Ergänzungsauftrag zum Forschungsvorhaben "DIN EN 1995 – EC 5 Holzbauten – Anwendungserprobung"

Untersuchung von Pultdachträgern und Satteldachträgern mit geradem und gekrümmtem Untergurt zur Abschätzung des Einflusses des Faseranschnittwinkels bzw. Dachneigungwinkels

T 3273

T 3273

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

2012

ISBN 978-3-8167-8706-8

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

Proj.Nr. 09.007g

Ergänzungsauftrag - Schlussbericht 16.09.2011

Schlussbericht

Ergänzungsauftrag zum Forschungsvorhaben "DIN EN 1995 – EC 5 Holzbauten – Anwendungserprobung"

"Untersuchung von Pult- und Satteldachträgern mit geradem und gekrümmtem Untergurt zur Abschätzung des Einflusses des Faseranschnittwinkels bzw. Dachneigungswinkels"

Auftraggeber: Deutsches Institut für Bautechnik, Berlin

Kolonnenstr. 30 L

10829 Berlin

Antragsteller: Harrer Ingenieure GmbH

Reinhold-Frank-Str. 48b

76133 Karlsruhe

Proj.Nr. 09.007g

Ergänzungsauftrag - Schlussbericht 16.09.2011

Inhaltsverzeichnis

- 1 Vorbemerkungen Begründung und Ziel des Forschungsvorhabens
- 2 Projektbeteiligte
 - 2.1 Projektteam
 - 2.2 Betreuergruppe
 - 2.3 Arbeitsgruppe
- 3 Arbeitsplan (zeitlicher Ablauf)
- 4 Auswahl der Systeme
 - 4.1 Festlegung der Materialien, Geometrien und Belastungen
 - 4.2 Durchführung der ersten Berechnungen
 - 4.3 Berechnungen mit dem Programm RFEM von DLUBAL
 - 4.4 Überarbeitung der Systeme
 - 4.5 Durchführung weiterer Berechnungen
 - 4.6 Ergebnisse
 - 4.7 Schlussfolgerungen
 - 4.8 Vorschlag

5 Zusammenfassung

Normen und Literatur

Anlagen

Anlage 5

Anlage 1	Modellierung mit dem Programm RFEM von DLUBAL
Anlage 2	Behandlung der orthotropen Materialmodelle in RFEM
Anlage 3	Protokoll zur Sitzung am 25.02.2011 mit Anlage
Anlage 4	Berechnungen und Ergebnisse der Satteldachträger mit geradem Untergurt

Berechnungen und Ergebnisse der Satteldachträger mit gekrümmtem Untergurt

Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011

1 Vorbemerkungen – Begründung und Ziel des Forschungsvorhabens

Die Berechnungsgrundsätze für Pultdachträger, Satteldachträger mit geradem oder gekrümmtem Untergurt sowie gekrümmte Träger sind nach DIN EN 1995-1-1:2010 (kurz EC 5) und DIN 1052:2008 prinzipiell gleich. Jedoch wird in DIN 1052:2008 der Faseranschnittwinkel für Pultdachträger und Satteldachträger mit geradem Untergurt auf 10° und der Dachneigungswinkel im Firstbereich von Satteldachträgern mit gekrümmtem Untergurt auf 20° beschränkt. Eine solche Deckelung des Faseranschnittwinkels bzw. des Dachneigungswinkels ist im Eurocode nicht enthalten.

Dem seinerzeitigen Projektteam zum Forschungsvorhaben "DIN EN 1995 - Eurocode 5 Holzbauten - Anwendungserprobung", aber auch den Mitgliedern des für den EC 5 zuständigen DIN-Spiegelausschusses sind keine systematischen Untersuchungen mit größeren Winkeln bekannt. Das seinerzeitige Projektteam setzte sich zusammen aus Harrer Ingenieure GmbH, Karlsruhe, Ingenieurbüro Trabert und Partner, Geisa, sowie Holzleim-Ingenieurbüro Paul Stephan, Gaildorf.

Im Hinblick auf ein mögliches Sicherheitsdefizit haben die Harrer Ingenieure beim DIBt einen ergänzenden Forschungsauftrag zur Durchführung von Untersuchungen der drei Trägerformen Pultdachträger, Satteldachträger mit geradem Untergurt und Satteldachträger mit gekrümmtem Untergurt mit verschiedenen Faseranschnittwinkeln bzw. Dachneigungswinkeln beantragt.

Die Untersuchungen erfolgten in Zusammenarbeit mit der Softwarefirma DLUBAL, welche die Träger mit dem Programm RFEM modelliert und berechnet hat. Im Vergleich dazu wurden die Binder nach den Berechnungsgrundsätzen der DIN EN 1995-1-1 Ausgaben Juni 1994 (Vornorm) sowie Dezember 2010, der DIN 1052 Ausgaben April 1988 sowie Dezember 2008 und nach den Diagrammen in der Veröffentlichung von BLUMER 1972/1979 - soweit vorhanden - nachgewiesen. Die Ergebnisse wurden als Kurverscharen aufgetragen.

Wird im folgenden Bericht von EC 5 gesprochen, bezieht sich dies immer auf die aktuelle Version des Eurocodes 5, nämlich die DIN EN 1995-1-1:2010. Gleiches gilt für DIN 1052: sofern nicht anders angegeben, ist hiermit immer die neuste Fassung aus dem Jahr 2008 gemeint. Wird ein Bezug auf andere Ausgaben dieser beiden Normen gemacht, so wird dies jeweils explizit vermerkt.

Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011

2 Projektbeteiligte

Die Projektbeteiligten des Ergänzungsauftrages setzten sich zusammen aus dem u. g. Projektteam und der nachgenannten Betreuergruppe sowie Arbeitsgruppe.

Das Projektteam führte die Berechnungen durch und stellte die Ergebnisse aus den Berechnungen zusammen.

Die Betreuergruppe begleitete das Projektteam. Die Arbeitsgruppe stellte eine Ergänzung zur Betreuergruppe dar.

2.1 Projektteam

FSt 1: Harrer Ingenieure (Antragsteller)

Gesellschaft Beratender Ingenieure VBI mbH

Straße: Reinhold-Frank-Straße 48b

PLZ - Ort: 76133 Karlsruhe

Projektleiter: Dipl.-Ing. Matthias Gerold

Tel.: 0721/1819-25 Fax: 0721/1819-60

E-Mail: m.gerold@harrer-ing.de
Mitbearbeiterin: Dipl.-Ing. Marion Kleiber

FSt 2: Ingenieursoftware DLUBAL GmbH

Straße: Am Zellweg 2

PLZ - Ort: 93464 Tiefenbach

Projektleiter: Dipl.-Ing. Bastian Kuhn

Tel.: 09673 / 9203-0 Fax: 09673 / 9203-51

E-Mail: Bastian.Kuhn@dlubal.com

Proj.Nr. 09.007g

Ergänzungsauftrag - Schlussbericht 16.09.2011

2.2 Betreuergruppe

Herr Schäpel Deutsches Institut für Bautechnik (DIBt, bewilligende Stelle)

Herr Kühnemann jetzt Ministerium für Umwelt, Klima und Energiewirtschaft

ehem. Wirtschaftsministerium BW, Stuttgart

(Vertr. ARGEBAU, Initiator)

Herr Prof. Winter TU München

2.3 Arbeitsgruppe

Herr Prof. Brüninghoff Universität Wuppertal

Herr Dr. Wiegand Studiengemeinschaft Holzleimbau

Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011

3 Arbeitsplan (zeitlicher Ablauf)

Aufgliederung der einzelnen Forschungsabschnitte nach Art und Umfang der Leistungen.

Forschungs-	Leistungsbeschreibung		
abschnitt			
1.	 Einarbeitung in das Themengebiet, Literaturrecherche etc. 		
Dez 2010 -	 Festlegung der geometrischen Abmessungen, Materialkennwerte und 		
Jan 2011	Lastansätze für die drei zu untersuchenden Trägerformen		
	 Durchführung der "Handberechnungen" 		
2.	 Modellierung der Trägerformen mit dem Programm RFEM von Dlubal 		
Jan 2011 -	 Auswertung der Ergebnisse aus der EDV-Berechnung und Abgleich 		
Feb 2011	mit den Ergebnissen aus der "Handberechnung"		
	Aufbereitung der Ergebnisse		
3.	Betreuer- und Arbeitsgruppensitzung		
25.02.2011	Vorstellung und Diskussion der Ergebnisse zu den Trägern mit geradem		
	Untergurt, Harrer Ingenieure, Karlsruhe		
4.	 Anpassung der Systeme und Durchführung weiterer Berechnungen 		
Feb 2011 -			
Juni 2011			
20.06.2011	2. Betreuer- und Arbeitsgruppensitzung		
	Vorstellung und Diskussion der Ergebnisse zu allen Trägerformen beim WM		
	BW im Rahmen einer Arbeitskreissitzung EC5/NA/A1		
5.	 Ergebnisbericht 		
Juli 2011			

Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011

4 Auswahl der Systeme, Durchführung der Berechnungen, Ergebnisse

4.1 Festlegung der Materialien, Geometrien und Belastungen

Für die Materialeigenschaften wurden für alle Trägertypen die Festigkeits- und Steifigkeitskennwerte der Brettschichtholzfestigkeitsklasse GI 24 h bzw. BS 11 festgelegt.

Im Gegensatz zur DIN 1052 sind im EC 5 selbst keine Angaben zu den Festigkeits- und Steifigkeitskennwerten für Brettschichtholz enthalten. Diese sind der zugehörigen Produktnorm der DIN EN 1194:1999 zu entnehmen.

Für die Nachweise, die nach dem neuen Sicherheitskonzept geführt wurden, d.h. nach DIN EN 1995-1-1:1994 (Vornorm) und 2010, DIN 1052:2008, sowie bei den Berechnungen mit DLUBAL, wurden die charakteristischen Festigkeitskennwerte mit $k_{mod} = 0.9$ und $\gamma_{M} = 1.3$ beaufschlagt. Für die Nachweise nach dem altem Sicherheitskonzept (DIN 1052:1988 und BLUMER 1972 / 1979) wurden zulässige Spannungen angesetzt.

Die Binderbreite sowie die Spannweite wurden ebenfalls für alle Trägertypen gleich gewählt, nämlich zu einer Breite b von 18 cm und einer Spannweite I von 8,0 m.

Bei den Pultdachträgern wurde die Trägerhöhe in Feldmitte h_m konstant mit 2,5 m gehalten. Für den Faseranschnittwinkel wurden die Varianten $\alpha = 10^{\circ} / 20^{\circ} / 25^{\circ}$ und 30° untersucht. Entsprechend dem Faseranschnittwinkel wurde die Trägerhöhe an der Traufe und am First angepasst.

Bei den Satteldachträgern mit geradem Untergurt wurde die Firsthöhe h_{ap} konstant mit 2,5 m gehalten. Die Abstufung der Faseranschnittwinkel erfolgte analog zu den Pultdachträgern d.h. $\alpha = 10^{\circ} / 20^{\circ} / 25^{\circ}$ und 30°. Die Traufhöhe wurde entsprechend der Faseranschnittwinkel angepasst.

Die Untersuchung an den Satteldachträgern mit gekrümmtem Untergurt wurde in einem späteren Stadium (s. Kapitel 4.4) durchgeführt.

Als Belastung wurde eine Gleichstreckenlast von q = 45,0 kN/m (altes Sicherheitskonzept) bzw. $q_d = 65,3$ kN/m (gamma-fach) in Ansatz gebracht.

Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011

4.2 Durchführung der ersten Berechnungen

Mit den in Kapitel 4.1 festgelegten Materialgüten, Geometrien und Belastungen wurden die ersten Berechnungen an den Pultdachträgern und den Satteldachträgern mit geradem Untergurt mit Hilfe einer Tabellenkalkulation (Excel) durchgeführt.

Dabei wurde für jedes Nachweisformat ein separates Tabellenblatt erstellt.

Folgende Nachweisformate waren zu untersuchen:

- Nachweis der Biegerandspannungen unten (Zug) in Feldmitte (Firstquerschnitt),
- Nachweis der Biegerandspannungen unten außerhalb des Firstquerschnittes bei $x = h_{ap}/4$, $h_{ap}/2$ und h_{ap} , wobei x von der Trägermitte aus gemessen wird,
- Nachweis der Biegerandspannungen oben (Druck) außerhalb des Firstquerschnittes an der angeschnittenen Faser bei $x = h_{ap}/4$, $h_{ap}/2$ und h_{ap} , wobei x von der Trägermitte aus gemessen wird,
- Nachweis der Querzugspannungen.

Innerhalb dieses Tabellenkalkulationsblattes wurden für jedes Nachweisformat die Berechnungen nach verschiedenen Normen oder Literaturquellen (DIN EN 1995-1-1 Ausgaben 1994 (Vornorm) und 2010, DIN 1052 Ausgaben 1988 und 2008 sowie BLUMER 1972/1979) durchgeführt. Um die Ergebnisse miteinander vergleichen zu können, wurde jeweils der Ausnutzungsgrad η ermittelt. Dadurch können die Ergebnisse nach dem alten denen nach dem neuen Sicherheitskonzept gegenüber gestellt werden.

Weiterhin wurden die mit dem Programm RFEM von DLUBAL (siehe Kapitel 4.3) ermittelten Spannungen angegeben und die daraus berechneten Ausnutzungsgrade in den Vergleich mit einbezogen.

Die Ausnutzungsgrade stellen dabei lediglich einen Vergleichswert dar, sodass sich auch Ausnutzungen über 100 % ergeben können.

Proj.Nr. 09.007g

Ergänzungsauftrag - Schlussbericht 16.09.2011

4.3 Berechnungen mit dem Programm RFEM von DLUBAL

Die Berechnungen mit dem Programm RFEM von DLUBAL wurden überwiegend vom Softwarehersteller selbst durchgeführt und die Dateien anschließend Harrer Ingenieure zur Verfügung gestellt.

Aus den Dateien konnten sowohl die Biegerandspannungen, als auch die Querzugspannungen an verschiedenen Schnitten im Modell ausgegeben werden (Bild 3).

Bei der Modellierung der Satteldachträger mit geradem Untergurt wurden zwei verschiedene Lastansätze gewählt: zur Ermittlung der Biegerandspannungen wurde eine Gleichstreckenlast in Ansatz gebracht (siehe Bild 1). Zur Ermittlung der Querzugspannungen dagegen wurden Einzellasten im Abstand 1 m angesetzt, wobei am Firstpunkt keine Last aufgebracht wurde. Weiterhin wurde in diesem Modell am oberen Rand eine Netzverdichtung vorgenommen (siehe Bild 2). Dies war erforderlich, da es in den Elementen am oberen Trägerrand infolge der Lasteinleitung zu einer lokalen Überdrückung der Querzugspannungen kam, welche den Verlauf die Spannungsverteilung verfälscht hat.

Eine solche Überdrückung kann gemäß EC 5 rechnerisch berücksichtigt werden. Dort werden in Kapitel 6.4.3 die beiden Gleichungen (6.54) und (6.55) als alternative Bemessungsgleichungen angegeben:

$$\sigma_{t,90,d} = k_p \, \frac{6M_{ap}}{bh_{ap}^2} \tag{6.54}$$

oder alternativ

$$\sigma_{t,90,d} = k_p \frac{6M_{ap}}{bh_{ap}^2} - 0.6 \frac{p_d}{b}$$
 (6.55)

mit p_d als gleichmäßig verteilte Auflast im Firstbereich.

Die Wahl der anzusetzenden Gleichung ist ein NDP, d.h. ein national festzulegender Parameter. Somit hatten Deutschland wie auch die anderen europäischen Länder die Möglichkeit durch die Vorgabe der Gleichung (6.54) als anzusetzende Bemessungsgleichung die Überdrückung auszuschließen.

Proj.Nr. 09.007g

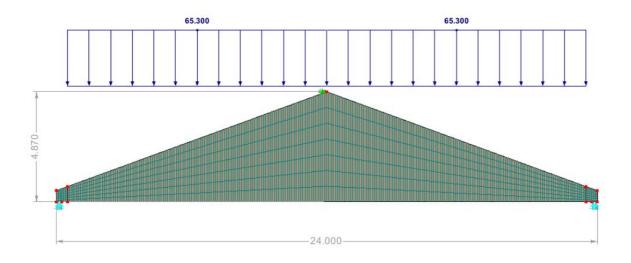


Bild 1: RFEM-Modell Satteldachträger mit geradem Untergurt – Faseranschnittwinkel 20°, Ansatz einer Gleichstreckenlast

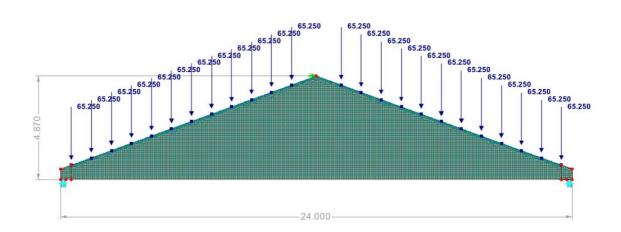
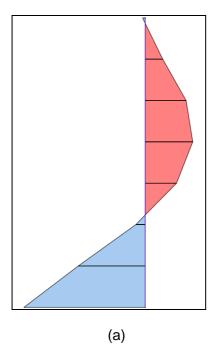



Bild 2: RFEM-Modell Satteldachträger mit geradem Untergurt – Faseranschnittwinkel 20°, Ansatz von Einzellasten

Proj.Nr. 09.007g

Ergänzungsauftrag - Schlussbericht 16.09.2011

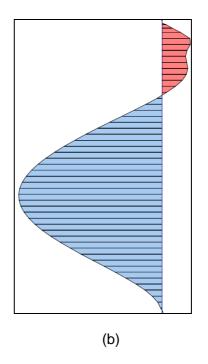


Bild 3: Schnitt im Firstquerschnitt – Verlauf der Biegespannungen (a) und Querzugspannungen (b)

Aus den wie in Bild 3 beispielhaft dargestellten Spannungsverläufen konnten dann die Biegespannungen am unteren Rand im und außerhalb des Firstquerschnittes, die Biegespannungen am oberen Rand außerhalb des Firstquerschnittes sowie die maximalen Querzugspannungen entnommen werden. Diese Bemessungswerte wurden einerseits den Festigkeitskennwerten nach der europäischen Produktnorm für Brettschichtholz DIN EN 1194:1999 (bezieht sich auf EC 5) und andererseits den Kennwerten nach DIN 1052 gegenübergestellt. Für den Nachweis der Querzugspannungen wurden auf der Widerstandsseite der Verteilungsbeiwert k_{dis} und der Volumenfaktor k_{vol} (EC 5) bzw. der Höhenfaktor k_h (DIN 1052) berücksichtigt.

Angaben zur Modellierung sowie zu den verwendeten Materialmodellen sind in <u>Anlage 1</u> und <u>Anlage 2</u> enthalten.

Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011

4.4 Überarbeitung der Systeme

In einer Betreuer- und Arbeitsgruppensitzung wurden die Ergebnisse aus den o.g. ersten Berechnungen vorgestellt und diskutiert.

Ein Ergebnis dieser Besprechung war, dass die gewählten Geometrien zu verändern sind, auch wenn dadurch nicht mehr das angedachte Spektrum der Anschnittwinkel α berücksichtigt werden konnte. Die Berechnungsformeln der Norm basieren auf der Balkentheorie, sodass ein Längen-zu-Höhenverhältnis ≥ 6 eingehalten werden sollte. Diese Forderung ergibt, dass ein Faseranschnittwinkel über 25° für sinnvolle Geometrien nicht ausführbar ist.

Das Protokoll zur Sitzung mit Anlage ist in Anlage 3 enthalten.

Aufgrund der o.g. Ergebnisse der Sitzung wurden für die weiteren Berechnungen die Systeme überarbeitet: Die Trägerbreite wurde mit b = 18 cm beibehalten. Als Spannweite wurde die größte Länge von I = 24 m gewählt.

Weiterhin wurden nur noch Berechnungen für die Satteldachträger mit geradem und gekrümmtem Untergurt durchgeführt. Die Biegebeanspruchungen bei Pultdachträgern am unteren und oberen Biegezug bzw. -druckrand werden durch die Berechnungen der Satteldachträger mit geradem Untergurt abgedeckt.

Für die Satteldachträger mit geradem Untergurt wurde die Traufhöhe mit einer Höhe h von 50 cm konstant gehalten. Die Firsthöhe wurde in Abhängigkeit des Faseranschnittwinkels berechnet. Für den Faseranschnittwinkel wurden die Varianten α = 5° / 10° / 15° / 20° und 24° untersucht.

Für die Satteldachträger mit gekrümmtem Untergurt wurde die Traufhöhe ebenfalls mit einer Höhe h von 50 cm konstant gehalten. Die Lamellendicke wurde zu t=20 mm gewählt. Der Innenradius des Krümmungsbereiches wurde aus dem RFEM-Modell herausgelesen. Die Firsthöhe sowie die Länge des Ausrundungsbereiches wurden in Abhängigkeit des Dachneigungs- bzw. Faseranschnittwinkels berechnet. Für den Dachneigungswinkel wurden die Varianten $\delta=25^{\circ}$ / 30° und 35° mit jeweils zugehörigem Untergurtneigungswinkel $\beta=5^{\circ}$ / 10° und 15° untersucht. Daraus ergibt sich ein Faseranschnittwinkel von $\alpha=20^{\circ}$.

Proj.Nr. 09.007g

Ergänzungsauftrag - Schlussbericht 16.09.2011

Der Lastansatz im RFEM-Modell wurde bei den Satteldachträgern mit gekrümmtem Untergurt folgendermaßen gewählt: Aus den bereits im Abschnitt 4.3 dargestellten Gründen wurden im First- bzw. Ausrundungsbereich keine Lasten aufgebracht. In den geraden Trägerbereichen wurden Einzellasten im Abstand 1 m aufgebracht (siehe Bild 4). Diese wurden mit einem entsprechenden Lastfaktor versehen, so dass die Summe der Lasten entsprechend dem ursprünglichen Lastansatz einer Streckenlast $q_d = 65,3$ kN/m (gamma-fach) gleich kommt.

Um die Ergebnisse aus dem RFEM-Modell und den Handberechnungen miteinander vergleichen zu können, wurden die maßgebenden Bemessungsmomente am Firstquerschnitt sowie an der Stelle max M(X) / W(x) für die Nachweise nach DIN EN 1995-1-1:1994 (Vornorm) und 2010, DIN 1052:1988 und 2008 und BLUMER 1972/1979 mit Hilfe eines Ersatzsystems ermittelt (siehe Bild 5).

Bild 6 zeigt die zugehörigen Biege- und Querzugbeanspruchungen im Firstquerschnitt.

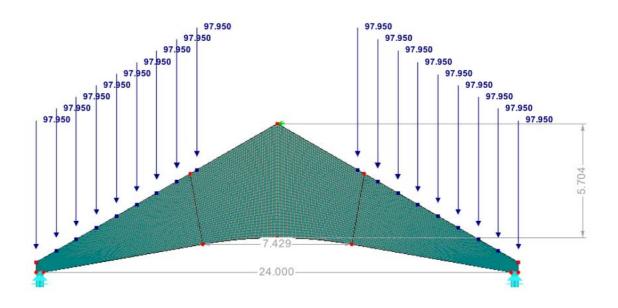


Bild 4: RFEM-Modell Satteldachträger mit gekrümmtem Untergurt – Dachneigungswinkel 30°

Proj.Nr. 09.007g

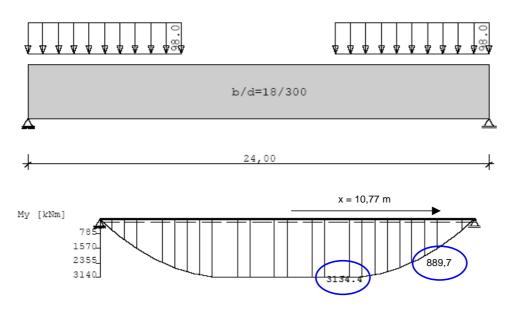


Bild 5: Ersatzsystem zur Ermittlung der Bemessungsmomente (Berechnung mit dem Programm DLT von F+L)

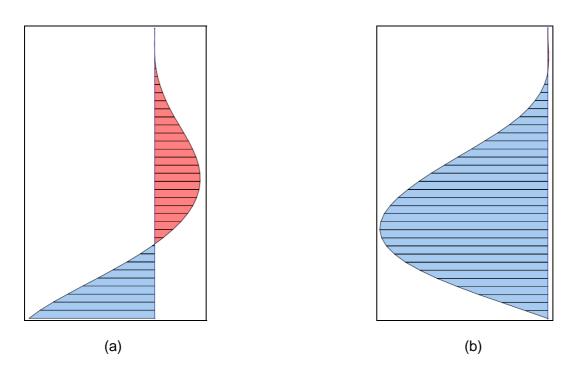


Bild 6: Schnitt im Firstquerschnitt – Verlauf der Biegespannungen (a) und Querzugspannungen (b)

Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011

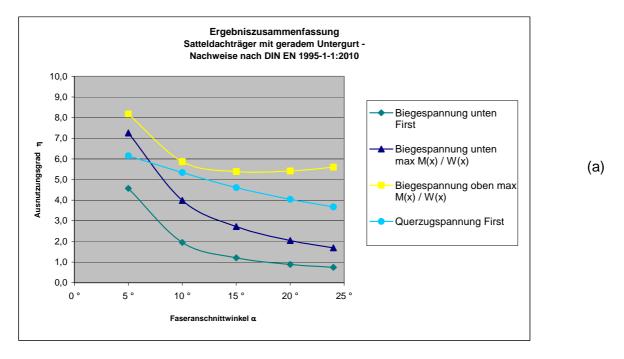
4.5 Durchführung der weiteren Berechnungen

Die Berechnungen der Satteldachträger mit geradem Untergurt wurden prinzipiell wie in Kapitel 4.2 beschrieben durchgeführt.

Für die Nachweise der Biegerandspannung am unteren Zugrand wurde neben den Untersuchungen am Firstquerschnitt und den Stellen $x = h_{ap}/4$, $h_{ap}/2$ und h_{ap} auch die Stelle max M(x) / W(x) überprüft. Für den Nachweis der Biegerandspannung am oberen Druckrand (angeschnittene Faser) wurde ebenfalls neben den Stellen $x = h_{ap}/4$, $h_{ap}/2$ und h_{ap} auch die Stelle max M(x) / W(x) untersucht. Der Nachweis der Querzugspannung wurde im Firstquerschnitt geführt.

Für die Satteldachträger mit gekrümmtem Untergurt wurde der Nachweis der Biegerandspannung unten (Zug) im Firstquerschnitt sowie an der Stelle max M(x) / W(x) geführt. Am oberen Rand wurde die Biegerandspannung ebenfalls an der Stelle max M(x) / W(x) nachgewiesen. Der Nachweis der Querzugspannung wurde im Firstquerschnitt geführt.

4.6 Ergebnisse


Die Ergebnisse wurden weiterhin in Form der Ausnutzungsgrade angegeben. Somit konnten auch die Berechnungen auf Grundlage unterschiedlicher Sicherheitskonzepte sowie auf Basis unterschiedlicher Materialkennwerte z.B. nach DIN EN 1194:1999 (bezieht sich auf EC 5) und DIN 1052:2008 miteinander verglichen werden.

