Bauforschung

Stahltrapezprofile aus nichtrostenden Stählen

T 3250

¹ Fraunhofer IRB Verlag

T 3250

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

2011

ISBN 978-3-8167-8440-1

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

Versuchsanstalt für Stahl, Holz und Steine

(Amtliche Materialprüfungsanstalt) Karlsruher Institut für Technologie (KIT)

Leitung: Univ.-Prof. Dr.-Ing. H. J. Blaß und Univ.-Prof. Dr.-Ing. T. Ummenhofer

BERICHT

Nr.: 091503

Stahltrapezprofile aus nichtrostenden Stählen

Auftraggeber:

Deutsches Institut für Bautechnik Kolonnenstraße 30L 10829 Berlin

Grundlage:

Vertrag vom 22.06.2009

Dieser Bericht umfasst 30 Seiten und 4 Anlagen (47 Seiten).

Ausgabedatum: 20.12.2010

Inhaltsverzeichnis

1	Vorbemerkung					
2	Spannungs-Dehnungs-Beziehung					
3	Ebene nicht ausgesteifte Querschnittsteile					
	3.1	5				
	3.2	Numerische Untersuchungen	8			
	3.3	Bewertung	9			
4	Eber	e Querschnittsteile mit Zwischensteifen	9			
	4.1	Mechanisches Modell	9			
	4.2	Bemessung nach EN 1993-1-3 und deren Hintergründe	10			
	4.3	Ermittlung der Knickspannungslinie	11			
5	5 Tragfähigkeit biegebeanspruchter Stege					
6	Schubtragfähigkeit der Stege					
	6.1	Grenzschubspannung	16			
	6.2	19				
7	Steg	20				
	7.1	Einführung	20			
	7.2	Versuche	21			
	7.3	Numerische Untersuchungen	25			
	7.4	Schlussfolgerungen	27			
8	Zusa	mmenfassung	28			
9	Schrifttum					
Anl	Anlage 1: Versuche zum Sickenknicken (7 Seiten)					
Anl						
Anlage 3: Versuche zum Stegkrüppeln (21 Seiten)						

Anlage 4: Numerische Untersuchungen zum Stegkrüppeln (7 Seiten)

1 Vorbemerkung

Trapezprofile werden bei hohen Anforderungen an das optische Erscheinungsbild und den Korrosionswiderstand aus nichtrostenden Stählen ausgeführt. Eine rechnerische Ermittlung der Beanspruchbarkeit nach DIN 18807-1 [5] oder DIN 18807-6 [6] kann mangels bauaufsichtlich eingeführter und allgemein anerkannter Berechnungsansätze nicht erfolgen. DIN EN 1993-1-4 [2] soll in Verbindung mit DIN EN 1993-1-3 [1] die rechnerische Tragfähigkeitsermittlung von Trapezprofilen aus nichtrostenden Stählen ermöglichen. Dabei werden jedoch für dünnwandige Bauteile, speziell Stahltrapezprofile, typische Probleme nicht behandelt. Als vordringlichste Beispiele seien die fehlende Knickspannungslinie für Gurtsicken und Stegversätze genannt, die die ebenen Teilflächen aussteifen. Hier ergeben sich signifikante Unterschiede zwischen den Knickspannungslinien für Stahltrapezprofile und Aluminiumtrapezprofile, die ebenfalls eine nichtlineare Spannungs-Dehnungs-Beziehung aufweisen.

Ziel ist es, die vorliegenden Untersuchungen über das Tragverhalten von dünnwandigen Bauteilen aus nichtrostenden Stählen aufzubereiten und um die noch fehlenden Punkte zu erweitern. Letzteres umfasst insbesondere das Knicken der als elastisch gebettete Druckstäbe modellierten Sicken und Versätze sowie das Stegkrüppeln.

Auf dieser Grundlage soll der rechnerische Nachweis für Stahltrapezprofile aus nichtrostenden Stählen zuverlässig geführt werden können.

2 Spannungs-Dehnungs-Beziehung

Ähnlich wie Aluminium besitzen nichtrostende Stähle eine nichtlineare Spannungs-Dehnungs-Beziehung, die bei den betrachteten dünnwandigen stabilitätsgefährdeten Bauteilen berücksichtigt werden muß. Die einfache Übertragung der für Aluminiumtrapezprofile entwickelten Verfahren ist jedoch nicht möglich, da sich das Spannungs-Dehnungs-Verhalten unterscheidet. Bei nichtrostenden Stählen setzt das nichtlineare Verhalten schon bei geringeren auf die Dehngrenze bezogene Spannungen ein. Des Weiteren zeigt sich eine weit stärkere Nichtlinearität, die sich z.B. bei einer Beschreibung durch das Ramberg-Osgood-Gesetz

$$\varepsilon = \frac{\sigma}{E} + 0,002 \cdot \left(\frac{\sigma}{f_y}\right)^n \tag{1}$$

durch einen niedrigeren Exponenten zeigt: Der Exponent liegt bei nichtrostenden Stählen bei n = 6 liegt. Das Ramberg-Osgood-Gesetz wird in dieser Form sowohl in EN 1993-1-4 [2] als auch in der Zulassung Z-30.3-6 [8] für die Beschreibung des Bereichs $\sigma \leq f_y$ verwendet. Während in [8] einheitlich von n = 6 ausgegangen wird, geht [2] von einer Abhängigkeit von der Legierung und Orientierung zur Walzrichtung aus.

Stablaarta	Koeffizient n				
Stamsone	Längsrichtung	Querrichtung			
1.4301	6	0			
1.4541	0	0			
1.4401					
1.4404	7	9			
1.4571					

Versuchsanstalt für Stahl, Holz und Steine

Karlsruher Institut für Technologie (KIT)

Für $\sigma \ge f_y$ wird in [2]

$$\varepsilon = 0,002 + \frac{f_y}{E} + \frac{\sigma - f_y}{E_y} + \varepsilon_u \cdot \left(\frac{\sigma - f_y}{f_u - f_y}\right)^m$$
(2)

mit

$$E_{y} = \frac{E}{1 + 0,002 \cdot n \cdot \frac{E}{f_{y}}}$$
(3)

$$\varepsilon_u = 1 - \frac{f_y}{f_u} \le A \tag{4}$$

und

$$m = 1 + 3.5 \cdot \frac{f_y}{f_y} \tag{5}$$

Verwendet. In [8] wird für $\sigma \ge f_y$ die Formulierung (1) mit n = 17 verwendet wird. Abbildung 1 zeigt die beiden Formulierungen für einen Stahl der Sorte 1.4301 mit $f_y = 230 \text{ N/mm}^2$ im Vergleich.

Abbildung 1: Spannungs-Dehnungs-Beziehungen nach [2] und [8]

Für $\sigma < f_y$ sind die Beziehungen identisch. Erst für $\sigma \ge f_y$ ergeben sich Unterschiede. Um die erwünschte Kompatibilität mit EN 1993-1-4 [2] zu gewährleisten wird im Folgenden auf die Formulierung nach EN 1993-1-4 zurückgegriffen.

Karlsruher Institut für Technologie (KIT)

3 Ebene nicht ausgesteifte Querschnittsteile

3.1 Wirksame Breite druckbeanspruchter ebener Querschnittsteile

3.1.1 Vorbemerkungen

Als Grundlage für die weiteren Untersuchungen werden die unterschiedlichen Ansätze für die wirksame Breite bei Trapezprofilen zusammengestellt. Hierbei werden sowohl Trapezprofile aus Stahl und nichtrostendem Stahl als auch, aufgrund der nichtlinearen Spannungs-Dehnungs-Beziehung, Trapezprofile aus Aluminium berücksichtigt. Weitere Informationen liefert z.B. [9].

3.1.2 DIN 18807-1, EN 1993-1-3 und StBK-N5

Nach DIN 18807-1 und DIN EN 1993-1-3 für Stahltrapezprofile aus unlegierten Stählen ergibt sich die wirksame Breite für den Tragfähigkeitsnachweis über die kritische Beulspannung

$$\sigma_{cr,p} = k_{\sigma,p} \cdot \frac{\pi^2 \cdot E \cdot t^2}{12 \cdot (1 - \nu^2) \cdot b^2}$$
(6)

(mit E = 210000 N/mm²) und die Schlankheit

$$\overline{\lambda}_{p} = \sqrt{\frac{f_{y}}{\sigma_{cr,p}}}$$
(7)

zu

$$\rho = \begin{cases} 1,0\\ \frac{1}{\overline{\lambda}_p} - \frac{0,22}{\overline{\lambda}_p^2} & \text{für } \frac{\overline{\lambda_p}}{\lambda_p} < 0,673\\ \frac{1}{\overline{\lambda}_p} \geq 0,673 \end{cases}$$
(8)

Die Ansätze für die wirksame Breite für den Nachweis der Gebrauchstauglichkeit nach DIN 18807-1 und EN 1993-1-3 unterscheiden sich. Hierauf wird an dieser Stelle nicht eingegangen.

3.1.3 DIN 18807-6 und StBK-N5

Nach DIN 18807-6 und StBK-N5 erhält man für Aluminiumtrapezprofile die wirksame Breite aus der Bezugsschlankheit zu

$$\rho = \begin{cases} 1,0\\ 0,70 \cdot \frac{1}{\overline{\lambda}_p} & \text{für } \frac{\overline{\lambda}_p < 0,70}{\overline{\lambda}_p \ge 0,70} \end{cases}$$
(9)

wobei DIN 18807-6 genauso wie DIN 18807-1 eine von der üblichen Formulierung abweichende (und hier zur besseren Vergleichbarkeit geänderte) Formulierung der Schlankheit verwendet. Auch hier wird für den Nachweis der Gebrauchstauglichkeit eine weitere Traglastkurve angegeben.

3.1.4 EN 1999-1-4

EN 1999-1-4 für dünnwandige Bauteile aus Aluminium verwendet eine von DIN 18807-6 abweichende Beulkurve:

$$\rho = \begin{cases} 1,0\\ 0,90 \cdot \left(\frac{1}{\overline{\lambda}_p} - \frac{0,22}{\overline{\lambda}_p^2}\right) \text{ für } \frac{\overline{\lambda}_p < 0,517}{\overline{\lambda}_p \ge 0,517} \end{cases}$$
(10)

Es handelt sich dabei um die Winter-Kurve für Stahltrapezprofile, die mit dem Faktor 0,9 reduziert wird.

3.1.5 Z-30.3-6

Beim Nachweis nach [8] ist die kritische Beulspannung mit E = 170000 N/mm² zu berechnen. Die wirksame Breite ergibt sich dann zu

$$\rho = \begin{cases} 1,0 & \overline{\lambda}_{p} < 0.673 \cdot \sqrt{\frac{E_{sek,y}}{E}} \\ 0.74 \cdot \left(\frac{1}{\overline{\lambda}_{p}} - \frac{0.22}{\overline{\lambda}_{p}^{2}}\right) \text{ für } & \overline{\lambda}_{p} \ge 0.673 \cdot \sqrt{\frac{E_{sek,y}}{E}} \end{cases}$$
(11)

mit

$$E_{sek,y} = \frac{E}{1 + 0,002 \cdot \frac{E}{f_{y,k}}}$$
 (12)

Es handelt sich dabei um die Winter-Kurve für Stahltrapezprofile, die mit dem Faktor 0,74 reduziert wird.

3.1.6 EN 1993-1-4

Die kritische Beulspannung

$$\sigma_{cr,p} = k_{\sigma,p} \cdot \frac{\pi^2 \cdot E \cdot t^2}{12 \cdot (1 - \nu^2) \cdot b^2}$$
(13)

wird nach EN 1993-1-4 mit E = 200000 N/mm² berechnet. Die bezogene Schlankheit ergibt sich zu

$$\overline{\lambda}_{p} = \sqrt{\frac{f_{y}}{\sigma_{cr}}}$$
(14)

Für beidseitig gestützte Querschnittsteile kaltgeformter Bauteile ergibt sich die bezogene wirksame Breite zu Karlsruher Institut für Technologie (KIT)

$$\rho = \begin{cases} \frac{1,0}{0.772} - \frac{0.125}{\overline{\lambda}_p} & \text{für } \frac{\overline{\lambda}_p}{\overline{\lambda}_p} < 0.541 \\ \frac{1}{\lambda_p} \ge 0.541 \end{cases}$$
(15)

Ein früher Entwurf dieser Norm sah

$$\rho = \begin{cases} 1,0 \\ 0,83 \\ \overline{\lambda}_{p} + 0,29 \end{cases} \text{ für } \frac{\overline{\lambda}_{p} < 0,540}{\overline{\lambda}_{p} \ge 0,540}$$
(16)

vor. Interessanterweise ist die Grenzschlankheit, bei der ρ < 1,0 wird, gleich geblieben.

3.1.7 Huck

Huck schlägt in [9] für die wirksame Breite die Formulierung

~

$$\rho = \begin{cases} 1,0 \\ \frac{\alpha}{\overline{\lambda}_{p}} - \frac{0,22}{\overline{\lambda}_{p}^{2}} & \text{für } \frac{\overline{\lambda}_{p}}{\overline{\lambda}_{p}} < \overline{\lambda}_{p,\text{lim}} \\ \frac{\overline{\lambda}_{p}}{\overline{\lambda}_{p}} \ge \overline{\lambda}_{p,\text{lim}} \end{cases}$$
(17)

vor. Der Parameter α hängt von der Verfestigungsverhalten des Werkstoffes ab. In [9] sind die nachfolgend in Tabelle 2 aufgeführten Werte einschließlich des zugehörigen Parameters n des Ramberg-Osgood-Gesetzes angegeben.

	α	$\overline{\lambda}_{p,\lim}$	n
Schwach verfestigend und Stahl	1,00	0,673	27
Mittlere Verfestigung	0,95	0,55	14
Starke Verfestigung	0,89	0,5	6

Tabelle 2: Parameter α für die Reduzierung der wirksamen Breite

3.1.8 Bezkorovainy, Burns und Rasmussen

Bezkorovainy, Burns und Rasmussen gehen in [11] von einer mit der Anfangssteifigkeit berechneten kritischen Beulspannung aus.

$$\sigma_{cr,p} = k_{\sigma,p} \cdot \frac{\pi^2 \cdot E \cdot t^2}{12 \cdot (1 - \nu^2) \cdot b^2}$$
(18)

Die wirksame Breite ergibt sich dann mit

$$\rho = \frac{\alpha}{\overline{\lambda}_p} - \frac{\beta}{\overline{\lambda}_p^2}$$
(19)

Mit den Parametern

$$\alpha = \begin{cases} 0,92 + 0,07 \cdot \tanh\left(\frac{n-3}{2,1}\right) - \left(0,026 \cdot e^{-0,55 \cdot (n-3)} + 0,019\right) \cdot \left(6 - 2000 \cdot e\right) & \text{für} \quad \begin{array}{l} 3 \le n \le 10\\ 10 \le n \le 100 \end{array} \end{cases}$$

Seite 8 zum Bericht Nr.: 091503

(20)

und

$$\beta = \begin{cases} 0,18 + 0,045 \cdot \tanh\left(\frac{n-3}{2,5}\right) - \left(0,01 \cdot e^{-1,6\cdot(n-3)} + 0,05\right) \cdot \left(6 - 2000 \cdot e\right) & \text{für} \quad 3 \le n \le 10\\ \beta_{10} + \left(0,22 - \beta_{10}\right) \cdot \frac{n-10}{90} & \text{fur} \quad 10 \le n \le 100 \end{cases}$$

(21)

sowie

$$\alpha_{10} = 0,9898 - 0,01955 \cdot (6 - 2000 \cdot e)$$
⁽²²⁾

$$\beta_{10} = 0.2247 - 0.005 \cdot (6 - 2000 \cdot e) \tag{23}$$

und

 $e = \frac{f_y}{E}$ (24)

In einer weiteren Veröffentlichung dieser Autoren [12] wird der Ansatz

$$\rho = \frac{0.9}{\lambda} - \frac{0.2}{\lambda^2} \tag{25}$$

empfohlen. Dieser entspricht interessanterweise nahezu der Beulkurve aus DIN 18807-6 für Aluminiumtrapezprofile (vgl. Abschnitt 3.1.3).

