Bau<u>forschung</u>

Aktualisierung der Datenbanken zum Durchstanzen punktgestützter Platten aus Stahlbeton und Spannbeton ohne und mit Durchstanzbewehrung

T 3323

[¦] Fraunhofer IRB Verlag

T 3323

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

2015

ISBN 978-3-8167-9566-7

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

LEHRSTUHL UND INSTITUT FÜR MASSIVBAU

UNIV. - PROF. DR.-ING. JOSEF HEGGER MIES-VAN-DER-ROHE STRASSE 1 D-52074 AACHEN TELEFON 0241 80 25 170 TELEFAX 0241 80 22 335

Abschlussbericht

Institutsbericht-Nr.: 335/2014

des Instituts für Massivbau der RWTH Aachen

Gegenstand:	Aktualisierung der Datenbanken zum Durchstanzen punktgestützter Platten aus Stahlbeton und Spannbeton ohne und mit Durchstanzbe- wehrung
Auftraggeber:	Deutsches Institut für Bautechnik (DIBt) Kolonnenstr. 30 B 10829 Berlin
erstattet von:	UnivProf. DrIng. Josef Hegger DiplIng. Carsten Siburg
Projekt-Nr. IMB:	F-2012-011
Datum:	Aachen, den 30.06.2014

Dieser Bericht umfasst 80 Seiten Text und 82 Seiten Anhang.

Die vorgestellten Untersuchungen wurden vom Deutschen Institut für Bautechnik (DIBt) gefördert, dem an dieser Stelle herzlichst gedankt sei. Ein wesentlicher Teil der Untersuchungen wurde der Dissertation von Herrn Carsten Siburg entnommen.

IN	IHALTSVERZEICHNIS	Seite
1	Veranlassung und Ziel der Untersuchung	1
2	Verwendete Unterlagen	3
3	Bemessungsregeln zum Durchstanzen	6
	3.1 Allgemeines	6
	3.2 Durchstanznachweis nach Eurocode 2 (EN 1992-1-1)	6
	3.2.1 Allgemeines	6
	3.2.2 Einwirkung und Rundschnitte	6
	3.2.3 Durchstanzwiderstand ohne Durchstanzbewehrung	9
	3.2.4 Durchstanzwiderstand mit Durchstanzbewehrung	10
	3.2.5 Maximaltragtahigkeit	11
	3.2.6 Tragranigkeit ausernalb des durchstanzbewehrten Bereichs	11
	3.2.7 Mindestbewenrung und bauliche Durchbildung	12
	3.3 Durchstanzhachweis nach DIN EN 1992-1-1 und NA (EC2+NA(D))	13
	3.3.1 Aligemeines	13
	3.3.2 Elliwirkung und Rundschnille	10
	3.3.4 Durchstanzwiderstand mit Durchstanzbewehrung	14
	3.3.5 Maximaltradiähidkeit	15
	3 3 6 Tradfähigkeit außerhalb des durchstanzbewehrten Bereichs	17
	3.3.7 Mindestbewehrung und bauliche Durchbildung	17
	3.4 Durchstanznachweis nach Model Code 2010	19
	3 4 1 Allgemeines	19
	3 4 2 Einwirkung und Rundschnitte	19
	3 4 3 Durchstanzwiderstand ohne Durchstanzbewehrung	20
	3.4.4 Durchstanzwiderstand mit Durchstanzbewehrung	22
	3.4.5 Maximaltraofähiokeit	22
	3.4.6 Tradfähigkeit außerhalb des durchstanzbewehrten Bereichs	23
	3.4.7 Mindestbewehrung und bauliche Durchbildung	23
4	Datenbanken zum Durchstanzen	24
	4.1 Allgemeines	24
	4.2 Statistische Auswertung von Versuchen	24
	4.3 Auswahlkriterien der Datensätze an Flachdeckenausschnitten	25
	4.4 Flachdecken ohne Durchstanzbewehrung	26
	4.4.1 Allgemeines	26
	4.4.2 Synchronisierte Datensammlung zu Durchstanzversuchen an	
	Flachdecken ohne Durchstanzbewehrung	27
	4.4.3 Auswahl der Versuche	28
	4.4.4 Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanz-	
	widerstand für Flachdecken ohne Durchstanzbewehrung	31
	4.5 Flachdecken mit Durchstanzbewehrung	38
	4.5.1 Allgemeines	38
	4.5.2 Datensammlung zu Durchstanzversuchen an Flachdecken mit	
	Durchstanzbewehrung	38

	4.5.3 Auswahl der Versuche	39
	4.5.4 Vergleich von Versuchsbruchlasten mit dem rechnerischen maximalen	
	Durchstanzwiderstand für Flachdecken mit Bügeln als	
	Durchstanzbewehrung	41
	4.5.5 Einfluss der Durchstanzbewehrungsmenge von Bügeln	46
4.6	Einzelfundamente ohne Durchstanzbewehrung	49
	4.6.1 Allgemeines	49
	4.6.2 Datensammlung zu Durchstanzversuchen an Einzelfundamenten ohne	
	Durchstanzbewehrung	49
	4.6.3 Auswahl der Versuche	50
	4.6.4 Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanz-	
	widerstand für Einzelfundamente ohne Durchstanzbewehrung	52
4.7	Einzelfundamente mit Durchstanzbewehrung	56
	4.7.1 Allgemeines	56
	4.7.2 Datensammlung zu Durchstanzversuchen an Einzelfundamenten mit	
	Durchstanzbewehrung	56
	4.7.3 Auswahl der Versuche	56
	4.7.4 Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanz-	
	widerstand für Einzelfundamente mit Durchstanzbewehrung	57
	4.7.5 Einfluss der Durchstanzbewehrungsmenge	60
4.8	Einfluss des Versuchstandes und der Versuchsdurchführung	62
4.9	Durchstanzversuche an Randstützen ohne Durchstanzbewehrung	67
	4.9.1 Allgemeines	67
	4.9.2 Datensammlung zu Durchstanzversuchen an Randstützen im Bereich von	
	Flachdecken ohne Durchstanzbewehrung	67
	4.9.3 Auswahl der Versuche	68
	4.9.4 Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanz-	
	widerstand für Flachdecken ohne Durchstanzbewehrung im Bereich von	
	Randstützen	70
4.10) Zusammenfassende Bewertung der Bemessungsansätze	73
Zus	ammenfassung	76

Anlagen

5

Anhang A: Abschnittsweise statistische Auswertung von Versuchen

Anhang B: Auswertedatenbanken von Durchstanzversuchen

1 Veranlassung und Ziel der Untersuchung

Zum Durchstanzen von Flachdecken und Fundamenten liegen zahlreiche experimentelle, numerische und theoretische Arbeiten vor, denen unterschiedliche Ansätze zur Bestimmung des Durchstanzwiderstandes von Flachdecken und Fundamenten entnommen werden können. Die daraus kondensierten Ingenieurmodelle und Bemessungskonzepte erreichen mit gesteigerter Komplexität größere Vorhersagegenauigkeiten über dem untersuchten Parameterbereich. Um dem planenden Ingenieur eine sichere Bemessung nach dem aktuellen Stand der Technik zu ermöglichen, wurden die Bemessungsregeln stetig erweitert und angepasst, sodass der Umfang von Normen und Richtlinien weiter zunimmt. Wegen des hohen Detaillierungsgrades einzelner Nachweise ist zum wirtschaftlichen Arbeiten die Anwendung von Bemessungsprogrammen oft unvermeidbar. Gleichzeitig werden damit die Nachweismöglichkeiten des Tragwerksplaners in immer engere Grenzen gefasst.

Mit der für das Jahr 2018 geplanten Veröffentlichung der zweiten Generation von Eurocode 2 soll nach 2001 (DIN 1045 zu DIN 1045-1) und 2012 (DIN 1045-1 zu Eurocode 2) innerhalb von knapp 20 Jahren das Nachweiskonzept zum Durchstanzen wieder vollumfänglich überarbeitet werden. Dies sollte zum Anlass genommen werden, die Nachweise der Norm auf Ihren Kern zurückzuführen und nicht zwingend erforderliche Detaillierungen zu streichen.

Ziel des Forschungsvorhabens ist daher eine Aktualisierung und Erweiterung von Datenbanken für Durchstanzversuche zur Entwicklung verbesserter Tragmodelle und der Überprüfung von Bemessungsansätzen. Dass bisher häufig konkurrierende Modelle an unterschiedlichen Datenbanken kalibriert und verifiziert wurden, war für die Herleitung neuer Modelle von Nachteil. Durch einen Austausch der Daten mit Forschern innerhalb der ACI-DAfStb Arbeitsgruppe (American Concrete Institute - Deutscher Ausschuss für Stahlbeton) sollen nationale und internationale Arbeiten zusammengeführt und eine gemeinsame Datenbank erstellt werden. Neue Bemessungsmodelle in Model Code 2010 und in der bis 2018 geplanten Überarbeitung von Eurocode 2 zum Durchstanzen lassen sich mit einer einheitlichen Datenbasis konsistenter überprüfen und erleichtern den Abstimmungsbedarf in der Task Group Punching, Shear, Torsion zum Eurocode 2.

Die Ergebnisse umfangreicher Literaturrecherchen finden sich in Form von erweiterten und kontrollierten Datensammlungen zu Durchstanzversuchen wieder, die wie folgt unterteilt wurden:

- (1) Flachdecken im Bereich von Innenstützen ohne Durchstanzbewehrung
- (2) Flachdecken im Bereich von Innenstützen mit Durchstanzbewehrung
- (3) Einzelfundamenten mit zentrischer Belastung ohne Durchstanzbewehrung
- (4) Einzelfundamenten mit zentrischer Belastung mit Durchstanzbewehrung
- (5) Randstützen im Bereich von Flachdecken ohne Durchstanzbewehrung
- (6) Flachdecken im Bereich von Innenstützen mit Vorspannung

Zur Bewertung der normativen Regelungen werden verschiedene Datensätze nachvollziehbar für eine Nachrechnung der Bruchlasten mit Eurocode 2, dem nationalen Anhang für Deutschland zu Eurocode 2 und Model Code 2010 aufbereitet. Durch den Vergleich der Bruchlasten mit den rechnerischen Tragfähigkeiten lässt sich das Sicherheitsniveau und die Vorhersagegenauigkeit der Bemessungsansätze bestimmen. Gleichzeitig soll überprüft werden, ob die Modelle die wichtigsten Einflussfaktoren gleichermaßen für Flachdecken und Fundamente mit und ohne Durchstanzbewehrung trendfrei erfassen.

2 Verwendete Unterlagen

- [2] DIN EN 1992-1-1:2011-01: Eurocode 2: Bemessung und Konstruktion von Stahlbetonund Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1992-1-1:2004 + AC:2010. Beuth Verlag. Berlin, 2011
- [3] DIN EN 1992-1-1/NA:2011-01: Nationaler Anhang National festgelegte Parameter Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau. Beuth Verlag. Berlin, 2011
- [4] CEB FIB: Model Code 2010: Final Draft. September 2011
- [5] CEB FIB: Model Code 1990: Design Code. Thomas Telford, 1993
- [6] Mast, P.E.: Stresses in Flat Plates Near Columns. In: ACI Journal 67 (1970), S.761– 768
- [7] DIN EN 1990:2012-012: Eurocode: Grundlagen der Tragwerksplanung; Deutsche Fassung EN 1990:2002 + A1:2005 + A1:2005/AC:2010
- [8] DIN 1045-1:2008-08: Tragwerke aus Beton, Stahlbeton und Spannbeton Teil 1: Bemessung und Konstruktion. Beuth Verlag. Berlin, 2008
- [9] Hegger, J.; Häusler, F.; Ricker, M.: Zur Durchstanzbemessung von Flachdecken nach Eurocode 2. In: Beton- und Stahlbetonbau 103 (2008), S.93–102
- [10] Hegger, J.; Ricker, M.; Häusler, F.: Zur Durchstanzbemessung von ausmittig beanspruchten Stützenknoten und Einzelfundamenten nach Eurocode 2. In: Beton- und Stahlbetonbau 103 (2008), Nr.11, S.723–734
- [11] Hegger, J.; Walraven, J.; Häusler, F.: Zum Durchstanzen von Flachdecken nach Eurocode 2. In: Beton- und Stahlbetonbau 105 (2010), S.206–215
- [12] Siburg, C.; Hegger, J.: Punching of flat slabs Comparison of Models, In: Sruma, V. (Hg.): Concrete engineering for excellence and efficiency. Vol. 2. fib symposium. Prague 2011
- [13] Siburg, C.; Häusler, F.; Hegger, J.: Durchstanzen von Flachdecken nach NA(D) zu Eurocode 2. Bauingenieur 87 (2012): S.216–225
- [14] DIN-Fachbericht 102: Betonbrücken. März 2009
- [15] Deutscher Ausschuss f
 ür Stahlbeton: Heft 600: Erl
 äuterungen zu DIN EN 1992-1-1 und DIN EN 1992-1-1/NA (Eurocode 2), 2013
- [16] Ricker, M.: Zur Zuverlässigkeit der Bemessung gegen Durchstanzen bei Einzelfundamenten. Rheinisch-Westfälische Technische Hochschule Aachen, Fakultät für Bauingenieurwesen, Diss., 2009
- [17] Deutscher Ausschuss für Stahlbeton: Heft 525: Erläuterungen zu DIN 1045-1, 2. Auflage

- [18] Siburg, C.; Ricker, M.: Zur Durchstanzbemessung von Einzelfundamenten Normenvergleich und Vergleich mit Versuchen. In: Beton und Stahlbetonbau 108 (2013), S.641–653
- [19] Muttoni, A.: Punching Shear Strength of Reinforced Concrete Slabs without Transverse Reinforcement. In: ACI Structural Journal 105 (2008), S.440–450
- [20] Muttoni, A.; Fernandez Ruiz, M.: Levels-of-Approximation Approach in Codes of Practice, In: Structural Engineering International (2012), S.190–194
- [21] Lips, S.; Fernandez Ruiz, M.; Muttoni, A.: Experimental Investigation on Punching Strength and Deformation Capacity of Shear-Reinforced Slabs. In: ACI Structural Journal 109 (2012), S.889–900
- [22] Norm DIN EN 206-1:2001-07: Beton Teil 1: Festlegung, Eigenschaft, Herstellung und Konformität. 2001
- [23] Deutscher Ausschuss für Stahlbeton: Heft 597: Erweiterte Datenbanken zur Überprüfung der Querkraftbemessung für Konstruktionsbetonbauteile mit und ohne Bügel, 2. Auflage
- [24] Beutel, R.: Durchstanzen schubbewehrter Flachdecken im Bereich von Innenstützen. Rheinisch-Westfälische Technische Hochschule Aachen, Fakultät für Bauingenieurwesen, Diss., 2003
- [25] Nölting, D.: Das Durchstanzen von Platten aus Stahlbeton Tragverhalten, Berechnung, Bemessung. Technische Universität Braunschweig, Institut f
 ür Baustoffe, Massivbau und Brandschutz, Diss., 1984
- [26] Elstner, R.C.; Hognestad, E.: Shearing strength of reinforced concrete slabs. In: ACI Structural Journal 28 (1956), S.527–542
- [27] Gesund, H.: Flexural Limit Analysis of Concentrically Loaded Column Footings. In: ACI Journal, Proceedings 80 (1983), S.223–228
- [28] /NEESHUB 2013/ https://nees.org/resources/3660, 13.09.2013
- [29] CEB FIB: Bulletin No. 12: Punching of structural concrete slabs. Technical report prepared by the CEB/fib Task Group: Utilization of concrete tension in design. April 2001
- [30] Siburg, C.; Häusler, F.; Hegger, J.: Durchstanzen von Flachdecken nach NA(D) zu Eurocode 2. Bauingenieur 87 (2012): S.216–225
- [31] Regan, P.E.: Design for punching shear. In: The Structural Engineer 52 (1974), S.197– 207
- [32] Beutel, R.; Hegger, J.: The effect of anchorage on the effectiveness of the shear reinforcement in the punching zone. In: Cement & Concrete Composites (2002), S.539– 549
- [33] SIA 262 Januar 2013. Betonbau Schweizer Norm SN 505 262:2013 de
- [34] Häusler, F.: Zum maximalen Durchstanzwiderstand von Flachdecken mit und ohne Vorspannung. Rheinisch-Westfälische Technische Hochschule Aachen, Fakultät für Bauingenieurwesen, Diss., 2009
- [35] Holmberg, A.; Forssell, C.: Stämpellast Pa Plattor av Betong. Nr.2, 1946 (V31) ISBN DK 539.415:666.982 620.176:624.073
- [36] Rankin, G.I.B.; Long, A.E.: Predicting the punching strength of conventional slabcolumn specimens. In: Proceedings of ICE, Civil Engineering 82 (1987), Nr.4, S.327– 346
- [37] Hake, E.; Meskouris, K.: Statik der Flächentragwerke. Springer-Verlag Berlin Heidelberg New York 2001, ISBN 3-540-41997-7

- [38] Hegger, J.; Ricker, M.; Häusler, F.; Tuchlinski, D.: Versuche zum Durchstan-zen im Bereich von Randstützen mit und ohne Durchstanzbewehrung. In: Bauingenieur 82 (2007), S.270–278
- [39] Tuchlinski, D.: Zum Durchstanzen von Flachdecken unter Berücksichtigung der Momenten-Querkraft-Interaktion und der Vorspannung. Rheinisch-Westfälische Technische Hochschule Aachen, Fakultät für Bauingenieurwesen, Diss., 2005
- [40] Vocke, H.: Durchstanzen von Flachdecken im Bereich von Rand- und Eckstützen. Universität Stuttgart, Institut für Werkstoffe im Bauwesen, Diss., 2001
- [41] Zilch, K.; Hammelehle, G.: Überarbeitung bzw. Ergänzung der Nachweisformate des Eurocode 2 Teil 1 prEN 1992-1 hinsichtlich Durchstanzen mit erweiterten Randbedingungen. Abschlussbericht zum DIBt-Vorhaben ZP 32-5-7.222-1046/03, München 2006
- [42] Hegger, J.; Ricker, M.; Häusler, F.: Zur Durchstanzbemessung von ausmittig beanspruchten Stützenknoten und Einzelfundamenten nach Eurocode 2. In: Beton- und Stahlbetonbau 103 (2008), Nr.11, S.723–734
- [43] Tankut, L.: The behaviour of the reinforced concrete flat plate structures sub-jected to various combinations of vertical and horizontal loads; Faculty of Engineering of the University of London, Diss., 1969

3 Bemessungsregeln zum Durchstanzen

3.1 Allgemeines

Im Folgenden werden die wesentlichen Regelungen zum Durchstanzen nach den Normen EN 1992-1-1 (Eurocode 2, [1]), DIN EN 1992-1-1/NA (EC2+NA(D), Eurocode 2 zusammen mit dem deutschen Anhang [2][3]) und Model Code 2010 [4] zusammengefasst, die zur Nachrechnung der Versuche aus den Datenbanken erforderlich sind.

3.2 Durchstanznachweis nach Eurocode 2 (EN 1992-1-1)

3.2.1 Allgemeines

Eurocode 2 (EN 1992-1-1, [1]) inklusiv des Corrigendum 1 (EN 1992-1-1:2004/AC:2008) und des Corrigendum 2 (EN 1992-1-1:2004/AC:2010) ist die länderübergreifende Norm zur Vereinheitlichung der Bemessungs- und Konstruktionsregeln von Stahlbeton- und Spannbetontragwerken und wurde mit geringen Anpassungen aus Model Code 1990 [5] übernommen.

In Eurocode 2 sind zur Berücksichtigung nationaler Sicherheitsbedürfnisse oder klimatischer Verhältnisse nationale Anpassungsfaktoren (NDP: national determined parameters) vorgesehen, mit denen die rechnerische Tragfähigkeit bzw. das Sicherheitsniveau der Bemessungsgleichung angepasst werden kann. Für diese Parameter werden in Eurocode 2 Empfehlungen gegeben, die für die eigenen Nachrechnungen übernommen wurden. Abweichende Werte können national festgelegt werden. Darüber hinaus können zusätzliche Regeln und Empfehlungen genannt werden, die allerdings nicht im Widerspruch zu Eurocode 2 stehen dürfen (NCI: non-contradictory complementary information).

3.2.2 Einwirkung und Rundschnitte

Der Nachweis der aufnehmbaren Querkraft erfolgt nach Eurocode 2 längs festgelegter Rundschnitte über Schubspannungen. Grundsätzlich ist für die Fläche in jedem Rundschnitt (u_id) nachzuweisen, dass die einwirkende Schubspannung v_{Ed} den Widerstand v_{Rd} nicht überschreitet. Der kritische Rundschnitt u_1 für runde oder rechteckige Lasteinleitungsflächen, die sich nicht in der unmittelbaren Nähe von freien Rändern befinden, umfährt die Lasteinleitungsfläche in einem Abstand von 2*d* (Bild 3-1), mit *d* der statischen Nutzhöhe der Platte.

Bild 3-1: Rundschnitte u_0 und u_1 bei unterschiedlicher Stützengeometrie

Die maßgebende Einwirkung V_{Ed} wird entlang des betrachteten Rundschnitts u_i in eine Querkraft je Flächeneinheit (Schubspannung) umgerechnet:

$$v_{Ed} = \beta \frac{V_{Ed}}{u_i d} \tag{3-1}$$

Eine ungleichmäßige Beanspruchung des kritischen Rundschnittes u_1 (im Abstand 2*d*) wird über einen Lasterhöhungsfaktor β berücksichtigt und mit der Momenten-Querkraftinteraktion erfasst. Zur vereinfachten Bestimmung der maximalen Schubbeanspruchung dürfen konstante Faktoren für β bei unverschieblichen Systemen mit Stützweitenverhältnissen zwischen $0.8 \le l_1/l_2 \le 1.25$ angenommen werden. Für Innenstützen ist der Lasterhöhungsbeiwert mit $\beta = 1.15$, für Randstützen mit $\beta = 1.40$ und für Eckstützen mit $\beta = 1.50$ angegeben. Ebenfalls darf der Lasterhöhungsbeiwert über die Momenten-Querkraft Interaktion mit einer vollplastischen Schubspannungsverteilung (Bild 3-2) oder über ein Verfahren mit verkürzten Rundschnitten bestimmt werden.

Das Verfahren mit der vollplastische Schubspannungsverteilung wurde Model Code 1990 entnommen (Bild 3-2). Die Wahl der Schubspannungsverteilung ist auf Mast [6] zurückzuführen, der mit der Elastizitätstheorie nachweisen konnte, dass sich die Schubspannungsverteilung nahe der Stütze einer vollplastischen Verteilung annähert.

Bild 3-2: Vollplastische Schubspannungsverteilung nach Eurocode 2 und Werte für *k* in Abhängigkeit der Stützenabmessungen

Für eine einachsige Lastausmitte ergibt sich der Lasterhöhungsbeiwert β zu:

$$\beta = 1 + k \frac{M_{Ed}}{V_{Ed}} \frac{u_1}{W_1} \tag{3-2}$$

Der Beiwert *k* zur Bestimmung des Lasterhöhungsbeiwertes β gibt in Abhängigkeit der Stützenabmessungen den Anteil des Momentes an, der zusätzliche Schubspannungen erzeugt. Der restliche Anteil (1–*k*) wird über Biegung und Torsion in die Stütze eingeleitet und darf bei der Bestimmung der maximalen Schubbeanspruchung vernachlässigt werden.

Das von der Decke in die Stütze unter Berücksichtigung der Steifigkeiten eingeleitete Moment M_{Ed} ist auf die Schwerelinie des kritischen Rundschnitts zu beziehen und V_{Ed} ist die resultierende Deckenquerkraft. Das Widerstandsmoment W_1 wird entlang des kritischen Rundschnitts u_1 wie folgt bestimmt:

$$W_1 = \int_{0}^{u_1} |e| dl$$
(3-3)

Bei der Berechnung von W_1 ist für *e* die Entfernung von der Schwerelinie des kritischen Rundschnitts zum betrachteten Abschnitt dl des kritischen Rundschnitts einzusetzen. Bei

einer rechteckigen Innenstützen mit c_1 der Stützenabmessung parallel und c_2 senkrecht zur Lastausmitte und geschlossenem Rundschnitt u_1 im Abstand 2*d* vom Stützenanschnitt ergibt sich W_1 zu:

$$W_1 = c_1^2 / 2 + c_1 c_2 + 4c_2 d + 16d^2 + 2\pi dc_1$$
(3-4)

Für Innenstützen mit Kreisquerschnitt (D ist der Durchmesser) folgt β aus der Gleichung:

$$\beta = 1 + 0.6\pi \frac{e}{D + 4d} \tag{3-5}$$

Bei der Bestimmung des Widerstandsmoments von Rand- und Eckstützen ist zu beachten, dass sich die Schwerelinie des kritischen Rundschnitts in der Regel nicht über dem Schwerpunkt des Stützenquerschnitts (Schnittpunkt der Stützenachsen) befindet. Das von der Decke auf die Stütze übertragene Moment $M_{Ed,Stütze}$ ist nach Eurocode 2 auf die Schwerelinie des kritischen Rundschnitts zu beziehen und ergibt sich zu $M_{Ed} = M_{Ed,Stütze} - V_{Ed} \cdot y_0$ (bzw. z_0). Der Abstand y_0 (bzw. z_0) ist die kürzeste Entfernung zwischen der Schwerelinie des kritischen Rundschnitts und dem Stützenschwerpunkt. Für betragsmäßig kleine Abstände y_0 (bzw. z_0) ergibt sich die größte Schubspannung an der Innenseite der Stütze (Bild 3-3). Wenn y_0 (bzw. z_0) so groß wird, dass M_{Ed} das Vorzeichen wechselt, tritt bei Randstützen die größte Schubspannung am freien Rand der Platte auf, d.h. die Ausmitte e' bezogen auf die Schwerelinie des kritischen Rundschnitts wird negativ. In diesem Fall ist bei der Berechnung von β das Widerstandsmoment W_I mit negativem Vorzeichen einzusetzen, damit sich für β ein Wert größer als 1,0 ergibt.

Bild 3-3: Plastische Spannungsverteilung in Abhängigkeit des Momentes

Auf die Vorstellung des Verfahrens zur Berechnung des Lasterhöhungsfaktors β mit verkürzten Rundschnitten wird an dieser Stelle verzichtet.

Bei Deckenplatten mit Vorspannung darf ein günstiger Einfluss der vertikalen Komponente V_{Pd} von geneigten Spanngliedern, die die Querschnittsfläche des betrachteten Rundschnitts schneiden, berücksichtigt werden (Bild 3-4). Für Flachdecken mit Durchstanzbewehrung dürfen jedoch nur die Spannglieder angerechnet werden, die innerhalb des Stützstreifens der Breite von 0,5*d* zum Stützenrand angeordnet sind.

Bild 3-4: Berücksichtigung des Vertikalanteils aus Vorspannung nach Eurocode 2

Bei Fundamentplatten ist der Abstand a_{crit} zwischen dem Stützenanschnitt und dem Nachweisschnitt u_{crit} nicht von vorneherein bekannt. Die entlastenden Sohlpressungen (σ_{gd}) dürfen innerhalb der Nachweisschnitte von der Stützenkraft abgezogen werden ($\Delta V_{Ed} = \sigma_{gd}A_{crit}$). Die auf den Rundschnitt einwirkende Schubspannung darf wie folgt bestimmt werden:

$$v_{Ed} = \beta \frac{V_{Ed,red}}{ud} = \beta \frac{V_{Ed} - \Delta V_{Ed}}{ud} = \beta \frac{V_{Ed} - \sigma_{gd} A_{crit}}{ud}$$
(3-6)

Für Stützenfundamente ist eine ausmittige Belastung mit Gleichung (3–7) zu bestimmen. Dabei sind W und u im Abstand a_{crit} zu bestimmen.

$$v_{Ed} = \frac{V_{Ed,red}}{ud} \left[1 + k \frac{M_{Ed}u}{V_{Ed,red}W} \right]$$
(3-7)

3.2.3 Durchstanzwiderstand ohne Durchstanzbewehrung

In Eurocode 2 ist die Durchstanztragfähigkeit von Platten oder Fundamenten (in der Regel sind hier Bodenplatten gemeint) ohne Durchstanzbewehrung in zwei Nachweisschnitten zu überprüfen. Entlang des Stützenumfangs u_0 ist die Durchstanztragfähigkeit von Platten ohne Durchstanzbewehrung auf die maximale Durchstanztragfähigkeit zu begrenzen:

$$v_{Ed} \le v_{Rd,max} = 0.4 v f_{cd} \tag{3-8}$$

Hierbei ist $v = 0.6(1-f_{ck}/250)$ ein Faktor zur Abminderung der Druckfestigkeit von Betondruckstreben in gerissenen Bereichen. Für den zweiten Nachweisschnitt ist der Rundschnitt u_1 im Abstand 2*d* maßgebend.

$$v_{Ed} \le v_{Rd,c} = C_{Rd,c} k (100\rho_l f_{ck})^{1/3} + k_1 \sigma_{cp} \ge v_{min} + k_1 \sigma_{cp}$$
(3-9)

Der empirische Vorfaktor ist $C_{Rd,c} = 0,18/\gamma_c$. Für den Maßstabsfaktor gilt $k = 1+\sqrt{(200/d)} \le 2,0$ mit d in Millimetern und der Längsbewehrungsgrad $\rho_l = \sqrt{(\rho_{ly}\rho_{lz})} \le 0,02$ ist im Stützstreifen mit einer Breite entsprechend der Stützenabmessung zuzüglich 3d je Seite zu ermitteln. Mit dem empirischen Beiwert $k_1 = 0,10$ wird eine im kritischen Rundschnitt günstig wirkende Betonnormalspannung σ_{cp} erfasst. Im Allgemeinen gilt $\gamma_c = 1,5$ für den Teilsicherheitsbeiwert des Betons. Zusätzlich wurde ein Mindestwert für den Querkraftwiderstand mit $v_{min} = (0,0525/\gamma_c)k^{3/2}f_{ck}^{1/2}$ angegeben.

Zur Bestimmung der Durchstanztragfähigkeit von Stützenfundamenten ist der Nachweis entlang des Stützenumfangs u_0 und im Rundschnitt u zu erbringen. Für den Nachweis entlang des kritischen Rundschnitts u sind Abstände zwischen Rundschnitt und Stütze kleiner 2d zu überprüfen. Durch die kleinere Tragfähigkeit infolge der kürzeren Umfangslänge darf der Durchstanzwiderstand mit dem zusätzlichen Faktor 2d/a erhöht werden.

Der Durchstanzwiderstand von Stützenfundamenten ohne Durchstanzbewehrung im Rundschnitt u wird wie folgt bestimmt:

$$v_{Ed} \le v_{Rd,c} = C_{Rd,c} k (100\rho_l f_{ck})^{1/3} \frac{2d}{a} \ge v_{min} \frac{2d}{a}$$
(3-10)

Durch den Verhältniswert 2*d*/*a* steigt mit kleinerem Abstand *a* (Entfernung zwischen kritischem Rundschnitt und Stützenanschnitt) der Tragwiderstand $v_{Rd,c}$ des Stützenfundamentes an, während die vom Rundschnitt *u* eingeschlossene Fläche (A_{crit}) und damit die Summe der entlastenden Bodenpressungen kleiner wird. Der maßgebende Abstand a_{crit} zum kritischen Rundschnitt ist gefunden, wenn die aufnehmbare Stützenlast ein Minimum erreicht.

3.2.4 Durchstanzwiderstand mit Durchstanzbewehrung

Nach Eurocode 2 wird zur Bestimmung der Durchstanzbewehrungsmenge wird nicht zwischen Flachdecken und Fundamenten unterschieden. Im Rundschnitt u_1 (im Abstand 2*d*) wird die erforderliche Durchstanzbewehrungsmenge bestimmt und in jedem Rundschnitt angeordnet, bis im äußeren Rundschnitt u_{out} (im Abstand von 1,5*d* zur letzten Bewehrungsreihe) die Durchstanztragfähigkeit ohne Durchstanzbewehrung erreicht ist. Der Tragwiderstand der Durchstanzbewehrung bestimmt sich wie folgt:

$$v_{Ed} \le v_{Rd,cs} = 0.75 v_{Rd,c} + 1.5 (d/s_r) A_{sw} f_{ywd,ef} (1/(u_1 d)) sin \alpha$$
(3-11)

Dabei sind $v_{Rd,c}$ der Betontraganteil, A_{sw} die Querschnittsfläche der Durchstanzbewehrung je Reihe, S_r der radiale Abstand der Durchstanzbewehrungsreihen und $f_{vwd,eff} = 250+0,25d \le f_{vwk}/\gamma_S$ die Bemessungsstahlspannung mit d in Millimetern zur Berücksichtigung des Einflusses des Bügeldurchmessers in Abhängigkeit der Plattendicke und dem Teilsicherheitsbeiwert für Betonstahl mit $\chi = 1,15$. Die Durchstanzbewehrung ist in mindestens zwei Reihen um die Stütze mit einem Abstand der ersten Reihe von $0,30d \le s_0 \le 0,50d$ zum Stützenrand und der weiteren Reihen von $s_r \leq 0.75d$ untereinander anzuordnen. Für eine einzelne Reihe aufgebogener Schrägstäbe darf für das Verhältnis d/s_r in Gleichung (3-11) der Wert 0,67 angesetzt werden.

Die Gleichung (3–11) scheint für Flachdecken hergeleitet zu sein, da mit dem Rundschnitt u_1 im Abstand 2*d* ein deutlich größerer Rundschnitt angesetzt werden darf als sich nach der

iterativen Berechnung bei Stützenfundamenten ergeben würde. Daher ergibt sich für den Tragwerksplaner ein gewisser Interpretationsspielraum bei der Bestimmung des Durchstanzwiderstandes innerhalb der durchstanzbewehrten Zone. Für Stützenfundamente wäre nach der Notation in Gleichung (3–11) $v_{Rd,c}$ nach Gleichung (3–10) einzusetzen und der kritische Rundschnitt u_1 im Abstand 2d zu bestimmen. Damit würde die um den Faktor 2d/a vergrößerte, für einen Rundschnitt im Abstand a_{crit} ermittelte zulässige Schubspannung auf den längeren Rundschnitt u_1 im Abstand 2,0d angerechnet. Der so ermittelte deutlich größere Betontraganteil überschreitet z.T. die Tragfähigkeit ohne Durchstanzbewehrung. In Verbindung mit dem zur Bestimmung des Stahltraganteils verwendeten 33°-Fachwerks (Faktor 1,5 in Gleichung (3–11)) ergeben sich sehr geringe Querschnittsflächen der erforderlichen Durchstanzbewehrung. Für die durchgeführten Berechnungen bei Stützenfundamenten wird daher der Betontraganteil nach Gleichung (3–10) entlang des iterativ bestimmten Rundschnitts ermittelt und nur die Bodenpressungen innerhalb des kritischen Rundschnitts entlastend berücksichtigt.

3.2.5 Maximaltragfähigkeit

In Eurocode 2 ist entlang des Stützenumfangs für Bauteile mit und ohne Durchstanzbewehrung die maximale Durchstanztragfähigkeit durch ein Versagen der Betondruckstrebe am Stützenrand (Rundschnitt u_0 in Bild 3-1) begrenzt.

$$v_{Ed} \le v_{Rd,max} = 0.4 v f_{cd} \tag{3-12}$$

Vergleiche zwischen der rechnerischen Maximaltragfähigkeit nach Eurocode 2 und der Tragfähigkeit von Versuchen mit einem Versagen auf dem Niveau der maximalen Durchstanztragfähigkeit belegen teils deutliche Unterschreitungen des nach Eurocode 0 [7] geforderten Sicherheitsniveaus. Daher wurde im Rahmen der CEN/TC 250/SC 2/WG1/TG 4 ein Amendment erarbeitet und eine Änderung für Eurocode 2 empfohlen. Um die rechnerischen Tragfähigkeiten bei großen bezogenen Stützenumfängen u_0/d zu begrenzen, wird in Anlehnung an DIN 1045-1 [8] oder Model Code 2010 [4] die Tragfähigkeit als ein Vielfaches der Durchstanztragfähigkeit ohne Durchstanzbewehrung festgelegt. Nach dem Amendment ist der Durchstanzwiderstand der Durchstanzbewehrung zusätzlich auf ein Vielfaches der Tragfähigkeit ohne Durchstanzbewehrung zu begrenzen:

$$v_{Ed} \le v_{Rd,cs} = 0.75 v_{Rd,c} + 1.5 (d/s_r) A_{sw} f_{ywd,ef} (1/(u_1 d)) \sin \alpha \le k_{max} v_{Rd,c} \quad (3-13)$$

Hierbei ist k_{max} ein national festzulegender Faktor der zu k_{max} = 1,5 empfohlen wird.

3.2.6 Tragfähigkeit außerhalb des durchstanzbewehrten Bereichs

Der Rundschnitt u_{out} (bzw. $u_{out,eff}$), für den Durchstanzbewehrung nicht mehr erforderlich ist, darf wie folgt bestimmt werden:

$$u_{out,eff} = \frac{\beta V_{Ed}}{v_{Rd,c}d}$$
(3-14)

Dabei darf u_{out} (bzw. $u_{out,eff}$) nicht weiter als 1,5d von der äußersten Bewehrungsreihe entfernt sein (Bild 3-5). Für Stützenfundamente wird die Länge des durchstanzbewehrten Bereiches analog bestimmt. Die anrechenbare Fläche zur Bestimmung des Abzugswertes für die Bodenpressungen ist jedoch nicht eindeutig geregelt. Aufgrund der Nachweise mit Spannungen in einem Rundschnitt wäre es mechanisch konsistent, den Abzugswert innerhalb des Rundschnittes u_{out} (bzw. $u_{out,eff}$) im Abstand 1,5d zur letzten Bewehrungsreihe zu bestimmen. Dies setzt jedoch eine flache Neigung der Druckstreben voraus und führt zu sehr großen Abzugswerten (und damit zu sehr kurzen, durchstanzbewehrten Bereichen), die nach Wissen des Verfassers bisher nicht experimentell überprüft werden konnten.