Für eine bessere Veranschaulichung der Ergebnisse wurde für jedes Nachweisformat ein Diagramm erstellt, in welchem der Ausnutzungsgrad über den Faseranschnittwinkel bei den Satteldachträgern mit geradem Untergurt bzw. über den Dachneigungswinkel bei den Satteldachträgern mit gekrümmtem Untergurt aufgetragen wurde. Hieraus war schnell zu erkennen, welche Berechnung maßgebend wird.

In der Ergebniszusammenfassung wurde für jede der vier Berechnungsvarianten nach EC 5, DIN 1052 und DLUBAL bei Ansatz der Festigkeitskennwerte einerseits nach DIN EN 1194:1999 (bezieht sich auf EC 5) sowie andererseits nach DIN 1052 ein Diagramm erstellt. Darin wurden die Ergebnisse (Ausnutzungsgrad über den Faseranschnitt- bzw. Dachneigungswinkel) aus den vier Nachweisformaten Biegerandspannung unten im First, Biegerandspannung unten und oben an der Stelle max M(x) / W(x) sowie Querzugspannung im First ausgewiesen. Hieraus konnte entnommen werden, welcher Nachweis bemessungsrelevant ist (siehe Diagramm 1 bis 4).

Proj.Nr. 09.007g

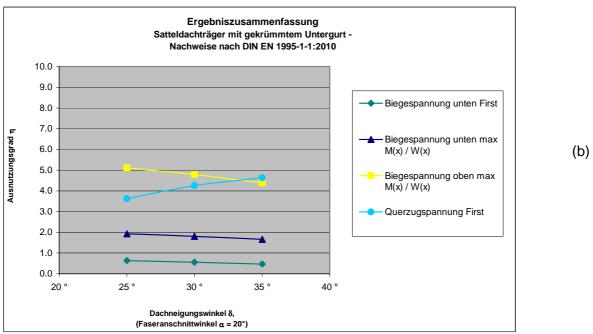
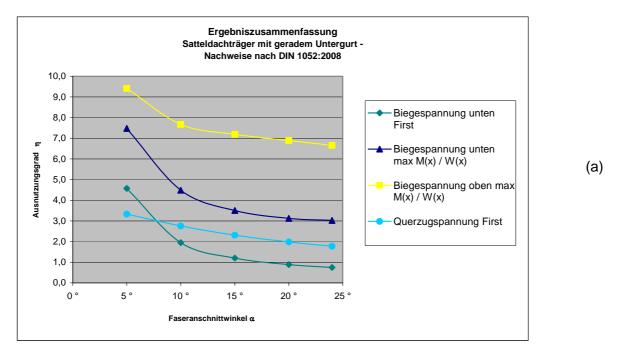



Diagramm 1: Nachweisformate nach DIN EN 1995-1-1:2010 für Satteldachträger mit geradem (a) und gekrümmtem (b) Untergurt

Proj.Nr. 09.007g

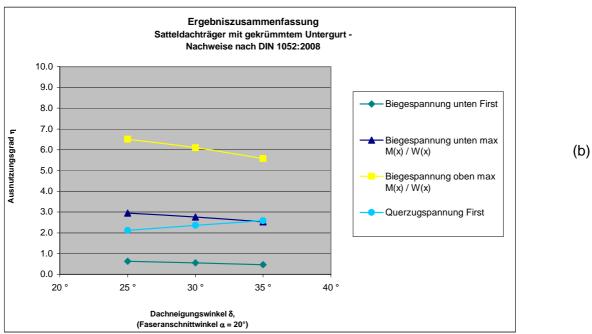
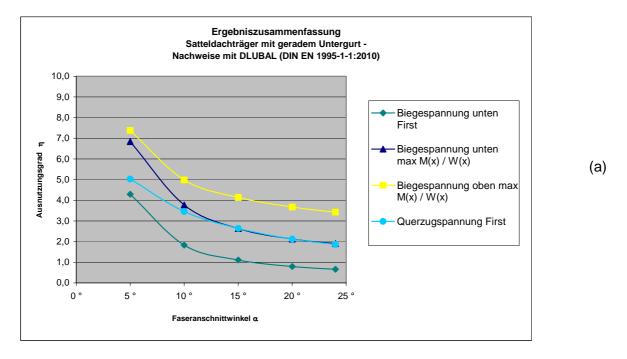



Diagramm 2: Nachweisformate nach DIN 1052:2008 für Satteldachträger mit geradem (a) und gekrümmtem (b) Untergurt

Proj.Nr. 09.007g

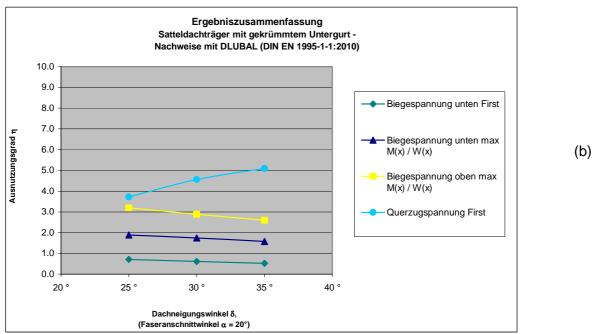
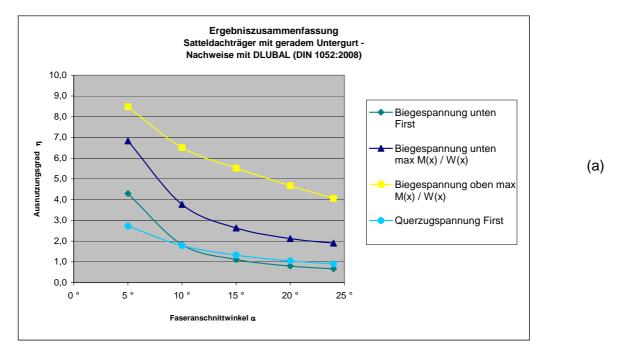



Diagramm 3: Nachweisformate nach DLUBAL Festigkeitswerte nach DIN EN 1194:1999 (bezieht sich auf EC 5) für Satteldachträger mit geradem (a) und gekrümmtem (b) Untergurt

Proj.Nr. 09.007g

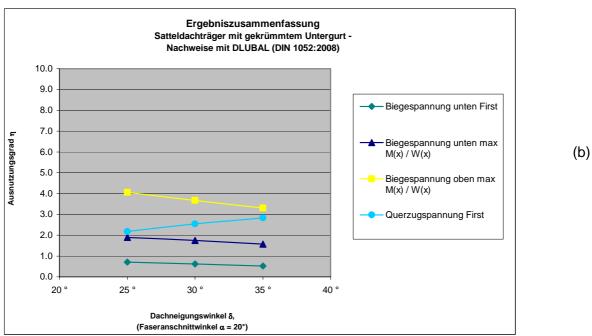
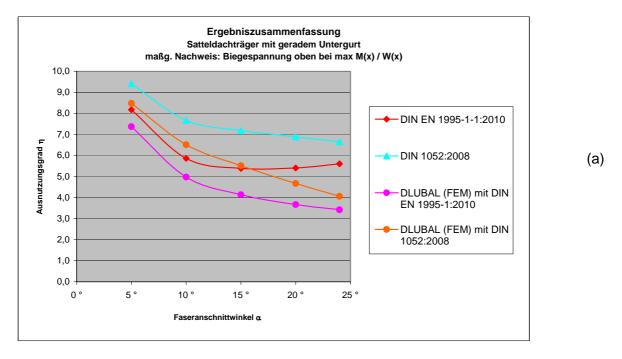


Diagramm 4: Nachweisformate nach DLUBAL Festigkeitswerte nach DIN 1052 für Satteldachträger mit geradem (a) und gekrümmtem (b) Untergurt

Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011


Aus den Diagrammen 1 bis 4 ist zu erkennen, dass sowohl für die Satteldachträger mit geradem, als auch für die Satteldachträger mit gekrümmtem Untergurt jeweils der Nachweis der Biegerandspannung oben (Druck) an der angeschnittenen Faser bemessungsrelevant wird.

Der Nachweis der Querzugspannungen ist grundsätzlich unabhängig zu bewerten. Betrachtet man die Ausnutzungsgrade, so liegen diese bei den Satteldachträgern mit geradem Untergurt für die betrachteten Geometrien immer unterhalb des Ausnutzungsgrades des maßgebenden Nachweises der Biegerandspannung oben an der Stelle max M(x) / W(x). Somit wird der Querzugnachweis global gesehen hier nicht maßgebend. Bei den Satteldachträgern mit gekrümmtem Untergurt kann obige Aussage nicht bestätigt werden. Hier zeigt sich beim Nachweis nach EC 5 sowie insbesondere bei der Berechnung mit DLUBAL mit den Festigkeitswerten der DIN EN 1194:1999 (bezieht sich auf EC 5), dass der Querzugnachweis global betrachtet durchaus bemessungsrelevant werden kann.

Daher werden in den beiden nachfolgenden Diagrammen zum Einen der maßgebende Bemessungsfall hinsichtlich der Biegespannungen (Diagramm 5) für die vier o.g. Nachweisformate übereinander gelegt und zum Anderen die Ergebnisse für den Nachweis der Querzugspannungen (Diagramm 6).

Proj.Nr. 09.007g

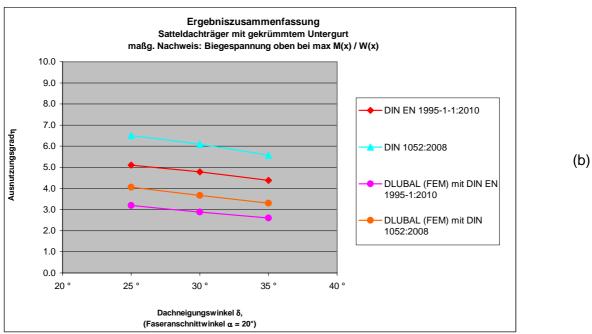
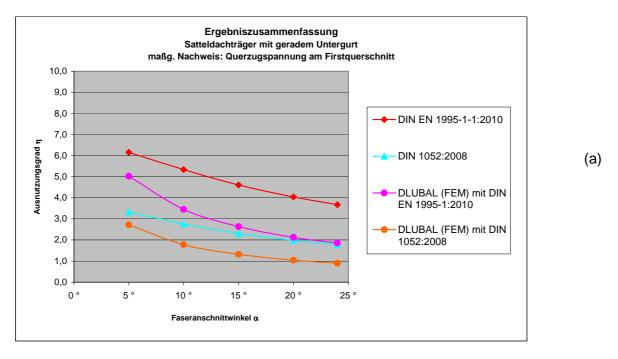



Diagramm 5: maßgebender Nachweis Biegespannungen für Satteldachträger mit geradem (a) und gekrümmtem (b) Untergurt

Proj.Nr. 09.007g

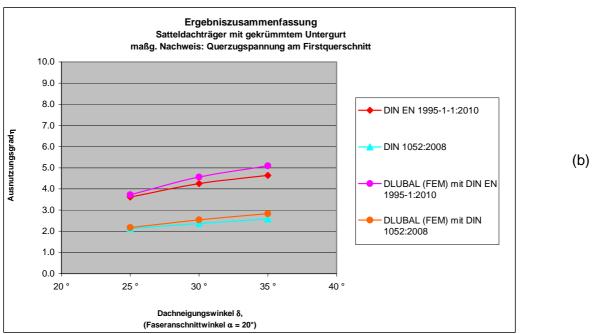


Diagramm 6: Querzugspannungen für Satteldachträger mit geradem (a) und gekrümmtem (b)
Untergurt

Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011

Aus Diagramm 5 (a) und (b) ist zu erkennen, dass der maßgebenden Nachweis der Biegespannung nach EC 5 gegenüber den Nachweisen nach DIN 1052 bzw. der RFEM-Berechnung von DLUBAL mit den Festigkeitskennwerten nach DIN 1052 zwar geringere Werte liefert; dass im Vergleich mit den Ergebnissen der RFEM-Berechnung mit den Festigkeitskennwerten nach DIN EN 1194:1999 (bezieht sich auf EC 5) sich jedoch höhere Ausnutzungsgrade ergeben.

Die Unterschiede in den Nachweisen nach EC 5 und DIN 1052 ergeben sich aus der unterschiedlichen Berechnung der Biegefestigkeit am angeschnittenen Rand $f_{m,\alpha,d}$. Diese unterschiedliche Berechnung wurde bereits innerhalb des Hauptauftrages zu diesem Forschungsvorhaben bemerkt und ist nach Meinung der Experten des DIN-Spiegelausschusses kein Sicherheitsproblem.

Hinsichtlich der Querzugspannungen liegt der Nachweis nach EC 5 für die Satteldachträger mit geradem Untergurt (Diagramm 6(a)) gegenüber allen anderen Nachweisformaten deutlich auf der sicheren Seite. Für die Satteldachträger mit gekrümmtem Untergurt (Diagramm 6(b)) ergibt die Berechnung mit DLUBAL mit den Festigkeitskennwerten nach DIN EN 1194:1999 (bezieht sich auf EC 5) maximal 10 % höhere Ausnutzungsgrade. Allerdings wurde bereits im Hauptauftrag des Forschungsvorhabens darauf hingewiesen, dass die Berücksichtigung des querzugbeanspruchten Volumens über den Faktor k_{vol} EC 5 einen sehr viel strengeren Einfluss auf die Bemessung hat als die Berücksichtigung der querzugbeanspruchten Höhe über den Faktor k_h nach DIN 1052. Daher liegt insgesamt sowohl der Nachweis nach EC 5, als auch die Berechnung mit DLUBAL unter Berücksichtigung der Festigkeitskennwerte nach DIN EN 1194:1999 (bezieht sich auf EC 5) und der Beiwerte k_{dis} und k_{vol} , gegenüber allen anderen Nachweisformaten auf der sicheren Seite.

Somit besteht für die untersuchten Fälle kein Sicherheitsproblem trotz Überschreitung der maximal zulässigen Faseranschnitt- bzw. Dachneigungswinkel gemäß den deutschen Normen.

Die Berechnungen und Ergebnisse zu den Satteldachträgern mit geradem Untergurt sind in der Anlage 4, zu den Satteldachträgern mit gekrümmten Untergurt in der Anlage 5 enthalten

Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011

4.7 Schlussfolgerungen

Ausnutzungsgrade.

Aus den obigen Berechnungen und deren Ergebnissen können folgende Schlussfolgerungen gezogen werden:

- Die Berechnungsansätze in den Normen bzw. in der Literatur basieren auf der Balkentheorie. Demnach gelten sie nur für Träger, deren Geometrie ein Längen-zu-Höhenverhältnis ≥ 6 aufweist.
- 2) Der bemessungsrelevante Nachweis hinsichtlich der Biegespannungen ist sowohl für die Satteldachträger mit geradem als auch für die Satteldachträger mit gekrümmtem Untergurt der Nachweis der Biegerandspannung am oberen Rand (Druck) d.h. an der angeschnittenen Faser. Damit werden auch die Pultdachträger abgedeckt, da dieser Nachweis entsprechend den Vorgaben wie für Pultdachträger zu führen ist.
- 3) Für den Nachweis der Biegerandspannung am oberen Rand muss die Biegefestigkeit am angeschnittenen Rand $f_{m,\alpha,d}$ ermittelt werden. Diese wird nach EC 5 und DIN 1052 unterschiedlich berechnet. Dadurch liefern die Ergebnisse aus den Berechnungsansätzen nach EC 5 und nach der RFEM-Berechnung / EC 5 (Festigkeitskennwerte nach DIN EN 1194:1999) gegenüber den Ergebnissen nach DIN 1052 und der RFEM-Berechnung / DIN 1052 (Festigkeitskennwerte nach DIN 1052) geringere Werte. Die Berechnungsansätze nach EC 5 selbst ergeben im Vergleich mit den RFEM-Berechnung / EC 5 (Festigkeitskennwerte nach DIN EN 1194:1999) jedoch höhere
 - Die unterschiedliche Berechnung der Biegefestigkeit am angeschnittenen Rand ist nach Meinung der Experten des DIN-Spiegelausschusses kein Sicherheitsproblem.
- 4) Für den Nachweis der Querzugfestigkeit liegen die Nachweise nach EC 5 sowohl für die Satteldachträger mit geradem, als auch für die Satteldachträger mit gekrümmtem Untergurt auf der sicheren Seite.

Somit liegt für die untersuchten Fälle, d.h. für einen Faseranschnittwinkel bis 24° und einen Dachneigungswinkel bis 35°, kein Sicherheitsdefizit vor.

Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011

4.8 Vorschlag

Es sind folgende Ergänzungen im Nationalen Anhang zu Kapitel 6.4.2 und 6.4.3 vorzunehmen:

NCI zu 6.4.2 Pultdachträger

"Bei der Anwendung der Bemessungsgleichungen Gl. (6.37) bis Gl. (6.40) sind die Voraussetzungen für die Balkentheorie, d.h. ein Längen-zu-Höhenverhältnis ≥ 6, einzuhalten.

Weiterhin ist der Faseranschnittwinkel auf 24° zu begrenzen."

NCI zu 6.4.3 Satteldachträger, gekrümmte Träger und Satteldachträger mit gekrümmtem Untergurt

"Bei der Anwendung der Bemessungsgleichungen Gl. (6.41) bis G. (6.59) sind die Voraussetzungen für die Balkentheorie, d.h. ein Längen-zu-Höhenverhältnis ≥ 6, einzuhalten."

Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011

5 Zusammenfassung

Die Harrer Ingenieure, Gesellschaft Beratender Ingenieure VBI mbH, Karlsruhe (Projektleitung), wurde vom DIBt Berlin mit dem Ergänzungsforschungsvorhaben "Untersuchung von Pult- und Satteldachträgern mit geradem und gekrümmtem Untergurt zur Abschätzung des Einflusses des Faseranschnittwinkels bzw. Dachneigungswinkels" zum Forschungsvorhaben "DIN EN 1995 - Eurocode 5 - Holzbauten Anwendungserprobung" beauftragt.

Ziel dieses Ergänzungsauftrages war es zu überprüfen, ob und inwiefern die nach oben unbegrenzten Winkel in DIN EN 1995-1-1:2010 gegenüber der in DIN 1052:2008 begrenzten Faseranschnittwinkel von maximal 10° bzw. Dachneigungswinkel von maximal 20° ein Sicherheitsdefizit darstellen.

Die Berechnungen wurden sowohl nach den aktuell gültigen Normen DIN EN 1995-1-1:2010 und DIN 1052:2008, als auch nach den alten Normen DIN V ENV 1995-1-1:1994 und DIN 1052:1988 durchgeführt. Weiterhin wurden die Diagramme der Veröffentlichung von BLU-MER 1972/1979 herangezogen. Unterstützt wurde das ergänzende Forschungsvorhaben vom Softwarehaus DLUBAL, welches Berechnungen mit dem Programm RFEM durchführte und die Ergebnisse zur Verfügung stellte.

Die Ergebnisse der verschiedenen Nachweisformate wurden einander gegenüber gestellt und die bemessungsrelevanten Nachweise ermittelt.

Damit konnte die Schlussfolgerung gezogen werden, dass für die untersuchten Fälle, d.h. für Faseranschnittwinkel bis maximal 24° sowie für Dachneigungswinkel bis maximal 35° kein Sicherheitsproblem besteht.

Eine sich selbst regulierende Begrenzung der Faseranschnitt- bzw. Dachneigungswinkel ergibt sich dabei aus der Forderung eines Längen-zu-Höhenverhältnisses ≥ 6, um die Voraussetzungen für die Balkentheorie zur erfüllen.

Ein Vorschlag zur Ergänzung des Normtextes im Nationalen Anhang ist in Kapitel 4.8 gegeben.

Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011

Karlsruhe, den 16.09.2011

Dipl.-Ing. Matthias Gerold (Harrer Ingenieure)

B. Kuh

Dipl.-Ing. Marion Kleiber (Harrer Ingenieure)

M. Kluber

Dipl.-Ing. (FH) Bastian Kuhn (Dlubal Ingenieursoftware GmbH)

Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011

Literatur und Normen

• DIN EN 1995-1-1:2010-12

Eurocode 5: Bemessung und Konstruktion von Holzbauten -

Teil 1-1: Allgemeines –

Allgemeine Regeln und Regeln für den Hochbau;

Deutsche Fassung EN 1995-1-1:2004 + AC:2006 + A1:2008

NABau im DIN (Hrsg.)

DIN EN 1995-1-1/NA:2010-12

Nationaler Anhang –

National festgelegte Paramter -

Eurocode 5: Bemessung und Konstruktion von Holzbauten -

Teil 1-1: Allgemeines – Allgemeine Regeln und Regeln für den Hochbau;

NABau im DIN (Hrsg.)

DIN EN 1194:1999-05

Holzbauwerke -

Brettschichtholz -

Festigkeitsklassen und Bestimmung charakteristischer Werte

Deutsche Fassung EN 1194:1999

NABau im DIN (Hrsg.)

DIN V ENV 1995-1-1:1994-06

Eurocode 5: Entwurf, Bemessung und Konstruktion von Holzbauten –

Teil 1-1: Allgemeine Bemessungsregeln und Bemessungsregeln für den Hochbau;

Deutsche Fassung ENV 1995-1-1:1993

NABau im DIN (Hrsg.)

DIN 1052:2008-12

Entwurf, Berechnung und Bemessung Holzbauwerken -

Allgemeine Bemessungsregeln und Bemessungsregeln für den Hochbau;

NABau im DIN (Hrsg.)

Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011

• DIN 1052-1:1988-04

Holzbauwerke -

Berechnung und Ausführung;

NABau im DIN (Hrsg.)

• BLUMER, H.

Karlsruhe 1972/1979

"Spannungsberechnungen an anisotropen Kreisbogenscheiben und Sattelträgern konstanter Dicke"

Veröffentlichung

Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011

Anlage 1

Modellierung mit dem Programm RFEM von DLUBAL

Seite 1

Inhalt

1. Fes	stlegungen:	2
	Material und Geometriewahl:	
	Ausgewertete Spannungspunkte:	
	FE-Netz:	
	FE-Achsensysteme:	
	gebnisdarstellung:	
	Glättung:	
	Definition der Spannungen:	
	Materialmodell Orthotrop Extra	

Seite 2

1. Festlegungen:

1.1. Material und Geometriewahl:

Bei der Material und Geometriewahl der Pultdachträger wurden folgende Änderungen vorgenommen.:

- f_{t,90,k}=0,4MN/m² (entsprechend DIN EN 1194)
- Teilsicherheitsbeiwert 1,25
- Pultdachträger 10°_1 h_{ap}=3,20m
- Pultdachträger 20°_1 h_{ap}=3,95m
- Pultdachträger 25°_1 hap=4,36m

Die Änderungen habe ich in Ihrem Excel ebenfalls gelb unterlegt und in der Datei angehangen.

1.2. Ausgewertete Spannungspunkte:

Entsprechend der Vorgaben in dem Excel Dokument habe ich die Spannungen jeweils für den Knoten 3 und 7 der Pultdachträger ausgewertet. Diese befinden sich in Feldmitte und somit nicht an der Stelle der maximalen Spannung. Die Unterschiede sind aber gering.

In den beiliegenden Diagrammen habe ich die Spannungen im Biegedruck- und Biegezugbereich ausgewertet.

1.3. FE-Netz:

Die FE- Elemente wurden mit 10 cm festgelegt. Diese Größe ist ausreichend genau um ein ausgewogenes Verhältnis von Genauigkeit und Rechendauer zu erreichen.

Bei den Pultdachbindern wurde zusätzlich eine Netzverdichtung der Linie des Obergurtes (Linie 5 + 8) vorgenommen. Andernfalls wäre das FE-Netz aufgrund der Ausrichtung am Untergurt zu unsauber geworden.

Seite 3

1.4. FE-Achsensysteme:

Die FE-Achsensysteme wurden am Untergurt (Linie 1+ 4) ausgerichtet. Damit wird die Ausrichtung der Fasern parallel zum unteren Rand des Trägers modelliert.

Beim Pultdachträgers war es ausreichend die Achsensysteme parallel mit der globalen x-Achse durchlaufen zu lassen (vgl. Bild 1,2).

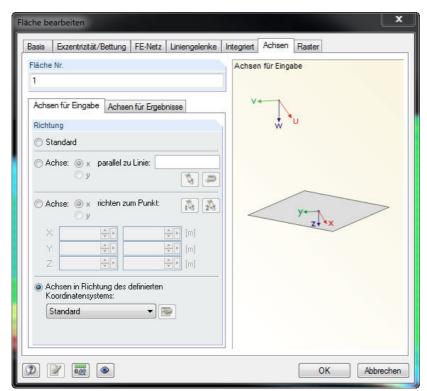


Bild 1: Ausrichtung der FE-Achsen

Die lokale z-Achse der Fläche zeigt hierbei aus dem Träger heraus.

Seite 4

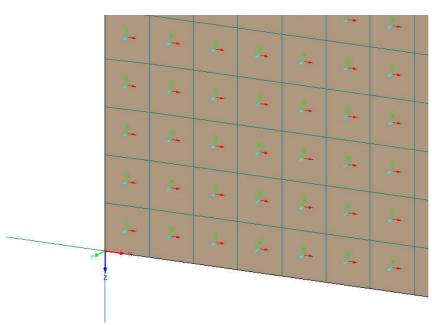
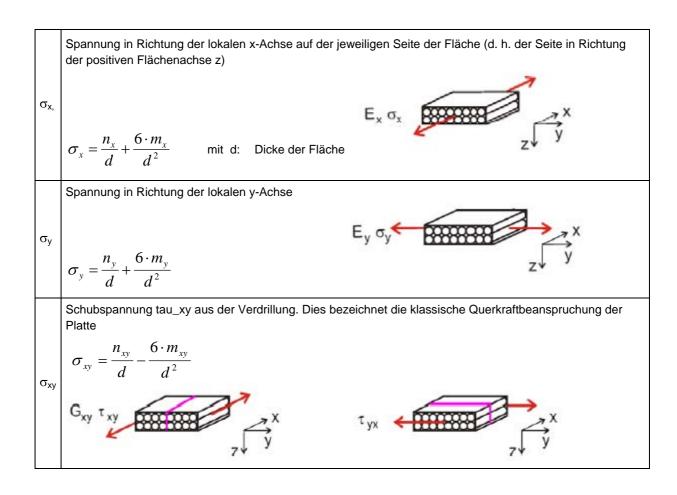


Bild 2: Achsen entsprechend globaler Koordinaten ausgerichtet

Beim Satteldachträger wurden die Flächen aufgeteilt und die Achsensysteme auf die jeweilige Linie bezogen (vgl. beiliegende Positionen).

Seite 5


2. Ergebnisdarstellung:

2.1. Glättung:

Zur Glättung der Ergebnisse wurde durchlaufend innerhalb Flächen gewählt. Bei dieser Glättung werden die Ergebnisse jedes FE-Knotens gemittelt (siehe auch Handbuch Seite 326).

2.2. Definition der Spannungen:

In der Methode der FEM werden die Spannungen immer aus den Dehnungen/Verzerrungen der Elemente berechnet. Aus diesen Spannungen werden im Weiteren die Schnittgrößen zurückberechnet. Folgende Tabelle enthält die für die hier dargestellten wichtigsten Spannungen noch einmal aufgeführt.:

Seite 6

Tabelle 1: Spannungen

Analog zu dieser Auflistung lassen sich die notwendigen Spannungen wie folgt auflisten (siehe hierzu auch Erläuterung der DIN 1052).