3.2 Numerische Untersuchungen

Als Grundlage für eine Beurteilung der nachfolgenden numerischen Untersuchungen an aus mehreren ebenen Einzelflächen zusammengesetzten Querschnitten oder Querschnittsteilen wurden numerische Untersuchungen am einfachsten Fall einer quadratischen druckbeanspruchten Platte durchgeführt. Für die Berechnungen wurden ein Werkstoffgesetz gemäß Gleichungen (2) und (3) mit n = 6 und $f_y = 230 \text{ N/mm}^2$ (d.h. e = 0,00115) angesetzt.

Abbildung 2: Vergleich der Ergebnisse der FE-Berechnungen mit Beulkurven

Es zeigt sich, dass die Ergebnisse der numerischen Berechnungen für geringe Schlankheiten die rechnerischen Werte gut annähern. Lediglich die mit einer zu großen und daher unrealistischen Größe der Imperfektion von $w_0 = t$ ermittelten Werte liegen hier unter den rechnerischen Werten nach EN 1993-1-4. Für Schlankheiten größer als etwa 1,75 liegen die Ergebnisse z.T. deutlich über denen berechnet nach EN 1993-1-4. Offensichtlich liegt dies nicht an der Größe der Imperfektion, da hier zwischen $w_0 = 0,1 t$ und $w_0 = t$ kaum Unterschiede festzustellen sind. Insgesamt zeigt sich aber eine gute Übereinstimmung mit den rechnerischen Werten nach EN 1993-1-4 [2].

3.3 Bewertung

Die Ergebnisse der numerischen Untersuchungen bestätigen für n = 6 und f_y = 230 N/mm² die Kurve aus EN 1993-1-4. Die Kurve nach EN 1993-1-4 stellt eine untere Grenze für alle Stahlsorten dar, kann also auch für Trapezprofile aus nichtrostenden Stählen verwendet werden.

4 Ebene Querschnittsteile mit Zwischensteifen

4.1 Mechanisches Modell

Die Ermittlung der Tragfähigkeit von ebenen Teilflächen mit angrenzenden Zwischensteifen in Form von Sicken oder Versätzen erfolgt durch Ermittlung der wirksamen Breite der an die Versteifung angrenzenden Teilflächen und anschließende Ermittlung der Drucktragfähigkeit der durch die Versteifung gebildeten Druckstabes. Die Geometrie des Druckstabes setzt sich aus der Sicke selbst und den angrenzenden wirksamen Flächen zusammen (Abbildung 3).

Versuchsanstalt für Stahl, Holz und Steine

Karlsruher Institut für Technologie (KIT)

Abbildung 3: Obergurtquerschnitte mit Sicken und Versätzen

Der Druckstab kann infolge der Einbindung an die Teilflächen als elastisch gebettet betrachtet werden (Abbildung 4); die Federsteifigkeit der Bettung ergibt sich aus dem statischen System in Querrichtung, d.h. beim Obergurt eines Stahltrapezprofils aus der Auflagerung auf den angrenzenden Stegen. Die Drucktragfähigkeit wird durch das Knicken dieses elastisch gebetteten Druckstabes begrenzt.

Abbildung 4: Elastisch gebetteter Druckstab

4.2 Bemessung nach EN 1993-1-3 und deren Hintergründe

Die in EN 1993-1-3 für die Ermittlung der Tragfähigkeit der Sicken und Versätze angegebene Gleichung für die Knickspannungslinie

$$\chi = \begin{cases} 1,0 & \overline{\lambda}_{d} < 0.65 \\ 1,47 - 0.723 \cdot \overline{\lambda}_{d} & \text{für } 0.65 \le \overline{\lambda}_{d} \le 1.38 \\ 0.66/\overline{\lambda}_{d} & \overline{\lambda}_{d} \ge 1.38 \end{cases}$$
(26)

wurde erstmalig von Höglund in [13] eingeführt. Obwohl in [13] keinerlei Angaben zur Ermittlung der Knickspannungslinien enthalten sind ist davon auszugehen, dass diese durch Rückrechnung von Biegeversuchen an Trapezprofilen ermittelt wurde. Dabei sind z.T. Annahmen zur wirksamen Breite im Steg und in den an die Sicken grenzenden ebenen Teilflächen der Gurte erforderlich. Auch für die tatsächliche Spannung im Bereich der Sicke muss eine Annahme getroffen werden: Die Ermittlung der wirksamen Breiten einer ebenen Teilfläche erfolgt unter der Annahme, dass an den Rändern der Teilfläche die Dehngrenze erreicht wird. Grenzt diese Teilfläche an eine Sicke die vor Erreichen der Dehngrenze ausknickt, liegt diese Annahme für die Ermittlung der wirksamen Breite auf der sicheren Seite. Die bei Erreichen der Tragfähigkeit der Sicke vorhandene wirksame Breite ist größer als zuerst angenommen, die vorhandene Spannung jedoch kleiner. Es muss aber davon ausgegangen werden, dass für die Rückrechnung der Sickentragfähigkeit oben genannten Bauteilversuche von einer an der Sicke vorhandenen Spannung der Größe $\sigma = fy$ ausgegangen wurde.

Die kleinere vorhandene Spannung kann im Rahmen der Bemessung berücksichtigt werden, indem in einem weiteren Berechnungsschritt die wirksame Breite mit der durch den Faktor χ nach Gleichung (26) reduzierten Dehngrenze ermittelt wird. Anschließend erhält man neue Querschnittswerte für die Ermittlung der Tragfähigkeit der Sicke. Weder in [13] noch in den darauf aufbauenden nationalen Normen, z.B. Schwedens StbK-N5 und Deutschlands DIN 18807, wird eine Iteration vorgesehen. Für die nachfolgend vorgestellte Ermittlung der Knickspannungslinie wurde daher davon ausgegangen, dass keine Iteration durchgeführt wird. Im Rahmen der Rückrechnung der Ergebnisse aus den Versuchen und FE-Berechnungen wurde daher keine Iteration durchgeführt.

Abbildung 5: Spannungsverteilung

4.3 Ermittlung der Knickspannungslinie

Die Ermittlung der Knickspannungslinie erfolgte mittels Finite-Element-Methode. Zur Kalibrierung des verwendeten Modells wurde zuerst die in EN 1993-1-3 aufgeführte Knickspannungslinie für Bauteile aus unlegiertem Stahl nachgerechnet (Abbildung 6).

Abbildung 6: Versuche lokal/globales Beulen

Ergänzend wurden die Ergebnisse aus Knickversuchen an versteiften Teilfeldern nachgerechnet (Abbildung 7).

Abbildung 7: Versuchsnachrechnung

Eine gute Übereinstimmung zwischen den Berechnungsergebnissen du den Vergleichsdaten ergab sich bei Ansatz der in EN 1995-1-5 angegebenen Imperfektion von I_b/400 für das globa-

le Knicken und der für ebene Teilflächen üblichen lokalen Imperfektion [9] von $w_0/t = 0,1$. Der letztgenannte Wert weicht dabei im untersuchten Bereich geringfügig von den Angaben in EN 1993-1-5 ab. Für die Auswertung wurden die wirksamen Breiten nach [11] berechnet, da Vergleichsberechnungen an unversteiften Platten eine gute Übereinstimmung zwischen Finite-Element-Berechnung und [11] zeigten. Aus den am versteiften Teilfeld berechneten Tragfähigkeiten wurde dann der Abminderungsfaktor X ermittelt. Die Werte sind in Abbildung 8 dargestellt.

Abbildung 8: FE-Berechnungen und KSL-Vorschlag

Der Vorschlag für die Knickspannslinie ist in Abbildung 8 mit aufgenommen worden. Die Auswertung erfolgte über eine Mittelwertfunktion. Die Gleichung für die Knickspannungslinie lautet

$$\chi = \begin{cases} 1,0 \\ 0,54/\overline{\lambda}_d \end{cases} \quad \text{für } \frac{\overline{\lambda}_d < 0,54}{\overline{\lambda}_d \ge 0,54} \tag{27}$$

Wie man erkennen kann, wurde die grundsätzliche Formulierung nach Höglund beibehalten, d.h. es wurde nicht die ansonsten oftmals verwendete Ayrton-Perry-Gleichung herangezogen.. Abbildung 8 zeigt auch die Knickspannungslinie im Vergleich mit den Knickspannungslinien für unlegierten Stahl und Aluminium.

5 Tragfähigkeit biegebeanspruchter Stege

Die wirksame Breite im Steg von Trapezprofilen wird nach DIN 18807-1 und DIN EN 1993-1-3 wie folgt ermittelt.

Karlsruher Institut für Technologie (KIT)

$$s_{eff,1} = 0.76 \cdot t \cdot \sqrt{\frac{E}{\gamma_{M0} \cdot \sigma_{com,Ed}}}$$
(28)

$$s_{eff,i} = 1.5 - 0.5 \cdot \frac{\sigma_i}{\gamma_{M0} \cdot \sigma_{com,Ed}} \cdot s_{eff,1}$$
(29)

Die Spannungen σ_i sind die Spannungen an der Lagerung der Teilflächen an den stabilisierenden Bereichen, z.B. die Spannungen an den Stellen, an denen die Teilfläche an die Umformradien einer Stegsicke grenzt (Abbildung 9).

Abbildung 9: Wirksame Breiten im Steg und Spannungen σ_{i}

Für Trapezprofile aus Aluminium gilt nach DIN 18807-6 Gleichung (30) statt (28):

$$s_{eff,0} = 0.67 \cdot t \cdot \sqrt{\frac{E}{\gamma_{M0} \cdot \sigma_{com,Ed}}}$$
(30)

In DIN EN 1999-1-4 wird ein von DIN 18807-6 abweichendes Verfahren vorgeschlagen, das im Folgenden nicht weiter betrachtet wird. Die Ableitung dieser vereinfachten Ansätze wird für Trapezprofile aus unlegiertem Stahl in [14] erläutert. Bezüglich Trapezprofile aus Aluminium findet sich nur ein allgemeiner Hinweis, dass die Ableitung mit geringfügigen Modifikationen auch für Trapezprofile aus Aluminium gilt.

Auffällig ist, dass das Verhältnis der konstanten Vorfaktoren bei Aluminium und unlegiertem Stahl mit 0,9 genau dem Verhältnis der Beulkurven nach Gleichung (10) und Gleichung (8) entspricht. Es liegt daher nahe das Verhältnis der Beulkurven für nichtrostenden Stahl und unlegierten Stahl auch für die Festlegung des konstanten Vorfaktors für die Gleichung zur Berechnung der wirksamen Breite im Steg für Trapezprofile aus nichtrostendem Stahl heranzuziehen. Die folgende Abbildung 10 zeigt die Beulkurven für unlegierten Stahl und nichtrostenden Stahl und setzt diese ins Verhältnis.

Abbildung 10: Beulkurven und Verhältniswert

Wie man aus der Abbildung erkennen kann, strebt das Verhältnis der Beulkurven gegen 0,8. Es liegt daher nahe, Gleichung (28) mit diesem Verhältnis abzumindern. Man erhält dann

$$s_{eff,0} = 0.61 \cdot t \cdot \sqrt{\frac{E}{\gamma_{M0} \cdot \sigma_{com,Ed}}}$$
(31)

für Trapezprofiel aus nichtrostenden Stählen. Gleichung (29) ist unverändert anzuwenden.

6 Schubtragfähigkeit der Stege

6.1 Grenzschubspannung

6.1.1 Vorbemerkungen

Als Grundlage für eine Festlegung werden die unterschiedlichen Ansätze für die Ermittlung der Grenzschubspannung f_{bv} (Formelzeichen nach DIN EN 1993-1-3) bei Trapezprofilen zusammengestellt. Hierbei werden sowohl Trapezprofile aus Stahl und nichtrostendem Stahl als auch, aufgrund der nichtlinearen Spannungs-Dehnungs-Beziehung, Trapezprofile aus Aluminium berücksichtigt.

6.1.2 EN 1993-1-3 und DIN EN 1999-1-4

Nach DIN EN 1993-1-3 für Trapezprofile aus unlegierten Stählen und DIN EN 1999-1-4 für Trapezprofile aus Aluminium ergibt sich die Grenzschubspannung über die kritische Beulspannung

$$\sigma_{cr,w} = k_{\tau,w} \cdot \frac{\pi^2 \cdot E \cdot t^2}{12 \cdot (1 - \nu^2) \cdot s_w^2}$$
(32)

(mit dem Beulwert $k_{\tau,w}$ = 5,34) und die Schlankheit

$$\overline{\lambda}_{w} = \sqrt{\frac{f_{y}}{\sigma_{cr,w}} \cdot \sqrt{3}}$$
(33)

zu

$$f_{bv} = \frac{f_{v}}{\sqrt{3}} \cdot \begin{cases} 1,0 & \lambda_{w} < 0.83\\ 0.83/\overline{\lambda}_{w} & \text{für } 0.83 < \overline{\lambda}_{w} < 1.40\\ 1.16/\overline{\lambda}_{w}^{2} & \overline{\lambda}_{w} \ge 1.40 \end{cases}$$
(34)

Bei durch Versätze versteiften Stegen sind statt der kritischen Beulspannung nach (32) die kritischen Beulspannungen

$$\sigma_{cr,w} = k_{\tau,w} \cdot \frac{\pi^2 \cdot E \cdot t^2}{12 \cdot (1 - \nu^2) \cdot s_d^2}$$
(35)

mit

$$k_{\tau,w} = 5,34 + \frac{2,10}{t} \cdot \sqrt[3]{\frac{\sum I_s}{s_d}}$$
(36)

und

Versuchsanstalt für Stahl, Holz und Steine

Karlsruher Institut für Technologie (KIT)

$$\sigma_{cr,w} = 5,34 \cdot \frac{\pi^2 \cdot E \cdot t^2}{12 \cdot (1 - v^2) \cdot s_n^2}$$
(37)

zu betrachten, mit denen sowohl Gesamtfeld- als auch Teilfeldbeulen untersucht wird (Abbildung 11).

