Untersuchung zur Eignung und Praxiskorrelation sowie zur europäischen Standardisierung der Prüfung der Witterungsbeständigkeit an Fugendichtstoffen für LAU-Anlagen

T 3281

T 3281

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

2012

ISBN 978-3-8167-8735-8

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

Abschlussbericht zum Forschungsprojekt

ZP 52-5-19.53.1-1347/10

"Untersuchung zur Eignung und Praxiskorrelation sowie zur europäischen Standardisierung der Prüfung der Witterungsbeständigkeit an Fugendichtstoffen für LAU-Anlagen"

bearbeitet von

Dipl.-Ing. (FH) Leopold Glück

Sachverständigenbüro Enheim 45 97340 Martinsheim

mit Unterstützung durch

Dipl.-Ing. (FH) Martin Müller Dipl.-Ing. Christoph Schrader

SKZ - TeConA GmbH, Friedrich-Bergius-Ring 22, 97076 Würzburg

gefördert durch Deutsches Institut für Bautechnik (DIBt)

Enheim, 31. Mai 2012

Inhaltsverzeichnis

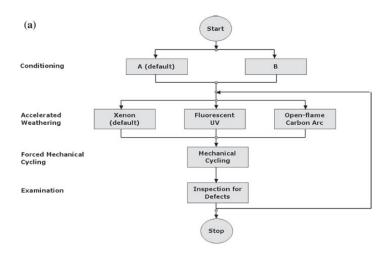
1	Einleitung, Zielsetzung	3
2	Stand der Wissenschaft und Technik	
3	Versuchsmaterialien	6
4	Versuchsprogramm	7
4.1	Herstellung der Probekörper	
4.1.1	Betonprobekörper	
3.1.2	Dichtstoff-Folien	
3.2	Probekörperlagerung und Beanspruchung	
3.2.1	Konditionierung	
3.2.2	Vergleichslagerung im Dunkeln	
3.2.3	Künstliche Bewitterung	
3.2.4	Natürliche Bewitterung	
3.3	Laborprüfungen	14
3.3.1	Visuelle und mikroskopische Beurteilung	14
3.3.2	Haft- und Dehnverhalten	14
3.3.3	Zugversuch an den Dichtstoff-Folien	14
3.3.4	Shore A-Härte an den Dichtstoff-Folien	14
4	Ergebnisse	15
4.1	Visuelle und mikroskopische Begutachtung	
4.2	Zugversuche an Dichtstoff-Folien	
4.3	Zugversuche an Betonprobekörpern	45
4.3.1	Spannungs-/Dehnungsdiagramme	45
4.3.2	Zugspannungswerte bei bestimmten Prüfdehnungen	50
4.4	Shore A-Härte	
5	Zusammenfassung der Ergebnisse der Laborprüfungen	61
6	Diskussion und Ausblick	
7	Literatur	64

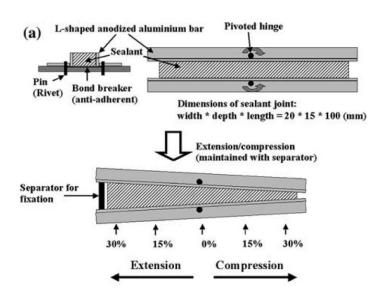
1 Einleitung, Zielsetzung

Fugendichtstoffe werden in Anlagen zum Lagern, Abfüllen und Umschlagen bestimmter wassergefährdender Stoffe sowohl im Innern von Gebäuden als auch im Freien eingesetzt. Die Fugendichtstoffe werden in Bewegungsfugen eingebracht, die die zwängungsfreie Verformung von Bauteilen z.B. durch Schwinden, temperaturbedingte Längenänderungen oder unterschiedlicher Baugrundverformungen ermöglichen und dabei hinsichtlich ihrer Dichtfunktion keinen Schaden nehmen dürfen.

Die Fugendichtstoffe müssen ihre Funktion nicht nur kurzzeitig, sondern über einen längeren Zeitraum erfüllen. Im Rahmen der europäischen Vereinheitlichung von Prüfungen von Fugendichtstoffen fehlt bisher ein allgemein anerkanntes Prüfungs- und Bewertungskonzept für den Nachweis des Langzeitverhaltens hinsichtlich der Witterungsbeständigkeit. In den Zulassungsgrundsätzen des DIBt für Fugendichtstoffe [1] sowie in der europäischen Norm DIN EN 14188-2 [2] ist die Witterungsbeständigkeit durch künstliche Bewitterung nach DIN EN ISO 11431 [3] zu prüfen. Die hier geforderte Beanspruchungsdauer von 500 h lässt nur eine grobe Abschätzung des Verhaltens bei Praxisbeanspruchungen zu. Voruntersuchungen des SKZ bestätigten diese Aussage und ließen eine deutliche zeitliche Abhängigkeit der relevanten Verformungseigenschaften verbunden mit einer erheblichen Veränderung der Oberfläche der Dichtstoffe (Rissbildung) erkennen. Die Versuche wurden bis zu einer Gesamtbestrahlung von 8 GJ/m² im Wellenlängenbereich von 290 nm bis 800 nm durchgeführt, was in etwa 5 Jahre Freibewitterung in Mitteleuropa entspricht [4].

Ziel dieses Vorhabens ist es, Prüfbedingungen und Prüfkriterien zu erarbeiten, die eine zuverlässige Langzeitaussage ermöglichen. Diese Kriterien werden im Hinblick auf die Erteilung nationaler und europäischer technischer Zulassungen (CUAP-Verfahren 06.05/11, [5]) von Fugendichtstoffen, die von einer Mindestnutzungsdauer von 10 Jahren ausgehen, dringend benötigt.


2 Stand der Wissenschaft und Technik


Der Stand der Technik wurde 1999 in einem Bericht des Technischen Komitees 139-DBS der RILEM, herausgegeben von A. T. Wolf, dargestellt [6] und 2004 fortgeschrieben [7]. Die Arbeiten an einem beschleunigten Alterungstest wurden 1989 innerhalb des ISO Komitees TC59/SC8 (Work Group 6) begonnen und später im Jahre 1994 auf das Komitee der RILEM TC139-DBS Durability of Building Sealants übertragen, da das ISO Gremium realisierte, dass die Aufgabe für den üblichen 5-Jahreszeitrahmen zu komplex war um eine Prüfmethode zu entwickeln. 2001 wurde vom RILEM-Komitee eine Technische Empfehlung veröffentlicht [8], die der ISO für die Entwicklung einer zukünftigen Langzeitprüfmethode dienen sollte. 2000 wiederum wurde die Arbeit dem RILEM-Gremium TC 190-SBJ "Service life prediction of sealed building and construction joints" übertragen. Nach 7jähriger Arbeit wurde 2008 eine aktualisierte Empfehlung als Entwurf veröffentlicht [9]. Diese technische Empfehlung liefert die Rahmenbedingungen, unter denen der Einfluss einer zyklischen Bewegung und der Bewitterung auf statisch ausgehärtete Probekörper unter Laborbedingungen ermittelt werden kann. Es werden zwar Standardversuchsbedingungen aufgeführt, aber jeder Anwender dieser Empfehlung darf davon abweichen, wenn er reproduzierbarere klimatische oder Umgebungsbedingungen schaffen will. Die Abweichungen müssen natürlich angegeben werden.

Das Prinzip der Prüfmethode besteht darin, dass der Dichtstoff zwischen zwei parallelen Probenhaltern eingebracht wird und diese in einem Laborklima konditioniert werden. Diese Probekörper werden anschließend zyklisch der künstlichen Bewitterung (Licht, Wärme und Feuchtigkeit) über 6 Wochen ausgesetzt und anschließend über 6 Wochen einer zyklischen Verformung (gleichzeitige Dehnung und Stauchung über 4 Tage, anschließend 3 Tage unbeansprucht) unter kontrollierten Umgebungsbedingungen ausgesetzt. Danach werden die Probekörper visuell beurteilt. Dieser Vorgang wird so lange wiederholt bis ein definierter Alterungszustand erreicht

wird. In Bild 1 ist der Prüfablauf schematisch dargestellt, Bild 2 zeigt den Probekörper für die zyklische Verformung (Stauchung und Dehnung bis zu 30 %).

Bild 1: Schematischer Prüfablauf nach RTR [9]

Bild 2: Dichtstoff-Probekörper zwischen Aluminiumträgern für die zyklische mechanische Verformung nach RTR [9]

Erste Ergebnisse nach dieser Rilem-Prüfmethode wurden von Jones [10], Miyauchi ([11], [12]) und Ausilio [13] vorgestellt. Die Studien kommen zu dem Ergebnis, das diese Alterungsmethode in der Lage ist, zwischen unterschiedlichen Produkten im Hinblick auf ihren Widerstand gegenüber beschleunigter Alterung und zyklischer mechanischer Beanspruchung zu differenzieren. Die Versagensart und die Veränderung der Oberfläche sind teilweise ähnlich wie unter Praxisbedingungen. In den Studien wurden unterschiedliche Dichtstoffe untersucht, so dass die Ergebnisse nicht direkt vergleichbar sind. Es scheint jedoch, dass die in der japanischen Studie [11] verwendete Xenonbogenlampe nach CIE 85 (siehe Bild 7) zu einem schnelleren Versagen führt, als die von Jones verwendete UV-Lampe [10]. In beiden Studien wurde die Alterung durch die zyklische mechanische Verformung deutlich beschleunigt.

In der Studie von Ausilio [13] wird für sechs der acht geprüften Polyurethanfugendichtstoffe durch die Rilem-Methode das Alterungsverhalten bei statischer Freibewitterung ziemlich genau

vorausgesagt.

Weitere Untersuchungen von Ausilio sind geplant, um die Ergebnisse nach der Rilem-Methode mit den Resultaten unter Freibewitterung zu vergleichen.

Wolf kommt in seinem Rückblick über den Stand der Wissenschaft im Hinblick auf die Korrelation von natürlicher und künstlicher Bewitterung zu folgenden allgemeinen Schlussfolgerungen [14]:

- Jeder Dichtstoff zeigt eine rezepturspezifische Antwort auf die beschleunigte künstliche Alterung und auf die Freibewitterung. Es ist weder möglich eine klimatische Rangordnung oder einen Korrelationsfaktor für alle Dichtstoffe noch für eine Materialklasse festzulegen.
- Viele in der Freibewitterung auftretende Abbauverläufe werden durch beschleunigte Bewitterungsverfahren korrekt wiedergegeben. Jedoch hat bisher keines der veröffentlichten Verfahren eine hohe Korrelation mit Langzeitfreibewitterungsergebnissen ergeben. Die Ergebnisse aus künstlichen Alterungstests sollten deshalb mit Vorsicht behandelt werden und man sollte sich vor Vereinfachungen wie "1500 Stunden künstliche Bewitterung entsprechen einem Jahr Freibewitterung in Florida" hüten.
- Die Beanspruchungsbedingungen in den existierenden Spezifikationen und Regelwerken sind unzureichend. Um das Verhaltens unter Praxisbedingungen über mehrere (2 bis 5?) Jahre grob abschätzen zu können, wären in der beschleunigten Alterung 5.000 Stunden bei statischer und 1.000 bis 2.000 Stunden bei dynamischer Beanspruchung erforderlich.

3 Versuchsmaterialien

Die Untersuchungen wurden an Fugendichtstoffen mit allgemeinen bauaufsichtlichen Zulassungen und/oder Europäischen Technischen Zulassungen, erteilt vom Deutschen Institut für Bautechnik (DIBt), zur Verwendung in Anlagen zum Lagern, Abfüllen und Umschlagen wassergefährdender Stoffe (LAU-Anlagen) gemäß Tabelle 1 durchgeführt.