- σ_{x} Biegespannung in x-Richtung
- σ_y Querzug in y-Richtung (im Bild 2 lässt sich hierzu erkennen, dass die lokale y-Achse der Elemente nach oben ausgerichtet ist)
- σ_{xy} Schub in x und y

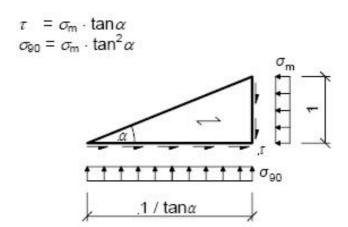
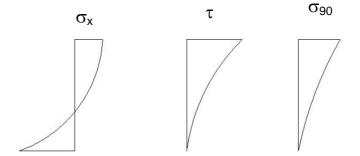


Bild 3: Dreieckselement am Trägerrand (Quelle Erläuterungen DIN 1052)

Erwarteter Spannungsverlauf in Feldmitte:

Aufgrund der größeren Dehnung am unteren Punkt des Trägers müssen sich nach dem Hookeschen Gesetzes auch größere Spannungen am unteren Rand des Trägers ergeben. Zumindest bei den gekrümmten Trägern dürfen wir dieses Ergebnis erwarten.


$$\varepsilon_{i} = \frac{\Delta dl_{i}}{dl_{i}} > \frac{\Delta dl_{a}}{dl_{a}} = \varepsilon_{a}$$

Die Schub- und Querzugspannungen laufen im unteren Bereich null.

Seite 7

Somit ergeben sich folgende Spannungsbilder.:

2.3. Material modell Orthotrop Extra

Nach reiflicher Überlegung habe ich mich entschlossen entgegen unserer Absprache die materielle Anisotropie zu berücksichtigen, da der Aufwand hierzu eigentlich nicht größer ist. Anbei ein paar kurze Definitionen zu dem verwendeten Materialmodell Orthotrop Extra.

Bei diesem Materialmodel erfolgt die Eingabe wahlweise über zwei unterschiedliche E-Moduli, drei Schubmoduli und zwei Querdehnzahlen. Die Steifigkeitsanteile stehen hierbei immer in folgendem Verhältnis.

$$\frac{v_{yx}}{E_{y}} = \frac{v_{xy}}{E_{x}}$$

Diesem Verhältniss liegt die Beziehung von Ursache Ort zugrunde. Die Beziehung der Querdehnzahl wird bei diesem Materialmodel nicht mehr nach der Gleichung

$$v = \frac{E}{2 \cdot G} - 1$$

berechnet. Am einfachsten lässt sich diese Beziehung mit folgender Skizze verdeutlichen.

Seite 8

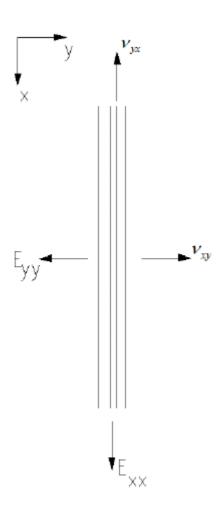


Bild4: Verhältnismäßigkeit der Beziehungen

Die Ursache des großen E-Moduls in x-Richtung hat also einen Einfluss auf die Querdehnung in der y-Richtung, welche nach dieser Beziehung auch entsprechend groß sein muss. Analog dazu muss bei einem kleinen E-Modul in y-Richtung die Querdehnung in x auch klein sein. Die Ursache kleine oder große Querdehnung ergibt sich demzufolge aus dem Ort der Krafteinleitung bzw. der Steifigkeit an diesem Ort.

Ergänzung Forschungsvorhaben DIN EN 1995 - Eurocode 5 - Holzbauten Untersuchung verschiedener Trägerformen

Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011

Anlage 2

Behandlung der Orthotropen Materialmodelle in RFEM

Seite 1

Inhalt

1. Pos	sition Querdehnung:	2
	Festlegung der Orthotropie:	
	Verlauf der Spannungstrajektorien:	
	Verformung in den unterschiedlichen Materialmodellen:	
	Vergleich mit Stabmodellen	
	Biegespannung im Biegedruck- und Biegezugbereich	
	ertragung der Definitionen auf Träger veränderlicher Höhe	
	Parallelgurtiger Träger DN 0°	
	Pultdachträger Dachneigung 30°	

Seite 2

1. Position Querdehnung:

1.1. Festlegung der Orthotropie:

In der Position Querdehnung habe ich drei Flächentypen definiert.

Flächentyp 1 ist eine Isotrope Fläche mit sehr weichen Steifigkeiten. Ich habe hierbei 10% der Steifigkeiten von GL24 verwendet. Die Flächen 2 und 3 beinhalten die gleichen Steifigkeiten allerdings mit einer steiferen Orientierung in globaler x-Richtung für die zweite Fläche und mit einer steiferen Orientierung der dritten Fläche in globaler z-Richtung.

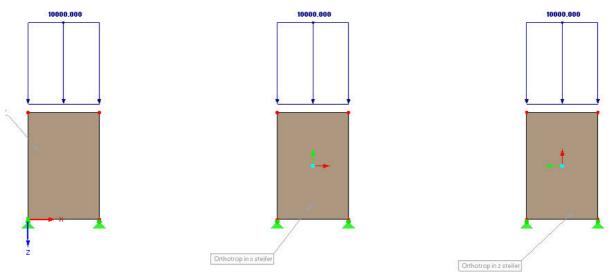


Bild 1: Orientierung der Steifigkeiten

Die Steifigkeiten betragen hierbei einmal 116KN/cm² in globaler x-Richtung und 3,9KN/cm² in globaler z-Richtung.

1.2. Verlauf der Spannungstrajektorien:

Unter dem Register Spannungen lassen sich die Achsenrichtungen der Hauptspannungen anzeigen.

Seite 3

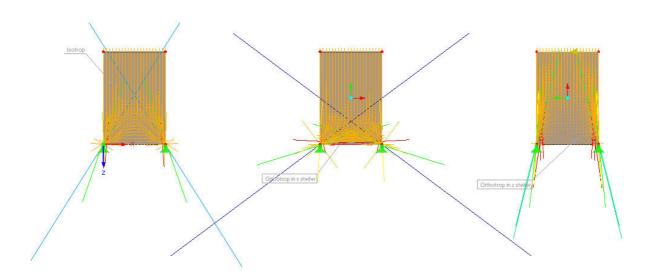


Bild 2: Spannungstrajektorien

Anhand dieser Ausgabe lassen sich die Auswirkungen der Steifigkeiten sehr plausibel nachvollziehen. Bei gleichen Steifigkeiten in jeder Richtung teilt sich die Resultierende unter der Winkelhalbierenden auf.

Bei einem steiferen Materialmodel in x-Richtung bildet sich die Gewölbewirkung sehr flach aus. Analog dazu hat man bei einer steifen Modellierung in globaler z-Richtung einen sehr steilen Verlauf der Trajektorien.

Dies spiegelt sich auch in den horizontalen Lagerkräften wieder welche sich im Verhältnis 1:4,5 unterscheiden. Die wesentlich geringeren Horizontalkräfte erhält man hier aufgrund der steileren Gewölbewirkung bei der dritten Fläche.

1.3. Verformung in den unterschiedlichen Materialmodellen:

Diese Rückschlüsse lassen sich auch durch die Verformungsbilder dieser beiden Flächen belegen.

Bei einer höheren Steifigkeit in x-Richtung bildet sich die "Einschnürung" des Materials sehr spät im unteren Bereich der Fläche aus. Im Gegensatz dazu schnürt sich die dritte Fläche aufgrund der geringen Steifigkeit in x-Richtung global bereits sehr früh ein.

Seite 4

1.4. Vergleich mit Stabmodellen

Um die Ergebnisse anschaulicher Vergleichen zu können habe ich versucht die Verhältnisse der Steifigkeiten in der jeweiligen Richtung auch in einem Stabmodel zu belegen. Die Ergebnisse der Lagerreaktionen decken sich mit meinen Ausführungen.

1.5. Biegespannung im Biegedruck- und Biegezugbereich

Im Biegedruckbereich der mittleren Platte spiegeln sich die auf der Bau 2011 mit Herrn Dr. Gerold besprochenen Punkte. Die Druckkraft fällt sehr gering aus, während die Biegezugkraft sehr stark ansteigt.

Analog dazu kehrt sich dieser Effekt bei der dritten Platte nahezu um.

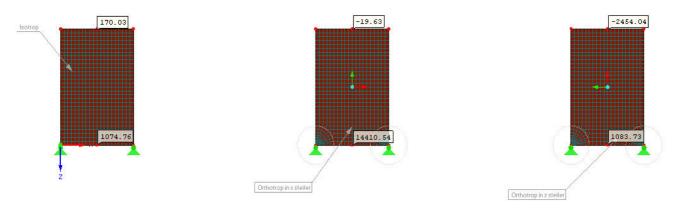


Bild 3: Biegespannung

Durch die steifere Wirkung in x-Richtung verschiebt sich sozusagen die Nulllinie des Querschnitts an der mittleren Platte nach unten. Damit steht dem "Querschnitt" zur Abtragung der Spannung weniger Fläche zur Verfügung. Bei der dritten Fläche verschiebt sich die Lage der Nullebene wiederum nach oben.

Seite 5

2. Übertragung der Definitionen auf Träger veränderlicher Höhe

2.1. Parallelgurtiger Träger DN 0°

In einem Parallelgurtigen Träger mit der Dachneigung null Grad verschiebt sich die Lage der Nulllinie bei einem isotropen gegenüber einem orthotropen Material um 0,896 bei isotropen Material zu 0,774m bei orthotropen Material (vgl. Position alpha 0°).

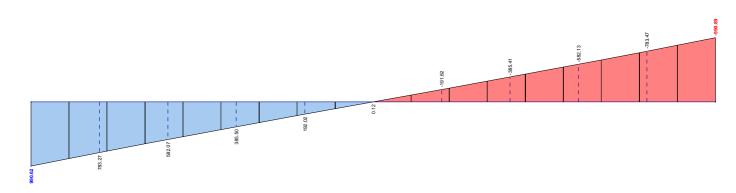


Bild 4: Lage Nulllinie bei isotropen Material =0,896m

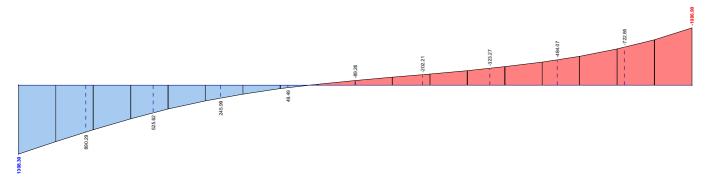


Bild 5: Lage Nulllinie bei orthotropen Material = 0,774m

Erwartungsgemäß stellt sich damit auch der höhere "Peak" in den Biegespannungen ein. Analog zu den Feststellungen unter Punkt 1 lässt sich dies über die Spannungstrajektorien wiederum sehr anschaulich nachweisen.

Seite 6

2.2. Pultdachträger Dachneigung 30°

Für die Pultdachträger (Position alpha 30°) verschiebt sich die Lage der Nulllinie auf 1,076m bei isotropen Material zu 0,587m bei orthotropen Material

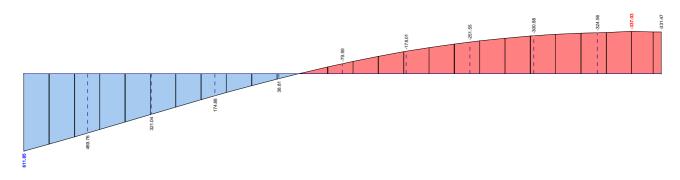


Bild 6: Lage Nulllinie isotropes Material

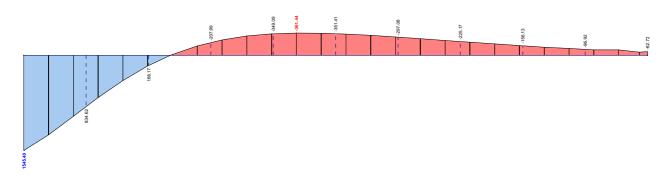


Bild 7: Lage Nulllinie orthotropes Material

Mit steigender Dachneigung nimmt die zur Aufnahme der Spannung vorhandene Fläche im Biegedruckbereich weiter ab, weshalb die Nulllinie sich immer weiter nach unten verlagern wird

In Bild 8 lässt auch der Verlauf der Spannungstrajektorien Dieselbigen Rückschlüsse zu.

Seite 7

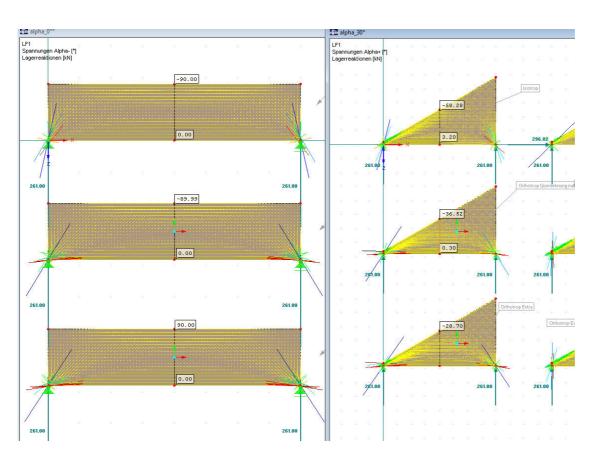


Bild 8: Spannungstrajektorien

Mit steigender Dachneigung bilden sich in Feldmitte flachere Trajektorien aus. Diese Winkel flachen bei steiferen Eigenschaften in globaler x-Richtung weiter ab weshalb die Nulllinie sich immer weiter nach unten verschieben muss.

Auf der rechten Seite der Positionen alpha 0° und alpha 30° habe ich die Orthotropierichtungen um 90° verdreht. Die Verdrehwinkel der Trajektorien bilden hier den Gegenwinkel zur höheren Steifigkeit in globaler x-Richtung.

Ergänzung Forschungsvorhaben DIN EN 1995 - Eurocode 5 - Holzbauten Untersuchung verschiedener Trägerformen

Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011

Anlage 3

Protokoll zur Sitzung am 25.02.2011 mit Anlage

Proj.Nr. 09.007g

Protokoll zur Besprechung am 25.02.2011

Seite 1

Protokoll zur Besprechung am 25.02.2011 bei Harrer Ingenieure GmbH in Karlsruhe

anwesend:

Herr Gerold Harrer Ingenieure
Frau Kleiber Harrer Ingenieure

Herr Kühnemann Wirtschaftsministerium BW, Oberste Bauaufsicht, zuständig für

Bereich Holzbau

Herr Prof. Brüninghoff in Absprache mit Herrn Kühnemann und Herrn Dr. Wiegand

Herr Kuhn Fa. Dlubal

entschuldigt: Herr Schäpel Herr Prof. Winter Herr Dr. Wiegand

Beginn 9.30 Uhr

- Begrüßung durch Herrn Gerold
- Herr Prof. Winter kann nicht an der Besprechung teilnehmen, hat jedoch durch seine beiden Mitarbeiter Herr Dietsch und Herr Kober die zur Vorbereitung auf die Sitzung verteilten Unterlagen bearbeiten lassen und einige Kommentare und Hinweise hierzu per Mail an Frau Kleiber geschickt; diese Kommentare und Hinweise sollen ebenfalls in die Diskussion mit einfließen.
- Herr Dr. Wiegand hat sich im Vorfeld mit Herrn Prof. Brüninghoff abgestimmt.
- Herr Gerold erläutert den aktuellen Stand des Ergänzungsauftrages:
 - Zunächst wurden die Pultdachträger und die Satteldachträger mit geradem UG untersucht; die Ergebnisse dieser Berechnungen sollen nun zuerst diskutiert und abgestimmt werden, bevor die Satteldachträger mit gekrümmtem UG angegangen werden.
- Herr Kuhn erläutert die Modellierung der Träger, insbesondere das Materialgesetz "orthotrop extra", welches er angewandt hat.
- Pultdachträger:
 - 1) Zugseite

Erläuterungen von Herrn Prof. Brüninghof:

- das Berechnungsformat nach EC 5:1994 gibt es seit den 70-er Jahren und kommt aus dem dänischen oder südschwedischen.
- warum der Faktor von der 1994-er Version des EC zur heutigen Version entfallen ist, ist ihm nicht bekannt (die Entwicklung des Eurocodes fand ohne deutsche Beteiligung statt),

Proj.Nr. 09.007g

Protokoll zur Besprechung am 25.02.2011

Seite 2

- in die DIN 1052:2004 wurde der Stand des EC 5:1994 von der BEKS-Gruppe übernommen.
- der Ansatz nach der DIN 1052:1988 entspricht dem Ansatz nach Blumer am "Firstquerschnitt" – Stelle b); der Ansatz nach EC 5:1994 und DIN 1052:2008 entspricht einer Bemessung an der Stelle a) – siehe Anlage,
- alle Berechnungsformate der Normen bzw. Literatur (Blumer) basieren auf der Balkentheorie; die gewählte Geometrie der untersuchten Träger entspricht jedoch eher einem Wandartigen Träger (I/h-Verhältnis < 6), d.h. Ausbildung eines Druckbogens und Zugband.

2) Druckseite

Der Nachweis der angeschnittenen Faser am oberen Rand am Firstquerschnitt macht eigentlich keinen Sinn, da hier die Spannungen gleich 0 sind (siehe Blumer).

Hier sind die Bereiche außerhalb des Firstes zu untersuchen.

Die Spannungsverteilung sollte sich dort einer linearen Spannungsverteilung annähern.

Grundsätzlich sollte auch noch ein Faseranschnittswinkel von 3° oder 5° untersucht werden.

Satteldachträger mit geradem UG:

Sämtliche Untersuchungen, die bisher durchgeführt wurden, sind auf Faseranschnittswinkel von 25° begrenzt.

Die in der Tabelle ausgegebenen Querzugwerte sind falsch! Hierbei handelt es sich um Querdruckspannungen. Dies beruht auf dem I/h-Verhältnis << 6, d.h. die Balkentheorie ist hier nicht mehr erfüllt.

Eine kurzfristige Anpassung des Trägers auf ein Verhältnis 6 < l/h < 8 ergab prinzipiell vernünftige Ergebnisse.

Ein weiterer ungünstiger Einfluss ergibt sich aus der Lasteinleitung (Linienlast) am Obergurt; Herr Kuhn wird hierzu eine Lasteinleitung über Punktlasten untersuchen, bei der dann die Lasteinleitungsbereiche ausgeklammert werden.

Anmerkung: Dies ist bereits erfolgt. Die Ergebnisse bestätigen, dass durch die große Weichheit in y-Richtung das Material durch die Lasteinleitung am OG überdrückt wird.

- Grundsätzlich muss eine Anpassung der Querschnittsformen sowohl für die Pultdachträger als auch für die Satteldachträger auf ein I/h-Verhältnis zwischen 6 und 8 vorgenommen werden: Auch wenn ein Vergleich der Winkel untereinander dann kaum noch möglich ist, soll eher versucht werden vernünftige Systeme zu entwickeln; die Untersuchungen werden an den verschiedenen Stellen a) und b) durchgeführt.
- Das Materialmodell "orthotrop extra" wurde nochmals hinsichtlich der Querdehnzahlen andiskutiert; Herr Gerold wird hierzu Literatur recherchieren und diese Herrn Kuhn zukommen lassen.

Anmerkung: Dies ist bereits erfolgt.

- Herr Prof. Brüninghoff verabschiedet sich gegen 13.00 Uhr.
- Festlegung der neuen Geometrien für die weiteren Berechnungen:

SDT mit geradem UG:

Proj.Nr. 09.007g

Protokoll zur Besprechung am 25.02.2011

Seite 3

- Traufhöhe 0,5 m,
- Spannweite 24 m,
- Winkel von 5 bis 20° jeweils in 5°-Schritten, zusätzlich α = 24° (maximaler Faseranschnittswinkel bei den Untersuchungen von Blumer),
- Drehung um den Traufknoten, d.h. Firsthöhe variabel
- gemittelte Höhe beträgt ca. $h_m = 0.5+2/3(h-0.5)$ mit h = Firsthöhe, d.h. das I/h-Verhältnis zwischen 6 und 8 ist eingehalten.

Pultdachträger:

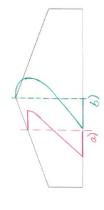
- Höhe an der tiefen Traufe 0,5 m,
- Spannweite 24 m,
- Winkel von 5 bis 20° jeweils in 5°-Schritten, zusätzlich α = 24° (maximaler Faseranschnittswinkel bei den Untersuchungen von Blumer),
- Drehung um den Traufknoten, d.h. Firsthöhe variabel,
- Für größere Winkel wird es schwierig das I/h-Verhältnis einzuhalten, da hier die gemittelte Höhe ca. h_m = 0,5+2/3(h-0,5) mit h = Höhe an hohen Traufe beträgt. Daher wurde die Überlegung angestellt den hinteren Teil im Bereich der hohen Traufe horizontal abzuschneiden; es ist dann zu untersuchen inwiefern dieser Störbereich Einfluss auf die Ergebnisse hat: Herr Kuhn wird hierzu auch noch mal Rücksprache mit den Programmierern halten.

SDT mit gekrümmtem UG:

- Traufhöhe 0,5 m,
- Spannweite 24 m,
- Winkel am UG von 5 bis 15° jeweils in 5°-Schritten, und am OG von 25 bis 35°,
- Drehung um den Traufknoten, d.h. Firsthöhe variabel,
- gemittelte Höhe bei ca. $h_m = 0.5+2/3(h-0.5)$ mit h = Firsthöhe, d.h. das l/h-Verhältnis zwischen 6 und 8 eingehalten.

Ende ca. 14.30 Uhr

Marion Kleiber


Pultdachträger - Biegerandspannung unten (Zug)

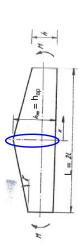
Berechnung nach	Berechnungsformel / Nachweis,		Gеоп	Geometrie 1	Faserans	Geometrie 2	ŏ	Geometrie 3
		10 °	20 °	25 °	30 %	25 °	5° 10°	15° 20°
*2) *5) DIN EN 1995-1-1: 2010-12	$\sigma_{m,o,d} = 6xM_d / bxh^2 = $ $\sigma_{m,o,d} / f_{m,d} =$	2,78 MN/m² 0,17	2,78 MN/m² 0,17	2,78 MN/m² 0,17	2,78 MN/m² 0,17	4,35 MN/m² 0,26	ш	Ergänzung
	* (1) * 5) DIN V ENV 1995-1-1: $\sigma_{m,o,d} = (1+4x tan^2 a) \times 6x M_d / bx h^2 = 1994-06$ $\sigma_{m,o,d} / f_{m,d} = 0$	3,13 MN/m² 0,19	3,13 MN/m² 4,26 MN/m² 0,19 0,26	5,21 MN/m² 0,31	6,50 MN/m² 0,39	8,13 MN/m² 0,49	ш	Ergänzung
*3) *5) DIN 1052:2008-12	$\sigma_{m,o,d} = (1 + 4x \tan^2 \alpha) \times 6x M_d / bx h^2 = $ $\sigma_{m,o,d} / f_{m,d} =$	3,13 MN/m² 0,19	4,26 MN/m² 0,26	5,21 MN/m² 0,31	6,50 MN/m² 0,39	8,13 MN/m² 0,49	ш	Ergänzung
*4) *5) DIN 1052:1988-04	$\begin{aligned} &\sigma_x = \kappa_x \times 6xM / bxh^2 = \\ &\kappa_x = 1 + 1,4xtan\alpha + 5,4xtan^2\alpha = \\ &\sigma_x / zul\alpha_B = \end{aligned}$	2,72 MN/m² 1,41 0,25	4,27 MN/m² 2,22 0,39	5,43 MN/m² 2,83 0,49	6,93 MN/m² 3,61 0,63	8,48 MN/m² 2,83 0,77	ш	Ergänzung
*4) *5) BLUMER 1972/1979 (k _x aus Tafel 15)	$\sigma_{x} = \kappa_{x} \times 6xM / bxh^{2} =$ $\kappa_{x} =$ $\sigma_{x} / zul\sigma_{B} =$	2,71 MN/m² 1,41 0,25	4,26 MN/m² 2,22 0,39			1 1 1	ш	Ergänzung
•	$\sigma_{m,o,d} = \sigma_{m,o,d} / f_{m,d} = 0$	4,71 MN/m² 0,28	4,71 MN/m² 5,36 MN/m² 0,28 0,32	6,06 MN/m² 0,37	7,05 MN/m² 0,42		ш	Fraind
••	$\sigma_{m,o,d} = G_{m,o,d} / f_{m,d} =$	4,18 MN/m² 0,25	4,74 MN/m² 0,29	5,33 MN/m² 0,32	6,10 MN/m² 0,37	7,69 MN/m² 0,46	ı	
	$\sigma_{m_0,d} = (1+2,8xtan\alpha) \times 6xM_d / bxh^2 = $ $\sigma_{m_0,d} / f_{m,d} =$	4,01 MN/m ² 0,24	4,01 MN/m² 5,62 MN/m² 0,24 0,34	6,42 MN/m² 0,39	7,28 MN/m² 0,44	7,28 MN/m² 10,03 MN/m² 0,44 0,60		
Querschnittsabmessungen:	b = Geometrie 1 h =	18 cm 250 cm	Höhe in Feldmitte	nitte	Materialkennwerte:	Δ	GI24h - DIN EN 1194 BS 11 - DIN 1052:1988	$f_{m,d} = 16,6 \text{ MN/m}^2$ zul $\sigma_B = 11,0 \text{ MN/m}^2$

Materialkennwerte: neues Sicherheitskonzept 2088,0 kNm neues Sicherheitskonzept altes Sicherheitskonzept 1440,0 kNm altes Sicherheitskonzept Höhe in Feldmitte Höhe in Feldmitte 9 9 522,0 kNm 360,0 kNm 400 cm 250 cm 3,2 < 6 18 cm 16,0 m 18 cm 8,0 m 4 < 6 6 < l/h < 8 ≡ ≡ ≥ ∑ ≡ ≡ ≥ ∑ = = = <u>4</u> Geometrie 2 Geometrie 1 Geometrie 2 Geometrie 3 Geometrie 1 Querschnittsabmessungen: Beanspruchung:

Ergebnisausgabe: 2) Linienlager, Schnittgrößenverlauf durchlaufend innerhalb Flächen Modellierung/ 1) Punktlager, Schnittgrößenverlauf durchlaufend innerhalb Flächen

Kommentare *¹) Berechnungsansatz gibt es seit den 70-er Jahren und kommt aus dem dänischen oder südschwedischen; wurde akzeptiert → Stelle a)
 *2) es ist nicht bekannt, warum der Vorfaktor (1 + 4tan²α) entfallen ist - die Entwicklung des Eurocodes hat ohne deutsche Beteiligung stattgefunden
 *3) in der 2004-er Norm wurde der Ansatz von der EEKS-Gruppe aus dem EC 5:1994 übernormen
 *4) Ansatz nach BLUMBE 1972/1979 am Firstquerschnitt → Stelle b)
 *5) Berechnungsansätze beruhen auf der Balkentheorie
 *6) die Geometrieverhältnisse entsprechen nicht mehr der Balkentheorie sondem eher einem Wandartigen Träger (I/h-Verhältnis < 6)