Abbildung 11: Steg mit Versätzen

6.1.3 DIN 18807-1, DIN 18807-6 und StBk-N5

Nach DIN 18807-1 für Trapezprofile aus unlegierten Stählen, DIN 18807-6 für Trapezprofile aus Aluminium sowie der schwedischen Norm StBk-N5 (Trapezprofile aus unlegierten Stählen oder aus Aluminium) ergibt sich die Grenzschubspannung für den Tragfähigkeitsnachweis über die kritische Beulspannung

$$\sigma_{cr,w} = k_{\tau,w} \cdot \frac{\pi^2 \cdot E \cdot t^2}{12 \cdot (1 - \nu^2) \cdot s_w^2}$$
(38)

(mit dem Beulwert $k_{\tau,w} = 5,34$) und die Schlankheit

$$\overline{\lambda}_{w} = \sqrt{\frac{f_{y}}{\sigma_{cr,w}} \cdot \sqrt{3}}$$
(39)

zu

$$f_{bv} = \frac{f_{y}}{\sqrt{3}} \cdot \begin{cases} 1,15 & \overline{\lambda}_{w} < 0,72\\ 0,83/\overline{\lambda}_{w} & \text{für } 0,83 < \overline{\lambda}_{w} < 1,40\\ 1,16/\overline{\lambda}_{w}^{2} & \overline{\lambda}_{w} \ge 1,40 \end{cases}$$
(40)

Die Ansätze für die Grenzschubspannung unterscheiden sich von DIN EN 1993-1-3 nur in dem Bereich, in dem Beulen nicht maßgebend wird: Hier liegt die Grenzschubspannung nach DIN 18807-1 und DIN 18807-6 höher. Bei durch Versätze versteiften Stegen gelten dieselben Regelungen wie in DIN EN 1993-1-3 und DIN EN 1999-1-4.

6.1.4 Z-30.3-6

Beim Nachweis nach [8] ist die kritische Beulspannung mit E = 170000 N/mm² zu berechnen. Die Grenzschubspannung ergibt sich dann zu

$$f_{bv} = \frac{f_{y}}{\sqrt{3}} \cdot \begin{cases} 1,0 & \overline{\lambda}_{w} \le 0.84 \cdot \sqrt{E_{sek,y}/E} \\ 0.82/\overline{\lambda}_{w} - 0.16/\overline{\lambda}_{w}^{2} & 0.84 \cdot \sqrt{E_{sek,y}/E} < \overline{\lambda}_{w} < 0.8 \\ 0.62/\overline{\lambda}_{w} & 0.84 \cdot \sqrt{E_{sek,y}/E} < \overline{\lambda}_{w} < 0.8 \\ 1.11/\overline{\lambda}_{w}^{2} & \overline{\lambda}_{w} > 1.79 \end{cases}$$
(41)

mit

$$E_{sek,y} = \frac{E}{1 + 0,002 \cdot \frac{E}{f_{y,k}}}$$
 (42)

Diese Formulierung ersetzt bei Bauteilen aus nichtrostenden Stählen die Grenzschubspannung nach DIN 18800-3, deren Formulierung der hier vorgestellten nach EN 1993-1-3 und DIN EN 1999-1-4 entspricht.

6.1.5 EN 1993-1-5

Die kritische Beulspannung

$$\sigma_{cr,w} = k_{\tau,w} \cdot \frac{\pi^2 \cdot E \cdot t^2}{12 \cdot (1 - v^2) \cdot s_w^2}$$
(43)

wird nach EN 1993-1-5 allgemein für Bauteile aus unlegierten Stählen mit E = 210000 N/mm^2 berechnet. Die bezogene Schlankheit ergibt sich zu

$$\overline{\lambda}_{w} = \sqrt{\frac{f_{y}}{\sigma_{cr,w}} \cdot \sqrt{3}}$$
(44)

Die Grenzschubspannung ergibt sich zu

$$f_{bv} = \frac{f_{y}}{\sqrt{3}} \cdot \begin{cases} \eta & \overline{\lambda}_{w} < 0.83/\eta \\ 0.83/\overline{\lambda}_{w} & \text{für } 0.83/\eta \le \overline{\lambda}_{w} < 1.08 \\ 1.37/(0.7 + \overline{\lambda}_{w}) & \overline{\lambda}_{w} \ge 1.08 \end{cases}$$
(45)

Karlsruher Institut für Technologie (KIT)

mit einem empfohlenen η = 1,2.

6.1.6 EN 1993-1-4

Die kritische Beulspannung

$$\sigma_{cr,w} = k_{\tau,w} \cdot \frac{\pi^2 \cdot E \cdot t^2}{12 \cdot (1 - \nu^2) \cdot s_w^2}$$
(46)

wird nach EN 1993-1-4 mit E = 200 000 N/mm² berechnet. Die bezogene Schlankheit ergibt sich zu

$$\overline{\lambda}_{w} = \sqrt{\frac{f_{y}}{\sigma_{cr,w}} \cdot \sqrt{3}}$$
(47)

Die Grenzschubspannung ergibt sich zu

$$f_{bv} = \frac{f_{y}}{\sqrt{3}} \cdot \begin{cases} \eta \\ 0,11 + 0,64/\overline{\lambda}_{w} - 0,05/\overline{\lambda}_{w}^{2} \end{cases} \text{ für } \frac{\overline{\lambda}_{w} < 0,6/\eta}{\overline{\lambda}_{w} \ge 0,6/\eta}$$
(48)

mit einem empfohlenen $\eta = 1,2$.

6.2 Bewertung

Die unterschiedlichen Grenzschubspannungskurven sind nachfolgend aufgeführt.

Abbildung 12: Grenzschubspannungskurven

Die Regelungen für die Grenzsschubspannungen orientieren sich bei den Normen der älteren Generation stark an denen für allgemeine Bauteile, die zumeist an geschweißten Vollwandträ-

gern ermittelt wurden. Da Schubbeulen bei Trapezprofilen in der Regel nicht maßgebend wird, handelt es sich dabei um eine vertretbare Vereinfachung. DIN EN 1993-1-3 und DIN EN 1999-1-4 folgen den Regelungen der älteren Normen in so weit, dass die Beulkurven übernommen werden, jedoch die maximal aufnehmbare Schubspannung auf

$$f_{bv,\max} = \frac{f_y}{\sqrt{3}}$$
(49)

begrenzt wird. Folgt man diesem Vorgehen, so ließe sich die Grenzsschubspannung für Trapezprofile aus nichtrostenden Stählen durch Übernahme der Regelungen der DIN EN 1993-1-4 für allgemeine Bauteile aus nichtrostenden Stählen festlegen, wobei die Begrenzung nach (49) mit aufzunehmen wäre. Für Schlankheiten $\lambda_w > 1,5$ ergäben sich dann größere Grenzsschubspannungen als für Trapezprofile aus unlegierten Stählen oder Aluminium. Ursache hierfür ist wohl vor allem, dass die älteren Regelwerke das überrkritische Tragverhalten in diesem Bereich in nur geringem Maße in Anspruch nehmen mochten. Hier empfiehlt sich ein Übergang zu den Regelungen der DIN 18807-1 und DIN 18807-6. Man erhält dann

$$f_{bv} = \frac{f_{y}}{\sqrt{3}} \cdot \begin{cases} 1 & \overline{\lambda}_{w} < 0.63 \\ 0.11 + 0.64/\overline{\lambda}_{w} - 0.05/\overline{\lambda}_{w}^{2} & \text{für } 0.63 \le \overline{\lambda}_{w} < 1.50 \\ 1.16/\overline{\lambda}_{w}^{2} & \overline{\lambda}_{w} \ge 1.50 \end{cases}$$
(50)

Diese Formulierung trägt dem nicht linearen Werkstoffverhalten im Bereich den plastischen Beulens bzw. des Übergangsbereichs zum elastischen Beulen Rechnung, ohne die Grenzbeulspannung im Bereich des elastischen beulen zu ändern. Es handelt sich praktisch um eine starke Vereinfachung, die auch dem Fehlen von Untersuchungsergebnissen an Trapezprofilen geschuldet ist.

7 Stegkrüppeln

7.1 Einführung

Nach EN 1993-1-3 ergibt sich die rechnerische Tragfähigkeit eines Steges unter konzentrierter Lasteinleitung, z.B. am Auflager, zu

$$R_{w,Rk} = \alpha \cdot t^2 \cdot \sqrt{f_y \cdot E} \cdot \left(1 - 0.1 \cdot \sqrt{\frac{r}{t}}\right) \cdot \left(0.5 + \sqrt{0.02 \cdot \frac{l_a}{t}}\right) \cdot \left(2.4 + \left(\frac{\phi}{90}\right)^2\right)$$
(51)

mit

α Beiwert zur Berücksichtigung des Abstandes vom freien Rand der Profiltafel, vereinfacht:

 α = 0,075 am Endauflager

 α = 0,15 am Zwischenauflager

- l_a Länge der Lasteinleitung, z.B. Auflagerbreite
- r Ausrundungsradius

Φ Stegneigungswinkel

Diese Gleichung wurde im Rahmen der in [15] und [16] dokumentierten Untersuchungen für Trapezprofile aus unlegierten Baustählen und aus Aluminium hinsichtlich des Sicherheitsniveaus überprüft. Für Trapezprofile aus nichtrostendem Stahl steht eine entsprechende Überprüfung noch aus.

7.2 Versuche

7.2.1 Versuchsaufbauten

Für die Ermittlung der am Zwischenauflager aufnehmbaren Kraft stehen mehrere Möglichkeiten zur Verfügung. Zum einen kann die Tragfähigkeit durch Drei-Punkt-Biegeversuche "Zwischenauflager unter Auflast" ermittelt werden. In diesem Fall besteht aber eine Interaktion mit dem Biegemoment. Daher muss anschließend in Richtung M = 0 extrapoliert werden.

Abbildung 13: Versuch Zwischenauflager unter Auflast

Dieser Versuch wird in der Regel für die versuchsgestützte Ermittlung der Tragfähigkeit von Profilen herangezogen. Extrapoliert wird dabei nicht. Für die Ermittlung der Endauflagerkraft wird auf den Versuch in Abbildung 14 zurückgegriffen.

Abbildung 14: Versuch Endauflager unter Auflast

Soll der Versuch momentenfrei durchgeführt werden, besteht die Möglichkeit, die Versuche mit einer vollflächigen Unterstützung eines Gurtes durchzuführen (Abbildung 15). Bei einer Variation des Überstandes ü lässt sich auch der Einfluß des Endauflagers ermitteln.

Versuchsanstalt für Stahl, Holz und Steine Karlsruher Institut für Technologie (KIT)

Abbildung 15: Versuch mit vollflächiger Stützung

Weit häufiger wurde bisher der Versuch in einer Variante durchgeführt, bei der die Kraft direkt in ein zweites Auflager der Breite b_B geleitet wird ("direkte Durchleitung", Abbildung 16).

Abbildung 16: Versuch mit direkter Kraftdurchleitung

In einer Vorversuchsreihe wurden die unterschiedlichen Versuchstypen mit einem Profil durchgeführt und deren Ergebnisse verglichen. Dabei wurde die Auflagerbreite = Lasteinleitungsbreite mit $b_B = 60$ mm konstant gehalten. Es zeigte sich dabei folgendes Ergebnis:

- Bei den Versuchen mit direkter Durchleitung und vollflächiger Stützung nimmt die aufnehmbare Kraft nach einem ersten Lastabfall bei stetig zunehmendem Maschinenweg wieder zu. Die Stege stellen sich zuerst senkrecht und knicken anschließend aus.

Abbildung 17: Kraft-Weg-Diagramme der Versuche im Vergleich

- In den Versuchen Zwischenauflager unter Auflast zeigt sich, dass sich schon eine vergleichsweise geringen Momentenbeanspruchung (Stützweiten 165 mm und 220 mm) negativ auf die Tragfähigkeit auswirkt. Ein zweiter Lastanstieg ist aufgrund des Biegemomentes nicht zu beobachten: Die Kraft nimmt stetig ab.
- Die sich bei den Versuchen mit vollflächiger Stützung ergebende Fließlinienfigur im Steg entspricht weitestgehend der bei den Versuchen Zwischenauflager unter Auflast zu beobachtenden Fließlinienfigur.

Abbildung 18: Verformungsfigur im Versuch im Versuch Zwischenauflager unter Auflast und mit vollflächiger Stützung

Versuchsanstalt für Stahl, Holz und Steine

Karlsruher Institut für Technologie (KIT)

Abbildung 19: Verformungsfigur im Versuch mit direkter Durchleitung

Vorquob	haufbau	F _{max,1}	F _{max,2} (2. Maximum)	
Versuch	ISAUIDAU	[kN]	[kN]	
momentenfreie	direkte Durchleitung	3,03	4,64	
Versuche	vollflächige Stützung	2,98	3,38	
Versuche mit	Stützweite 165 mm	2,88	-	
Biegemoment	Stützweite 220 mm	2,52	-	

Tabelle 3: Vergleich der Ergebnisse der Vorversuche

Offensichtlich ergibt sich nur ein geringer Unterschied zwischen den Ergebnissen der Versuche mit vollflächiger Unterstützung und der Versuche mit direkter Kraftdurchleitung. Die Ergebnisse der Versuche mit zusätzlichen Biegemomenten erlauben eine Extrapolation zu den Ergebnissen der momentenfreien Versuche.

Das in den momentenfreien Versuchen beobachtete zweite Maximum spielt am Zwischenauflager keine Rolle denn es wird aufgrund des zusätzlich wirkenden Biegemoments nicht erreicht. Anders sieht jedoch die Situation am Endauflager aus. Hier kann auch im Versuch mit Schneidenlagerung nach DIN 18807-2 das zweite Maximum beobachtet werden, weshalb für diesen Fall zwei Nachweise vorgesehen sind: zum einen der Gebrauchstauglichkeitsnachweis, zum anderen der Tragfähigkeitsnachweis (vgl. DIN 18807-3).

Für die weiterführenden experimentellen Untersuchungen wurde der Versuchsaufbau mit direkter Kraftdurchleitung gewählt. Die Gründe dafür sind zum einen, dass diese Konfiguration tatsächlich die kritischste (momentenfreie) Konfiguration ist aber auch, dass alle bisherigen Untersuchungen zum Sicherheitsniveau der rechnerischen Nachweise mit (51) mit dieser Konfiguration durchgeführt wurden und damit eine direkte Vergleichbarkeit gegeben ist.

7.2.2 Versuchsergebnisse

Abbildung 20 zeigt einen Vergleich zwischen den Versuchsergebnissen und Gleichung (51).

Abbildung 20: Vergleich Versuch mit GI. (51)

Vereinzelte liegen die Ergebnisse der Versuche und Berechnungen unterhalb der charakteristischen Werte nach Gleichung (51). Diese Abweichungen zeigen sich insbesondere bei kleinen Blechdicken t und großen Steghöhen s_w . Für die Auflagerbreite b_B konnte keine eindeutige Korrelation gefunden werden.