Materialbe- zeichnung	Beschreibung
FDS 1	Zweikomponenten-Fugendichtstoff auf Polysulfidbasis, grau, gießfähig und selbstnivellierend
FDS 2	Zweikomponenten-Fugendichtstoff auf Polysulfidbasis, grau, gießfähig und selbstnivellierend
FDS 3	Zweikomponenten-Fugendichtstoff auf Polysulfidbasis, schwarz, gießfähig und selbstnivellierend
FDS 6	Einkomponenten-Fugendichtstoff auf Polyurethanbasis (PU), betongrau, standfest

Tabelle 1: Versuchsmaterialien

4 Versuchsprogramm

4.1 Herstellung der Probekörper

4.1.1 Betonprobekörper

Die Betonprobekörper wurden gemäß ISO 13460 [15] hergestellt. Auf die Kontaktflächen wurde der von den Dichtstoffherstellern bereitgestellte Primer aufgetragen (**Bild 3**).

Bild 3: Betonprobekörper, Kontaktflächen mit Primer

Mehrkomponenten-Fugendichtstoffsysteme wurden nach den Angaben in den Datenblättern der Fugendichtstoffe angemischt.

Für jede Prüfserie und Lagerungszeit in der künstlichen Bewitterung, der Freibewitterung und der Vergleichslagerung im Normalklima wurden jeweils 3 Betonprobekörper hergestellt (Bild 4 bis 6).

Bild 4: Betonkörper mit Abstandshaltern (12 mm) vor dem Einbringen des Fugendichtstoffes

Bild 5: Einbringen eines selbstverlaufenden Fugendichtstoffes und bündiges Abziehen des überschüssigen Dichtstoffs mit einem Spatel mit den Flächen der Halterungen

Bild 6: Ausgehärtete Betonprobekörper

Links: Gestauchter Probekörper (-12,5 %) Mitte: Gedehnter Probekörper (+12,5 %)

Rechts: Unbelasteter Probekörper mit einer Fugenbreite von 12 mm

3.1.2 Dichtstoff-Folien

Neben den Betonprobekörpern wurden aus den Fugendichtstoffen Folien mit einer Dicke von ca. 4 mm hergestellt. An den Folien lassen sich die Alterungseinflüsse auf das Verformungsverhalten im Zugversuch (Spannungs-/Dehnungsdiagramm) materialspezifisch ohne Einfluss der Kontaktproblematik untersuchen.

Für jede Prüfserie und Lagerungszeit in der künstlichen Bewitterung, der Freibewitterung und der Vergleichslagerung im Normalklima wurde eine ausreichende Folienfläche hergestellt, um je Alterungsstufe 5 Schulterstäbe in Anlehnung an DIN EN ISO 527-3 [16], Probekörper Typ 5a, für die Zugprüfungen verwenden zu können (**Bild 7**).

Bild 7: Gepresste Folien (Einkomponenten-Fugendichtstoff) bzw. gegossene Folien (Zweikomponenten-Fugendichtstoffe)

Die Probekörper für die Zugersuche wurden nach den jeweiligen Lagerungszeiten bzw. Beanspruchungen aus den Folien ausgestanzt.

3.2 Probekörperlagerung und Beanspruchung

3.2.1 Konditionierung

Nach der Herstellung der Probekörper erfolgte eine Vorlagerung im Normalklima 23/50-2 nach DIN EN ISO 291 [17] für 4 Wochen zum Aushärten des Fugendichtstoffes.

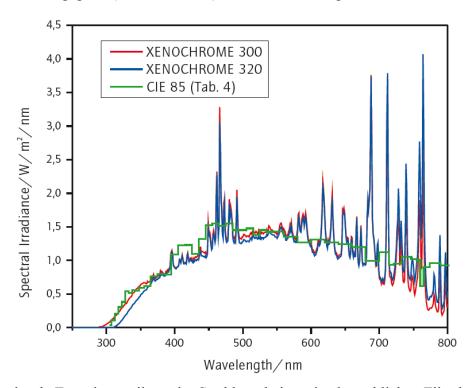
3.2.2 Vergleichslagerung im Dunkeln

Je Prüfserie wurde ein Satz Probekörper für die Vergleichsprüfung von unbelasteten Probekörpern im Normalklima und im Dunkeln gelagert (siehe Tabelle 2).

Art der Lagerung	Lagerungsbedingung	Dauer der Lagerung
Vergleichslagerung	Lagerung im Dunkeln im Normalklima 23/50-2 nach DIN EN ISO 291 Betonprobekörper - ungedehnt, - gedehnt (12,5 %) - gestaucht (12,5 %) Dichtstoff-Folien - ungedehnt	1 Jahr 2 Jahre 4 Jahre
Künstliche Bewitterung Bewitterungsgerät nach DIN EN ISO 4892-2, Xenonstrahlung, Zyklus 102/18 STT (60 ± 3) °C Bestrahlungsstärke EUV (300-400 nm) (60 ± 2) W/m²	Betonprobekörper - ungedehnt - gedehnt (12,5 %) - gestaucht (12,5 %) Dichtstoff-Folien - ungedehnt	2.000 MJ/m² 4.000 MJ/m² 8.000 MJ/m² im Wellenlängenbereich von (300 - 800) nm
Natürliche Bewitterung in Würzburg, Friedrich-Berg- ius-Ring 22	Betonprobekörper - ungedehnt - gedehnt (12,5 %) - gestaucht (12,5 %) Dichtstoff-Folien - ungedehnt	1 Jahr, 2 Jahre 4 Jahre Beginn der Lagerung am 24. August 2006

Tabelle 2: Lagerungsbedingungen

3.2.3 Künstliche Bewitterung


Die künstliche Bewitterung der vorbereiteten Betonprobekörper und der Folien wurde in einem Bewitterungsgerät gemäß DIN EN ISO 4892-2 [18] (**Bild** 8), Lagerungsbedingungen siehe Tabelle 2) mit Xenonstrahlern vorgenommen.

Um gleichmäßige Bestrahlungsbedingungen zu erreichen, wurde die Position der Probekörper auf den Halterungen regelmäßig gewechselt. Das vollentsalzte Wasser für die Beregnungsphase wurde nicht im Umlauf wieder verwendet, um eine Kontaminierung der Probekörper durch herausgelöste Stoffe zu vermeiden.

Xenonstrahler werden in der künstlichen Bewitterung in Deutschland seit 1954 verwendet. Der Vorteil der Xenonstrahler liegt darin, dass in Verbindung mit einem Filtersystem ein Lichtspektrum abgestrahlt wird, das dem Sonnenlicht sehr ähnlich ist. Es wird somit die Globalstrahlung im ultravioletten (UV), im sichtbaren und bis in den infraroten Wellenlängenbereich des Spektrums simuliert. Gegenüber UV-Lampen ist mit Xenonbogen-Strahlern die Anpassung des vollen Spektrums (UV und sichtbar) an das natürliche Sonnenlicht wesentlich besser gegeben (Bild 9).

Bild 8: Bewitterungsgerät (Atlas Beta LM), mit den Probekörpern bestückt

Bild 9: Spektrale Energieverteilung der Strahlung bei zwei gebräuchlichen Filterkombinationen im Bewitterungsgerät ATLAS BETA im Vergleich zur Globalstrahlung im Freien (CIE-Publikation No. 85. Tabelle 4)

DIN EN ISO 4892-2 [18] spezifiziert die Wellenlängenverteilung der wirksamen Strahlungsenergie durch Angabe der jeweiligen relativen Bestrahlungsstärke in den drei Bereichen: 290 – 320 nm, 320 – 360 nm und 360 – 400 nm, bezogen auf die Bestrahlungsstärke zwischen 290 und 800 nm. Unterhalb von 290 nm beträgt die Bestrahlungsstärke Null. Zur Messung der Bestrahlung auf den Probenoberflächen wird ein auf der Probenhalterung montiertes Gerät mit photoelektronischem Strahlungsemfänger vorgeschrieben.

3.2.4 Natürliche Bewitterung

Die natürliche Bewitterung erfolgte in Anlehnung an die DIN EN ISO 105-B01 [19]. Abweichend von der Norm wurden die Probekörper flachliegend und ohne Glasabdeckung bewittert. Die Betonprobekörper wurden ca. bis zur halben Probekörperdicke in ein Sandbett eingedrückt (**Bild 10**). Ziel der Lagerung in einem Sandbett ist es, die klimatischen Bedingungen einer Bodenfuge annähernd nachzustellen.

Bild 10: Betonprobekörper in der Freibewitterung

Die Dichtstoff-Folien wurden in Halterungen eingespannt, wie sie üblicherweise auch in Bewitterungsgeräten verwendet werden, und ebenfalls in der Waagrechten der Freibewitterung ausgesetzt (Bild 11).

Bild 11: Folien in der Freibewitterung

Die natürliche Bewitterung der Probekörper wurde am 24. August 2006 gestartet (Bild 12).

Bild 12: Gesamtansicht des Freibewitterungsstandes

Die horizontal auftreffende Globalstrahlung für die ein-, zwei- und vierjährige Freibewitterung in Würzburg wurde vom Deutschen Wetterdienst wie folgt ermittelt:

Zeitraum	Globalstrahlung [MJ/m²]
24. August 2006 bis 23. August 2007	4.226
24. August 2007 bis 23. August 2008	4.169
24. August 2008 bis 23. August 2010	7.895

Tabelle 3: Globalstrahlung in Würzburg (49 ° 45 ' N/9° 56 ' E), horizontal

3.3 Laborprüfungen

3.3.1 Visuelle und mikroskopische Beurteilung

Die Oberflächen der bewitterten Probekörper wurden visuell und mikroskopisch im Hinblick auf Oberflächenveränderungen wie Rissbildung, Verfärbung, Ablösungen oder dergl. untersucht. An den um 100 % gedehnten Betonprobekörpern (siehe Abs. 3.3.2) wurde die Oberfläche ebenfalls nach den vorgenannten Kriterien visuell begutachtet.

3.3.2 Haft- und Dehnverhalten

An den bewitterten und unbewitterten Betonprüfkörpern wurde das Haft- und Dehnverhalten gemäß DIN EN ISO 8340 und DIN EN ISO 8339 geprüft. Die Prüfkörper wurden mit einer Universalprüfmaschine (Fa. Zwick, Typ 1465) mit der Genauigkeitsklasse "Grade A" nach ISO 5893 [20] um 100 % der Nennfugenbreite gedehnt. Aus den Kraft-/Verformungskurven wurde der Sekantenmodul bei einer Dehnung von 50 % sowie von 100 % ermittelt. Die Prüfung wurde im Normalklima durchgeführt.

Nach der Dehnung um 100 % wurde mittels Abstandhalter die Dehnung für 24 Stunden aufrechterhalten und die Prüfkörper anschließend visuell begutachtet.

3.3.3 Zugversuch an den Dichtstoff-Folien

Die aus den Dichtstoff-Folien ausgestanzten Schulterstäbe (siehe **Bild 5**) wurden ebenfalls mit einer Universalprüfmaschine (Fa. Zwick, Typ 1445) mit der Genauigkeitsklasse "Grade A" nach ISO 5893 bis zum Bruch gedehnt. Die Prüfung wurde im Normalklima durchgeführt, die Prüfgeschwindigkeit betrug 200 mm/min. Aus den Spannungsdehnungskurven wurden die Zugfestigkeit und die Reißdehnung ermittelt.

