBauhaus-Universität Weimar

DIBt ZP 52-5-7.255-1204/04

F.A. Finger-Institut

Seite 49

Bild A- 18: Änderung des Gipspeaks bei 2θ = 11,6° mit der Dauer der Sulfatlagerung bei 8 °C

Bild A- 19: Änderung des Calcitpeaks bei 2θ = 29,4° mit der Dauer der Sulfatlagerung bei 8 °C

DIBt ZP 52-5-7.255-1204/04

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 50

Tabelle A- 17: Ergebnisse der Rietveld-Analysen an Mörtelproben nach 360 d Sulfatlagerung

Mörtel-		Mineralphasen in der Mörtelprobe [%] (Rietveld-Analyse)										Zementstein
probe	Ettringit	Gips	Portlandit	Calcit	Quarz	Muskovit	Orthoklas	Plagioklas	Chlorit	amorph 1)	[%]	[%]
I/BE1/5	1.7	1.3	3.3	3.6	43.7	2.1	3.0	4.2	1.1	36.0	54.1	45.9
I/BE1/10	1.6	0.6	3.5	3.4	49.2	1.4	3.5	3.3	1.5	32.0	58.9	41.1
I/BE2/5	2.3	1.2	3.6	1.7	37.8	1.7	2.2	3.5	1.2	44.8	46.4	53.6
I/BE2/10	1.9	0.7	3.4	3.4	47.8	0.9	3.0	3.1	1.6	34.0	56.4	43.4
I/BE3/7	1.1	1.2	3.3	3.3	48.5	0.4	3.0	2.4	0.5	36.2	54.8	45.1
I/BE4/7	0.8	2.0	3.4	3.1	45.5	0.5	2.9	2.1	0.0	39.7	51.0	49.0
II/BE1/10	0.9	0.8	3.6	5.6	48.8	1.0	2.7	2.9	1.1	32.6	56.5	43.5
II/BE2/10	0.9	0.8	3.2	4.8	47.5	0.8	2.9	3.1	1.2	34.8	55.5	44.5

¹⁾hpts. C-S-H-Phasen

Bauhaus-Universität Weimar

DIBt ZP 52-5-7.255-1204/04

Seite 51

F.A. Finger-Institut

REM-Untersuchungen

REM-Aufnahmen von Mörtelbereichen (Bruchflächen) der Spritzbetone nach 90 d Sulfateinlagerung

Bild A- 20: Mörtelgefüge des Spritzbetons I/BE1/10 (RE) nach 90 d Sulfatlagerung

Bild A- 22: Mörtelgefüge des Spritzbetons I/BE4/7 (RE) nach 90 d Sulfatlagerung

Bild A- 21: Mörtelgefüge des Spritzbetons I/BE2/10 (RE) nach 90 d Sulfatlagerung

Bild A- 23: Mörtelgefüge des Spritzbetons II/BE1/10 (RE) nach 90 d Sulfatlagerung

Bauhaus-Universität Weimar

F.A. Finger-Institut

DIBt ZP 52-5-7.255-1204/04

Seite 52

Bild A- 24: Pore im Spritzbeton I/BE4/7 (SE) nach 90 d Sulfatlagerung

Bild A- 25: Detail Porenwand im Spritzbeton I/BE4/7 (SE) nach 90 d Sulfatlagerung

Bild A- 26: Pore im Spritzbeton I/BE2/10 (SE) nach 90 d Sulfatlagerung

Bild A- 27: Pore im Spritzbeton II/BE1/10 (SE) nach 90 d Sulfatlagerung

Bauhaus-Universität Weimar

DIBt ZP 52-5-7.255-1204/04

Seite 53

F.A. Finger-Institut

Gefügeaufnahmen

REM-Aufnahmen von Anschliffen und ESCA-Flächenscans der Sulfatverteilung (Schwefel = grün) in Mörtelproben der Spritzbetone nach 360 d

Bild A- 28: Gefüge im Randbereich des Spritzbetons I/BE1/10 (Sulfatlagerung)

Bild A- 30: Gefüge im Randbereich des Spritzbetons I/BE3/7 (Sulfatlagerung)

Bild A- 29: Sulfatverteilung im Randbereich des Spritzbetons I/BE1/10 (Sulfatlagerung)

Bild A- 31: Sulfatverteilung im Randbereich des Spritzbetons I/BE3/7 (Sulfatlagerung)

Bauhaus-Universität Weimar F.A. Finger-Institut

Seite 54

Gefügeaufnahmen – Sulfat-, Wasser- Luftlagerung

Bild A- 32: Gefüge im Randbereich des Spritzbetons II/BE1/10 (Sulfatlagerung)

Bild A- 34: Sulfatverteilung im Randbereich des Spritzbetons II/BE1/10 (Wasserlagerung)

Bild A- 33: Sulfatverteilung im Randbereich des Spritzbetons II/BE1/10 (Sulfatlagerung)

Bild A- 35: : Sulfatverteilung im Randbereich des Spritzbetons II/BE1/10 (Normalklima)

Bauhaus-Universität Weimar

F.A. Finger-Institut

DIBt ZP 52-5-7.255-1204/04

Seite 55

Gefügeaufnahmen – Sulfatlagerung

Bild A- 36: Mörtelgefüge des Spritzbetons I/BE1/10 (360 d Sulfatlagerung)

Bild A- 38: Ettringitausscheidung im Zementstein des Spritzbetons I/BE2/10 (Sulfatlag.)

Bild A- 37: Pore im Mörtel des Spritzbetons I/BE2/10 (360 d Sulfatlagerung)

Bild A- 39: Sulfatverteilung zu Bild A- 38

Bauhaus-Universität Weimar

F.A. Finger-Institut

Seite 56

Gefügeaufnahmen – Wasser- bzw. Luftlagerung

300 µm Bild A- 40: Poren im Gefüge des Spritzbetons I/BE1/5 nach 360 d Wasserlagerung

100 µm Bild A- 42: Poren im Gefüge des Spritzbetons I/BE2/10 nach 360 d Wasserlagerung

Bild A- 41: Pore im Gefüge des Spritzbetons I/BE1/10 nach 360 d Normalklima

Bild A- 43: Poren im Gefüge des Spritzbetons I/BE2/10 nach 360 d Normalklima