Eine statistische Auswertung der Versuchsergebnisse ergab, dass die nach Gleichung (51) ermittelten Tragfähigkeitswerte auf 75% reduziert werden müßten, um das gleiche Sicherheitsniveau wie bei Stahl- oder Aluminiumtrapezprofilen zu erhalten.

Interessant ist auch der Vergleich der Ergebnisse mit unterschiedlichen Lagen: Hier zeigen sich Abweichungen zwischen den an beiden Lagern ermittelten Werten. Die Abweichungen zwischen den beiden Lagen "vollständiger breiter Gurt" (Lage 2) und "vollständiger schmaler Gurt" (Lage 1) sind auf den Einfluss der Gurtverformung und auf die bei "vollständigem breiten Gurt" größere Imperfektionsempfindlichkeit bzgl. mittiger Lasteinleitung zurückzuführen. Diese Imperfektionsempfindlichkeit nimmt mit zunehmender Lasteinleitungsbreite b_B zu.

7.3 Numerische Untersuchungen

Abbildung 20 zeigt einen Vergleich zwischen den Ergebnissen aus Finite-Element-Berechungen und Gleichung (51).

Abbildung 21: FE-Nachrechnung GI. (51)

Vereinzelt liegen die Ergebnisse der Versuche und Berechnungen unterhalb der charakteristischen Werte nach Gleichung (51). Diese Abweichungen zeigen sich insbesondere bei kleinen Blechdicken t und großen Steghöhen s_w und kleinen Exponenten n. Für die Auflagerbreite b_B konnte keine eindeutige Korrelation gefunden werden.

Eine statistische Auswertung der Versuchsergebnisse ergab auch hier, dass die nach Gleichung (51) ermittelten Tragfähigkeitswerte auf 75% reduziert werden müßten, um das gleiche Sicherheitsniveau wie bei Stahl- oder Aluminiumtrapezprofilen zu erhalten. Die grundsätzlichen Ergebnisse aus den Versuchen und Finite-Element-Berechnungen entsprechen sich damit.

Um eine Einschätzung des Sicherheitsniveaus bei Stahltrapezprofilen zu ermöglichen, wurden zusätzliche vergleichende Berechnungen mit einem linear ealstischen-ideal plastischen Werkstoffgesetz durchgeführt. In diesem Fall konnte ein Aufbau modelliert werden, der dem üblichen Dreipunkt-Biegeversuch im Versuch Zwischenauflager entspricht. Dadurch ist allerdings ein direkter Vergleich mit den Werten aus Gleichung (51) nicht möglich. Hierzu wäre eine Extrapolation in Richtung M = 0 erforderlich, die zu Unsicherheiten in der Überprüfung geführt hätte. Daher wurden nur die Ergebnisse aus den Berechnungen an gleicher Geometrie, aber mit unterschiedlichen Werkstoffgesetzen miteinander verglichen. Dieser Vergleich ist in Abbildung 22 dargestellt. Man erkennt, dass nur geringfügigste Unterschiede zwischen den beiden Trapezprofilen aus unterschiedlichen Werkstoffen bestehen. Das nichtlineare Werkstoffgesetz hat keinen erkennbaren Einfluss auf die Tragfähigkeit. Dieses Ergebnis entspricht den Beobachtungen an Trapezprofilen aus Aluminium.

7.4 Schlussfolgerungen

Die Untersuchungen zum Stegkrüppeln von Trapezprofilen aus nichtrostenden Stählen lassen sich wie folgt zusammenfassen: Die sich aus der Anwendung von Gleichung (51) ergebenden Tragfähigkeitswerte entsprechen im Mittel den Ergebnissen aus Versuch und FE-Berechnung, obwohl die im Schrifttum dokumentierten Untersuchungen nahelegen, dass die Anwendung der Gleichung (51) einen 5%-Fraktilwert ergibt. Ein direkter Vergleich der Ergebnisse von FE-Berechnungen mit unterschiedlichem Werkstoffgesetz zeigt aber, dass dieses keinen Einfluss auf die Tragfähigkeit hat, d.h. die geringer als erwartet ausfallenden Ergebnisse aus Versuch und FE-Berechnung von Gleichung (51) für Trapezprofile aus Aluminium erwarten. Außerdem läßt dieser Vergleich erwarten, dass sich die bei der Anwendung von Gleichung (51) ergebenden Tragfähigkeitswerte für Trapezprofile aus unlegierten Stählen ergebenden im Mittel den Ergebnissen aus Versuchen entsprechen.

Aufgrund der jahrelangen positiven Erfahrungen mit Gleichung (51) bei der Ermittlung der Tragfähigkeit von Trapezprofilen aus unlegiertem Stahl und Aluminium, kann von einem vergleichbaren und insbesondere auch ausreichenden Sicherheitsniveau bei der Anwendung von Gleichung (51) für die Bemessung von Trapezprofilen aus nichtrostendem Stahl ausgegangen werden.

8 Zusammenfassung

Trapezprofile werden bei hohen Anforderungen an das optische Erscheinungsbild und den Korrosionswiderstand aus nichtrostenden Stählen ausgeführt. Eine rechnerische Ermittlung der Beanspruchbarkeit von Trapezprofilen aus nichtrostendem Stahl kann mangels bauaufsichtlich eingeführter und allgemein anerkannter Berechnungsansätze nicht erfolgen. DIN EN 1993-1-4 [2] soll in Verbindung mit DIN EN 1993-1-3 [1] die rechnerische Tragfähigkeitsermittlung von Trapezprofilen aus nichtrostenden Stählen ermöglichen. Dabei werden jedoch für Stahltrapezprofile typische Probleme nicht behandelt.

Im vorliegenden Bericht werden

- vorhandene Nachweise f
 ür die Bemessung von allgemeinen Bauteilen aus nichtrostenden St
 ählen auf ihre Anwendung f
 ür den Nachweis von Trapezprofilen hin untersucht
- Nachweise für Trapezprofile aus unlegierten Stählen oder Aluminium auf ihre Anwendung für den Nachweis von Trapezprofilen aus nichtrostenden Stählen hin untersucht

Soweit erforderlich, werden Änderungen und Ergänzungen vorgeschlagen, so dass auf der hiermit nun zur Verfügung stehenden Grundlage der rechnerische Nachweis für Stahltrapezprofile aus nichtrostenden Stählen zuverlässig geführt werden kann.

Karlsruhe, am 20.12.2010

mi/pc

Der Sachbearbeiter

Dr.-Ing. Th. Misiek

9 Schrifttum

- [1] DIN EN 1993-1-3:2007-02: Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-3: Allgemeine Regeln - Ergänzende Regeln für kaltgeformte dünnwandige Bauteile und Bleche
- [2] DIN EN 1993-1-4:2007-02: Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-4: Allgemeine Regeln - Ergänzende Regeln zur Anwendung von nichtrostenden Stählen
- [3] DIN EN 1993-1-5:2007-02: Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-5: Plattenförmige Bauteile
- [4] DIN EN 1999-1-4:2010-05: Eurocode 9: Bemessung und Konstruktion von Aluminiumtragwerken - Teil 1-4: Kaltgeformte Profiltafeln
- [5] DIN 18807-1:1987-06: Trapezprofile im Hochbau; Stahltrapezprofile; Allgemeine Anforderungen, Ermittlung der Tragfähigkeitswerte durch Berechnung
- [6] DIN 18807-6:1995-09: Trapezprofile im Hochbau Teil 6: Aluminium-Trapezprofile und ihre Verbindungen; Ermittlung der Tragfähigkeitswerte durch Berechnung
- [7] StbK-N5: Swedish code for light gauge metal structures. Stockholm : Swedish Inst. of Steel Construction, 1982
- [8] Allgemeine bauaufsichtliche Zulassung Z-30.3-6: Erzeugnisse, Verbindungsmittel und Bauteile aus nichtrostenden Stählen. Deutsches Institut für Bautechnik, DIBt, Berlin, 20.04.2009.
- [9] Huck, G.: Das Konzept der wirksamen Breite bei Bauteilen aus elastoplastischem Material: Berichte der Versuchsanstalt f
 ür Stahl, Holz und Steine, Universit
 ät Karlsruhe (TH), Folge 4 Heft 27, 1993
- [10] Rasmussen, K.: Full-range stress-strain curves for stainless steel alloys: Department of Civil Engineering, University of Sydney, November 2001
- [11] Bezkorovainy, P., Burns, T., Rasmussen, K.: Strength curves for metal plates in compression: Department of Civil Engineering, University of Sydney, November 2001
- [12] Bezkorovainy, P., Burns, T., Rasmussen, K.: Design of stiffened elements in coldformed stainless steel sections: Department of Civil Engineering, University of Sydney, March 2003
- [13] Höglund, T.: Design of trapezoidal sheeting provided with stiffeners in the flanges and webs, Swedish Council for Building Research, Stockholm, 1980
- [14] Baehre, R., Fick, K.: Berechnung und Bemessung von Trapezprofilen mit Erläuterungen zur DIN 18807: Berichte der Versuchsanstalt für Stahl, Holz und Steine der Universität Fridericiana in Karlsruhe. 4. Folge – Heft 7, Karlsruhe 1982.

- [15] Baehre, R., Holz, R., Huck, G., Ladwein, Th.: Vergleich empirischer und berechneter Tragfähigkeiten von Aluminiumtrapezprofilen, Fraunhofer IRB Verlag, Stuttgart, 1990.
- [16] Shin, T.S.: Untersuchung der Tragfähigkeit von Stahltrapezprofilen unter einer örtlich konzentrierten momentenfreien Lasteinleitung. Wissenschaft & Technik Verlag, Berlin, 1995.

ANLAGE 1: VERSUCHE ZUM SICKENKNICKEN

1 Geometrie

An den Proben wurden die wesentlichen Abmessungen ermittelt. Die ermittelten Werte sind nachfolgend aufgeführt.

	•	7 	b	×		•
	• D1 e1	D _{p,1}	D _{1 e2} b _r ←	D _{p,}	3 b2 e2	•
	<	-			<	•
					1	, ,
	\bigtriangleup	» ب		\searrow	Z	
			b _s			
	t	b _{p,1}	b _{p,3}	b _r	h _s	I
Ltd. Nr.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
1	0,471	39,6	39,8	21,1	4,1	138,8
2	0,459	35,7	35,6	30,0	4,2	139,0
3	0,485	56,0	57,1	19,5	7,5	138,4
4	0,482	41,2	42,3	17,9	7,0	189,1
5	0,489	42,7	41,5	19,0	7,9	88,5
6	0,492	41,0	41,8	18,7	8,0	189,1
7	0,488	42,7	41,7	19,4	8,3	88,6
8	0,485	39,3	40,7	21,9	3,9	240,3
9	0,462	35,9	36,6	30,4	4,1	239,5
10	0,452	37,9	36,3	26,8	8,0	189,1
11	0,455	37,3	37,6	26,7	7,6	88,3
12	0,458	51,9	52,0	30,3	5,0	88,9
13	0,468	50,8	50,1	30,0	3,7	89,6
14	0,491	55,1	55,3	22,4	3,6	240,5
15	0,494	56,2	58,1	18,5	6,8	240,8
16	0,828	52,6	52,5	27,2	8,2	139,4
17	0,835	56,3	57,3	19,2	7,0	139,1
18	0,837	57,9	56,9	18,1	7,0	138,6

Versuchsanstalt für Stahl, Holz und Steine Karlsruher Institut für Technologie (KIT)

Lfd. Nr.	t	b _{p,1}	b _{p,3}	b _r	h _s	I
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
19	0,833	42,7	41,2	19,6	7,0	88,6
20	0,829	42,6	41,3	20,3	6,9	88,4
21	0,832	41,1	41,2	21,4	4,0	240,0
22	0,835	36,4	36,7	31,2	4,1	240,1
23	0,799	37,0	38,2	27,3	8,3	88,4
24	0,817	50,9	51,1	30,8	4,0	88,6
25	0,821	50,2	51,3	30,2	4,0	89,0
26	0,857	55,8	57,9	18,3	6,7	240,0
27	0,599	42,4	40,0	20,4	7,1	188,7
28	0,587	41,2	40,9	21,4	8,4	189,1
29	0,599	57,1	55,7	20,5	6,8	189,5
30	0,597	41,2	40,8	21,6	3,9	89,3
31	0,609	55,5	56,2	22,4	3,7	189,3
32	0,600	37,5	38,4	28,2	8,3	89,2
33	0,602	35,6	36,2	30,1	4,0	240,0

Versuchsanstalt für Stahl, Holz und Steine Karlsruher Institut für Technologie (KIT)

Anlage 1.3 zum Bericht Nr.: 091503

b $b_{p,1}$ $b_{p,3}$ $b_{p,2}$									
I fol Nr	t	b _{p,1}	b _{p,2}	b _{p,3}	br	h _s	I		
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		
34	0,820	28,2	28,0	30,2	7,3	3,1	140,3		
35	0,830	28,9	28,3	30,7	6,6	3,3	139,9		
36	0,824	42,2	42,7	29,9	8,1	2,5	139,8		
37	0,817	11,9	12,7	62,3	7,1	4,5	188,4		
38	0,810	27,1	27,0	62,4	7,3	5,3	139,7		
39	0,483	28,2	25,2	61,9	7,8	5,4	139,7		
40	0,484	29,0	28,5	30,0	6,8	3,1	139,6		
41	0,476	44,3	42,5	30,1	7,1	3,4	188,5		
42	0,482	28,7	28,1	29,9	7,2	2,8	188,6		
43	0,487	29,4	25,6	62,3	6,9	5,2	188,5		
44	0,821	41,6	44,7	30,1	7,3	2,3	192,2		
45	0,479	27,0	27,4	61,8	7,4	5,7	226,5		
46	0,473	27,3	26,3	60,9	8,3	5,3	225,8		
47	0,804	27,3	26,9	61,5	7,7	5,1	226,5		
48	0,809	12,8	11,7	62,1	7,2	4,9	259,3		

2 Versuchsergebnisse

2.1 Knickversuche

An den im Abschnitt 1 aufgeführten Proben wurden Knickversuche durchgeführt. Nachfolgend ist der Versuchsaufbau dargestellt.

Abbildung 1: Versuchsaufbau

Abbildung 2: Schnitt durch die Probe und seitliche Lagerung

Die ermittelten Maximallasten sind nachfolgend aufgeführt.