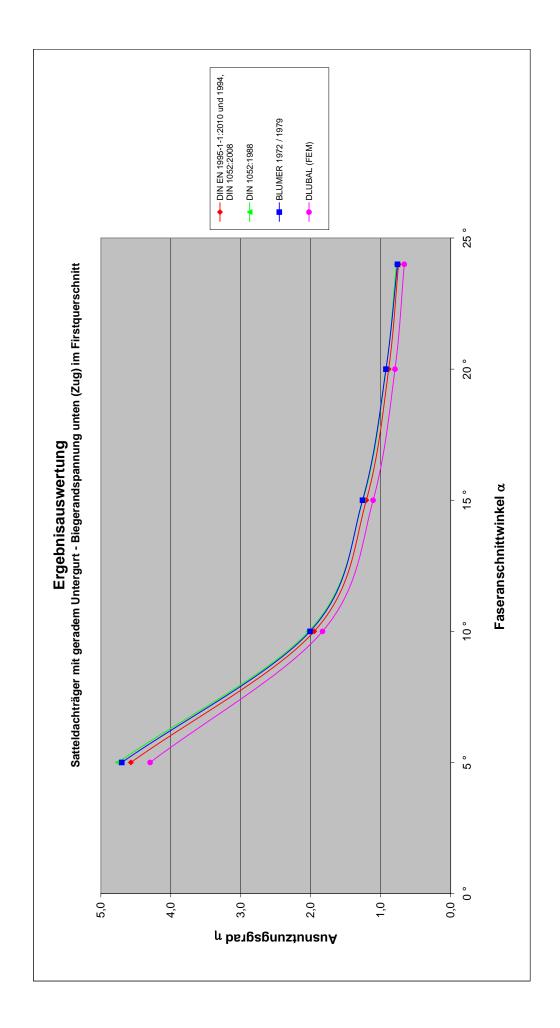
Ergänzung Forschungsvorhaben DIN EN 1995 - Eurocode 5 - Holzbauten Untersuchung verschiedener Trägerformen


Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011

Anlage 4

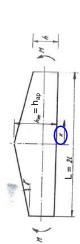
Berechnungen und Ergebnisse der Satteldachträger mit geradem Untergurt


1 - Satteldachträger mit geradem Untergurt - Biegerandspannung unten (Zug) im Firstguerschnitt

Anmerkungen 20° 24°	14,7 MN/m² 12,4 MN/m² 2,22 2,69 0,89 0,74	14,7 MN/m² 12,4 MN/m² 2,22 2.69 0,89 0,74	10,1 MN/m² 8,5 MN/m² 2,22 2,69 0,92 0,77	10,2 MN/m² 8,4 MN/m² 2,23 2,64 aus Tafel 15 - siehe Anlage 0,92 0,76	13,2 MN/m² 11,0 MN/m² siehe Anlage
Faseranschnittwinkel α 15 °	20,0 MN/m² 1,76 1,20	20,0 MN/m² 1,76 1,20	13,8 MN/m² 1,76 1,25	13,8 MN/m² 1,77 1,26	18,4 MN/m²
Fasel	32,4 MN/m² 1,41 <mark>1,95</mark>	32,4 MN/m² 1,41 1,95	22,3 MN/m² 1,41 2,03	22,1 MN/m² 1,4 2,01	30,4 MN/m²
့	75,9 MN/m² 1,16 4,57	75,9 MN/m² 1,16 4,57	52,3 MN/m² 1,16 4,76	51,7 MN/m² 1,15 4,70	71,3 MN/m²
Berechnungsformel / Nachweis, Beiwerte, Ausnutzungsgrad	$\begin{split} &\sigma_{m,o,d}=k_i * 6*M_d / b*h_{ap}^2 = \\ &k_i = 1 + 1, 4*tan\alpha + 5, 4*tan^2\alpha = \\ &\eta = \sigma_{m,o,d} / f_{m,d} = \end{split}$	$\sigma_{m,o,d} = (1+1,4^*\tan\alpha + 5,4^*\tan^2\alpha) * 6^*M_d / b^*h_{ap}^2 = 1 + 1,4^*\tan\alpha + 5,4^*\tan\alpha = 5,4^*\tan^2\alpha = 1 = \sigma_{m,o,d} / f_{m,d}^2 = 1$	$\begin{split} & \sigma_{x} = \kappa_{l} * 6*M / b^{*}h_{ap}{}^{2} = \\ & \kappa_{l} = 1 + 1, 4*tan\alpha + 5, 4*tan^{2}\alpha = \\ & \eta = \sigma_{x} / zul\sigma_{B} = \end{split}$	$\sigma_{x} = \kappa_{x} * 6*M / b^{*}h_{ap}^{2} =$ $\kappa_{x} =$ $\eta = \sigma_{x} / zul\sigma_{B} =$	= 0 mod =
Berechnung nach	DIN EN 1995-1-1: 2010-12 + 1994-06	DIN 1052:2008-12	DIN 1052:1988-04	BLUMER 1972/1979	DLUBAL (FEM)

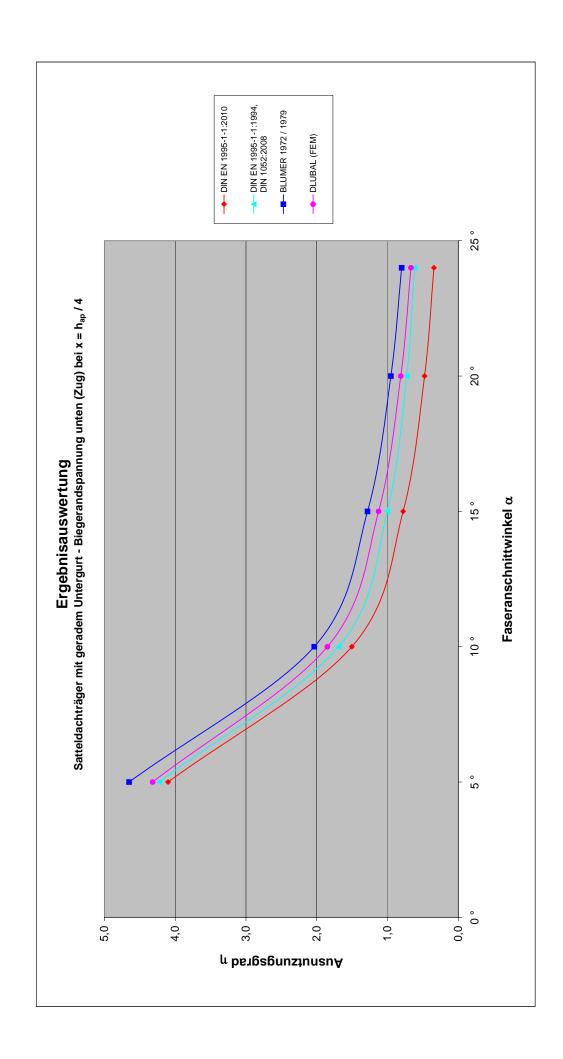
7

1 - Satteldachträger mit geradem Untergurt - Biegerandspannung unten (Zug) im Firstquerschnitt


1-2

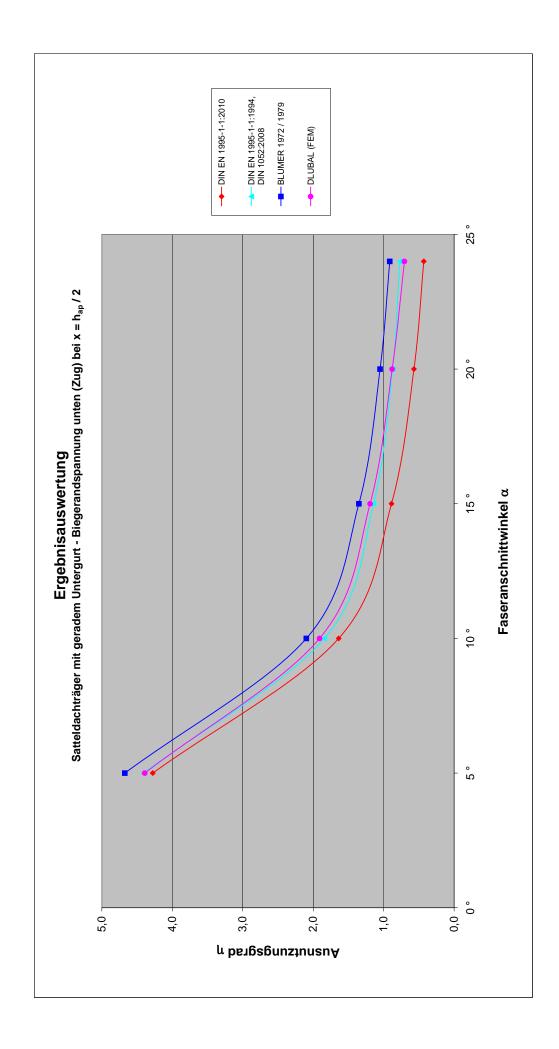
1 - Satteldachträger mit geradem Untergurt - Biegerandspannung unten (Zug) im Firstquerschnitt

24° Faseranschnittwinkel	Traufhöhe 5,84 m Firsthöhe in Abhängigkeit des Winkels 4,06 m gemittelte Höhe 6 Längen-zu-Höhen-Verhältnis (Balkentheorie)	Trägerbreite Spannweite				
20 °	4,87 m 3,41 m 7					
15 °	3,72 m 2,64 m 9					
10 °	2,62 m 1,91 m 13		(KLED kurz)			
ۍ °	0,50 m 1,55 m 1,20 m 20	0,18 m 24,00 m	16,6 MN/m² 11,0 MN/m²	15,0 kN/m 30,0 kN/m	65,3 kN/m 4698,0 kNm	45,0 kN/m 3240,0 kNm
≡ ¤	$\begin{split} h &= \\ h_{ap} &= h + L/2 * tan\alpha = \\ h_m &= h + 2/3 * (h_{ap} - h) = \\ L/h_m &\geq 6 \; mit \; L/h_m = \end{split}$	 	$f_{m,d} = zul \sigma_B =$	B 60 60	$q_d = M_d = M_d$	p ⊠ ∥ ∥
Querschnittsabmessungen / Geometrie	հ _m - հ		Materialkennwerte Gl24h - DIN EN 1194 und DIN 1052:2008 BS 11 - DIN 1052:1988	Beanspruchung ständige Lasten veränderliche Lasten	neues Sicherheitskonzept	altes Sicherheitskonzept


(-

2 - Satteldachträger mit geradem Untergurt - Biegerandspannung unten (Zug) außerhalb des Firstguerschnittes

Faseranschnittwinkel $lpha$ Anmerkungen 20° 24°	13,0 MN/m² 7,9 MN/m² 5,7 MN/m² 0,78 0,34	16,7 MN/m² 12,1 MN/m² 10,3 MN/m² 1,29 1,53 1,79 1,00 0,73 0,62	16,7 MN/m² 12,1 MN/m² 10,3 MN/m² 1,29 1,53 1,79 1,00 0,73 0,62		14,1 MN/m² 10,5 MN/m² 8,8 MN/m² 1,58 1,92 2,23 aus Tafel 15 - siehe Anlage 1,28 0,95 0,80	18,7 MN/m² 13,5 MN/m² 11,1 MN/m² siehe Anlage
Faseransch	68,1 MN/m² 25,0 MN/m² 13,0 4,10 1,50 0	70,2 MN/m² 28,1 MN/m² 16,7 1,03 1,12 1,69 1	70,2 MN/m² 28,1 MN/m² 16,7 1,03 1,12 1,69 1		51,2 MN/m² 22,4 MN/m² 14,1 1,09 1,3 1,4 4,65 2,04 1	71,7 MN/m² 30,7 MN/m² 18,7 4.3.2 1.85
Berechnungsformel / Nachweis, Beiwerte, Ausnutzungsgrad	$\sigma_{m,o,d} = 6*M_d(x) / b*h(x)^2 =$ $\eta = \sigma_{m,o,d} / f_{m,d} =$	$\sigma_{m,o,d} = (1+4^*tan^2\alpha) * 6^*M_d(x) / b^*h(x)^2 =$ $(1+4^*tan^2\alpha) =$ $\eta = \sigma_{m,o,d} / f_{m,d} =$	$\sigma_{m,o,d} = (1+4^*tan^2\alpha) * 6^*M_d(x) / b^*h(x)^2 =$ $(1+4^*tan^2\alpha) =$ $\eta = \sigma_{m,o,d} / f_{m,d} =$	keine Angaben	$\alpha_{x} = \kappa_{x} * 6*M(x) / b*h(x)^{2} =$ $\kappa_{x} =$ $\eta = \alpha_{x} / zul\sigma_{B} =$	$\sigma_{m,od} = \sigma_{m,od}$
1) bei $x = h_{ap} / 4$ Berechnung nach	DIN EN 1995-1-1:2010-12	DIN EN 1995-1-1:1994-06	DIN 1052:2008-12	DIN 1052:1988-04	BLUMER 1972/1979	DLUBAL (FEM)


2 - Satteldachträger mit geradem Untergurt - Biegerandspannung unten (Zug) außerhalb des Firstquerschnittes

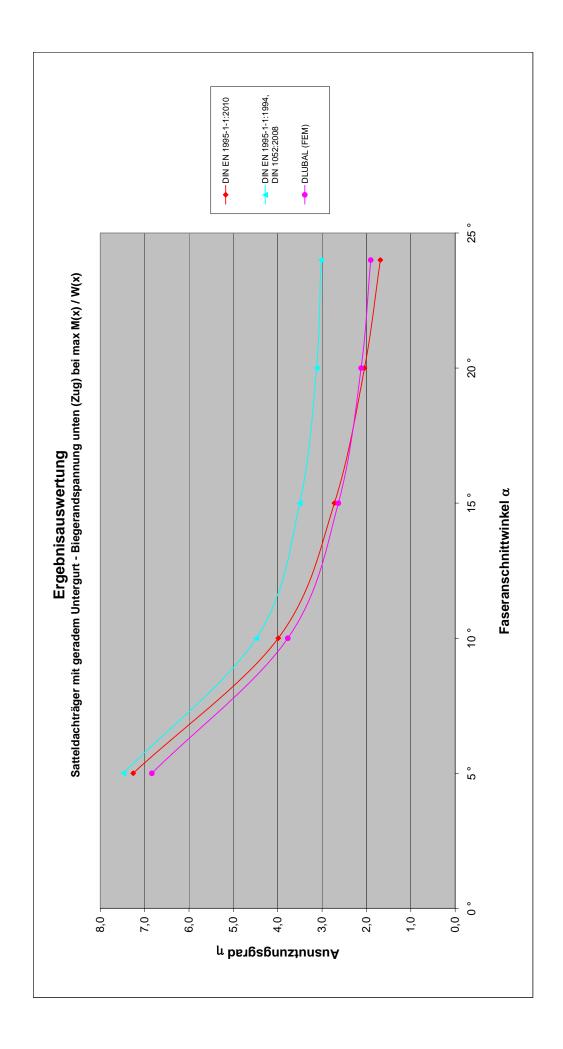
2 - Satteldachträger mit geradem Untergurt - Biegerandspannung unten (Zug) außerhalb des Firstguerschnittes

Faseranschnittwinkel $lpha$ Anmerkungen 15° 20° 24°	14,8 MN/m² 9,5 MN/m² 7,1 MN/m² 0,89 0,57 0,43	19,0 MN/m² 14,5 MN/m² 12,8 MN/m² 1,29 1,53 1,79 0,77 0,77	19,0 MN/m² 14,5 MN/m² 12,8 MN/m² 1,29 1,53 1,79 0,77 0,77		14,9 MN/m² 11,6 MN/m² 10,0 MN/m² 1,46 1,77 2,04 aus Tafel 15 - siehe Anlage 1,35 1,05 0,91	19,8 MN/m² 14,6 MN/m² 11,7 MN/m² siehe Anlage 1.19 0.88 0.70
10 °	27,2 MN/m² 1,64	30,6 MN/m² 1,12 1,84	30,6 MN/m² 1,12 1,84		23,1 MN/m² 1,23 2,10	31,7 MN/m² 1.91
Berechnungsformel / Nachweis, Beiwerte, Ausnutzungsgrad 5°	$\sigma_{m,o,d} = 6*M_d(x) / b*h(x)^2 = 71,0 \text{ MN/m}^2$ $\eta = \sigma_{m,o,d} / f_{m,d} = 4,28$	$\sigma_{m,o,d} = (1+4^*tan^2\alpha) * 6^*M_d(x) / b^*h(x)^2 = 73.2 \text{ MN/m}^2$ $(1+4^*tan^2\alpha) = 1,03$ $\eta = \sigma_{m,o,d} / f_{m,d} = 4,41$	$\sigma_{m,o,d} = (1+4^*tan^2\alpha)^* 6^*M_d(x) / b^*h(x)^2 = 73.2 \text{ MN/m}^2$ $(1+4^*tan^2\alpha) = 1,03$ $\eta = \sigma_{m,o,d} / f_{m,d} = 4,41$	keine Angaben	$\sigma_x = \kappa_x * 6*M(x) / b*h(x)^2 = 51,4 \text{ MN/m}^2$ $\kappa_x = 1,05$ $\eta = \sigma_x / \text{ Zulo}_B = 4,67$	$\sigma_{m,o,d} = 72.9 \text{ MN/m}^2$ $n = \sigma_{m,o,d} / I_{m,d} = 4.39$
2) bei $x = h_{ap} / 2$ Berechnung nach	DIN EN 1995-1-1:2010-12	DIN EN 1995-1-1:1994-06	DIN 1052:2008-12	DIN 1052:1988-04	BLUMER 1972/1979	DLUBAL (FEM)

2 - Satteldachträger mit geradem Untergurt - Biegerandspannung unten (Zug) außerhalb des Firstguerschnittes

2 - Satteldachträger mit geradem Untergurt - Biegerandspannung unten (Zug) außerhalb des Firstguerschnittes

3) bei x = h _{ap} Berechnung nach	Berechnungsformel / Nachweis, Beiwerte, Ausnutzungsgrad	ို	Fas	Faseranschnittwinkel α 15°	ا م 20°	24 °	Anmerkungen
DIN EN 1995-1-1:2010-12	$\sigma_{m,o,d} = 6*M_d(x) / b*h(x)^2 =$ $\eta = \sigma_{m,o,d} / f_{m,d} =$	77,0 MN/m² 4,64	32,1 MN/m² 1,94	19,1 MN/m² 1,15	13,6 MN/m² 0,82	11,4 MN/m² 0,69	
DIN EN 1995-1-1:1994-06	$\begin{split} \sigma_{m,o,d} &= \left(1 + 4^* tan^2 \alpha\right)^* 6^* M_d(x) / b^* h(x)^2 = \\ & \left(1 + 4^* tan^2 \alpha\right) = \\ & \eta = \sigma_{m,o,d} / f_{m,d} = \end{split}$	79,3 MN/m² 1,03 4,78	36,1 MN/m² 1,12 2,18	24,6 MN/m² 1,29 1,48	20,9 MN/m² 1,53 1,26	20,4 MN/m² 1,79 1,23	
DIN 1052:2008-12	$\sigma_{m,o,d} = (1+4^{+}tan^2\alpha)^{+} 6^{+}M_d(x)/b^{+}h(x)^2 = (1+4^{+}tan^2\alpha) = \eta = \sigma_{m,o,d}/f_{m,d} = \eta$	79,3 MN/m² 1,03 4,78	36,1 MN/m² 1,12 2,18	24,6 MN/m² 1,29 1,48	20,9 MN/m² 1,53 1,26	20,4 MN/m² 1,79 1,23	
DIN 1052:1988-04	keine Angaben						
BLUMER 1972/1979	$\alpha_{x} = \kappa_{x} * 6*M(x) / b*h(x)^{2} =$ $\kappa_{x} =$ $\eta = \alpha_{x} / 2u \sigma_{B} =$	55,2 MN/m² 1,04 5,02	26,8 MN/m² 1,21 2,44	18,6 MN/m² 1,41 1,69	15,9 MN/m² 1,69 1,45	15,2 MN/m² 1,94 1,38	
DLUBAL (FEM)	$\sigma_{m,o,d} = \sigma_{m,o,d} / f_{m,d} = \sigma$	77,0 MN/m² 4,64	35,6 MN/m² 2,14	23,7 MN/m² 1,43	19,1 MN/m² 1,15	14,0 MN/m² 0,84	siehe Anlage


2 - Satteldachträger mit geradem Untergurt - Biegerandspannung unten (Zug) außerhalb des Firstquerschnittes

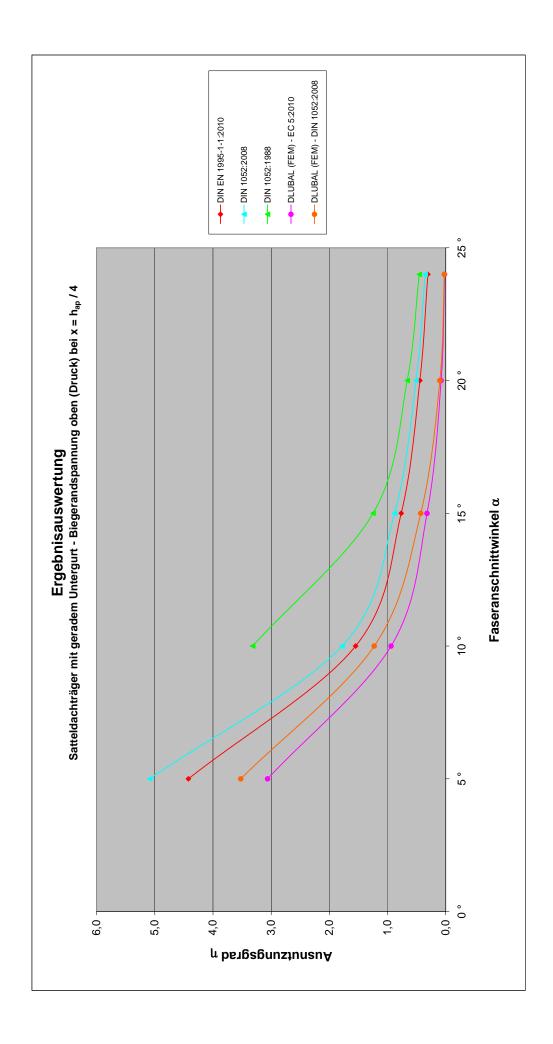
2 - Satteldachträger mit geradem Untergurt - Biegerandspannung unten (Zug) außerhalb des Firstguerschnittes

4) bei max M(x) / W(x) Berechnung nach	Berechnungsformel / Nachweis, Beiwerte, Ausnutzungsgrad	လ	Fas	Faseranschnittwinkel $lpha$	ا م 20°	. 24	Anmerkungen
DIN EN 1995-1-1:2010-12	$\sigma_{m,o,d} = 6^*M_d(x) / b^*h(x)^2 =$ $\eta = \sigma_{m,o,d} / f_{m,d} =$	120,5 MN/m² <mark>7,26</mark>	66,2 MN/m² 3,99	45,2 MN/m² <mark>2,72</mark>	33,9 MN/m² 2,04	28,0 MN/m² 1, <mark>69</mark>	
DIN EN 1995-1-1:1994-06	$\begin{split} \sigma_{mod} &= \left(1 + 4^* tan^2 \alpha\right)^* 6^* M_d(x) / b^* h(x)^2 = \\ & \left(1 + 4^* tan^2 \alpha\right) = \\ & \eta = \sigma_{mod} / f_{md} = \end{split}$	124,2 MN/m² 1,03 7,48	74,4 MN/m² 1,12 4,48	58,2 MN/m² 1,29 3,50	51,9 MN/m² 1,53 3,13	50,2 MN/m² 1,79 3,02	
DIN 1052:2008-12	$\begin{split} \sigma_{m,o,d} &= \left(1 + 4^* tan^2 \alpha\right)^* 6^* M_d(x) / b^* h(x)^2 = \\ & \left(1 + 4^* tan^2 \alpha\right) = \\ & \eta = \sigma_{m,o,d} / f_{m,d} = \end{split}$	124,2 MN/m² 1,03 7,48	74,4 MN/m² 1,12 4,48	58,2 MN/m² 1,29 3,50	51,9 MN/m² 1,53 3,13	50,2 MN/m² 1,79 3,02	
DIN 1052:1988-04	keine Angaben						
BLUMER 1972/1979	keine Angaben						
DLUBAL (FEM)	$\sigma_{m,o,d} = \eta = \sigma_{m,o,d} / \ell_{m,d}$	113,5 MN/m² 6,84	62,6 MN/m² 3,77	43,7 MN/m² 2,63	35,2 MN/m² 2,12	31,6 MN/m² 1,90	siehe Anlage

2 - Satteldachträger mit geradem Untergurt - Biegerandspannung unten (Zug) außerhalb des Firstguerschnittes