In Bild 3-5 sind die äußeren Rundschnitte bei unterschiedlicher Anordnung der Durchstanzbewehrung dargestellt. Während bei der radialen Anordnung in Bild 3-5 (links) mit jeder zusätzlichen Durchstanzbewehrungsreihe der Umfang u_{out} zunimmt und damit die Anzahl der Bewehrungsreihen begrenzt wird, erhöht sich nach einer Auflösung des Rundschnitts die Länge des mit "B" gekennzeichneten Rundschnitt nicht (Bild 3-5 rechts). Für längere durchstanzbewehrte Bereiche ist der Nachweis nur durch zusätzliche Durchstanzbewehrung in den Eckbereichen zu erbringen.

Bild 3-5: Layout der Durchstanzbewehrung aus Eurocode 2, Figure 6.22

3.2.7 Mindestbewehrung und bauliche Durchbildung

Wenn Durchstanzbewehrung erforderlich wird, ist ein Mindestquerschnitt im Durchstanzbereich anzuordnen. Die Mindestdurchstanzbewehrung wird auf den Wirkungsbereich $(s_r s_t)$ eines einzelnen Stabes bezogen. Es gilt:

$$A_{sw,min} \frac{\left(1,5\sin\alpha + \cos\alpha\right)}{s_r s_t} \ge 0.08 \frac{\sqrt{f_{ck}}}{f_{yk}}$$
(3-15)

Bild 3-6: Bügel- und Schrägstäbe als Durchstanzbewehrung aus Eurocode 2, Figure 9.10

Bei vertikalen Bügeln mit $\alpha = 90^{\circ}$ und $sin\alpha = 1,0$ gilt $A_{sw,min} = A_s$, bei Schrägstäben ist zu beachten, dass der vertikal wirksame Anteil in Gleichung 3–15 mit $A_s sin\alpha$ berücksichtigt wird und als radialer Abstand ist $s_r = 1,0d$ anzusetzen. Die maximalen tangentialen Abstände im Grundriss sind Bild 3-5, die radialen Abstände Bild 3-6 zu entnehmen.

3.3 Durchstanznachweis nach DIN EN 1992-1-1 und NA (EC2+NA(D))

3.3.1 Allgemeines

Bei den Beratungen zum nationalem Anhang von DIN EN 1992-1-1 stellte sich heraus, dass die berechneten Durchstanzwiderstände teilweise erheblich von denen in DIN 1045-1 abweichen (z.B. [9][10][11][12]). Um das vorhandene Sicherheitsniveau zu beurteilen, wurden die Bemessungsgleichungen zum Durchstanzen anhand von Versuchsergebnissen und Parameterstudien überprüft, die nationalen Anpassungsfaktoren (NDPs) neu festgelegt und weitere Bestimmungen (NCIs) ergänzt. Da beide Öffnungsklauseln zur Anpassung an das aus DIN 1045-1 bekannte Sicherheitsniveau nicht ausreichten, waren weitergehende Änderungen im Nachweiskonzept erforderlich [13]. Im Wesentlichen werden in diesem Abschnitt die Anderungen und Ergänzungen für die Anwendung in Deutschland angegeben.

3.3.2 Einwirkung und Rundschnitte

Der Nachweis des Durchstanzwiderstandes erfolgt längs festgelegter Rundschnitte über Schubspannungen. Der kritische Rundschnitt u_1 für runde oder rechteckige Lasteinleitungsflächen, die sich nicht in der unmittelbaren Nähe von freien Rändern befinden, umfahren die Lasteinleitungsfläche in einem Abstand von 2,0d (Bild 3-1). Bereits in DIN 1045-1 wurde eine Begrenzung des bezogenen Stützenumfanges vorgenommen, die in EC2+NA(D) geringfügig auf $u_0/d > 12$ für Innenstützen vergrößert wurde. Der Durchstanzwiderstand nur noch in dem aufgelösten Rundschnitt nach Bild 3-7 wirksam.

Bild 3-7: Aufgelöster Rundschnitt bei ausgedehnten Lasteinleitungsflächen

Zur Abgrenzung gegenüber der Querkraftbemessung wird der Umfang der Lasteinleitungsfläche für den anrechenbaren Durchstanzwiderstand auf $u_0 \le 12d$ begrenzt. Der Rundschnitt u_0 entspricht dem kürzesten Rundschnitt um die Lasteinleitungsfläche, deren Verhältnis von Länge zu Breite nicht größer als 2,0 sein darf. Für rechteckige Lasteinleitungsflächen mit a > 2b gelten die Regelungen nach Bild 3-7. Außerhalb des kritischen Rundschnittes ist der Querwiderstand maßgebend. Der Tragwiderstand bei großen Lasteinleitungsflächen ergibt sich aus der Summe der Traganteile aus Durchstanzen und Querkraft.

Zur Berücksichtigung einer ungleichmäßigen Schubspannungsverteilung entlang des kritischen Rundschnittes wird der Lasterhöhungsbeiwert β verwendet. Wie in Eurocode 2 dürfen nach EC2+NA(D) konstante Faktoren bei unverschieblichen Systemen mit geringen Stützweitenunterschieden verwendet werden. Für Innenstützen wurde ein Mindestwert von β = 1,10 festgelegt und für Wandecken und Wandenden der Lasterhöhungswert β = 1,20 (Wandecken) und β = 1,35 (Wandenden) ergänzt. Zusätzlich wurde festgelegt, dass für Randstützen mit großen Ausmitten ($e/c \ge 1,20$) der Ansatz des konstanten Faktors nicht zulässig ist. Zudem lässt sich der Lasterhöhungsbeiwert mit der Momenten-Querkraft Interaktion über die plastische Schubspannungsverteilung bestimmen und wurde in EC2+NA(D) auch auf zweiachsige Ausmitten erweitert.

$$\beta = 1 + \sqrt{\left(k_x \frac{M_{Ed,x}}{V_{Ed}} \frac{u_1}{W_{1,x}}\right)^2 + \left(k_y \frac{M_{Ed,y}}{V_{Ed}} \frac{u_1}{W_{1,y}}\right)^2}$$
(3-16)

Das Verfahren zur Ermittlung des Lasterhöhungsfaktors mit verkürzten Rundschnitten aus Eurocode 2 ist von einer Anwendung in Deutschland ausgeschlossen.

Nach EC2+NA(D) werden Bodenplatten wie Stützenfundamente nachgewiesen. Dabei darf die Bodenreaktionskraft unterhalb des Durchstanzkegels von der einwirkenden Querkraft abgezogen werden. Da die iterative Bestimmung des Abstandes a_{crit} zwischen kritischem Rundschnitt und Stützenanschnitt aufwändig ist, darf für schlanke Fundamente mit $a_{\lambda}/d > 2,0$ und Bodenplatten auch ein konstanter Rundschnittabstand von 1,0d angenommen werden. Aufgrund der Unschärfe infolge des konstanten Abstandes $a_{crit} = 1,0d$ bei der Ermittlung von Einwirkung und Widerstand im Nachweisschnitt dürfen maximal 50% des Sohldrucks innerhalb des Rundschnitts im Abstand $a_{crit} = 1,0d$ entlastend angesetzt werden.

3.3.3 Durchstanzwiderstand ohne Durchstanzbewehrung

Die Durchstanztragfähigkeit von Flachdecken ohne Durchstanzbewehrung wird nach EC2+NA(D) im Rundschnitt u_1 im Abstand 2*d* wie folgt bestimmt:

$$v_{Ed} \le v_{Rd,c} = C_{Rd,c} k (100\rho_l f_{ck})^{1/3} + k_1 \sigma_{cp} \ge v_{min} + k_1 \sigma_{cp}$$
(3-17)

Für den Maßstabsfaktor $k = 1 + \sqrt{(200/d)} \le 2,0$ ist *d* in Millimetern anzusetzen und der Längsbewehrungsgrad $\rho_l = \sqrt{(\rho_{ly}\rho_{lz})} \le \min(0,02; 0.5f_{cd}/f_{yd})$ ist auf einer Plattenbreite entsprechend der Stützenabmessung zuzüglich 3*d* je Seite zu ermitteln. Aufgrund der geringen Druckzonenhöhe ist eine Druckbewehrung kaum oder gar nicht wirksam, daher wird in EC2+NA(D) die zusätzliche Begrenzung des Längsbewehrungsgrades auf $0.5f_{cd}/f_{yd}$ eingeführt. Mit dem empirischen Beiwert $k_1 = 0,10$ wird eine im kritischen Rundschnitt günstig wirkende Betonnormalspannung σ_{cp} erfasst. Im Allgemeinen gilt $\gamma_C = 1,5$ für den Teilsicherheitsbeiwert des Betons.

Zusätzlich wird eine abweichende Mindestdurchstanztragfähigkeit angegeben, die analog zur Mindestquerkrafttragfähigkeit nach DIN-Fachbericht 102 [14] für den Betonbrückenbau definiert wurde:

$$v_{min} = (0.0525/\gamma_C) k^{3/2} f_{ck}^{1/2} \quad \text{für } d \le 600 \text{ mm}$$

$$v_{min} = (0.0375/\gamma_C) k^{3/2} f_{ck}^{1/2} \quad \text{für } d > 800 \text{ mm}$$
(3-18)

Durch den im Abstand 2*d* angeordneten kritischen Rundschnitt ergeben sich besonders bei kleinen bezogenen Stützenumfängen sehr große Beanspruchungen am Stützenrand, sodass in EC2+NA(D) eine zusätzliche Beschränkung der Tragfähigkeit von Flachdecken bei kleinen u_0/d -Verhältnissen erforderlich ist [9]. Demnach ergeben sich je nach u_0/d -Verhältnis folgende Werte für $C_{Rd,c}$:

$$u_0/d \ge 4: C_{Rd,c} = 0.18/\gamma_C$$

$$u_0/d < 4: C_{Rd,c} = \frac{0.18}{\gamma_C} \left(0.1 \frac{u_0}{d} + 0.6 \right) \ge \frac{0.15}{\gamma_C}$$
(3-19)

Für den Durchstanzwiderstand ohne Durchstanzbewehrung von Stützenfundamenten und Bodenplatten längs des kritischen Rundschnitts gilt:

$$v_{Ed} \le v_{Rd,c} = C_{Rd,c} k (100\rho_l f_{ck})^{1/3} \frac{2d}{a} \ge v_{min} \frac{2d}{a}$$
(3-20)

Hierin sind $C_{Rd,c} = 0,15/\gamma_C$ der gegenüber Flachdecken reduzierte empirische Vorfaktor für Stützenfundamente und Bodenplatten. Die Reduzierung deckt bereits die geringeren Tragfähigkeiten der in der Regel kleineren u_0/d Verhältnisse bei Fundamenten ab. Auf den in Eurocode 2 geforderten Nachweis der Druckstrebentragfähigkeit entlang des Stützenumfangs im Rundschnitt u_0 wurde für einen Nachweis nach EC2+NA(D) verzichtet.

3.3.4 Durchstanzwiderstand mit Durchstanzbewehrung

Die Überprüfung mit Versuchsergebnissen ergab, dass nach Eurocode 2 in den ersten beiden Rundschnitten eine zu geringe Durchstanzbewehrungsmenge bestimmt wird. Für einen Nachweis nach EC2+NA(D) wurde daher beschlossen, die Durchstanzbewehrungsmenge der ersten Reihe (im Abstand 0.3d bis 0.5d zum Rand der Lasteinleitungsfläche) mit dem Faktor $\kappa_{sw,1} = 2,5$ und für die zweite Reihe im maximalen Abstand 0,75*d* zur ersten Reihe um den Faktor $\kappa_{sw,2} = 1,4$ zu erhöhen. Ab der dritten Reihe darf $\kappa_{sw} = 1,0$ gesetzt werden.

$$v_{Ed} \le v_{Rd,cs} = 0.75 v_{Rd,c} + 1.5 (d/s_r) \frac{A_{sw}}{\kappa_{sw,i}} f_{ywd,ef} (1/(u_1 d)) \sin \alpha$$
(3-21)

Hierin sind s_r der radiale Abstand der Durchstanzbewehrungsreihen und A_{sw} die Querschnittsfläche der Durchstanzbewehrung in einer Bewehrungsreihe um die Stütze. Um die schlechtere Verankerung von Bügeln in dünnen Decken zu berücksichtigen, ist der Bemessungswert der Streckgrenze des Bügels auf $f_{ywd,eff} = 250+0,25d \le f_{ywk}/\gamma_s$ zu reduzieren. Für den Teilsicherheitsbeiwert des Betonstahls gilt $\gamma_s = 1,15$. Der Betontraganteil für die Durchstanzbewehrung in Flachdecken $v_{Rd,c}$ wird nach Gleichung (2-17) bestimmt. Da der Einfluss einer Vorspannung auf die Durchstanztragfähigkeit mit Durchstanzbewehrung noch nicht abschließend geklärt ist, sollte der Vorwert zu $k_1 = 0,05$ angenommen werden [15]. Für Schrägstäbe darf ein Verhältnis von $d/s_r = 0,53$ und $\kappa_{sw} = 1,0$ angesetzt und die Stahlspannung der aufgebogenen Stäbe bis f_{ywd} ausgenutzt werden.

Für Fundamente wurde basierend auf Untersuchungen von Ricker [16] ein modifizierter Ansatz angegeben. In Anlehnung an das Aufhängefachwerk aus den allgemeinen bauaufsichtlichen Zulassungen für Doppelkopfanker ist die einwirkende Querkraft $V_{Ed,red}$ von der im Bereich zwischen 0,3*d* und 0,8*d* angeordnete Bewehrung aufzunehmen. Ein Betontraganteil wird nicht berücksichtigt. Bei Annahme einer gleichmäßig verteilten Bodenpressung ergibt sich folgende Tragfähigkeit der durchstanzbewehrten Zone:

$$v_{Ed} \le v_{Rd,s} = \frac{f_{ywd,ef} A_{sw,0,8d}}{u_{crit} d \left(1 - \frac{A_{crit}}{A} \right)}$$
(3-22)

Hierbei sind $f_{ywd,eff} = 250 + 0,25d \le f_{ywd}$ der wirksame Bemessungswert der Stahlspannung der Durchstanzbewehrung mit *d* in Millimeter und $A_{sw,0,8d}$ die Querschnittsfläche der Durchstanzbewehrung innerhalb eines Bereiches zwischen 0,3*d* und 0,8*d* vom Stützenanschnitt. Sind mehr als zwei Reihen Durchstanzbewehrung notwendig, dann darf der erforderliche Bewehrungsquerschnitt in den Reihen außerhalb von 0,8*d* für 33 % der einwirkenden Querkraft $V_{Ed}(1-A_{i,Reihe}/A)$ bestimmt werden. Die Fläche $A_{i,Reihe}$ ist die von der betrachteten Bewehrungsreihe eingeschlossene Fläche (affin zu A_{crit}).

Werden Schrägstäbe als Durchstanzbewehrung verwendet, kann aufgrund der höheren Verankerungsqualität die Stahlspannung bis zur Streckgrenze f_{ywd} ausgenutzt werden. In Anlehnung an [17] darf die effektive Querschnittsfläche des Schrägstabes mit einem Faktor von 1,3 erhöht werden, da der Schrägstab den Stanzkegel unabhängig von seiner Neigung schneidet und sich so ein günstigeres Tragverhalten einstellt. Wie bei einer Durchstanzbewehrung aus lotrecht angeordneten Bügeln darf bei Anordnung von Schrägstäben die einwirkende Querkraft um die Sohlpressung innerhalb des kritischen Rundschnitts reduziert werden. Die Durchstanztragfähigkeit der Schrägstäbe ergibt sich zu:

$$v_{Ed} \le v_{Rd,s} = \frac{1.3f_{ywd}A_{sw,schräg}\sin\alpha}{u_{crit}d\left(1 - \frac{A_{crit}}{A}\right)}$$
(3-23)

Hierbei sind $A_{sw,schräg}$ die Querschnittsfläche und f_{ywd} die Bemessungsstreckgrenze der Schrägstäbe.

3.3.5 Maximaltragfähigkeit

Nach Beobachtungen aus Durchstanzversuchen ist weniger das Versagen der stützennahen Betondruckstrebe maßgebend, vielmehr wird das Durchstanzen durch ein Versagen der Betondruckzone infolge mehraxialer Beanspruchung und gleichzeitig großer Rotation am Anschnitt Stütze-Platte eingeleitet [9][10]. Daher wurde der Nachweis entlang des Stützenumfangs im Rundschnitt u0 durch den Nachweis mit einem Vielfachen der Durchstanztragfähigkeit ohne Durchstanzbewehrung ersetzt.

$$v_{Ed} \le v_{Rd,max} = 1,4 v_{Rd,c}$$
 (3-24)

Dabei ist v_{Rd,c} der Durchstanzwiderstand von Flachdecken nach Gleichung (2-17) oder Stützenfundamenten und Bodenplatten nach Gleichung (3-20). Der Einfluss einer günstig wirkenden Betondruckspannung σ_{cp} infolge Vorspannung ist nicht durch Versuche abgesichert und darf bei der Bestimmung der Maximaltragfähigkeit nicht in Ansatz gebracht werden $(k_1 = 0)$ [15].

3.3.6 Tragfähigkeit außerhalb des durchstanzbewehrten Bereichs

Für eine Anwendung in Deutschland ist die ausschließliche Anordnung der Durchstanzbewehrung in den Stützstreifen ausgeschlossen (vergleiche Bild 3-5 rechts). Der Rundschnitt u_{out} darf maximal 1,5*d* von der äußersten Durchstanzbewehrungsreihe entfernt sein.

$$u_{out} = \frac{\beta V_{Ed}}{v_{Rd,c}d} \tag{3-25}$$

Zur Bestimmung der Tragfähigkeit $v_{Rd,c}$ ist der Querkraftwiderstand einer liniengelagerten Platte nach Gleichung 3-26 anzunehmen:

$$v_{Rd,c} = C_{Rd,c} k (100\rho_l f_{ck})^{1/3} + k_1 \sigma_{cp} \ge v_{min} + k_1 \sigma_{cp}$$
(3-26)

In EC2+NA(D) wurde der empirische Vorfaktor zur Bestimmung des Querkraftwiderstandes auf $C_{Rd,c} = 0.15/\gamma_C$ reduziert und der Beiwert zur Berücksichtigung von Normalspannungen in der Plattenebene ist mit $k_1 = 0,12$ festgelegt.

3.3.7 Mindestbewehrung und bauliche Durchbildung

Grundsätzlich ist eine Mindestquerkraftbewehrung im Durchstanzbereich von Flachdecken anzuordnen, wenn Durchstanzbewehrung erforderlich ist. Die Mindestbewehrung dient vor allem einer Begrenzung möglicher Schrägrissbreiten im Grenzzustand der Gebrauchstauglichkeit.

$$A_{sw,min} = A_s \sin \alpha = \frac{(1,5\sin\alpha + \cos\alpha)}{s_r s_t} \ge 0,08 \frac{\sqrt{f_{ck}}}{f_{yk}}$$
(3-27)

Für Einzelfundamente und Bodenplatten ist eine Mindestdurchstanzbewehrung nicht erforderlich, da das Bemessungskonzept keinen Betontraganteil vorsieht und daher die einwirkende Querkraft über das Aufhängefachwerk in der Fundamentplatte weitergeleitet wird.

Zusätzlich wurden die als Durchstanzbewehrung zulässigen Bügelformen definiert (Bild 3-8) und die Stabdurchmesser von Bügeln auf $d_s \le 0,05d$ und von Schrägstäben auf $d_s \le 0,08d$ begrenzt. Von der Durchstanzbewehrung müssen mindestens 50% der Längsbewehrung in x- oder y- Richtung umschlossen werden. Querkraftzulagen sind als Durchstanzbewehrung nicht zugelassen. Die zulässigen Abstände und Durchstanzbewehrungsformen sind in Bild 3-8 angegeben.

Bild 3-8: Zulässige Durchstanzbewehrungsformen und Abstände nach EC2+NA(D) für Bügel und Schrägstäbe aus [15]

Aufgrund der bei Fundamenten steileren Neigung des Versagensrisses ist die Durchstanzbewehrung in mindestens zwei Reihen um die Stütze mit kleinen radialen Abständen anzuordnen. Für EC2+NA(D) wurde festgelegt, dass die erste Reihe im Abstand von 0,3*d* und die zweite Reihe nicht weiter als 0,8*d* vom Stützenanschnitt anzuordnen ist (Bild 3-9). Bei schlanken Einzelfundamenten mit $a_\lambda/d > 2,0$ oder Bodenplatten darf der radiale Abstand ab der zweiten Reihe auf 0,75*d* erhöht werden. Innerhalb eines Abstandes von 2*d* zum Stützenanschnitt sind die tangentialen Abstände der Durchstanzbewehrung auf $s_t \le 1,5d$ begrenzt. Ist außerhalb von 2*d* noch eine weitere Durchstanzbewehrungsreihe erforderlich, darf der tangentiale Abstand auf 2*d* erhöht werden (Bild 3-9 b). Wie in Flachdecken ist eine schlupfarme Ausführung der Bügelverankerung sicherzustellen. Dies kann erreicht werden, indem mindestens 50 % der erforderlichen Längsbewehrung durch die Bügel umschlossen wird. Dabei ist, wie für eine Bügelbewehrung üblich, ein Längsstab je Bügelecke anzuordnen und der Bügeldurchmesser ist auf die statische Nutzhöhe der Platte mit $d_s \le 0,05d$ abzustimmen.

Die Verankerung von Schrägstäben mit den horizontalen Abbiegungen innerhalb der Längsbewehrungslagen ist effektiver als bei einer Bügelbewehrung, daher sind Schrägstäbe mit Stabdurchmesser $d_s \leq 0,08d$ zulässig. Im Grundriss dürfen die aufgebogenen Stäbe bis maximal 0,25d neben die Stütze als Durchstanzbewehrung angerechnet werden. Die Neigung α der Aufbiegung gegenüber der Plattenebene sollte zwischen 45° und 60° liegen. Aufgrund der steileren Neigung des Versagensrisses wird in [18] empfohlen, die stützennahe Abbie-

IMB Lehrstuhl und Institut für Massivbau der RWTH Aachen

gung in einem Bereich bis maximal 0,3d und die äußere Abbiegung in einem Bereich bis maximal 1,0*d* vom Stützenanschnitt anzuordnen (Bild 3-9 (c)).

Bild 3-9: a) Zulässige radiale Bügelabstände für gedrungene Fundamente, b) zulässige tangentiale Bügelabstände im Grundriss sowie c) zulässige Abstände für Schrägstäbe

3.4 Durchstanznachweis nach Model Code 2010

3.4.1 Allgemeines

Während der Ansatz aus Model Code 1990 [5] mit geringfügigen Anpassungen die Grundlage für den Durchstanznachweis nach Eurocode 2 bildet, wird in Model Code 2010 [4] ein neues Konzept vorgeschlagen. Das physikalische Modell mit empirischen Anpassungsfaktoren basiert auf der Critical Shear Crack Theory nach Muttoni [19][20][21]. Dabei wird der Durchstanzwiderstand ohne Durchstanzbewehrung in Abhängigkeit der Schubrissbreite bestimmt, die mit der Plattenrotation korreliert ist. Das Bruchkriterium wurde mit Versuchen an Flachdeckenausschnitten hergeleitet und ist auch auf Fundamente übertragbar.

3.4.2 Einwirkung und Rundschnitte

Der Durchstanznachweis nach Model Code 2010 wird entlang von Rundschnitten geführt. Der kritische Rundschnitt b_0 umfährt die Stütze in einem Abstand von 0,5d.

$$b_0 = k_e b_{1,red} \tag{3-28}$$

Hierbei berücksichtigt der Faktor k_e eine nicht rotationssymmetrische Querkraftverteilung. Für Innenstützen in ausgesteiften Systemen und bei Stützenweitenunterschiede kleiner 25 % darf bei Innenstützen der Faktor zu k_e = 0,90, bei Randstützen zu k_e = 0,70, bei Eckstützen zu $k_e = 0,65$ und bei Wandecken zu $k_e = 0,75$ angenommen werden. Andernfalls ist der Faktor k_e wie folgt zu bestimmen:

$$k_e = \frac{1}{1 + e_u / b_u}$$
(3-29)

Hierbei ist e_u die Ausmitte der resultierenden Querkraft, bezogen auf den Schwerpunkt des kritischen Rundschnitts und b_u ist der Durchmesser eines flächengleichen Kreises der vom kritischen Basisrundschnitt bo eingeschlossenen Fläche. Zur Vereinfachung der Berechnung darf der Schwerpunkt des kritischen Rundschnittes mit angenähert geradlinigen Abschnitten bestimmt werden. Auf Grundlage einer detaillierten Berechnung der Schubspannungsverteilung zum Beispiel mit der Methode der Finiten-Elemente kann der kritische Rundschnitt b_0 wie folgt bestimmt werden:

$$b_0 = \frac{V_{Ed}}{v_{perp,d,max}} \tag{3-30}$$

Hierbei ist $v_{perp,d,max}$ die auf die Stütze gerichtete, maximale einwirkende Schubspannung entlang des kritischen Rundschnitts.

Bild 3-10: Kritische Rundschnitte bei unterschiedlichen Lasteinleitungsflächen nach Model Code 2010

In Bild 3-10 und Bild 3-11 ist der Abstand zwischen kritischem Rundschnitt und Stützenanschnitt mit $0.5d_{\nu}$ vermasst. Die statische Nutzhöhe d_{ν} berücksichtigt dabei eine reduzierte statische Nutzhöhe, wenn die Oberkante der Lasteinleitungsfläche über der Unterkante der Platte liegt. Dies ist zum Beispiel bei zu hoch betonierten Stützen der Fall. Für die Berücksichtigung von Biegeeinflüssen gilt die volle statische Nutzhöhe d weiterhin.

Bei Fundamenten darf die Summe der Sohlpressung $\Delta V_{Ed} = A_{0,5d}\sigma_{gd}$ innerhalb des kritischen Rundschnitts b_0 von der einwirkenden Stützenkraft ($V_{Ed,red} = V_{Ed} - \Delta V_{Ed}$) abgezogen werden (Bild 3-10).

Ebenfalls wird der Rundschnitt bei ausgedehnten Auflagerflächen und Wandecken nach Bild 3-11 begrenzt.

Bild 3-11: Kritischer Rundschnitt bei Wandecken und Wandenden sowie reduzierter Rundschnitt bei ausgedehnten Auflagerflächen nach Model Code 2010

3.4.3 Durchstanzwiderstand ohne Durchstanzbewehrung

Die Durchstanztragfähigkeit ohne Durchstanzbewehrung wird wie folgt bestimmt:

$$V_{Ed} \le V_{Rd,c} = k_{\psi} \sqrt{f_{ck}} / \gamma_C b_0 d_{\nu}$$
(3-31)

IMB Lehrstuhl und Institut für Massivbau der RWTH Aachen

Hierbei sind f_{ck} die Zylinderdruckfestigkeit des Betons, d_{ν} die statische Nutzhöhe für Querkraft und $\gamma_C = 1,50$ der Teilsicherheitsbeiwert für Beton. Der Parameter k_{ψ} berücksichtigt den Einfluss der kritischen Schubrissbreite und wird in Abhängigkeit der Plattenrotation ψ und dem Größtkorndurchmesser d_g (in Millimetern) bestimmt.

$$k_{\psi} = \frac{1}{1,5 + 0.9\psi dk_{dg}} \le 0.6 \tag{3-32}$$

Die statische Nutzhöhe *d* für Biegung ist in Millimetern einzusetzen und der Einfluss des Größtkorndurchmessers wird mit $k_{dg} = 32/(16+d_g) \ge 0.75$ berücksichtigt. In Model Code 2010 werden unterschiedliche Approximationsstufen (Level of Approximation) von LoA I bis LoA IV mit zunehmend detaillierter Bestimmung der Rotation ψ angegeben [20]. Im Rahmen des Entwurfs oder einer Vorbemessung kann nach [20] mit dem LoA I-Ansatz eine sichere Abschätzung der aufnehmbaren Querkraft durch Annahme einer vollen Ausnutzung des Biegewiderstands der Platte über der Stütze ($m_{Sd} = m_{Rd}$) unter Ansatz der Streckgrenze erreicht werden. Hierbei werden große Rissbreiten und eine große Plattenrotation unterstellt.

$$\Psi = 1.5r_s \frac{f_{yd}}{dE_s} \tag{3-33}$$

Für LoA I- und LoA II-Verfahren darf der Abstand r_s zwischen Stützenachse und Nullpunkt der radialen Plattenbiegemomente mit 0,22*L* (*L* ist die maximale Spannweite der Platte) abgeschätzt werden und E_s ist der Elastizitätsmodul der Biegezugbewehrung. Bei LoA II wird das einwirkende Moment im Stützstreifen aus der Durchstanzlast für zentrisch belastete Innenstützen mit $m_{Sd} = V_{Ed}/8$ abgeschätzt und der Nachweis für jede Richtung getrennt erbracht. Die größere Rotation ist für die Bemessung maßgebend.

LoA II:
$$\psi = 1.5r_s \frac{f_{yd}}{dE_s} \left(\frac{m_{Sd}}{m_{Rd}}\right)^{1.5}$$
 (3-34)

Für das LoA III Verfahren darf der Vorfaktor 1,5 durch 1,2 ersetzt werden, wenn der Abstand r_s zum Nulldurchgang der Plattenbiegemomente und das einwirkende Moment m_{Sd} mit einer linear-elastischen Schnittgrößenermittlung der Platte bestimmt wird. Dabei darf das Moment m_{Sd} am Stützenrand innerhalb eines Streifens der Breite $b_s = \sqrt{(r_{sx}r_{sy})} \le L_{Min}$ gemittelt werden.

LoA III:
$$\psi = 1.2r_s \frac{f_{yd}}{dE_s} \left(\frac{m_{Sd}}{m_{Rd}}\right)^{1.5}$$
 (3–35)

Beim LoA IV wird die Plattenrotation beispielsweise durch nichtlineare Verfahren (z.B. durch eine Integration der Momenten-Krümmungsbeziehung) bestimmt. Dies ist jedoch aufwändig und daher auf Einzelfälle beschränkt. Mit steigendem Detailierungsgrad werden die berechneten Plattenrotationen in der Regel kleiner und der Durchstanzwiderstand nimmt zu.

Der Einfluss einer Vorspannung der Platte auf den Durchstanzwiderstand kann durch eine Reduzierung der Rotation mit dem mittleren Dekompressionsmoment m_{pd} erfasst werden. Dabei ist das Dekompressionsmoment innerhalb des Streifens der Breite b_s zu bestimmen.

LoA II:
$$\psi = 1.5r_s \frac{f_{yd}}{dE_s} \left(\frac{m_{Sd} - m_{pd}}{m_{Rd} - m_{pd}} \right)^{1.5}$$
 (3-36)

3.4.4 Durchstanzwiderstand mit Durchstanzbewehrung

Der Durchstanzwiderstand von Platten mit Durchstanzbewehrung wird nach Model Code 2010 mit einem Beton- und einem Stahltraganteil bestimmt:

$$V_{Ed} \le V_{Rd} = V_{Rd,c} + V_{Rd,s}$$
(3-37)

Hierbei ist $V_{Rd,c}$ die Tragfähigkeit des Betons nach Gleichung (3-31) und der Traganteil der Durchstanzbewehrung $V_{Rd,s}$ bestimmt sich zu:

$$V_{Rd,s} = \sum (A_{sw}k_e \sigma_{swd} \sin \alpha) \tag{3-38}$$

Die Querschnittsfläche der Durchstanzbewehrung A_{sw} wird in einem Bereich zwischen 0,35 d_v und 1,00 d_v vom Stützenrand bestimmt. Die zulässige Spannung in der Durchstanzbewehrung ist in Abhängigkeit der ermittelten Platenrotation ψ zu begrenzen.

$$\sigma_{swd} = \frac{E_s \Psi}{6} (\sin \alpha + \cos \alpha) \left(\sin \alpha + \frac{f_{bd}}{f_{ywd}} \frac{d}{\phi_w} \right) \le f_{ywd}$$
(3-39)

Mit abnehmender Plattenrotation ψ wird aufgrund der geringeren Schubrissbildung die zulässige Spannung σ_{swd} der Durchstanzbewehrung reduziert. Dabei ist f_{bd} die Verbundfestigkeit und ϕ_w der Durchmesser und α die Neigung der Durchstanzbewehrung. Für den Durchstanzwiderstand mit Durchstanzbewehrung ist der Betontraganteil $V_{Rd,c}$ und der Traganteil der Durchstanzbewehrung mit der gleichen Rotation ψ zu bestimmen.

3.4.5 Maximaltragfähigkeit

Mit einer Durchstanzbewehrung lässt sich der Durchstanzwiderstand auf ein Vielfaches der Tragfähigkeit ohne Durchstanzbewehrung erhöhen. Die maximale Durchstanztragfähigkeit ist auf folgenden Wert beschränkt:

$$V_{Ed} \le V_{Rd,max} = k_{sys}k_{\psi}\frac{\sqrt{f_{ck}}}{\gamma_C}b_0d_{\nu} \le \frac{\sqrt{f_{ck}}}{\gamma_C}b_0d_{\nu}$$
(3-40)

Für Bügel ist nach Model Code 2010 der Beiwert k_{sys} = 2,4 festgelegt. Die Steigerung gegenüber der Durchstanztragfähigkeit der nicht durchstanzbewehrten Platte erfolgt nicht proportional, sondern entspricht nach [18] einer im Mittel rund 1,7-fachen Zunahme der Durchstanztragfähigkeit ohne Durchstanzbewehrung. Für Bewehrungsformen mit abweichender Verankerungsqualität der Durchstanzbewehrung kann der Vorfaktor über eine experimentell nachgewiesene Leistungsfähigkeit des Durchstanzbewehrungssystems und entsprechender Versuchsauswertung festgelegt werden. Für Doppelkopfanker wurde in Model Code 2010 ein Beiwert von k_{sys} = 2,8 festgelegt.

3.4.6 Tragfähigkeit außerhalb des durchstanzbewehrten Bereichs

Die Ausdehnung des durchstanzbewehrten Bereichs wird in einem Rundschnitt im Abstand $0.5d_{v,out}$ von der äußersten Bewehrungsreihe nachgewiesen. Hierbei ist zu berücksichtigen, dass sich die Druckstreben auf die äußersten Bewehrungseinheiten abstützen müssen, daher wird eine reduzierte statische Nutzhöhe $d_{v,out}$ zwischen dem Verankerungselement der Durchstanzbewehrung und der Schwerpunktlage der Biegezugbewehrung definiert. Der Bemessungswiderstand im äußeren Rundschnitt ist mit der Querkrafttragfähigkeit der Platte zu bestimmen. Die Sohlspannungen dürfen bei vorhandener Durchstanzbewehrung innerhalb des Nachweisschnittes im Abstand $0.5d_{v,out}$ von der äußersten Bewehrungsreihe abgezogen werden.

3.4.7 Mindestbewehrung und bauliche Durchbildung

Ist Durchstanzbewehrung erforderlich, darf sie zur Sicherstellung einer ausreichenden Vorformungsfähigkeit folgenden Mindestwert nicht unterschreiten:

$$\sum \left(A_{sw} k_e f_{ywd} \right) \ge 0.5 V_{Ed} \tag{3-41}$$

In jedem Fall sind mindestens zwei Reihen Durchstanzbewehrung um die Stütze erforderlich und der Durchmesser der Bügel sollte die Werte in Bild 3-12 (rechts) nicht unterschreiten.

Bild 3-12: Anordnung der Durchstanzbewehrung nach Model Code 2010 und Mindestwert $\phi_{v,max}$ des Stabdurchmessers der Durchstanzbewehrung

4 Datenbanken zum Durchstanzen

4.1 Allgemeines

Für die Bewertung von normativen Regelungen zur Durchstanzbemessung (zum Beispiel Eurocode 2, EC2+NA(D) oder Model Code 2010) bilden einheitliche, kritisch überprüfte Datenbanken mit Versuchen zur Durchstanztragfähigkeit eine unverzichtbare Basis. Auf Grundlage von systematisch aufbereiteten Versuchsdaten können die Vorhersagegenauigkeit und das Zuverlässigkeitsniveau von verschiedenen Bemessungsvorschlägen ermittelt werden. Zusätzlich lässt sich untersuchen, ob die in den vorhandenen Bemessungsgleichungen verwendeten Eingangsparameter ausschließlich maßgebend, oder weitere Faktoren zu berücksichtigen sind.

Nach einer Literaturrecherche wurden die vorhanden Datensammlungen mit Durchstanzversuchen kontrolliert und um neuere Informationen und Versuche erweitert. Die Datenbanken wurden innerhalb einer ACI-Beratergruppe (Carlos Ospina) sowie der CEN/TC250/SC2/WG1/TG4 ausgetauscht und abgeglichen. Aufgrund der Vielzahl an Durchstanzversuchen und der unterschiedlichen Qualität der Versuchsberichte ist der Abgleich der Datenbanken noch nicht abgeschlossen und dauert an. Die im Rahmen dieses Abschlussberichtes ausgewerteten Datenbanken sind von Mitte 2014 und sind im Anhang sowie auf einer CD beigefügt.