	–	
Lfd. Nr.	F _{max}	Хp
	[kN]	[-]
1	5,91	0,661
2	5,82	0,543
3	8,21	0,880
4	8,43	1,007
5	8,20	0,893
6	8,60	0,952
7	8,49	0,928
8	6,09	0,587
9	5,88	0,536
10	8,12	0,927
11	8,41	0,967
12	6,56	0,618
13	6,77	0,633
14	5,89	0,498
15	8,09	0,857
16	22,64	0,949
17	21,39	0,957

l fd Nr	F _{max}	Хp	
	[kN]	[-]	
18	21,19	0,950	
19	20,73	0,988	
20	20,43	0,968	
22	17,48	0,772	
22	17,01	0,647	
23	20,58	0,966	
24	18,04	0,683	
25	18,37	0,704	
26	20,01	0,814	
27	11,79	0,890	
28	11,94	0,908	
29	12,63	0,943	
30	9,77	0,689	
31	8,87	0,499	
32	13,86	0,982	
33	9,96	0,609	

Anlage 1.6 zum Bericht Nr.: 091503

lfd Nr	F _{max}	Хp
	[kN]	[-]
34	17,5	0,676
35	19,5	0,779
36	14,0	0,369
37	14,7	0,869
38	19,3	0,735
39	10,4	1,025
40	8,3	0,827
41	7,9	0,733

lfd Nr	F _{max}	Хp
	[kN]	[-]
42	7,7	0,751
43	9,9	0,975
44	12,8	0,315
45	7,9	0,715
46	8,6	0,815
47	18,3	0,690
48	14,0	0,787

Die folgenden Abbildungen zeigen die wesentlichen Versagensmodi.

Abbildung 3: Versagen durch örtliches Beulen

Anlage 1.7 zum Bericht Nr.: 091503

Abbildung 4: Versagen durch Knicken

2.2 Werkstoffkennwerte

Von dem in den Prüfungen verwendeten Blechmaterial wurden für jede Nennblechdicke Werkstoffproben entnommen. Aus den Werkstoffproben wurden Zugproben nach DIN EN 10002-1 ausgearbeitet und damit einaxiale Zugversuche durchgeführt. Aus den Versuchen wurden die Werkstoffkennwerte Dehngrenze, Zugfestigkeit und Bruchdehnung bestimmt.

	t _N = 0,50						
Lfd. Nr.	t	R _{p0,2}	R _m	A _{80mm}			
	[mm]	[N/mm²]	[N/mm²]	[%]			
1	0,481	300	686	47,1			
2	0,486	288	653	49,0			
3	0,473	297	680	49,0			
		t _N =	0,80				
Lfd. Nr.	t	R _{p0,2}	R _m	A _{80mm}			
	[mm]	[N/mm²]	[N/mm²]	[%]			
1	0,790	335	692	45,2			
2	0,767	321	662	49,2			
3	0,774	326	666	47,9			

Dieser Prüfbericht darf nur ungekürzt wiedergegeben werden. Auszugsweise Veröffentlichung bedarf unserer schriftlichen Genehmigung.

ANLAGE 2: NUMERISCHE UNTERSUCHUNGEN ZUM SICKENKNICKEN

1 Nachrechung Knickspannungslinie für unlegierten Stahl

Die numerischen Untersuchungen wurden an Gurtquerschnitten durchgeführt, die an den Längsrändern gelenkig gelagert wurden und an den Querränder mit Symmetriebedingungen versehen wurden. In den Berechnungen zur Nachrechnung der Knickspannungslinie für unlegierten Stahl wurde ein linear elastisches-ideal plastisches Werkstoffgesetz mit

E = 210000 N/mm,

v = 0,3

 $f_v = 230 \text{ N/mm}^2$

angesetzt. Es wurden sowohl lokale Imperfektionen in den ebenen Teilflächen als auch globale Imperfektionen aufgebracht (vgl. Text im Hauptteil). Beispiele für diese Imperfektionen sind in den folgenden Abbildungen dargestellt. Ergänzend sind die Verformungen im Traglastzustand dargestellt.

Abbildung 1: Erste Eigenform für den Ansatz der Imperfektion: örtliches Beulen

Abbildung 2: Erste Eigenform für den Ansatz der Imperfektion: örtliches Beulen

Abbildung 3: Erste Eigenform für den Ansatz der Imperfektion: globales Knicken

Abbildung 4: Erste Eigenform für den Ansatz der Imperfektion: globales Knicken (hier: 2-wellig)

Abbildung 5: Verformungen im Traglastzustand

Abbildung 6: Verformungen im Traglastzustand

	•	h	7	b)	۲ ۲			
	< b _{1,e1}	o _p →	,1 ←	b _{1,e2} b	r € _{2,e1}	D _{p,} →	3 	D _{2,e2}	
I fd Nr	t	b _{p,1}	b _{p,3}	b _r	hs	I	λ_d	F _{max}	Хp
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	-	[kN]	-
1	0,8	40	40	6	2	100	1,92	8,41	0,27
2	0,8	40	40	6	2	110	1,96	8,47	0,28
3	0,8	40	40	6	2	120	1,96	8,36	0,27
4	0,8	40	40	6	2	120	1,96	8,36	0,27
5	1	60	60	20	6	300	1,45	18,05	0,48
6	1	60	60	20	6	325	1,46	18,23	0,49
7	1	60	60	20	6	350	1,46	18,44	0,51
8	1	30	30	20	6	200	0,83	16,79	0,81
9	1	30	30	20	6	210	0,83	16,80	0,81
10	1	30	30	20	6	220	0,83	16,88	0,81
11	1,2	60	60	40	10	450	1,16	27,95	0,52
12	1,2	60	60	40	10	470	1,16	27,89	0,51
13	1,2	60	60	40	10	490	1,16	27,94	0,52

I fol Nr	t	b _{p,1}	b _{p,3}	b _r	hs	I	λ_{d}	F_{max}	Хp
LIU. INI.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	-	[kN]	-
14	0,5	65	65	10	5	350	2,00	4,83	0,40
15	0,5	65	65	10	5	375	2,01	4,70	0,37
16	0,5	65	65	10	5	400	2,00	4,82	0,40
17	1	40	40	10	7	225	0,96	17,81	0,68
18	1	40	40	10	7	250	0,97	18,05	0,69
19	1	40	40	10	7	275	0,96	17,90	0,68
20	1	30	30	10	7	200	0,74	16,30	0,87
21	1	30	30	10	7	250	0,71	16,72	0,90
22	1	30	30	10	7	275	0,68	16,88	0,92
23	0,5	30	30	10	4	180	1,27	4,89	0,56
24	0,5	30	30	10	4	200	1,28	4,91	0,56
25	0,5	30	30	10	4	220	1,26	4,79	0,54
26	0,5	50	50	10	5	300	1,66	5,08	0,49
27	0,5	50	50	10	5	315	1,67	5,06	0,48
28	0,5	50	50	10	5	330	1,66	5,09	0,49
29	1,5	25	25	10	4	95	0,62	20,96	0,95
30	1,5	25	25	10	4	110	0,63	21,13	0,96
31	1,5	25	25	10	4	125	0,62	21,20	0,96
32	0,5	35	35	6	3	195	1,58	4,41	0,46
33	0,8	20	20	10	5	120	0,65	20,96	2,75
34	0,8	20	20	10	5	140	0,66	21,13	2,78
35	0,8	20	20	10	5	160	0,65	21,20	2,79
36	0,5	30	30	8	3,5	150	1,32	4,84	0,58

$\begin{array}{ c c c c } & b \\ \hline & b_{p,1} & b_{p,3} & b_{p,2} \\ \hline & b_{1,e1} & b_{1,e2} & b_r & b_{3,e1} & b_{3,e2} & b_r & b_{2,e2} \\ \hline & & & & & & & & & & & & & & & & & &$										
I fa Nr	t	b _{p,1}	b _{p,2}	b _{p,3}	b _r	h _s	I	λ_{d}	F_{max}	Хp
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	-	[kN]	-
37	0,8	40	40	40	5	3	260	9,68	1,74	0,23
38	0,8	40	40	40	5	3	300	9,16	1,75	0,19
39	0,8	40	40	40	5	3	350	9,02	1,69	0,18
40	0,8	60	60	40	5	4	385	12,73	1,97	0,36
41	0,8	60	60	40	5	4	410	12,49	1,98	0,35
42	0,8	60	60	40	5	4	425	12,43	1,98	0,34
43	1	30	30	30	5	5	260	20,08	0,91	0,77
44	1	30	30	30	5	5	280	19,86	0,92	0,76
45	1	30	30	30	5	5	300	19,77	0,92	0,75
46	1	75	75	60	5	5	400	19,57	1,88	0,35
47	1	75	75	60	5	5	500	19,45	2,02	0,34
48	1	75	75	60	5	5	520	19,20	2,03	0,33
49	0,8	65	65	30	5	5	450	13,20	1,78	0,40
50	0,8	65	65	30	5	5	470	13,23	1,78	0,40
51	0,8	65	65	30	5	5	490	13,24	1,78	0,40
52	1	50	50	60	5	5	390	17,20	1,56	0,31
53	1	50	50	60	5	5	400	16,82	1,57	0,30
54	1	50	50	60	5	5	410	20,84	1,57	0,47
55	0,9	50	50	60	5	5,5	445	16,88	1,57	0,43
56	1	30	30	60	4	4	250	19,88	1,19	0,65
57	1	30	30	60	4	4	280	17,63	1,21	0,54
58	1	30	30	60	4	4	310	18,03	1,20	0,56
59	1	25	25	20	5	5	200	17,45	0,72	0,86
60	1	25	25	20	5	5	225	17,71	0,74	0,88
61	1	25	25	20	5	5	250	17,85	0,74	0,89

Anlage 2.6 zum Bericht Nr.: 091503

Lfd. Nr.	t	b _{p,1}	b _{p,2}	b _{p,3}	b _r	h _s	I	λ_{d}	F_{max}	Хp
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	-	[kN]	-
62	1	25	25	100	3	3	210	14,07	1,31	0,43
63	1	25	25	100	3	3	240	14,06	1,34	0,43
64	1	25	25	100	3	3	270	14,08	1,32	0,43
65	1,2	20	20	20	5	5	160	19,49	0,53	0,94
66	1,2	20	20	20	5	5	185	19,76	0,56	0,95
67	1,2	20	20	20	5	5	210	19,95	0,56	0,97
68	0,5	35	35	25	5	5	340	5,98	1,43	0,48
69	0,5	35	35	25	5	5	360	5,65	1,45	0,43
70	0,5	35	35	25	5	5	380	5,44	1,45	0,40

2 Nachrechnung Versuche

Die Nachrechnung der Versuche erfolgte mit dem gleichen Finite-Element-Modell wie zuvor beschrieben. Es wurde ein nicht-lineares Werkstoffgesetz verwendet, das über mehrere Stützstellen eines Polygonzuges das Rambgerg-Osgood-Gesetz mit der Ergänzung nach DIN EN 1993-1-4 nachbildet. Die dabei verwendeten Parameter lauteten:

 $E = 200000 \text{ N/mm}^2$

$$\nu = 0,3$$

 $f_y = 280 - 300 \text{ N/mm}^2$

n = 11 - 13

 $f_u = 650 - 690 \text{ N/mm}^2$

Es wurden die Versuche nach Anhang 1 nachgerechnet. Die ermittelten Traglasten sind nachfolgend aufgeführt.

Versuchsanstalt für Stahl, Holz und Steine

Karlsruher Institut für Technologie (KIT)

Anlage 2.7
zum Bericht
Nr.: 091503

lfd Nr	F _{max}	Хр
	[kN]	[-]
1	6,54	0,732
2	6,62	0,617
3	8,65	0,926
4	7,58	0,905
5	7,96	0,866
6	8,18	0,906
7	8,10	0,886
8	6,02	0,580
9	6,04	0,551
10	7,80	0,891
11	7,40	0,850
12	8,00	0,753
13	7,40	0,691
14	5,65	0,478
15	7,92	0,838
16	21,72	0,911
17	20,10	0,899

l fol Nr	F _{max}	Хp
LIU. INI.	[kN]	[-]
34	19,15	0,739
35	20,03	0,801
36	15,28	0,403
37	15,41	0,912
38	22,91	0,871
39	10,78	1,062
40	7,60	0,760
41	7,99	0,745

I fd Nr	F _{max}	Хр
	[kN]	[-]
18	20,01	0,897
19	18,73	0,893
20	18,71	0,887
22	16,17	0,714
22	17,19	0,654
23	18,89	0,887
24	17,47	0,661
25	18,80	0,720
26	19,69	0,801
27	11,44	0,863
28	11,73	0,892
29	12,08	0,902
30	10,24	0,722
31	8,18	0,460
32	12,31	0,872
33	9,45	0,578

l fd Nr	F _{max}	Хp
	[kN]	[-]
42	6,75	0,654
43	10,55	1,036
44	16,82	0,413
45	10,32	0,937
46	10,13	0,960
47	21,34	0,804
48	15,49	0,871

3 Knickspannungslinie für nichtrostenden Stahl

Die Nachrechnung der Versuche erfolgte mit dem gleichen Finite-Element-Modell wie zuvor beschrieben. Es wurde ein nicht-lineares Werkstoffgesetz verwendet, das über mehrere

Anlage 2.8 zum Bericht Nr.: 091503

Stützstellen eines Polygonzuges das Rambgerg-Osgood-Gesetz mit der Ergänzung nach DIN

EN 1993-1-4 nachbildet.