3.3.4 Shore A-Härte an den Dichtstoff-Folien

An den Dichtstoff-Folien wurde die Shore A-Härte gemäß DIN 53505 [21] bestimmt. Die Prüfung wurde im Normalklima durchgeführt, die Härte wurde 3 Sekunden nach dem Aufsetzen abgelesen.

4 Ergebnisse

4.1 Visuelle und mikroskopische Begutachtung

Die Ergebnisse der visuellen und der mikroskopischen Begutachtung sind in den Tabellen 4 bis 7 für jeden Fugendichtstoff getrennt für die Betonprobekörper und für die Folien zusammengefasst. Die Bewertung erfolgte nach der jeweiligen Beanspruchung (= Probekörpertyp "Betonprobekörper") sowie nach der im Anschluss an die Beanspruchung auf 100 % gedehnten und mit Hilfe von Abstandshaltern bei dieser Dehnung für 24 Stunden gehaltenen Breite (= Probekörpertyp "Betonprobekörper 24 Stunden um 100 % gedehnt").

Tabelle	Tabelle 4: Fugendichtstoff 1 (Polysulfid, grau)			
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme	
	Betonprobe- körper	Oberfläche von allen Probekörpern geschlossen, keine Risse, keine Ab- lösungen, Oberfläche etwas aufge- hellt	FDS1 Bild 13	
rung	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	Leichte, gleichmäßige Rissstruktur in der Außenschicht,	120 1000 h m	
1000 h künstliche Bewitterung		gestauchte Probekörper: alle Probekörper ohne Beanstandung		
h künstlic		ungedehnte Probekörper: alle Probekörper ohne Beanstandung	2. FDS1 Bild 14	
1000		gedehnte Probekörper: alle Probekörper ohne Beanstandung		
		Visuell: keine Rissstruktur erkennbar		
	Folie	Mikroskop: leichte Risse in der Außenschicht	Bild 15	

Tabello	Tabelle 4: Fugendichtstoff 1 (Polysulfid, grau)			
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme	
	Betonprobe- körper	Oberfläche aller Proben geschlossen, keine Risse, keine Ablösungen, Oberfläche heller	FOLT LOOK, UL Bild 16	
		leichte, gleichmäßige Rissstruktur in der Außenschicht		
2000 h künstliche Bewitterung	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	gestauchte Probekörper: alle Probekörper Kohäsionsbruch	Nach 24h Dehring 100%. Bild 17	
(4		ungedehnte Probekörper: alle Probekörper ohne Beanstandung		
		gedehnte Probekörper: alle Probekörper ohne Beanstandung	2. 43.5 mm Bild 18	

Tabelle	Tabelle 4: Fugendichtstoff 1 (Polysulfid, grau)			
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme	
2000 h künstliche Bewitterung	Folie	Visuell: keine Rissstruktur erkennbar Mikroskop: leichte Risse in der Außenschicht	Bild 19	
le Bewitterung	Betonprobe- körper	Oberfläche aller Proben geschlossen, keine Risse, keine Ablösungen, Oberfläche heller	Bild 20	
4000 h künstliche Bev	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	leichte, gleichmäßige Rissstruktur in der Außenschicht gestauchte Probekörper: alle Probekörper ohne Beanstandung ungedehnte Probekörper: alle Probekörper ohne Beanstandung gedehnte Probekörper: alle Probekörper ohne Beanstandung		
	Folie	Visuell: keine Rissstrukturen erkennbar	Bild 21	

Tabelle	Tabelle 4: Fugendichtstoff 1 (Polysulfid, grau)			
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme	
4000 h künstliche Bewitterung		Mikroskop: keine Rissstrukturen erkennbar	Bild 22	
	Betonprobe- körper	Oberflächlich leichte Rissstruktur erkennbar, allerdings nicht bei allen Probekörpern.	TOS 1 25 1.3 12.0 mm 1 7ahr Fieldenilly Bild 23	
1 Jahr Freibewitterung	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	Leichte, gleichmäßige Rissstruktur in der Oberfläche gestauchte Probekörper: Kohäsionsrisse bei 2 von 3 Probekörpern (Bild 24) ungedehnte Probekörper: Kohäsionsrisse bei 1 von 3 Probekörpern gedehnte Probekörper: alle Probekörper ohne Beanstandung	FDS 1 A) A0,5 mm A Jahr Frei bewitz. Bild 24	

Tabelle 4: Fugendichtstoff 1 (Polysulfid, grau)			
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme
1 Jahr Freibewitterung	Folie	Visuell: Keine Rissstruktur erkennbar (Bild 25) Mikroskop: leichte Risse in der Außenschicht, nicht auf der gesamten Oberfläche (Bild 26)	Bild 25
bewitterung	Betonprobe- körper	Oberflächlich leichte Rissstruktur erkennbar.	Bild 27
2 Jahre Freibewitt	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	gestauchte Probekörper: Kohäsionsrisse bei 2 von 3 Probekörpern ungedehnte Probekörper: alle Probekörper ohne Beanstandung (Bild 28) gedehnte Probekörper: leichte Kohäsionsrisse an der Probenkante	2 John Field. Bild 28

Tabelle 4: Fugendichtstoff 1 (Polysulfid, grau)			
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme
2 Jahre Freibewitterung	Folie	Visuell: keine Risse erkennbar Mikroskopisch: Rissstrukturen er- kennbar (Bild 29)	Bild 29
		Ablagerungen, keine Risse erkennbar	Fos 7 4 Julia Finibanillang 78-0 mm
4 Jahre Freibewitterung		Oberflächlich leichte Rissstruktur bei Dehnung sichtbar. Gestauchte und ungedehnte Probekörper: keine Kohäsions- oder Adhäsionsfehler	Floides Aller Posterior Bild 31
	100 % gedehnt	Oberflächlich Rissstruktur bei Dehnung sichtbar. Gedehnte Probekörper: leichte Adhäsionsrisse	Frei & Children Bild 32

Tabelle	Tabelle 4: Fugendichtstoff 1 (Polysulfid, grau)			
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme	
4 Jahre Freibewitterung	Folie	Visuell: Rissstrukturen bei Dehnung erkennbar. Mikroskopisch: Rissstrukturen ungedehnt erkennbar (Bild 33)	Bild 33	

Tabelle 4: Fugendichtstoff 1 (Polysulfid, grau)
Ergebnis der visuellen und mikroskopischen Untersuchung

Tabelle 5: Fugendichtstoff 2 (Polysulfid, grau)			
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme
	Betonprobe- körper	Oberfläche von allen Probekörpern geschlossen, keine Risse, keine Ab- lösungen, Oberfläche etwas aufge- hellt	Bild 34
1000 h künstliche Bewitterung	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	Leichte, gleichmäßige Rissstruktur in der Außenschicht	Bild 35
	Folie	Visuell: keine Rissstruktur erkennbar Mikroskop: leichte Risse in der Außenschicht (Folie zum Fotografieren gebogen)	Bild 36
2000 h künstliche Bewitterung	Betonprobe- körper	Oberfläche aller Proben geschlossen, keine Risse, keine Ablösungen, Oberfläche heller	Bild 37

Tabelle	Tabelle 5: Fugendichtstoff 2 (Polysulfid, grau)				
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme		
	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	leichte, gleichmäßige Rissstruktur in der Außenschicht	3. 2000h UV Bild 38		
tterung		gestauchte Probekörper: alle Probekörper Kohäsionsbruch			
2000 h künstliche Bewitterung		ungedehnte Probekörper: 2 Probekörper ohne Beanstandung 1 Probekörper mit Kohäsionsbruch (Bild 39)	Nach 24h Delning 100%. 1. FOS 2. A 2. Comm Bild 39		
		gedehnte Probekörper: alle Probekörper ohne Beanstandung			
	Folie	Visuell: keine Rissstruktur erkennbar (Bild 40) Mikroskop: leichte Risse in der Außenschicht	Bild 40		

Tabelle	Tabelle 5: Fugendichtstoff 2 (Polysulfid, grau)			
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme	
4000 h künstliche Bewitterung	Betonprobe- körper	Oberfläche aller Proben geschlossen, keine Risse, keine Ablösungen, Oberfläche heller	Bild 41	
	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	leichte, gleichmäßige Rissstruktur in der Außenschicht gestauchte Probekörper: alle Probekörper ohne Beanstandung ungedehnte Probekörper: alle Probekörper ohne Beanstandung		
h künstlich		gedehnte Probekörper: alle Probekörper ohne Beanstandung		
4000 F		Visuell: vereinzelte Risse in der Außen- schicht	Bild 42	
	Folie	Mikroskop: vereinzelte Risse in der Außen- schicht (bei gebogener Folie zeich- nen sich die Risse deutlicher ab)	Bild 43	

Tabell	Tabelle 5: Fugendichtstoff 2 (Polysulfid, grau)			
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme	
1 Jahr Freibewitterung	Betonprobe- körper		FCS 2 # 1.) 10.5 mm 1 John Troibeuthy. Bild 44	
	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	leichte, gleichmäßige Rissstruktur in der Außenschicht gestauchte Probekörper: Kohäsionsrisse bei 1 von 3 ungedehnte Probekörper: alle Probekörper Kohäsionsrisse gedehnte Probekörper: alle Probekörper Kohäsionsrisse (Bild 45)	FOS 2 24 2) John Freibersky. Bild 45	
	Folie	Visuell: keine Risse erkennbar Mikroskopisch: Rissstrukturen er- kennbar (Bild 46)	Bild 46	
2 Jahre Freibewitterung	Betonprobe- körper		Bild 47	

Tabelle 5: Fugendichtstoff 2 (Polysulfid, grau)				
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme	
	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	leichte, gleichmäßige Rissstruktur in der Außenschicht gestauchte Probekörper: Kohäsionsrisse bei 2 von 3 ungedehnte Probekörper: 1 Probekörper adhäsiv gerissen. 1 Probekörper Adhäsions- und Kohäsionsverlust. 1 Probekörper ohne Beanstandung (Bild 48) gedehnte Probekörper: alle Probekörper ohne Beanstandung	## #BS 2 39 23abe Fo.b. N.b. Bild 48	
2 Jahre Freibewitterung	Folie	Visuell: keine Risse erkennbar Mikroskopisch: z.T. leichte Rissstruktur in erkennbar	Bild 49 Bild 50	
4 Jahre Freibewitterung	Betonprobe- körper	Ablagerungen, bei 2 von 9 Probekörpern Risse erkennbar	7-3 705 2. 44 30400 73. 500000 Bild 51	

Tabelle	Tabelle 5: Fugendichtstoff 2 (Polysulfid, grau)			
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme	
itterung	Betonprobe- körper um 100 % gedehnt	 Bei allen Probekörpern: Oberflächlich leichte Rissstruktur bei Dehnung sichtbar Keine Kohäsions- oder Adhäsionsfehler 	Fos 2 4 Johns Fost beastlery 78. Form	
bewi			Bild 52	
4 Jahre Freibewitterung	Folie	Visuell und mikroskopisch: Ablagerungen und vereinzelt Risse erkennbar	Bild 53	

Tabelle 5: Fugendichtstoff 2 (Polysulfid, grau)
Ergebnis der visuellen und mikroskopischen Untersuchung