4.2 Statistische Auswertung von Versuchen

Für die Überprüfung von Bemessungsansätzen werden die Regelungen aus den Abschnitten 3.2 (Eurocode 2), Abschnitt 3.3 (EC2+NA(D)) und Abschnitt 3.4 (Model Code 2010) mit ausgewählten Versuchen der Datenbanken nachgerechnet. Aus den Verhältnissen der Bruchlasten aus Durchstanzversuchen zu den rechnerischen Tragfähigkeiten nach dem Bemessungsansatz werden die statistischen Kennwerte bestimmt. Für die Auswertung werden normalverteilte Daten unterstellt und die Standardabweichung wird aus der Stichprobe der durchgeführten Versuche ermittelt (Gleichung D2 aus DIN EN 1990 [7]). Der 5% Quantilwert wird in Abhängigkeit der Versuchsanzahl bestimmt. Aufgrund der großen Erfahrungen aus durchgeführten Durchstanzversuchen im Bereich der Forschung als auch in der praktischen Anwendung wird von einem bekannten Variationskoeffizienten (V_x bekannt) ausgegangen. Die Quantilbeiwerte k_n werden der Tabelle D.1 aus Anhang D von DIN EN 1990 entnommen, die für den Fall " V_x bekannt" mit einem Vertrauensniveau von 75% bestimmt wurden (Tabelle 4-1).

n	1	2	3	4	5	6	8	10	20	30	∞
V_x bekannt	2,31	2,01	1,89	1,83	1,80	1,77	1,74	1,72	1,68	1,67	1,64
V_x unbekannt	-	-	3,37	2,63	2,33	2,18	2,00	1,92	1,76	1,73	1,64

Tabelle 4-1: Werte k_n für charakteristische Werte (5% Quantile) aus [7]

Bei der Herleitung der Durchstanzbemessungsgleichungen von DIN 1045-1 wurde die charakteristische Betondruckfestigkeit mit $f_{ck} = f_{cm} - 8$ [MPa] bestimmt. Aktuelle Versuchsauswertungen im Rahmen der Normenumstellung sind jedoch in Anlehnung an EN 206 [22] mit einer größeren charakteristischen Betondruckfestigkeit ($f_{ck} = f_{cm} - 4$ [MPa]) durchzuführen, woraus höhere rechnerische Tragfähigkeiten resultieren. Der Einfluss des unterschiedlichen Abzugswertes der Betondruckfestigkeit (-4 anstelle von -8 MPa) ist in Bild 4-1 dargestellt. Es ist gut zu erkennen, dass der Unterschied bei einer Bemessung nach Eurocode 2 und DIN 1045-1 im Bereich geringer Betondruckfestigkeiten deutlich größer ausfällt als bei höheren Festigkeiten.

Bild 4-1: Vergleich der unterschiedlichen Vorhaltewerte von -8 MPa nach DIN 1045-1 und -4 MPa nach Eurocode 2 bei der Nachrechnung von Durchstanzversuchen

4.3 Auswahlkriterien der Datensätze an Flachdeckenausschnitten

Die aus den Versuchsberichten entnommenen Daten werden als "Rohdaten" in einem Excel Datenblatt gespeichert. Zur weiteren Arbeit mit der Datensammlung sind die Datensätze zu klassifizieren. Dazu wurden die Versuche in Gruppen mit der Bezeichnung "A" (Flachdeckenausschnitt) und "S" (System), beziehungsweise "AS" (eingespannte Ränder eines Flachdeckenausschnitts) geordnet. Weiterhin wurde die Geometrie der Vollplatte mit "ga" (quadratisch mit Abheben der Plattenecken), "gs" (kein Abheben der Plattenecken möglich) "k" (kreisförmig), "r" (rechteckig) und "o" (oktogonal), der Abstand und die Anordnung der Lasteinleitung "q" (quadratisch), "k" (kreisförmig) und die Anzahl der Belastungspunkte bzw. "L" Linienlasten gekennzeichnet. Neben der Stützengeometrie ("k" kreisförmig, "q" quadratisch und "r" rechteckig) werden die Plattendicke und die statische Nutzhöhe erfasst. Die Ausrichtung der Biegebewehrung ("x/y" orthogonal, "r" radial, "t" tangential) werden ebenso erfasst wie die Stabdurchmesser und -abstände, der vom Autor angegebene Bewehrungsgrad und die am Versuchstag bestimmten Materialkennwerte der verwendeten Stähle und Betone nebst Prüfkörpergeometrie.

In einem weiteren Tabellenblatt werden die Angaben zum Versuchskörper verarbeitet und kontrolliert, indem unter anderem die Autorenangaben zum Bewehrungsgrad und der eingebauten Bewehrungsmenge auf Übereinstimmung geprüft werden. Falls die Bewehrung nicht konstant über die Platte verteilt ist, wird wie in Eurocode 2 [1] verlangt, ein mittlerer Bewehrungsgrad im Stützstreifen mit einer Breite der Stützenabmessungen zuzüglich der 6-fachen statischen Nutzhöhe bestimmt und für die weiteren Berechnungen verwendet. Die Betondruckfestigkeit wird anhand der maßgebenden Prüfkörpergeometrie auf die Zylinderdruckfestigkeit mit den Abmessungen (150/300) umgerechnet. Werden Ergebnisse an Würfeln und Zylindern im Bericht angegeben, so werden die Zylinderwerte weiterverwendet.

Abmessungen Zylinder	Umrechnungsfaktor $\operatorname{auf} f_{1c}$	Abmessungen Würfel	Umrechnungsfaktor $\operatorname{auf} f_{1c}$
100/200	0,92	100	0,68
100/300	1,00	120	0,71
152,4/304,8	0,95	150	0,75
160/320	1,00	200	0,79
60/120	0,89	Prisma	
150/300	0,95	120/120/360	1,00

Tabelle 4-2:	Umrechnungsfaktoren	zwischen	unterschiedlichen	Prüfkörperabmessungen
	auf die einaxiale Beton	druckfestig	keit f_{1c} aus DAfStb	Heft 597 [23]

Ebenfalls wird die Grenzbiegetragfähigkeit der Platte überprüft. Für die Bestimmung des Widerstandsmoment m_r wurde der in DAfStb Heft 597 vorgeschlagenen Algorithmus verwendet. Zur Bestimmung der Querkraft, für die ein Biegeversagen angenommen werden kann, wurden die Versuchsaufbauten in vier unterschiedliche Systeme unterteilt (Bild 4-2). Die Grenzbiegetragfähigkeit der Systeme 1-3 wurden mit dem Ansatz von Beutel [24] bestimmt. Diese stimmen mit den Vorschlägen von Nölting [25] und Elstner & Hognestad [26] überein. Das System 4 erfasst die Systeme, die nicht den Versuchsaufbauten von 1-3 zugeordnet werden können. Zur Bestimmung einer Mindestbiegetragfähigkeit $V_{u,flex}$ wird daher ein vereinfachter Ansatz mit $V_{u,flex} = 2\pi m_r$ gewählt. Umgestellt und nach m_y aufgelöst wird für die folgenden Parameterrechnungen das mittlere Biegemoment am Stützenrand mit den Systemen 1 bis 4 nach Bild 4-2 abgeschätzt.

Bild 4-2: Grenztragfähigkeiten von Flachdeckenausschnitten nach der Bruchlinientheorie

Für Einzelfundamente wurde die Grenzbiegetragfähigkeit auf Grundlage der Bruchlinientheorie mit dem von Gesund in [27] vorgeschlagenen Algorithmus bestimmt.

4.4 Flachdecken ohne Durchstanzbewehrung

4.4.1 Allgemeines

Die am Institut für Massivbau (IMB) vorliegende Datensammlung zu Durchstanzversuchen an Flachdeckenausschnitten ohne Durchstanzbewehrung wurde in den vergangenen Jahren konsequent erweitert. Durch eine Forschungskooperation mit dem ACI Komitee 445 (Shear & Torsion) konnten zwei Datensammlungen zusammengelegt und synchronisiert werden. Die eigene Datensammlung geht auf Untersuchungen von Beutel [24] zurück, wurde aktualisiert und erweitert und beinhaltet 314 Datensätze. Die Datensammlung des ACI Komitee ist beim Neeshub [28] online verfügbar, beinhaltet 614 Datensätze und basiert auf der *fib* Datenbank aus [29]. Nach eingängiger Prüfung der Datensammlung sowie Quellenangaben und der Elimination doppelter Datensätze konnten 599 Durchstanzversuche an Innenstützen in eine eigene Sammlung aufgenommen werden. Diese wurde zur nochmaligen Überprüfung mit Mitarbeitern des ACI Komitee 445 (C. Ospina) sowie Teilnehmern des Normungskomitee zur Überarbeitung des Eurocode 2, CEN/TC 250/SC 2/WG 1/TG 4, übersandt.

4.4.2 Synchronisierte Datensammlung zu Durchstanzversuchen an Flachdecken ohne Durchstanzbewehrung

Die Datensammlung umfasst 599 Versuche an Flachdeckensystemen und Flachdeckenausschnitten mit unterschiedlichen Versuchskörperabmessungen und Belastungsanordnungen. Die Häufigkeitsverteilungen in Bild 4-3 zeigt, dass die größte Anzahl der Versuche mit kleinen statischen Nutzhöhen, geringen Längsbewehrungsgraden und geringen Betondruckfestigkeiten geprüft wurden. Dies war zu erwarten, da diese Versuche wegen der einfacheren und günstigeren Herstellung und den kleineren Prüfkräften bevorzugt getestet wurden. Für etwa 530 Versuche konnten Veröffentlichungen oder Versuchsberichte zur Überprüfung der Daten herangezogen werden.

Bild 4-3: Häufigkeitsverteilung der 599 Durchstanzversuche aus der Datensammlung von Durchstanzversuchen ohne Durchstanzbewehrung

Von den Versuchsergebnissen wurden aufgrund der stark unterschiedlichen Anordnungen und Qualität der Messwerte nur die Bruchlast, die maximale Durchbiegung bei Höchstlast und das vom Autor festgestellte Versagen in die Datensammlung aufgenommen.

4.4.3 Auswahl der Versuche

Für die Überprüfung von Bemessungsansätzen oder Modellen sind die Durchstanzversuche an Flachdeckenausschnitten auszuwählen, die mit vergleichbaren Randbedingungen getestet wurden. Für die Auswahl der Versuchsdaten wurden die an Quellen überprüften Systeme an Flachdeckenausschnitten und einer orthogonal verlegten Biegezugbewehrung aus Betonstahl gewählt (Tabelle 4-3).

Bedingung	Auswahl	Anzahl Versuche	Kombiniert mit
	А	527	Х
System	S	23	
	AS / (k.A.)	49	
	k	171	Х
	0	9	Х
Form Deckerousschnitt	qa	312	Х
Form Deckenausschnitt	qs	50	X
	r	34	X
	(k.A.)	23	
	k	214	Х
T , 1 1	q	252	Х
Lasteinleitung	r	9	X
	(k.A.)	124	
	x/y	488	Х
Ausrichtung Biegezugbewehrung	r/t	32	
	(k.A.)	79	
	В	576	Х
Biegezugbewehrung	FRP	23	
Prüfung ρ_l auf Abweichungen	wahr	501	Х
(wahr: Fehler < 6%)	Abw.	98	
	wahr	435	Х
Biegeversagen prüfen	falsch	98	
$v_{\text{Test}} v_{\text{flex}} < 1,13$	k.A.	66	
0 11 11 11	wahr	529	Х
Quelle überprüft	falsch	70	
	Summe Versuche		336

Tabelle 4-3: Kriterien zur Versuchsauswahl von Durchstanzversuchen an Flachdecken ohne Durchstanzbewehrung für die Auswertung von Bemessungsansätzen

Neben der in Abschnitt 4.3 beschriebenen Auswahlkriterien wurden Versuche mit Betonstahl oder einer "nicht-metallischen" Bewehrung, in der Regel FRP (fibre-reinforced polymer) unterschieden, da diese eine deutlich reduzierte Dehnsteifigkeit und nahezu kein plastisches Verhalten erkennen lassen. Zusätzlich ergab sich bei der Durchsicht der Quellen zum Teil Abweichungen zwischen den direkt vom Autor angegebenen Bewehrungsgraden und einem rechnerischem Bewehrungsgrad aus eingebautem Bewehrungsquerschnitt und statischer Nutzhöhe. Da nicht allgemein beurteilt werden kann, ob der angegebene oder der rechnerische Wert zutreffend ist, wird die Abweichung beider Werte bestimmt und als "Fehler" bezeichnet.

Aus der Literatur und Bemessungsregeln ist bekannt, dass der Einfluss des Längsbewehrungsgrades meist mit der Kubik- oder der Quadratwurzel gut erfasst werden kann. Vor diesem Hintergrund ist nach Meinung des Verfassers ein "Fehler" von maximal 6% vertretbar, da dies einen Unterschied zwischen 1,8% und 2,4% in der rechnerischen Tragfähigkeit ergibt und damit vernachlässigbar ist. Für die Nachrechnung der Versuche wurde der eigens berechnete Bewehrungsgrad verwendet.

Auch nach eingängiger Suche sind nicht alle Versuchsangaben an Quellen zu überprüfen, da Versuchsberichte vertraulich oder nicht mehr verfügbar sind. Die Versuche mit einer getesteten Schubschlankheit von $a_{\lambda}/d < 1,0$ werden nicht berücksichtigt, da infolge der direkten Lasteinleitung deutlich höhere Bruchlasten unterstellt werden. Für die Versuche mit einem Verhältnis von $V_{Test}/V_{u,flex} > 1,15$ wird zudem ein Biegeversagen vermutet und diese Versuche daher ebenfalls von der Auswertung ausgeschlossen. Somit verbleiben für die Auswertung insgesamt 336 Durchstanzversuchen an Flachdeckenausschnitten im Bereich von Innenstützen, deren Häufigkeitsverteilung in Bild 4-5 angegeben ist.

Bild 4-5: Häufigkeitsverteilung der 336 ausgewählten Durchstanzversuche ohne Durchstanzbewehrung im Bereich von Innenstützen

Nach der Häufigkeitsverteilung in Bild 4-5 ist zu erkennen, dass mit baupraktisch üblichen Biegebewehrungsgrade von $\rho_l = 0.5\%$ bis 1.75%, Betondruckfestigkeiten zwischen f_{cm} = 20 MPa und 45 MPa und bezogenen Stützenumfänge zwischen u_0/d = 3 und 10 durch die Datenauswahl gut repräsentiert werden. Die Versuche an Flachdecken mit geringen statischen Nutzhöhen (d < 125 mm) scheinen dagegen überproportional berücksichtigt zu werden.

4.4.4 Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand für Flachdecken ohne Durchstanzbewehrung

Zur Überprüfung der in Abschnitt 3.2 vorgestellten Regelungen werden die Bruchlasten der Durchstanzversuche an Flachdeckenausschnitten mit den Gleichungen von Eurocode 2 nachgerechnet (Bild 4-6). Während der Einfluss der Betondruckfestigkeit und des bezogenen Stützenumfangs gut für die Flachdecken ohne Durchstanzbewehrung erfasst werden, lässt sich eine Trendabhängigkeit für die statische Nutzhöhe und den Biegebewehrungsgrad erkennen. Das abnehmende Verhältnis von $V_{Test}/V_{Rk,c,EC2}$ mit zunehmender statischer Nutzhöhe kann auf die zahlreichen Versuche mit statischen Nutzhöhen d < 200 mm zurückgeführt werden. Durch die Beschränkung des Maßstabseffekt für statische Nutzhöhen d < 200 mm auf k = 2,0 wird die rechnerische Tragfähigkeit kleinerer statischer Nutzhöhen begrenzt und damit größere Verhältniswerte von V_{Test}/V_{Rk,c.EC2} bestimmt. Eine getrennte Auswertung für statische Nutzhöhen d < 200 mm und $d \ge 200$ mm ergibt für beide Bereiche weniger trendabhängige Ergebnisse.

Bild 4-6: Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand für Flachdecken ohne Durchstanzbewehrung nach Eurocode 2

Wird die Begrenzung auf k = 2,0 nicht berücksichtigt, ergibt die Nachrechnung der Versuchsbruchlasten einen annähernd konstanten Mittelwert über der statischen Nutzhöhe (Bild 4-7). Für die Versuche mit kleineren statischen Nutzhöhen werden größere Variationskoeffizienten bestimmt, jedoch sind dort auch deutlich mehr Versuche berücksichtigt. Die obere gestrichelte Linie stellt den 95% Quantilwert und die untere Linie den 5% Quantilwert der abschnittsweisen Auswertung dar. Das Sicherheitsniveau ist ohne die Begrenzung des Maßstabsfaktors k im Vergleich zu der Auswertung in Bild 4-6 jedoch deutlich reduziert. Die abschnittsweise Auswertung über den übrigen Haupteinflussparametern ist zusammen mit den statistischen Kenngrößen im Anhang angegeben.

In Eurocode 2 ist auch der maximale Biegebewehrungsgrad auf $\rho_l \le 2,0$ begrenzt. Die Auswertung der Durchstanzversuche belegt, dass weitere Traglaststeigerungen mit größeren

Biegebewehrungsgraden möglich erscheinen. Zur Sicherstellung der Einbaufähigkeit, Verankerung und Betonierbarkeit im Bereich des Kreuzungspunktes mit der Stützenbewehrung ist die Begrenzung des Längsbewehrungsgrades jedoch sinnvoll.

Bild 4-7: Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand ohne die Beschränkung des Maßstabsfaktors k und abschnittsweiser Auswertung des 5% und des 95% Quantilwertes für Flachdecken ohne Durchstanzbewehrung nach Eurocode 2

Eine Auswertung der Regelungen zur Durchstanzbemessung von Flachdeckenausschnitten ohne Durchstanzbewehrung nach EC2+NA(D) ist in Bild 4-8 dargestellt. Die vorgenommene Ergänzungen und Änderungen für eine Anwendung in Deutschland führen zu einem gesteigertem Mittelwert und 5% Quantilwert. In Bild 4-8 sind die größten Trendeinflüsse beim Einfluss des Biegebewehrungsgrades und der statischen Nutzhöhe zu beobachten. Die Ursachen sind wie bei einer Auswertung nach Eurocode 2 (Bild 4-6 und Bild 4-7) in der Beschränkung des Maßstabseffekt und des Biegebewehrungsgrad zu finden.

für Massivbau der RWTH Aachen

Bild 4-8: Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand für Flachdecken ohne Durchstanzbewehrung nach EC2+NA(D)

Für den Deutschen Anhang zu Eurocode 2 wurde zusätzlich die Durchstanztragfähigkeit von kleinen bezogenen Stützenumfängen mit $u_0/d < 4,0$ herabgesetzt und der Durchstanzwiderstand auf große Stützenumfänge mit $u_0/d \le 12$ begrenzt. Für die über diesen Umfang hinausgehenden Längen darf nur der (in EC2+NA(D) reduzierte) Querkraftwiderstand angenommen werden. Der Vergleich der Auswertungen nach Eurocode 2 und EC 2+NA(D) in Bild 4-9 belegt eine Erhöhung des Mittelwertes und eine geringfügig kleineren Variationskoeffizienten. Für fünf Versuche wurde bei der Nachrechnung nach Eurocode 2 der Nachweis entlang des Stützenumfangs u_0 maßgebend, womit sich die zum Teil großen Verhältniswerte von $V_{Test}/V_{Rk,c,EC2}$ in Bild 4-9 (links) erklären lassen.

Bild 4-9: Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand für Flachdecken ohne Durchstanzbewehrung für kleine und große bezogene Stützenumfänge mit den Regelungen nach Eurocode 2 (links) und EC2+NA(D) (rechts)

In Bild 4-11 ist die Auswertung der Durchstanzversuche mit den Regelungen nach Model Code 2010 dargestellt. Während die in die Bemessungsgleichung eingehende Biegetragfähigkeit der Platte mit dem Mittelwert der einaxialen Druckfestigkeit $f_{1c,cvl}$ berechnet wurde, wurde die aufnehmbare Schubspannung mit dem charakteristischen Wert der Zylinderdruckfestigkeit f_{ck} bestimmt. Diese Vorgehensweise erscheint plausibel, da das Verhältnis m_{Sd}/m_{Rd} einen Ausnutzungsgrad beschreibt. Die Berücksichtigung von Teilsicherheitsbeiwerten (bzw. charakteristischen Einwirkungen und Widerständen) würde das Ergebnis verzerren. Der Ansatz der charakteristischen Betondruckfestigkeit ergibt geringere rechnerische Tragfähigkeiten und führt damit zu einem größeren Mittelwert und 5% Quantilwert als bei einer Auswertung mit mittleren Betondruckfestigkeiten f_{cm} . Nach Model Code 2010 ist das mittlere Moment m_{Sd} innerhalb eines Streifens der Breite b_s mit einer linear elastischen Finite-Elemente Berechnung zu bestimmen. Die Bestimmung der Plattenschnittgrößen von über 300 Versuchen mit der Finite-Elemente Methode war im Rahmen dieser Arbeit nicht möglich und sind dazu auch schlecht nachvollziehbar, da die Schnittgrößen stark von den FE-Modellen beeinflusst werden. Für die eigene Nachrechnung der Versuche wurden die Momente m_{Sd} und m_{Rd} am Stützenanschnitt nach Bild 4-2 bestimmt und sind daher geringfügig größer als das von Model Code 2010 verlangte mittlere Moment m_{Sd} innerhalb der Breite b_s . Der Ansatz kleinerer Momente m_{sd} führt zu tendenziell größeren rechnerischen Durchstanzwiderständen, da für die Platte eine geringere Rotation unterstellt wird, und der Vergleich mit den Versuchsergebnissen ergibt kleinere Mittelwerte als die in Bild 4-11 dargestellten. Eine pauschale Reduzierung des Moments m_{Sd} auf 90% oder 80% des Wertes nach Bruchlinientheorie bestätigt dieses Ergebnis. Über die Entwicklung des Variationskoeffizienten lässt sich mit einer pauschalen Reduzierung des Moments m_{Sd} keine Aussage treffen, da die Abminderungen sehr unterschiedlich ausfallen können.

Für den Nachweis nach Model Code 2010 ist zusätzlich der Größtkorndurchmesser zu berücksichtigen. Für 204 Versuche der Datenbank wurde der Größtkorndurchmesser im Versuchsbericht angegeben. In einem ersten Schritt wird daher überprüft, ob der Größtkorndurchmesser d_g die erreichten Bruchlasten V_{Test} beeinflusst. Die Versuchsbruchlasten für die Versuche mit angegeben Größtkorndurchmesser werden daher in Bild 4-10 mit den rechnerischen Durchstanzwiderständen nach Eurocode 2, EC2+NA(D) und Model Code 2010 verglichen.

Bild 4-10: Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand für Flachdecken ohne Durchstanzbewehrung nach Eurocode 2, EC2+NA(D) und Model Code 2010 für 204 Versuche über dem Größtkorndurchmesser des verwendeten Zuschlags

Die Ergebnisse in Bild 4-10 belegen über dem Größtkorndurchmesser einen weitestgehend trendunabhängigen Verlauf. Für die weiteren Auswertungen wird daher bei nicht angegebenem Größtkorndurchmesser ein versuchstypischer Wert von $d_g = 12$ mm für die Auswertung nach Model Code 2010 unterstellt, der bei nahezu unverändertem Variationskoeffizienten zu einem geringfügig höherem Mittelwert und 5% Quantilwert führt.

Bild 4-11: Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand für Flachdecken ohne Durchstanzbewehrung nach Model Code 2010, LoA III

Die Auswertung der Durchstanzversuche mit den Regeln nach Model Code 2010 ergab, dass die untersuchten Einflüsse tendenziell richtig erfasst werden, was zu einem geringeren Variationskoeffizienten von $V_x = 0,16$ als bei einer Auswertung nach Eurocode 2 und EC2+NA(D) führt. Während die Einflüsse aus der Zylinderdruckfestigkeit, des bezogenen Stützenumfangs und des Biegebewehrungsgrades weitgehend gut erfasst werden, ist für die statische Nutzhöhe ebenfalls ein abfallender Trend mit größeren Nutzhöhen zu beobachten. Wird, wie auch bei den Auswertungen nach Eurocode 2 und dem EC2+NA(D), der Einfluss der statischen Nutzhöhe für kleine und große statische Nutzhöhen d < 200 mm und $d \ge 200$ mm ausgewertet, ergibt sich für größere statische Nutzhöhen eine höherer Variationskoeffizient und ein Trend zu kleineren Verhältnissen von $V_{Test}/V_{Rk,c,MC2010}$. Die ab-

schnittsweisen Auswertungen der Versuchsnachrechnungen über den Haupteinflussparametern sind im Anhang zu diesem Abschlussbericht dargestellt.

4.5 Flachdecken mit Durchstanzbewehrung

4.5.1 Allgemeines

Von Beutel wurde ebenfalls in [24] eine Datenbank mit Durchstanzversuchen an Flachdecken mit Durchstanzbewehrung vorgestellt. Im Rahmen der weiteren Bearbeitung wurden die Rohdaten überprüft und die Datensammlung um neuere Versuche und Informationen ergänzt. Die Datensammlung umfasst 327 Durchstanzversuche an Flachdeckenausschnitten mit unterschiedlichen Durchstanzbewehrungsformen wie Bügel, Schubzulagen, Schrägstäben, I-Trägerscheiben, Doppelkopfankern, Gitterträgern und weiteren Formen. Während der Erstellung des nationalen Anhangs für Deutschland wurden die Versuche an Bügeln mit einem Versagen nahe der maximalen Durchstanztragfähigkeit ausgewählt und ein Vorfaktor zur Bestimmung des maximalen Durchstanzwiderstandes abgleitet. Die Ergebnisse sind in [30] vorgestellt.

4.5.2 Datensammlung zu Durchstanzversuchen an Flachdecken mit Durchstanzbewehrung

In Bild 4-12 ist die Häufigkeitsverteilung aller Versuche der Datenbank über den Einflussparametern statische Nutzhöhe, Längsbewehrungsgrad, Betondruckfestigkeit und bezogener Stützenumfang aufgetragen.

4.5.3 Auswahl der Versuche

Durch den Parameter "Form der Durchstanzbewehrung" ergeben sich im Vergleich zum Abschnitt 4.4 zusätzliche Auswahlkriterien, da die eingebaute Durchstanzbewehrung und deren Verankerung die erreichten Bruchlasten in den Durchstanzversuchen beeinflussen können [31][32]. Mit steigender Verankerungsqualität lassen sich zumindest in dünnen Platten größere Durchstanztraglasten erzielen. Für die vorliegende Datenbasis bedeutet dies eine Separierung der verwendeten Durchstanzbewehrungsformen anhand der möglichen Verankerungsqualität. Nach Eurocode 2 und EC2+NA(D) bzw. DAfStb Heft 600 [15] sind Bügel als Durchstanzbewehrung geeignet und zugelassen. Während in DAfStb Heft 600 festgeschrieben ist, dass in jeder Bügelecke mindestens ein Stab der Zug- und Druckbewehrung vorhanden sein muss, wird für die Auswahl der Versuche nur ein Umschließen der Biegezugbewehrung gefordert. Da in vielen Durchstanzversuchen auf der sicheren Seite auf eine Druckbewehrung verzichtet wurde, ist dies eine konservative Abschätzung zur Ermittlung von Durchstanztragfähigkeiten und ermöglicht zudem den Rückgriff auf eine größere Datenbasis von Versuchen mit Bügeln als Durchstanzbewehrung.

Bild 4-13: Beispiele für Durchstanzbewehrungen nach DAfStb Heft 600 [15]

Bedingung	Auswahl	Anzahl Versuche	Kombiniert mit	
	А	323	Х	
System	S	5		
	(k.A.)	3		
	k	116	Х	
	0	32	Х	
Form	qa	151	Х	
Deckenausschnitt	qs	27	Х	
	r	2	Х	
	(k.A.)	3		
	k	205	Х	
Lasteinleitung	q	101	Х	
	(k.A.)	25		
	x/y	327	Х	
Ausrichtung	r/t	1		
Diegezügbeweinfung	(k.A.)	3		
	wahr	280	Х	
Biegeversagen prüfen $V_{T} / V_{C} < 1.15$	falsch	47		
V Test V flex $< 1,13$	(k.A.)	4		
0 11 11 16	wahr	305	Х	
Quelle uberpruft	falsch	26		
	Vertikale Bügel (mindestens Zugbewehrung umfasst)	82	X	
Form der Durchstanzbewehrung	Doppelkopfanker und Dübelleisten	102		
	I-Träger Ausschnitte	17		
	Schubzulagen, Schrägstäbe	91		
	andere Biegefor- men/Kombinationen	35		
	Summe Versuche		58	

Tabelle 4-4:Kriterien zur Versuchsauswahl von Durchstanzversuchen an Flachdecken mit
Durchstanzbewehrung für die Auswertung von Bemessungsansätzen

Werden die Auswahlkriterien nach Tabelle 4-4 auf die Datensammlung angewandt, ergibt sich die in Bild 4-14 dargestellte Häufigkeitsverteilung von Durchstanzversuchen an Flachdecken mit Bügeln als Durchstanzbewehrung.

Bild 4-14: Häufigkeitsverteilung der 58 Durchstanzversuche aus der Datensammlung von Durchstanzversuchen mit vertikalen Bügeln als Durchstanzbewehrung

Innerhalb der Versuchsgruppe mit Bügeln als Durchstanzbewehrung gibt es Versuche mit einem Versagen innerhalb und außerhalb der Durchstanzbewehrung und auf dem Niveau der maximalen Durchstanztragfähigkeit. Für eine auf der sicheren Seite liegende Abschätzung der Bemessungsansätze zur maximalen Durchstanztragfähigkeit lassen sich auch Durchstanzversuche mit einem Versagen innerhalb oder außerhalb der Durchstanzbewehrung heranziehen. Dies ist für eine konservative Abschätzung zulässig, da durch den Einbau zusätzlicher Durchstanzbewehrung im Inneren oder durch Anordnung zusätzlicher Reihen Außen eine kleinere Bruchlast im Versuch ausgeschlossen werden kann. In Abschnitt 4.5.5 wird der Einfluss der Durchstanzbewehrungsmenge auf die Durchstanztragfähigkeit näher untersucht.

4.5.4 Vergleich von Versuchsbruchlasten mit dem rechnerischen maximalen Durchstanzwiderstand für Flachdecken mit Bügeln als Durchstanzbewehrung

In Bild 4-15 werden die Bruchlasten der in Tabelle 4-4 ausgewählten 58 Durchstanzversuche mit Bügeln als Durchstanzbewehrung mit der rechnerischen Maximaltragfähigkeit nach Eurocode 2 [1] verglichen. Die Verhältnisse aus Bruchlast zu rechnerischer Maximaltragfähigkeit keit $V_{Test}/V_{Rk,max,EC2}$ zeigen für die Versuche eine deutliche Trendabhängigkeit von der Be-

tondruckfestigkeit und dem bezogenem Stützenumfang. Dies wurde auch z.B. in [9][31] beobachtet und kann auf den Nachweis der Druckstrebentragfähigkeit entlang des Stützenumfangs zurückgeführt werden.

Bild 4-15: Vergleich von Versuchsbruchlasten mit dem rechnerischen maximalem Durchstanzwiderstand für Flachdecken mit Bügeln als Durchstanzbewehrung nach Eurocode 2

Dieses Sicherheitsdefizit wurde in 2013 ebenfalls vom Technischen Komitee CEN/TC 250/SC 2/WG1/TG4 erkannt und ein Amendment zu Eurocode 2, Abschnitt 6.4.5 vorgeschlagen. Zur Minimierung der erforderlichen Änderungen wurde die Durchstanztragfähigkeit mit Durchstanzbewehrung zusätzlich auf den 1,5-fachen Wert der Durchstanztragfähigkeit ohne Durchstanzbewehrung begrenzt. In Bild 4-16 sind die Bruchlasten der Versuche mit der Druckstrebentragfähigkeit und der Begrenzung der Tragfähigkeit der Durchstanzbewehrung behrung der Begrenzung der Tragfähigkeit der Durchstanzbewehrung behrung miteinander verglichen. Durch das Amendment lassen sich die trendabhängigen

Einflüsse insbesondere bei der Betondruckfestigkeit und dem bezogenem Stützenumfang abschwächen und der Variationskoeffizient wird reduziert, während der Mittelwert und der 5% Quantilwert erhöht werden.

Für den nationalen Anhang für Deutschland wurde die Maximaltragfähigkeit ausschließlich als das 1,4-fache der Durchstanztragfähigkeit ohne Durchstanzbewehrung festgelegt und erreicht damit über die Haupteinflussparameter nahezu trendunabhängige Verhältnisse von Bruchlast zu rechnerischer Durchstanztragfähigkeit und mit $V_x = 0,12$ auch einen sehr geringen Variationskoeffizienten (Bild 4-17). Auffällig ist, dass die Versuche mit kleinen und großen Verhältnissen von $V_{Test}/V_{R,max,EC2+NA(D)}$ beiderseits gleichmäßig über die Haupteinflussparameter verteilt sind und daher keinem einzelnen Trend folgen, sondern die Streuung der Ergebnisse nach oben und unten repräsentieren. Die Regelungen wurden überwiegend an Versuchen mit kleiner statischer Nutzhöhe abgeleitet. In diesen Versuchen wird die Tragfähigkeit durch die tendenziell schlechtere Verankerungsqualität der Bügel beeinflusst. Für größere statische Nutzhöhen sind daher größere Verhältnisse $V_{Test}/V_{R,max,EC2+NA(D)}$ zu erwarten.

Bild 4-17: Vergleich von Versuchsbruchlasten mit dem rechnerischen maximalem Durchstanzwiderstand für Flachdecken mit Bügeln als Durchstanzbewehrung nach EC2+NA(D)

In Bild 4-18 werden die Versuchsbruchlasten mit der rechnerischen Maximaltragfähigkeit nach Model Code 2010 mit dem Vorfaktor von $k_{sys} = 2,4$ verglichen. Der Ansatz nach Model Code 2010 erfasst die Einflussparameter weitgehend trendfrei, im Vergleich zu den Auswertungen nach den Regelungen des deutschen Anhangs ergeben sich tendenziell je-

doch ein geringerer Mittelwert und eine größere Streuung der Ergebnisse. In der schweizerischen Norm SIA 262:2013 [33], die nahezu unverändert zu Model Code 2010 ist, wird ein Vorfaktor zur maximalen Durchstanztragfähigkeit von Bügeln mit k_{sys} = 2,0 vorgeschlagen, was einen größeren Mittelwert und 5% Quantilwert ergibt. Ein Vergleich der Durchstanzbemessung von SIA 262:2013 und Model Code 2010 ist in [18] zusammengefasst. Der Variationskoeffizient liegt im Bereich der Versuchsnachrechnungen von Flachdecken ohne Durchstanzbewehrung (Bild 4-11). Da in der gewählten Datenbasis nicht zwischen unterschiedlichen Versagensarten unterschieden wurde, erscheint eine weitere Reduzierung der Streubreite möglich.

Bild 4-18: Vergleich von Versuchsbruchlasten mit dem rechnerischen maximalem Durchstanzwiderstand für Flachdecken mit Bügeln als Durchstanzbewehrung nach Model Code 2010

4.5.5 Einfluss der Durchstanzbewehrungsmenge von Bügeln

Die Bemessungsmodelle zur Bestimmung der Tragfähigkeit der Durchstanzbewehrung nach Abschnitt 3 weisen deutliche Unterschiede auf. In Eurocode 2 wird die Durchstanzbewehrung über ein 33° Fachwerkmodell und konstantem, im Rundschnitt u_1 (Abstand 2*d*) ermitteltem Betontraganteil bestimmt. Durch die flache Neigung der Druckstreben und den relativ hohen Betontraganteil ergibt sich eine tendenziell kleine Bewehrungsmenge. Diese ist jeweils in konzentrischen Rundschnitten um die Stütze herum anzuordnen. Für eine Anwendung in Deutschland wurde dieses Modell als nicht ausreichend sicher bewertet und gefordert, dass die nach Eurocode 2 bestimmte Bewehrungsmenge in der ersten Reihe um den Faktor 2,5 und in der zweiten Reihe um den Faktor 1,4 erhöht wird. Nach Model Code 2010 wird ein gleichmäßiger Bewehrungsgrad im Bereich von 0,3*d* bis 1,0*d* bestimmt. Die erforderliche Bewehrungsmenge ist dabei von der Rotation der Platte beeinflusst. Je geringer die Rotation ist, desto kleiner ist die erwartete Schubrissbreite und in der Durchstanzbewehrung werden kleinere Dehnungen und damit auch eine kleinere ausnutzbare Spannung unterstellt. Mit kleinerer Rotation folgt daraus eine erhöhte Durchstanzbewehrungsmenge.

Mit den allgemeinen bauaufsichtlichen Zulassungen für Gitterträger, Stahlbleche, Doppelkopfanker oder modifizierte Durchstanzgitterträger sind weitere Modelle zur Bestimmung des Bewehrungsquerschnittes gegeben. Die Durchstanzbemessung erfolgt für die einzelnen Bewehrungstypen individuell mit konstanten oder veränderlichen Betontraganteilen, Fachwerken und Aufhängefachwerken unterschiedlicher Neigung und Effektivität.

Die eingebaute Menge an Durchstanzbewehrung beeinflusst die erreichte Durchstanztragfähigkeit. Mit mehr Durchstanzbewehrung steigt die Bruchlast weiter an. Dies wurde ebenfalls von Häusler [34] in einer Modellvorstellung (Bild 4-19) zusammengefasst. Durch eine Erhöhung der Durchstanzbewehrungsmenge wird ebenfalls die Durchstanztragfähigkeit degressiv erhöht.