 $E = 200000 \text{ N/mm}^2$ v = 0,3 $f_y = 230 \text{ N/mm}^2$ n = 5

 $f_u = 540 \text{ N/mm}^2$

	• b _{1,e1}	Up	»,1 	b _{1,e2} b	r b _{2,e1}	D p,	3 k	D _{2,e2} }				
		→	-			→	-					
								\bigtriangleup				
				+∕_ ` h								
					s							
I fd Nr	t	b _{p,1}	b _{p,3}	br	h _s	I	λ_d	F _{max}	Хp			
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	-	[kN]	-			
1	40	40	6	2	0,8	90	1,81	7,06	0,20			
2	40	40	6	2	0,8	100	1,88	6,98	0,19			
3	40	40	6	2	0,8	110	1,92	7,15	0,22			
4	40	40	6	2	0,8	120	1,92	6,84	0,17			
5	40	40	6	2	0,8	920	1,92	6,93	0,19			
6	40	40	6	2	0,8	120	1,92	6,68	0,15			
7	60	60	20	6	1	275	1,40	14,23	0,34			
8	60	60	20	6	1	275	1,40	14,40	0,35			
9	60	60	20	6	1	300	1,44	14,46	0,35			
10	60	60	20	6	1	325	1,45	14,57	0,36			
11	60	60	20	6	1	350	1,44	14,71	0,37			
12	30	30	20	6	1	200	0,85	13,94	0,58			
13	30	30	20	6	1	210	0,85	13,97	0,59			
14	30	30	20	6	1	220	0,85	14,03	0,59			
15	60	60	40	10	1,2	450	1,15	24,13	0,46			
16	60	60	40	10	1,2	470	1,16	24,14	0,46			
17	60	60	40	10	1,2	490	1,15	24,17	0,46			
18	65	65	10	5	0,5	350	1,98	3,96	0,31			
19	65	65	10	5	0,5	375	1,99	3,95	0,30			
20	65	65	10	5	0,5	400	1,99	3,90	0,29			

Lfd. Nr.	t	b _{p,1}	b _{p,3}	br	hs	I	λ_d	F _{max}	Хp
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	-	[kN]	-
21	40	40	10	7	1	225	0,95	14,46	0,53
22	40	40	10	7	1	250	0,96	14,55	0,54
23	40	40	10	7	1	275	0,95	14,56	0,54
24	30	30	10	7	1	200	0,75	14,09	0,67
25	30	30	10	7	1	250	0,73	14,53	0,72
26	30	30	10	7	1	275	0,70	14,54	0,72
27	30	30	10	4	0,5	180	1,26	3,96	0,43
28	30	30	10	4	0,5	200	1,26	3,97	0,44
29	30	30	10	4	0,5	220	1,25	3,86	0,40
30	50	50	10	5	0,5	300	1,65	4,04	0,35
31	50	50	10	5	0,5	315	1,65	4,06	0,35
32	50	50	10	5	0,5	330	1,65	4,08	0,36
33	25	25	10	4	1,5	95	0,64	20,32	0,90
34	25	25	10	4	1,5	110	0,65	20,74	0,93
35	25	25	10	4	1,5	125	0,63	21,11	0,96
36	35	35	6	3	0,5	195	1,56	3,61	0,35
37	20	20	10	5	0,8	120	0,66	8,45	0,76
38	20	20	10	5	0,8	140	0,68	8,51	0,77
39	20	20	10	5	0,8	160	0,67	8,70	0,80
40	30	30	8	3,5	0,5	150	1,30	3,89	0,44

	$\begin{array}{c c} & b \\ \hline b_{p,1} & b_{p,3} & b_{p,2} \\ \hline b_{1,e1} & b_{1,e2} & b_r & b_{3,e1} & b_{3,e2} & b_r & b_{2,e1} \\ \hline \end{array}$												
I fol Nr	t	b _{p,1}	b _{p,2}	b _{p,3}	b _r	h _s	I	λ_{d}	F_{max}	Хp			
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	-	[kN]	-			
41	0,8	40	40	40	5	3	260	8,10	1,70	0,18			
42	0,8	40	40	40	5	3	300	7,69	1,71	0,15			
43	0,8	40	40	40	5	3	350	7,47	1,65	0,14			
44	0,8	40	40	40	5	3	375	7,71	1,60	0,16			
45	0,8	40	40	40	5	3	400	9,62	1,54	0,30			
46	0,8	40	40	40	5	3	700	9,37	1,65	0,28			

	t	b _{p,1}	b _{p,2}	b _{p,3}	b _r	h _s	I	λ_{d}	F_{max}	Хp
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	-	[kN]	-
47	0,8	60	60	40	5	4	285	10,20	1,70	0,28
48	0,8	60	60	40	5	4	385	10,40	1,93	0,29
49	1	30	30	30	5	5	260	15,74	0,93	0,53
50	1	30	30	30	5	5	280	15,58	0,94	0,52
51	1	30	30	30	5	5	300	15,53	0,94	0,52
52	1	75	75	60	5	5	400	15,18	1,84	0,24
53	1	75	75	60	5	5	500	15,86	1,97	0,27
54	0,8	65	65	30	5	5	450	10,47	1,74	0,29
55	0,8	65	65	30	5	5	470	10,44	1,75	0,29
56	0,8	65	65	30	5	5	490	10,52	1,75	0,30
57	1	50	50	60	5	5	400	13,89	1,53	0,24
58	1	50	50	60	5	5	410	14,13	1,53	0,25
59	0,9	50	50	60	5	5,5	445	13,23	1,54	0,32
60	1	30	30	60	4	4	250	14,44	1,19	0,41
61	1	30	30	60	4	4	280	13,19	1,20	0,34
62	1	30	30	60	4	4	310	13,65	1,19	0,36
63	1	25	25	20	5	5	200	15,10	0,74	0,69
64	1	25	25	20	5	5	225	15,36	0,76	0,71
65	1	25	25	20	5	5	250	15,29	0,76	0,70
66	1	25	25	100	3	3	210	11,95	1,31	0,34
67	1	25	25	100	3	3	240	12,04	1,33	0,35
68	1	25	25	100	3	3	270	12,17	1,32	0,36
69	1,2	20	20	20	5	5	160	19,11	0,55	0,91
70	1,2	20	20	20	5	5	185	19,00	0,57	0,90
71	1,2	20	20	20	5	5	210	19,24	0,57	0,92
72	0,5	35	35	25	5	5	340	4,40	1,41	0,32
73	0,5	35	35	25	5	5	360	4,19	1,42	0,29
74	0,5	35	35	25	5	5	380	4,06	1,42	0,26

	$\begin{array}{c} b \\ \hline b_{p,1} \\ \hline b_{p,3} \\ \hline b_{p,2} \\ \hline b_{p,$										
	`D _{1,e1}	→	D _{1,e2} b	r D _{3,e1}		03,e2 b _r	D _{2,e1}		2,e2		
	\bigtriangleup	» ب			°^				\bigtriangleup		
		<u>ר</u>	b	1	<u> </u>	b _{s2}	2				
I fd. Nr.	t	b _{p,1}	b _{p,2}	b _{p,3}	b _r	h _s	I	λ_{d}	F _{max}	Хp	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	-	[kN]	-	
75	40	40	40	4	1	200	5	10	13,34	1,78	
76	40	40	40	4	1	220	5	10	13,41	1,85	
77	40	40	40	4	1	240	5	10	13,46	1,90	
78	30	30	60	5	1	230	5	10	13,82	1,51	
79	30	30	60	5	1	260	5	10	14,04	1,56	
80	30	30	60	5	1	290	5	10	14,35	1,57	
81	25	25	30	7	1	330	5	10	16,19	1,03	
82	25	25	30	7	1	360	5	10	16,68	1,00	
83	25	25	30	7	1	390	5	10	17,01	0,96	
84	25	25	30	7	0,5	330	5	10	5,73	1,36	
85	25	25	30	7	0,5	360	5	10	5,78	1,39	
86	25	25	30	7	0,5	390	5	10	5,86	1,40	
87	20	20	30	7	0,8	230	5	10	11,35	0,97	
88	20	20	30	7	0,8	260	5	10	11,01	1,01	
89	35	35	20	8	1	340	5	20	17,46	1,19	
90	35	35	20	8	1	370	6	20	17,28	1,22	
91	35	35	20	8	1	400	7	20	17,44	1,24	
92	60	60	60	10	1,2	550	5	20	25,55	1,63	
93	60	60	60	10	1,2	600	6	20	26,24	1,65	
94	60	60	60	10	1,2	650	7	20	26,64	1,66	
95	40	40	10	10	1,5	380	5	30	36,32	1,00	
96	40	40	10	10	1,5	400	6	30	35,96	1,02	
97	40	40	10	10	1,5	420	7	30	35,66	1,03	
98	10	10	40	10	1,5	270	5	30	34,07	0,66	
99	10	10	40	10	1,5	290	5	30	34,92	0,68	
100	10	10	40	10	1,5	310	5	30	33,83	0,69	

I fal Nr	t	b _{p,1}	b _{p,2}	b _{p,3}	b _r	h₅	I	λ_{d}	F _{max}	Хp
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	-	[kN]	-
101	10	10	30	10	1,5	200	5	20	33,05	0,50
102	10	10	30	10	1,5	230	5	20	33,18	0,53
103	10	10	30	10	1,5	260	5	20	33,87	0,54
104	30	30	30	7	1	330	5	25	16,65	1,31
105	30	30	30	7	1	360	5	25	16,61	1,34
106	30	30	30	7	1	390	5	25	16,79	1,36
107	30	30	30	7	0,85	360	5	25	13,17	1,42
108	30	30	30	7	0,85	385	5	25	13,22	1,45
109	30	30	30	7	0,85	410	5	25	13,32	1,46

ANLAGE 3: VERSUCHE ZUM STEGKRÜPPELN

1 Geometrie

An den Profilen wurden stichprobenartig die wesentlichen Abmessungen ermittelt. Die ermittelten Werte sind nachfolgend aufgeführt.

Profil			SP 45/150)	Montana					
Nennbleck	ndicke		0,60	mm						
Profilkürze	el		А							
			6 x	150 = 90	0	i				
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
I fd Nr	t	h	b _o	b _u	φ1	φ ₂	r _o	r _u		
	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[mm]	[mm]		
1	0,60	45,5	55,0	40,0	60,0	60,0	5,0	5,0-5,5		
2	0,62	45,5	-54,5	40,0	59,0	59,0	5,0-5,5	5,0		
3	0,60	46,0	55,0	40,0	60,0	60,0	5,0	5,5		
4	0,59	45,5	54,5	40,0	-	-	5,5	-		
5	0,60	45,5	54,0	40,0	59,0	60,0	5,5	5,0-5,5		
6	0,61	45,0	-	40,0	59,0	59,0	-	5,0		
7	0,59	45,0	-	40,0	58,0	58,0	-	4,5-5,0		
8	0,62	45,5	-	40,0	58,0	58,0	-	5,0		

Profil			22-214		Laukien					
Nennbleck	hdicke		0,50	mm						
Profilkürze	əl		В							
		22	- 214							
mit Wasserfalle										
	214 52 140 38									
		113		52 140		~				
		-		- Tafelbreite 1140 mm						
I fd Nr	t	h	b _o	b _u	φ1	φ ₂	r _o	r _u		
	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[mm]	[mm]		
1	0,48	22,5	37,0	143,0	54,0	56,0	4,0 - 4,5	5,5		
2	0,49	22,0	38,5	140,5	58,0	58,0	5,0	4,5 - 5,0		
3	0,49	21,0	38,5	141,5	56,5	58,0	4,0	4,5		

Profil			22-214		Laukien					
Nennbleck	ndicke		0,80	mm						
Profilkürze	el		С							
		22 -	214							
		mit \	Vasserfalle							
	214 52 140 38 Baubreite 1070 mm									
I fd Nr	t	h	b _o	b _u	φ1	φ ₂	r _o	r _u		
	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[mm]	[mm]		
1	0,80	22,0	38,0	142,0	51,0	54,0	4,0 - 4,5	5,0-6,0		
2	0,79	22,5	37,0	140,5	54,0	52,5	4,5 - 5,0	5,0-6,0		
3	0,80	22,5	37,5	140,0	51,0	52,5	4,0 - 4,5	5,0-6,0		

Profil			20-75		Laukien							
Nennblec	hdicke		0,80	mm								
Profilkürze	el		D									
		20 -	- 75									
	$t \qquad h \qquad b_{0} = b_{11} \qquad 0_{1} \qquad 0_{2} \qquad r_{0} \qquad r_{11}$											
I fol Nir	t	h	b _o	= b _u	φ1	φ ₂	r _o	r _u				
LIU. INI.	[mm]	[mm]	n]	nm]	[°]	[°]	[mm]	[mm]				
1	0,498	21,0	24	4,0	57,5	59,0	2,75	3,0				
2	0,493	21,0	2	2,0	58,0	-	2,5-3,0	3,0-3,5				
3	0,486	21,5	23	3,0	56,0	59,0	3,0	2,5				
4	0,480	20,5	24	4,0	61,0	59,0	3,5-4,0	4,0-5,0				
5	0,482	21,5	23	3,5	59,0	58,5	3,0	3,5-4,0				
6	0,508	21,0	23	3,5	58,5	56,0	4,0	4,5				

Profil 35-207 Laukien									
Nennblechdicke 0,50 mm									
Profilkürze	el		E						
		35 -	- 207						
Dach									
	35 mm								
	Baubreite 1035 mm								
I fd Nr	t	h	b _o	b _u	φ1	φ ₂	r _o	r _u	
	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[mm]	[mm]	
1	0,49	35,5	40,0	121,0	59,0	55,0	3,5 – 4,5	4,0	
2	0,49	34,5	40,0	120,0	54,0	58,0	4,5 - 5,0	3,5 - 4,0	
3	0,49	36,0	40,0	119,0	56,0	58,0	3,5 - 4,0	3,5 - 4,0	

Profil 35-207 Laukien								
Nennblechdicke 0,80 mm								
Profilkürze	əl		F					
		35	- 207					
Dach								
	207 40 119 88 Baubreite 1035 mm							
I fol Nr	t	h	b _o	b _u	φ1	φ ₂	r _o	r _u
	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[mm]	[mm]
1	-	37,0	40,0	118,5	58,0	58,0	3,5 - 4,0	4,5
2	-	35,0	40,0	119,0	55,5	58,0	5	4,5
3	-	36,5	40,0	119,0	56,0	57,5	4,0	4,5 - 5,0

Profil 45-333S Laukien									
Nennblechdicke 0,50 mm									
Profilkürze	əl		G						
45 - 333 S									
	mit Wasserfalle und Stütztuß 333 31,5 72 261 23 9 								
I fd Nr	t	h	b _o	b _u	φ1	φ ₂	r _o	r _u	
	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[mm]	[mm]	
1	0,49	43,5	24,0	261,0	62,0	64,0	5,5 - 6,0	4,5 - 5,0	
2	0,49	43,5	24,0	259,5	60,5	62,0	5,5 - 6,0	5,5 - 6,0	
3	0,48	42,5	23,5	262,0	60,5	-	5,5 - 6,0	5,5 - 6,0	

Profil 45-333S Laukien								
Nennblechdicke 0,80 mm								
Profilkürze	əl		Н					
45 - 333 S								
	mit Wasserfalle und Stützfuß 333 31,5 72 261 23 Baubreite 1000 mm Tafebreite 1065 mm							
lfd Nr	t	h	b _o	b _u	φ1	φ ₂	r _o	r _u
	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[mm]	[mm]
1		44,5	25,0	262,5	61,5	58,5	6,0 - 6,5	5,0
2	-	444,0	26,5	258,5	62,5	61,5	6,0	5,0
3	-	43,0	-	261,5	58,0	58,5	7,0	6,0

Profil	Profil 50-250 Laukien							
Nennblechdicke 0,50 mm								
Profilkürze	əl		J					
		50 - 25	50					
250 40 130 120 3] Baubreite 1000 mm Tatelbreite 1060 mm Tatelbreite 1060 mm								
I fd Nr	t	h	b _o	b _u	φ1	φ ₂	r _o	r _u
	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[mm]	[mm]
1	0,492	49,5	40,0	130,0	52,5	53,5	4,5-5,0	4,5
2	0,483	50,0	40,0	129,0	54,0	53,0	4,0-4,5	4,5-5,0
3	0,490	49,5	40,0	129,0	52,0	52,0	5,0	4,5-5,0

Profil	Profil 50-250 Laukien								
Nennblechdicke 0,80 mm									
Profilkürze	əl		К						
50 - 250									
	250 40 130 120 Bautrette 1000 mm Tafelbrette 1060 mm								
I fd Nr	t	h	b _o	b _u	φ1	φ ₂	r _o	r _u	
	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[mm]	[mm]	
1	0,814	50,5	40,0	129,0	53,0	54,0	4,5-5,0	5,0-5,5	
2	0,799	50,0	40,5	129,0	50,5	54,0	4,5-5,0	4,5	
3	0,804	49,5	40,0	130,0	53,0	54,0	4,0-5,0	5,0	

Profil			SP 45/150)	Montana			
Nennbleck	ndicke		0,70	mm				
Profilkürzel S			S			Unlegier	ter Stahl	
		+	6 x	150 = 90	0	i		
$A \xrightarrow{95,55} \xrightarrow{150} \xrightarrow{40} \xrightarrow{40} \xrightarrow{110}$								
I fd Nr	t	h	b _o	b _u	φ1	φ ₂	r _o	r _u
	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[mm]	[mm]
1	-	44,5	56,5	40,5	56,5	57,0	5,5	6,5
2	-	44,5	56,0	40,5	58,5	57,0	5	5,5
3	-	46,0	56,5	40,0	58,5	60,5	5,5 - 6,0	6,0

2 Versuchsergebnisse

2.1 Vorversuche

Die Ergebnisse der Vorversuche werden im Hauptteil vorgestellt und diskutiert.