2-8

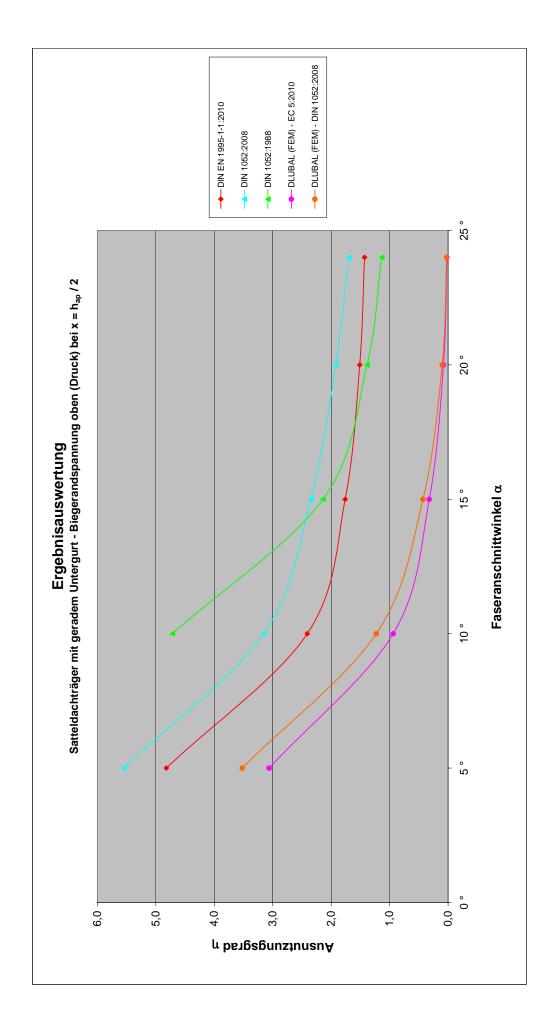
2 - Satteldachträger mit geradem Untergurt - Biegerandspannung unten (Zug) außerhalb des Firstguerschnittes


	ils ntheorie)	h / (2*h + l*tanα) * l)				
Faseranschnittwinkel	Traufhöhe Firsthöhe in Abhängigkeit des Winkels gemittelte Höhe Längen-zu-Höhen-Verhältnis (Balkentheorie)	Trägerhöhe an der Stelle x Trägerhöhe an der Stelle x Trägerhöhe an der Stelle x Stelle x bei max M /W mit x = L /2 - (h / (2*h + l*tan α) * l) Trägerhöhe an der Stelle x Trägerbreite Spannweite			Moment an der Stelle x Moment an de Stelle x Moment an de Stelle x Moment an de Stelle x	Moment an de Stelle x Moment an de Stelle x Moment an de Stelle x Moment an de Stelle x
24 °	5,84 m 4,06 m 6	5,19 m 4,54 m 3,24 m 10,97 m 0,96 m			4628,4 kNm 4419,6 kNm 3584,3 kNm 769,7 kNm	3192,0 kNm 3048,0 kNm 2471,9 kNm 530,8 kNm
20 °	4,87 m 3,41 m 7	4,42 m 3,98 m 3,10 m 10,77 m 0,95 m			4649,7 kNm 4504,7 kNm 3925,0 kNm 915,6 kNm	3206,7 kNm 3106,7 kNm 2706,9 kNm 631,4 kNm
15 °	3,72 m 2,64 m 9	3,47 m 3,22 m 2,72 m 10,39 m 0,93 m			4669,9 kNm 4585,4 kNm 4247,6 kNm 1179,4 kNm	3220,6 kNm 3162,4 kNm 2929,4 kNm 813,4 kNm
, 01	2,62 m 1,91 m 13	2,50 m 2,39 m 2,15 m 9,71 m 0,90 m	(KLED kurz)		4684,0 kNm 4642,2 kNm 4474,7 kNm 1624,3 kNm	3230,4 kNm 3201,5 kNm 3086,0 kNm 1120,2 kNm
လ	0,50 m 1,55 m 1,20 m 20	1,52 m 1,48 m 1,41 m 8,13 m 0,84 m	16,6 MN/m² 11,0 MN/m²	15,0 kN/m 30,0 kN/m	65,3 kN/m 4693,1 kNm 4678,4 kNm 4619,6 kNm 2542,3 kNm	45,0 kN/m 3236,6 kNm 3226,5 kNm 3186,0 kNm 1753,3 kNm
π α	$\begin{split} h &= h + L/2 \ ^* tan\alpha = h + L/3 \ ^* (h_{sp} - h) = L/3 \ ^* (h_{sp} - h) = L/h_m \ge 6 \ mit \ L/h_m = L/h$	$h(x = h_{ap}/4) = h(x = h_{ap}/4) = h(x = h_{ap}/2) = h(x = h_{ap}) = h(x) = $	f _{m,d} = zul σ _B =	 	$q_d = M_d (x = h_{ap}/4) = M_d (x = h_{ap}/2) = M_d (x = h_{ap}) = M_d (x = h_{ap}) = M_d (x = h_{ap}) = M_d (x) =$	$q = 0$ $M (x = h_{ap}/4) = 0$ $M (x = h_{ap}/2) = 0$ $M (x = h_{ap}) = 0$ $M (x) = 0$
igen / Geometrie	η _{αρ} = η η η η η η η η η η η η η η η η η η	(1) (2) (4) (4)	GI24h - DIN EN 1194 und DIN 1052:2008 BS 11 - DIN 1052:1988	ständige Lasten veränderliche Lasten	neues Sicherheitskonzept 1) 2) 3) 4)	altes Sicherheitskonzept 1) 2) 3) 4)
Querschnittsabmessungen / Geometrie			Materialkennwerte	Beanspruchung		

3 - Satteldachträger mit geradem Untergurt - Biegerandspannung oben (Druck) außerhalb des Firstquerschnittes

	1 11	4 11 4		
	*= h _{ap}			
_	4	Ľ.	C	71
1				T

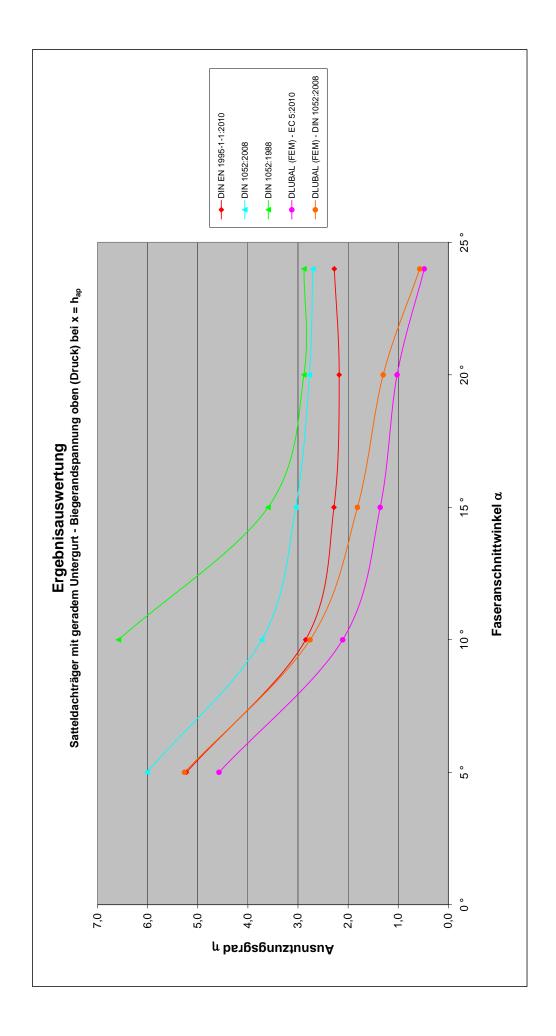
Anmerkungen						siehe Anlage		
24 °	4,5 MN/m² 5,0 MN/m² 0,31	0,9 MN/m² 0,21 7,2 MN/m² 0,06	4,5 MN/m² 4,2 MN/m² 0,35	3,1 MN/m² 1,0 1,4 MN/m² 0,6 MN/m² 0,45		0,1 MN/m²	5,0 MN/m² 0,02	4.2 MN/m ²
el α 20 °	6,5 MN/m² 6,3 MN/m² 0,44	3,1 MN/m² 0,47 8,6 MN/m² 0,20	6,5 MN/m² 4,9 MN/m² 0,51	4,5 MN/m² 1,0 1,6 MN/m² 0,6 MN/m²		0,5 MN/m²	6,3 MN/m² 0,08	4 9 MN/m²
Faseranschnittwinkel α	11,3 MN/m² 8,4 MN/m² 0,77	8,0 MN/m² 0,71 10,9 MN/m² 0,51	11,3 MN/m² 6,3 MN/m² 0,88	7,8 MN/m² 1,0 2,1 MN/m² 0,6 MN/m² 1,25		2,7 MN/m²	8,4 MN/m² 0,32	6.2 MM/m2
Fas	22,8 MN/m² 11,3 MN/m² 1,55	20,0 MN/m² 0,88 13,4 MN/m² 1,27	22,8 MN/m² 8,6 MN/m² 1,78	15,7 MN/m² 1,0 2,8 MN/m² 0,5 MN/m² 3,32		10,6 MN/m²	11,3 MN/m² 0,94	0 G MAN /m2
ņ	65,1 MN/m² 14,7 MN/m² <mark>4,42</mark>	63,1 MN/m² 0,97 15,7 MN/m² 4,03	65,1 MN/m² 12,8 MN/m² 5,09	44,9 MN/m² 1,0 3,9 MN/m² 0,3 MN/m² 19,16		45,1 MN/m²	14,7 MN/m² 3,06	1.2 9 MAN /m2
Berechnungsformel / Nachweis, Beiwerte, Ausnutzungsgrad	$\begin{split} \sigma_{m,\alpha,d} &= 6^* M_d(x) / b^* h(x)^2 = \\ f_{m,\alpha,d} &= \eta \\ \eta &= \sigma_{m,\alpha,d} / f_{m,\alpha,d} = \end{split}$	$\begin{split} \sigma_{m,\alpha,d} &= (1-4^*tan^2\alpha) * 6^*M_d(x) / b^*h(x)^2 = \\ & (1-4^*tan^2\alpha) = \\ & f_{m,\alpha,d} = \\ & \eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = \end{split}$	$\begin{split} &\sigma_{m,\alpha,d} = 6^* M_d(x) / b^* h(x)^2 = \\ &\qquad \qquad f_{m,\alpha,d} = \\ & \eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = \end{split}$	$\begin{split} &\sigma_x = \kappa_x \ ^* \ 6^*M(x) \ / \ b^*h(x)^2 = \\ &\kappa_x = \\ &\kappa_y = \\ &\sigma_{Dy} = \sigma_x \ ^* \ tan\alpha = \\ &\tau = \sigma_x \ ^* \ tan^2\alpha = \\ &\eta = (\sigma_x/zuI\sigma_B)^2 + (\sigma_D/zuI\sigma_D_y)^2 + (\tau/2.66^*zuI\tau_a) = \end{split}$	keine Angaben	$Q_{m,\alpha,d} =$	$f_{m,\alpha,d} = \eta_{m,\alpha,d} / f_{m,\alpha,d} = \eta$	**
1) bei $x = h_{ap} / 4$ Berechnung nach	DIN EN 1995-1-1:2010-12	DIN EN 1995-1-1:1994-06	DIN 1052:2008-12	DIN 1052:1988-04	BLUMER 1972/1979	DLUBAL (FEM)	vgl. mit DIN EN 1995-1:2010	10000000000000000000000000000000000000


3 - Satteldachträger mit geradem Untergurt - Biegerandspannung oben (Druck) außerhalb des Firstquerschnittes

3 - Satteldachträger mit geradem Untergurt - Biegerandspannung oben (Druck) außerhalb des Firstquerschnittes

2) bei $x = h_{ap} / 2$ Berechnung nach	Berechnungsformel / Nachweis.		Fas	Faseranschnittwinkel α	8		Anmerkungen
	Beiwerte, Ausnutzungsgrad	လိ	10。	15°	20 °	24 °	
DIN EN 1995-1-1:2010-12	$\sigma_{m,\alpha,d} = 6*M_d(x) / b*h(x)^2 =$ $f_{m,\alpha,d} =$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} =$	71,0 MN/m² 14,7 MN/m² 4,82	27,2 MN/m² 11,3 MN/m² 2,41	14,8 MN/m² 8,4 MN/m² 1,76	9,5 MN/m² 6,3 MN/m² 1,51	7,1 MN/m² 5,0 MN/m² 1,43	
DIN EN 1995-1-1:1994-06	$\begin{split} \sigma_{m,\alpha,\sigma} &= (1\text{-}4\text{*}tan^2\alpha) * 6\text{*}M_d(x) / b\text{*}h(x)^2 = \\ & (1\text{-}4\text{*}tan^2\alpha) = \\ & f_{m,\alpha,\sigma} = \\ & \eta = \sigma_{m,\alpha,\sigma} / f_{m,\alpha,\sigma} = \end{split}$	68,8 MN/m² 0,97 15,7 MN/m² 4,39	23,8 MN/m² 0,88 13,4 MN/m² 1,77	10,5 MN/m² 0,71 10,9 MN/m² 0,97	4,5 MN/m² 0,47 8,6 MN/m² 0,52	1,5 MN/m² 0,21 7,2 MN/m² 0,21	
DIN 1052:2008-12	$\begin{split} \sigma_{m,\alpha,d} &= 6*M_d(x) / b*h(x)^2 = \\ &\qquad \qquad f_{m,\alpha,d} = \\ \eta &= \sigma_{m,\alpha,d} / f_{m,\alpha,d} = \end{split}$	71,0 MN/m² 12,8 MN/m² 5,55	27,2 MN/m² 8,6 MN/m² 3,15	14,8 MN/m² 6,3 MN/m² 2,35	9,5 MN/m² 4,9 MN/m² 1,92	7,1 MN/m² 4,2 MN/m² 1,70	
DIN 1052:1988-04	$\begin{split} &\sigma_{_X} = \kappa_{_X} \ ^* \ 6^*M(x) \ / \ b^*h(x)^2 = \\ &\kappa_{_X} = \\ &\sigma_{Dy} = \sigma_{_X} \ ^* \ tan\alpha = \\ &\tau = \sigma_{_X} \ ^* \ tan^2\alpha = \\ &\eta = (\sigma_{_X} Zul\sigma_{_B})^2 + (\sigma_{D_y} / Zul\sigma_{D_y})^2 + (\tau/2,66^* Zul\tau_{_B}) = \end{split}$	49,0 MN/m² 1,0 4,3 MN/m² 0,4 MN/m² 22,77	18,8 MN/m² 1,0 3,3 MN/m² 0,6 MN/m² 4,72	10,2 MN/m² 1,0 2,7 MN/m² 0,7 MN/m² 2,14	6,5 MN/m² 1,0 2,4 MN/m² 0,9 MN/m² 1,39	4,9 MN/m² 1,0 2,2 MN/m² 1,0 MN/m²	
BLUMER 1972/1979	keine Angaben						
DLUBAL (FEM)	$\sigma_{m,\alpha,d} =$	56,2 MN/m²	16,0 MN/m²	5,8 MN/m²	2,3 MN/m²	0,4 MN/m²	siehe Anlage
vgl. mit DIN EN 1995-1:2010	$= \int_{m,\alpha,d} \int_{m,\alpha,d} \int_{m,\alpha,d} = \eta$	14,7 MN/m² 3,06	11,3 MN/m² 0,94	8,4 MN/m² 0,32	6,3 MN/m² 0,08	5,0 MN/m² 0,02	
vgl. mit DIN 1052:2008	$f_{m,\alpha,d} = f_{m,\alpha,d} / f_{m,\alpha,d} = \eta$	12,8 MN/m² 3,52	8,6 MN/m² 1,23	6,3 MN/m² 0,43	4,9 MN/m² 0,10	4,2 MN/m² 0,02	

3 - Satteldachträger mit geradem Untergurt - Biegerandspannung oben (Druck) außerhalb des Firstquerschnittes

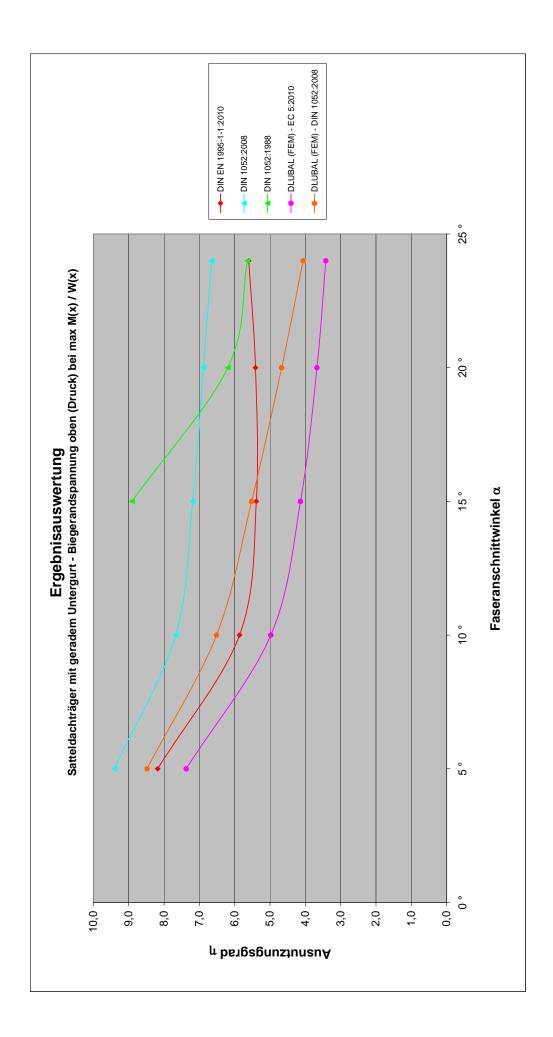

3-4

Proj.-Nr. 09.007g

3 - Satteldachträger mit geradem Untergurt - Biegerandspannung oben (Druck) außerhalb des Firstquerschnittes

5° 10° 77,0 MN/m² 32,1 MN/m² 19, 14,7 MN/m² 11,3 MN/m² 8,4 5,23 2,85 5,23 2,85 74,6 MN/m² 28,1 MN/m² 13,6 0,97 0,97 77,0 MN/m² 32,1 MN/m² 19, 12,8 MN/m² 32,1 MN/m² 6,3 6,01 3,72 6,01 3,72 6,01 3,9 MN/m² 3,5 0,4 MN/m² 23,8 MN/m² 0,9 26,78 6,58 2,11 14,7 MN/m² 11,3 MN/m² 8,4 4,58 2,11 12,8 MN/m² 8,6 MN/m² 6,3 5,26 2,76 2,76 3,0 MN/m² 6,58 6,58 2,11 12,8 MN/m² 8,6 MN/m² 6,3 5,26		Berechnungsformel / Nachweis,			Faseranschnittwinkel α			Anmerkungen
$\sigma_{m,\alpha,d} = 6^* M_d(X) / b^* h(X)^2 = 77,0 MN/m^2 \qquad 32.1 MN/m^2$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 14.7 MN/m^2 \qquad 11.3 MN/m^2$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 15.7 MN/m^2 \qquad 28.1 MN/m^2$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 15.7 MN/m^2 \qquad 32.1 MN/m^2$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 12.8 MN/m^2 \qquad 32.1 MN/m^2$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 6.01 \qquad 3.72$ $\sigma_{x} = \kappa_x * 6^* M(X) / b^* h(X)^2 = 53.1 MN/m^2 \qquad 32.1 MN/m^2$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 4.6 MN/m^2 \qquad 3.9 MN/m^2$ $\eta = (\sigma_x/2u \sigma_{Dy})^2 + (\sigma_{Dy}/2u \sigma_{Dy})^2 + (\sigma_{Dz}/2u \sigma_{Dz})^2 +$		Beiwerte, Ausnutzungsgrad	ည	10 °	15 °	20 °	24 °	
$\sigma_{m,\alpha,d} = (1-4^{t}\tan^{2}\alpha)^{+} 6^{t}M_{0}(x)^{2} = 74.6 \text{ MN/m}^{2} = 0.97 \qquad 0.88$ $(1-4^{t}\tan^{2}\alpha) = 0.97 \qquad 0.97 \qquad 0.88$ $\eta = \sigma_{m,\alpha,d} + (1-4^{t}\tan^{2}\alpha) = 15.7 \text{ MN/m}^{2} = 13.4 \text{ MN/m}^{2}$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 12.8 \text{ MN/m}^{2} = 32.1 \text{ MN/m}^{2}$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 12.8 \text{ MN/m}^{2} = 8.6 \text{ MN/m}^{2}$ $\sigma_{x} = \kappa_{x} + 6^{t}M(x) / b^{t}h(x)^{2} = 53.1 \text{ MN/m}^{2} = 22.2 \text{ MN/m}^{2}$ $\sigma_{y} = \sigma_{x} + \tan\alpha = 4.6 \text{ MN/m}^{2} = 0.4 \text{ MN/m}^{2}$ $\eta = (\sigma_{x}/2u \sigma_{b})^{2} + (\sigma_{D_{y}}/2u \sigma_{D_{y}})^{2} + (\tau/2.66^{t}2u \tau_{a}) = 26.78 \qquad 6.58$ $\sigma_{m,\alpha,d} = 67.4 \text{ MN/m}^{2} = 23.8 \text{ MN/m}^{2}$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 14.7 \text{ MN/m}^{2} = 23.8 \text{ MN/m}^{2}$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 12.8 \text{ MN/m}^{2} = 3.11$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 12.8 \text{ MN/m}^{2} = 8.6 \text{ MN/m}^{2}$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 12.8 \text{ MN/m}^{2} = 8.6 \text{ MN/m}^{2}$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 12.8 \text{ MN/m}^{2} = 8.6 \text{ MN/m}^{2}$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 12.8 \text{ MN/m}^{2} = 8.6 \text{ MN/m}^{2}$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 12.8 \text{ MN/m}^{2} = 8.6 \text{ MN/m}^{2}$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 12.8 \text{ MN/m}^{2} = 8.6 \text{ MN/m}^{2}$	0-12	$\begin{split} \sigma_{m,\alpha,d} &= 6^* M_d(x) / b^* h(x)^2 = \\ &\qquad \qquad f_{m,\alpha,d} &= \\ \eta &= \sigma_{m,\alpha,d} / f_{m,\alpha,d} = \end{split}$	77,0 MN/m² 14,7 MN/m² <mark>5,23</mark>	32,1 MN/m² 11,3 MN/m² 2,85	19,1 MN/m² 8,4 MN/m² 2,28	13,6 MN/m² 6,3 MN/m² 2,18	11,4 MN/m² 5,0 MN/m² 2,28	
$\sigma_{m,\alpha,d} = 6*M_d(x) / b*h(x)^2 = 77,0 \text{ MN/m}^2 \qquad 32,1 \text{ MN/m}^2$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 12,8 \text{ MN/m}^2 \qquad 8,6 \text{ MN/m}^2$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 63,1 \text{ MN/m}^2 \qquad 22,2 \text{ MN/m}^2$ $\sigma_{Dy} = \sigma_x * \tan \alpha = 4,6 \text{ MN/m}^2 \qquad 3,9 \text{ MN/m}^2$ $\tau = \sigma_x * \tan \alpha = 0,4 \text{ MN/m}^2 \qquad 0,7 \text{ MN/m}^2$ $\eta = (\sigma_y/2u \sigma_b)^2 + (\tau/2,66^2\tau u \tau_a) = 26,78 \qquad 6,58$ $\kappa_{m,\alpha,d} = 14,7 \text{ MN/m}^2 \qquad 23,8 \text{ MN/m}^2$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 14,7 \text{ MN/m}^2 \qquad 23,8 \text{ MN/m}^2$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 12,8 \text{ MN/m}^2 \qquad 8,6 \text{ MN/m}^2$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 12,8 \text{ MN/m}^2 \qquad 8,6 \text{ MN/m}^2$	14-06	$\begin{split} \sigma_{m,\alpha,d} &= \left(1.4^*tan^2\alpha\right)^* 6^*M_d(x) / b^*h(x)^2 = \\ & \left(1.4^*tan^2\alpha\right) = \\ & f_{m,\alpha,d} = \\ & \eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = \end{split}$	74,6 MN/m² 0,97 15,7 MN/m² 4,76	28,1 MN/m² 0,88 13,4 MN/m² 2,10	13,6 MN/m² 0,71 10,9 MN/m² 1,25	6,4 MN/m² 0,47 8,6 MN/m² 0,74	2,4 MN/m² 0,21 7,2 MN/m² 0,33	
$\sigma_{x} = \kappa_{x} * 6*M(x) / b*h(x)^{2} = 53.1 \text{ MN/m}^{2} \qquad 22.2 \text{ MN/m}^{2}$ $\tau_{Dy} = \sigma_{x} * \tan \alpha = 4.6 \text{ MN/m}^{2} \qquad 3.9 \text{ MN/m}^{2}$ $\eta = (\sigma_{x}/2u \sigma_{Dy})^{2} + (\tau/2.66^{2}zu \tau_{a}) = 26.78 \qquad 6.58$ $\kappa_{m,\alpha,d} = (7.4 \text{ MN/m}^{2}) \qquad 23.8 \text{ MN/m}^{2}$ $\sigma_{m,\alpha,d} = (7.4 \text{ MN/m}^{2}) \qquad 11.3 \text{ MN/m}^{2}$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 12.8 \text{ MN/m}^{2} \qquad 23.8 \text{ MN/m}^{2}$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 12.8 \text{ MN/m}^{2} \qquad 8.6 \text{ MN/m}^{2}$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 5.26 \qquad 2.76$		$\begin{split} &\sigma_{m,\alpha,d} = 6^* M_d(x) / b^* h(x)^2 = \\ &f_{m,\alpha,d} = \\ &\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = \end{split}$		32,1 MN/m² 8,6 MN/m² 3,72	19,1 MN/m² 6,3 MN/m² 3,05	13,6 MN/m² 4,9 MN/m² 2,77	11,4 MN/m² 4,2 MN/m² 2,70	
keine Angaben $\sigma_{m,\alpha,d} = 67,4 \text{ MN/m}^2 \qquad 23,8 \text{ MN/m}^2$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 14,7 \text{ MN/m}^2 \qquad 11,3 \text{ MN/m}^2$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 12,8 \text{ MN/m}^2 \qquad 8,6 \text{ MN/m}^2$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 5.26 \qquad 2.76$		$\begin{split} &\sigma_{x}=\kappa_{x} * 6*M(x)/b*h(x)^{2}=\\ &\kappa_{x}=\\ &\kappa_{y}=\\ &\kappa_{y}=\\ &\sigma_{Dy}=\sigma_{x}*tan\alpha=\\ &\tau=\sigma_{x}*tan^{2}\alpha=\\ &\eta=(\sigma_{x}/2u \sigma_{B})^{2}+(\sigma_{Dy}/2u \sigma_{Dy})^{2}+(\tau/2,66^{4}2u \tau_{a})= \end{split}$	53,1 MN/m² 1,0 4,6 MN/m² 0,4 MN/m² 26,78	22,2 MN/m² 1,0 3,9 MN/m² 0,7 MN/m² 6,58	13,2 MN/m² 1,0 3,5 MN/m² 0,9 MN/m² 3,60	9,4 MN/m² 1,0 3,4 MN/m² 1,2 MN/m² 2,88	7,8 MN/m² 1,0 3,5 MN/m² 1,6 MN/m² 2,88	
$\sigma_{m,\alpha,d} = 67,4 \text{ MN/m}^2 \qquad 23,8 \text{ MN/m}^2$ $I_{m,\alpha,d} = 14,7 \text{ MN/m}^2 \qquad 11,3 \text{ MN/m}^2$ $I_1 = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 4,58 \qquad 2,11$ $f_{m,\alpha,d} = 12,8 \text{ MN/m}^2 \qquad 8,6 \text{ MN/m}^2$ $I_1 = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 5,26 \qquad 2.76$		keine Angaben						
$f_{m,\alpha,d} = 14,7 \text{ MN/m}^2 \qquad 11,3 \text{ MN/m}^2$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 4,58 \qquad 2,11$ $f_{m,\alpha,d} = 12,8 \text{ MN/m}^2 \qquad 8,6 \text{ MN/m}^2$ $\eta = \sigma_{m,\alpha,d} / f_{m,\alpha,d} = 5,26 \qquad 2.76$		$Q_{m,\alpha,d} =$	67,4 MN/m²	23,8 MN/m²	11,4 MN/m²	6,4 MN/m²	2,4 MN/m²	siehe Anlage
$f_{m,c,d} = 12.8 \text{ MN/m}^2$ 8,6 MN/m² 11 = $\sigma_{m,c,d} / f_{m,c,d} = 5.26$ 2.76	-1:2010	$= \rho_{m,\alpha,d} + \int_{m,\alpha,d} \int_{m,\alpha} \rho_{m,\alpha} = \rho_{m,\alpha}$		11,3 MN/m² 2,11	8,4 MN/m² 1,36	6,3 MN/m² 1,02	5,0 MN/m² 0,48	
	80	$= \sigma_{m,\alpha,d} + \int_{m,\alpha,d} \int_{m,\alpha} \sigma = \eta$		8,6 MN/m² 2,76	6,3 MN/m² 1,81	4,9 MN/m² 1,30	4,2 MN/m² 0,57	

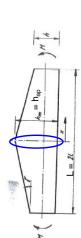
3 - Satteldachträger mit geradem Untergurt - Biegerandspannung oben (Druck) außerhalb des Firstquerschnittes