Für die Auswertung von Bemessungsansätzen zur maximalen Durchstanztragfähigkeit ist dies von großer Bedeutung, da neben den Verankerungsbedingungen der Durchstanzbewehrung auch die im Maximaltragfähigkeitsversuch eingebaute Bewehrungsmenge die erreichte Tragfähigkeit beeinflusst. Eine maximale Durchstanztragfähigkeit ist damit nicht nur an die Form der Durchstanzbewehrung gebunden (zum Beispiel Bügel, Gitterträger, Doppelkopfanker, etc.), sondern auch an das Bemessungskonzept der Durchstanzbewehrung. Das Bemessungskonzept für die Durchstanzbewehrungsmenge sollte in der Lage sein, auf Bruchlastniveau die im Versuch eingebauten und getesteten Bewehrungsmengen zu bestimmen. In Bild 4-20 ist die nach Eurocode 2 erforderliche Bewehrung über der vorhandenen Bewehrung in der ersten Reihe (im Bereich zwischen dem Stützenanschnitt und 0,875*d*) aufgetragen, da diesen Bügeln der größte Einfluss auf die Durchstanztragfähigkeit unterstellt wird. Für die Punkte, die sich unterhalb der Winkelhalbierenden befinden, wird nach dem Bemessungskonzept ein kleinerer Bewehrungsquerschnitt bestimmt, als in den Versuchen eingebaut wurde. Es ist daher fraglich, ob ein Versuchskörper mit der geringeren Bewehrungsmenge in der Lage ist, die gleiche Bruchlast wie der höher bewehrte Versuch zu erreichen.

Bild 4-20: Verhältnis von erforderlicher zu vorhandener Durchstanzbewehrungsmenge A_{sw} für den Bemessungsansatz nach Eurocode 2 und EC2+NA(D) in der ersten Bügelreihe und nach Model Code 2010 im Bereich zwischen 0,3d und 1,0d

Für den Ansatz nach EC2+NA(D) wurde das Bemessungskonzept für die Bügel überarbeitet. In der ersten Bewehrungsreihe ist die 2,5-fache Menge der nach Eurocode 2 bestimmten Bewehrungsmenge erforderlich (Bild 4-20) und daher liegt ein größer Anteil der Versuche oberhalb der Winkelhalbierenden. Dieser Ansatz liegt zum Teil deutlich auf der sicheren Seite, da rechnerisch nun größere Durchstanzbewehrungsmengen erforderlich werden als in den Versuchskörpern vorhanden waren. Der Vergleich von erforderlicher zu vorhandener Bewehrung nach dem Model Code 2010 Ansatz wurde für die Bügel im Bereich zwischen 0,3d und 1,0d zur Stütze vorgenommen. Für große vorhandene Bügelquerschnitte werden rechnerisch zu kleine Werte bestimmt, sodass unsichere Ergebnisse möglich sind. Mit dem Vergleich von erforderlicher zu vorhandener Bewehrungsmenge wird der Bemessungsansatz für die Durchstanzbewehrung jeweils nur in einem Punkt auf dem Niveau der erreichten Bruchlast überprüft. Wirtschaftliche und sichere Ergebnisse liegen vor, wenn sich erforderliche und vorhandene Bewehrungsmenge entsprechen, also einen Wert von 1,0 ergeben. Größere Werte führen zu unwirtschaftlichen Ergebnissen, kleinere Verhältnisse zu unsicheren Ergebnissen.

Um den Einfluss der Durchstanzbewehrungsmenge auf die Bruchlasten zu überprüfen, sind die Tragfähigkeiten über der vorhandenen Durchstanzbewehrungsmenge aufzutragen (vergleiche Bild 4-19). Dies ist jedoch nur für Versuche mit ausschließlich variierter Durchstanzbewehrungsmenge aussägekräftig. Daher werden in Bild 4-21 die Bruchlasten und Durchstanzwiderstande der Durchstanzbewehrung mit der maximalen rechnerischen Durchstanztragfähigkeit normiert.

Bild 4-21: Traglaststeigerung in Abhängigkeit der bezogenen Kapazität der Bügel in Flachdecken nach Eurocode 2, EC2+NA(D) und Model Code 2010

Aus der Darstellung in Bild 4-21 ist für alle drei Normen ein degressiver Anstieg der Verhältnisse aus Bruchlast zur rechnerischer maximaler Durchstanztragfähigkeit ($V_{Test}/V_{Rk,max,Code}$) über der bezogenen Tragfähigkeit des durchstanzbewehrten Bereiches ($V_{sy}/V_{Rk,max,Code}$) zu erkennen, was die logarithmische Regression gut verdeutlicht. Durch den Bezug der rechnerischen Tragfähigkeit der Platte mit Durchstanzbewehrung auf die maximale Tragfähigkeit lässt sich der Anstieg der Bruchlasten auf den Einfluss einer

zunehmenden Durchstanzbewehrungsmenge zurückführen und die Modellvorstellung nach Bild 4-19 kann mit den Versuchsauswertungen bestätigt werden. Es wird jedoch deutlich, dass für alle untersuchten Bemessungsgleichungen Versuche vorliegen, in denen die Tragfähigkeit der Durchstanzbewehrung V_{sy} die Maximaltragfähigkeit unterschreitet, d.h. rechnerisch wurde ein Versagen innerhalb der Durchstanzbewehrung unterstellt. Diese Versuche werden durch die Bemessungsgleichungen von Eurocode 2, EC2+NA(D) und Model Code 2010 jedoch nicht eindeutig und gleich identifiziert. Werden für jede Versuchsauswertung separat die Versuche mit einem Verhältnis von $V_{sy}/V_{Rk,max} < 1,00$ aussortiert, ergibt sich die in Tabelle 4-5 dargestellte statistische Auswertung. Der Vergleich mit den Ergebnissen der Auswertung aller bügelbewehrter Versuche (Tabelle 4-5, Werte in Klammern) lässt einen geringen Anstieg der Mittelwerte und 5% Quantilwerte bei gleichzeitig leicht reduziertem Variationskoeffizienten erkennen. Die Auswertung von Versuchen mit einem Versagen auf dem Niveau der Maximaltragfähigkeit führt somit tendenziell zu einer verbesserten Vorhersagegenauigkeit. Diese Versuche mit einem der vorliegenden Bemessungsansätze rechnerisch zu identifizieren führt zu unterschiedlichen Ergebnissen.

	Euroco Amen	de 2 (mit dment)	EC2+NA(D)		Model Code 2010		
Mittelwert	1,13	(1,09)	1,11	(1,10)	1,01	(0,93)	
Variationskoeffizient	0,19	(0,19)	0,12	(0,12)	0,11	(0,17)	
5% Quantilwert	0,76	(0,74)	0,88	(0,88)	0,83	(0,67)	
Anzahl Versuche	46	58	13	58	26	58	

Tabelle 4-5:Statistische Auswertung zur maximalen Durchstanztragfähigkeit für Versuche
mit $V_{sy}/V_{Rk,max} \ge 1,00$ (in Klammern alle Versuche)

Insgesamt deuten die Auswertungen zum Einfluss der Durchstanzbewehrungsmenge in diesem Abschnitt darauf hin, dass nach Eurocode 2 und Model Code 2010 tendenziell zu geringe Bügelquerschnitte, nach EC2+NA(D) jedoch sehr große Bewehrungsquerschnitte bestimmt werden. Da die eingebaute Bügelmenge die Durchstanztragfähigkeit beeinflusst und sich mit zunehmender Durchstanzbewehrungsmenge die Durchstanztragfähigkeit weiter steigern lässt, sollte der rechnerische Durchstanzwiderstand auf das Bemessungskonzept für die Durchstanzbewehrung abgestimmt werden.

4.6 Einzelfundamente ohne Durchstanzbewehrung

4.6.1 Allgemeines

Von Ricker wurde in [16] von einer umfangreichen Literaturrecherche und der Erstellung einer Datenbank mit 259 Durchstanzversuchen an Einzelfundamenten ohne Durchstanzbewehrung berichtet. Im Rahmen der eigenen Arbeit wurde diese Datenbasis um eigene und neuere Versuche erweitert.

4.6.2 Datensammlung zu Durchstanzversuchen an Einzelfundamenten ohne Durchstanzbewehrung

In der Datensammlung mit Durchstanzversuchen an Einzelfundamenten sind 276 Versuche enthalten. Die Häufigkeitsverteilung über den Haupteinflussparametern statische Nutzhöhe,

Längsbewehrungsgrad, Betondruckfestigkeit und Schubschlankheit ist in Bild 4-22 dargestellt.

Bild 4-22: Häufigkeitsverteilung der 276 Durchstanzversuche an Einzelfundamenten ohne Durchstanzbewehrung

4.6.3 Auswahl der Versuche

In Tabelle 4-6 sind die Kriterien zur Versuchsauswahl zusammengestellt. Aufgrund der Fundamentform wurden keine Versuche ausgeschlossen. Die Fundamente wurden teilweise entlang Linienlager am Fundamentrand oder gleichmäßig auf Boden oder Federn gebettet. Durch die Linienlagerung kann sich die Wechselwirkung zwischen der fundamenttypischen flächigen Lagerung und der Stützenlast nicht einstellen, daher werden diese Versuche aussortiert. Für die Belastung auf Federn sind im Bereich unter der Stütze größere Pressungen als am Fundamentrand zu erwarten. In der Regel wird dadurch das Tragverhalten auf Baugrund realistischer abgebildet und größere Bruchlasten als bei einer gleichförmigen Belastung mit hydraulischen Pressen ermöglicht. Ebenfalls wurden Versuche in Anlehnung an das Vorgehen bei den Flachdeckenausschnitten mit einem Verhältnis von $V_{Test}/V_{u,flex} > 1,15$ aussortiert. Der im Vergleich zu den Versuchsauswertungen von Ricker [16] erweiterte Grenzwert von 1,15 beeinflusst die Ergebnisse der Versuchsnachrechnungen nur geringfügig und ist daher nach Auffassung des Verfassers noch zulässig.

Werden die vorgestellten Kriterien auf die Datensammlung von Durchstanzversuchen an Einzelfundamenten angewandt, stehen für eine Auswertung von Bemessungsansätzen insgesamt 147 Versuche zu Verfügung.

Tabelle 4-6: Kriterien zur Versuchsauswahl von Durchstanzversuchen an Einzelfundamenten ohne Durchstanzbewehrung für die Auswertung von Bemessungsansätzen

Bedingung	Auswahl	Anzahl Versuche	Kombiniert mit
	k	2	Х
Fundamentform	0	9	Х
Fundamentiorm	q	250	Х
	r	15	Х
	Linie	21	
Delecture exform	Boden	8	Х
Belastungsform	Federn	209	Х
	Gleichlast	38	Х
	k	23	X
Stütze	q	252	Х
	abgefugt	1	
	falsch	272	X
Stutzenkopiverstarkung	wahr	4	
	falsch	68	
Betonstani gerippt	wahr	208	Х
	wahr	215	X
Biegeversagen prüfen V_{-} AV_{-} < 1.15	falsch	49	
v Test v $u_s flex < 1, 13$	k.A.	12	
	Summe Versuche		147

k.A.: keine Angabe bzw. Bestimmung aufgrund fehlender Informationen nicht möglich

Die Häufigkeitsverteilung der ausgewählten Durchstanzversuche in Bild 4-23 belegt, dass Versuche mit praxisüblichen statischen Nutzhöhen (d > 500 mm) fehlen. Während der Bereich baupraktischer Längsbewehrungsgrade mit 0,3% bis 1,0% und Betondruckfestigkeiten zwischen 15 MPa und 30 MPa gut abgedeckt ist, scheinen die gedrungenen Fundamente mit Schubschlankheiten kleiner 2,5 noch nicht ausreichend berücksichtigt.

Verteilung statische

Nutzhöhe in (mm)

100

75

100

75

Bild 4-23: Häufigkeitsverteilung der 147 ausgewählten Durchstanzversuche ohne Durchstanzbewehrung zentrisch belasteter Einzelfundamente

4.6.4 Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand für Einzelfundamente ohne Durchstanzbewehrung

In den Versuchsnachrechnungen in Bild 4-24 fällt der starke Trend der Verhältniswerte von $V_{Test}/V_{Rk.c.EC2}$ über der Zylinderdruckfestigkeit auf. Dies kann zum einen auf den Ansatz der Druckstrebentragfähigkeit nach Eurocode 2 zurückgeführt werden, in dem der Stützenumfang und die Betondruckfestigkeit überproportional berücksichtigt werden. Der Bemessungsansatz der Druckstrebentragfähigkeit wird bei 47 Versuchen maßgebend, womit auch der allgemein hohe Mittelwert von 1,32 zu erklären ist. Besonders durch die vielen Versuche mit geringen Betondruckfestigkeiten werden, durch die Umrechnung von mittleren Betondruckfestigkeiten auf charakteristische Werte mit einem konstanten Vorhaltewert von -4 MPa, der rechnerische Durchstanzwiderstand übermäßig stark reduziert (vergleiche Bild 4-1). Werden die Versuche mit Betondruckfestigkeiten $f_{cm} \ge 20$ MPa getrennt ausgewertet, ergibt sich sowohl über der Betondruckfestigkeit als auch über der statischen Nutzhöhe ein annähernd trendfreier Verlauf der Verhältniswerte von $V_{Test}/V_{Rk,c,EC2}$. Die abschnittsweise Auswertung der Versuchsnachrechnung von Einzelfundamenten ohne Durchstanzbewehrung ist im Anhang dargestellt. Bis auf die Betondruckfestigkeit werden die übrigen Einflussparameter weitegehend trendfrei erfasst, jedoch ist die Streuung in den Ergebnissen der abschnittsweisen Auswertung teilweise sehr groß.

Der große Variationskoeffizient und der kleine 5% Quantilwert deuten darauf hin, dass der Bemessungsansatz für Einzelfundamente nur bedingt für eine wirtschaftliche und sichere Bemessung von Einzelfundamenten geeignet ist.

Bild 4-24: Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand für Einzelfundamente ohne Durchstanzbewehrung nach Eurocode 2

Für die Nachrechnungen nach EC2+NA(D) in Bild 4-25 wird der Nachweis entlang des Stützenumfangs nicht gefordert, sodass für die Versuche mit kleinen u_0/d -Verhältnissen größere Tragfähigkeiten bestimmt werden. Damit ist auch der Trend zu größeren Verhältnissen von $V_{Test}(1-A_{crit}/A)/V_{Rk,c,EC2+NA(D)}$ mit zunehmenden bezogenem Stützenumfang zu erklären. Dies war bei den Beratungen zum nationalen Anhang mitunter ein Grund, weshalb der empirische Vorfaktor von $C_{Rk,c} = 0,18$ auf 0,15 reduziert wurde. Ebenfalls sind die Ergebnisse von der statischen Nutzhöhe und der Schubschlankheit abhängig. Werden die Durchstanzversuche mit statischen Nutzhöhen $d \ge 400$ mm separat ausgewertet, ergibt sich für zunehmende Bauteildicken ein annähernd trendfreier Verlauf bei sehr geringem Sicherheitsniveau. Für schlanke Fundamente werden dagegen zu geringe rechnerische Durchstanzwiderstände bestimmt.

Bild 4-25: Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand für Einzelfundamente ohne Durchstanzbewehrung nach EC2+NA(D)

Bei der Nachrechnung der Durchstanzversuche nach EC2+NA(D) in Bild 4-25 wurde die Mindestdurchstanztragfähigkeit ebenfalls überprüft, die für insgesamt 57 Versuche der Versuchsauswahl mit Längsbewehrungsgraden $\rho_l < 0.5\%$ maßgebend wird. Wird die Mindestdurchstanztragfähigkeit bei der Auswertung nicht berücksichtigt, erhöht sich der Mittelwert auf 1,23 und der 5% Quantilwert wird bei leicht reduziertem Variationskoeffizienten $V_x = 0.17$ zu 0,89 bestimmt.

Für die Versuchsnachrechnung mit dem Bemessungsansatz nach Model Code 2010 in Bild 4-26 wurde das mittlere Biegemoment am Stützenrand analog zu [18] über Gleichgewichts-

bedingungen mit $m_{Sd} = \frac{V_{Ed}}{8} \left(1 - \frac{c}{b}\right)^2$ abgeschätzt. Hierin sind *c* die Stützen und *b* die Fun-

damentabmessung. Mit diesem Ansatz wird das Biegemoment leicht überschätzt, was nach der statistischen Auswertung zu größeren Mittelwerten führt.

Bild 4-26: Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand für Einzelfundamente ohne Durchstanzbewehrung nach Model Code 2010

Der Vergleich der Bruchlasten mit dem rechnerischen Durchstanzwiderstand nach Model Code 2010 führt trotz der detaillierteren Berechnung zu annähernd gleichen Trendabhängigkeiten wie nach EC2+NA(D). Nach der abschnittsweisen Auswertung der Nachrechnung der Bruchlasten nach Model Code 2010 (abgedruckt im Anhang zu diesem Bericht) werden für größere statische Nutzhöhen bei deutlich vergrößertem Variationskoeffizienten höhere Mittelwerte als nach EC2+NA(D) bestimmt.

4.7 Einzelfundamente mit Durchstanzbewehrung

4.7.1 Allgemeines

Ebenfalls von Ricker wurde in [16] Durchstanzversuche in einer Datensammlung zusammengetragen. Diese Datensammlung konnte durch fünf eigene Versuche mit Bügeln als Durchstanzbewehrung erweitert werden, sodass 24 Durchstanzversuche an Einzelfundamenten für Vergleichsrechnungen zur Verfügung stehen.

4.7.2 Datensammlung zu Durchstanzversuchen an Einzelfundamenten mit Durchstanzbewehrung

Die Häufigkeitsverteilung der Datensammlung mit Durchstanzversuchen an Einzelfundamenten mit Durchstanzbewehrung ist in Bild 4-27 dargestellt.

Bild 4-27: Häufigkeitsverteilung der 24 Durchstanzversuche an Einzelfundamenten mit Durchstanzbewehrung

4.7.3 Auswahl der Versuche

In Tabelle 4-7 sind die Kriterien zur Versuchsauswahl zusammengestellt. Es wurden bisher nur quadratische Fundamentformen mit angeformten Stützen ohne Stützenkopfverstärkung getestet. Für alle Versuche wurde ein Verhältnis von $V_{Test}/V_{u,flex} < 1,00$ erreicht.

Werden die vorgestellten Kriterien auf die Datensammlung von Durchstanzversuchen an Einzelfundamenten angewandt, stehen für eine Auswertung von Bemessungsansätzen insgesamt 10 Versuche zur Verfügung. Darin enthalten sind ein Versuch mit Schräg-

aufbiegungen und ein auf Sand gelagerter Versuch. Der praxisübliche Bereich ist damit nur unzureichend abgedeckt, was bei der Bewertung von Bemessungsvorschlägen zu beachten ist.

Bedingung Auswahl		Anzahl Versuche	Kombiniert mit
	Linie	10	
Belastungsform	Boden	2	Х
	Gleichlast	12	Х
Stütze	k	10	Х
	q	14	Х
	Bügel	13	Х
Durchstanzbewehrung	Abstandshalter/ Zulagen	7	
	Aufbiegungen	3	Х
	DKA	1	
	Summe Vers	10	

Tabelle 4-7: Kriterien zur Versuchsauswahl von Durchstanzversuchen an Einzelfundamenten ohne Durchstanzbewehrung für die Auswertung von Bemessungsansätzen

4.7.4 Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand für Einzelfundamente mit Durchstanzbewehrung

Die Nachrechnungen der Versuche nach Eurocode 2 und der Vergleich mit den erreichten Bruchlasten in Bild 4-28 belegen sehr geringe rechnerische Tragfähigkeiten, die auf den Nachweis der Druckstrebentragfähigkeit zurückgeführt werden können. Dadurch ergibt sich der hohe Mittelwert von 2,76 der zu einer konservativen, jedoch auch sicheren Bemessung führt. Die Regelung des Amendment zu Eurocode 2 aus dem Jahr 2013 greift bei keinem der ausgewählten Versuche.

Bild 4-28: Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand für Einzelfundamente mit Durchstanzbewehrung nach Eurocode 2

Die Nachrechnung der Versuche mit dem Bemessungsansatz von EC2+NA(D) (Bild 4-29) belegt für zwei Versuche deutlich größere Bruchlasten. Dies sind der auf Sand gebettete Versuch DF9 und der Versuch mit einer Durchstanzbewehrung aus Schrägstäben S1-S. Werden diese Versuche aus der statistischen Auswertung herausgenommen, ermittelt sich der Mittelwert bei einem sehr kleinem Variationskoeffizienten von $V_x = 0,08$ zu $x_m = 1,06$. Die restlichen Versuche werden durch den Bemessungsansatz gut erfasst. Es ist jedoch zu bemerken, dass nur eine geringe Variation der Betondruckfestigkeit, des bezogenen Stützenumfangs und des Biegebewehrungsgrades für die Auswertung zur Verfügung stehen.

Bild 4-29: Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand für Einzelfundamente mit Durchstanzbewehrung nach EC2+NA(D)

Für die Nachrechnung des Ansatzes von Model Code 2010 (Bild 4-30) ergeben sich vergleichbare Tendenzen wie nach EC2+NA(D), jedoch liegen Mittelwert und 5% Quantilwert deutlich unter den Ergebnissen von EC2+NA(D). Für die Nachrechnungen des Maximaltragfähigkeitsansatzes wurde eine ausreichende Tragfähigkeit der Durchstanzbewehrung vorausgesetzt, dies soll im folgenden Abschnitt 4.7.5 genauer überprüft werden.

Die Auswertung ohne die Versuche DF9 und S1-S führt zu einem Mittelwert von 0,83 und einem Variationskoeffizienten von V_x = 0,08.

4.7.5 Einfluss der Durchstanzbewehrungsmenge

Um den Einfluss der Durchstanzbewehrungsmenge auf die Bruchlasten von Einzelfundamenten zu überprüfen, werden in Bild 4-31 die Bruchlasten und rechnerisch bestimmten Tragfähigkeiten der Durchstanzbewehrung mit der maximalen Durchstanztragfähigkeit normiert. Wegen der nach Eurocode 2 unterschätzten Bruchlasten und der daraus resultierenden großen Verhältnisse von $V_{Test}/V_{Rk,max}$ und $V_{sy}/V_{Rk,max}$ wurden die Maximalwerte der *x*- und *y*- Achsen für die Auswertung nach Eurocode 2 angepasst. Grundsätzlich lassen sich die gleichen Trends in den Versuchsauswertungen von Durchstanzversuchen mit Bügeln in Flachdecken (vergleiche Abschnitt 4.5.5) auch bei den Versuchsauswertungen von Einzelfundamenten erkennen. Nach Eurocode 2 ergibt sich für alle geprüften Versuche ein Versagen auf dem Niveau der maximalen Durchstanztragfähigkeit und größere rechnerische Tragfähigkeiten der Durchstanzbewehrung führen zu deutlich größeren Bruchlasten. Aufgrund der starken Trendabhängigkeiten des Bemessungsansatzes (vergleiche Bild 4-28) lassen sich die Ergebnisse in Bild 4-31 jedoch nur eingeschränkt für weitere Auswertungen verwenden. Für die Auswertung nach EC2+NA(D) kann festgestellt werden, dass in den meisten Versuchen die rechnerische Maximaltragfähigkeit mit $V_{Sy,EC2+NA(D)}/V_{Rk,max,EC2+NA(D)} > 1,0$ maßgebend ist. Für die Auswertung nach Model Code 2010 wird für die Versuche ein rechnerisches Versagen der Bügelbewehrung unterstellt. Dies deutet darauf hin, dass mit einer weiteren Erhöhung der Durchstanzbewehrungsmenge deutlich größere Bruchlasten möglich sind.

Bild 4-31: Traglaststeigerung in Abhängigkeit der bezogenen Kapazität der Bügel in Einzelfundamenten nach Eurocode 2, EC2+NA(D) und Model Code 2010

In [18] wurden anhand von Parameterstudien und dem Vergleich mit Versuchsergebnissen die Regelungen nach Eurocode 2, EC2+NA(D) und Model Code 2010 miteinander verglichen (Bild 4-32). Insbesondere für die Tragfähigkeit der Durchstanzbewehrung sind die gleichen Tendenzen wie in Bild 4-31 zu beobachten.

Bild 4-32: Vergleich der erforderlichen Durchstanzbewehrungsquerschnitte aus [18]

In Bild 4-32 sind die nach den verschiedenen Normen erforderlichen Mengen der Durchstanzbewehrung in Abhängigkeit der einwirkenden Querkraft auf Gebrauchslastniveau ohne eine Berücksichtigung der Mindestdurchstanzbewehrung miteinander verglichen. Die Maximaltragfähigkeit nach Eurocode 2 ist für die berechneten Beispielfundamente kleiner als die rechnerische Tragfähigkeit ohne Durchstanzbewehrung, sodass eine Steigerung der Durchstanztragfähigkeit durch die Anordnung einer Durchstanzbewehrung nicht möglich ist.

Mit den Bemessungsansätzen nach Model Code 2010 und EC2+NA(D) kann für die dargestellten Beispiele die Tragfähigkeit durch eine Bügelbewehrung gesteigert werden. Für Model Code 2010 ergibt sich durch die größere Rotation, die einerseits den Betontraganteil $V_{R,c}$ reduziert und andererseits die ausnutzbare Stahlspannung vergrößert, ein leicht überproportionaler Anstieg der erforderlichen Bewehrungsmenge. Da nach EC2+NA(D) kein Betontraganteil bei der Bestimmung des Durchstanzwiderstands angesetzt wird, bleibt die Tragfähigkeit für kleine Bewehrungsmengen zunächst konstant. Oberhalb dieses Mindestwertes steigt nach EC2+NA(D) der Durchstanzwiderstand linear an, bis die Maximaltragfähigkeit erreicht ist.

Die Vergleiche in Bild 4-32 verdeutlichen, dass nach Model Code 2010 eine erheblich größere Querschnittsfläche der Durchstanzbewehrung als nach EC2+NA(D) erforderlich ist. Die Ermittlung der ausnutzbaren Bügelspannung in Abhängigkeit der Schubrissbreite bzw. der Plattenrotation nach Model Code 2010 ist der Grund für diese Vergrößerung der Durchstanzbewehrung. Es ist zu vermuten, dass die Bruchkinematik bei gedrungenen Einzelfundamenten nicht allein durch die Plattenrotation bestimmt wird, sondern auch ein erheblicher translatorischer Anteil auftritt, der eine deutlich größere als die rechnerische Schubrissbreite ergibt. Der Vergleich mit Durchstanzversuchen, die das typische Versagensmuster bei maximaler Durchstanztragfähigkeit aufweisen, belegt die nach Model Code 2010 sehr konservative Bestimmung der erforderlichen Durchstanzbewehrung.

4.8 Einfluss des Versuchstandes und der Versuchsdurchführung

In den vorgestellten Untersuchungen zur Auswertung der Datenbanken ergeben sich zum Teil sehr große Variationskoeffizienten. Zum Vergleich sind in Tabelle 4-8 die Mittelwerte und Variationskoeffizienten der Datenbankauswertung von Flachdeckenausschnitten ohne Durchstanzbewehrung getrennt nach Versuchsständen/Forschern für die drei vorgestellten Normen angegeben. Dabei wurden die Forscher berücksichtigt, die mehr als fünf Versuche

an Flachdeckenausschnitten ohne Durchstanzbewehrung durchgeführt haben. Die Datensammlung von Durchstanzversuchen an Flachdecken mit Durchstanzbewehrung weisen zusätzliche Einflussparameter wie die Form der Durchstanzbewehrung auf; bei Einzelfundamenten ohne Durchstanzbewehrung ist es die Art der Lagerung, die eine zusätzliche Streuung der Ergebnisse erwirkt. Daher werden diese Datenbanken nicht für den Vergleich herangezogen. Aus den Auswertungen in Tabelle 4-8 ist ersichtlich, dass für die Versuchsreihen einzelner Forscher in der Regel deutlich geringere Variationskoeffizienten als bei einer gemeinsamen Auswertung aller Versuche bestimmt werden.

Forscher	Anzahl	Eurocode 2		EC2+I	EC2+NA(D)		MC2010(LoAIII)	
	Versuche	X_m	V_x	x_m	V_x	x_m	V_x	
Roll	8	1,37	6,2	1,37	6,2	1,21	6,0	
HOLMBERG & Forssell	7	1,74	5,5	1,51	6,3	1,61	6,2	
HALLGREN	6	0,96	14,4	0,93	14,6	1,16	7,4	
TOMASZEWICZ	13	1,11	7,6	1,22	6,2	1,20	5,3	
Olliviera	7	1,13	8,0	1,13	7,8	1,27	6,5	
GUANDALINI / LIPS	16	0,92	25,0	0,92	25,0	1,22	14,3	
Lı	6	1,11	18,8	1,18	12,0	1,00	15,8	
RAMDANE	15	1,30	12,3	1,30	12,3	1,38	8,5	
SISTONEN	10	1,37	5,0	1,40	4,5	1,36	6,6	
ELSTNER/HOGNESTAD	24	1,19	13,4	1,21	15,1	1,14	13,4	
Urban	11	1,24	8,8	1,25	8,8	1,34	10,2	
GARDNER	27	1,26	22,3	1,32	21,6	1,12	21,3	
RANKIN & LONG	18	1,61	9,1	1,61	9,1	1,31	11,5	
MARZOUK & HUSSEIN	31	1,49	15,0	1,49	15,0	1,29	11,1	
REGAN	29	1,41	17,5	1,40	16,2	1,35	8,7	
MOE	8	1,33	9,6	1,33	9,6	1,36	6,7	
MANTEROLA	8	0,98	14,4	1,00	14,6	1,36	16,4	

Tabelle 4-8: Auswertung der Bemessungsgleichungen getrennt nach Forschern

 x_m : Mittelwert; V_x : Variationskoeffizient

Die Versuche von Holmberg & Forssell [35] weisen die größten Verhältnisse von Versuchsbruchlast zur rechnerischen Tragfähigkeit $V_{Test}/V_{R,calc}$ auf. Dies kann auf die Umrechnung auf charakteristische Werte der getesteten, geringen Betondruckfestigkeiten von etwa $f_{c,cyl} = 12$ MPa zurückgeführt werden. Durch die Umrechnung auf charakteristische Werte mit dem konstanten Vorhaltemaß von - 4 MPa werden relativ gesehen kleine Betondruckfestigkeiten deutlich stärker reduziert als größere (Bild 4-1). Dadurch ergeben sich kleine rechnerische Tragfähigkeiten die große Verhältniswerte von V_{Test}/V_R für die vorgestellten Normen verursachen. Die Auswertung nach Eurocode 2 und EC2+NA(D) belegt ebenfalls für die Versuche von Rankin & Long [36] größere bezogene Bruchlasten. Diese Versuche

wurden mit ausschließlich kleinen statischen Nutzhöhen d < 54 mm getestet, sodass die Begrenzung des Maßstabsfaktor auf $k \le 2,0$ den rechnerischen Durchstanzwiderstand ebenfalls verfälscht.

Allgemein kann festgehalten werden, dass Versuche einzelner Forscher in identischen Versuchseinrichtungen und daher unter annähernd gleichen Randbedingungen zu kleineren Streuungen der Versuchsergebnisse führen.

Für die Bewertung von Bemessungsgleichungen, Entwicklung von empirischen Bemessungsansätzen oder der Überprüfung von Ingenieurmodellen ist es daher zweckmäßig, sowohl die Anzahl der getesteten Versuche als auch einen Mindestwert für den Variationskoeffizienten zu berücksichtigen. Dies lässt sich auch durch eine Mindestanzahl unterschiedlicher Forscher und Forschungseinrichtungen erreichen und systematische Einflüsse auf das Ergebnis werden reduziert. Um einzelne Einflussparameter auf Ihre Trendabhängigkeit hin zu prüfen, sind systematische Versuchsserien mit Variation einzelner Einflussparameter hilfreich. Damit steigt jedoch auch die Gefahr eines systematischen Fehlers an.

Einen weiteren Einfluss auf die erzielten Versuchsergebnisse hat der Versuchsaufbau. Bei quadratischen entstehen im Vergleich zu kreisförmigen Deckenausschnitten in den Plattenecken zusätzliche Drillmomente, die die Querkraftverteilung beeinflussen. Auch die Lasteinleitung und die Stützengeometrie beeinflusst die Querkraftverteilung vor der Stütze (Bild 4-33). Diese Einflüsse lassen sich auch mit der Plattentheorie [37] belegen. Werden bei gleichmäßig belasteten Platten mit Randlagerung in Plattenmitte die Schnittgrößen m und die Maximalwerte der Vorformung w miteinander verglichen, ergeben sich mit einer linear elastischen Berechnung bei einer kreisförmigen Platte etwa 20% größere Schnittgrößen und 27% größere Durchbiegungen als bei einer quadratischen Platte mit gleicher Stützweite l, obwohl die quadratische Platte eine größere Gesamtfläche aufweist. Demzufolge wird bei exakt gleicher Ausführung eine kreisförmige Platten deutlich früher versagen als eine quadratische Platte.

Bild 4-33: Vergleich der Maximalwerte der Durchbiegung und des Biegemoments für kreisförmige und quadratische Platten

Die Versuche der Datenbank an Flachdeckenausschnitten ohne Durchstanzbewehrung werden daher getrennt nach den Kombinationen aus Form des Deckenausschnitts, der Lasteinleitung und der Stützengeometrie ausgewertet.

Form des Decken-	Form der Lastein-	Form der Stütze	Anzahl Versuche	Eurocode 2		EC NA	2+ (D)	MC (LoA	2010 AIII)
ausschnitt	leitung			X_m	V_x	x_m	V_x	X_m	V_x
k; o	k	k	98	1,24	19,8	1,26	19,3	1,25	16,9
k; o	k	q; r	12	1,02	25,3	1,03	27,2	1,07	25,5
qa	k	k	6	1,12	6,4	1,17	6,6	1,15	15,3
qa	k	q; r	27	1,03	19,3	1,04	18,8	1,21	14,5
qa	q	k	27	1,43	15,2	1,39	10,2	1,42	11,1
qa	q	q; r	139	1,29	19,4	1,30	19,1	1,25	14,4
qs	k	q; r	1	1,12	-	1,12	-	1,15	-
qs	q	q; r	17	1,13	7,9	1,22	5,8	1,20	5,6

Tobollo 1 Or	Augurtung da	. Domoooungogloichungon	actropht poch	Varoucheouthout
	AUSWEITUNG OEI	Bernessunosoleichunden	oenenni nach	versucosauloau
	/ addition tailing addi	Democoungegienenungen	gouorniuniuorr	Voloaonoaanoaa

k: kreisförmig, o: oktogonal; q: quadratisch; r: rechteckig;

qa: quadratisch mit abhebenden Ecken; qs: quadratisch mit festgehaltenen Ecken

Die Ergebnisse sind in Tabelle 4-9 gegenübergestellt und lassen sich wie folgt zusammenfassen:

- Quadratische Deckenausschnittsformen mit quadratischer Lasteinleitung erreichen höhere Versuchsbruchlasten als bei kreisförmiger Lasteinleitung.
- Bei gleichen Deckenausschnitts- und Stützenformen werden mit einer quadratischen Anordnung der Lasteinleitung größere Bruchlasten als mit kreisförmiger Lasteinleitung erreicht.
- Bei gleichen Deckenausschnittsformen und Lastanordnungen werden mit kreisrunden Stützen größere Versuchsbruchlasten als bei quadratischen oder rechteckigen Stützen erreicht.

Mit den Ergebnissen in Tabelle 4-9 ist ein Einfluss der Stützengeometrie und des Versuchsaufbaus belegt. Der Einfluss der Stützenform (quadratisch/rechteckig bzw. kreisförmig) kann auf die Schubspannungsverteilung in der Platte vor der Stütze zurückgeführt werden. Bei einer kreisrunden Stütze kann sich ein gleichmäßiger Spannungszustand in der Platte umlaufend um die Stütze einstellen (ideal rotationssymmetrisch) wodurch Spannungsspitzen, wie zum Beispiel im Bereich der Ecken rechteckiger Stützenformen, verringert werden. Dies wirkt sich traglaststeigernd aus, da die Wahrscheinlichkeit eines sukzessiven Versagens ("Reißverschlussversagen") reduziert ist. Ein weiterer traglaststeigernder Effekt ist einer behinderten Verformung des freien Plattenrandes zuzuschreiben. Die aus dem Reibungsanteil resultierende, traglaststeigernde Horizontalkraft verursacht einen Membranspannungszustand und erhöhte Bruchlasten sind möglich. Erfolgt die Lasteinleitung über Linienlager an den Bauteilrändern sind Horizontalkräfte in der Platte wahrscheinlich. In den vorgestellten Durchstanzversuchen wird eine gelenkige Lasteinleitung unter den gradlinigen Rändern des Versuchskörpers vorausgesetzt. Ob die Lasteinleitung jedoch auch eine horizontale Bewegung der Platte zulässt, lässt sich anhand der Versuchsberichte nicht

zweifelsfrei klären. Vor dem Hintergrund eines deutlich gesteigerten Aufwands durch den Einbau zusätzlicher Gleit- und Verformungslager scheint dies jedoch unwahrscheinlich.

Ein weiterer Effekt kann mit den Systemen zur Bestimmung der Biegetragfähigkeit [24][25] oder dem Vergleich in Bild 4-33 beschrieben werden. Die Momentenbeanspruchung in der quadratischen Platte ist bei gleicher Querkraft kleiner als im kreisförmigen Plattenausschnitt. Somit ergibt sich in der quadratischen Platte ein kleineres Momenten-Querkraft-Verhältnis, das größere Tragwiderstände ermöglicht.

Von Beutel wurde in [24] der Einfluss der Versuchsanordnung auf die Durchstanztragfähigkeit näher untersucht und Durchstanzversuche mit zwei unterschiedlichen Versuchsständen durchgeführt. Die Belastung der Versuchskörper erfolgte über einen Hydraulikzylinder unter der Stütze. Im Versuchsstand Typ A aus [24] wurden als Widerlager zwölf Abspannungen mit identischem Abstand untereinander, kreisförmig um die Stütze angeordnet. Im Versuchsstand Typ B waren die Abspannungen zusätzlich auf einem gemeinsamen Olpolster gelagert. Während sich in Versuchsstand Typ A eine steifigkeitsabhängige Verteilung der Schubspannungen einstellt, ist in Typ B die Kraft in den Abspannungen identisch und die Querkraftbeanspruchung ist gleichmäßig verteilt. Der Vergleich mit Versuchsergebnissen von Beutel belegt, dass für den Versuchsstand Typ A mit einem mittleren Lasterhöhungsbeiwert von $\beta = 1,24$ zu rechnen ist. Diese lokal erhöhte Beanspruchung wird durch den direkten Lastabtrag im Bereich der Plattendiagonale etwas entschärft, da bei quadratischen Stützen und kreisförmiger Lasteinleitung eine reduzierte Schubschlankheit vorliegt. Nach Beutel ergeben sich im Mittel für Versuchsstand Typ A mit steifigkeitsabhängiger Verteilung der Schubspannungen etwa um 15 % reduzierte Durchstanztragfähigkeiten als für den Versuchsstand Typ B mit gemeinsamen Ölpolster und gleichmäßig verteilter Querkraftbeanspruchung.