2.2 Versuche

An den im Abschnitt 1 aufgeführten Profilen wurden Versuche Stegkrüppeln mit direkter Durchleitung durchgeführt. Es wurde jeweils nur eine Rippe belastet. Soweit die beiden Gurte unterschiedliche Breiten besaßen, wurden Versuche mit Belastung des schmalen Gurts als Lage 1, Versuche mit Belastung des breiteren Gurts mit Lage 2 bezeichnet.

Abbildung 1: Definition der Lagen im Versuch

Anlage 3.9 zum Bericht Nr.: 091503

Abbildung 2: Versuchsaufbau

Anlage 3.10 zum Bericht Nr.: 091503

Abbildung 3: Versuchsaufbau

Abbildung 4: Typisches Versagensbild

Die ermittelten Maximallasten sind nachfolgend aufgeführt.

Profilkürzol		b _B	ü	F _{max}
FTOTIKUTZEI	Lage	[mm]	[mm]	[kN]
A	1	40	-	2,814
A	1	40	-	2,668
A	1	40	-	2,741
A	1	60	-	3,047
A	1	60	-	3,072
A	1	60	-	3,137
A	1	60	-	3,002
A	1	100	-	4,088
A	1	100	-	3,986
A	1	100	-	4,019

FromkulzerLage[mm][mm][kN]A240-2,661A240-2,688A240-2,684A260-2,840A260-2,849A260-3,109A2100-3,934A2100-3,934A2100-3,668A2100-3,546A2150-4,527A2150-4,407A240452,578A240452,624A260452,663A260452,663
A240- $2,661$ A240- $2,688$ A240- $2,684$ A260- $2,840$ A260- $2,849$ A260- $3,109$ A2100- $3,934$ A2100- $3,934$ A2100- $3,913$ A2100- $3,668$ A2100- $4,527$ A2150- $4,455$ A24045 $2,578$ A24045 $2,624$ A26045 $2,663$
A240- $2,688$ A240- $2,684$ A260- $2,840$ A260- $2,849$ A260- $3,109$ A2100- $3,934$ A2100- $3,934$ A2100- $3,668$ A2100- $3,668$ A2100- $4,527$ A2150- $4,455$ A2150- $4,407$ A24045 $2,624$ A24045 $2,624$ A26045 $2,663$
A240- $2,684$ A260- $2,840$ A260- $2,849$ A260- $3,109$ A2100- $3,934$ A2100- $3,934$ A2100- $3,934$ A2100- $3,934$ A2100- $3,934$ A2100- $3,668$ A2100- $4,527$ A2150- $4,455$ A2150- $4,407$ A24045 $2,578$ A24045 $2,624$ A26045 $2,663$
A2 60 - $2,840$ A2 60 - $2,849$ A2 60 - $3,109$ A2 100 - $3,934$ A2 100 - $3,913$ A2 100 - $3,668$ A2 100 - $3,546$ A2 150 - $4,527$ A2 150 - $4,455$ A2 150 - $4,407$ A2 40 45 $2,578$ A2 40 45 $2,624$ A2 60 45 $2,663$ A2 60 45 $2,663$
A2 60 - $2,849$ A2 60 - $3,109$ A2 100 - $3,934$ A2 100 - $3,913$ A2 100 - $3,668$ A2 100 - $3,546$ A2 150 - $4,527$ A2 150 - $4,455$ A2 150 - $4,407$ A2 40 45 $2,578$ A2 40 45 $2,624$ A2 60 45 $2,663$ A2 60 45 $2,663$
A2 60 - $3,109$ A2 100 - $3,934$ A2 100 - $3,913$ A2 100 - $3,668$ A2 100 - $3,546$ A2 150 - $4,527$ A2 150 - $4,455$ A2 150 - $4,407$ A2 40 45 $2,578$ A2 40 45 $2,624$ A2 60 45 $2,663$ A2 60 45 $2,663$
A2100- $3,934$ A2100- $3,913$ A2100- $3,668$ A2100- $3,546$ A2150- $4,527$ A2150- $4,455$ A2150- $4,407$ A24045 $2,578$ A24045 $2,624$ A26045 $2,663$
A2100- $3,913$ A2100- $3,668$ A2100- $3,546$ A2150- $4,527$ A2150- $4,455$ A2150- $4,407$ A240452,578A240452,624A260452,663
A2100- $3,668$ A2100- $3,546$ A2150- $4,527$ A2150- $4,455$ A2150- $4,407$ A240452,578A240452,624A260452,663A260452,663
A 2 100 - 3,546 A 2 150 - 4,527 A 2 150 - 4,455 A 2 150 - 4,407 A 2 40 45 2,578 A 2 40 45 2,624 A 2 60 45 2,663 A 2 60 45 2,663
A 2 150 - 4,527 A 2 150 - 4,455 A 2 150 - 4,407 A 2 40 45 2,578 A 2 40 45 2,624 A 2 40 45 2,624 A 2 60 45 2,663 A 2 60 45 2,663
A 2 150 - 4,455 A 2 150 - 4,407 A 2 40 45 2,578 A 2 40 45 2,624 A 2 40 45 2,624 A 2 60 45 2,663 A 2 60 45 2,663
A 2 150 - 4,407 A 2 40 45 2,578 A 2 40 45 2,624 A 2 40 45 2,624 A 2 60 45 2,663 A 2 60 45 2,663
A 2 40 45 2,578 A 2 40 45 2,624 A 2 40 45 2,624 A 2 40 45 2,460 A 2 60 45 2,663 A 2 60 45 2,786
A 2 40 45 2,624 A 2 40 45 2,460 A 2 60 45 2,663 A 2 60 45 2,663
A 2 40 45 2,460 A 2 60 45 2,663 A 2 60 45 2,786
A 2 60 45 2,663 A 2 60 45 2,786
Δ 2 60 45 2786
A 2 60 45 3,061
A 2 100 45 3,891
A 2 150 45 4,550
A 2 150 45 4,255
A 2 150 45 4,372
A 2 60 68 3,069
A 2 60 68 3,220
A 2 60 90 3,126
A 2 60 90 3,193

Drofilkürzol	Logo	b _B	ü	F _{max}
Proliikurzei	Lage	[mm]	[mm]	[kN]
В	1	40	-	1,828
В	1	40	-	1,914
В	1	40	-	1,799
В	1	60	-	2,349
В	1	60	-	2,376
В	1	60	-	2,295
В	1	100	-	3,334
В	1	100	-	2,894
В	1	100	-	3,290
В	1	100	-	3,007
В	1	100	-	3,295

Drofilkürzol		b _B	ü	F _{max}
PTOIIIKUIZEI	Lage	[mm]	[mm]	[kN]
В	2	40	-	2,104
В	2	40	-	2,185
В	2	40	-	2,001
В	2	60	-	2,392
В	2	60	-	2,337
В	2	60	-	2,600

Drofilkürzol		b _B	ü	F _{max}
PTOIIIKUIZEI	Lage	[mm]	[mm]	[kN]
D	1/2 (symm.)	39	-	2,270
D	1/2 (symm.)	39	-	2,190
D	1/2 (symm.)	39	-	2,141
D	1/2 (symm.)	60	-	2,605
D	1/2 (symm.)	60	-	2,626
D	1/2 (symm.)	60	-	2,681
D	1/2 (symm.)	99	-	3,608
D	1/2 (symm.)	99	-	3,674
D	1/2 (symm.)	99	-	3,577
D	1/2 (symm.)	39	20	1,883
D	1/2 (symm.)	39	20	2,121
D	1/2 (symm.)	39	20	2,032
D	1/2 (symm.)	150	20	3,415
D	1/2 (symm.)	150	20	3,506
D	1/2 (symm.)	39	40	0,000

Profilkürzol		b _B	ü	F _{max}
FTOTIKUIZEI	Lage	[mm]	[mm]	[kN]
E	1	40	-	1,848
E	1	40	-	1,874
E	1	40	-	1,882
E	1	60	-	2,174
E	1	60	-	2,210
E	1	60	-	2,182
E	1	100	-	2,863
E	1	100	-	2,977
E	1	100	-	2,755
E	1	150	-	3,231
E	1	150	-	3,407
E	1	150	-	3,491
E	1	40	35	1,817
E	1	40	35	1,736

Anlage 3.15
zum Bericht
Nr.: 091503

Drofilkürzol	Logo	b _B	ü	F _{max}
PTOIIIKUIZEI	Lage	[mm]	[mm]	[kN]
E	2	40	-	1,814
E	2	40	-	1,789
E	2	40	-	1,776
E	2	60	-	1,952
E	2	60	-	2,031
E	2	60	-	1,854
E	2	100	-	2,572
E	2	100	-	2,710
E	2	100	-	2,993
E	2	150	-	3,413
E	2	150	-	3,776
E	2	150	-	3,418
E	2	40	35	1,207
E	2	40	35	1,205
E	2	40	35	1,230

Drofilkürzol		b _B	ü	F _{max}
PTOIIIKUIZEI	Lage	[mm]	[mm]	[kN]
F	1	40	-	5,805
F	1	40	-	5,786
F	1	40	-	5,851
F	1	60	-	6,919
F	1	60	-	6,787
F	1	60	-	6,343

Drofilkürzol		b _B	ü	F _{max}
PTOIIIKUIZEI	Lage	[mm]	[mm]	[kN]
F	2	40	-	5,755
F	2	40	-	5,683
F	2	40	-	5,540
F	2	60	-	6,228
F	2	60	-	6,076
F	2	60	-	6,488

Profilkürzol		b _B	ü	F _{max}
FIOIIIKUIZEI	Lage	[mm]	[mm]	[kN]
G	1	40	-	1,834
G	1	40	-	1,847
G	1	40	-	1,871
G	1	60	-	2,055
G	1	60	-	2,024
G	1	60	-	2,081
G	1	100	-	2,505
G	1	100	-	2,492
G	1	100	-	2,601
G	1	40	-	1,812
G	1	60	-	2,115
G	1	100	-	2,515

Profilkürzol	ane l	b _B	ü	F _{max}
FTOIIIKUIZEI	Lage	[mm]	[mm]	[kN]
Н	1	40	-	5,771
Н	1	40	-	5,852
Н	1	40	-	6,009
Н	1	60	-	6,543
Н	1	60	-	6,753
Н	1	60	-	6,700
Н	1	40	-	5,844
Н	1	60	-	6,498

Profilkürzol		b _B	ü	F _{max}
PTOIIIKUIZEI	Lage	[mm]	[mm]	[kN]
J	1	40	-	1,548
J	1	40	-	1,614
J	1	40	-	1,569
J	1	60	-	1,801
J	1	60	-	1,814
J	1	60	-	1,755
J	1	100	-	2,167
J	1	100	-	2,254
J	1	100	-	2,143
J	1	40	-	1,647
J	1	60	-	1,926
J	1	100	-	2,129
J	1	150	-	2,563
J	1	150	-	2,582
J	1	150	-	2,631
J	1	150	-	2,585

Drofilkürzol		b _B	ü	F _{max}
PTOIIIKUIZEI	Lage	[mm]	[mm]	[kN]
J	2	40	-	1,414
J	2	40	-	1,538
J	2	40	-	1,502
J	2	60	-	1,693
J	2	60	-	1,745
J	2	60	-	1,704
J	2	100	-	1,955
J	2	100	-	1,950
J	2	100	-	1,877
J	2	40	-	1,408
J	2	60	-	1,668
J	2	100	-	2,011
J	2	150	-	2,442
J	2	150	-	2,442
J	2	150	-	2,451
J	2	150	-	2,251

Profilkürzel		b _B	ü	F _{max}
FTOIIIKUIZEI	Lage	[mm]	[mm]	[kN]
К	1	40	-	4,687
К	1	40	-	4,624
К	1	40	-	4,476
К	1	60	-	5,196
К	1	60	-	5,355
К	1	60	-	5,488
К	1	100	-	6,728
К	1	100	-	6,507
К	1	100	-	6,259
К	1	40	-	4,629
К	1	60	-	5,588
К	1	60	-	5,208
К	1	100	-	6,482
К	1	150	-	7,908
К	1	150	-	7,772
К	1	150	-	8,669
K	1	150	-	7,752

Profilkürzel	Lage	bB	U	Fmax
К	2	40	-	4,468
К	2	40	-	4,484
К	2	40	-	4,468
К	2	60	-	5,000
К	2	60	-	4,848
К	2	60	-	4,844
К	2	100	-	5,883
К	2	100	-	5,939
К	2	100	-	6,196
К	2	40	-	4,520
К	2	60	-	4,995
К	2	100	-	5,903
К	2	150	-	6,542
К	2	150	-	6,733
K	2	150	-	6,854
K	2	150	-	7,073
K	2	150	-	7,177

Profilkürzel	Lage	b _B	ü	F _{max}
		[mm]	[mm]	[kN]
S	2	60	-	4,553
S	2	60	-	4,657
S	2	60	-	4,279
S	2	60	-	4,222

2.3 Werkstoffkennwerte

Von dem in den Prüfungen verwendeten Blechmaterial wurden für jede Nennblechdicke Werkstoffproben entnommen. Aus den Werkstoffproben wurden Zugproben nach DIN EN 10002-1 ausgearbeitet und damit einaxiale Zugversuche durchgeführt. Aus den Versuchen wurden die Werkstoffkennwerte Dehngrenze, Zugfestigkeit und Bruchdehnung bestimmt.

		t _N = 0,60 (Pi	t _N = 0,60 (Profilkürzel A)		
Lfd. Nr.	t	R _{p0,2}	R _m	A _{80mm}	
	[mm]	[N/mm²]	[N/mm²]	[%]	
1	0,587	293	670	47,0	
2	0,585	295	668	47,5	
3	0,591	296	664	46,8	
	t _N = 0,50 (Profilkürzel B, E, G, J)				
Lfd. Nr.	t	R _{p0,2}	R _m	A _{80mm}	
	[mm]	[N/mm²]	[N/mm²]	[%]	
1	0,481	300	686	47,1	
2	0,486	288	653	49,0	
3	0,473	297	680	49,0	
	$t_N = 0,80$ (Profilkürzel C, D, F, H, K)				
Lfd. Nr.	t	R _{p0,2}	R _m	A _{80mm}	
	[mm]	[N/mm²]	[N/mm²]	[%]	
1	0,790	335	692	45,2	
2	0,767	321	662	49,2	
3	0,774	326	666	47,9	

	t _N = 0,70 (Profilkürzel S, unlegierter Stahl)				
Lfd. Nr.	t	R _{p0,2}	R _m	A _{80mm}	
	[mm]	[N/mm²]	[N/mm²]	[%]	
1	0,650	392	425	26,2	
2	0,654	387	423	26,6	
3	0,651	334	414	28,6	
4	0,651	387	425	27,6	
ANLAGE 4: NUMERISCHE UNTERSUCHUNGEN ZUM STEGKRÜPPELN

1 Nachrechnung Bemessungsgleichung

Zum Vergleich der sich rechnerisch ergebenden Tragfähigkeit am Zwischenauflager wurden parametrische Untersuchungen der Versuchsanordnung mit direkter Durchleitung durchgeführt. Das Modell ist nachfolgend dargestellt.