Tabelle	Tabelle 6: Fugendichtstoff 3 (Polysulfid schwarz)			
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme	
1000 h künstliche Bewitterung	Betonprobe- körper	Oberfläche von allen Probekörpern geschlossen, keine Risse, keine Ab- lösungen, Oberfläche etwas aufge- hellt	Bild 54	
	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	Leichte, gleichmäßige Rissstruktur in der Außenschicht	2.705 3 1000h 12.0 mm	
	Folie	Visuell: keine Rissstruktur erkennbar Mikroskop: leichte Risse in der Außenschicht (Folie zum Fotografieren gebogen)	Bild 56	

Tabelle	Tabelle 6: Fugendichtstoff 3 (Polysulfid schwarz)				
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme		
	Betonprobe- körper	Oberfläche aller Proben geschlossen, keine Risse, keine Ablösungen, Oberfläche heller	Bild 57		
bn	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	gleichmäßige Rissstruktur in der Außenschicht			
2000 h künstliche Bewitterung		gestauchte Probekörper: alle Probekörper Kohäsionsbruch	3. *D\$ 3 40.5mm Nach 24h Dehning 100%. Bild 58		
		ungedehnte Probekörper: alle Probekörper ohne Beanstandung			
		gedehnte Probekörper: alle Probekörper ohne Beanstandung	Bild 59		

Tabelle 6: Fugendichtstoff 3 (Polysulfid schwarz)				
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme	
2000 h künstliche Bewitterung	Folie	Visuell: keine Rissstruktur erkennbar	Bild 60	
		Mikroskop: Risse in der Außenschicht	Bild 61	
ítterung	Betonprobe- körper	Oberfläche aller Proben geschlossen, keine Risse, keine Ablösungen, Oberfläche heller	Bild 62	
4000 h künstliche Bewitterung	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	gleichmäßige Rissstruktur in der Außenschicht gestauchte Probekörper: alle Probekörper ohne Beanstandung ungedehnte Probekörper: alle Probekörper ohne Beanstandung gedehnte Probekörper: alle Probekörper:		

Tabelle 6: Fugendichtstoff 3 (Polysulfid schwarz)			
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme
4000 h künstliche Bewitterung		im Normalklima gelagerte Probe- körper: alle Probekörper mit Kohäsions- bruch	Bild 63
		Visuell: vereinzelte Risse in der Außen- schicht	Bild 64
	Folie	Mikroskop: vereinzelte Risse in der Außen- schicht (bei gebogener Folie zeich- nen sich die Risse deutlicher ab)	Bild 65
1 Jahr Freibewitterung	Betonprobe- körper	Deutlich Rissstruktur erkennbar	A3 A0.5 mm 1 Jahr Fieibewilk Bild 66

Tabell	Tabelle 6: Fugendichtstoff 3 (Polysulfid schwarz)				
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme		
1 Jahr Freibewitterung	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	Bei allen Probekörpern gleichmäßige Rissstruktur in der Außenschicht (Elefantenhaut) gestauchte Probekörper: alle Probekörper Kohäsionsrisse ungedehnte Probekörper: alle Probekörper Kohäsionsrisse (Bild 67) gedehnte Probekörper: 1 von 3 Probekörpern Kohäsionsrisse	7DS3 * A) 12,0mm A Jahr Fisi 6cwi / hmay Bild 67		
	Folie	Keine Risse erkennbar	Bild 68		
2 Jahre Freibewitterung	Betonprobe- körper	Bei 2 Proben leichte Rissstruktur erkennbar	St. Fos 3 1) 2 J. Freibewikey. Bild 69		
	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	gestauchte Probekörper: alle Probekörper Kohäsionsrisse ungedehnte Probekörper: bei 2 von 3 Probekörpern Kohäsionsrisse (Bild 70), bei 1 Probekörper leichter Kohäsionsverlust gedehnte Probekörper: alle Probekörper ohne Beanstandung	2.9 27. Fribensky. Bild 70		

Tabelle	Tabelle 6: Fugendichtstoff 3 (Polysulfid schwarz)				
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme		
2 Jahre Freibewitterung	Folie	Visuell: keine Risse erkennbar Mikroskop: leichte Rissstrukturen im Randbereich erkennbar.	Bild 71 Bild 72		
4 Jahre Freibewitterung	Betonprobe- körper	Bei 2 von 3 gedehnten Probekörpern Risse, teilweise	Bild 74		

Tabelle	Tabelle 6: Fugendichtstoff 3 (Polysulfid schwarz)			
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme	
		Keine Rissstruktur bei gestauchten und ungedehnten Probekörpern sichtbar	Food Scarling. Bild 75	
4 Jahre Freibewitterung	Betonprobe- körper um 100 % gedehnt	Gleichmäßig Rissstruktur bei allen Probekörpern (Elefantenhaut), vereinzelt Kohäsionsrisse	Fos 3 · J. Am. Fos 3 · J. Am. Fos 3 · J. Am. Bild 76	
	Folie	Visuell und mikroskopisch: Vereinzelt Risse erkennbar	Bild 77	

Tabelle 6: Fugendichtstoff 3 (Polysulfid schwarz) Ergebnis der visuellen und mikroskopischen Untersuchung

Tabelle 7: Fugendichtstoff 6 (Polyurethan grau)						
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme			
1000 h künstliche Bewitterung	Betonprobe- körper	Oberfläche von allen Probekörpern geschlossen, keine Risse, keine Ab- lösungen, Oberfläche etwas aufge- hellt	Bild 78			
	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	Oberfläche geschlossen gestauchte Probekörper: alle Probekörper ohne Beanstandung ungedehnte Probekörper: alle Probekörper ohne Beanstandung gedehnte Probekörper: alle Probekörper ohne Beanstandung	# 1000 h UV Bild 79			
	Folie	Visuell: keine Rissstruktur erkennbar Visuell: keine Risse erkennbar Mikroskop: keine Risse erkennbar	Bild 80			

Tabell	Tabelle 7: Fugendichtstoff 6 (Polyurethan grau)						
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme				
	Betonprobe- körper	Leichte Rissstruktur an der Proben- oberfläche, keine Ablösungen, Oberfläche heller	Bild 81				
		leichte, gleichmäßige Rissstruktur in der Außenschicht					
ad	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	gestauchte Probekörper: alle Probekörper ohne Beanstandung					
2000 h künstliche Bewitterung		ungedehnte Probekörper: alle Probekörper ohne Beanstandung	Bild 82				
		gedehnte Probekörper: alle Probekörper ohne Beanstandung	## FDS6 135				
	F 1	Visuell: Rissstruktur erkennbar					
	Folie	Mikroskop: Risse in der Außenschicht					

Tabelle 7: Fugendichtstoff 6 (Polyurethan grau)						
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme			
4000 h künstliche Bewitterung	Betonprobe- körper	leichte Rissstruktur an der Proben- oberfläche, keine Ablösungen, Oberfläche heller	FOSG GOODS Bild 84			
	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	gleichmäßige Rissstruktur in der Außenschicht gestauchte Probekörper: alle Probekörper ohne Beanstandung ungedehnte Probekörper: alle Probekörper ohne Beanstandung	Bild 86			

Tabelle	Tabelle 7: Fugendichtstoff 6 (Polyurethan grau)				
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme		
4000 h künstliche Bewitterung		gedehnte Probekörper: alle Probekörper ohne Beanstandung	Bild 87		
		Visuell: Rissstruktur erkennbar	Bild 88		
4000 h kün	Folie	Mikroskop: Rissstruktur erkennbar, Risstiefe ca. 0,2 mm, Querschnitt unten	Bild 89		

Tabelle 7: Fugendichtstoff 6 (Polyurethan grau)					
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme		
	Betonprobe- körper		Tos 6 13 12,0mm 1 Jahr Feibenilk Bild 90		
1 Jahr Freibewitterung	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	Alle Probekörper ohne Beanstandung	13-12,0mm 1 Johr Feitewilk, Bild 91		
	Folie	Visuell: keine Rissstruktur erkennbar Mikroskop: leichte Rissstrukturen im Randbe- reich (Bild 92)	Bild 92		
2 Jahre Freibewitterung	Betonprobe- körper	Alle Probekörper ohne Beanstandung	Bild 93		

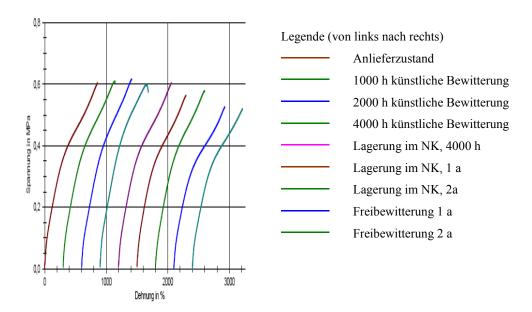
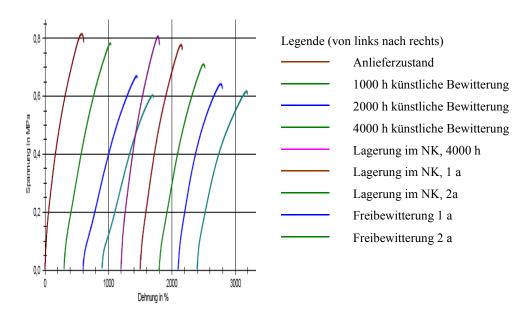
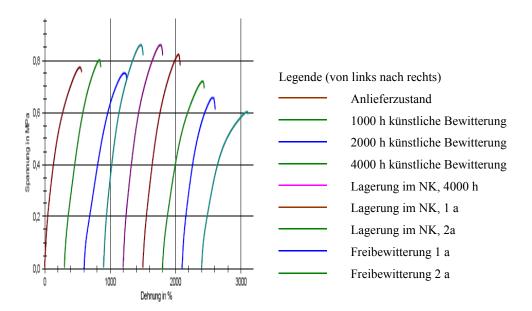

Tabelle 7: Fugendichtstoff 6 (Polyurethan grau)				
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme	
rung	Betonprobe- körper 24 Stunden um 100 % ge- dehnt	Alle Probekörper ohne Beanstandung	27 the Fub 2, 46. 5hms Bild 94	
2 Jahre Freibewitterung	Folie	Visuell: keine Rissstruktur erkennbar		
		Mikroskop: leichte Rissstruktur im Randbereich erkennbar	Bild 95 Bild 96	
4 Jahre Freibewitterung	Beton- probekörper	Oberflächliche Rissstruktur erkennbar, bei gedehnten Probekörpern leichter Adhäsionsverlust (etwa 0,5 mm Tiefe)	Freibewillerung 13:5 mm	

Tabelle	Tabelle 7: Fugendichtstoff 6 (Polyurethan grau)					
Dauer	Probekör- pertyp	Beobachtung, Bemerkung	Photoaufnahme			
4 Jahre Freibewitterung	Beton- probekörper um 100 % gedehnt	Bei allen Probekörpern oberflächlich Rissstruktur sichtbar. Gestauchte und ungedehnte Probekörper: Keine Kohäsions- oder Adhäsionsfehler	Freibers//a-s. Bild 98			
		Bei allen Proben oberflächlich Rissstruktur sichtbar. Gedehnte Probekörper: Leichte Adhäsionsrisse bei allen Probekörpernn ohne Weiterreißen nach 24 Stunden	First Wilder Fightwiller 73.5 mm			
	Folie	Visuell: Rissstrukturen erkennbar, Mikroskopisch: Deutliche Rissstrukturen erkennbar	Bild 100			


Tabelle 7: Fugendichtstoff 6 (Polyurethan grau)
Ergebnis der visuellen und mikroskopischen Untersuchung

4.2 Zugversuche an Dichtstoff-Folien


In den Bildern 101 bis 104 sind die an exemplarischen Probekörpern ermittelten Spannungs-/Dehnungsdiagramme im Anlieferzustand sowie nach den jeweiligen Alterungsstufen in der künstlichen Bewitterung bzw. in der Freibewitterung gegenübergestellt.