In Bild 4-34 werden Versuchsstände mit reduzierten Einflüssen zur Bestimmung der Durchstanztragfähigkeit vorgestellt.

Bild 4-34: Versuchskörper und Versuchsstand mit reduzierten Einflüssen zur Bestimmung der Durchstanztragfähigkeit

Der Versuchsstand hat einen systematischen Einfluss auf die erzielten Versuchsergebnisse, der sich jedoch allgemein nicht quantifizieren lässt, da sich traglastmindernde Einflüsse wie eine ungleichmäßige Querkraftanstrahlung und traglaststeigernde Einflüsse wie Membrankräfte oder ein direkterer Lasteintrag überlagern. Diese Effekte lassen sich durch den rotationssymmetrischen Versuchsaufbau in Bild 4-34 mit annähernd kreisrunden Plattenaus-
schnitten, einer gleichmäßigen Lasteinleitung am freien Rand und kreisrunden Stützen reduzieren.

4.9 Durchstanzversuche an Randstützen ohne Durchstanzbewehrung

4.9.1 Allgemeines

Von Tuchlinski, Vocke und Zilch [38][39][40][41] wurden Versuchsdaten zu Durchstanzversuchen an Flachdecken im Bereich von Randstützen zusammengestellt. Ausgehend von dieser Datensammlung wurden von Hegger/Ricker/Häusler in [42] die Versuche nach unterschiedlichen Bemessungsansätzen ausgewertet. Für die eigenen Versuchsnachrechnungen wurde die Datensammlung von Durchstanzversuchen an Randstützen überprüft und erweitert, sodass 112 Versuche zur Verfügung stehen.

4.9.2 Datensammlung zu Durchstanzversuchen an Randstützen im Bereich von Flachdecken ohne Durchstanzbewehrung

Die Häufigkeitsverteilung über den Haupteinflussparametern ist in Bild 4-35 dargestellt.

Bild 4-35: Häufigkeitsverteilung der 112 Durchstanzversuche an Randstützen ohne Durchstanzbewehrung

Während die ausgeführten Längsbewehrungsgrade und Betondruckfestigkeiten den Bereich der baupraktischen Anwendung gut abdecken, wurden die meisten Versuche mit kleiner statischer Nutzhöhe getestet. Für die Bestimmung des bezogenen Stützenumfangs u_0/d wurde der Stützenumfang u_0 bestimmt, der für den Lastabtrag der letzten Druckstrebe

verantwortlich ist. Dies ist in der Regel die Länge von den der Platte zugewandten Stützenseiten.

4.9.3 Auswahl der Versuche

Im Rahmen einer ausgiebigen Recherche waren nicht alle Versuchsberichte erhältlich, sodass ein Teil der Daten nicht überprüft werden konnte. Diese Versuche wurden für eine weitere Auswertung ausgeschlossen. Aus den übrigen Berichten war zu entnehmen, dass sehr unterschiedliche Systeme mit verschiedenen Lagerungs- und Belastungsbedingungen getestet wurden. Neben Flachdeckenausschnitten mit einer Stütze wurden Plattensysteme getestet, die auf zwei bis neun Stützen gelagert und mit Einzellasten bis hin zu annähernd gleichmäßig verteilter Last belastet waren. Ebenso wurden unterschiedliche Stützenabmessungen und Ausmitten geprüft.

Bedingung	Auswahl	Anzahl Ver- suche	Kombiniert mit	
	k	1	Х	
C4::4==	q	70	Х	
Stutze	r ($c_1/c_2 \le 2,0$)	33	Х	
	r ($c_1/c_2 > 2,0$)	8		
Statiasha Nutzhäha	$d \le 50 \text{ mm}$	14		
Statische Nutzhone	<i>d</i> > 50 mm	98	Х	
A	$e/c_1 = 0$	19		
Ausmitte	$e/c_1 > 0$	93	Х	
	А	34	Х	
	Platte auf 2 Stützen	28	Х	
System	Platte auf 4 Stützen	1	Х	
	Platte auf 6 Stützen	8	Х	
	Platte auf 9 Stützen	12	Х	
	k.A.	29		
Overla übernerüft	wahr	91	Х	
Quelle uberpruit	falsch	21		
	Summe Vers	66		

 Tabelle 4-10:
 Kriterien zur Versuchsauswahl von Durchstanzversuchen an Randstützen ohne Durchstanzbewehrung für die Auswertung von Bemessungsansätzen

k.A.: keine Angabe bzw. Bestimmung aufgrund fehlender Informationen nicht möglich

In Tabelle 4-10 sind die Kriterien für die Auswahl aus den 112 Versuchen zusammengestellt. In den meisten Fällen wurden quadratische oder rechteckige Stützen geprüft. Aufgrund der stärker ausgeprägten Schubspannungen bei großen Verhältnissen von $c_{max}/c_{min} > 2,0$ wurden diese Versuche von der Auswertung ausgeschlossen. Ebenfalls wurden Versuche mit statischen Nutzhöhen $d_m \le 50$ mm nicht berücksichtigt, da sie weit außerhalb der üblichen Deckendicken von Flachdecken einzuordnen sind. Wegen der hohen Anzahl von Versuchen mit statischen Nutzhöhen d_m zwischen 50 und 100 mm wurde diese Versuchsgruppe jedoch bei der Auswahl berücksichtigt, um die Datenbasis nicht zu stark zu reduzieren. Aufgrund der in der Regel üblichen, biegesteifen Verbindung zwischen der Randstütze und der Deckenplatte und der damit übertragenen Einspannmomente wurden die Versuche ohne Ausmitte mit $e/c_1 = 0$ nicht berücksichtigt. Die Versuchskörper zur Überprüfung des Durchstanztragverhaltens von Randstützen lassen sich in Flachdeckenausschnitte (A) und Plattensysteme unterteilen. Während bei Flachdeckenausschnitten in der Regel die Stütze belastet und der Plattenausschnitt an drei Rändern aufgelagert wurde, sind die Plattensysteme auf mehreren Stützen aufgelagert und die Platte ist mit unterschiedlich vielen Einzellasten belastet. Dies beeinflusst stark die Querkraftverteilung vor der Stütze und lässt sich nur mit genaueren Untersuchungen an jedem einzelnem Versuchskörper zum Beispiel mit der Methode der Finiten-Elemente oder Sektormodellen herausarbeiten. Um die Unregelmäßigkeiten in den Systemen und Belastungen bei der Auswertung zu berücksichtigen, wurde der Einfluss des Systems vernachlässigt und die Versuche bei der Auswahl berücksichtigt. Dies führt zu einer größeren Streuung der Ergebnisse.

Bild 4-36: Häufigkeitsverteilung der 66 ausgewählten Durchstanzversuche an Randstützen von Flachdecken ohne Durchstanzbewehrung

Der Längsbewehrungsgrad wurde wenn möglich in eigenen Berechnungen bestimmt. Dabei wurde der Bewehrungsquerschnitt getrennt ermittelt, der jeweils im Bereich der Stütze und daneben sowohl senkrecht als auch parallel zum freien Plattenrand angeordnet ist. Der Bewehrungsgrad ρ_{lx} wurde in *x*-Richtung (senkrecht zum freien Plattenrand) in einer Breite c_y+2c_x und der Bewehrungsgrad ρ_{ly} in einem Bereich $2c_x$ bestimmt.

Auffällig sind zwei Versuche (D1 und F1) von Tankut [43], die sowohl nach Eurocode 2, als auch für die Nachrechnungen nach EC2+NA(D) und Model Code 2010 deutlich kleinere Verhältniswerte $V_{Test}/V_{Rk,c,Code}$ ergaben. Von Tankut wurden insgesamt acht Randstützen in zwei Flachdeckensysteme getestet. Die Beschreibung des Versuchsablauf und der Vergleich der Randstützenversuche innerhalb der Versuchsserie deuten darauf hin, dass bereits während der Vorbelastungen von System 1 eine Vorschädigung der Platten-Stützen Knoten D1 und F1 aufgetreten ist und daher der volle Durchstanzwiderstand nicht mehr erreicht werden konnte. Daher werden diese beiden Versuche von der Auswertung ausgenommen.

4.9.4 Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand für Flachdecken ohne Durchstanzbewehrung im Bereich von Randstützen

In Bild 4-37 ist die im Versuch bestimmte Bruchlast mit der rechnerischen Tragfähigkeit nach Eurocode 2 verglichen. Dabei wurde der Lasterhöhungsbeiwert β mit der plastischen Schubspannungsverteilung für die Randstützen im Rundschnitt u_1 im Abstand 2*d* bestimmt, die Gleichungen sind in DAfStb Heft 600 [15] angegeben. Da mit den verschiedenen Systemen bereits ein breites Feld an unterschiedlichen Schubspannungsverteilungen geprüft wurde, ist ein Variationskoeffizient von $V_x = 0,21$ als gut zu bewerten. Durch die Berücksichtigung des Lasterhöhungsbeiwertes β werden sichere Ergebnisse erzielt, was an dem 5% Quantilwert von 1,02 > 1,00 gut zu erkennen ist. Der Vergleich mit dem Ansatz eines konstanten Lasterhöhungsbeiwert von $\beta = 1,40$ ergibt für die vorgestellte Datenauswahl einen Mittelwert von $x_m = 1,31$ und einen Variationskoeffizienten $V_x = 0,26$ und unterschreitet den Zielwert des 5% Quantilwertes mit 0,75 deutlich.

Die Nachrechnung der Versuchsbruchlasten in Bild 4-37 wurde mit der Begrenzung des Maßstabsfaktor $k \le 2,0$ dargestellt. Wird diese normative Grenze bei der Versuchsnachrechnung nicht berücksichtigt, wird mit einem Mittelwert von $x_m = 1,23$ und einem Variations-koeffizient von $V_x = 0,20$ ein 5% Quantilwert von 0,81 bestimmt und die Trendabhängigkeit der Ergebnisse ist deutlich reduziert. Zudem ergibt sich für zunehmende statische Nutzhöhen ein Aufwärtstrend, der zu größeren Verhältnissen von $V_{Test}/V_{Rk,c,EC2}$ führt.

Für die vorgestellte Datenauswahl kann festgestellt werden, dass sowohl die Druckstrebentragfähigkeit im Rundschnitt u_0 als auch die Mindestdurchstanztragfähigkeit nicht maßgebend wird. Da die Reduzierung des Vorfaktors $C_{Rk,c}$ für kleine bezogene Stützenumfänge $u_0/d < 4$ wie bei Flachdecken bei einer Auswertung nach EC2+NA(D) nicht erforderlich ist, ergeben sich nach EC2+NA(D) die gleichen Ergebnisse wie nach Eurocode 2 und werden daher nicht wiederholt.

Bild 4-37: Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand für Flachdecken ohne Durchstanzbewehrung im Bereich von Randstützen nach Eurocode 2 (und EC2+NA(D))

Für die Versuchsnachrechnungen nach Model Code 2010 sind neben der Angabe des maximalen Zuschlagsdurchmessers auch die Streckgrenze der Längsbewehrung und der E-Modul erforderlich. Konnten diese Daten nicht aus den Versuchsberichten entnommen werden, wurde der maximale Zuschlagsdurchmesser zu $d_g = 12$ mm, die Streckgrenze zu $f_{ym} = 400$ MPa und der E-Modul zu $E_s = 200.000$ MPa angenommen. Vergleichende Auswertungen mit anderen Vorhaltewerten ergaben bei nahezu unverändertem Variationskoeffizienten geringfügig kleinere oder größere Mittelwerte.

Zur Bestimmung der Durchstanztragfähigkeit mit dem Level III Verfahren ist zudem der Abstand zum Momentennullpunkt der radialen Plattenbiegemomente in x und y-Richtung sowie das Moment im Bereich des Stützstreifens mit einer linear-elastischen Finite-Elemente

Berechnung zu bestimmen. In eigenen Rechnungen an Flachdeckenausschnitten konnte beobachtet werden, dass die Ergebnisse stark von der Netzfeinheit und den gewählten Programmeinstellungen abhängig sind und die Nachrechnung aller 64 Durchstanzversuche einen erheblichen Aufwand verursacht. Für die Nachrechnung der Bruchlasten mit dem Ansatz nach Model Code 2010 wurde daher die Näherungsstufe LoA II verwendet. Bei dieser Approximationsstufe dürfen die Abstände r_{sx} und r_{sy} zu den Momentennullpunkten mit 0,221 abgeschätzt werden. Für die ausgewählten Versuche konnten die Abstände r_{sx} und r_{sy} für jedes System mit den Lagerungsbedingungen und der Belastung mit Hilfe einer Handrechnung direkt ermittelt werden.

Bild 4-38: Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand für Flachdecken ohne Durchstanzbewehrung im Bereich von Randstützen nach Model Code 2010

Die Nachrechnung der Versuche führt zu einer geringfügig größeren Streuung als nach Eurocode 2 und EC2+NA(D). Gleichzeitig wird jedoch auch ein etwas größerer Mittelwert bestimmt, sodass der 5% Quantilwert von 0,96 noch annehmbar erscheint. Mit zunehmender statischer Nutzhöhe sind kleinere Verhältnisse von $V_{Test}/V_{Rk,c,MC2010}$ zu erkennen. Wie die abschnittsweise Auswertung in Bild 4-39 belegt, werden für die größeren statischen Nutzhöhen jedoch kleinere Streuungen und daher auch größere 5% Quantilwerte bestimmt.

Bild 4-39: Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand und abschnittsweiser Auswertung des 5% und des 95% Quantilwertes für Flachdecken ohne Durchstanzbewehrung im Bereich von Randstützen nach Model Code 2010

Nach Model Code 2010 wird der Einfluss der ungleichmäßigen Querkraftbeanspruchung über eine Reduzierung des Bemessungsrundschnittes mit dem Faktor k_e berücksichtigt. Wird anstatt der genaueren Berechnung ein konstanter Wert $k_e = 0,70$ berücksichtigt, ergibt sich in der statistischen Auswertung ein Mittelwert $x_m = 1,60$ mit einem Variationskoeffizienten von $V_x = 0,24$ und ein 5% Quantilwert von 0,95.

4.10 Zusammenfassende Bewertung der Bemessungsansätze

Im vorangegangenen Abschnitt wurden die Datenbanken mit Durchstanzversuchen an Flachdecken mit und ohne Durchstanzbewehrung sowie Einzelfundamenten mit und ohne Durchstanzbewehrung vorgestellt und nach den Regelungen von Eurocode 2, EC2+NA(D) und Model Code 2010 ausgewertet. Die Ergebnisse der Auswertung sind in Tabelle 4-11 gegenübergestellt.

Seite 73

Bemessungsansätzen								
		5%	5% Quantilwert			Variationskoeffizient V_x		
	Anzahl Versuche	EC2 ⁽¹⁾	EC2+NA(D)	Model Code 2010	EC2 ⁽¹⁾	EC2+NA(D)	Model Code 2010	
Flachdecken ohne DB	336	0,83	0,85	0,93	0,20	0,19	0,16	
Flachdecken mit DB	58	0,74	0,88	0,69	0,19	0,12	0,16	
Fundamente ohne DB	147	0,49	0,84	0,86	0,38	0,18	0,19	
Fundamente mit DB	10	1,86	0,75	0,57	0,19	0,20	0,21	
Fundamente mit DB ⁽²⁾	8	2,12	0,92	0,71	0,14	0,08	0,08	
Randstützen ohne DB	64	1,02	1,02	0,97	0,21	0,21	0,26	

Tabelle 4-11: Zusammenstellung der Mittelwerte und Variationskoeffizienten aus den Versuchsnachrechnungen der Durchstanzversuche mit unterschiedlichen

⁽¹⁾ mit Amendment: ⁽²⁾ ohne Versuche DF9 und S1-S

Aus dem Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand im Bereich von Innenstützen lassen sich folgende Schlussfolgerungen ableiten:

- Der Bemessungsansatz nach Eurocode 2 erfasst die vorgestellten Bruchlasten sehr ungenau. Es werden deutliche Über- und Unterschreitungen der ermittelten Bruchlast bestimmt, wodurch sich sehr große Streuungen einstellen. Die Modifikation durch das Amendment führt zu einem teilweise größeren Sicherheitsniveau, besonders für Fundamente werden jedoch sehr konservative Ergebnisse bestimmt.
- Nach EC2+NA(D) werden die Bruchlasten überwiegend trendfrei bei geringer Streuung erfasst. Durch die zusätzlichen Regelungen zu kleinen und großen bezogenen Stützenumfängen, der Vermeidung von Druckbewehrung und unterschiedlicher empirischer Vorfaktoren bei Flachdecken und Fundamenten wird bei zusätzlichem rechnerischen Aufwand ein geringfügig größeres Sicherheitsniveau erreicht.
- Nach Model Code 2010 ergeben sich bei deutlich höherem Berechnungsaufwand in etwa die gleichen Trendabhängigkeiten wie nach EC2+NA(D), jedoch werden insbesondere bei Bauteilen mit Bügeln als Durchstanzbewehrung deutlich geringere 5%-Quantilwerte bestimmt. Dies deutet auf eine Überschätzung des Vorfaktors $k_{sys} = 2,4$ hin.
- Der zur Erreichung der maximalen Durchstanztragfähigkeit erforderliche Bügelquerschnitt wird nach Eurocode 2, EC2+NA(D) und Model Code 2010 sehr unterschiedlich bestimmt. Während nach EC2+NA(D) deutlich größere Bügelguerschnitte erforderlich sind, werden nach Eurocode 2 und Model Code 2010 insbesondere in Fundamenten kleinere Querschnitte bestimmt, was auf ein Sicherheitsdefizit hindeutet.

- In systematischen Versuchsserien einzelner Forscher treten tendenziell kleinere Streuungen als bei Auswertung mehrerer Serien auf. Dies ist auf die in der Regel unveränderten Randbedingungen zurückzuführen und sollte bei der Überprüfung von Einflussfaktoren anhand von Versuchsreihen einzelner Forscher berücksichtigt werden.
- Durch den Versuchsstand wird die Momenten- und Querkraftverteilung innerhalb der Versuchsplatte gesteuert, wodurch sich die Versuchsergebnisse günstig oder ungünstig beeinflussen lassen. Die geringsten Einflüsse sind bei rotationssymmetrischen Versuchskörpern mit einer gleichmäßigen Belastung entlang der Plattenränder zu erwarten.

Die Ergebnisse aus dem Vergleich von Versuchsbruchlasten mit dem rechnerischen Durchstanzwiderstand bei Randstützen lassen sich wie folgt zusammenfassen:

- − Die Versuchsnachrechnungen im Bereich von Randstützen ohne Durchstanzbewehrung ergeben für alle drei Normen größere Variationskoeffizienten als bei Innenstützen. Durch die Berücksichtigung einer systembedingten ungleichmäßigen Querkraftverteilung durch Lasterhöhungsfaktoren β ≥ 1,0 oder reduzierte Rundschnitte ($k_e \le 1,0$) lassen sich jedoch ausreichend sichere Ergebnisse erzielen.
- Der Ansatz des rechnerischen k_e -Wertes nach Model Code 2010 führt nicht zu einer wesentlichen Verbesserung im Vergleich zum konstanten Wert $k_e = 0,7$. Dies trifft eingeschränkt auch auf den konstanten Lasterhöhungsbeiwert nach Eurocode 2 zu, da die Streuung nur geringfügig erhöht ist. Jedoch scheint der Wert von $\beta = 1,40$ als zu klein angenommen, um ein ausreichendes Sicherheitsniveau zu erzielen.

IMB Lehrstuhl und Institut für Massivbau der RWTH Aachen

5 Zusammenfassung

Im vorliegenden Abschlussbericht des Forschungsvorhabens "Aktualisierung der Datenbanken zum Durchstanzen punktgestützter Platten aus Stahlbeton und Spannbeton ohne und mit Durchstanzbewehrung" wurden nach einer Literaturrecherche die Datenbanken zu Durchstanzversuchen in Flachdecken und Fundamenten überprüft, erweitert und mit Daten anderer Forscher, wie der ACI Arbeitsgruppe (ACI Committee 445) und der CEN/TC250/SC2/WG1/TG4 ausgetauscht. Insgesamt stehen für Flachdecken im Bereich von Innenstützen ohne Durchstanzbewehrung etwa 600 Versuche (die Mehrzahl der Versuche wurde mit d < 200 mm durchgeführt), für Flachdecken mit Durchstanzbewehrung etwa 330 Versuche, für Einzelfundamente ohne Durchstanzbewehrung knapp 280 Versuche, für Einzelfundamente mit Durchstanzbewehrung 24 Versuche, für Flachdecken im Bereich von Randstützen ohne Durchstanzbewehrung etwa 110 Versuche und für vorgespannte Flachdecken etwa 150 Versuche für die Auswertung von Bemessungsansätzen zur Verfügung. Der systematische Abgleich der Daten dauert an, sodass im vorliegenden Forschungsbericht über den Stand der Arbeiten bis Mitte 2014 berichtet wird.

Die Vergleiche der Versuchsbruchlasten mit den Bemessungsansätzen von Eurocode 2, EC2+NA(D) und Model Code 2010 unterstreichen die Notwendigkeit derartiger Vergleiche zur Bewertung der Bemessungsvorschläge und zur Kontrolle des Sicherheitsniveaus. Von den überprüften Normen werden die wichtigsten Einflussparameter erfasst und tendenziell richtig berücksichtigt. Für eine Reihe von Einschränkungen, Sonderregeln oder aufwändigere Berechnungen kann jedoch keine deutliche Verbesserung der Vorhersagegenauigkeit und des Sicherheitsniveaus festgestellt werden. In einem weiteren Schritt wäre daher eine Vereinfachung der Bemessungsansätze zu überprüfen, ohne die Vorhersagegenauigkeit der Ansätze zu verschlechtern.

Auch nach Abschluss des Forschungsvorhabens wird die Arbeit an den Datenbanken kontinuierlich fortgeführt. Im Oktober 2014 wurde ein vereinfachter Bemessungsansatz zum Durchstanzen auf Basis von Eurocode 2 in die Arbeitsgruppe CEN/TC250/SC2/WG1/TG4 eingebracht, der auf den vorgestellten Datenbankauswertungen basiert.

ANHANG

INHALTSVERZEICHNIS

Anhang	A
A.1	EUROCODE 2: Flachdecken ohne Durchstanzbewehrung
	Abschnittsweise statistische Auswertung von Versuchen im Bereich
	von Innenstützen an Flachdeckenausschnitten ohne
	Durchstanzbewehrung
A.2	EC2+NA(D): Flachdecken ohne Durchstanzbewehrung
	Abschnittsweise statistische Auswertung von Versuchen im Bereich
	von Innenstützen an Flachdeckenausschnitten ohne
	Durchstanzbewehrung
A.3	MODEL CODE 2010: Flachdecken ohne Durchstanzbewehrung
	Abschnittsweise statistische Auswertung von Versuchen im Bereich
	von Innenstützen an Flachdeckenausschnitten ohne
	Durchstanzbewehrung
A.4	EUROCODE 2: Einzelfundamente ohne Durchstanzbewehrung
	Abschnittsweise statistische Auswertung von Versuchen an zentrisch
	belasteten Einzelfundamenten ohne Durchstanzbewehrung
A.5	EC2+NA(D): Einzelfundamente ohne Durchstanzbewehrung
	Abschnittsweise statistische Auswertung von Versuchen an zentrisch
	belasteten Einzelfundamenten ohne Durchstanzbewehrung
A.6	MODEL CODE 2010: Einzelfundamente ohne
	Durchstanzbewehrung Abschnittsweise statistische Auswertung von
	Versuchen an zentrisch belasteten Einzelfundamenten ohne
	Durchstanzbewehrung
A.7	EUROCODE 2 und EC2+NA(D): Randstützen ohne
	Durchstanzbewehrung Abschnittsweise statistische Auswertung von
	Versuchen im Bereich von Randstützen an Flachdeckenausschnitten
	ohne Durchstanzbewehrung
A.8	MODEL CODE 2010: Randstützen ohne Durchstanzbewehrung
	Abschnittsweise statistische Auswertung von Versuchen im Bereich
	von Randstützen an Flachdeckenausschnitten ohne
	Durchstanzbewehrung
Anhang	BB-1
B.1	Auswertedatenbank von Durchstanzversuchen im Bereich von
	Innenstützen an Flachdecken ohne DurchstanzbewehrungB-1
B .2	Auswertedatenbank von Durchstanzversuchen im Bereich von
	Innenstützen an Flachdecken mit Bügeln als Durchstanzbewehrung B-21
В.3	Auswertedatenbank von Durchstanzversuchen an zentrisch
F (belasteten Einzelfundamenten ohne DurchstanzbewehrungB-27
В.4	Auswertedatenbank von Durchstanzversuchen an zentrisch
	belasteten Einzelfundamenten mit DurchstanzbewehrungB-37

B.5	Auswertedatenbank von Durchstanzversuchen im Bereich von	
	Randstützen an Flachdecken ohne Durchstanzbewehrung	B-41
B.6	Auswertedatenbank von Durchstanzversuchen im Bereich von	
	Innenstützen an Flachdecken aus Stahlfaserbeton	B-51
B.7	Auswertedatenbank von Durchstanzversuchen im Bereich von	
	Innenstützen an Flachdecken mit Vorspannung	B-53

Anhang A

A.1 EUROCODE 2: Flachdecken ohne Durchstanzbewehrung Abschnittsweise statistische Auswertung von Versuchen im Bereich von Innenstützen an Flachdeckenausschnitten ohne Durchstanzbewehrung

Bild A.1-1: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach Eurocode 2 über der statischen Nutzhöhe

Bild A.1-2: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach Eurocode 2 über der Betondruckfestigkeit

Bild A.1-3: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach Eurocode 2 über dem Längsbewehrungsgrad

Bild A.1-4: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach Eurocode 2 über der Schubschlankheit

Bild A.1-5: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach Eurocode 2 über dem bez. Stützenumfang

A.2 EC2+NA(D): Flachdecken ohne Durchstanzbewehrung Abschnittsweise statistische Auswertung von Versuchen im Bereich von Innenstützen an Flachdeckenausschnitten ohne Durchstanzbewehrung

Bild A.2-1: Vergleich V_{Test}/V_{Rk,c,Code} nach EC2+NA(D) über der statischen Nutzhöhe

Bild A.2-2: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach EC2+NA(D) über der Betondruckfestigkeit

Bild A.2-3: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach EC2+NA(D) über dem Längsbewehrungsgrad

Bild A.2-4: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach EC2+NA(D) über der Schubschlankheit

Bild A.2-5: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach EC2+NA(D) über dem bez. Stützenumfang

A.3 MODEL CODE 2010: Flachdecken ohne Durchstanzbewehrung Abschnittsweise statistische Auswertung von Versuchen im Bereich von Innenstützen an Flachdeckenausschnitten ohne Durchstanzbewehrung

Bild A.3-1: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach Model Code 2010 über der statischen Nutzhöhe

Bild A.3-2: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach Model Code 2010 über der Betondruckfestigkeit

Bild A.3-3: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach Model Code 2010 über dem Längsbewehrungsgrad

Bild A.3-4: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach Model Code 2010 über der Schubschlankheit

	А	В	С	D	Е	F
Anzahl	25	68	58	50	113	22
Mittelwert	1,136	1,291	1,294	1,210	1,255	1,151
Variationskoeffizient	0,147	0,162	0,136	0,188	0,119	0,216
k_n	1,675	1,662	1,664	1,666	1,655	1,678
5%-Quantilwert	0,855	0,943	1,000	0,831	1,008	0,733
95%-Quantilwert	1,416	1,640	1,588	1,589	1,503	1,568

Bild A.3-5:Vergleich $V_{Test}/V_{Rk,c,Code}$ nach Model Code 2010 über dem bez.
Stützenumfang

A.4 EUROCODE 2: Einzelfundamente ohne Durchstanzbewehrung Abschnittsweise statistische Auswertung von Versuchen an zentrisch belasteten Einzelfundamenten ohne Durchstanzbewehrung

Bild A.4-1: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach Eurocode 2 über der statischen Nutzhöhe

Bild A.4-2: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach Eurocode 2 über der Betondruckfestigkeit

Bild A.4-3: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach Eurocode 2 über dem Längsbewehrungsgrad

Bild A.4-4: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach Eurocode 2 über der Schubschlankheit

Bild A.4-5: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach Eurocode 2 über dem bez. Stützenumfang

A.5 EC2+NA(D): Einzelfundamente ohne Durchstanzbewehrung Abschnittsweise statistische Auswertung von Versuchen an zentrisch belasteten Einzelfundamenten ohne Durchstanzbewehrung

Bild A.5-1: Vergleich V_{Test}/V_{Rk,c,Code} nach EC2+NA(D) über der statischen Nutzhöhe

Bild A.5-2: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach EC2+NA(D) über der Betondruckfestigkeit

Bild A.5-3: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach EC2+NA(D) über dem Längsbewehrungsgrad

Bild A.5-4: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach EC2+NA(D) über der Schubschlankheit

Bild A.5-5: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach EC2+NA(D) über dem bez. Stützenumfang

A.6 MODEL CODE 2010: Einzelfundamente ohne Durchstanzbewehrung Abschnittsweise statistische Auswertung von Versuchen an zentrisch belasteten Einzelfundamenten ohne Durchstanzbewehrung

Bild A.6-1: Vergleich V_{Test}/V_{Rk,c,Code} nach Model Code 2010 über der statischen Nutzhöhe

Bild A.6-2: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach Model Code 2010 über der Betondruckfestigkeit

Bild A.6-3:Vergleich $V_{Test}/V_{Rk,c,Code}$ nach Model Code 2010 über dem
Längsbewehrungsgrad

Bild A.6-4: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach Model Code 2010 über der Schubschlankheit

Bild A.6-5:Vergleich $V_{Test}/V_{Rk,c,Code}$ nach Model Code 2010 über dem bez.
Stützenumfang

A.7 EUROCODE 2 und EC2+NA(D): Randstützen ohne Durchstanzbewehrung Abschnittsweise statistische Auswertung von Versuchen im Bereich von Randstützen an Flachdeckenausschnitten ohne Durchstanzbewehrung

Die Auswertung nach EC2-NA(D) ergibt identische Ergebnisse.

Der Lasterhöhungsbeiwert β wurde mit der plastischen Schubspannungsverteilung bestimmt.

Bild A.7-1: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach EUROCODE 2 und EC2+NA(D) über der statischen Nutzhöhe

Bild A.7-2: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach EUROCODE 2 und EC2+NA(D) über der Betondruckfestigkeit

Bild A.7-3: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach EUROCODE 2 und EC2+NA(D) über dem Längsbewehrungsgrad

Bild A.7-4: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach EUROCODE 2 und EC2+NA(D) über der bezogenen Ausmitte

Bild A.7-5: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach EUROCODE 2 und EC2+NA(D) über dem bez. Stützenumfang

A.8 MODEL CODE 2010: Randstützen ohne Durchstanzbewehrung Abschnittsweise statistische Auswertung von Versuchen im Bereich von Randstützen an Flachdeckenausschnitten ohne Durchstanzbewehrung

Der Lasterhöhungsbeiwert β wurde mit $\beta = 1/k_e$ bestimmt.

Bild A.8-1: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach MODEL CODE 2010 über der statischen Nutzhöhe

Bild A.8-2: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach MODEL CODE 2010 über der Betondruckfestigkeit

Bild A.8-3:Vergleich $V_{Test}/V_{Rk,c,Code}$ nach MODEL CODE 2010 über dem
Längsbewehrungsgrad

Bild A.8-4: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach MODEL CODE 2010 über der bezogenen Ausmitte

Bild A.8-5: Vergleich $V_{Test}/V_{Rk,c,Code}$ nach MODEL CODE 2010 über dem bez. Stützenumfang
Anhang B

B.1 Auswertedatenbank von Durchstanzversuchen im Bereich von Innenstützen an Flachdecken ohne Durchstanzbewehrung

А	В	С	D	Е	F	G	Н
			Platten		Ø		
	Bez. im		Geo-	Lastein-	Lastein-		
Nr.	Versuchbericht	Forscher	metrie	leitung	leitung	h	d
[-]	[-]	[-]	[-]	[-]	[mm]	[mm]	[mm]
1	HSC 0	Hallgren	k	k	2.400	240	200
2	HSC 1	Hallgren	k	k	2.400	245	200
3	HSC 2	Hallgren	k	k	2.400	240	194
4	HSC 4	Hallgren	k	k	2.400	240	200
5	HSC 6	Hallgren	k	k	2.400	239	201
6	N/ HSC 8	Hallgren	k	k	2.400	242	198
7	HSC 9	Hallgren	k	k	2.400	239	202
8	ND65-1-1	Tomaszewicz	qs	q	2.500	320	275
9	ND65-2-1	Tomaszewicz	qs	q	2.200	240	200
10	ND95-1-1	Tomaszewicz	qs	q	2.500	320	275
11	ND95-1-3	Tomaszewicz	qs	q	2.500	320	275
12	ND95-2-1	Tomaszewicz	qs	q	2.200	240	200
13	ND95-2-1D	Tomaszewicz	qs	q	2.200	240	200
14	ND95-2-3	Tomaszewicz	qs	q	2.200	240	200
15	ND95-2-3D	Tomaszewicz	qs	q	2.200	240	200
16	ND95-2-3D+	Tomaszewicz	qs	q	2.200	240	200
17	ND95-3-1	Tomaszewicz	qs	q	1.100	120	88
18	ND115-1-1	Tomaszewicz	qs	q	2.500	320	275
19	ND115-2-1	Tomaszewicz	qs	q	2.200	240	200
20	ND115-2-3	Tomaszewicz	qs	q	2.200	240	200
21	1	Ramdane	k	k	1.372	125	98
22	2	Ramdane	k	k	1.372	125	98
23	3	Ramdane	k	k	1.372	125	98
24	4	Ramdane	k	k	1.372	125	98
25	6	Ramdane	k	k	1.372	125	98
26	12	Ramdane	k	k	1.372	125	98
27	13	Ramdane	k	k	1.372	125	98
28	14	Ramdane	k	k	1.372	125	98
29	16	Ramdane	k	k	1.372	125	98
30	21	Ramdane	k	k	1.372	125	98
31	22	Ramdane	k	k	1.372	125	98
32	23	Ramdane	k	k	1.372	125	100
33	25	Ramdane	k	k	1.372	125	100
34	26	Ramdane	k	k	1.372	125	100
35	27	Ramdane	k	k	1.372	125	102
36	HS1	Marzouk & Hussein	qa	q	1.500	120	95
37	HS2	Marzouk & Hussein	qa	q	1.500	120	95
38	HS3	Marzouk & Hussein	qa	q	1.500	120	95
39	HS4	Marzouk & Hussein	qa	q	1.500	120	90
40	HS7	Marzouk & Hussein	qa	q	1.500	120	95
41	HS8	Marzouk & Hussein	qa	q	1.500	150	120
42	HS9	Marzouk & Hussein	qa	q	1.500	150	120
43	HS10	Marzouk & Hussein	qa	q	1.500	150	120
44	HS14	Marzouk & Hussein	qa	q	1.500	120	95
45	HS15	Marzouk & Hussein	qa	q	1.500	120	95

А	Ι	J	K	L	М	Ν	0	Р	Q
	Stützen-								
Nr.	form	<i>c</i> ₁	<i>c</i> ₂	ρ_l	$f_{\mathit{cm,cyl}}$	d_{G}	f_y	E_s	V _{Test}
[-]	[-]	[mm]	[mm]	[%]	[MPa]	[mm]	[MPa]	[MPa]	[MN]
1	k	250	-	0,80	89,1	18	643	195.000	0,965
2	k	250	-	0,80	91,3	18	627	210.000	1,021
3	k	250	-	0,82	85,7	18	620	231.000	0,889
4	k	250	-	1,19	91,6	18	596	195.000	1,041
5	k	250	-	0,60	108,8	18	633	210.000	0,960
6	k	250	-	0,80	94,9	18	631	213.000	0,944
7	k	250	-	0,33	84,1	18	634	231.000	0,565
8	q	200	-	1,50	67,5	16	500	-	2,050
9	q	150	-	1,70	73,7	16	500	-	1,200
10	q	200	-	1,50	87,9	16	500	-	2,250
11	q	200	-	2,50	94,4	16	500	-	2,400
12	q	150	-	1,70	92,6	16	500	-	1,100
13	q	150	-	1,70	91,0	16	500	-	1,300
14	q	150	-	2,60	94,0	16	500	-	1,450
15	q	150	-	2,60	84,3	16	500	-	1,250
16	q	150	-	2,60	102,9	16	500	-	1,450
17	q	100	-	1,80	89,4	16	500	-	0,330
18	q	200	-	1,50	117,6	16	500	-	2,450
19	q	150	-	1,70	125,0	16	500	-	1,400
20	q	150	-	2,60	113,5	16	500	-	1,550
21	k	150	-	0,58	78,4	10	550	-	0,224
22	k	150	-	0,58	49,9	10	550	-	0,212
23	k	150	-	0,58	23,9	10	550	-	0,169
24	k	150	-	0,58	52,2	10	550	-	0,233
25	k	150	-	0,58	90,5	10	550	-	0,233
26	k	150	-	1,28	53,6	10	550	-	0,319
27	k	150	-	1,28	38,7	10	550	-	0,297
28	k	150	-	1,28	54,0	10	550	-	0,341
29	k	150	-	1,28	87,4	10	550	-	0,362
30	k	150	-	1,28	37,2	20	650	-	0,286
31	k	150	-	1,28	74,8	20	650	-	0,405
32	k 1	150	-	0,87	50,1	20	650	-	0,341
33	k 1	150	-	1,27	29,2	10	650	-	0,244
34	k 1	150	-	1,27	33,4	20	650	-	0,294
35	k	150	-	1,03	29,9	20	650	-	0,227
36	q	150	-	0,49	67,0	20	490	-	0,178
3/	q	150	-	0,84	/0,0	20	490	-	0,249
38	q	150	-	1,4/	09,0	20	490	-	0,336
<u> </u>	q	150	-	2,37	00,0	20	490	-	0,418
40	q	150	-	1,19	/4,0	20	490	-	0,350
41	q	150	-	1,11	74.0	20	490	-	0,430
42	q	150	-	1,01	/4,0	20	490	-	0,545
43	q	220	-	2,33	00,0 72.0	20	490	-	0,043
44 15	Ŷ	220	-	1,47	72,0	20	490	-	0,498
43	q	300	-	1,4/	/1,0	20	490	-	0,300