Abbildung 1: Versuch mit direkter Durchleitung

Die in der Abbildung unten liegenden Gurte sind durch Auflager gegen Verschiebung in y-Richtung (Profilquerrichtung) und gegen Verdrehung um die x-Achse (Profillängsrichtung) gehalten. Der unter dem Profil liegende, die Auflager im Versuch darstellende Block ist gegen Verschiebungen in z- Richtung gehalten.

Zur Modellierung des Kontakts im Bereich des untersuchten Zwischenauflagers erfolgte mit Elementen der Typen Targe170 (Lasteinleitungsblöcke) und Contac173 (Trapezprofil). Die mit Contac173 versehene Kontaktfläche wurde dabei größer als die entsprechende, mit Targe170 versehene Kontaktfläche des Lasteinleitungsblocks gewählt.

In den Berechnungen an Trapezprofilen aus nichtrostendem Stahl wurde das Werkstoffgesetz nach DIN EN 1993-1-4, Anhang C, verwendet.

Lfd.	b _o	b _u	br	h	r	b _B	t	f _y	f _u	n	F _{max}
Nr.	[mm]							[N/n	[N/mm²]		[kN]
1	40	55	150	45	5	30	0,6	320	660	3	2,66
2	40	55	150	45	5	40	0,6	320	660	3	2,90
3	40	55	150	45	5	60	0,6	320	660	3	3,59
4	40	55	150	45	5	120	0,6	320	660	3	5,35
5	40	55	205	90	5	40	0,6	320	660	3	2,59
6	40	55	205	90	5	60	0,6	320	660	3	2,82
7	40	55	205	90	5	120	0,6	320	660	3	3,26
8	40	55	260	135	5	40	0,6	320	660	3	2,43
9	40	55	260	135	5	60	0,6	320	660	3	2,66
10	40	55	260	135	5	120	0,6	320	660	3	2,90
11	40	55	205	90	5	40	1,0	320	660	3	7,39
12	40	55	205	90	5	60	1,0	320	660	3	8,33
13	40	55	205	90	5	120	1,0	320	660	3	10,41
14	40	55	260	135	5	40	1,0	320	660	3	7,09
15	40	55	260	135	5	60	1,0	320	660	3	7,80
16	40	55	260	135	5	120	1,0	320	660	3	9,24
17	40	55	150	45	5	30	0,6	320	660	6	2,79
18	40	55	150	45	5	40	0,6	320	660	6	3,15
19	40	55	150	45	5	60	0,6	320	660	6	3,72
20	40	55	150	45	5	120	0,6	320	660	6	5,35
21	40	55	150	45	5	30	0,6	320	660	10	2,92
22	40	55	150	45	5	40	0,6	320	660	10	3,09
23	40	55	150	45	5	60	0,6	320	660	10	3,76
24	40	55	150	45	5	120	0,6	320	660	10	5,44
25	40	55	205	90	5	40	0,6	320	660	6	2,76
26	40	55	205	90	5	60	0,6	320	660	6	3,03
27	40	55	205	90	5	120	0,6	320	660	6	3,62
28	40	55	205	90	5	40	0,6	320	660	10	2,75
29	40	55	205	90	5	60	0,6	320	660	10	3,11
30	40	55	205	90	5	120	0,6	320	660	10	3,79
31	40	55	260	135	5	40	0,6	320	660	6	2,61
32	40	55	260	135	5	60	0,6	320	660	6	2,85
33	40	55	260	135	5	120	0,6	320	660	6	3,58

Tabelle 1: Nachrechnung

Lfd.	b _o	b _u	b _r	h	r	b _B	t	f _y	f _u	n	F _{max}
Nr.	[mm]							[N/mm²]		[-]	[kN]
34	40	55	260	135	5	40	0,6	320	660	10	2,65
35	40	55	260	135	5	60	0,6	320	660	10	2,95
36	40	55	260	135	5	120	0,6	320	660	10	3,40
37	40	55	205	90	5	40	1,0	320	660	6	7,78
38	40	55	205	90	5	60	1,0	320	660	6	8,95
39	40	55	205	90	5	120	1,0	320	660	6	11,29
40	40	55	205	90	5	40	1,0	320	660	10	7,89
41	40	55	205	90	5	60	1,0	320	660	10	9,21
42	40	55	205	90	5	120	1,0	320	660	10	11,59
43	40	55	260	135	5	40	1,0	320	660	6	7,50
44	40	55	260	135	5	60	1,0	320	660	6	8,35
45	40	55	260	135	5	120	1,0	320	660	6	10,22
46	40	55	260	135	5	40	1,0	320	660	10	7,67
47	40	55	260	135	5	60	1,0	320	660	10	8,72
48	40	55	260	135	5	120	1,0	320	660	10	10,65
49	50	50	140	40	3	40	0,6	230	660	6	2,96
50	50	50	140	40	3	60	0,6	230	660	6	3,71
51	50	50	140	40	3	120	0,6	230	660	6	4,97
52	50	50	140	40	3	40	0,8	230	660	6	5,25
53	50	50	140	40	3	60	0,8	230	660	6	6,47
54	50	50	140	40	3	120	0,8	230	660	6	9,29
55	50	50	140	40	3	40	1,0	230	660	6	8,13
56	50	50	140	40	3	60	1,0	230	660	6	9,95
57	50	50	140	40	3	120	1,0	230	660	6	14,88
58	50	50	140	40	8	40	0,8	320	660	6	6,66
59	50	50	140	40	8	60	0,8	320	660	6	7,42
60	50	50	140	40	8	120	0,8	320	660	6	10,23
61	40	40	140	40	8	40	0,9	320	660	6	-
62	40	40	140	40	8	60	0,9	320	660	6	7,45
63	40	40	140	40	8	120	0,9	320	660	6	10,63

Tabelle 2: Nachrechnung

2 Vergleichsberechnung nichtrostender Stahl – unlegierter Stahl

In den Vergleichsberechnungen wurde ein Versuch vom Typ Zwischenauflager unter Auflast modelliert. Das Modell ist nachfolgend dargestellt.

Abbildung 2: Versuch Zwischenauflager

Die in der Abbildung unten liegenden Gurte sind durch Auflager gegen Verschiebung in y-Richtung (Profilquerrichtung) und gegen Verdrehung um die x-Achse (Profillängsrichtung) gehalten. Der unter dem Profil liegende, die Auflager im Versuch darstellende Block ist gegen Verschiebungen in z- und y-Richtung gehalten. Um das Rollen-Kipplager des Versuches zu modellieren sind keine Auflager in Modelllängsrichtung modelliert.

Zur Modellierung des Kontakts im Bereich des untersuchten Zwischenauflagers erfolgte mit Elementen der Typen Targe170 (Lasteinleitungsblock) und Contac173 (Trapezprofil). Die mit Contac173 versehene Kontaktfläche wurde dabei größer als die entsprechende, mit Targe170 versehene Kontaktfläche des Lasteinleitungsblocks gewählt.

In den Berechnungen an Trapezprofilen aus nichtrostendem Stahl wurde das Werkstoffgesetz nach DIN EN 1993-1-4, Anhang C, verwendet. In den Berechnungen an Trapezprofilen mit Werkstoff unlegierter Stahl wurde ein linear elastisches-ideal plastisches Werkstoffgesetz verwendet.

Lfd.	b _o	b _u	b _r	Н	r	b _B	t	f _y	f _u	n	F _{max}
Nr.	[mm]							[N/n	nm²]	[-]	[kN]
101	40	40	160	50	5	40	0,6	230	540	6	1,90
102	40	40	160	50	5	60	0,6	230	540	6	2,15
103	40	40	160	50	5	120	0,6	230	540	6	2,85
104	40	40	160	50	5	40	0,8	230	540	6	3,40
105	40	40	160	50	5	60	0,8	230	540	6	3,93
106	40	40	160	50	5	120	0,8	230	540	6	5,09
107	40	40	160	50	5	40	1,0	230	540	6	5,24
108	40	40	160	50	5	60	1,0	230	540	6	5,98
109	40	40	160	50	5	120	1,0	230	540	6	7,60
110	23	23	75	21	5	40	0,6	230	540	6	1,99
111	23	23	75	21	5	60	0,6	230	540	6	2,37
112	23	23	75	21	5	120	0,6	230	540	6	3,23
113	23	23	75	21	5	40	0,8	230	540	6	3,43
114	23	23	75	21	5	60	0,8	230	540	6	3,96
115	23	23	75	21	5	120	0,8	230	540	6	4,83
116	23	23	75	21	5	40	1,0	230	540	6	5,11
117	23	23	75	21	5	60	1,0	230	540	6	6,00
118	23	23	75	21	5	120	1,0	230	540	6	6,81
119	40	40	135	45	5	40	0,6	230	540	6	1,94
120	40	40	135	45	5	60	0,6	230	540	6	2,25
121	40	40	135	45	5	120	0,6	230	540	6	2,95
122	40	40	135	45	5	40	0,8	230	540	6	3,31
123	40	40	135	45	5	60	0,8	230	540	6	3,99
124	40	40	135	45	5	120	0,8	230	540	6	5,14
125	40	40	135	45	5	40	1,0	230	540	6	5,21
126	40	40	135	45	5	60	1,0	230	540	6	6,08
127	40	40	135	45	5	120	1,0	230	540	6	8,00
128	23	23	95	55	5	40	0,6	230	540	6	2,05
129	23	23	95	55	5	60	0,6	230	540	6	2,28
130	23	23	95	55	5	120	0,6	230	540	6	3,15
131	23	23	95	55	5	40	0,8	230	540	6	3,40
132	23	23	95	55	5	60	0,8	230	540	6	3,95
133	23	23	95	55	5	120	0,8	230	540	6	5,44

Tabelle 3: Vergleichsberechnung: nichtrostender Stahl

Lfd.	b _o	b _u	b _r	Н	r	b _B	t	fy	f _u	n	F_{max}
Nr.				[N/n	[N/mm²]		[kN]				
134	23	23	95	55	5	40	1,0	230	540	6	5,07
135	23	23	95	55	5	60	1,0	230	540	6	6,21
136	23	23	95	55	5	120	1,0	230	540	6	8,21
137	40	40	130	70	5	40	0,6	230	540	6	2,00
138	40	40	130	70	5	60	0,6	230	540	6	2,23
139	40	40	130	70	5	120	0,6	230	540	6	2,86
140	40	40	130	70	5	40	0,8	230	540	6	3,35
141	40	40	130	70	5	60	0,8	230	540	6	3,80
142	40	40	130	70	5	120	0,8	230	540	6	5,07
143	40	40	130	70	5	40	1,0	230	540	6	5,02
144	40	40	130	70	5	60	1,0	230	540	6	5,84
145	40	40	130	70	5	120	1,0	230	540	6	7,98

Tabelle 4:	Vergleichsberechnun	ng: nichtrostender	Stahl
------------	---------------------	--------------------	-------

I fd Nr	b _o	b _u	b _r	h	b _Β	t	t	f _y	F_{max}	
		[mm]								
201	40	40	160	50	5	40	0,6	230	2,04	
202	40	40	160	50	5	60	0,6	230	2,22	
203	40	40	160	50	5	120	0,6	230	3,07	
204	40	40	160	50	5	40	0,8	230	3,37	
205	40	40	160	50	5	60	0,8	230	4,01	
206	40	40	160	50	5	120	0,8	230	5,73	
207	40	40	160	50	5	40	1,0	230	5,30	
208	40	40	160	50	5	60	1,0	230	5,94	
209	40	40	160	50	5	120	1,0	230	8,61	
210	23	23	75	21	5	40	0,6	230	1,94	
211	23	23	75	21	5	60	0,6	230	2,23	
212	23	23	75	21	5	120	0,6	230	2,73	
213	23	23	75	21	5	40	0,8	230	3,23	
214	23	23	75	21	5	60	0,8	230	3,65	
215	23	23	75	21	5	120	0,8	230	3,90	

Tabelle 5: Vergleichsberechnung: unlegierter Stahl

I fd Nr	b _o	b _u	br	h	b _B	t	t	f _y	F_{max}
				[mm]				[N/mm ²]	[kN]
216	23	23	75	21	5	40	1,0	230	4,68
217	23	23	75	21	5	60	1,0	230	5,17
218	23	23	75	21	5	120	1,0	230	5,96
219	40	40	135	45	5	40	0,6	230	1,98
220	40	40	135	45	5	60	0,6	230	2,29
221	40	40	135	45	5	120	0,6	230	3,08
222	40	40	135	45	5	40	0,8	230	3,39
223	40	40	135	45	5	60	0,8	230	4,03
224	40	40	135	45	5	120	0,8	230	5,11
225	40	40	135	45	5	40	1,0	230	5,14
226	40	40	135	45	5	60	1,0	230	6,03
227	40	40	135	45	5	120	1,0	230	7,94
228	23	23	95	55	5	40	0,6	230	1,90
229	23	23	95	55	5	60	0,6	230	2,13
230	23	23	95	55	5	120	0,6	230	3,14
231	23	23	95	55	5	40	0,8	230	3,26
232	23	23	95	55	5	60	0,8	230	3,87
233	23	23	95	55	5	120	0,8	230	5,21
234	23	23	95	55	5	40	1,0	230	4,86
235	23	23	95	55	5	60	1,0	230	5,90
236	23	23	95	55	5	120	1,0	230	7,81
237	40	40	130	70	5	40	0,6	230	1,87
238	40	40	130	70	5	60	0,6	230	2,22
239	40	40	130	70	5	120	0,6	230	3,03
240	40	40	130	70	5	40	0,8	230	3,15
241	40	40	130	70	5	60	0,8	230	3,78
242	40	40	130	70	5	120	0,8	230	5,19
243	40	40	130	70	5	40	1,0	230	4,76
244	40	40	130	70	5	60	1,0	230	5,41
245	40	40	130	70	5	120	1,0	230	8,08

Tabelle 6: Vergleichsberechnung: unlegierter Stahl