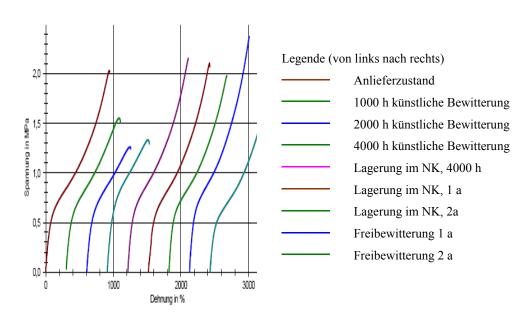

Bild 101: Fugendichtstoff 1 (Polysulfid grau)
Spannungs-/Dehnungsdiagramme im Anlieferzustand sowie nach Alterung

Bild 102: Fugendichtstoff 2 (Polysulfid grau)
Spannungs-/Dehnungsdiagramme im Anlieferzustand sowie nach Alterung

Bild 103: Fugendichtstoff 3 (Polysulfid schwarz)
Spannungs-/Dehnungsdiagramme im Anlieferzustand sowie nach Alterung

Bild 104: Fugendichtstoff 6 (Polyurethan grau)
Spannungs-/Dehnungsdiagramme im Anlieferzustand sowie nach Alterung

Der Verlauf der Zugfestigkeit und der Reißdehnung in Abhängigkeit der Art und Dauer der Beanspruchung geht aus den Bildern 105 und 106 hervor

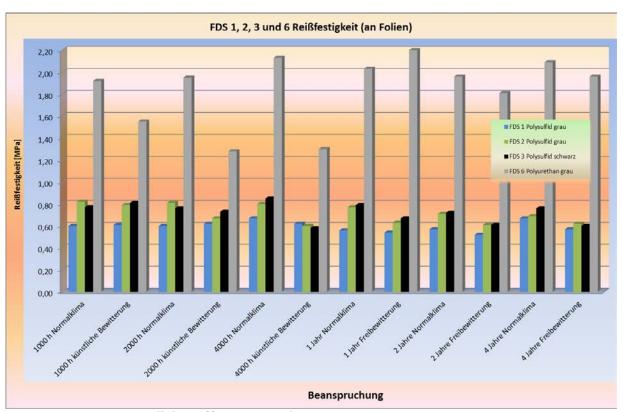


Bild 105: Fugendichtstoffe 1, 2, 3 und 6
Reißfestigkeit an Dichtstoff-Folien in Abhängigkeit der Beanspruchung

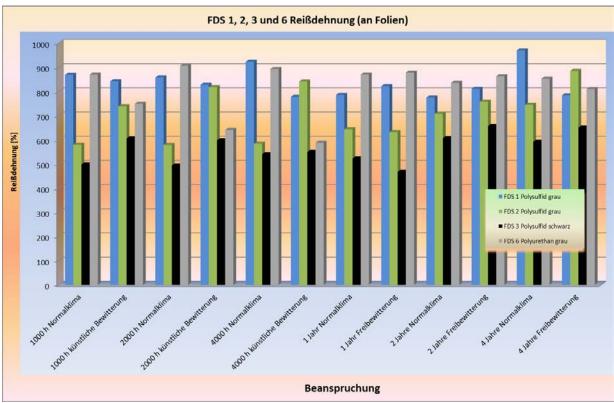
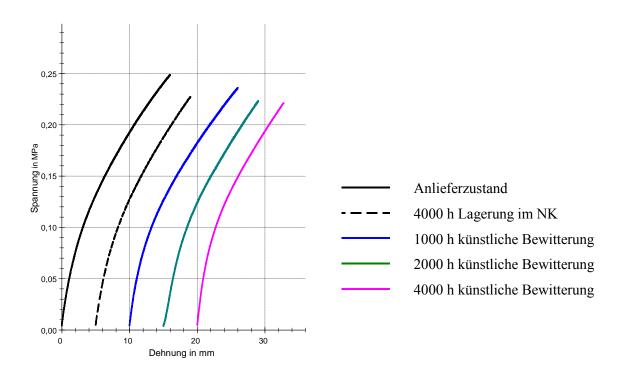
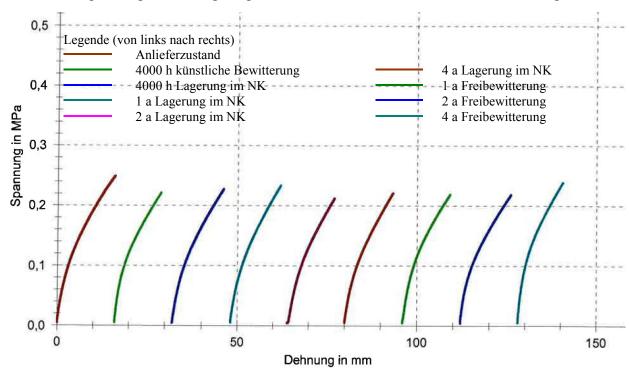
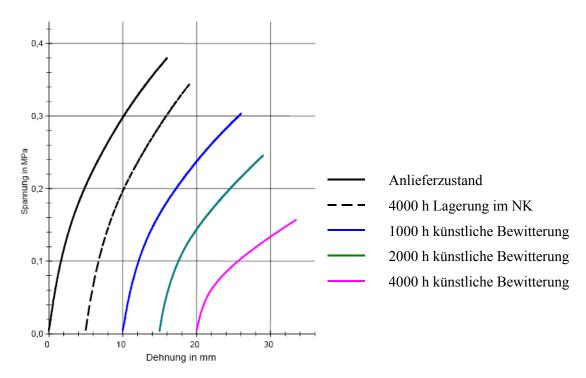
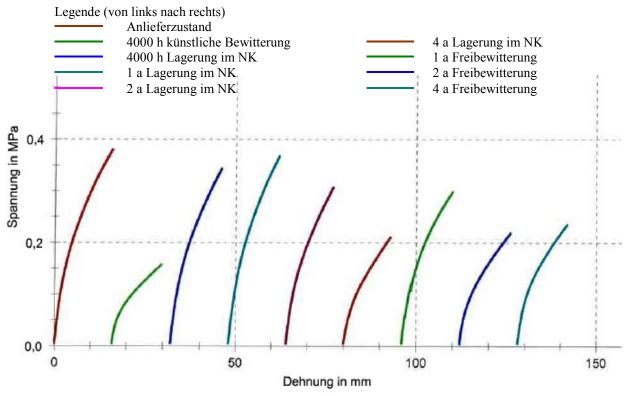



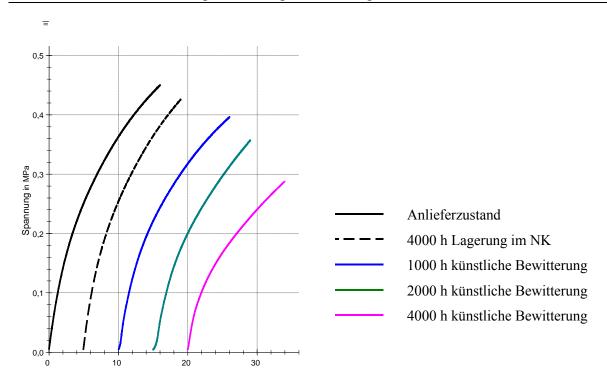
Bild 106: Fugendichtstoffe 1, 2, 3 und 6
Reißdehnung an Dichtstoff-Folien in Abhängigkeit der Beanspruchung

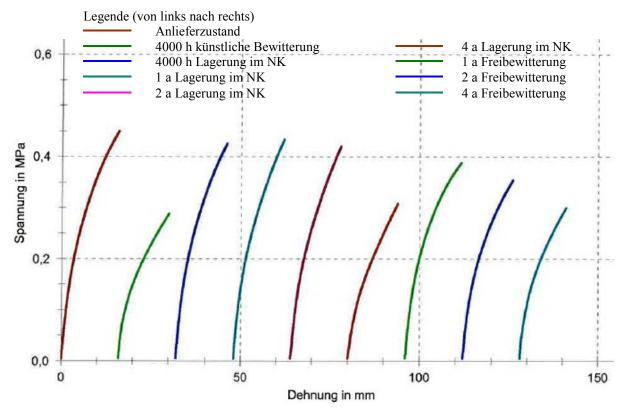

4.3 Zugversuche an Betonprobekörpern

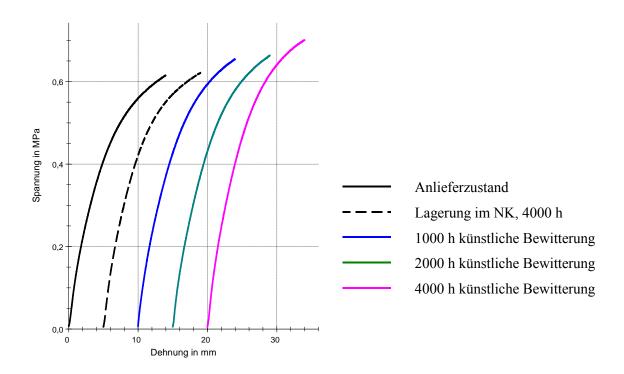
4.3.1 Spannungs-/Dehnungsdiagramme


In den Bildern 107 bis 114 sind die an exemplarischen Probekörpern ermittelten Spannungs-/Dehnungsdiagramme im Anlieferzustand sowie nach den jeweiligen Alterungsstufen gegenüber gestellt.


Bild 107: Fugendichtstoff 1 (Polysulfid grau)
Spannungs-/Dehnungsdiagramme im Anlieferzustand sowie nach Alterung


Bild 108: Fugendichtstoff 1 (Polysulfid grau)
Spannungs-/Dehnungsdiagramme im Anlieferzustand sowie nach Alterung


Bild 109: Fugendichtstoff 2 (Polysulfid grau)
Spannungs-/Dehnungsdiagramme im Anlieferzustand sowie nach Alterung


Bild 110: Fugendichtstoff 2 (Polysulfid grau)
Spannungs-/Dehnungsdiagramme im Anlieferzustand sowie nach Alterung

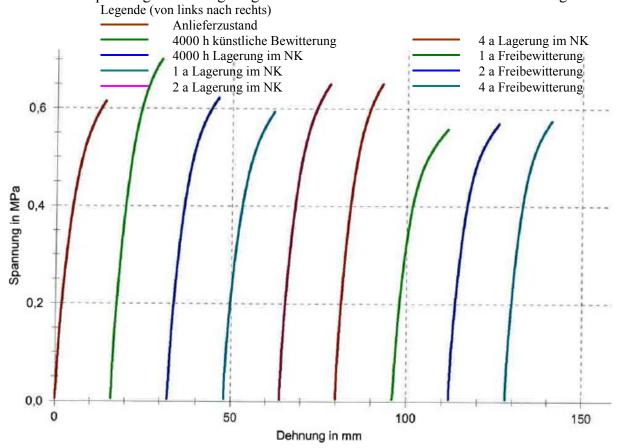

Bild 111: Fugendichtstoff 3 (Polysulfid schwarz)
Spannungs-/Dehnungsdiagramme im Anlieferzustand sowie nach Alterung

Bild 112: Fugendichtstoff 3 (Polysulfid schwarz)
Spannungs-/Dehnungsdiagramme im Anlieferzustand sowie nach Alterung

Bild 113: Fugendichtstoff 6 (Polyurethan grau)
Spannungs-/Dehnungsdiagramme im Anlieferzustand sowie nach Alterung

Bild 114: Fugendichtstoff 6 (Polyurethan grau)
Spannungs-/Dehnungsdiagramme im Anlieferzustand sowie nach Alterung

4.3.2 Zugspannungswerte bei bestimmten Prüfdehnungen

Die Zugspannungswerte bei einer Prüfdehnung von 100 % (entspricht einer Verformung um 12 mm von 12 mm auf 24 mm) sind in der Tabelle 8 gegenübergestellt.