А	В	С	D	Е	F	G	Н
			Platten		Ø		
	Bez. im		Geo-	Lastein-	Lastein-		
Nr.	Versuchbericht	Forscher	metrie	leitung	leitung	h	d
[-]	[-]	[-]	[-]	[-]	[mm]	[mm]	[mm]
46	NS1	Marzouk & Hussein	qa	q	1.500	120	95
47	F2	Lovrovich & McLean	k	k	406	102	83
48	F3	Lovrovich & McLean	k	k	610	102	83
49	F4	Lovrovich & McLean	k	k	813	102	83
50	F5	Lovrovich & McLean	k	k	1.219	102	83
51	S2.1	Tolf	k	k	2.380	240	200
52	S2.2	Tolf	k	k	2.380	240	199
53	S2.3	Tolf	k	k	2.380	240	200
54	S2.4	Tolf	k	k	2.380	240	197
55	S1.1	Tolf	k	k	1.190	120	100
56	S1.2	Tolf	k	k	1.190	120	99
57	S1.3	Tolf	k	k	1.190	120	98
58	S1.4	Tolf	k	k	1.190	120	99
59	I/2	Regan	qa	q	1.830	100	77
60	I/4	Regan	qa	q	1.830	100	77
61	I/6	Regan	qa	q	1.830	100	79
62	I/7	Regan	qa	q	1.830	100	79
63	II/1	Regan	qa	q	2.745	250	200
64	II/2	Regan	qa	q	1.800	160	128
65	II/3	Regan	qa	q	1.800	160	128
66	II/4	Regan	qa	q	900	80	64
67	II/5	Regan	qa	q	900	80	64
68	II/6	Regan	qa	q	900	80	64
69	III/1	Regan	k	k	1.370	120	95
70	III/2	Regan	k	k	1.370	120	95
71	III/3	Regan	k	k	1.370	120	95
72	III/4	Regan	k	k	1.370	120	93
73	III/5	Regan	k	k	1.370	120	93
74	III/6	Regan	k	k	1.370	120	93
75	V/1	Regan	qa	q	1.500	150	118
76	V/2	Regan	qa	q	1.500	150	118
77	V/3	Regan	qa	q	1.500	150	118
78	V/4	Regan	qa	q	1.500	150	118
79	V/5	Regan	qa	q	1.500	150	118
80	S-1	Swamy & Ali	qa	q	1.690	125	100
81	P2	Marti	0	k	2.600	180	143
82	P5	Pralong	0	k	2.600	180	154
83	0	Schaefers	k	k	1.680	143	113
84	3	Schaefers	k	k	1.680	200	170
85	DA-6	Ladner et al	k	k	1.056	110	80
86	DA-7	Ladner et al	k	k	1.056	110	80
87	DA-10	Ladner et al	k	k	1.056	110	80
88	DA-11	Ladner et al	k	k	1.056	110	80
89	P1	Ladner	k	k	2.650	280	240
90	M1	Ladner	k	k	1.200	127	109

А	Ι	J	K	L	М	Ν	0	Р	Q
	Stützen-								
Nr.	form	<i>c</i> ₁	<i>c</i> ₂	ρ_l	$f_{\mathit{cm,cyl}}$	d_{G}	f_y	E_s	V _{Test}
[-]	[-]	[mm]	[mm]	[%]	[MPa]	[mm]	[MPa]	[MPa]	[MN]
46	q	150	-	1,47	42,0	20	490	-	0,320
47	k	102	-	1,75	38,7	19	531	-	0,204
48	k	102	-	1,75	38,7	19	531	-	0,149
49	k	102	-	1,75	38,7	19	531	-	0,129
50	k	102	-	1,75	38,7	19	531	-	0,139
51	k	250	-	0,80	23,9	32	657	-	0,603
52	k	250	-	0,80	22,6	32	670	-	0,600
53	k	250	-	0,34	25,0	32	668	-	0,489
54	k	250	-	0,35	23,8	32	664	-	0,444
55	k	125	-	0,80	28,2	16	706	-	0,216
56	k	125	-	0,81	22,6	16	701	-	0,194
57	k	125	-	0,35	26,3	16	720	-	0,145
58	k	125	-	0,34	24,8	16	712	-	0,148
59	q	200	-	1,20	23,1	10	500	-	0,176
60	q	200	-	0,92	31,9	10	500	-	0,194
61	q	200	-	0,75	21,6	10	480	-	0,165
62	q	200	-	0,80	30,0	10	480	-	0,165
63	k	250	-	0,98	34,4	20	530	-	0,825
64	k	160	-	0,98	32,8	20	485	-	0,390
65	k	160	-	0,98	33,9	10	485	-	0,365
66	k	80	-	0,98	32,8	20	480	-	0,117
67	k	80	-	0,98	33,9	10	480	-	0,105
68	k	80	-	0,98	35,7	5	480	-	0,105
69	k	150	-	0,83	22,9	-	494	-	0,197
70	k	150	-	0,83	9,4	-	494	-	0,123
71	k	150	-	0,83	37,3	-	494	-	0,214
72	k	150	-	1,52	11,8	-	464	-	0,154
73	k	150	-	1,52	26,4	-	464	-	0,214
74	k	150	-	1,52	42,1	-	464	-	0,248
75	k	54	-	0,80	33,9	-	628	-	0,170
76	k	170	-	0,80	31,7	-	628	-	0,280
77	k	110	-	0,80	32,0	-	628	-	0,265
78	q	102	-	0,80	35,8	-	628	-	0,285
79	k	150	-	0,80	32,4	-	628	-	0,285
80	q	150	-	0,56	38,8	10	462	-	0,198
81	k	300	-	1,49	35,4	16	558	210.000	0,628
82	k	300	-	1,34	27,1	16	515	204.100	0,592
83	k	210	-	0,87	28,1	32	450	-	0,280
84	k	210	-	0,58	21,3	32	450	-	0,480
85	k	100	-	1,81	39,5	16	550	217.000	0,183
86	k	240	-	1,81	44,1	16	550	217.000	0,281
87	k	200	-	1,81	42,1	16	550	217.000	0,288
88	k	320	-	1,81	40,0	16	550	217.000	0,324
89	k	500	-	1,32	27,0	32	544	-	1,661
90	k	226	-	1,31	30,7	32	540	-	0,362

Α	В	С	D	Е	F	G	Н
			Platten		Ø		
	Bez. im		Geo-	Lastein-	Lastein-		
Nr.	Versuchbericht	Forscher	metrie	leitung	leitung	h	d
[-]	[-]	[-]	[-]	[-]	[mm]	[mm]	[mm]
91	AN-1	Corley & Hawkins	qs	q	1.829	146	110
92	BN-1	Corley & Hawkins	qs	q	1.829	146	110
93	P1-S1	Manterola	qa	q	3.000	125	107
94	P1-S3	Manterola	qa	q	3.000	125	107
95	P1-S2	Manterola	qa	q	3.000	125	107
96	P2-S2	Manterola	qa	q	3.000	125	107
97	P2-S3	Manterola	qa	q	3.000	125	107
98	S1-60	Moe	qa	q	1.780	152	114
99	S1-70	Moe	qa	q	1.780	152	114
100	S5-60	Moe	qa	q	1.780	152	114
101	S5-70	Moe	qa	q	1.780	152	114
102	R1	Moe	qa	q	1.780	152	114
103	R2	Moe	qa	q	1.780	152	114
104	H1	Moe	qa	q	1.780	152	114
105	M1A	Moe	qa	q	1.780	152	114
106	IA15A- 5	Kinnunen & Nylander	k	k	1.710	149	117
107	IA15A-6	Kinnunen & Nylander	k	k	1.710	151	118
108	IA15B-9	Kinnunen & Nylander	k	k	1.710	150	117
109	IA15B-10	Kinnunen & Nylander	k	k	1.710	150	117
110	IA15C-11	Kinnunen & Nylander	k	k	1.710	153	121
111	IA15C-12	Kinnunen & Nylander	k	k	1.710	154	122
112	IA30A-24	Kinnunen & Nylander	k	k	1.710	158	128
113	IA30A-25	Kinnunen & Nylander	k	k	1.710	154	124
114	IA30B-28	Kinnunen & Nylander	k	k	1.710	151	119
115	IA30C-30	Kinnunen & Nylander	k	k	1.710	151	120
116	IA30C-31	Kinnunen & Nylander	k	k	1.710	151	119
117	IA30D-32	Kinnunen & Nylander	k	k	1.710	155	123
118	IA30D-33	Kinnunen & Nylander	k	k	1.710	156	125
119	IA30E-34	Kinnunen & Nylander	k	k	1.710	150	120
120	IA30E-35	Kinnunen & Nylander	k	k	1.710	153	122
121	A-1A	Elstner & Hognestad	qa	q	1.778	152	118
122	A-1B	Elstner & Hognestad	qa	q	1.778	152	118
123	A-1C	Elstner & Hognestad	qa	q	1.778	152	118
124	A-1D	Elstner & Hognestad	qa	q	1.778	152	118
125	A-1E	Elstner & Hognestad	qa	q	1.778	152	118
126	A-2A	Elstner & Hognestad	qa	q	1.778	152	114
127	A-2B	Elstner & Hognestad	qa	q	1.778	152	114
128	A-2C	Elstner & Hognestad	qa	q	1.778	152	114
129	A-7B	Elstner & Hognestad	qa	q	1.778	152	114
130	A-3A	Elstner & Hognestad	qa	q	1.778	152	114
131	A-3B	Elstner & Hognestad	qa	q	1.778	152	114
132	A-3C	Elstner & Hognestad	qa	q	1.778	152	114
133	A-3D	Elstner & Hognestad	qa	q	1.778	152	114
134	A-4	Elstner & Hognestad	qa	q	1.778	152	118
135	A-5	Elstner & Hognestad	ga	a	1.778	152	114

А	Ι	J	K	L	М	N	0	Р	Q
	Stützen-								
Nr.	form	<i>c</i> ₁	<i>c</i> ₂	ρ_l	$f_{\mathit{cm,cyl}}$	d_G	f_y	E_s	V _{Test}
[-]	[-]	[mm]	[mm]	[%]	[MPa]	[mm]	[MPa]	[MPa]	[MN]
91	q	254	-	1,50	18,1	-	404	-	0,334
92	q	203	-	1,00	19,5	-	444	-	0,266
93	q	100	-	1,07	24,8	-	310	-	0,216
94	q	100	-	1,07	38,4	-	330	-	0,184
95	q	100	-	1,07	23,4	-	330	-	0,196
96	q	250	-	1,07	32,1	-	330	-	0,283
97	q	100	-	1,43	34,7	-	330	-	0,211
98	q	254	-	1,06	23,3	38	399	179.400	0,389
99	q	254	-	1,06	24,5	38	483	171.800	0,392
100	q	203	-	1,06	22,2	38	399	179.400	0,343
101	q	203	-	1,06	23,0	38	483	171.800	0,378
102	r	152	457	1,38	27,6	10	328	196.000	0,394
103	q	152	-	1,38	26,5	10	328	196.000	0,311
104	q	254	-	1,15	26,1	38	328	196.000	0,371
105	q	305	-	1,50	20,8	38	481	196.000	0,433
106	k	150	-	0,80	25,5	32	441	210.000	0,255
107	k	150	-	0,79	24,9	32	454	210.000	0,275
108	k	150	-	1,30	24,7	32	446	-	0,275
109	k	150	-	1,30	24,7	32	448	-	0,275
110	k	150	-	1,53	30,5	32	436	210.000	0,333
111	k	150	-	1,54	29,4	32	439	210.000	0,332
112	k	300	-	1,01	25,1	-	455	210.000	0,430
113	k	300	-	1,04	23,8	-	451	210.000	0,408
114	k	300	-	1,72	24,6	32	437	210.000	0,368
115	k	300	-	2,16	28,6	-	436	210.000	0,490
116	k	300	-	2,18	28,6	-	448	210.000	0,539
117	k	300	-	0,49	25,0	-	448	210.000	0,258
118	k	300	-	0,48	25,3	-	462	210.000	0,258
119	k	300	-	1,00	26,1	-	461	210.000	0,332
120	k	300	-	0,98	23,7	-	459	210.000	0,332
121	q	254	-	1,15	14,1	25	332	-	0,303
122	q	254	-	1,15	25,3	25	332	-	0,365
123	q	254	-	1,15	29,1	25	332	-	0,356
124	q	254	-	1,15	36,9	25	332	-	0,351
125	q	254	-	1,15	20,3	25	332	-	0,356
126	q	254	-	2,47	13,7	25	321	-	0,334
127	q	254	-	2,47	19,5	25	321	-	0,400
128	q	254	-	2,47	37,5	25	321	-	0,467
129	q	254	-	2,47	27,9	25	321	-	0,512
130	q	254	-	3,70	12,8	25	321	-	0,356
131	q	254	-	3,70	22,6	25	321	-	0,445
132	q	254	-	3,70	26,6	25	321	-	0,534
133	q	254	-	3,70	34,6	25	321	-	0,547
134	q	356	-	1,15	26,1	25	332	-	0,400
135	q	356	-	2,47	27,8	25	321	-	0,534

Α	В	С	D	Е	F	G	Н
			Platten		Ø		
	Bez. im		Geo-	Lastein-	Lastein-		
Nr.	Versuchbericht	Forscher	metrie	leitung	leitung	h	d
[-]	[-]	[-]	[-]	[-]	[mm]	[mm]	[mm]
136	A-6	Elstner & Hognestad	qa	q	1.778	152	114
137	B-1	Elstner & Hognestad	qa	q	1.778	152	114
138	B-4	Elstner & Hognestad	qa	q	1.778	152	114
139	B-9	Elstner & Hognestad	qa	q	1.778	152	114
140	B-11	Elstner & Hognestad	qa	q	1.778	152	114
141	B-14	Elstner & Hognestad	qa	q	1.778	152	114
142	A-7	Elstner & Hognestad	qa	q	1.778	152	114
143	A-8	Elstner & Hognestad	qa	q	1.778	152	114
144	A-7A	Elstner & Hognestad	qa	q	1.778	152	114
145	P-I	Keefe	0	k	889	127	89
146	P-II	Keefe	0	k	889	127	89
147	1	Broms	qa	k	2.165	180	150
148	T1	Yamada	qa	k	1.500	200	167
149	K1	Yamada	qa	k	1.500	200	164
150	1	Chana	qa	k	2.400	228	183
151	HS17	Marzouk	qa	q	1.830	150	120
152	P1	Beutel	0	k	2.400	230	190
153	2F22	Lee	qa	k	1.581	200	160
154	3F22	Lee	0	k	2.372	275	230
155	1	Oliveira	qa	q	1.572	130	93
156	2	Oliveira	qa	q	1.572	130	97
157	S2075-1	Criswell	qa	q	2.032	165	121
158	S2075-2	Criswell	qa	q	2.032	165	122
159	S2150-1	Criswell	qa	q	2.032	165	124
160	S2150-2	Criswell	qa	q	2.032	165	122
161	1	Regan	qa	q	850	100	75
162	2	Regan	qa	q	600	100	75
163	3	Regan	qa	q	350	100	75
164	4	Regan	qa	q	350	100	75
165	8	Regan	qa	q	350	100	75
166	11	Regan	qa	q	350	100	75
167	13	Regan	qa	q	350	100	75
168	15	Regan	qa	q	400	100	75
169	L7	Narasimhan	qs	q	2.000	178	143
170	L9	Narasimhan	qs	q	2.000	178	143
171	1	Chana	qs	k	2.400	240	200
172	1A	Gomes	qa	q	2.742	200	159
173	1	Gomes	qa	q	2.742	200	159
174	AB 1	Mokhtar	qa	q	1.800	150	116
175	MV1	Van der Voet	qa	q	1.800	150	113
176	PSSA	Pilakoutas	qa	k	1.700	175	139
177	S1	Birkle	0	k	2.000	160	124
178	S7	Birkle	0	k	3.000	230	190
179	S10	Birkle	0	k	3.800	300	260
180	А	Günther	ga	k	2.160	250	205

А	Ι	J	K	L	М	Ν	0	Р	Q
	Stützen-								
Nr.	form	<i>c</i> ₁	<i>c</i> ₂	ρ_l	$f_{\mathit{cm,cyl}}$	d_{G}	f_y	E_s	V _{Test}
[-]	[-]	[mm]	[mm]	[%]	[MPa]	[mm]	[MPa]	[MPa]	[MN]
136	q	356	-	3,70	25,1	25	321	-	0,498
137	q	254	-	0,50	14,2	38	324	-	0,178
138	q	254	-	0,99	47,8	38	303	-	0,334
139	q	254	-	2,00	43,9	38	341	-	0,505
140	q	254	-	3,00	13,5	38	409	-	0,329
141	q	254	-	3,00	50,6	38	325	-	0,578
142	q	254	-	2,47	28,5	25	321	-	0,400
143	q	356	-	2,47	21,9	25	321	-	0,436
144	q	254	-	2,47	27,9	25	321	-	0,280
145	k	152	-	3,20	28,3	-	286	179.300	0,225
146	k	152	-	3,20	27,3	-	286	171.700	0,371
147	q	250	-	0,94	23,1	-	681	-	0,435
148	q	300	-	1,23	17,0	-	811	-	0,441
149	q	300	-	1,53	20,5	-	568	-	0,658
150	q	300	-	0,86	30,6	-	520	-	0,851
151	q	250	-	1,01	67,0	20	490	-	0,511
152	q	400	-	0,81	21,9	16	572	218.550	0,615
153	q	290	-	1,96	73,2	-	500	-	1,100
154	q	400	-	1,37	69,2	-	500	-	1,640
155	q	120	-	1,50	59,0	-	695	210.000	0,270
156	q	120	-	1,40	60,9	-	695	-	0,335
157	q	254	-	0,79	31,4	-	331	-	0,290
158	q	254	-	0,78	28,1	-	331	-	0,273
159	q	254	-	1,54	28,7	-	331	-	0,464
160	q	254	-	1,56	29,1	-	331	-	0,440
161	q	150	-	1,50	22,7	20	480	-	0,197
162	q	150	-	1,50	24,9	20	480	-	0,227
163	q	150	-	1,50	28,4	20	480	-	0,235
164	q	100	-	1,50	27,8	20	480	-	0,185
165	q	100	-	0,75	35,2	20	480	-	0,172
166	q	100	-	1,50	38,0	20	480	-	0,182
167	q	100	-	1,50	12,2	20	480	-	0,109
168	q	200	-	1,50	37,7	20	480	-	0,368
169	q	305	-	1,61	33,0	19	398	-	0,687
170	q	305	-	1,41	30,4	19	398	-	0,588
171	q	300	-	0,79	28,6	20	500	-	0,805
172	q	200	-	1,26	40,6	20	680	200.000	0,587
173	q	200	-	1,26	39,7	20	680	200.000	0,560
174	q	250	-	1,41	34,9	-	516	210.000	0,408
175	q	250	-	1,54	31,2	-	479	210.000	0,375
176	q	200	-	0,72	25,5	-	500	210.000	0,454
177	q	250	-	1,54	35,1	14	488	201.000	0,483
178	q	300	-	1,30	33,9	20	531	205.000	0,825
179	q	350	-	1,10	30,4	20	524	203.000	1,046
180	k	300	-	1,53	47,4	-	500	-	1,253

А	В	С	D	Е	F	G	Н
			Platten		Ø		
	Bez. im		Geo-	Lastein-	Lastein-		
Nr.	Versuchbericht	Forscher	metrie	leitung	leitung	h	d
[-]	[-]	[-]	[-]	[-]	[mm]	[mm]	[mm]
181	В	Günther	qa	k	2.160	250	205
182	PL1	Lips	qa	k	2.760	250	193
183	PV1	Lips	qa	k	2.760	250	210
184	PL3	Lips	qa	k	2.760	250	197
185	PL4	Lips	qa	k	2.760	320	267
186	PL5	Lips	qa	k	2.760	400	353
187	V1	Ladner	k	k	3.000	280	240
188	SP1	Etter/Heinzmann	qa	k	3.920	350	294
189	NR1E0F0	Ozden et al	k	k	1.200	120	83
190	NR2E0F0	Ozden et al	k	k	1.200	120	143
191	HR1E0F0	Ozden et al	k	k	1.200	120	108
192	HR1E0F0r	Ozden et al	k	k	1.200	120	110
193	HR2E0F0	Ozden et al	k	k	1.200	120	110
194	HR2E0F0r	Ozden et al	k	k	1.200	120	110
195	PG-1	Guandalini	qa	k	3.000	250	210
196	PG-2b	Guandalini	qa	k	3.000	250	210
197	PG-3	Guandalini	qa	k	5.700	500	456
198	PG-4	Guandalini	qa	k	3.000	250	210
199	PG-5	Guandalini	qa	k	3.000	250	210
200	PG-6	Guandalini	qa	k	1.504	125	96
201	PG-7	Guandalini	qa	k	1.504	125	100
202	PG-8	Guandalini	qa	k	1.504	125	117
203	PG-9	Guandalini	qa	k	1.504	125	117
204	PG-10	Guandalini	qa	k	3.000	250	210
205	Ti-1A	Timm	qa	k	560	200	172
206	Ti-2A	Timm	qa	k	800	200	172
207	Ti-3A	Timm	qa	k	800	285	246
208	L1c	Oliveira et al	r	r	2.100	130	107
209	L2c	Oliveira et al	r	r	2.100	130	107
210	L3c	Oliveira et al	r	r	2.100	130	106
211	L4c	Oliveira et al	r	r	2.100	130	107
212	L5c	Oliveira et al	r	r	2.100	130	109
213	SR-1	Ospina et al	qa	k	1.831	155	120
214	P100	Li	qa	q	725	135	100
215	P150	Li	qa	q	990	190	150
216	P200	Li	qa	q	1.250	240	200
217	P300	Li	qa	q	1.775	345	300
218	P400	Li	qa	q	1.775	450	400
219	P500	Li	qa	q	1.775	550	500
220	NU	McHarg et al	qa	k	2.136	150	109
221	S1-U	Ghannoum	qa	k	2.136	150	109
222	S2-U	Ghannoum	qa	k	2.136	150	109
223	S3-U	Ghannoum	qa	k	2.136	150	109
224	L1	Sistonen et al	qa	q	1.570	197	172
225	L2	Sistonen et al	ga	a	1.570	201	176

А	Ι	J	K	L	М	Ν	0	Р	Q
	Stützen-								
Nr.	form	<i>c</i> ₁	<i>c</i> ₂	ρ_l	$f_{\mathit{cm,cyl}}$	d_{G}	f_y	E_s	V _{Test}
[-]	[-]	[mm]	[mm]	[%]	[MPa]	[mm]	[MPa]	[MPa]	[MN]
181	k	300	-	1,53	45,8	-	500	-	1,190
182	q	130	-	1,63	36,2	16	583	-	0,682
183	q	260	-	1,50	34,0	16	709	-	0,974
184	q	520	-	1,59	36,5	16	583	-	1,324
185	q	340	-	1,58	30,5	16	531	-	1,625
186	q	440	-	1,50	31,9	16	580	-	2,491
187	k	300	-	1,40	24,2	32	510	-	1,095
188	k	400	-	1,20	35,5	32	577	208.900	1,710
189	q	200	-	0,73	21,6	-	507	-	0,187
190	q	200	-	1,09	20,0	-	507	-	0,202
191	q	200	-	1,50	74,0	-	471	-	0,330
192	q	200	-	1,50	75,0	-	471	-	0,370
193	q	200	-	2,25	63,7	-	471	-	0,406
194	q	200	-	2,25	74,7	-	471	-	0,490
195	q	260	-	1,50	27,6	16	573	210.000	1,023
196	q	260	-	0,25	40,5	16	552	210.000	0,440
197	q	520	-	0,33	32,4	16	520	210.000	2,153
198	q	260	-	0,25	32,2	4	541	-	0,408
199	q	260	-	0,33	29,3	4	555	-	0,550
200	q	130	-	1,50	34,7	16	526	-	0,238
201	q	130	-	0,75	34,7	16	550	-	0,241
202	q	130	-	0,28	34,7	16	525	-	0,140
203	q	130	-	0,22	34,7	16	525	-	0,115
204	q	260	-	0,33	28,5	16	577	-	0,540
205	k	175	-	1,25	40,7	-	500	-	0,673
206	k	175	-	1,25	36,0	-	500	-	0,668
207	k	250	-	1,18	32,8	-	500	-	1,060
208	q	120	-	1,09	57,1	16	749	-	0,318
209	r	120	240	1,09	55,2	16	749	-	0,331
210	r	120	360	1,00	52,3	16	749	-	0,358
211	r	120	480	1,09	54,2	16	749	-	0,404
212	r	120	600	1,07	61,0	16	/49	-	0,446
213	q	250	-	0,87	35,6	-	430	192.000	0,365
214	q	200	-	0,98	39,4	20	488	-	0,330
215	q	200	-	0,90	39,4	20	405	-	0,583
210	q	200	-	0,85	39,4	20	403	-	0,904
217	q	200	-	0,70	39,4	20	408	-	1,381
218	q	200	-	0,76	39,4 20.4	20	433	-	2,224
219	q	200	-	0,70	39,4 20.0	20	433	-	2,081
220	<u> </u>	223	-	1,10	27.2	20	434	100.000	0,300
221	<u> </u>	223	-	1,20	57,2	20	443	193.470	0.262
222	q	223	-	1,20	57,1 67.1	20	443	173.4/8	0,303
223	<u>Ч</u> 1-	223	-	0.46	25.0	10	601	173.478 205.000	0,443
224	К 1-	202	-	0,40	25,0	10	621	203.000	0,505
<i>LL</i> J	ĸ	202	-	0,43	∠೨,٥	10	021	203.000	0,337

	D	C	D	Г	Г	C	TT
A	В	C	D	E	F	G	H
	Poz im		Gaa	Lastain	Ø Lostoin		
Nr	Dez. III Vorsuchbaricht	Forschar	motrio	Lasteni-	Lasteni-	k	d
				r	[]	<i>n</i>	<i>u</i>
[-] 226	[-] I 2	[-]	[-]	[-]	[IIIII] 1.570		
220		Sistemen et al	qa	q	1.370	198	175
227	L4	Sistemen et al	qa	q	1.770	197	170
228	LJ	Sistemen et al	qa	q	1.770	202	172
229		Sistemen et al	qa	q	1.770	202	173
230		Sistemen et al	qa	q	1.770	204	177
231		Sistemen et al	qa	q	2.270	203	174
232	L9	Sistemen et al	qa	q	2.270	203	172
233	L10	Sistonen et al	qa	q	2.270	204	1/3
234	PIII 1/1-0.8	Urban	qa	q	1.000	150	98
255	P 1/1-0.8	Urban	qa	q	1.000	150	95
230	Pd 1/1-0.8	Urban	qa	q	1.000	150	104
237	P 1/1.5-0.8	Urban	qa	q	1.600	150	93
238	P 1/2-0.8	Urban	qa	q	1.600	150	92
239	P 1/3-0.8	Urban	qa	q	1.600	150	90
240	P 1/4-0.8	Urban	qa	q	1.600	150	92
241	P 1/4-0.8018	Urban	qa	q	1.600	150	99
242	PIII 1/1-1.5	Urban	qa	q	1.000	150	99
243	Pd 1/1-1.5	Urban	qa	q	1.600	150	99
244	P 1/2-1.5	Urban	qa	q	1.600	150	91
245	P 1/3-1.5	Urban	qa	q	1.600	150	92
240	P 1/4-1.5		qa	q	1.000	150	92
247	HS12	Marzouk & Hussein	qa	q	1.500	90	70
248	HS15	Marzouk & Hussein	qa 1-	q 1-	1.500	90 51	70
249	2	Gardner	K 1-	K 1-	279	51	38
250	3	Gardner	K 1-	K 1-	279	51	<u> </u>
251	4	Gardner	K 1-	K 1-	229	51	<u> </u>
252	5	Gardner	K 1-	K 1-	201	51	<u> </u>
253	0	Gardner	K 1-	K 1-	381	51	38
254	/	Gardner	K 1-	K 1-	080	102	38
255	8	Gardner	K 1r	K 1r	1.110	102	70
250	9	Gardner	K lr	K la	201	102	70
257	10	Gardner	K lr	K lz	501 686	102	70
250	11	Gardner	K lr	K 12	686	152	113
259	12	Cardner	K 1r	K 1r	696	152	115
200	13	Gardner	K lr	K lz	522	102	72
201	14	Gardner	K le	K le	522	102	73 91
262	15	Gardner	K 1r	K 1r	522	102	81 96
203	10	Gardner	К 12	К 12	522	102	00 Q1
204	10	Gardner	К 1/-	K V	686	102	122
205	20	Gardner	к 1/-	K V	686	152	123
200	20	Gardner	к 1/-	K V	686	152	113
207	21	Gardner	к 1/	к l	533	102	122 81
200	23	Gardner	к V	к V	533	102	86
209	24	Gardner	k K	k k	686	152	122
210	<i>4</i> J	Jarunti		A 1	000	134	144

Α	Ι	J	K	L	М	Ν	0	Р	Q
	Stützen-								
Nr.	form	<i>c</i> ₁	<i>c</i> ₂	ρ_l	$f_{\mathit{cm,cyl}}$	d_{G}	f_y	E_s	V _{Test}
[-]	[-]	[mm]	[mm]	[%]	[MPa]	[mm]	[MPa]	[MPa]	[MN]
226	k	201	-	0,45	25,8	16	621	205.000	0,530
227	k	402	-	0,67	25,8	16	612	195.000	0,686
228	k	399	-	0,66	25,8	16	612	195.000	0,696
229	k	406	-	0,65	25,8	16	612	195.000	0,799
230	k	201	-	0,64	19,0	16	586	200.000	0,478
231	k	899	-	1,16	19,0	16	576	203.000	1,111
232	k	897	-	1,17	19,0	16	576	203.000	1,107
233	k	901	-	1,16	19,0	16	576	203.000	1,079
234	q	160	-	0,80	25,9	-	414	-	0,210
235	q	200	-	0,83	25,0	-	414	-	0,220
236	q	320	-	0,76	32,2	-	414	-	0,280
237	r	160	240	0,84	22,3	-	414	-	0,220
238	r	133	267	0,85	27,0	-	414	-	0,215
239	r	100	300	0,87	21,2	-	414	-	0,210
240	r	80	325	0,85	23,3	-	414	-	0,176
241	r	80	330	0,79	29,4	-	414	-	0,225
242	q	160	-	1,36	23,1	-	416	-	0,260
243	q	320	-	1,36	29,1	-	416	-	0,360
244	r	133	267	1,58	19,2	-	352	-	0,252
245	r	100	300	1,47	15,5	-	352	-	0,220
246	r	80	320	1,47	14,1	-	352	-	0,210
247	q	150	-	1,52	75,0	20	490	-	0,258
248	q	150	-	2,00	68,0	20	490	-	0,267
249	k	102	-	2,04	13,4	-	550	195.000	0,037
250	k	51	-	2,04	13,4	-	550	210.000	0,025
251	k	51	-	2,04	13,4	-	550	213.000	0,035
252	k	102	-	2,04	13,4	-	550	231.000	0,033
253	k	152	-	2,04	13,4	-	550	195.000	0,049
254	k	102	-	2,04	13,4	-	550	210.000	0,034
255	k	102	-	2,05	23,3	-	414	231.000	0,129
256	k	102	-	2,05	21,9	-	414	179.300	0,136
257	k	102	-	2,05	23,8	-	414	179.300	0,129
258	k	152	-	2,14	21,9	-	450	179.300	0,311
259	k	203	-	2,14	24,0	-	450	179.300	0,357
260	k	203	-	0,66	24,0	-	450	171.700	0,271
261	k	152	-	5,01	24,2	-	450	171.700	0,202
262	k	152	-	1,47	24,2	-	450	171.000	0,160
263	k	152	-	0,45	22,5	-	550	171.000	0,107
264	k	102	-	1,47	24,7	-	450	179.300	0,121
265	k	203	-	0,47	21,4	-	414	195.000	0,271
266	k	203	-	2,14	14,6	-	450	195.800	0,278
267	k	203	-	0,66	15,6	-	450	195.800	0,230
268	k	152	-	1,47	14,0	-	450	210.000	0,108
269	k	152	-	0,45	13,7	_	550	200.000	0,069
270	k	203	-	0,66	50,5	-	450	200.000	0,307

Α	В	С	D	Е	F	G	Н
			Platten		Ø		
	Bez. im		Geo-	Lastein-	Lastein-		
Nr.	Versuchbericht	Forscher	metrie	leitung	leitung	h	d
[-]	[-]	[-]	[-]	[-]	[mm]	[mm]	[mm]
271	26	Gardner	k	k	686	102	73
272	27	Gardner	k	k	533	102	81
273	28	Gardner	k	k	533	102	86
274	29	Gardner	k	k	381	51	38
275	30	Gardner	k	k	381	51	38
276	4	Rankin & Long	qa	q	640	51	41
277	5	Rankin & Long	qa	q	640	51	41
278	6	Rankin & Long	qa	q	640	51	41
279	7	Rankin & Long	qa	q	640	51	41
280	8	Rankin & Long	qa	q	640	51	41
281	9	Rankin & Long	qa	q	640	51	41
282	11	Rankin & Long	qa	q	640	51	41
283	12	Rankin & Long	qa	q	640	51	41
284	15	Rankin & Long	qa	q	640	51	41
285	2A	Rankin & Long	qa	q	640	57	47
286	3A	Rankin & Long	qa	q	640	57	47
287	4A	Rankin & Long	qa	q	640	57	47
288	2B	Rankin & Long	qa	q	640	46	35
289	3B	Rankin & Long	qa	q	640	46	35
290	4B	Rankin & Long	qa	q	640	46	35
291	2C	Rankin & Long	qa	q	640	64	54
292	3C	Rankin & Long	qa	q	640	64	54
293	4C	Rankin & Long	qa	q	640	64	54
294	S4075-1	Criswell	qa	q	2.286	165	127
295	S4075-2	Criswell	qa	q	2.286	165	124
296	S4150-1	Criswell	qa	q	2.286	165	125
297	S4150-2	Criswell	qa	q	2.286	165	125
298	M-1	Long & Masterson	qa	q	457	38	30
299	B1	Nylander & Sundquist	r	r	700	120	96
300	B2	Nylander & Sundquist	r	r	700	120	101
301	C1	Nylander & Sundquist	r	r	1.400	240	201
302	C2	Nylander & Sundquist	r	r	1.400	240	201
303	A S-000-0-0-2	Roll et al	qa	q	737	61	46
304	A S-000-0-0-3	Roll et al	qa	q	737	61	46
305	A S-000-0-0-4	Roll et al	qa	q	737	61	46
306	A S-000-0-0-5	Roll et al	qa	q	737	61	46
307	B S-000-0-0-1	Roll et al	qa	q	737	61	46
308	B S-000-0-0-2	Roll et al	qa	q	737	61	46
309	H0 (No 2 bars)	Roll et al	qa	q	737	61	46
310	H0 (No 3 bars)	Roll et al	qa	q	737	61	46
311	JN-0-2.2	Mowrer & Vanderbilt	qa	q	900	76	51
312	P2-S1	Manterola	qa	q	3.000	125	107
313	P3-S1	Manterola	qa	q	3.000	125	107
314	P1-S4	Manterola	qa	q	3.000	125	107
315	2S2	Taylor and Hayes	qa	q	864	76	64