3-6

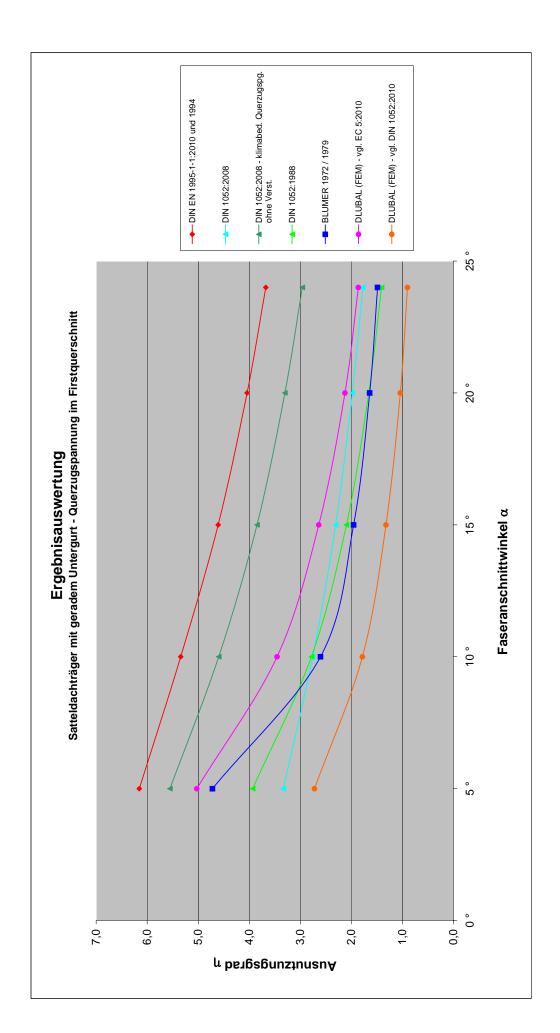
Proj.-Nr. 09.007g

3 - Satteldachträger mit geradem Untergurt - Biegerandspannung oben (Druck) außerhalb des Firstquerschnittes

10° 66,2 MN/m² 11.3 MN/m²
14,7 MN/m² 8,18 8,18 116,8 MN/m² 0,97

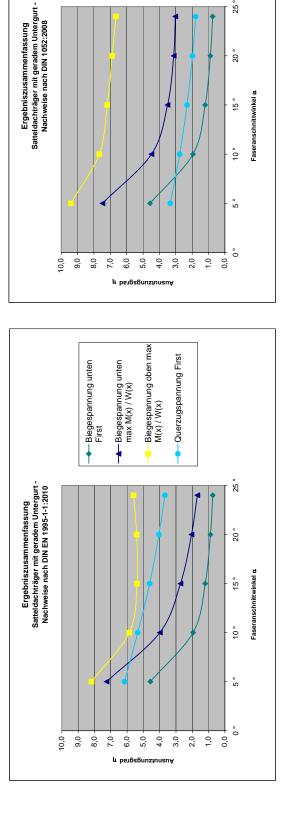

3 - Satteldachträger mit geradem Untergurt - Biegerandspannung oben (Druck) außerhalb des Firstquerschnittes

3 - Satteldachträger mit geradem Untergurt - Biegerandspannung oben (Druck) außerhalb des Firstquerschnittes


	nkels ntheorie)	: - (h / (2*h + l*tanα) * l)				
Faseranschnittwinkel	Traufhöhe Firsthöhe in Abhängigkeit des Winkels gemittelte Höhe Längen-Höhen-Verhältnis (Balkentheorie)	Trägerhöhe an der Stelle x Trägerhöhe an der Stelle x Trägerhöhe an der Stelle x Stelle x bei max M / W mit x = $L/2$ - (h / (2* h + l*tan α) * l) Trägerhöhe an der Stelle x Trägerbreite			Moment an der Stelle x Moment an de Stelle x Moment an de Stelle x Moment an de Stelle x	Moment an de Stelle x Moment an de Stelle x Moment an de Stelle x Moment an de Stelle x
24 °	5,84 m 4,06 m 6	5.84 m 4.54 m 3.24 m 10,97 m 0,96 m			4628,4 kNm 4419,6 kNm 3584,3 kNm 769,7 kNm	3192,0 kNm 3048,0 kNm 2471,9 kNm 530,8 kNm
20 °	4,87 m 3,41 m 7	4,87 m 3,98 m 3,10 m 10,77 m 0,95 m			4649,7 KNm 4504,7 KNm 3925,0 KNm 915,6 KNm	3206,7 kNm 3106,7 kNm 2706,9 kNm 631,4 kNm
15 °	3,72 m 2,64 m 9	3,72 m 3,22 m 2,72 m 10,39 m 0,93 m			4669,9 KNm 4585,4 KNm 4247,6 KNm 1179,4 KNm	3220,6 kNm 3162,4 kNm 2929,4 kNm 813,4 kNm
10°	2,62 m 1,91 m 13	2,62 m 2,39 m 2,15 m 9,71 m 0,90 m	(KLED kurz) (KLED kurz) (KLED kurz) (KLED kurz)		4684,0 kNm 4642,2 kNm 4474,7 kNm 1624,3 kNm	3230,4 kNm 3201,5 kNm 3086,0 kNm 1120,2 kNm
လိ	0,50 m 1,55 m 1,20 m 20	1,55 m 1,48 m 1,41 m 8,13 m 0,84 m 0,18 m	16,62 MN/m² 1,87 MN/m² 1,87 MN/m² 1,73 MN/m² 11,0 MN/m² 2,5 MN/m² 0,9 MN/m²	15,0 kN/m 30,0 kN/m	65,3 kN/m 4693,1 kNm 4678,4 kNm 4619,6 kNm 2542,3 kNm	45,0 kN/m 3236,6 kNm 3226,5 kNm 3186,0 kNm 1753,3 kNm
π =	$\begin{split} h &= h + L/2 * tan\alpha = h_m = h + 2/3 * (h_{ap} \cdot h) = L/m = 6 & mit \ L/h_m = 6 & mit \ L/h_m = 6 \end{split}$	$h(x = h_{ap}/4) = h(x = h_{ap}/2) = h(x = h_{ap}/2) = h(x = h_{ap}) = h(x) = $	$f_{m,d} = f_{c,90,d} = f_{c,90,d} = f_{v,d} = f_{v,d} = zul \sigma_B = zul \sigma_D $	II II	$q_d = M_d (x = h_{ap}/4) = M_d (x = h_{ap}/2) = M_d (x = h_{ap}/2) = M_d (x = h_{ap}) = M_d (x) = M_d (x$	$q = M (x = h_{ap}/4) = M (x = h_{ap}/2) = M (x = h_{ap}) = M (x = h_{ap}) = M (x) = $
n / Geometrie	h _{ap} = h _m = h + L / h _n	(+ C) (+ O)	Gl24h - DIN EN 1194 und DIN 1052:2008 DIN EN 1194 DIN 1052:2008 BS 11 - DIN 1052:1988	ständige Lasten veränderliche Lasten	neues Sicherheitskonzept 1) 2) 3)	altes Sicherheitskonzept 1) 2) 2) 3) 4)
Querschnittsabmessungen / Geometrie			Materialkennwerte	Beanspruchung		

4 - Satteldachträger mit geradem Untergurt - Querzugspannung im Firstguerschnitt

Anmerkungen		zusätzliche, klimabedingte Querzugspannungen ohne Verstärkung		aus Tafel 14 - siehe Anlage	siehe Anlage	
8	0,41 MN/m² 0,09 1,40 0,28 3,68	0,41 MN/m² 1,30 0,51 1,78 2,96 z	0,28 MN/m² 0,09 1,41	0,30 MN/m² 0,094 a 1,49	0,21 MN/m² si 1,86	06'0
ا م 20 °	0,48 MN/m² 0,07 1,40 0,30 4,04	0,48 MN/m² 1,30 0,53 1,98 3,30	0,33 MN/m² 0,07 1,66	0,33 ΜΝ/m² 0,072 1,64	0,25 MN/m² 2,13	1,04
Faseranschnittwinkel α 15°	0,61 MN/m² 0,05 1,40 0,34 4,61	0,61 MN/m² 1,30 0,58 2,31 3,85	0,42 MN/m² 0,05 2,10	0,39 MN/m² 0,05 1,96	0,35 MN/m² 2,64	1,32
Fa .	0,81 MN/m² 0,04 1,40 0,39 5,34	0,81 MN/m² 1,30 0,64 2,76 4,60	0,56 MN/m² 0,04 2,78	0,52 MN/m² 0,033 2,60	0,52 MN/m² 3,46	1,78
သိ	1,14 MN/m² 0,02 1,40 0,47 6,15	1,14 MN/m² 1,30 0,75 3,33 5,55	0,79 MN/m² 0,02 3,93	0,94 MN/m² 0,021 4,72	0,93 MN/m² 5,03	2,72
Berechnungsformel / Nachweis, Beiwerte, Ausnutzungsgrad	$\begin{split} \sigma_{t,90,d} &= k_p \ ^* 6 ^* M_d / b ^* h_{ap}^* 2 \\ k_p &= 0, 2 ^* tan \alpha = \\ k_{dis} &= \\ k_{vol} &= \\ \eta &= \sigma_{t,90,d} / k_{dis} ^* k_{vol} ^* t_{t,90,d} = \end{split}$	$\sigma_{t,90,d} = 0,2^*tan\alpha * 6xM_d / b^*h_{ap}^2 = K_h = (h_o/h_{ap})^{0.3} = K_h = (h_o/h_{ap})^{0.3} = \eta = \sigma_{t,90,d} / K_{dis} * k_h *^t_{t,90,d} = \eta / 0,6 = 0$	$\sigma_{z} = \kappa_{q} * 6*M / b*h_{ap}^{z} = \kappa_{q} = 0,2*tan\alpha = \eta = \sigma_{z} / zul\sigma_{z} = \eta$	$\sigma_z = \kappa_y * 6*M / b*h_{ap}^2 = \kappa_y * f*M / b*h_{ap}^2 = \kappa_y = 0$ $\kappa_y = 0$ $\eta = \sigma_y / z u \sigma_z = 0$	$\sigma_{1,90,d} = \sigma_{1,90,d} / k_{dis}^* k_{vol}^{4t}, s_{0,d} = 0$	$\eta = \sigma_{1,90,d} / k_{dis}^* k_h^* t_{1,90,d} = \eta$
Berechnung nach	DIN EN 1995-1-1: 2010-12 + 1994-06	DIN 1052:2008-12	DIN 1052:1988-04	BLUMER 1972/1979	DLUBAL (FEM) vgl. mit DIN EN 1995-1:2010	vgl. mit DIN 1052:2008


4 - Satteldachträger mit geradem Untergurt - Querzugspannung im Firstguerschnitt

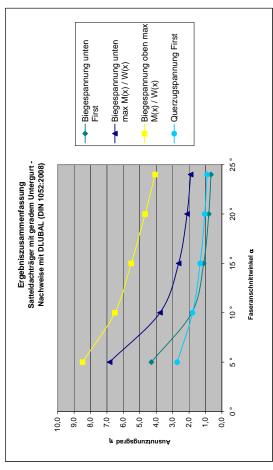
4 - Satteldachträger mit geradem Untergurt - Querzugspannung im Firstquerschnitt

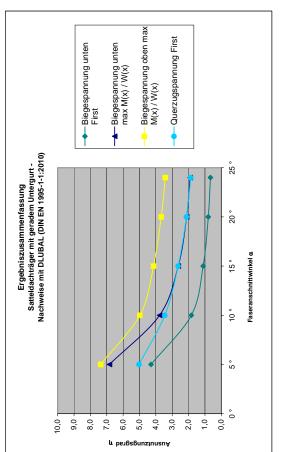
24° Faseranschnittwinkel	Traufhöhe 5,84 m Firsthöhe in Abhängigkeit des Winkels 4,06 m gemittelte Höhe 6 Längen-Höhen-Verhältnis (Balkentheorie)	Trägerbreite Spannweite				
20 °	4,87 m 3,41 m 7					
15 °	3,72 m 2,64 m 9					
10 °	2,62 m 1,91 m 13		(KLED kurz) (KLED kurz)			
5 °	0,50 m 1,55 m 1,20 m 20	0,18 m 24,00 m	0,28 MN/m² 0,35 MN/m² 0,20 MN/m²	15,0 kN/m 30,0 kN/m	65,3 kN/m 4698,0 kNm	45,0 kN/m 3240,0 kNm
= α	$\begin{split} h &= \\ h_{ap} &= h + L/2 * tan\alpha = \\ h_m &= h + 2/3 * (h_{ap} \cdot h) = \\ L/h_m &\geq 6 \; mit \; L/h_m = \end{split}$	 	$f_{1,90,d} = \frac{1}{5}$	 B	= p M = p	B ⊠
Querschnittsabmessungen / Geometrie	ہ ا ا		Materialkennwerte GI24h - DIN EN 1194 GI24h - DIN 1052:2008 BS 11 - DIN 1052:1988	Beanspruchung ständige Lasten veränderliche Lasten	neues Sicherheitskonzept	altes Sicherheitskonzept

5 - Satteldachträger mit geradem Untergurt - Ergebniszusammenfassung

Biegespannung oben max M(x) / W(x)

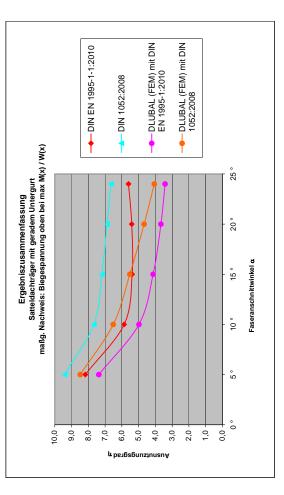
► Biegespannung unten First

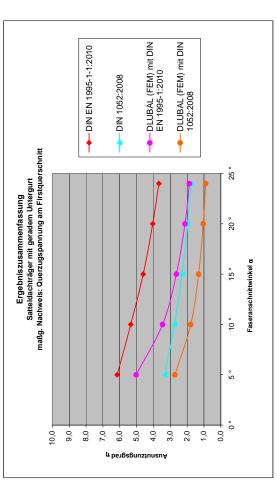

- Biegespannung unten max M(x) / W(x)


--- Querzugspannung First

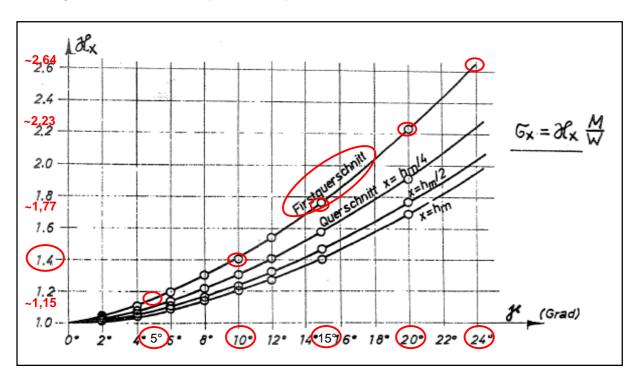
25°

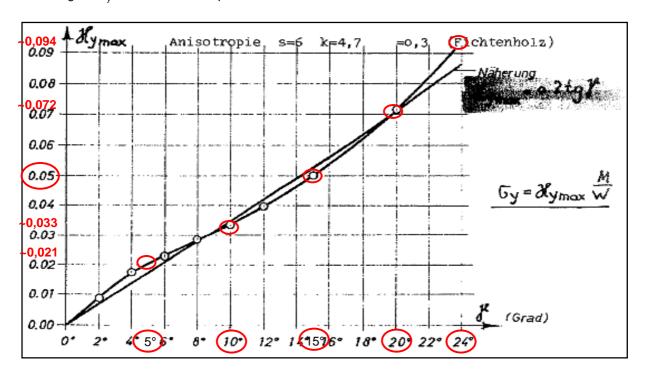
20


15°



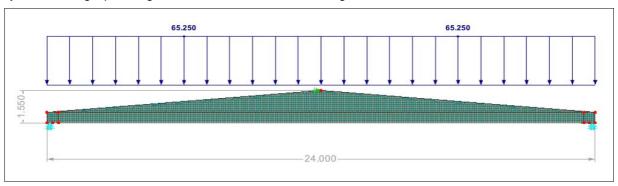
Proj.-Nr.: 09.007g


5 - Satteldachträger mit geradem Untergurt - Ergebniszusammenfassung

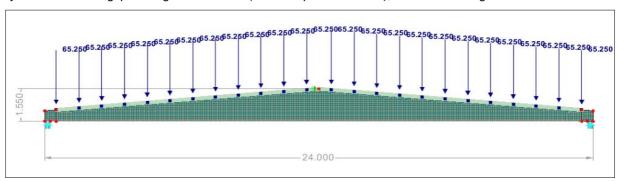

BLUMER 1972/1979 - Tafel 15

Ermittlung der κ_x -Beiwerte am Beispiel des Firstquerschnittes

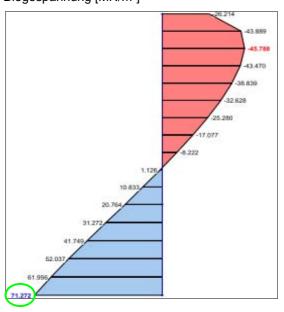
BLUMER 1972/1979 - Tafel 14


Ermittlung der κ_v -Beiwerte am Firstquerschnittes

Ergebnisse DLUBAL


Neigungswinkel 5°

System für Biegespannung: Linienlast, keine Netzverdichtung am oberen Rand

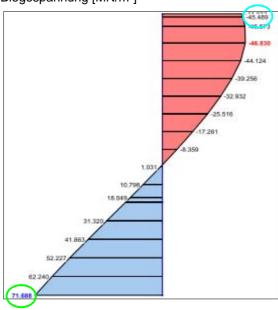


Projekt-Nr.: 09.007g

System für Querzugspannung: Einzellasten (kein Lastpunkt am First), Netzverdichtung am oberen Rand

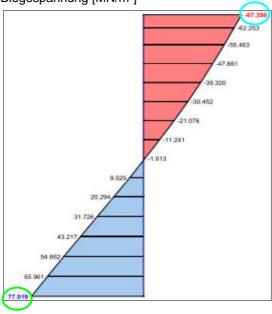
Spannungsverlauf im Firstquerschnitt

Querzugspannung [MN/m²]

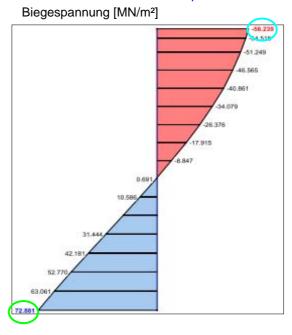


Ergebnisse DLUBAL

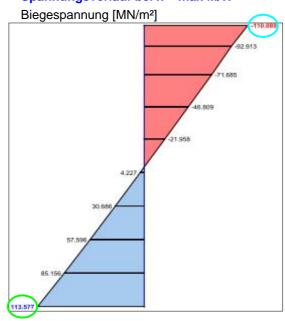
Neigungswinkel 5°


Spannungsverlauf bei $x = h_{ap}/4$

Biegespannung [MN/m²]

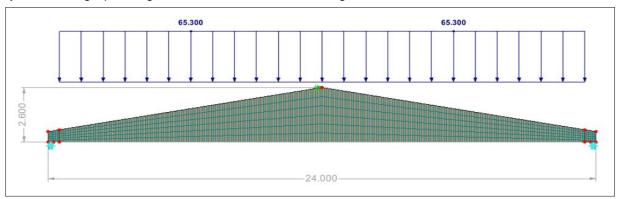

Spannungsverlauf bei $x = h_{ap}$

Biegespannung [MN/m²]

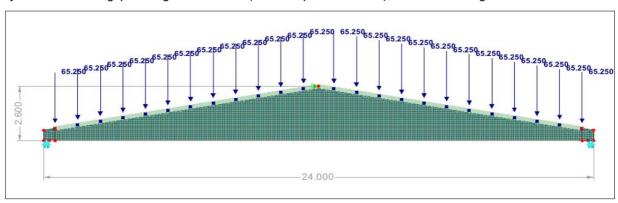


Spannungsverlauf bei $x = h_{ap}/2$

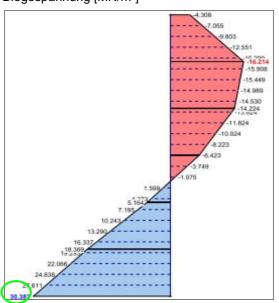
Projekt-Nr.: 09.007g


Spannungsverlauf bei x = max M/W

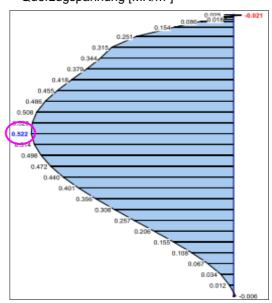
Ergebnisse DLUBAL


Neigungswinkel 10°

System für Biegespannung: Linienlast, keine Netzverdichtung am oberen Rand


Projekt-Nr.: 09.007g

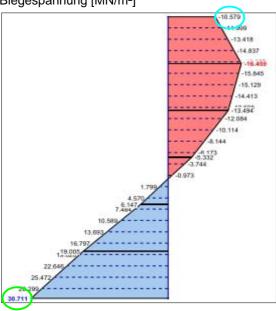
System für Querzugspannung: Einzellasten (kein Lastpunkt am First), Netzverdichtung am oberen Rand



Spannungsverlauf im Firstquerschnitt

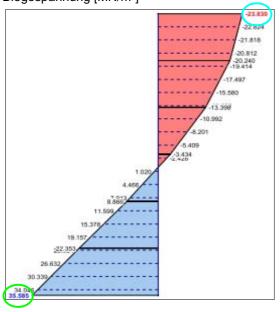
Biegespannung [MN/m²]

Querzugspannung [MN/m²]



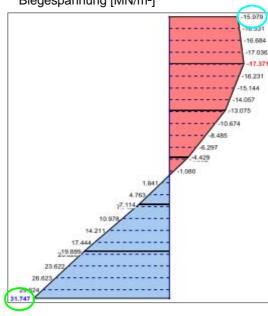
Ergebnisse DLUBAL

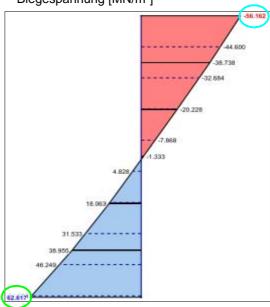
Neigungswinkel 10°


Spannungsverlauf bei $x = h_{ap}/4$

Biegespannung [MN/m²]

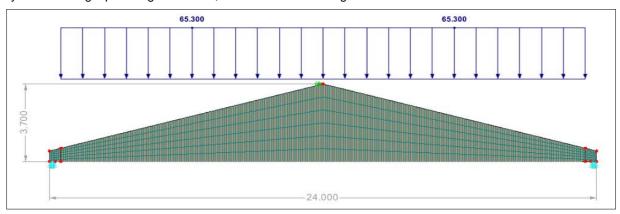
Spannungsverlauf bei $x = h_{ap}$


Biegespannung [MN/m²]

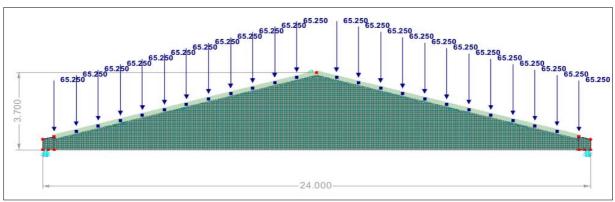

Spannungsverlauf bei $x = h_{ap}/2$

Biegespannung [MN/m²]

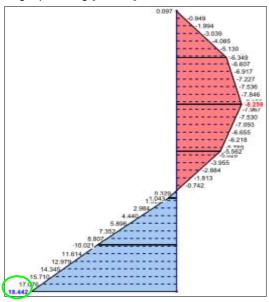
Projekt-Nr.: 09.007g


Spannungsverlauf bei x = max M/W

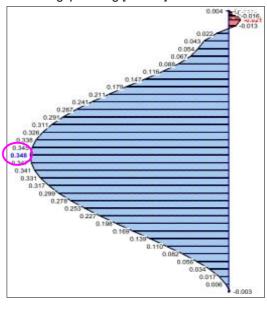
Ergebnisse DLUBAL


Neigungswinkel 15°

System für Biegespannung: Linienlast, keine Netzverdichtung am oberen Rand

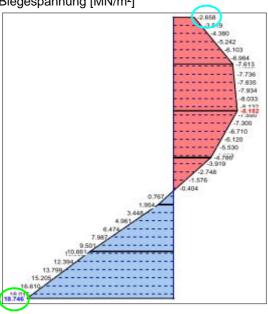


Projekt-Nr.: 09.007g


System für Querzugspannung: Einzellasten (kein Lastpunkt am First), Netzverdichtung am oberen Rand

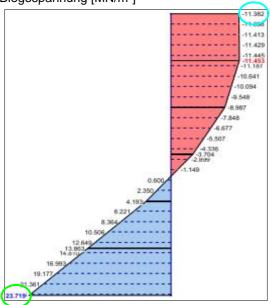
Spannungsverlauf im Firstquerschnitt

Querzugspannung [MN/m²]



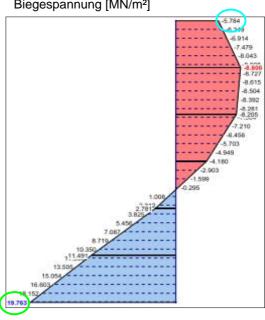
Ergebnisse DLUBAL

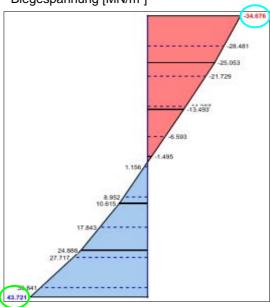
Neigungswinkel 15°


Spannungsverlauf bei $x = h_{ap}/4$

Biegespannung [MN/m²]

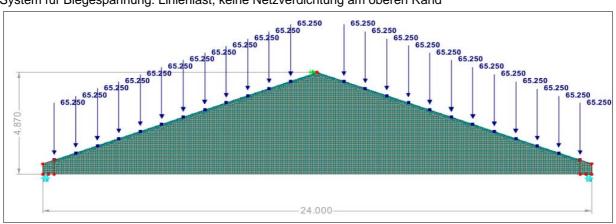
Spannungsverlauf bei $x = h_{ap}$


Biegespannung [MN/m²]

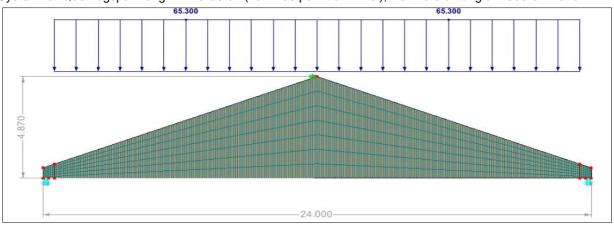

Spannungsverlauf bei $x = h_{ap}/2$

Biegespannung [MN/m²]

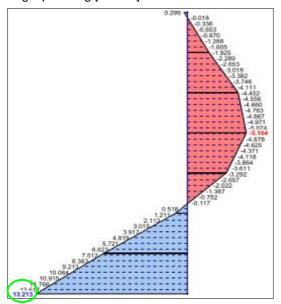
Projekt-Nr.: 09.007g


Spannungsverlauf bei x = max M/W

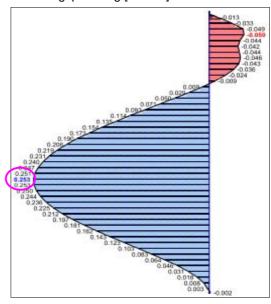
Ergebnisse DLUBAL


Neigungswinkel 20°

System für Biegespannung: Linienlast, keine Netzverdichtung am oberen Rand


Projekt-Nr.: 09.007g

System für Querzugspannung: Einzellasten (kein Lastpunkt am First), Netzverdichtung am oberen Rand