Fugendichtstoff Probekörper Lagerung Beanspruchung		Betonprobekörper (ungedehnt)	Folie (ungedehnt)		
		Zugspannungswert bei 100 % Dehnung (MPa)			
FDS 1	1000 h Normalklima	0,21	0,17		
Polysulfid grau	1000 h künstliche Bewitterung	0,20	0,18		
	2000 h Normalklima	0,21	0,17		
	2000 h künstliche Bewitterung	0,20	0,17		
	4000 h Normalklima	0,21	0,18		
	4000 h künstliche Bewitterung	0,21	0,18		
	1 Jahr Normalklima	0,22	0,18		
	1 Jahr Freibewitterung	0,21	0,16		
	2 Jahre Normalklima	0,21	0,17		
	2 Jahre Freibewitterung	0,20	0,16		
	4 Jahre Normalklima	0,21	0,15		
	4 Jahre Freibewitterung	0,23	0,17		
FDS 2	1000 h Normalklima	0,33	0,29		
Polysulfid grau	1000 h künstliche Bewitterung	0,27	0,19		
	2000 h Normalklima	0,33	0,27		
	2000 h künstliche Bewitterung	0,22	0,13		
	4000 h Normalklima	0,32	0,27		
	4000 h künstliche Bewitterung	0,14	0,12		
	1 Jahr Normalklima	0,34	0,21		
	1 Jahr Freibewitterung	0,27	0,20		
	2 Jahre Normalklima	0,29	0,17		
	2 Jahre Freibewitterung	0,25	0,20		
	4 Jahre Normalklima	0,20	0,17		
	4 Jahre Freibewitterung	0,21	0,13		

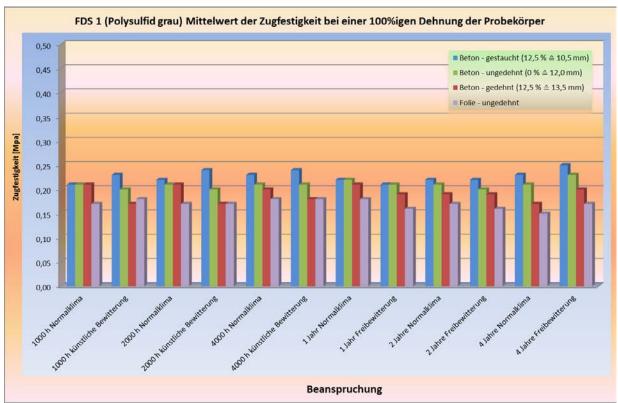
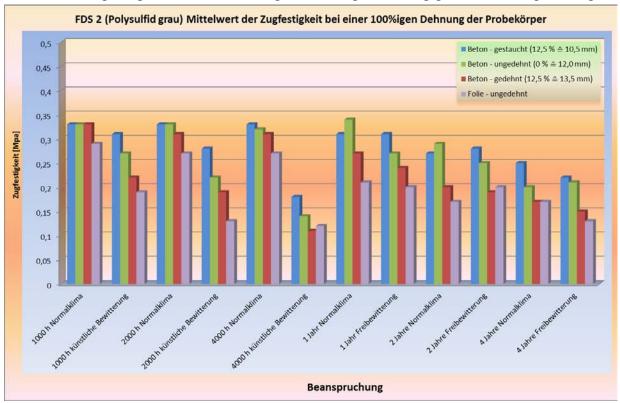
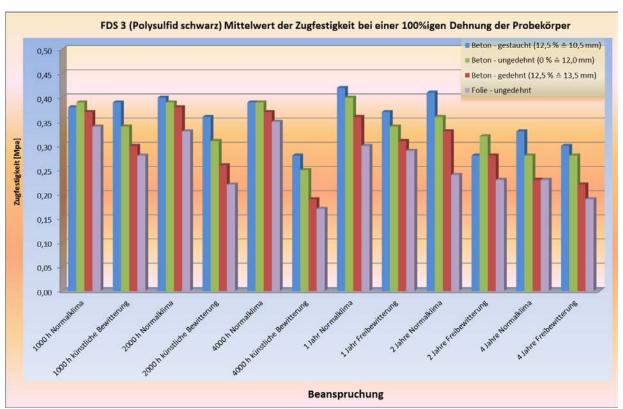

Fugendichtstoff	Probekörper Lagerung Beanspruchung	Betonprobekörper (ungedehnt)	Folie (ungedehnt)	
		Zugspannungswert bei 100 % Dehnung (MPa)		
FDS 3	1000 h Normalklima	0,39	0,34	
Polysulfid schwarz	1000 h künstliche Bewitterung	0,34	0,28	
SCHWarz	2000 h Normalklima	0,39	0,33	
	2000 h künstliche Bewitterung	0,31	0,22	
	4000 h Normalklima	0,39	0,35	
	4000 h künstliche Bewitterung	0,25	0,17	
	1 Jahr Normalklima	0,4	0,30	
	1 Jahr Freibewitterung	0,34	0,29	
	2 Jahre Normalklima	0,36	0,24	
	2 Jahre Freibewitterung	0,32	0,23	
	4 Jahre Normalklima	0,28	0,23	
	4 Jahre Freibewitterung	0,28	0,19	
FDS 6	1000 h Normalklima	0,59	0,55	
Polyurethan	1000 h künstliche Bewitterung	0,63	0,58	
grau	2000 h Normalklima	0,59	0,58	
	2000 h künstliche Bewitterung	0,64	0,59	
	4000 h Normalklima	0,6	0,62	
	4000 h künstliche Bewitterung	0,67	0,64	
	1 Jahr Normalklima	0,57	0,57	
	1 Jahr Freibewitterung	0,52	0,62	
	2 Jahre Normalklima	0,62	0,58	
	2 Jahre Freibewitterung	0,55	0,51	
	4 Jahre Normalklima	0,64	0,60	
	4 Jahre Freibewitterung	0,56	0,65	

Tabelle 8: Zugspannungswerte an Betonprobekörpern und an Folien bei einer Prüfdehnung von 100 %

Der Verlauf der Zugspannungswerte bei einer Dehnung von 100 % ist in Abhängigkeit der Vorbeanspruchung (gestaucht, ungedehnt, gedehnt) sowie der Art und Dauer der Beanspruchung für jeden Dichtstoff getrennt in Bild 115 bis Bild 118 dargestellt.


Bild 119 zeigt den Verlauf der Zugspannungswerte bei 100 % Dehnung an ungedehnten Probekörpern für alle Dichtstoffe in Abhängigkeit der Art und Dauer der Beanspruchung.

Der Verlauf der Zugspannungswerte bei einer Dehnung von 100 % der ungedehnten Probekörper ist in Abhängigkeit der Art und Dauer der Beanspruchung für jeden Dichtstoff getrennt in Bild 120 bis Bild 123 dargestellt. Dabei wurde auf der Zeitachse 1000 h künstliche Bewitterung einer einjährigen Freibewitterung gleichgesetzt.


Bild 115: Fugendichtstoff 1 (Polysulfid grau)

Zugfestigkeit bei einer 100%igen Dehnung in Abhängigkeit der Beanspruchung

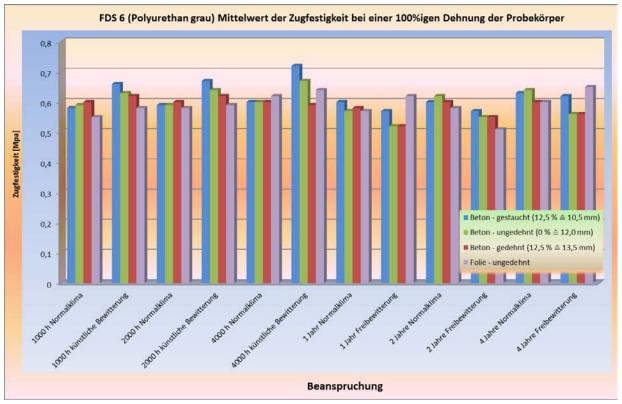


Bild 116: Fugendichtstoff 2 (Polysulfid grau)

Zugfestigkeit bei einer 100%igen Dehnung in Abhängigkeit der Beanspruchung

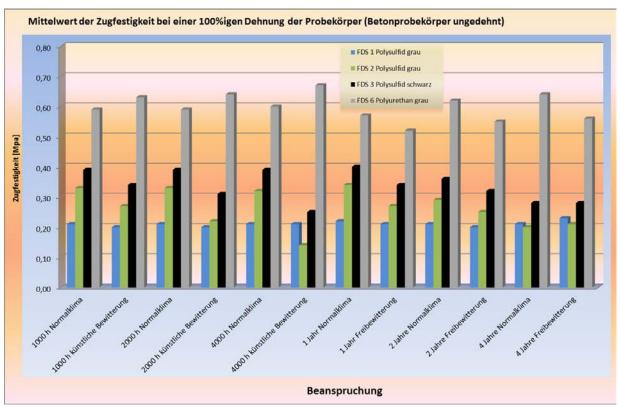


Bild 117: Fugendichtstoffe 3 (Polysulfid schwarz Zugfestigkeit bei einer 100%igen Dehnung in Abhängigkeit der Beanspruchung

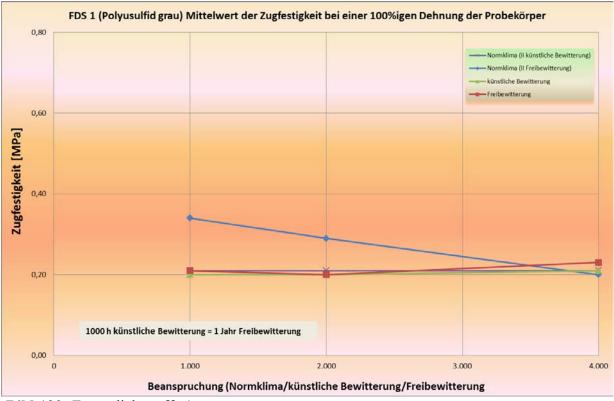


Bild 118: Fugendichtstoff 6 (Polyurethan grau)

Zugfestigkeit bei einer 100%igen Dehnung in Abhängigkeit der Beanspruchung

Bild 119: Fugendichtstoffe 1, 2, 3 und 6 Zugfestigkeit bei einer 100%igen Dehnung in Abhängigkeit der Beanspruchung

Bild 120: Fugendichtstoffe 1 Zugfestigkeit bei einer 100%igen Dehnung in Abhängigkeit der Art und Dauer der Beanspruchung