А	Ι	J	K	L	М	Ν	0	Р	Q
	Stützen-								
Nr.	form	<i>c</i> ₁	<i>c</i> ₂	ρ_l	$f_{\mathit{cm,cyl}}$	d_{G}	f_y	E_s	V _{Test}
[-]	[-]	[mm]	[mm]	[%]	[MPa]	[mm]	[MPa]	[MPa]	[MN]
271	k	203	-	5,01	50,5	-	450	200.000	0,323
272	k	152	-	1,47	50,5	-	450	200.000	0,243
273	k	152	-	0,45	50,5	-	550	200.000	0,148
274	k	203	-	2,04	50,5	-	550	200.000	0,074
275	k	152	-	2,04	50,5	-	550	200.000	0,070
276	q	100	-	0,82	34,3	-	530	210.000	0,056
277	q	100	-	0,88	34,3	-	530	210.000	0,057
278	q	100	-	1,03	34,3	-	530	210.000	0,066
279	q	100	-	1,16	29,3	-	530	210.000	0,071
280	q	100	-	1,29	29,3	-	530	210.000	0,071
281	q	100	-	1,45	29,3	-	530	210.000	0,079
282	q	100	-	0,80	29,5	-	530	210.000	0,055
283	q	100	-	1,11	29,5	-	530	210.000	0,067
284	q	100	-	1,99	33,6	-	530	210.000	0,085
285	q	100	-	0,69	28,4	-	530	210.000	0,066
286	q	100	-	1,29	28,4	-	530	210.000	0,090
287	q	100	-	1,99	30,5	-	530	210.000	0,097
288	q	100	-	0,69	37,2	-	530	210.000	0,038
289	q	100	-	1,29	37,2	-	530	210.000	0,057
290	q	100	-	1,99	30,5	-	530	210.000	0,073
291	q	100	-	0,69	32,0	-	530	210.000	0,088
292	q	100	-	1,29	32,0	-	530	210.000	0,124
293	q	100	-	1,99	27,5	-	530	210.000	0,126
294	q	508	-	0,75	25,8	-	331	-	0,343
295	q	508	-	0,77	31,2	-	331	-	0,330
296	q	508	-	1,52	33,5	-	325	-	0,579
297	q	508	-	1,52	37,4	-	325	-	0,581
298	q	76	-	1,77	26,8	6	396	-	0,031
299	k	120	-	0,79	24,8	32	709	200.000	0,180
300	k	120	-	0,53	24,7	32	665	210.000	0,180
301	k	240	-	0,75	23,2	32	711	210.000	0,648
302	k	240	-	0,53	22,9	32	706	210.000	0,547
303	q	102	-	1,13	32,9	10	359	-	0,065
304	q	102	-	1,13	27,1	10	359	-	0,063
305	q	102	-	1,13	27,1	10	359	-	0,061
306	q	102	-	1,13	27,2	10	359	-	0,064
307	q	102	-	2,53	29,4	10	368	-	0,088
308	q	102	-	2,53	27,7	10	462	-	0,087
309	q	102	-	1,13	28,4	10	374	-	0,067
310	q	102	-	2,53	27,2	10	440	-	0,081
311	q	152	-	2,20	14,4	-	352	-	0,123
312	q	250	-	1,06	33,9	-	304	-	0,257
313	q	450	-	1,06	29,7	-	304	-	0,301
314	q	100	-	0,47	26,4	-	451	-	0,175
315	q	51	-	0,98	23,0	10	376	-	0,071

Anhang B.1 Flachdecken	ohne Durchstanzbewehrung
------------------------	--------------------------

Α	В	С	D	E	F	G	Н
			Platten		Ø		
	Bez. im		Geo-	Lastein-	Lastein-		
Nr.	Versuchbericht	Forscher	metrie	leitung	leitung	h	d
[-]	[-]	[-]	[-]	[-]	[mm]	[mm]	[mm]
316	2\$3	Taylor and Hayes	qa	q	864	76	64
317	284	Taylor and Hayes	qa	q	864	76	64
318	285	Taylor and Hayes	qa	q	864	76	64
319	286	Taylor and Hayes	qa	q	864	76	64
320	3\$2	Taylor and Hayes	qa	q	864	76	64
321	3\$4	Taylor and Hayes	qa	q	864	76	64
322	3\$6	Taylor and Hayes	qa	q	864	76	64
323	II/1	Rosenthal	k	k	1.000	102	80
324	II/2	Rosenthal	k	k	1.500	102	80
325	II/3	Rosenthal	k	k	1.500	102	80
326	II/4	Rosenthal	k	k	1.000	102	80
327	1	Forssell & Holmberg	qa	q	1.150	117	101
328	2	Forssell & Holmberg	qa	q	1.150	127	111
329	3	Forssell & Holmberg	qa	q	1.150	122	106
330	4	Forssell & Holmberg	qa	q	1.150	126	110
331	5	Forssell & Holmberg	qa	q	1.150	127	111
332	6	Forssell & Holmberg	qa	q	1.150	123	107
333	7	Forssell & Holmberg	qa	q	1.150	122	106
334	1362	Graf	qa	q	1.500	302	271
335	1375	Graf	qa	q	1.500	504	473
336	PG-11	Guandalini	qa	k	3.000	250	210

А	Ι	J	K	L	М	Ν	0	Р	Q
	Stützen-								
Nr.	form	<i>c</i> ₁	<i>c</i> ₂	ρ_l	$f_{\mathit{cm,cyl}}$	d_{G}	f_y	E_s	V _{Test}
[-]	[-]	[mm]	[mm]	[%]	[MPa]	[mm]	[MPa]	[MPa]	[MN]
316	q	76	-	0,98	21,8	10	376	-	0,091
317	q	102	-	0,98	20,6	10	376	-	0,086
318	q	127	-	0,98	19,6	10	376	-	0,097
319	q	152	-	0,98	16,3	10	376	-	0,097
320	q	51	-	1,96	20,3	10	376	-	0,078
321	q	102	-	1,96	20,1	10	376	-	0,115
322	q	152	-	1,96	19,2	10	376	-	0,150
323	k	229	-	1,34	14,4	-	456	-	0,181
324	k	229	-	1,32	13,4	-	372	-	0,152
325	r	229	432	1,32	14,9	-	490	-	0,245
326	k	229	-	0,98	23,5	-	490	-	0,245
327	k	140	-	0,70	12,2	-	350	-	0,184
328	k	140	-	0,64	12,2	-	350	-	0,177
329	k	140	-	0,67	12,2	-	350	-	0,172
330	k	140	-	0,64	12,2	-	350	-	0,177
331	k	140	-	0,64	12,2	-	350	-	0,198
332	k	140	-	0,66	12,2	-	350	-	0,184
333	k	140	-	0,67	12,2	-	350	-	0,187
334	q	300	-	1,06	13,6	30	270	200.000	1,158
335	q	300	-	0,60	15,5	30	270	210.000	1,648
336	q	260	-	0,75	31,5	16	570	-	0,763

Anhang B

Quellen für die Auswertedatenbank von Durchstanzversuchen im Bereich von Innenstützen an Flachdecken ohne Durchstanzbewehrung

- Beutel, R.: Durchstanzen schubbewehrter Flachdecken im Bereich von Innenstützen. Heft 16. Aachen: Lehrstuhl und Institut für Massivbau, RWTH Aachen, 2003
- Birkle, G.; Dilger, W.: Influence of Slab Thickness on Punching Shear Strength. In: ACI Structural Journal 105 (2008), Nr.2, S.180-188
- Broms, C.E.: Shear Reinforcement For Deflection Ductility of Flat Plates. In: ACI Structural Journal 87 (1990), Nr.6, S.696-705
- Chana, P. S.; Desai, S.B.: Design of shear reinforcement against punching. In: The Structural Engineer 70 (1992), Nr.9, S.159-164
- Chana, P.S.: A prefabricated shear reinforcement system for flat slabs. In: Proceedings of ICE, Structures and Buildings 99 (1993), S.345-358
- Corley, W.; Hawkins, N.: Shearhead Reinforcement for Slabs. In: ACI Journal 65 (1968), Nr.10, S.811-824
- Criswell, M.E.: Static And Dynamic Response Of Reinforced Concrete Slab-Column Connections. In: 42 (1974), S.721-746
- Elstner, R.; Hognestad, E.: Shearing Strength of Reinforced Concrete Slabs. In: ACI Journal, Proceedings 53 (1956), Nr.7, S.29-58
- Etter, S.; Heinzmann, D.; Jäger, T.; Marti, P.: Versuche zum Durchstanzverhalten von Stahlbetonplatten. Zürich, 2009
- Gardner, N. J.: Relationship of the Punching Shear Capacity of Reinforced Concrete Slabs With Concrete Strength. In: ACI Structural Journal 87 (1990), Nr.1, S.66-71
- Ghannoum, C.: Effect of high-strength concrete on the performance of slab-column specimens. Montréal, Canada, McGill University, Department of Civil Engineering and Applied Mechanics, Dipl., 1998
- Gomes, R.; Regan, P.E.: Punching strength of slabs reinforced for shear with offcuts of rolled steel I-section beams. In: Magazine of Concrete Research 51 (1999), Nr.2, S.121-129
- Graf, O.: Versuche über die Widerstandsfähigkeit von allseitig aufliegenden dicken Eisenbetonplatten unter Einzellasten. DAfStB Heft 88. Berlin: Ernst & Sohn, 1938
- Guandalini, S.; Burdet, Olivier L.; Muttoni, A.: Punching Tests of Slabs with Low Reinforcement Ratios. In: ACI Structural Journal 106 (2009), Nr.1, S.87-95
- Günther, G.; Scherzer, I.: Querkrafttragfähigkeit von Betonbauteilen infolge neuartiger Einbauteile. In: BFT 69 (2003), Nr.8, S.32-39
- Hallgren, M.; Kinnunen, S.: Increase of Punching Shear Capacity by Using High Strength Concrete. In: 4th International Symposium on Utilization of high strength concrete (1996), S.1037-1046
- Holmberg, A.; Forssell, C.: Stämpellast Pa Plattor av Betong. Nr.2, 1946-ISBN DK 539.415:666.982 620.176:624.073
- Keefe, R.: An Investigation on the Effectiveness of Diagonal Tension Reinforcement in Flat Slabs. Department of Civil and Sanitary Engineering, Massachusetts Institute of Technology, Dipl., 1954

- Kinnunen, S.: Punching of Concrete Slabs with two-way Reinforcement. Nr. 198. Göteborg: Elanders Boktryckeri Aktiebolag, 1963 (Transaction of the Royal Institute of Technology Stockholm)
- Ladner, M. : Untersuchungsbericht Durchstanzversuch an Flachdeckenausschnitt. Hochschule Technik+Architektur Luzern, Materialprüfstelle. Auftrag 419, 1999
- Ladner, M.: Einfluss der Maßstabgrößen bei Durchstanzversuchen. Ableitung eines begründeten Übertragungsgesetzes. In: Material und Technik (1973)
- Ladner, M.; Schaeidt, W.; Gut, S.: Experimentelle Untersuchungen an Stahlbeton-Flachdecken. Eidgenössische Materialprüfungs- und Versuchsanstalt Dübendorf, Bericht Nr. 205, 1977
- Lee, S.C.; Lee, S.B.; Teng, S.; Morley, C.T.: Punching Shear tests on high strength concrete slabs, 1999
- Li, K.: Influence of size on punching shear strength of concrete slabs. Department of Civil Engineering and Applied Mechanics, McGill University, Montréal, Canada, Dipl., 2000
- Lips, S.; Fernandez Ruiz, M.; Muttoni, A.: Experimental Investigation on Punching Strength and Deformation Capacity of Shear-Reinforced Slabs. In: ACI Structural Journal 109 (2012), S.889-900
- Long, A.E.; Masterson, D.M.: Improved Experimental Procedure For Determining The Punching Strength Of Reinforced Concrete Flat Slab Structures. In: SP42-39 (1974), S.921-935
- Lovrovich, J.; McLean, D.: Punching Shear Behavior of Slabs with Varying Span-Depth Ratios. In: ACI Structural Journal 87 (1990), S.507-512
- Manterola, J.: Poinconnement de dalles sans armature d'effort tranchant (Mécanismes de redistribution des efforts et rupture), 1966
- Marti, P.; Pralong, J.; Thürlimann, B.: Schubversuche an Stahlbeton-Platten., ETH Zürich, Bericht 1977
- Marzouk, H. M.; Hussein, A.: Experimental Investigation on the Behavior of High-Strength Concrete Slabs. In: ACI Structural Journal 88 (1991), S.701-713
- Marzouk, H.; Jiang, D.: Experimental Investigation on Shear Enhancement Types for High-Strength Concrete Plates. In: ACI Structural Journal 94 (1997), S.49-58
- McHarg, P.; Cook, W.; Mitchell, D.; Yoon, Y.: Benefits of Concentrated Slab Reinforcement and Steel Fibres on Performance of Slab-Column Connections. In: ACI Structural Journal (2000), S.225-235
- Moe, J.: Shearing Strength Of Reinforced Concrete Slabs And Footings Under Concentrated Loads. Bulletin D47. Illinois: Portland Cement Association, 1961
- Mokhtar, A.-S.; Ghali, A.; Dilger, W.: Stud Shear Reinforcement for Flat Concrete Plates. In: ACI Journal, Proceedings 82 (1985), S.676-683
- Mowrer, R. D.; Vanderbilt, M. D.: Shear Strength of Lightweight Aggregate Reinforced Concrete Flat Plates. In: ACI Journal 64 (1967), S.722-729
- Narasimhan, N.: Shear Reinforcement In Reinforced Concrete Column Heads. Civil Engineering Department, Imperial College of Science and Technology, London, Diss., 1971
- Nylander, H.; Kinnunen, S.; Ingvarsson, H.: Genomstansing av pelarunderstödd plattbro av betong med spänd och ospänd armering, Stockholm, 1977

- Oliveira D., Regan P.E. Melo G.: Punching Resistance of RC slabs with rectangular columns. In: Magazine of Concrete Research 56 (2004), S.123-137
- Oliveira, D.R.; Melo, G. S.; Regan, P.E.: Punching Strengths of Flat Plates with Vertical or Inclined Stirrups. In: ACI Structural Journal 97 (2000), S.485-491
- Ozden, S.; Ersoy, U.: Punching shear tests of normal- and high-strength concrete flat plates. NRC Canada, 2006
- Pilakoutas, K.; Li, X.: Alternative Shear Reinforcement for Reinforced Concrete Flat Slabs. In: Journal of structural Engineering 129 (2003), S.1164-1172
- Ramdane, K.-E.: Punching Shear of High Performance Concrete Slabs. In: 4th International Symposium on Utilization of high strength concrete (1996), S.1015-1026
- Rankin, G.I.B.; Long, A.E.: Predicting the punching strength of conventional slab-column specimens. In: Proceedings of ICE, Civil Engineering 82 (1987), S.327-346
- Regan, P.E.: Symmetric punching of reinforced concrete slabs. In: Magazine of Concrete Research 38 (1986), Nr.136, S.115-128
- Regan, P.E.: The dependence of punching resistance upon the geometry of the failure surface. In: Magazine of Concrete Research 36 (1984), Nr.126, S.3-8
- Roll, F.: Shear Resistance of perforated Reinforced Concrete Slabs, In SP 30-4, 1971
- Rosenthal, I.: Experimental Investigation of Flat Plate Floors. In: Journal of the American Concrete Institute (1959), S.153-166
- Schaefers, U.: Konstruktion, Bemessung und Sicherheit gegen Durchstanzen von balkenlosen Stahlbetondecken im Bereich der Innenstützen. DAfStb Heft 357. Berlin, 1984
- Sistonen E., Huovinen S.; Lydman, M.: Teräsbetonilaatan Lävistyskakasiteetin Laskentakaavan Geometrinen Malli. Helsinki, 1997
- Swamy, R. N.; Ali, S. A.: Punching Shear Behavior of Reinforced Slab-Column Connections Made with Steel Fiber Concrete. In: ACI Journal 79 (1982), S.392-406
- Taylor, R.; Hayes, B.: Some tests on the effect of edge restraint on punching shear in reinforced concrete slabs. In: Magazine of Concrete Research Vol. 17 (1965), S.39-44
- Timm, M.: Durchstanzen von Bodenplatten unter rotationssymmetrischer Belastung. Technische Universität Carolo-Wilhelmina, Fachbereich Bauingenieurwesen, Braunschweig Diss., 2003
- Tolf, P.: Plattjocklekens inverkan pa Betongplattors hallfasthet vid Genomstansning. Stockholm, 1988
- Tomaszewicz, A.: High Strength Concrete SP2 Plates and Shells Report 2.3 Punching Shear Capacity of Reinforced Concrete, July 1993
- Urban, T.: Nosnosc na przebibie w aspekcie proporcji bokow slupa. Lódz, 1994
- van der Voet, A. F.; Dilger, W.; Ghali, A.: Concrete flat plates with well-anchored shear reinforcement elements. In: Canadian Journal of Civil Engineering 9 (1981), S.107-114
- Yamada, T.; Nanni, A.; Endo, K.: Punching Shear Resistance of Flat Slabs: Influence of Reinforcement Type and Ratio. In: ACI Structural Journal 89 (1992), Nr.5, S.555-563

B.2 Auswertedatenbank von Durchstanzversuchen im Bereich von Innenstützen an Flachdecken mit Bügeln als Durchstanzbewehrung

Anhang B.2 Flachdecken mit Durchstanzbewehrung

А	В	С	D	Е	F	G	Η	Ι	J
	Bez. im		Platten		Ø				
	Versuchsb		Geo-	Lastein-	Lastein-			Stützen-	
	ericht	Forscher	metrie	leitung	leitung	h	d	form	C_1
[-]	[-]	[-]	[-]	[-]	[mm]	[mm]	[mm]	[-]	[mm]
1	B12	Elst.; Hogn.	qa	q	1.829	152	114	q	254
2	A-S2-66	Andersson	k	k	1.710	150	119	k	150
3	A-S2-67	Andersson	k	k	1.710	150	121	k	150
4	A-S2-82	Andersson	k	k	1.710	150	120	k	300
5	A-S2-83	Andersson	k	k	1.710	150	119	k	300
6	P3	Marti	0	k	2.600	180	152	k	300
7	SC8	Seible	qa	q	1.698	150	121	q	305
8	SC9	Seible	qa	q	1.698	150	121	q	305
9	SC10	Seible	qa	q	1.698	150	121	q	305
10	P22	Müller, F.X.	0	k	2.600	185	154	k	300
11	2	Broms	k	k	2.000	180	150	q	250
12	3	Broms	k	k	2.000	180	150	q	250
13	4	Broms	k	k	2.000	180	150	q	250
14	5	Broms	k	k	2.000	180	150	q	250
15	S2	Kinnunen	rs	k	4.680	730	669	k	800
16	S3	Kinnunen	rs	k	4.680	730	669	k	800
17	S1.1s	Tolf	k	k	1.190	120	97	k	125
18	S1.2s	Tolf	k	k	1.190	120	99	k	125
19	S1.3s	Tolf	k	k	1.190	120	100	k	125
20	S1.4s	Tolf	k	k	1.190	120	99	k	125
21	S2.1s	Tolf	k	k	2.400	240	195	k	250
22	S2.2s	Tolf	k	k	2.400	240	195	k	250
23	S2.3s	Tolf	k	k	2.400	240	198	k	250
24	S2.4s	Tolf	k	k	2.400	240	198	k	250
25	2	Chana	qs	k	2.400	240	200	q	300
26	3	Chana	qs	k	2.400	240	200	q	300
27	4	Chana	qs	k	2.400	240	200	q	300
28	5	Chana	qs	k	2.400	250	210	q	400
29	6	Chana	qs	k	2.400	250	210	q	400
30	7	Chana	qs	k	2.400	250	210	q	400
31	8	Chana	qs	k	2.400	250	210	q	400
32	9	Chana	qs	k	2.400	228	188	q	300
33	2	Chana, P.S.	k	k	2.400	228	188	q	300
34	P1-II	Beutel	k	k	2.400	230	190	q	400
35	P2-II	Beutel	k	k	2.400	230	190	q	400
36	2V10	Lee	k	k	1.500	200	155	q	290
37	2V20	Lee	k	k	1.500	200	160	q	290
38	2V21	Lee	k	k	1.500	200	160	q	290
39	2V22	Lee	k	k	1.500	200	160	q	290
40	3V20	Lee	k	k	2.250	275	230	q	400
41	3V	Oliveira	qs	q	1.650	130	105	q	120

А	K	L	М	Ν	0	Р	Q	R	S	Т	U
						A_{sw}	A_{sw}	A_{sw}			
						0 -	0,88 <i>d</i> -	0,3 <i>d</i> -			
	ρ_l	$f_{cm,cyl}$	d_{g}	f_{ym}	E_{sm}	0,88 <i>d</i>	1,66 <i>d</i>	1,0 <i>d</i>	ϕ_w	$f_{yw,m}$	V _{Test}
[-]	[%]	[MPa]	[mm]	[MPa]	[GPa]	[mm ²]	[mm ²]	[mm ²]	[mm]	[MPa]	[MN]
1	3,00	44,8	36	332	-	1.420	852	1.420	10	323	0,787
2	0,79	27,7	-	438	-	340	565	340	6	294	0,292
3	0,77	28,4	-	435	-	340	565	905	6	294	0,294
4	1,05	27,2	-	442	-	452	838	1.290	6	294	0,459
5	1,06	23,4	-	442	-	452	838	1.290	6	294	0,459
6	1,39	35,8	16	558	210	603	804	580	8	543	0,875
7	1,17	32,5	-	448	-	918	900	918	6	490	0,592
8	1,17	32,5	-	448	-	510	1.326	1.428	6	490	0,596
9	1,17	32,5	-	448	-	1.020	1.020	1.020	6	490	0,538
10	1,31	32,9	16	551	196	1.206	2.412	3.618	8	565	1,040
11	0,63	26,5	0	681	-	1.608	3.216	1.608	8	471	0,523
12	0,94	25,3	0	681	-	1.206	2.412	2.412	8	471	0,558
13	0,58	16,3	0	656	-	1.244	3.732	1.077	6	442	0,415
14	0,71	18,6	0	684	-	1.244	3.732	1.077	6	442	0,434
15	0,53	25,9	32	620	-	8.143	12.667	8.143	12	428	8,215
16	0,53	25,5	32	614	-	8.143	12.667	8.143	12	426	8,150
17	0,86	24,1	16	706	-	314	314	314	5	610	0,261
18	0,85	24,8	16	711	-	314	314	314	5	630	0,259
19	0,34	23,4	16	709	-	157	157	157	5	620	0,144
20	0,34	24,0	16	710	-	157	157	157	5	620	0,147
21	0,86	20,3	32	669	-	1.256	1.256	1.256	10	700	0,894
22	0,86	20,7	32	672	-	1.256	1.260	1.256	10	640	0,851
23	0,34	22,9	32	671	-	628	628	628	10	670	0,562
24	0,34	22,8	32	669	-	628	628	628	10	670	0,542
25	0,79	31,5	20	500	-	603	603	603	8	520	1,057
26	0,79	29,2	20	500	-	603	603	603	8	520	1,139
27	0,79	32,3	20	500	-	1.206	1.206	1.206	8	520	1,302
28	0,85	27,2	20	500	-	943	1.571	943	10	520	1,382
29	0,85	30,8	20	500	-	1.571	943	1.571	10	520	1,283
30	0,85	28,7	20	500	-	2.513	0	2.513	10	520	1,429
31	0,85	28,2	20	500	-	603	1.005	603	8	520	1,327
32	0,84	30,2	20	500	-	1.005	1.407	1.005	8	520	1,135
33	0,84	29,3	0	520	-	1.005	1.407	1.005	8	520	0,981
34	0,81	26,2	16	572	221	1.257	943	1.257	10	570	1,055
35	0,81	29,8	16	549	227	603	1.005	1.609	8	592	1,109
36	2,03	71,4	0	500	-	804	1.005	633	8	360	1,190
37	1,96	73,3	0	500	-	1.257	1.571	1.041	10	360	1,450
38	1,96	74,3	0	500	-	1.257	1.571	1.730	10	360	1,480
39	1,96	74,0	0	500	-	1.257	1.571	2.006	10	480	1,690
40	1,52	67,6	0	500	-	943	1.257	804	10	360	1,900
41	1,20	61,0	25	575	-	157	157	157	5	900	0,386

Α	В	С	D	Е	F	G	Н	Ι	J
	Bez. im		Platten		Ø				
	Versuchsb		Geo-	Lastein-	Lastein-			Stützen-	
	ericht	Forscher	metrie	leitung	leitung	h	d	form	c_1
[-]	[-]	[-]	[-]	[-]	[mm]	[mm]	[mm]	[-]	[mm]
42	4V	Oliveira	qs	q	1.650	130	103	q	120
43	5V	Oliveira	qs	q	1.650	130	103	q	120
44	P17	Müller,F.X.	0	k	2.600	185	154	k	300
45	P19	Müller,F.X.	0	k	2.600	185	154	k	300
46	PF1	Lips	qa	k	3.000	250	209	q	130
47	PF2	Lips	qa	k	3.000	250	208	q	260
48	PF3	Lips	qa	k	3.000	250	209	q	520
49	PF4	Lips	qa	k	3.000	320	274	q	340
50	PF5	Lips	qa	k	3.000	400	354	q	440
51	EM1	Beutel	qa	k	2.400	200	160	q	290
52	V2	Ladner	k	k	3.000	280	240	k	300
53	V4	Ladner	k	k	3.000	280	240	k	300
54	S_V2	Vollum	qa	q	2.743	220	174	q	270
55	S_V3	Vollum	qa	q	2.743	220	174	q	270
56	S_V4	Vollum	qa	q	2.743	220	174	q	270
57	S_V5	Vollum	qa	q	2.743	220	174	q	270
58	S_V6	Vollum	qa	q	2.743	220	174	q	270

Anhang B.2 Flachdecken mit Durchstanzbewehrung

Α	K	L	Μ	Ν	0	Р	Q	R	S	Т	U
						A_{sw}	A_{sw}	A_{sw}			
						0 -	0,88d -	0,3 <i>d</i> -			
	ρ_l	$f_{\mathit{cm,cyl}}$	d_{g}	f_{ym}	E_{sm}	0,88 <i>d</i>	1,66 <i>d</i>	1,0 <i>d</i>	ϕ_w	$f_{yw,m}$	V _{Test}
[-]	[%]	[MPa]	[mm]	[MPa]	[GPa]	[mm ²]	[mm ²]	[mm ²]	[mm]	[MPa]	[MN]
42	1,30	64,3	25	575	-	249	249	249	6	643	0,377
43	1,30	59,5	25	575	-	249	249	249	6	643	0,423
44	1,31	29,6	16	507	200	1.150	2.300	3.450	8	569	0,860
45	1,31	33,2	16	507	200	2.300	1.900	2.300	8	530	0,800
46	1,50	31,1	16	583	-	942	2.828	1.360	10	536	1,040
47	1,51	30,4	16	583	-	2.199	3.456	1.948	10	536	1,560
48	1,50	37,1	16	583	-	2.199	5.340	3.163	10	536	2,240
49	1,54	32,5	16	580	-	3.456	4.712	3.365	10	550	2,670
50	1,50	33,4	16	580	-	3.444	5.340	5.623	10	550	4,720
51	1,96	29,8	16	558	199	5.630	0	5.630	8	584	1,233
52	1,31	28,7	32	510	-	3.142	2.199	3.142	10	646	1,784
53	1,31	26,1	32	510	-	3.142	2.199	3.142	10	646	1,799
54	1,28	24,0	20	567	-	628	1.256	628	10	560	0,843
55	1,28	27,2	20	567	-	628	1.256	628	10	560	0,903
56	1,28	27,2	20	567	-	402	804	402	8	485	0,906
57	1,28	23,2	20	567	-	804	1.608	804	8	485	0,872
58	0,64	23,2	20	567	-	804	1.608	804	8	485	0,740

Anhang B

Quellen für die Auswertedatenbank von Durchstanzversuchen im Bereich von Innenstützen an Flachdecken mit Bügeln als Durchstanzbewehrung

- Andersson, J.L: Punching of concrete slabs with shear reinforcement. Royal Institute of Technology, Civil Engineering, no. 212, Stockholm, 1951
- Beutel, R.: Durchstanzen schubbewehrter Flachdecken im Bereich von Innenstützen. Heft 16. Aachen: Lehrstuhl und Institut für Massivbau, RWTH Aachen, 2003
- Broms, C. E.: Shear reinforcement for deflection ductility of flat plates. In: ACI Structural Journal 87 (1984) S.696-705
- Chana, P.S.; Desai, S.B.: Design of shear reinforcement against punching. In: the structural engineer 70 (1992)
- Elstner, R. C.; Hognestad, E.: Shearing strength of reinforced concrete slabs. In: ACI –Journal 28 (1961) S.527-542
- Hegger, J.; Häusler, F., Ricker, M.: Zur maximalen Durchstanztragfähigkeit von Flachdecken. In: Beton - und Stahlbetonbau 102 (2007) S.770-777
- Kinnunen, S.; Nylander, H.; Tolf, P.: Plattjocklekens inverkan på betongplattors hällfasthet vid genomstansning Försök med rktangulära plattor. Institutionen för byggnadsstatik kungl. Tekniska Högskolan, Stockholm, 1979
- Ladner, M., Untersuchungsbericht Durchstanzversuche an Flachdeckenausschnitten, 38 p., Luzern, Switzerland, 1998
- Lee, S.C.; Teng, S.; Morley, C.T.: Punching shear tests on high strength concrete slabs. In 4th Proceedings Uitization of high strength / high performance concrete, Norway, Sandefjord 20-24 June 1999, S.401-410
- Lips, S.; Fernandez Ruiz, M.; Muttoni, A.: Experimental Investigation on Punching Strength and Deformation Capacity of Shear-Reinforced Slabs. In: ACI Structural Journal 109 (2012), S.889-900
- Marti, P.; Pralong, J.; Thürlimann, B.: Schubversuche an Stahlbeton-Platten. Institut für Bautechnik und Konstruktion ETH-Zürich, Bericht Nr. 7305-2, 1977
- Müller, F.-X.; Muttoni, A.; Thürlimann, B.: Durchstanzversuche an Flachdecken mit Aussparungen. ETH Zürich, Inst. für Baustatik und Konstruktion, Band 7305, Heft 5, 1984
- Müller, F.-X.; Muttoni, A.; Thürlimann, B.: Durchstanzversuche an Flachdecken mit Aussparungen. ETH Zürich, Inst. für Baustatik und Konstruktion, Band 7305, Heft 5, 1984
- Oliveira, D. R. C.; Melo, G. S.: Inclined stirrups as shear reinforcement in high performance concrete flat slabs. In 4th Proceedings Uitization of high strength / high performance concrete, Norway, Sandefjord 20-24 June 1999, S.507-516
- Seible, F.; Ghali, A.; Dilger, W. H.: Preassembled shear reinforcing units for flat plates. In: ACI - Structural Journal 77 (1980) S.28-35
- Tolf, P.: Plattjocklekens inverkan pa betongplattors hallfasthet vid genomstansning. Försök med cikulära plattor. Royal Institute of Technology, Dep. of Structural Mechanics and Engineering, Bulletin 146, 1988
- Vollum, R. L., Abdel-Fattah, T., Eder, M., and Elghazouli, A.Y.: Design of ACI-type punching shear reinforcement to Eurocode 2. In: Magazine of Concrete Research, 2010, S.3-16

B.3 Auswertedatenbank von Durchstanzversuchen an zentrisch belasteten Einzelfundamenten ohne Durchstanzbewehrung

Α	В	С	D	Е	F	G
	Bez. im		Fundament			
	Versuchs-		Geo-			
	bericht	Forscher	metrie	Belastung	b_x	b_y
[-]	[-]	[-]	[-]	[-]	[mm]	[mm]
1	DF1	Ricker, M; Hegger, J. et. al.	q	soil	900	900
2	DF2	Ricker, M; Hegger, J. et. al.	q	soil	900	900
3	DF4	Ricker, M; Hegger, J. et. al.	q	soil	900	900
4	DF5	Ricker, M; Hegger, J. et. al.	q	soil	900	900
5	DF6	Ricker, M; Hegger, J. et. al.	q	soil	1200	1200
6	DF7	Ricker, M; Hegger, J. et. al.	q	soil	1400	1400
7	DF8	Ricker, M; Hegger, J. et. al.	q	soil	1200	1200
8	DF10	Ricker, M; Hegger, J. et. al.	q	soil	1200	1200
9	DF11	Ricker, M; Hegger, J. et. al.	q	surface	1200	1200
10	DF12	Ricker, M; Hegger, J. et. al.	q	surface	1400	1400
11	DF13	Ricker, M; Hegger, J. et. al.	q	surface	1800	1800
12	DF14	Ricker, M; Hegger, J. et. al.	q	surface	1400	1400
13	DF15	Ricker, M; Hegger, J. et. al.	q	surface	1400	1400
14	DF20	Ricker, M; Hegger, J. et. al.	q	surface	1200	1200
15	DF21	Ricker, M; Hegger, J. et. al.	q	surface	1400	1400
16	DF22	Ricker, M; Hegger, J. et. al.	q	surface	1800	1800
17	S11	lgren, M.; Kinnunen, S.; Nylander	q	surface	850	850
18	S14	lgren, M.; Kinnunen, S.; Nylander	q	surface	850	850
19	B-1	Dieterle, H.; Rostásy, S.	q	surface	1500	1500
20	B-2	Dieterle, H.; Rostásy, S.	q	surface	1500	1500
21	B-3	Dieterle, H.; Rostásy, S.	q	surface	1500	1500
22	B-4	Dieterle, H.; Rostásy, S.	q	surface	1500	1500
23	B-4/2	Dieterle, H.; Rostásy, S.	q	surface	1500	1500
24	B-4/3	Dieterle, H.; Rostásy, S.	q	surface	1500	1500
25	B-4/4	Dieterle, H.; Rostásy, S.	q	surface	1500	1500
26	V-2	Dieterle, H.; Rostásy, S.	q	surface	1500	1500
27	C-1	Dieterle, H.; Rostásy, S.	q	surface	1500	1500
28	C-3	Dieterle, H.; Rostásy, S.	q	surface	1500	1500
29	H-2	Dieterle, H.; Rostásy, S.	q	surface	1500	1500
30	H-3	Dieterle, H.; Rostásy, S.	q	surface	1500	1500
31	D	Dieterle, H.; Rostásy, S.	q	surface	3000	3000
32	Z1	Kordina, K.; Nölting, D.	r	surface	1500	1800
33	Z3	Kordina, K.; Nölting, D.	r	surface	1500	1800
34	F-1	Dieterle, H.; Steinle, A.	q	surface	1800	1800
35	F-2	Dieterle, H.; Steinle, A.	q	surface	2400	2400
36	F-5	Dieterle, H.; Steinle, A.	q	surface	1800	1800
37	102 a	Richart, Frank E.	q	springs	2134	2134
38	104 a	Richart, Frank E.	q	springs	2134	2134
39	104 b	Richart, Frank E.	q	springs	2134	2134
40	105 a	Richart, Frank E.	q	springs	2134	2134
41	105 b	Richart, Frank E.	q	springs	2134	2134

А	Η	Ι	J	Κ	L	Μ	Ν	0	Р	Q
			Stützen-							
	h	d	form	c_1	$f_{\mathit{cm,cyl}}$	d_{g}	ρ_l	f_{ym}	E_{sm}	V _{Test}
[-]	[mm]	[mm]	[-]	[mm]	[MPa]	[mm]	[%]	[MPa]	[GPa]	[MN]
1	200	150	q	150	20,2	16	1,03	552	198	0,551
2	200	150	q	150	22,0	16	1,03	552	198	0,530
3	300	250	q	150	24,5	16	0,62	552	198	1,252
4	300	250	q	175	17,6	16	0,73	549	200	1,130
5	450	395	q	200	19,0	16	0,86	566	198	2,836
6	450	395	q	200	20,9	16	0,85	549	200	2,568
7	300	250	q	200	22,5	16	0,87	581	198	1,203
8	300	250	q	200	38,1	16	0,87	578	192	1,638
9	450	395	q	200	21,4	16	0,86	528	197	2,813
10	450	395	q	200	21,2	16	0,85	566	198	2,208
11	450	395	q	200	21,1	16	0,84	558	198	1,839
12	350	295	q	200	21,2	16	0,84	566	198	1,477
13	530	470	q	200	21,7	16	0,82	548	200	2,750
14	450	395	q	200	36,3	16	0,86	549	200	3,037
15	450	395	q	200	36,6	16	0,85	549	200	2,860
16	450	395	q	200	37,8	16	0,84	558	198	2,405
17	274	235	k	250	27,9	8	0,40	621	-	1,190
18	273	240	k	250	21,2	8	0,39	621	-	1,100
19	320	296	q	300	23,4	30	0,20	453	198	1,054
20	320	294	q	300	23,5	30	0,41	451	202	1,522
21	320	293	q	300	28,0	30	0,63	415	210	2,065
22	320	292	q	300	24,0	30	0,83	395	210	1,902
23	320	290	q	300	25,2	30	0,87	458	208	2,090
24	320	294	q	300	24,2	30	0,87	464	205	2,068
25	320	292	q	300	24,7	30	0,83	395	210	1,889
26	320	294	q	300	27,4	30	0,41	486	210	1,800
27	320	290	q	150	27,4	32	0,21	564	212	0,859
28	322	290	q	450	28,0	32	0,38	580	211	2,367
29	409	375	q	300	28,7	32	0,30	580	211	2,235
30	486	450	q	300	25,5	32	0,37	510	202	3,116
31	800	760	q	450	21,1	32	0,21	457	201	5,338
32	340	293	q	300	23,2	0	0,61	457	-	1,600
33	340	293	q	200	25,8	0	0,62	434	-	1,140
34	700	650	q	300	24,6	32	0,19	473	202	3,926
35	700	650	q	300	19,3	32	0,16	473	202	3,202
36	740	690	q	300	20,1	32	0,21	400	202	4,121
37	406	356	q	305	21,8	25	0,20	496	-	1,423
38	406	356	q	305	22,7	25	0,26	510	-	1,779
39	406	356	q	305	22,1	25	0,26	510	-	1,601
40	406	356	q	305	23,6	25	0,40	461	-	2,331
41	406	356	q	305	16,5	25	0,40	461	-	1,797