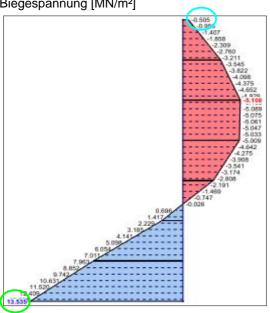


Spannungsverlauf im Firstquerschnitt

Biegespannung [MN/m²]

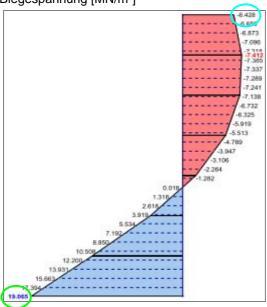
Querzugspannung [MN/m²]

Projekt-Nr.: 09.007g

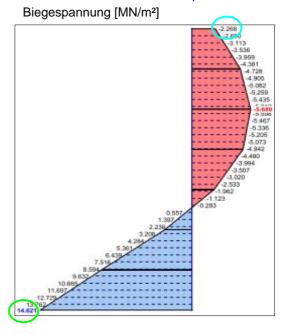

6 - Satteldachträger mit geradem Untergurt - Anlagen

Ergebnisse DLUBAL

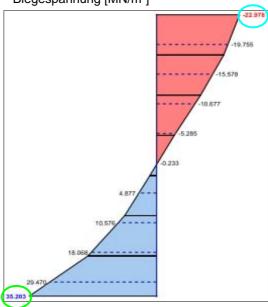
Neigungswinkel 20°


Spannungsverlauf bei $x = h_{ap}/4$

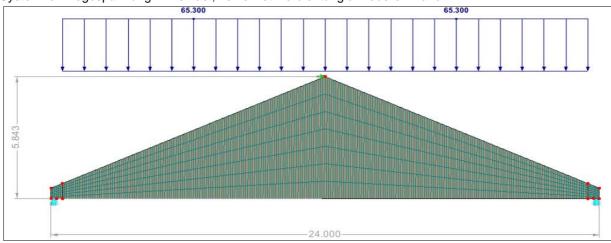
Biegespannung [MN/m²]

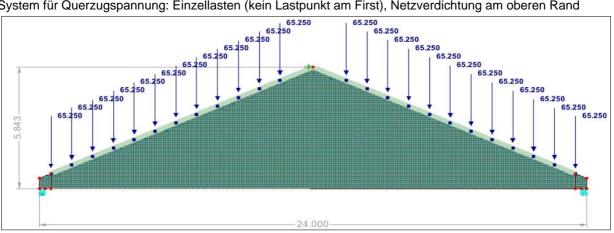


Spannungsverlauf bei $x = h_{ap}$


Biegespannung [MN/m²]

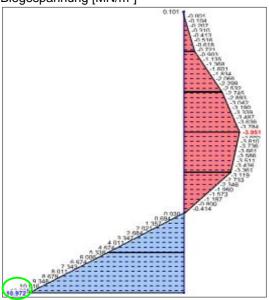
Spannungsverlauf bei $x = h_{ap}/2$


Spannungsverlauf bei x = max M/W

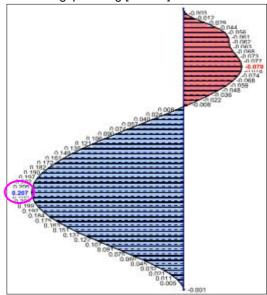

Ergebnisse DLUBAL

Neigungswinkel 24°

System für Biegespannung: Linienlast, keine Netzverdichtung am oberen Rand



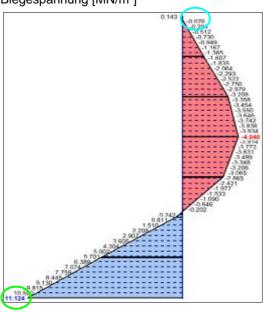
System für Querzugspannung: Einzellasten (kein Lastpunkt am First), Netzverdichtung am oberen Rand



Spannungsverlauf im Firstquerschnitt

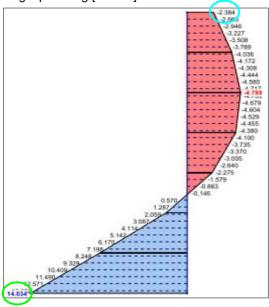
Biegespannung [MN/m²]

Querzugspannung [MN/m²]



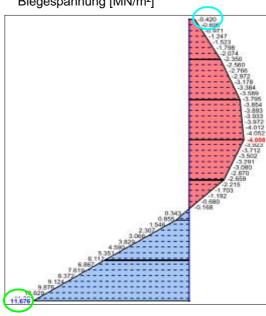
Ergebnisse DLUBAL

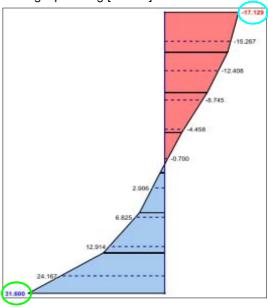
Neigungswinkel 24°


Spannungsverlauf bei $x = h_{ap}/4$

Biegespannung [MN/m²]

Spannungsverlauf bei $x = h_{ap}$


Biegespannung [MN/m²]


Spannungsverlauf bei $x = h_{ap}/2$

Biegespannung [MN/m²]

Projekt-Nr.: 09.007g

Spannungsverlauf bei x = max M/W

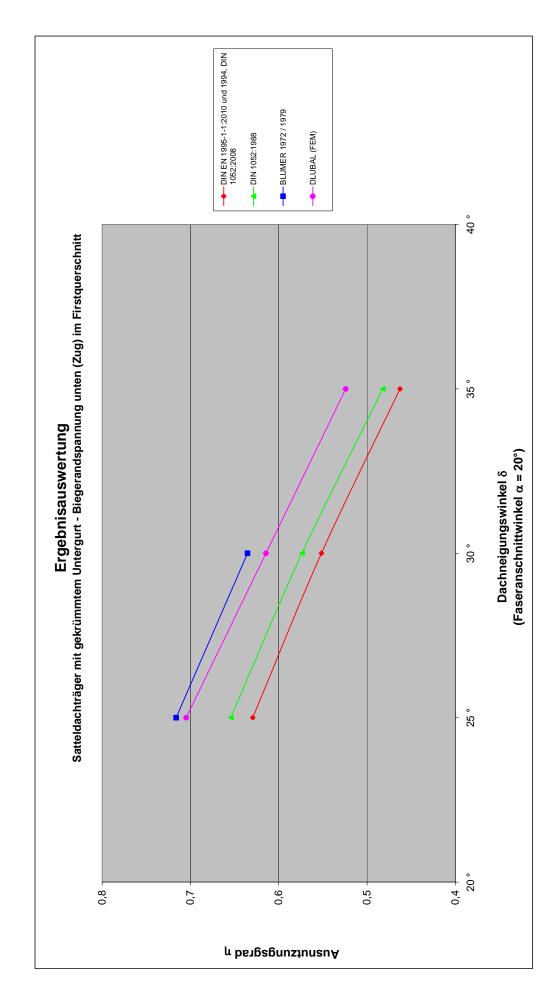
Ergänzung Forschungsvorhaben DIN EN 1995 - Eurocode 5 - Holzbauten Untersuchung verschiedener Trägerformen

Proj.Nr. 09.007g

Ergänzungsauftrag – Schlussbericht 16.09.2011

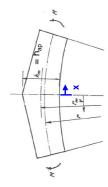
Anlage 5

Berechnungen und Ergebnisse der Satteldachträger mit gekrümmtem Untergurt

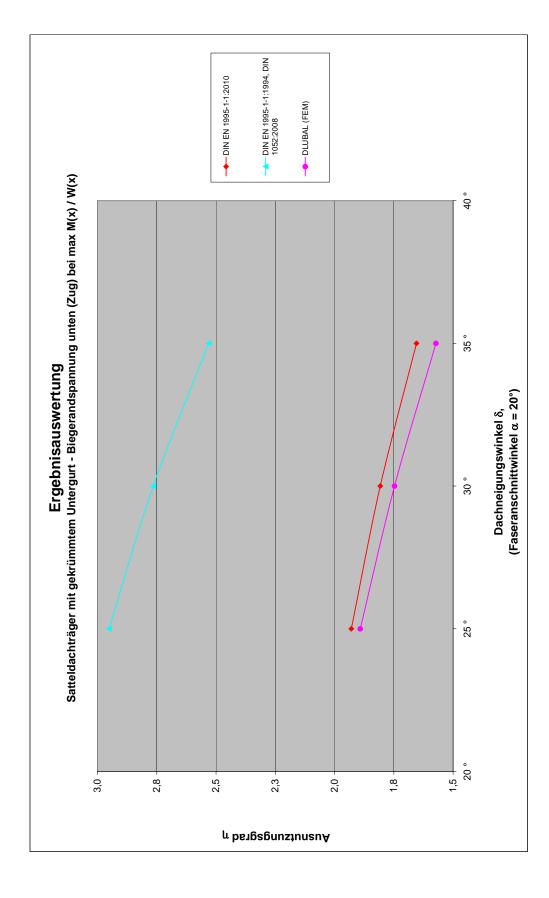

1 - Satteldachträger mit gekrümmtem Untergurt - Biegerandspannung unten (Zug) im Firstquerschnitt

Berechnung nach	Berechnungsformel / Nachweis,	Dac	Dachneigungstwinkel 8	el 8	Anmerkungen
	Beiwerte, Ausnutzungsgrad	25 °	° 08	35 °	
DIN EN 1995-1-1:	$\sigma_{m,o,d} = k_1 * 6 * M_d / b * h_{ap}^2 = G_{m,o,d} = k_1 * 6 * M_d / b * h_{ap}^2 = G_{m,o,d} = k_1 * f_{ap} + f_{ap}^2 + f_{ap}$	10,4 MN/m²	9,2 MN/m²	7,7 MN/m²	
Z010-12 + 1994-06 und	$K_1 = K_1 + K_2 (11ap/1) + K_3 (11ap/1)^2 + K_4 (11ap/1)^3 = K_1 + K_2 (11ap/1)^3 + K_3 + K_4 (11ap/1)^3 = K_4 + K_4 +$	7,5,7	2,73	3,24 5.24	
DIN 1052:2008-12	$K_1 = 1 + 1,4$ tano + 3,4 tanto =	2,83	10,5	4,03	
	$k_2 = 0.35 - 8$ *tan $\delta =$	-3,38	-4,27	-5,25	
	$k_3 = 0.6 + 8.3$ *tan $\delta - 7.8$ *tan $^2\delta =$	2,77	2,79	2,59	
	$k_4 = 6^* tan^2 \delta =$	1,30	2,00	2,94	
	K ₇ =	1,00	1,00	1,00	
	$\eta = \sigma_{m,o,d} / k_* f_{m,d} =$	0,63	0,55	0,46	
DIN 1052:1988-04	$\sigma_{x} = \kappa_{1} * 6*M / b*h_{ap}^{2} =$	7,2 MN/m²	6,3 MN/m ²	5,3 MN/m²	
	$\kappa_l = A_l + B_l * (h_{ap}/r) + C_l * (h_{ap}/r)^2 + D_l * (h_{ap}/r)^3 =$	2,37	2,79	3,24	
	$A_1 = 1 + 1,4^* \tan \delta + 5,4^* \tan^2 \delta =$	2,83	3,61	4,63	
	$B_1 = 0.35 - 8$ *tan $\delta =$	-3,38	-4,27	-5,25	
	$C_1 = 0.6 + 8.3$ *tan $\delta - 7.8$ *tan $\delta =$	2,77	2,79	2,59	
	$D_1 = 6^* \tan^2 \delta =$	1,30	2,00	2,94	
	$\eta = \sigma_x / zul\sigma_B =$	0,65	0,57	0,48	
BLUMER 1972/1979	$\sigma_{x} = \kappa_{p} * 6*M / b*h_{ap}^{2} =$	7,9 MN/m²	7,0 MN/m ²		
	$\alpha = h_{ap}/(2^*r) =$	0,08	0,12	and Andrea	
	κ ₀ =	2,59	3,09	relie Aligabell	aus Tafel 25 - siehe Anlage
	$u = \alpha_x / zul\sigma_B = 0$	0,72	0,64		
DLUBAL (FEM)	$\sigma_{m,o,d} = \sigma_{m,o,d} / f_{m,d} = \eta$	11,7 MN/m² 0,70	10,2 MN/m² 0,61	8,7 MN/m² 0,52	siehe Anlage

Proj.-Nr. 09.007g

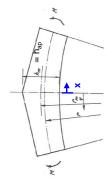

1 - Satteldachträger mit gekrümmtem Untergurt - Biegerandspannung unten (Zug) im Firstquerschnitt

1 - Satteldachträger mit gekrümmtem Untergurt - Biegerandspannung unten (Zug) im Firstguerschnitt

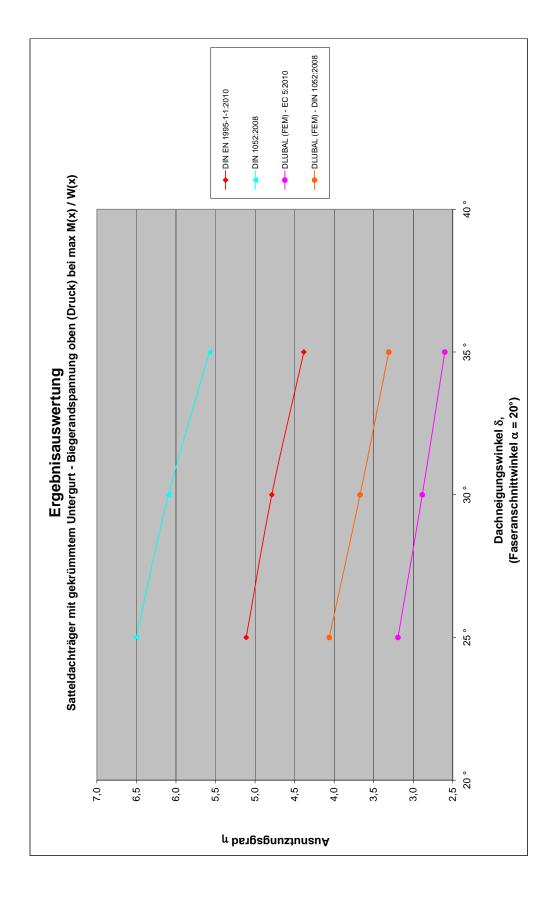

Traufhöhe Trägerbreite Spannweite Lamellendicke	Dachneigungswinkel Neigungswinkel Untergurt = halber Kreissegmentwinkel Faseranschnittwinkel	Innenradius → aus FEM-Modell Dlubal Länge der Ausrundung	Firsthöhe in Abhängigkeit des Winkels gemittelte Höhe Längen-zu-Höhen-Verhältnis (Balkentheorie)		Firstmoment } siehe Anlage
	35° 15° 20°	14,75 m 17,86 m 7,64 m	6,21 m 4,31 m 5,6		2741,6 kNm 1893,9 kNm
	30° 10° 20°	21,37 m 24,19 m 7,42 m	5,64 m 3,93 m 6,1	(KLED kurz)	3134,4 kNm 2160,0 kNm
0,50 m 0,18 m 24,00 m 20 mm	25° 5° 20°	30,00 m 32,58 m 5,23 m	5,16 m 3,61 m 6,7	16,6 MN/m² 11,0 MN/m²	3527,6 kNm 2430,0 kNm
h L b h	$\beta = \gamma = \beta$ $\alpha = \delta \cdot \beta = \gamma$	$\Gamma_{in} = \Gamma_{in} + 0.5^{\circ} N_{ap} = a = 2^{\circ} \Gamma_{in} \sin \gamma = a$	$h_{ap} = h + L/2^*(tan\delta - tan\beta) + r_n^*(1/cosy - 1) = h_m = h + 2/3^* (h_{ap} - h) = L/h_m \ge 6 mit L/h_m = 1$	GI24h - DIN EN 1194 $f_{m,d} =$ BS 11 - DIN 1052:1988 zul $\sigma_B =$	neues Sicherheitskonzept M _d = altes Sicherheitskonzept M =
Querschnittsabmessungen / Geometrie			$h_{ap} = h + L$	Materialkennwerte GI24h - BS 11 - DI	Beanspruchung neues Siche

2 - Satteldachträger mit gekrümmtem Untergurt - Biegerandspannung unten (Zug) bei max M(x) / W(x)

Berechnung nach	Berechnungsformel / Nachweis.	Dag	Dachnejaungstwinkel 8	6	Anmerkungen
	Beiwerte, Ausnutzungsgrad	25 °	30 °	35 °	
DIN EN 1995-1-1:2010-12	$\sigma_{m,o,d} = 6^*M_d(x) / b^*h(x)^2 =$ $\eta = \sigma_{m,o,d} / f_{m,d} =$	32,0 MN/m² <mark>1,93</mark>	30,0 MN/m² 1,81	27,5 MN/m² <mark>1,65</mark>	
DIN EN 1995-1-1:1994-06	$\sigma_{m,od} = (1+4^*tan^2\alpha) * 6^*M_d(x) / b^*h(x)^2 =$ $(1+4^*tan^2\alpha) =$ $\eta = \sigma_{m,od} / f_{m,d} =$	49,0 MN/m² 1,53 2,95	45,9 MN/m² 1,53 2,76	42,0 MN/m² 1,53 2,53	
DIN 1052:2008-12	$\sigma_{m,od} = (1+4^*tan^2\alpha)^* 6^*M_d(x) / b^*h(x)^2 = (1+4^*tan^2\alpha) = \eta = \sigma_{m,o,d} / f_{m,d} = 0$	49,0 MN/m² 1,53 2,95	45,9 MN/m² 1,53 2,76	42,0 MN/m² 1,53 2,53	
DIN 1052:1988-04	keine Angaben				
BLUMER 1972/1979	keine Angaben				
DLUBAL (FEM)	$\sigma_{m,o,d} = \sigma_{m,o,d} / f_{m,d} = \sigma_{m,d} / f_{m,d} = \sigma_{m$	31,4 MN/m² 1,89	29,0 MN/m² 1,75	26,1 MN/m² 1,57	siehe Anlage


2 - Satteldachträger mit gekrümmtem Untergurt - Biegerandspannung unten (Zug) bei max M(x) / W(x)

2 - Satteldachträger mit gekrümmtem Untergurt - Biegerandspannung unten (Zug) bei max M(x) / W(x)


	nalber Kreissegmentwinkel	→ aus FEM-Modell Dlubal ndung	s Winkels (Balkentheorie) = $L/2 - (h/(2^*h + l^*tan\alpha)^* l)$		siehe Anlage
Traufhöhe Trägerbreite Spannweite Lamellendicke	Dachneigungswinkel Neigungswinkel Untergurt = halber Kreissegmentwinkel Faseranschnittwinkel	Innenradius → aus FEM Länge der Ausrundung	Firsthöhe in Abhängigkeit des Winkels gemittelte Höhe Längen-zu-Höhen-Verhältnis (Balkentheorie) Stelle x bei max M / W mit x = $L/2$ - (h / (2 * h + I*tan α) * I) Trägerhöhe an der Stelle x		Firstmoment Moment an de Stelle x Firstmoment Moment an de Stelle x
	35° 15° 20°	14,75 m 17,86 m 7,64 m	6,21 m 4,31 m 5,6 10,77 m 1,03 m		2741,6 kNm 878,8 kN/m 1893,9 kNm 607,1 kNm
	30° 10° 20°	21,37 m 24,19 m 7,42 m	5,64 m 3,93 m 6,1 10,77 m 0,99 m	(KLED kurz)	3134,4 KNm 889,7 KN/m 2160,0 KNm 613,1 KNm
0,50 m 0,18 m 24,00 m 20 mm	25° 5° 20°	30,00 m 32,58 m 5,23 m	5,16 m 3,61 m 6,7 10,77 m 0,97 m	16,6 MN/m² 11,0 MN/m²	3527,6 kNm 898,3 kN/m 2430,0 kNm 618,8 kNm
+ C O D	$\delta = \beta$ $\beta = \gamma = \alpha$ $\alpha = \delta - \beta = \beta$	$\begin{split} & \Gamma_{ln} = \\ & \Gamma_{ln} + 0.5^* h_{ap} = \\ & a = 2^* \Gamma_{ln}^* \sin \gamma = \end{split}$	$tan\beta$) + $r_n^*(1/cos_Y - 1) = 1$ $h_m = h + 2/3^* (h_{ap} - h) = 1$ $L / h_m \ge 6 \text{ mit } L / h_m = 1$ X = 1 X = 1 X = 1 X = 1	f _{m,d} = zul σ _B =	$M_{d} = M_{d}$ $M(X) = M$ $M(X) = M$
ngen / Geometrie			$h_{ap} = h + L/2^*(tan\delta - tan\beta) + r_n^*(1/\cos y - 1) = h_m = h + 2/3^* (h_{ap} - h) = L / h_m \ge 6 \text{ mit } L / h_m = x = h + 2/3^* (h_{ap} - h) = $	GI24h - DIN EN 1194 BS 11 - DIN 1052:1988	neues Sicherheitskonzept altes Sicherheitskonzept
Querschnittsabmessungen / Geometrie				Materialkennwerte	Beanspruchung

3 - Satteldachträger mit gekrümmtem Untergurt - Biegerandspannung oben (Druck) bei max M(x) / W(x)

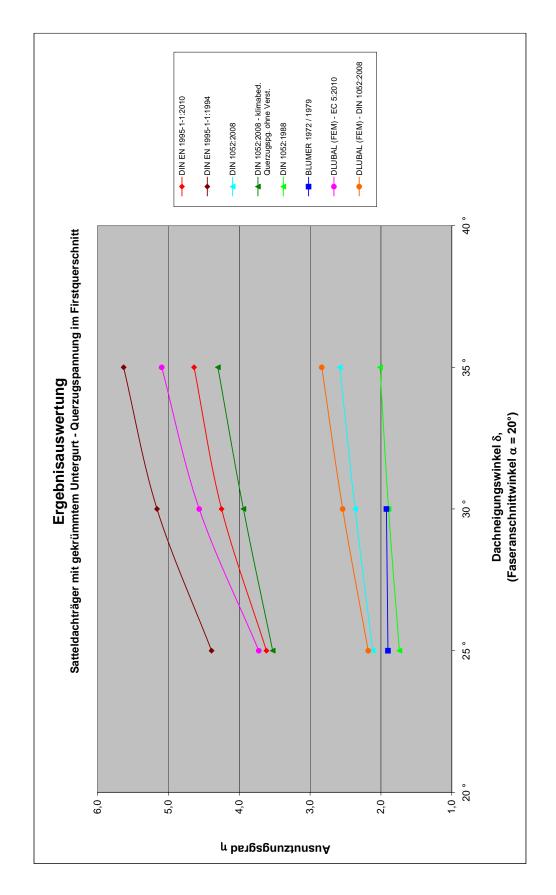
Anmerkungen	٦٣ م. د	24 st	<u>ሩ</u> አ	^و ل ۲۵ ۲۵		n² siehe Anlage	2 -	Ą.
kel 8 35°	27,5 MN/m² 6,3 MN/m² 4,38	12,9 MN/m² 0,47 8,6 MN/m² 1,49	27,5 MN/m² 4,9 MN/m² 5,58	19,0 MN/m² 1,0 6,9 MN/m² 2,5 MN/m² 11,70		16,3 MN/m²	6,3 MN/m² 2,60	4,9 MN/m²
Dachneigungstwinkel 8 30°	30,0 MN/m² 6,3 MN/m² 4,79	14,1 MN/m² 0,47 8,6 MN/m² 1,63	30,0 MN/m² 4,9 MN/m² 6,09	20,7 MN/m² 1,0 7,5 MN/m² 2,7 MN/m² 13,90		18,1 MN/m²	6,3 MN/m² 2,89	4,9 MN/m²
D 25°	32,0 MN/m² 6,3 MN/m² 5,11	15,1 MN/m² 0,47 8,6 MN/m² 1,74	32,0 MN/m² 4,9 MN/m² 6,50	22,1 MN/m² 1,0 8,0 MN/m² 2,9 MN/m² 15,83		20,0 MN/m²	6,3 MN/m² 3,19	4.9 MN/m²
Berechnungsformel / Nachweis, Beiwerte, Ausnutzungsgrad	$\begin{split} \sigma_{m,\alpha,d} &= 6*M_d(x) / b*h(x)^2 = \\ f_{m,\alpha,d} &= \\ \eta &= \sigma_{m,\alpha,d} / f_{m,\alpha,d} = \end{split}$	$\begin{split} \sigma_{m,c,d} &= (1-4^*tan^2\alpha) * 6^*M_d(x) / b^*h(x)^2 = \\ & (1-4^*tan^2\alpha) = \\ & f_{m,c,d} = \\ & \eta = \sigma_{m,c,d} / f_{m,c,d} = \end{split}$	$\begin{split} &\sigma_{m,\alpha,d} = 6^* M_d(x) \ / \ b^* h(x)^2 = \\ &f_{m,\alpha,d} = \\ &\eta = \sigma_{m,\alpha,d} \ / \ f_{m,\alpha,d} = \end{split}$	$\begin{split} &\sigma_x = \kappa_x * 6^*M(x) / b^*h(x)^2 = \kappa_x * 6^*M(x) / b^*h(x)^2 = \kappa_x * 6^* m \alpha = 0 \end{split}$ $&\kappa_x = 0 \Leftrightarrow \kappa_x * 6^* m \alpha = 0 \Leftrightarrow \kappa_x * $	keine Angaben	G _{m,o,d} =	$= \int_{\Omega_{i,\Omega_i}} \int_{\Omega_{i,\Omega_i}} \int_{\Omega_i} \int_{\Omega_i$	
Berechnung nach	DIN EN 1995-1-1:2010-12	DIN EN 1995-1-1:1994-06	DIN 1052:2008-12	DIN 1052:1988-04	BLUMER 1972/1979	DLUBAL (FEM)	vgl. mit EC 5:2010	val. mit DIN 1052:2008

3 - Satteldachträger mit gekrümmtem Untergurt - Biegerandspannung oben (Druck) bei max M(x) / W(x)

3 - Satteldachträger mit gekrümmtem Untergurt - Biegerandspannung oben (Druck) bei max M(x) / W(x)