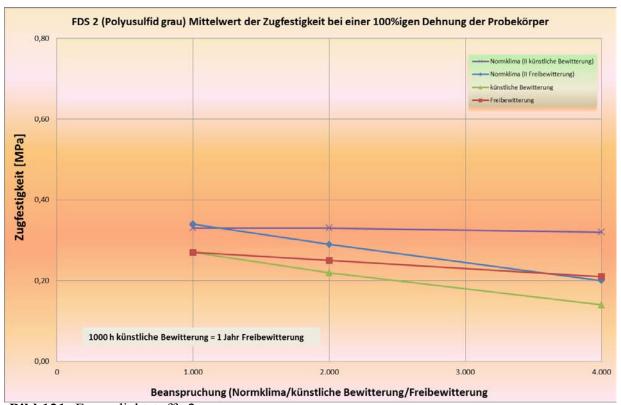
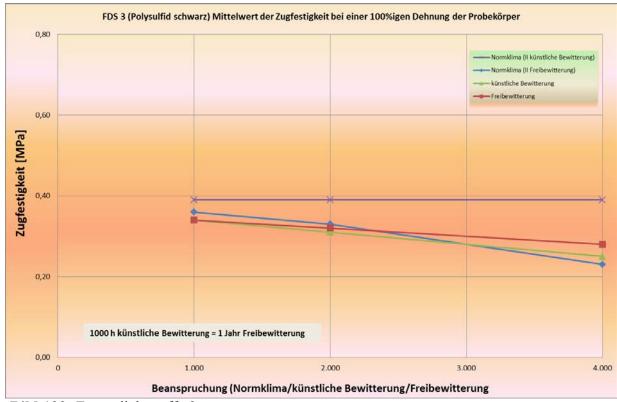



Bild 121: Fugendichtstoffe 2

Zugfestigkeit bei einer 100%igen Dehnung in Abhängigkeit der Art und Dauer der Beanspruchung

Bild 122: Fugendichtstoffe 3

Zugfestigkeit bei einer 100%igen Dehnung in Abhängigkeit der Art und Dauer der Beanspruchung

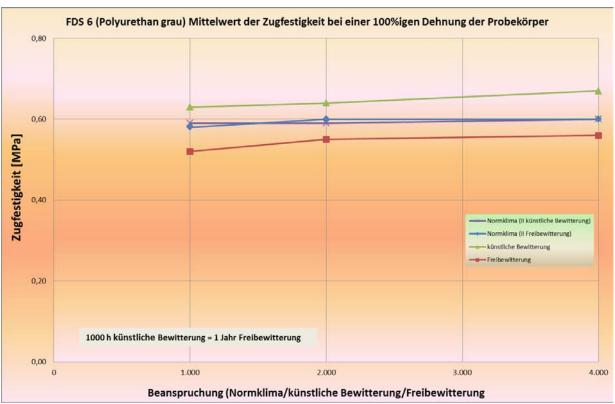
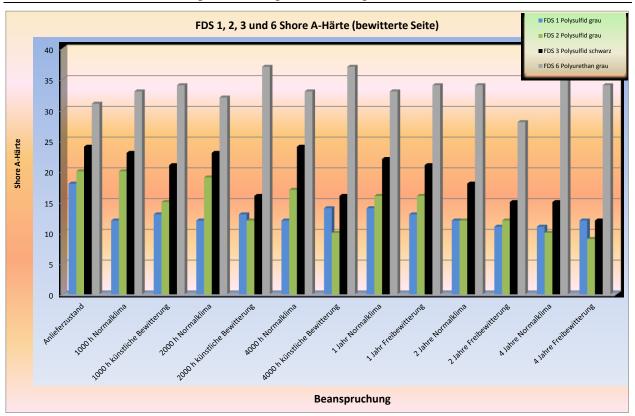


Bild 123: Fugendichtstoffe 6


Zugfestigkeit bei einer 100%igen Dehnung in Abhängigkeit der Art und Dauer der Beanspruchung

4.4 Shore A-Härte

Die Ergebnisse der Shore A-Härte-Messungen sind in der Tabelle 9, der Verlauf der Shore A-Härte in Abhängigkeit der Beanspruchungsart und -dauer in Bild 124 bis Bild 128 dargestellt.

Lagerungs-dauer [h]	Lagerung Beanspruchung	FDS 1	FDS 2	FDS 3	FDS 6
0	Ausgangswerte (ohne Beanspruchung)	18	20	24	31
	Normalklima	12	20	23	33
1.000	künstliche Bewitterung, bestrahlte Probenseite	13	15	21	34
	künstliche Bewitterung, Probenrückseite (nicht bestrahlt)	14	15	21	32
	Normalklima	12	19	23	32
2.000	künstliche Bewitterung, bestrahlte Probenseite	13	12	16	37
	künstliche Bewitterung, Probenrückseite (nicht bestrahlt)	13	11	17	34
	Normalklima	12	17	24	33
4.000	künstliche Bewitterung, bestrahlte Probenseite	14	10	16	37
	künstliche Bewitterung, Probenrückseite (nicht bestrahlt)	14	7	11	34
	Normalklima	14	16	22	33
1 Jahr	Freibewitterung, bestrahlte Probenseite	13	16	21	34
	Freibewitterung, Probenrückseite (nicht bestrahlt)	13	15	22	34
	Normalklima	12	12	18	34
2 Jahre	Freibewitterung, bestrahlte Probenseite	11	12	15	28
	Freibewitterung, Probenrückseite (nicht bestrahlt)	12	11	16	32
	Normalklima	11	10	15	35
4 Jahre	Freibewitterung, bestrahlte Probenseite	12	9	12	34
	Freibewitterung, Probenrückseite (nicht bestrahlt)	14	8	13	33

Tabelle 9: Shore A-Härte in Abhängigkeit der Beanspruchung

Bild 124: Fugendichtstoffe 1, 2, 3 und 6 Abhängigkeit der Shore A-Härte (auf der beanspruchten Oberfläche) von der Art und Dauer der Beanspruchung

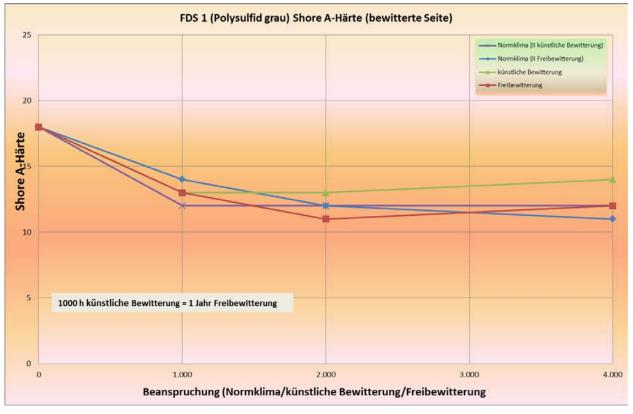
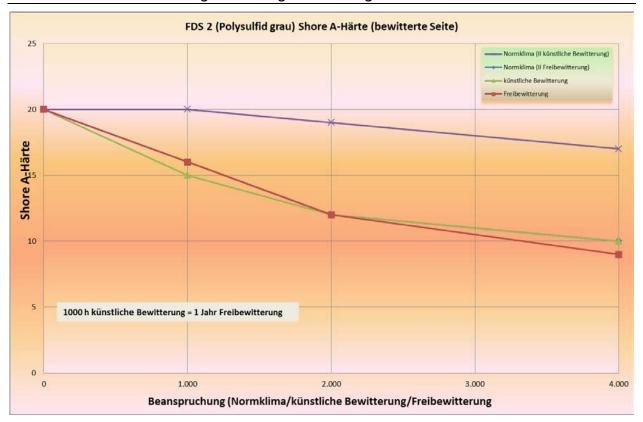



Bild 125: Fugendichtstoff 1
Abhängigkeit der Shore A-Härte (auf der beanspruchten Oberfläche) von der Art und Dauer der Beanspruchung

Bild 126: Fugendichtstoff 2 Abhängigkeit der Shore A-Härte (auf der beanspruchten Oberfläche) von der Art und Dauer der Beanspruchung

Bild 127: Fugendichtstoff 3 Abhängigkeit der Shore A-Härte (auf der beanspruchten Oberfläche) von der Art und Dauer der Beanspruchung

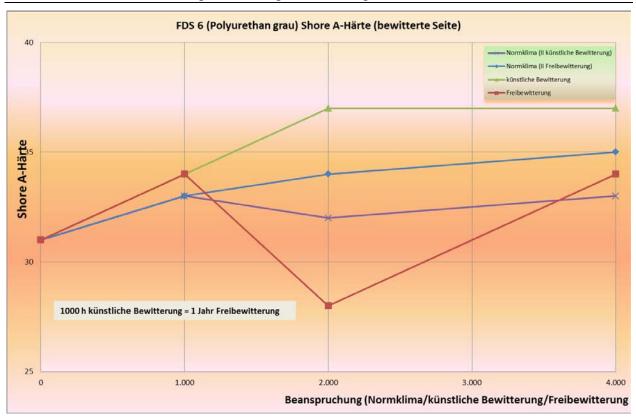


Bild 128: Fugendichtstoff 6
Abhängigkeit der Shore A-Härte (auf der beanspruchten Oberfläche) von der Art und Dauer der Beanspruchung

5 Zusammenfassung der Ergebnisse der Laborprüfungen

Nach den durchgeführten künstlichen Bewitterungsversuchen bis zu einer Gesamtbestrahlung von 4.000 Stunden sowie der bis zu vierjährigen Freibewitterung sind für die einzelnen Fugendichtstoffe insbesondere folgende Feststellungen zu treffen:

FDS 1

(Zweikomponenten-Fugendichtstoff auf Polysulfidbasis, grau, gießfähig und selbstnivellierend):

- bei der Prüfung der Hafteigenschaften unter Vorspannung (24 Stunden bei 100 % Dehnung) treten an den gestauchten Probekörpern vermehrt Kohäsionsbrüche nach der künstlichen Bewitterung und nach der Freibewitterung auf, an den ungedehnten ist nur ein Kohäsionsbruch nach einjähriger Freibewitterung, an den gedehnten Varianten ist kein Bruch festzustellen. Nach vierjähriger Freibewitterung wurden punkförmige Ablagerungen/Ausblühungen, jedoch keine Kohäsions- oder Adhäsionsfehler an den gestauchten und ungedehnten Probekörpern beobachtet, an den gedehnten Probekörpern traten kleine Adhäsionsrisse auf.
- an den Dichtstoff-Folien ist im Spannungs-Dehnungsverhalten kein signifikanter Einfluss der Beanspruchung, weder in der künstlichen Bewitterung noch in der Freibewitterung zu erkennen
- an den Betonprobekörpern ist ebenfalls sowohl im Spannungsverlauf als auch bei der mittleren Zugspannung bei 100 % Dehnung kein signifikanter Einfluss der Beanspruchung, weder in der künstlichen Bewitterung noch in der Freibewitterung zu erkennen
- auch die Shore A-Härte zeigt an, dass sich der Fugendichtstoff nach Aushärtung unabhängig von der Lagerung und Beanspruchung in der Steifigkeit nicht mehr verändert hat

FDS 2

(Zweikomponenten-Fugendichtstoff auf Polysulfidbasis, grau, gießfähig und selbstnivellierend):

- bei der Prüfung der Hafteigenschaften unter Vorspannung (24 Stunden bei 100 % Dehnung) treten an den gestauchten Probekörpern vermehrt Kohäsionsbrüche nach der künstlichen Bewitterung und nach der Freibewitterung auf, an den ungedehnten und gedehnten Probekörpern sind vermehrt Kohäsionsbrüche nach Freibewitterung festzustellen. Nach vierjähriger Freibewitterung wurden punkförmige Ablagerungen/Ausblühungen sowie eine leichte oberflächige Rissbildung, jedoch keine Kohäsions- oder Adhäsionsfehler beobachtet.
- an den Dichtstoff-Folien ist im Spannungs-Dehnungsverhalten ein kontinuierlicher Abfall der Zugfestigkeit verbunden mit einem Anstieg der Reißdehnung in der künstlichen Bewitterung und in der Freibewitterung zu erkennen
- an den Betonprobekörpern ist ein erheblicher Spannungsabfall der mittleren Zugspannung bei 100 % Dehnung nach künstlicher Bewitterung festzustellen, der in der Freibewitterung wesentlich geringer ausgeprägt ist
- auch die Shore A-Messungen zeigen an, dass der Fugendichtstoff nach Aushärtung zeitabhängig im Normalklima kontinuierlich, bei künstlicher Bewitterung und nach Freibewitterung (parallel verlaufend) deutlich "weicher" wird

FDS 3

(Zweikomponenten-Fugendichtstoff auf Polysulfidbasis, schwarz, gießfähig und selbstnivellierend):

• bei der Prüfung der Hafteigenschaften unter Vorspannung (24 Stunden bei 100 % Dehnung) treten an den gestauchten Probekörpern vermehrt Kohäsionsbrüche nach der künstlichen Bewitterung und nach der Freibewitterung, an den ungedehnten nur nach der Freibewitterung und an den gedehnten Probekörpern vereinzelt nach der Freibewitterung auf. Nach

vierjähriger Freibewitterung wurden nur an den gedehnten Probekörpern vereinzelte Risse beobachtet. Bei der Prüfung der Hafteigenschaften unter Vorspannung zeigten alle Probekörper eine gleichmäßige Rissstruktur in der Oberfläche (Elefantenhaut).