Querschnittsabmessungen / Geometrie	n= h= b= L= L= L= t=	0,50 m 0,18 m 24,00 m 20 mm			Traufhöhe Trägerbreite Spannweite Lamellendicke	
	$\delta = \beta$ $\beta = \gamma = \alpha$ $\alpha = \delta \cdot \beta = \beta$	25° 5° 20°	30° 20°°	35° 15° 20°	Dachneigungswinkel Neigungswinkel Untergurt = halber Kreissegmentwinkel Faseranschnittwinkel	nentwinkel
	$\Gamma = \Gamma_{\rm in} + 0.5^{\circ} \Gamma_{\rm lap} = \Gamma_{\rm in} + 0.5^{\circ} \Gamma_{\rm lap} = \Omega_{\rm in} = 2^{\circ} \Gamma_{\rm in} \sin \gamma = \Omega_{\rm in} = 0$	30,00 m 32,58 m 5,23 m	21,37 m 24,19 m 7,42 m	14,75 m 17,86 m 7,64 m	Innenradius → aus FEM-Modell Dlubal Länge der Ausrundung	
	$h_{ap} = h + L/2^*(tan\delta - tan\beta) + r_{in}^*(1/\cos y_1 - 1) = h_{m} = h + 2/3^* (h_{ap} - h) = L/h_{m} \ge 6 \text{ mit L}/h_{m} = x = x = h + x = x = x = x = x = x = x = x = x = x$	5,16 m 3,61 m 6,7 10,77 m 0,97 m	5,64 m 3,93 m 6,1 10,77 m 0,99 m	6,21 m 4,31 m 5,6 10,77 m 1,03 m	Firsthöhe in Abhängigkeit des Winkels gemittelte Höhe Längen-zu-Höhen-Verhältnis (Balkentheorie) Stelle x bei max M / W mit x = L/2 - (h / (2*h + l*tan α) * I) Trägerhöhe an der Stelle x	. *tanα) *)
Materialkennwerte	GI24h - DIN EN 1194 und $f_{m,d} = DIN 1052:2008$ $f_{c,90,d} = DIN 1052:2008$ $f_{v,d} = DIN 1052:2008$ $f_{v,d} = Zul \sigma_{D} = Zul \sigma_{D} = Zul \sigma_{D} = Zul \sigma_{D} = Zul \tau_{a} = Zul \tau_{a} = Zul \sigma_{D} = Zul \tau_{a} = Zul \tau_{a}$	16,62 MN/m² 1,87 MN/m² 1,87 MN/m² 1,73 MN/m² 11,0 MN/m² 2,5 MN/m² 0,9 MN/m²	(KLED kurz) (KLED kurz) (KLED kurz) (KLED kurz)			
Beanspruchung	neues Sicherheitskonzept $M_d = M_d(x) =$ altes Sicherheitskonzept $M = M(x) =$	3527,6 kNm 898,3 kN/m 2430,0 kNm 618,8 kNm	3134,4 kNm 889,7 kN/m 2160,0 kNm 613,1 kNm	2741,6 kNm 878,8 kN/m 1893,9 kNm 607,1 kNm	Firstmoment Moment an de Stelle x Firstmoment Moment an de Stelle x	o D

4 - Satteldachträger mit gekrümmtem Untergurt - Querzugspannung im Firstquerschnittes

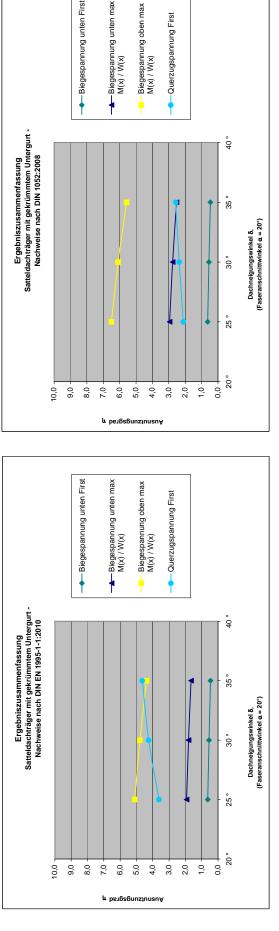


Berechnung nach	Berechnungsformel / Nachweis,	Dac	Dachneigungstwinkel 8	<u>Θ</u>	Anmerkungen
•	Beiwerte, Ausnutzungsgrad	25 °	300	35 °)
DIN EN 1995-1-1:2010-12	$\begin{split} \sigma_{i,90d} &= k_{p} * 6*M_{d} / b*h_{ap}^{*} = \\ k_{p} &= k_{5} * k_{6} * (h_{ap} / f) + k_{7} * (h_{ap} / f)^{2} = \\ k_{5} &= 0,2 \text{ 'tan} \delta = \\ k_{6} &= 0,25 - 1,5 \text{ 'tan} \delta + 2,6 \text{ 'tan} \delta = \\ k_{7} &= 2,1 \text{ 'tan} \delta - 4 \text{ 'tan} \delta \delta = \\ k_{7} &= 2,1 \text{ 'tan} \delta - 4 \text{ 'tan} \delta \delta = \\ k_{5} &= (0,01/)^{0.2} = \\ \eta &= \sigma_{i,90d} / k_{dis}^{*} k_{xol}^{*} f_{i,90,d}^{*} d = \\ \end{split}$	0,50 MN/m² 0,11 0,09 0,12 0,11 1,70 0,293 3,62	0,55 MN/m² 0,17 0,12 0,25 -0,12 1,70 0,272	0,58 MN/m² 0,25 0,14 0,47 -0,49 1,70 0,264	
DIN EN 1995-1-1:1994-06	$\begin{split} &\sigma_{1,90,d} = k_g * 6*M_d / b^*h_{ap}^2 = \\ &k_p = k_5 + k_6 * (h_{ap} / r) + k_7 * (h_{ap} / r)^2 = \\ &k_5 = 0.2*tan^2 \delta = \\ &k_6 = 0.25 - 1.5*tan\delta + 2.6*tan^2 \delta = \\ &k_7 = 2.1*tan\delta - 4*tan^2 \delta = \\ &k_{rol} = (0.01/N)^{0.2} = \\ &\eta = \sigma_{1,00,d} / k_{dis} k_{vol} *_{t_{1,00,d}}^{*} = \end{split}$	0,50 MN/m² 0,11 0,09 0,12 0,11 1,40 0,293 4,39	0,55 MN/m² 0,17 0,12 0,25 -0,12 1,40 0,272 5,16	0,58 MN/m² 0,25 0,14 0,47 -0,49 1,40 0,264 5,63	
DIN 1052:2008-12	$\begin{split} &\sigma_{1,90,d} = k_{b} * 6*M_{d} / b^{+}h_{ap}^{2} = \\ &k_{b} + k_{b} * (h_{ap} / f) + k_{7} * (h_{ap} / f)^{2} = \\ &k_{b} = 0.2*tan^{2} = \\ &k_{b} = 0.25 - 1.5*tan^{3} + 2.6*tan^{2} = \\ &k_{7} = 2.1*tan^{3} + 4*tan^{2} = \\ &k_{7} = 2.1*tan^{3} - 4*tan^{2} = \\ &k_{h} = (h_{Q} / h_{ap})^{0.3} = \\ &\eta = \sigma_{1,90,d} / k_{dis} * (h_{Q} / h_{ap})^{0.3} = \\ &\eta / 0.5 = \\ &\eta / 0.6 = \end{split}$	0,50 MN/m² 0,11 0,09 0,12 0,11 1,30 0,52 2,12 3,53	0,55 MN/m ² 0,17 0,12 0,25 -0,12 1,30 0,51 2,36 3,94	0,58 MN/m² 0,25 0,14 0,47 -0,49 1,30 0,50 2,58 4,30	zusätzliche, klimabeding

4 - Satteldachträger mit gekrümmtem Untergurt - Querzugspannung im Firstguerschnittes

Berechnung nach	Berechnungsformel / Nachweis,	Dac	Dachneigungstwinkel 8	el 8	Anmerkungen
	Beiwerte, Ausnutzungsgrad	25°	30 °	35 °	
DIN 1052:1988-04	$\begin{split} & \sigma_z = \kappa_q ^* 6^* M / b^* h_{ap}^2 = \\ & \kappa_q = A_q + B_q ^* (h_{ap} / f) + C_q ^* (h_{ap} / f)^2 = \\ & A_q = 0, 2^* ran^2 \delta = \\ & B_q = 0, 25 \cdot 1, 5^* ran \delta + 2, 6^* ran^2 \delta = \\ & C_q = 2, 1^* tan \delta \cdot 4^* ran^2 \delta = \\ & \eta = \sigma_z / zu I \sigma_z = \end{split}$	0,35 MN/m² 0,11 0,09 0,12 0,11	0,38 MN/m² 0,17 0,12 0,12 0,25 -0,12 1,89	0,40 MN/m² 0,25 0,14 0,47 -0,49 2,01	
BLUMER 1972/1979	$\sigma_z = k_t * 6*W / b*h_{ap}^2 = \alpha = h_{ap}/(2*r) = \alpha = h_{ap}/(2*r) = \kappa_r = \alpha = \sigma_z / zul\sigma_z = \alpha$	0,38 MN/m² 0,08 0,125 1,90	0,38 MN/m² 0,12 0,170 1,92	keine Angaben	aus Tafel 25 - siehe Anlage
DLUBAL (FEM)	= p'06'1 ₀	0,52 MN/m²	0,59 MN/m²	0,64 MN/m²	siehe Anlage
vgl. mit EC 5:2010 vgl. mit DIN 1052:2008	$\begin{split} \eta &= \sigma_{t,90,d} / \left. k_{dis}^* k_{vol}^* f_{t,90,d} = \\ \eta &= \sigma_{t,90,d} / \left. k_{dis}^* (h_0/h_{ap})^{0.3*} f_{t,90,d} = \\ \end{split}$	3,72	4,56 2,54	5,09	

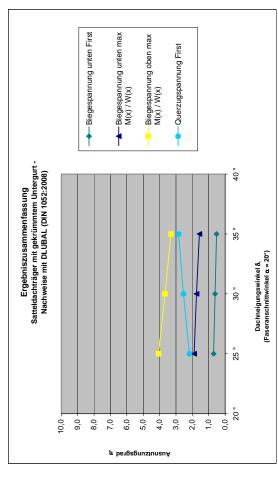
4 - Satteldachträger mit gekrümmtem Untergurt - Querzugspannung im Firstquerschnittes

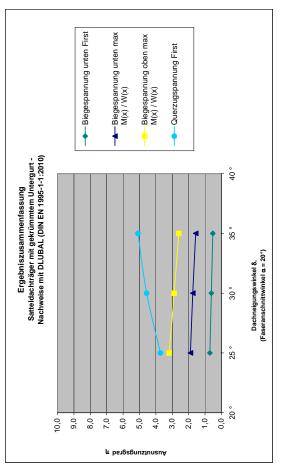


4 - Satteldachträger mit gekrümmtem Untergurt - Querzugspannung im Firstquerschnittes

	odell Dlubal odell Dlubal Irrundungsbereiches alkentheorie) aus FEM-Modell von DLU		
Traufhöhe Trägerbreite Spannweite Lamellendicke	Dachneigungswinkel Neigungswinkel Untergurt = halber Kreissegmentwinkel Faseranschnittwinkel Innenradius → aus FEM-Modell Dlubal Länge der Ausrundung Firsthöhe in Abhängigkeit des Winkels Trägerhöhe am Anschnitt des Ausrundungsbereiches gemittelte Höhe Längen-zu-Höhen-Verhältnis (Balkentheorie) Volumen des Firstbereiches Gesamtvolumen Träger		Firstmoment Siehe Anlage
	35° 15° 20° 14,75 m 17,86 m 7,64 m 6,21 m 4,04 m 4,31 m 5,6 7,81 m³ 7,81 m³		2741,6 kNm 1893,9 kNm
	30° 10° 20° 21,37 m 24,19 m 7,42 m 5,64 m 3,82 m 3,93 m 6,1 6,7 m³ 6,77 m³	(KLED kurz) (KLED kurz)	3134,4 kNm 2160,0 kNm
0,50 m 0,18 m 24,0 m 20 mm	25° 5° 20° 30,00 m 32,58 m 5,76 m 4,06 m 6,7 4,60 m³ 12,15 m³ 4,60 m³	0,28 MN/m² 0,35 MN/m² 0,20 MN/m²	3527,6 kNm 2430,0 kNm
+ C O D	$\delta = \beta$ $\alpha = \delta \cdot \beta = \beta$ $\alpha = \delta \cdot \beta = \beta$ $\Gamma_{n} = \Gamma_{n} + 0.5^{4} \Lambda_{ap} = \beta$ $\alpha = 2^{4} \Gamma_{n}^{*} \sin \gamma = \beta$ $\delta \cdot \tan \beta + \Gamma_{n}^{*} (1/\cos \gamma \cdot 1) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda_{m} + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda_{m} + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda_{m} + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda_{m} + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda_{m} + 2.73^{*} (\Lambda_{ap} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda_{m} + 2.73^{*} (\Lambda_{m} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda_{m} + 2.73^{*} (\Lambda_{m} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda_{m} + 2.73^{*} (\Lambda_{m} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda_{m} + 2.73^{*} (\Lambda_{m} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda_{m} + 2.73^{*} (\Lambda_{m} - \Lambda) = \beta$ $\Lambda_{m} = \Lambda_{m} + 2.73^{*}$	$\int_{1,90,d} = zu \sigma_z = zu \sigma_$	M _d =
	$\delta = \gamma = \\ \alpha = \delta - \beta = \\ \alpha = \delta - \beta = \\ \Gamma_{ln} = \delta - \beta + \Gamma_{ln} = \\ \alpha = 2^{*}\Gamma_{ln} * \sin \gamma = \\ \alpha = 2^{*}\Gamma_{ln} * \cos \gamma = \\ \alpha $	GI24h - DIN EN 1194 GI24h - DIN 1052:2008 BS 11 - DIN 1052:1988	neues Sicherheitskonzept altes Sicherheitskonzept
Querschnittsabmessungen		Materialkennwerte	Beanspruchung

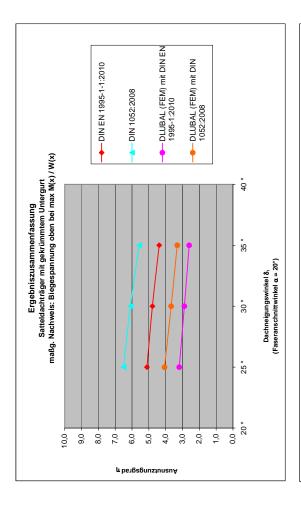
Proj.-Nr.: 09.007g

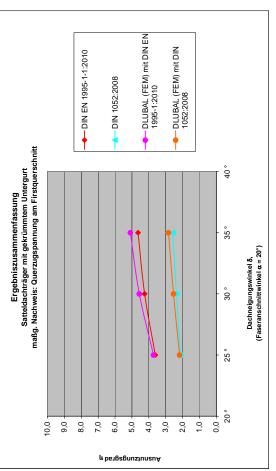

5 - Satteldachträger mit gekrümmtem Untergurt - Ergebniszusammenfassung



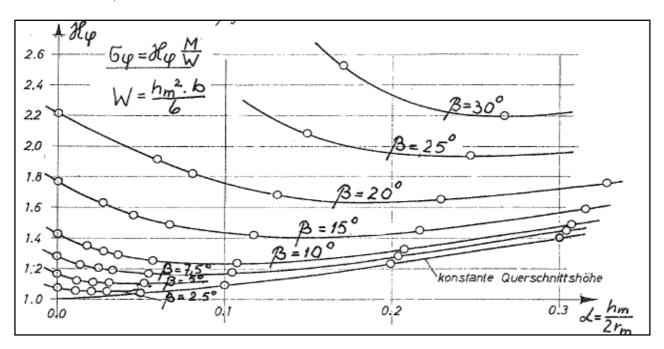
--- Biegespannung unten First

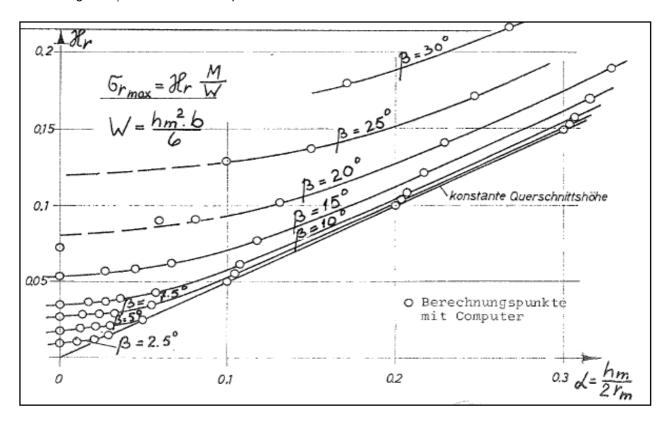
-Biegespannung oben max M(x) / W(x)


--- Querzugspannung First



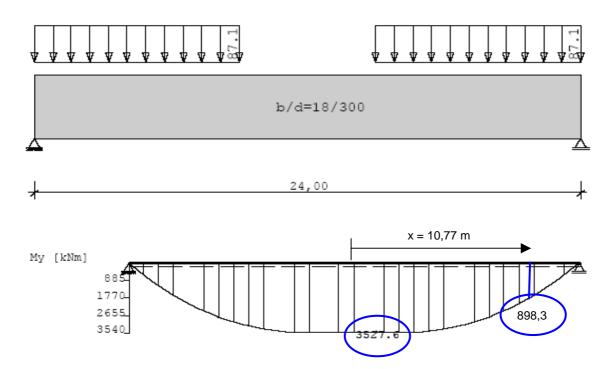
Proj.-Nr.: 09.007g

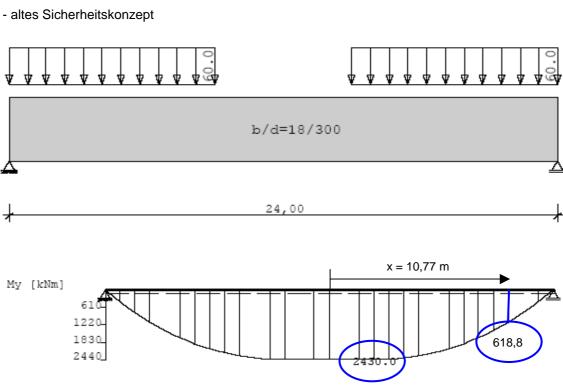

5 - Satteldachträger mit gekrümmtem Untergurt - Ergebniszusammenfassung



BLUMER 1972/1979 - Tafel 25

Ermittlung der $\kappa_{\scriptscriptstyle \phi}$ -Beiwerte im Firstquerschnittes

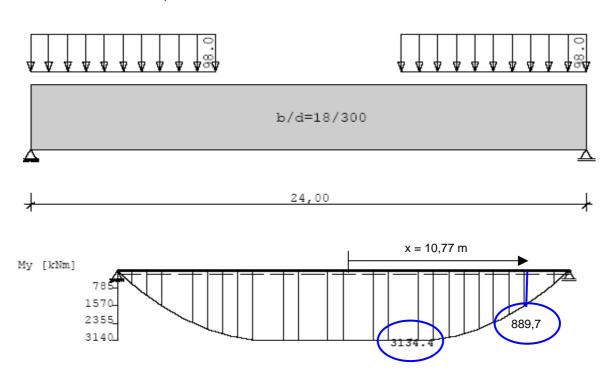

Ermittlung der κ_r-Beiwerte am Firstquerschnittes

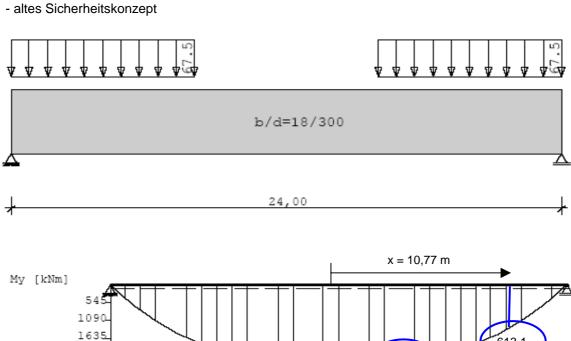


Ersatzsystem zur Ermittlung der Momenten-Beanspruchungen (Berechnung mit dem Programm DLT von F+L)

Neigungswinkel Obergurt 25°, Neigungswinkel Untergurt 5°

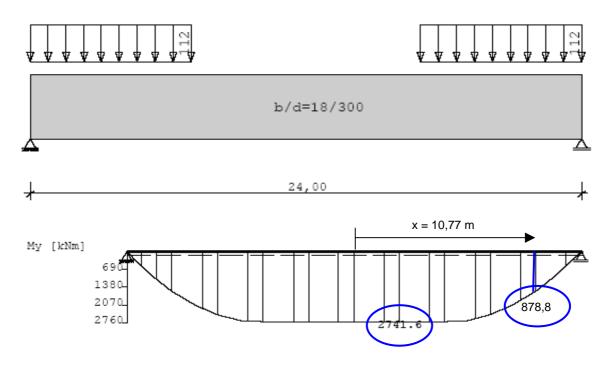
- neues Sicherheitskonzept

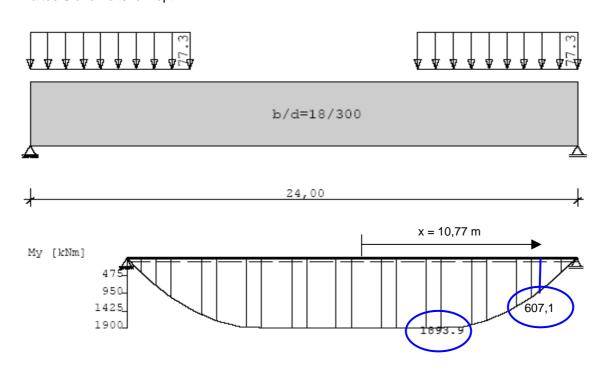



Ersatzsystem zur Ermittlung der Momenten-Beanspruchungen (Berechnung mit dem Programm DLT von F+L)

Neigungswinkel Obergurt 30°, Neigungswinkel Untergurt 10°

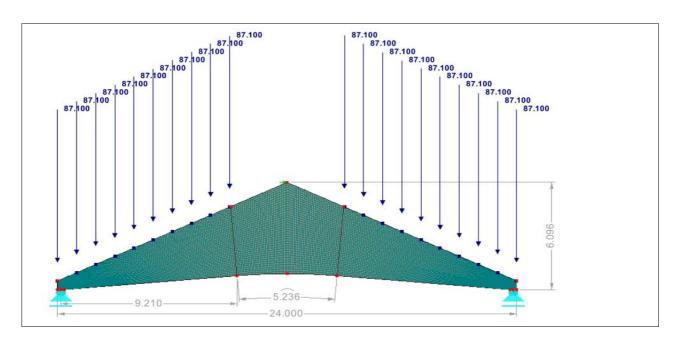
- neues Sicherheitskonzept


2180

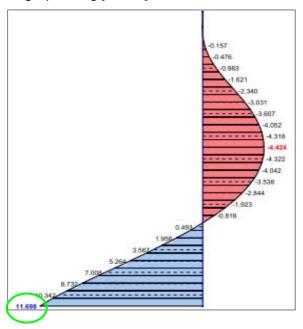

Ersatzsystem zur Ermittlung der Momenten-Beanspruchungen (Berechnung mit dem Programm DLT von F+L)

Neigungswinkel Obergurt 35°, Neigungswinkel Untergurt 15°

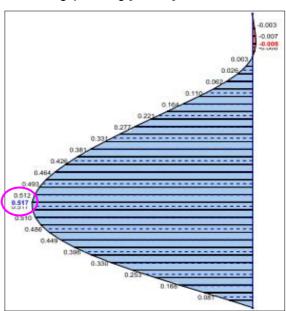
- neues Sicherheitskonzept



- altes Sicherheitskonzept

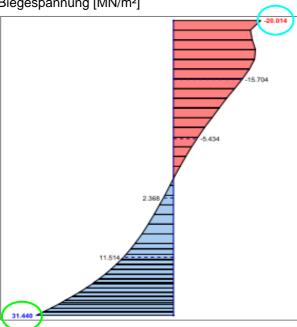

Ergebnisse DLUBAL

Neigungswinkel Obergurt 25°, Neigungswinkel Untergurt 5°



Spannungsverlauf im Firstquerschnitt

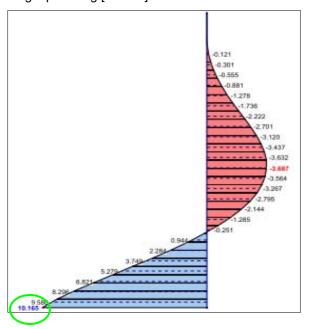
Biegespannung [MN/m²]


Querzugspannung [MN/m²]

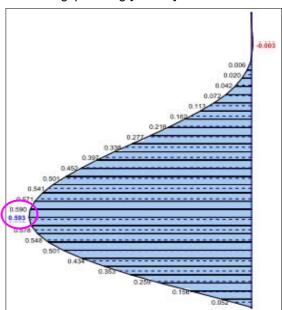
Ergebnisse DLUBAL


Neigungswinkel Obergurt 25°, Neigungswinkel Untergurt 5°

Spannungsverlauf bei x = max M/W


Ergebnisse DLUBAL

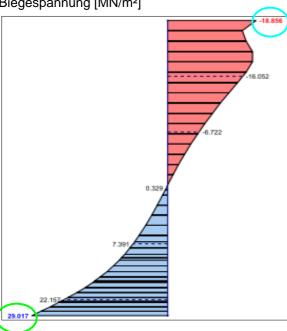
Neigungswinkel Obergurt 30°, Neigungswinkel Untergurt 10°



Spannungsverlauf im Firstquerschnitt

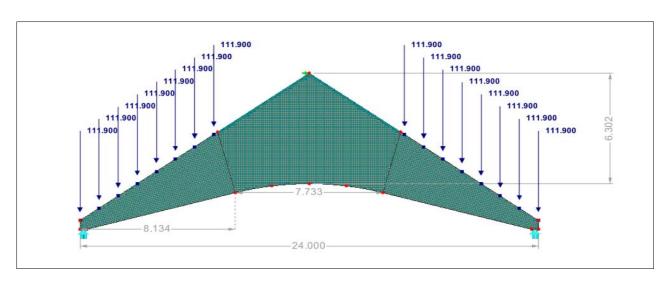
Biegespannung [MN/m²]

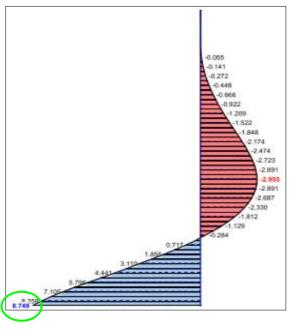

Querzugspannung [MN/m²]



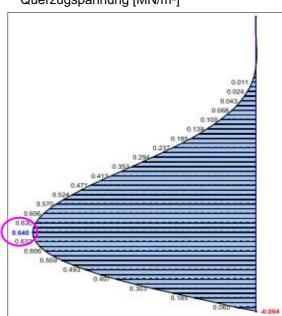
Ergebnisse DLUBAL

Neigungswinkel Obergurt 30°, Neigungswinkel Untergurt 10°


Spannungsverlauf bei x = max M/W

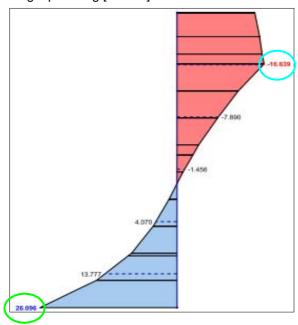

Ergebnisse DLUBAL

Neigungswinkel Obergurt 35°, Neigungswinkel Untergurt 15°



Spannungsverlauf im Firstquerschnitt

Biegespannung [MN/m²]


Querzugspannung [MN/m²]

Ergebnisse DLUBAL

Neigungswinkel Obergurt 35°, Neigungswinkel Untergurt 15°

Spannungsverlauf bei x = max M/W