- an den Dichtstoff-Folien ist im Spannungs-Dehnungsverhalten ein kontinuierlicher Abfall der Zugfestigkeit zu erkennen, die Reißdehnung ändert sich nicht signifikant
- an den Betonprobekörpern ist ein erheblicher Spannungsabfall der mittleren Zugspannung bei 100 % Dehnung nach künstlicher Bewitterung festzustellen, der in der Freibewitterung deutlich geringer ausgeprägt ist
- auch die Shore A-Messungen zeigen an, dass der Fugendichtstoff nach Aushärtung zeitabhängig im Normalklima kontinuierlich, bei künstlicher Bewitterung und insbesondere auch nach Freibewitterung deutlich "weicher" wird

FDS 6

(Einkomponenten-Fugendichtstoff auf Polyurethanbasis (PU), betongrau, standfest:

- bei der Prüfung der Hafteigenschaften unter Vorspannung (24 Stunden bei 100 % Dehnung) treten weder an den gestauchten noch an den ungedehnten oder gedehnten Probekörpern Adhäsions- oder Kohäsionsbrüche auf, weder nach der künstlichen Bewitterung noch nach der Freibewitterung. Nach vierjähriger Freibewitterung sind eine leichte oberflächige Rissstruktur sowie ein leichter Adhäsionsverlust an den gedehnten Probekörpern zu beobachten.
- an den Dichtstoff-Folien ist im Spannungs-Dehnungsverhalten nach künstlicher Bewitterung ein deutlicher Abfall der Zugfestigkeit und der Reißdehnung zu erkennen, während nach Freibewitterung die Zugfestigkeit geringer abfällt und die Reißdehnung sich nicht signifikant ändert
- an den Betonprobekörpern ist ein leichter Anstieg der mittleren Zugspannung bei 100 % Dehnung nach künstlicher Bewitterung festzustellen, in der Freibewitterung zeigt sich keine signifikante Veränderung
- die Shore A-Messungen zeigen an, dass sich der Fugendichtstoff nach Aushärtung zeitabhängig im Normalklima und in der Freibewitterung nicht verändert, während er in der künstlichen Bewitterung geringfügig "steifer" wird. Für den Abfall der Shore A-Härte nach zweijähriger Freibewitterung gibt es keine versuchs- oder werkstofftechnische Erklärung, es muss sich um einen "Ausreißer" handeln.

6 Diskussion und Ausblick

Fugendichtstoffe müssen bei Verwendung im Freien ausreichend widerstandsfähig gegen Witterungseinflüsse sein. Diese Anforderung gilt nach den "ZG Fugenabdichtungssysteme in LAU-Anlagen, Teil 1 – Fugendichtstoffe" [1] als erfüllt, wenn nach Belastung durch künstliche Bewitterung (500 h) die Änderung des Zugspannungswerts nicht größer als 20 % ist. Die Prüfung der Bewitterung ist in Anlehnung an DIN EN ISO 11431 [3] durchzuführen.

Im Rahmen dieses Vorhabens wurden die ersten Proben nach 1.000 h künstlicher Bewitterung geprüft. Die Abnahme des Zugspannungswertes bei einer 100 %igen Dehnung lag beim FDS 2 (Zweikomponenten-Fugendichtstoff auf Polysulfidbasis, grau, gießfähig und selbstnivellierend) mit 33,3 % über dem nach den ZG [1] für 500 h gültigen Anforderungswert von 20 %. Alle anderen Fugendichtstoffe wiesen nach 1.000 h geringere Änderungen im Zugspannungswert als 20 % auf.

Zusammenfassend ist festzustellen, dass die künstliche Bewitterung und die Freibewitterung bei den einzelnen Fugendichtstoffen zu einer graduell unterschiedlichen Veränderung der Oberfläche (Verfärbung, Rissbildung) und der relevanten Verformungseigenschaften geführt haben.

Der ermittelte Alterungszustand liefert jedoch keine Hinweise für ein vorzeitiges Versagen der Fugendichtstoffe, die für die Funktionsfähigkeit erforderliche Materialfestigkeit unter praxisnahen Dehn- und Stauchbewegungen ist auch nach vierjähriger Freibewitterung bei allen Fugendichtstoffen weiterhin gegeben.

Die Alterung läuft innerhalb der Polymergruppe der Polysulfide und auch im Vergleich Polysulfid/Polyurethan im Normalklima sowie insbesondere bei künstlicher Bewitterung und unter Freibewitterung unterschiedlich ab. Eine generelle Korrelation oder gar Korrelationsfaktoren zwischen künstlicher Bewitterung und Freibewitterung sind nicht gegeben.

Insgesamt haben sich die Eigenschaften der Fugendichtstoffe zwischen der 2- und der 4-jährigen Freibewitterung nur wenig verändert. Weitere fundierte Aussagen zum Langzeitverhalten und zur Gebrauchstauglichkeit werden erwartet, wenn die noch ausliegenden Proben nach einer 8-jährigen Freibewitterung geprüft werden und eine abschließende Bewertung vorgenommen wird.

Eine Änderung der Prüfbedingungen und -kriterien in den ZG [1] und in der CUAP [5] ist nicht erforderlich. Zu berücksichtigen ist jedoch, dass die zeitraffende künstliche Bewitterung von 500 h lediglich völlig ungeeignete Fugendichtstoffe erkennen lässt, Aussagen zum Langzeitverhalten lassen sich daraus nicht ableiten.

7 Literatur

- Zulassungsgrundsätze "Fugenabdichtungssysteme in LAU-Anlagen; Teil 1 Fugendichtstoffe; Fugenabdichtungssysteme in Anlagen aus Beton zum Lagern, Abfüllen und Umschlagen wassergefährdender Stoffe (LAU-Anlagen)", Deutsches Institut für Bautechnik (DIBt), Fassung Dezember 2003
- [2] DIN EN 14188-2:2005-03 "Fugeneinlagen und Fugenmassen Teil 2: Anforderungen an kalt verarbeitbare Fugenmassen"
- [3] DIN EN ISO 11431:2003-01 "Hochbau Fugendichtstoffe Bestimmung des Haft- und Dehnverhaltens von Dichtstoffen nach Einwirkung von Wärme, Wasser und künstlichem Licht durch Glas"
- [4] EOTA Technical Report TR 010 "Exposure procedure for artificial weathering", Edition May 2004
- [5] CUAP "Fugendichtstoff-Abdichtungssysteme in Anlagen zum Umgang mit wassergefährdenden Flüssigkeiten", ETA request No. 06.05/11
- [6] "Durability of Building Sealants", State-of-the-Art Report 21 of RILEM Technical Committee 139-DBS "Durability of sealants", Edited by A. T. Wolf, 1999 RILEM Publications S.A.R.L.
- [7] "Durability Testing of Sealants", A. T. Wolf, Sealant Technology Conference, Oxford Brooks University, 13 October 2004
- [8] RILEM 2001, 'RILEM TC 139-DBS: "Durability of Building Sealants Durability test method Determination of changes in adhesion, cohesion and appearance of elastic weatherproofing sealants for high movement façade joints after exposure to artificial weathering"
- [9] Recommendation of RILEM TC 190-SBJ: "Service-life prediction of sealed building and construction joints: Durability test method: determination of changes in adhesion, cohesion and appearance of elastic weatherproofing sealants after exposure of statically cured specimens to artificial weathering and mechanical cycling", Materials and structures 2008, vol. 41, no. 9, pp. 1497-1508
- [10] Jones, T.G.B., Hutchinson, A.R. & Wolf, A.T. 2001, "Experimental results obtained with proposed RILEM durability test method for curtain wall sealants", Materials and Structures, 34(5), pp. 332-341.
- [11] Miyauchi, H. et al "Artificial Weathering and Cyclic Movement Test Results Based on the RILEM TC139-dbs Durability Test Method for Construction Sealants", Journal of ASTM International (JAI), Volume 1, Issue 7 (July/August 2004)
- [12] Miyauchi, H. et al "Development of an automated artificial ageing test apparatus for sealants and comparison with outdoor exposure testing", 11th International Conference on the Durability of Building Materials and Components, Istanbul, Turkey, May 11-14, 2008, pp. 1-10
- [13] Enrico Pozzi, Valerio Carcano, Antonio Ausilio, "AN ATTEMPT TO FIND A CORRE-LATION BETWEEN ENVIROMENTAL AND ACCELERATED WEATHERING ACCORDING TO RILEM TC 139-DBS IN POLYURETHANES ONE COMPONENT SEALANTS APPLIED ON CONCRETE", Third Symposium on Durability of Building Construction Sealants and Adhesives, June 25-26, 2008, Denver, CO
- [14] A. T. Wolf, H. Bolte and T. Böttger "ATTEMPTS AT CORRELATING ACCELE-RATED LABORATORY AND NATURAL OUTDOOR AGEING RESULTS", in: Du-

- rability of Building Sealants, State-of-the-Art Report of RILEM Technical committee 139-DBS, Durability of Sealants, Report 21, A.T. Wolf, Ed., RILEM, Cachan, FR, pp. 181-202 [6]
- [15] ISO 13640:1999-12 "Building construction -- Jointing products -- Specifications for test substrates"
- [16] DIN EN ISO 527-3:2003-07 "Kunststoffe Bestimmung der Zugeigenschaften Teil 3: Prüfbedingungen für Folien und Tafeln"
- [17] DIN EN ISO 291:2006-02 "Kunststoffe Normalklimate für Konditionierung und Prüfung"
- [18] DIN EN ISO 4892-2:2006-06 "Kunststoffe Künstliches Bestrahlen oder Bewittern in Geräten Teil 2: Xenonbogenlampen"
- [19] DIN EN ISO 105-B01:1999-10 "Textilien Farbechtheitsprüfungen Teil B01: Farbechtheit gegen Licht: Tageslicht"
- [20] ISO 5893:2002-07 "Prüfeinrichtungen für Elastomere und Kunststoffe Zug-, Biege- und Druckprüfmaschinen mit konstanter Geschwindigkeit Beschreibung"
- [21] DIN 53505:2000-08 "Prüfung von Kautschuk und Elastomeren Härteprüfung nach Shore A und Shore D"