Α	В	С	D	Е	F	G
	Bez. im		Fundament			
	Versuchs-		Geo-			
	bericht	Forscher	metrie	Belastung	b_x	b_y
[-]	[-]	[-]	[-]	[-]	[mm]	[mm]
42	106 a	Richart, Frank E.	q	springs	2134	2134
43	106 b	Richart, Frank E.	q	springs	2134	2134
44	107 a	Richart, Frank E.	q	springs	2134	2134
45	107 b	Richart, Frank E.	q	springs	2134	2134
46	109 a	Richart, Frank E.	q	springs	2134	2134
47	109 b	Richart, Frank E.	q	springs	2134	2134
48	110 a	Richart, Frank E.	q	springs	2134	2134
49	110 b	Richart, Frank E.	q	springs	2134	2134
50	111 a	Richart, Frank E.	q	springs	2134	2134
51	111 b	Richart, Frank E.	q	springs	2134	2134
52	112 a	Richart, Frank E.	q	springs	2134	2134
53	112 b	Richart, Frank E.	q	springs	2134	2134
54	109R a	Richart, Frank E.	q	springs	2134	2134
55	109R b	Richart, Frank E.	q	springs	2134	2134
56	110R a	Richart, Frank E.	q	springs	2134	2134
57	110R b	Richart, Frank E.	q	springs	2134	2134
58	201 a	Richart, Frank E.	q	springs	2134	2134
59	201 b	Richart, Frank E.	q	springs	2134	2134
60	202 a	Richart, Frank E.	q	springs	2134	2134
61	202 b	Richart, Frank E.	q	springs	2134	2134
62	203 a	Richart, Frank E.	q	springs	2134	2134
63	203 b	Richart, Frank E.	q	springs	2134	2134
64	204 a	Richart, Frank E.	q	springs	2134	2134
65	204 b	Richart, Frank E.	q	springs	2134	2134
66	205 a	Richart, Frank E.	q	springs	2134	2134
67	205 b	Richart, Frank E.	q	springs	2134	2134
68	206 a	Richart, Frank E.	q	springs	2134	2134
69	206 b	Richart, Frank E.	q	springs	2134	2134
70	207 a	Richart, Frank E.	q	springs	2134	2134
71	207 b	Richart, Frank E.	q	springs	2134	2134
72	208 a	Richart, Frank E.	q	springs	2134	2134
73	208 b	Richart, Frank E.	q	springs	2134	2134
74	209 a	Richart, Frank E.	q	springs	2134	2134
75	209 b	Richart, Frank E.	q	springs	2134	2134
76	210 a	Richart, Frank E.	q	springs	2134	2134
77	210 b	Richart, Frank E.	q	springs	2134	2134
78	211 a	Richart, Frank E.	q	springs	2134	2134
79	211 b	Richart, Frank E.	q	springs	2134	2134
80	212 a	Richart, Frank E.	q	springs	2134	2134
81	212 b	Richart, Frank E.	q	springs	2134	2134
82	213 a	Richart, Frank E.	q	springs	2134	2134

Α	Н	Ι	J	K	L	Μ	Ν	0	Р	Q
			Stützen-							
	h	d	form	<i>c</i> ₁	$f_{\mathit{cm,cyl}}$	d_{g}	ρ_l	f_{ym}	E_{sm}	V _{Test}
[-]	[mm]	[mm]	[-]	[mm]	[MPa]	[mm]	[%]	[MPa]	[GPa]	[MN]
42	406	356	q	305	25,9	25	0,38	449	-	2,335
43	406	356	q	305	25,0	25	0,38	449	-	2,108
44	406	356	q	305	25,0	25	0,39	415	-	2,108
45	406	356	q	305	23,5	25	0,39	415	-	1,890
46	406	356	q	305	20,4	25	0,56	530	-	2,393
47	406	356	q	305	21,2	25	0,56	530	-	2,046
48	406	356	q	305	22,1	25	0,55	420	-	2,224
49	406	356	q	305	18,6	25	0,55	496	-	2,313
50	406	356	q	305	20,8	25	0,63	496	-	2,135
51	406	356	q	305	23,4	25	0,63	425	-	2,549
52	406	356	q	305	23,9	25	0,75	510	-	2,135
53	406	356	q	305	19,4	25	0,75	510	-	2,313
54	406	356	q	305	28,1	25	0,56	456	-	2,558
55	406	356	q	305	28,8	25	0,56	456	-	2,446
56	406	356	q	305	21,8	25	0,55	515	-	2,260
57	406	356	q	305	24,1	25	0.55	515	-	2,638
58	305	254	0	305	18.3	25	0.98	449	_	1.326
59	305	254	0	305	18.4	25	0.98	449	_	1.512
60	356	305	0	305	16.4	25	0.68	449	_	1.864
61	356	305	a 1	305	15.0	25	0.68	449	_	1.779
62	406	356	q	305	18,1	25	0,50	449	-	1,868
63	406	356	q	305	13,9	25	0,50	449	-	1,690
64	356	305	q	305	17,8	25	1,01	449	-	1,779
65	356	305	q	305	17,5	25	1,01	449	-	1,779
66	406	356	q	305	15,6	25	0,74	449	-	2,046
67	406	356	q	305	16,6	25	0,74	449	_	2,046
68	457	406	q	305	20,1	25	0,57	449	_	2,313
69	457	406	q	305	18,5	25	0.57	449	_	2,713
70	254	203	q	305	29,3	25	1,23	449	-	1,601
71	254	203	q	305	27,9	25	1,23	449	-	1,521
72	305	254	q	305	27,6	25	0,77	449	-	1,588
73	305	254	0 1	305	26.5	25	0.77	449	_	1.690
74	356	305	q	305	19.9	25	0.53	449	-	1,957
75	356	305	0 1	305	16.2	25	0.53	449	_	1.868
76	305	254	0	305	29.8	25	0.98	449	_	2.002
77	305	254	<u>г</u> П	305	29.2	25	0.98	449	_	1.779
78	356	305	<u>ч</u> п	305	2.5.2	25	0.68	449	_	2.135
79	356	305	<u>ч</u> л	305	29.4	25	0.68	449	_	2,133
80	406	356	<u>ч</u> л	305	26.8	25	0.50	449	_	2,313
81	406	356	<u>ч</u>	305	283	25	0.50	449	_	2,313
82	254	203	<u>ч</u>	305	31.0	25	1 23	440		1 512
04	<i>2</i> ,5-T	205	<u>ч</u>	505	51,0	25	1,40			1,514

Α	В	С	D	Е	F	G
	Bez. im		Fundament			
	Versuchs-		Geo-			
	bericht	Forscher	metrie	Belastung	b_x	b_y
[-]	[-]	[-]	[-]	[-]	[mm]	[mm]
83	213 b	Richart, Frank E.	q	springs	2134	2134
84	214 a	Richart, Frank E.	q	springs	2134	2134
85	214 b	Richart, Frank E.	q	springs	2134	2134
86	215 a	Richart, Frank E.	q	springs	2134	2134
87	215 b	Richart, Frank E.	q	springs	2134	2134
88	216 a	Richart, Frank E.	q	springs	2134	2134
89	216 b	Richart, Frank E.	q	springs	2134	2134
90	217 a	Richart, Frank E.	q	springs	2134	2134
91	217 b	Richart, Frank E.	q	springs	2134	2134
92	218 a	Richart, Frank E.	q	springs	2134	2134
93	218 b	Richart, Frank E.	q	springs	2134	2134
94	304 a	Richart, Frank E.	q	springs	2134	2134
95	304 b	Richart, Frank E.	q	springs	2134	2134
96	305 a	Richart, Frank E.	q	springs	2134	2134
97	305 b	Richart, Frank E.	q	springs	2134	2134
98	306 a	Richart, Frank E.	q	springs	2134	2134
99	306 b	Richart, Frank E.	q	springs	2134	2134
100	307 a	Richart, Frank E.	q	springs	2134	2134
101	307 b	Richart, Frank E.	q	springs	2134	2134
102	309 a	Richart, Frank E.	q	springs	2134	2134
103	309 b	Richart, Frank E.	q	springs	2134	2134
104	310 a	Richart, Frank E.	q	springs	2134	2134
105	310 b	Richart, Frank E.	q	springs	2134	2134
106	311 a	Richart, Frank E.	q	springs	2134	2134
107	311 b	Richart, Frank E.	q	springs	2134	2134
108	312 a	Richart, Frank E.	q	springs	2134	2134
109	312 b	Richart, Frank E.	q	springs	2134	2134
110	316 a	Richart, Frank E.	q	springs	2134	2134
111	316 b	Richart, Frank E.	q	springs	2134	2134
112	317 a	Richart, Frank E.	q	springs	2134	2134
113	317 b	Richart, Frank E.	q	springs	2134	2134
114	320 b	Richart, Frank E.	q	springs	2134	2134
115	321 a	Richart, Frank E.	q	springs	2134	2134
116	321 b	Richart, Frank E.	q	springs	2134	2134
117	326 a	Richart, Frank E.	q	springs	2134	2134
118	326 b	Richart, Frank E.	q	springs	2134	2134
119	327 b	Richart, Frank E.	q	springs	2134	2134
120	330 a	Richart, Frank E.	a	springs	2134	2134
121	330 b	Richart, Frank E.	a	springs	2134	2134
122	331 a	Richart, Frank E.	a	springs	2134	2134
123	331 b	Richart, Frank E.	q	springs	2134	2134

Α	Н	Ι	J	K	L	Μ	Ν	0	Р	Q
			Stützen-							
	h	d	form	<i>c</i> ₁	$f_{\mathit{cm,cyl}}$	d_{g}	ρ_l	f_{ym}	E_{sm}	V _{Test}
[-]	[mm]	[mm]	[-]	[mm]	[MPa]	[mm]	[%]	[MPa]	[GPa]	[MN]
83	254	203	q	305	31,4	25	1,23	449	-	1,512
84	305	254	q	305	32,9	25	0,77	449	-	2,046
85	305	254	q	305	34,1	25	0,77	449	-	2,131
86	356	305	q	305	34,8	25	0,53	449	-	2,135
87	356	305	q	305	29,2	25	0,53	449	-	2,135
88	254	203	q	305	31,4	25	1,23	449	-	1,601
89	254	203	q	305	30,8	25	1,23	449	-	1,601
90	305	254	q	305	25,6	25	0,77	449	-	1,690
91	305	254	q	305	32,6	25	0,77	449	-	2,046
92	356	305	q	305	28,5	25	0,53	449	-	2,135
93	356	305	q	305	30,5	25	0,53	449	-	1,957
94	406	356	q	356	23,6	25	0,39	461	-	2,331
95	406	356	q	356	16,5	25	0,39	461	_	1,797
96	406	356	q	356	24,3	25	0,39	456	-	2,491
97	406	356	1	356	25,3	25	0,39	456	-	2,482
98	406	356	q	356	25,9	25	0,38	449	-	2,335
99	406	356	q	356	25,0	25	0.38	449	-	2,108
100	406	356	1	356	22,9	25	0,38	515	-	2,313
101	406	356	q	356	26,3	25	0.38	515	-	2,464
102	406	356	1	356	26,7	25	0,38	449	-	2,108
103	406	356	q	356	24,6	25	0,38	449	-	2,002
104	406	356	q	356	28,3	25	0,38	515	_	2,669
105	406	356	q	356	27,0	25	0,38	515	-	2,335
106	406	356	q	356	25,0	25	0,39	415	-	2,108
107	406	356	q	356	23,5	25	0.39	415	-	1,890
108	406	356	q	356	25,0	25	0,39	440	-	2,277
109	406	356	1	356	22,5	25	0,39	440	-	1,668
110	406	356	q	356	26,9	25	0,39	415	_	2,335
111	406	356	q	356	29,8	25	0,39	415	-	2,224
112	406	356	q	356	24,9	25	0,39	440	-	2,162
113	406	356	q	356	25,6	25	0,39	440	_	2,313
114	406	356	q	356	22,6	25	0.38	363	-	2,002
115	406	356	q	356	25,2	25	0,38	477	-	2,157
116	406	356	q	356	26,4	25	0,38	477	-	2,295
117	406	356	1	356	21,2	25	0,38	477	-	2,277
118	406	356	a	356	26.3	25	0.38	477	-	2.309
119	406	356	 0	356	26.8	25	0.38	306	_	1.668
120	406	356	<u>ч</u> П	356	24.1	25	0.40	412	_	1.890
121	406	356	רי ח	356	25.0	25	0.40	412	_	1.890
122	406	356	<u>ר</u> ח	356	25.5	25	0.42	407	_	2.002
123	406	356	<u>ч</u> П	356	19.2	25	0.42	407	_	1.646
		220	1	220	,-		-,· -	,		_,5.5

Anhang B.3 Einzelfundamente ohne Durchstanzbewehrung
--

Α	В	С	D	Е	F	G
	Bez. im		Fundament			
	Versuchs-		Geo-			
	bericht	Forscher	metrie	Belastung	b_x	b_y
[-]	[-]	[-]	[-]	[-]	[mm]	[mm]
124	403 a	Richart, Frank E.	q	springs	2134	2134
125	403 b	Richart, Frank E.	q	springs	2134	2134
126	404 a	Richart, Frank E.	q	springs	2134	2134
127	404 b	Richart, Frank E.	q	springs	2134	2134
128	501 a	Richart, Frank E.	r	springs	1829	2743
129	501 b	Richart, Frank E.	r	springs	1829	2743
130	1435	Talbot, Arthur N.	q	springs	1524	1524
131	1436	Talbot, Arthur N.	q	springs	1524	1524
132	1551	Talbot, Arthur N.	q	springs	1524	1524
133	1553	Talbot, Arthur N.	q	springs	1524	1524
134	1554	Talbot, Arthur N.	q	springs	1524	1524
135	1818	Talbot, Arthur N.	q	springs	1524	1524
136	1820	Talbot, Arthur N.	q	springs	1524	1524
137	1821	Talbot, Arthur N.	q	springs	1524	1524
138	1843	Talbot, Arthur N.	q	springs	1524	1524
139	1844	Talbot, Arthur N.	q	springs	1524	1524
140	DF20N	Siburg, C.; Hegger, J.;	q	surface	1200	1200
141	DF26	Siburg, C.; Hegger, J.;	q	surface	1800	1800
142	DF28	Siburg, C.; Hegger, J.;	q	surface	2700	2700
143	DF28N	Siburg, C.; Hegger, J.;	q	surface	2700	2700
144	DF38	Siburg, C.; Hegger, J.;	q	surface	1200	1200
145	DF39	Siburg, C.; Hegger, J.;	q	surface	1800	1800
146	DF41	Siburg, C.; Hegger, J.;	q	surface	1200	1200
147	DF42	Siburg, C.; Hegger, J.;	q	surface	1800	1800

Α	Н	Ι	J	K	L	Μ	Ν	0	Р	Q
	_		Stützen-						_	
	h	d	form	<i>c</i> ₁	$f_{\mathit{cm,cyl}}$	d_{g}	ρ_l	f_{ym}	E_{sm}	V _{Test}
[-]	[mm]	[mm]	[-]	[mm]	[MPa]	[mm]	[%]	[MPa]	[GPa]	[MN]
124	406	356	q	356	23,7	25	0,39	415	-	1,957
125	406	356	q	356	13,5	25	0,39	415	-	1,601
126	406	356	q	356	22,8	25	0,38	363	-	2,046
127	406	356	q	356	23,2	25	0,38	363	-	1,601
128	305	254	q	356	25,4	25	0,85	530	-	1,753
129	305	254	q	356	25,7	25	0,85	530	-	1,690
130	292	254	q	305	6,8	25	0,61	228	-	0,943
131	305	254	q	305	6,2	25	0,67	228	-	0,798
132	305	254	q	305	12,5	25	0,41	369	-	1,021
133	305	254	q	305	15,4	25	0,62	369	I	1,483
134	305	254	q	305	12,2	25	0,49	363	-	1,306
135	305	254	q	305	11,1	25	0,39	303	-	0,898
136	305	254	q	305	8,3	25	0,33	355	-	0,812
137	305	254	q	305	9,2	25	0,33	355	-	0,721
138	305	254	q	305	19,5	25	0,41	360	-	1,030
139	305	254	q	305	19,7	25	0,41	360	-	1,220
140	450	400	q	200	34,5	16	0,85	541	200	2,851
141	650	590	q	300	21,9	16	0,83	587	198	5,392
142	650	590	q	300	21,6	16	0,86	515	191	3,428
143	650	580	q	300	22,4	16	0,88	549	193	3,922
144	450	400	q	200	51,7	16	0,85	541	200	4,168
145	450	400	q	200	53,3	16	0,83	541	200	3,039
146	450	405	q	200	19,6	16	0,30	627	204	1,853
147	450	405	q	200	22,2	16	0,29	627	204	1,548

Quellen für die Auswertedatenbank von Durchstanzversuchen an Einzelfundamenten ohne Durchstanzbewehrung

- Ricker, M.: Zur Zuverlässigkeit der Bemessung gegen Durchstanzen bei Einzelfundamenten. Rheinisch-Westfälische Technische Hochschule Aachen, Fakultät für Bauingenieurwesen, Diss., 2009
- Hallgren, M.; Kinnunen, S.; Nylander, B.: Punching Shear Tests on Column Footings. In: Nordic Concrete Research 21 (1998), Nr.3, S.1-22
- Dieterle, H.; Rostasy, F.S.: Tragverhalten quadratischer Einzelfundamente aus Stahlbeton. DAfStb Heft 387, Berlin, 1987
- Kordina, K.; Nölting, D.: Tragverhalten von ausmittig beanspruchten Einzelfundamenten aus Stahlbeton / Institut für Baustoffe, Massivbau und Brandschutz, Technische Hochschule. Braunschweig, 1981. – Forschungsbericht. – unveröffentlicht
- Dieterle, H.; Steinle, A.: Blockfundamente für Stahlbetonfertigteilstützen / Forschungs- und Materialprüfungsanstalt Baden-Württemberg Otto-Graf-Institut. Stuttgart, 1980 (AiF-Nr. 3953 (DBV-Nr. 66)). – Forschungsbericht
- Dieterle, H.; Steinle, A.: Blockfundamente für Stahlbetonfertigteilstützen. DAfStb Heft 326 Berlin 1981
- Richart, F.E.: Reinforced Concrete Wall and Column Footings. In: Journal of the American Concrete Institute 20 (1948), Nr. 2 (Part 1), 3 (Part 2), S. 97–127 (Part 1), 237–261 (Part 2)
- Talbot, A.N.: Reinforced Concrete Wall Footings and Column Footings. Urbana, Illinois:
 Engineering Experiment Station, University of Illinois, 1913, reprinted 1925
 (Publications of the Engineering Experiment Station, Bulletin No. 67)
- Siburg, C.; Hegger, J.: Experimentelle Untersuchungen zum Durchstanzen von Einzelfundamenten mit baupraktischen Abmessungen. In: Beton- und Stahlbetonbau (108) 2013, S.452-461
B.4 Auswertedatenbank von Durchstanzversuchen an zentrisch belasteten Einzelfundamenten mit Durchstanzbewehrung

Anhang B.4 Einzelfundamente mit Durchstanzbewehrung

Α	В	С	D	Е	F	G	Н	Ι
			Funda-					
	Bez. im		ment					
	Versuchs-		Geo-					
	bericht	Forscher	metrie	Belastung	b_x	b_y	h	d
[-]	[-]	[-]	[-]	[-]	[mm]	[mm]	[mm]	[mm]
1	DF9	Ricker, M; Hegger, J. et al.	q	soil	1200	1200	300	250
2	DF16	Ricker, M; Hegger, J. et al.	q	surface	1200	1200	450	395
3	DF17	Ricker, M; Hegger, J. et al.	q	surface	1400	1400	450	395
4	DF18	Ricker, M; Hegger, J. et al.	q	surface	1800	1800	450	395
5	DF29	Hegger/Siburg	q	surface	1200	1200	450	400
6	DF31	Hegger/Siburg	q	surface	1800	1800	450	400
7	DF32	Hegger/Siburg	q	surface	1800	1800	450	400
8	DF33	Hegger/Siburg	q	surface	1800	1800	450	580
9	DF35	Hegger/Siburg	q	surface	2700	2700	450	590
10	S-1S	Dieterle, H.; Rostásy, S	q	surface	1500	1500	450	290

Α	J	Κ	L	Μ	Ν	0	Р	Q	R	S	Т	Q
								A_{sw}	A_{sw}			
	Stützen-							0,3 <i>d</i> -	0,3 <i>d</i> -			
	form	<i>c</i> ₁	$f_{\mathit{cm,cyl}}$	d_{g}	ρ_l	f_{ym}	E_{sm}	0,8 <i>d</i>	1,0 <i>d</i>	ϕ_w	$f_{yw,m}$	V _{Test}
[-]	[-]	[mm]	[MPa]	[mm]	[%]	[MPa]	[GPa]	[mm ²]	[mm ²]	[mm]	[MPa]	[MN]
1	q	200	20,8	16	0,87	598	199	5680	10736	10	520	2,784
2	q	200	20,0	16	0,86	558	199	9040	9040	12	559	3,680
3	q	200	20,8	16	0,85	552	198	9040	9040	12	559	3,619
4	q	200	21,7	16	0,84	558	199	9040	9040	12	559	3,361
5	q	200	18,4	16	0,85	541	200	8138	8138	12	506	3,620
6	q	200	21,2	16	0,85	541	200	7240	7240	12	499	3,286
7	q	200	19,3	16	0,85	541	200	5420	5420	12	499	3,146
8	q	300	23,7	16	0,85	587	198	13540	13547	14	529	7,096
9	q	300	19,4	16	0,86	515	191	13540	13540	14	529	5,856
10	q	300	28,2	32	0,718	512	-	5089	5089	18	436	3,532

Anhang B

Quellen für die Auswertedatenbank von Durchstanzversuchen an Einzelfundamenten mit Durchstanzbewehrung

- Ricker, M.: Zur Zuverlässigkeit der Bemessung gegen Durchstanzen bei Einzelfundamenten. Rheinisch-Westfälische Technische Hochschule Aachen, Fakultät für Bauingenieurwesen, Diss., 2009
- Dieterle, H.; Rostasy, F.S.: Tragverhalten quadratischer Einzelfundamente aus Stahlbeton. DAfStb Heft 387, Berlin, 1987
- Siburg, C.; Hegger, J.: Experimentelle Untersuchungen zum Durchstanzen von Einzelfundamenten mit baupraktischen Abmessungen. In: Beton- und Stahlbetonbau (108) 2013, S.452-461

B.5 Auswertedatenbank von Durchstanzversuchen im Bereich von Randstützen an Flachdecken ohne Durchstanzbewehrung

Α	В	С	D	E	F
	Den im				
	Dez. IIII Verevel				
N.	versuch-	Ernelten		Abstand zu	Abstand zu
INr.	bericht	Forscher	Platten Geometrie	$m_x = 0$	$m_y = 0$
[-]	[-]	[-]	[-]	[mm]	[mm]
1	B1	Tankut	Platteauf9Stützen	626	671
2	B2	Tankut	Platteauf9Stützen	626	671
3	D2	Tankut	Platteauf9Stützen	626	671
4	F2	Tankut	Platteauf9Stützen	626	671
5	H1	Tankut	Platteauf9Stützen	626	671
6	H2	Tankut	Platteauf9Stützen	626	671
7	1	Kinnunen	Platteauf2Stützen	616	900
8	2	Kinnunen	Platteauf2Stützen	616	900
9	3	Kinnunen	Platteauf2Stützen	616	900
10	Z-IV(1)	Zaghlool	А	876	914
11	Z-V(1)	Zaghlool	А	832	914
12	Z-V(2)	Zaghlool	А	832	914
13	Z-V(3)	Zaghlool	А	832	914
14	Z-V(6)	Zaghlool	А	832	914
15	Z-VI(1)	Zaghlool	А	787	914
16	ES1	Narasimhan	А	1143	1140
17	ES2	Narasimhan	А	1143	1140
18	Cs/E/1	tamenkovic, Chapma	А	851	457
19	Cs/E/2	tamenkovic, Chapma	А	851	457
20	Cs/E/3	tamenkovic, Chapma	А	851	457
21	Cs/E/4	tamenkovic, Chapma	А	851	457
22	SG2	Gilbert, Long	Platteauf2Stützen	359	381
23	SG4	Gilbert, Long	Platteauf2Stützen	348	381
24	SG6	Gilbert, Long	Platteauf2Stützen	348	381
25	1/2	Neth et al.	Platteauf4Stützen	637	671
26	P10A	Brändli, Müller	Platteauf2Stützen	748	1200
27	P10B	Brändli, Müller	Platteauf2Stützen	748	1200
28	E1	Pillai et al.	Platteauf2Stützen	407	1000
29	3A	Rangan, Hall	Platteauf6Stützen	781	594
30	4A	Rangan, Hall	Platteauf6Stützen	781	594
31	5A	Rangan, Hall	Platteauf6Stützen	781	594
32	SE1	Regan	Platteauf2Stützen	495	575
33	SE2	Regan	Platteauf2Stützen	495	575
34	SE3.4	Regan	Platteauf2Stützen	539	575
35	SE4.5	Regan	Platteauf2Stützen	583	575
36	SE5.6	Regan	Platteauf2Stützen	583	575
37	SE7	Regan	Platteauf2Stützen	583	575
38	SE9	Regan	Platteauf2Stützen	750	956
39	SE10	Regan	Platteauf2Stützen	750	956
40	SE11	Regan	Platteauf2Stützen	750	956
41	1	Gilbert, Glass	Platteauf2Stützen	370	383

Α	G	Н	Ι	J	K	L	М	Ν
					Stützen	Dlattan		
NL	1.	7	7	7	Stutzen-	Platten-		
INT.	n	d_x	d_y	d_m	Iorm	uberstand	<i>c</i> ₁	<i>c</i> ₂
[-]	[mm]	[mm]	[mm]	[mm]	[-]	[mm]	[mm]	[mm]
1	102	76	76	76	q	-	203	203
2	102	76	76	76	q	-	203	203
3	102	76	76	76	q	-	203	203
4	102	76	76	76	q	-	203	203
5	102	76	76	76	q	-	203	203
6	102	76	76	76	q	-	203	203
7	130	102	102	102	q	-	200	200
8	130	102	102	102	q	-	200	200
9	130	102	102	102	q	-	200	200
10	152	127	114	121	q	-	178	178
11	152	127	114	121	q	-	267	267
12	152	127	114	121	q	-	267	267
13	152	126	110	118	q	-	267	267
14	152	127	114	121	q	-	267	267
15	152	127	114	121	q	-	356	356
16	178	150	134	142	q	-	305	305
17	178	150	134	142	q	-	305	305
18	76	56	56	56	q	-	127	127
19	76	56	56	56	q	-	127	127
20	76	56	56	56	q	-	127	127
21	76	56	56	56	q	-	127	127
22	59	59	59	59	q	-	100	100
23	52	52	52	52	r	-	150	100
24	52	52	52	52	q	-	150	150
25	102	84	84	84	r	-	152	229
26	181	162	146	154	q	-	250	250
27	185	162	146	154	q	-	250	250
28	63	54	54	54	r	-	152	102
29	100	79	79	79	r	-	250	200
30	100	79	79	79	r	-	250	200
31	100	79	79	79	r	-	250	450
32	125	98	98	98	r	-	300	200
33	125	101	101	101	r	-	300	200
34	125	98	98	98	r	-	200	300
35	125	98	98	98	r	-	200	300
36	125	98	98	98	r	-	200	300
37	125	98	98	98	r	-	200	300
38	125	98	98	98	q	-	250	250
39	125	98	98	98	q	-	250	250
40	125	98	98	98	q	-	250	250
41	70	52	52	52	q	-	100	100

Α	0	Р	Q	R	S	Т	U	V
Nr				C	1	C	Г	17
INI.	ρ_{lx}	ρ_{ly}	ρ_{lm}	f cm,cyl	d_g	$\int ym$	E_{sm}	V Test
[-]	[%]	[%]	[%]	[MPa]	[mm]	[MPa]	[MPa]	[MN]
1	1,84	1,84	1,84	34,2	10	404	168.508	0,088
2	1,97	1,97	1,97	37,0	10	310	183.883	0,121
3	1,97	1,97	1,97	37,0	14	310	183.883	0,080
4	1,97	1,97	1,97	37,0	14	310	183.883	0,080
5	1,84	1,84	1,84	34,2	14	404	168.508	0,076
6	1,97	1,97	1,97	37,0	7	310	183.883	0,075
7	1,79	1,99	1,89	23,2	7	-	-	0,128
8	1,19	1,32	1,26	25,8	7	-	-	0,129
9	2,39	2,64	2,51	22,7	19	-	-	0,166
10	1,59	2,07	1,81	27,3	19	476	-	0,122
11	1,33	1,63	1,47	34,3	19	474	-	0,215
12	1,68	1,91	1,79	40,5	19	474	-	0,247
13	1,62	1,70	1,66	38,7	-	475	-	0,268
14	1,33	1,63	1,47	34,3	-	476	-	0,117
15	1,20	1,41	1,30	26,0	-	476	-	0,265
16	1,05	1,18	1,12	26,7	19	398	-	0,309
17	1,05	1,18	1,12	30,4	19	398	-	0,342
18	1,28	1,11	1,19	32,7	10	448	-	0,073
19	1,28	1,11	1,19	27,5	10	495	-	0,055
20	1,28	1,11	1,19	28,9	10	495	-	0,025
21	1,28	1,11	1,19	29,2	10	495	-	0,011
22	0,96	0,96	0,96	47,2	-	-	-	0,050
23	0,68	0,68	0,68	37,5	-	-	-	0,037
24	0,68	0,68	0,68	25,8	-	-	-	0,038
25	1,00	1,00	1,00	38,1	-	404	205.000	0,096
26	1,24	1,38	1,31	34,6	16	515	204.100	0,353
27	2,48	2,75	2,61	34,6	16	515	204.100	0,376
28	0,76	0,75	0,75	38,1	7	379	-	0,032
29	1,20	1,20	1,20	44,0	-	426	-	0,090
30	0,56	0,56	0,56	28,0	-	426	-	0,086
31	0,58	0,58	0,58	31,0	-	426	-	0,098
32	0,98	1,09	1,03	35,5	-	-	-	0,198
33	0,95	0,24	0,48	44,4	-	-	-	0,192
34	0,98	1,09	1,03	26,6	_	_	-	0,152
35	0,98	0,91	0,94	44,9	-	-	-	0,164
36	0,98	0,50	0,70	32,9	-	-	-	0,149
37	0.99	0.74	0.86	39.8	-	-	-	0.129
38	0.98	0.54	0.73	41.9	_	-	-	0.123
39	0.98	0.54	0.73	41.1	-	-	-	0.114
40	0.98	0.54	0.73	51.5	_	-	-	0.138
41	0,71	0,71	0,71	34,7	-	-	-	0,035

Α	В	С	D	Е	F
	Bez im				
	Versuch-			Abstand zu	Abstand zu
Nr	bericht	Forscher	Platten Geometrie		
111.	Dericiit	Forschei	Flattell Geolliethe	$m_x = 0$	$m_y \equiv 0$
[-]	[-]	[-]	[-]	[mm]	[mm]
42	2	Gilbert, Glass	Platteauf2Stützen	370	383
43	3	Gilbert, Glass	Platteauf2Stützen	370	383
44	4	Gilbert, Glass	Platteauf2Stützen	359	383
45	5	Gilbert, Glass	Platteauf2Stützen	359	383
46	6	Gilbert, Glass	Platteauf2Stützen	364	383
47	А	Rangan	Platteauf6Stützen	781	600
48	В	Rangan	Platteauf6Stützen	781	600
49	С	Rangan	Platteauf6Stützen	513	440
50	JS1	Mortin, Ghali	А	1245	940
51	JS4	Mortin, Ghali	А	1245	940
52	W5-B	Falamaki, Loo	andunterzugPlatteauf6Stütze	550	594
53	M5-B	Falamaki, Loo	andunterzugPlatteauf6Stütze	528	594
54	S 1	Lim, Rangan	А	3042	2477
55	2	Gardner, Shao	Platteauf9Stützen	603	603
56	5	Gardner, Shao	Platteauf9Stützen	603	603
57	3	Gardner, Shao	Platteauf9Stützen	603	603
58	4	Gardner, Shao	Platteauf9Stützen	603	603
59	S1-2	Sherif	Platteauf2Stützen	1100	550
60	XXX	El-Salakawy, Polak	А	895	770
61	HXXX	El-Salakawy, Polak	А	895	770
62	E-1	Sherif, Dilger	Platteauf2Stützen	1100	550
63	R1	Hegger, Tuchlinski	А	705	1200
64	RSO5n	legger, Ricker, Häusle	A	705	1200

Α	G	Н	Ι	J	K	L	М	Ν
					Stützen-	Platten-		
Nr.	h	d_x	d_y	d_m	form	überstand	<i>c</i> ₁	<i>c</i> ₂
[-]	[mm]	[mm]	[mm]	[mm]	[-]	[mm]	[mm]	[mm]
42	70	52	52	52	r	-	100	150
43	70	52	52	52	r	-	100	200
44	70	52	52	52	r	-	200	100
45	70	52	52	52	q	-	200	200
46	70	52	52	52	r	-	150	100
47	100	82	82	82	r	-	250	200
48	100	82	82	82	r	-	250	200
49	80	60	60	60	q	-	170	170
50	152	122	122	122	q	-	254	254
51	152	122	122	122	q	-	254	254
52	100	83	83	83	q	-	200	200
53	100	84	84	84	r	-	300	400
54	110	91	83	87	q	-	250	250
55	140	120	120	120	k	127	254	254
56	140	120	120	120	q	-	254	254
57	140	120	120	120	q	-	254	254
58	140	120	120	120	q	127	254	254
59	150	122	106	114	q	-	250	250
60	120	94	83	89	q	-	250	250
61	90	90	90	90	q	-	250	250
62	150	114	114	114	q	_	250	250
63	230	195	175	185	q	-	300	300
64	230	195	175	185	q	_	300	300

Α	0	Р	Q	R	S	Т	U	V
Nr				C	1	C	E	TZ.
111.	ρ_{lx}	ρ_{ly}	ρ_{lm}	J cm,cyl	d_g	f_{ym}	E_{sm}	V Test
[-]	[%]	[%]	[%]	[MPa]	[mm]	[MPa]	[MPa]	[MN]
42	0,71	0,71	0,71	29,7	-	-	-	0,037
43	0,71	0,71	0,71	33,5	-	-	-	0,039
44	0,71	0,71	0,71	29,8	-	-	-	0,040
45	0,71	0,71	0,71	30,4	-	-	-	0,049
46	0,68	0,68	0,68	33,5	-	-	-	0,041
47	0,56	0,56	0,56	30,3	-	462	-	0,120
48	0,78	0,41	0,57	48,3	-	462	-	0,108
49	0,58	0,42	0,49	28,4	-	480	-	0,022
50	0,60	0,95	0,75	43,2	-	420	-	0,141
51	0,80	1,28	1,01	32,2	-	420	-	0,141
52	0,39	0,78	0,55	26,8	-	-	-	0,071
53	0,72	1,67	1,10	34,0	-	-	-	0,088
54	0,40	0,44	0,42	25,0	10	516	-	0,106
55	0,66	0,66	0,66	21,5	19	460	-	0,159
56	0,66	0,66	0,66	21,5	19	460	-	0,144
57	0,66	0,66	0,66	21,5	19	460	-	0,144
58	0,66	0,66	0,66	21,5	19	460	-	0,207
59	1,31	1,51	1,41	29,0	14	523	207.700	0,185
60	0,70	0,80	0,75	33,0	-	545	195.000	0,125
61	0,78	0,88	0,83	36,5	-	-	-	0,069
62	1,80	1,56	1,68	92,7	-	-	-	0,245
63	0,82	0,92	0,87	34,8	16	575	196.190	0,448
64	1,40	2,55	1,89	27,9	16	514	201.000	0,459

Quellen für die Auswertedatenbank von Durchstanzversuchen an Randstützen in Flachdecken ohne Durchstanzbewehrung

- Brändli, W.; Müller, F.X.; Thürlimann, B.: Bruchversuche an Stahlbeton- und Spannbetonplatten bei Rand- und Eckstützen. Institut für Baustatik und Konstruktion, ETH Zürich, 1982
- El-Salakawy, E.F.; Polak, M.A.; Soliman, M.H.: Reinforced concrete slab-column edge connections with shear studs. In: Canadian Journal of Civil Engineering 27 (2000), S.338-348
- Falamaki, M; Loo, Y.C.: Punching Shear Tests of Half-Scale Reinforced Concrete Flat-Plate Models with Spandrel Beams. In: ACI Structural Journal 89 (1992), S.263-271
- Gardner, N.J.; Xiao-yun S.: Punching Shear of Continuous Flat Reinforced Concrete Slabs. In: ACI Structural Journal 93 (1996), S. 219-228
- Gilbert S.G, Glass C.: Punching failure of reinforced concrete flat slabs at edge columns. In: Structural Engineer, Vol.65B No.1 (1987), S.16-28
- Gilbert, S.G.; Long, A.E.: Behavior of flat slab edge column joints. Advances in concrete technology, 1980, S.185-196
- Hegger, J.; Ricker, M.; Häusler, F.; Tuchlinski, D.: Versuche zum Durchstanzen im Bereich von Randstützen mit und ohne Durchstanzbewehrung. In: Bauingenieur 82 (2007), S.270-278
- Kinnunen, Sven: Försök met betongplattor understödda av pelare vid fri kant, Zusammenfassung, Byggforskingens skriftutgivning, rapport 2, pp. 5-7, Statens institut för byggnadsforskning, Stockholm, 1971
- Lim, F.K.; Rangan, B.V.: Studies on Concrete Slabs with Stud Shear Reinforcement in Vicinity of Edge and Corner Columns. In: ACI Structural Journal 92 (1995), S.515-525
- Mortin, J.D.; Ghali, A.: Connection of Flat Plates to Edge Columns. In: ACI Structural Journal 88 (1991), S.191-198
- Narasimhan, N.: Shear Reinforcement in Reinforced Concrete Column Heads. University of London, Diss., 1971
- Neth, V.W.; de Paiva, H.A.R.; Long, A.E.: Behaviour of Models of a Reinforced Concrete Flat Plate Edge-Column Connection. In: ACI Journal 78 (1981), S.269-275
- Pillai, U.; Kirk, W.;Scavuzzo, L.: Shear Reinforcement at Slab-Column Connections in a Reinforced Concrete Flat Plate Structure. In: ACI Journal 79 (1982), S.36-42
- Polak, M.: Ductility of reinforced concrete flat slab column connections. In: Computer Aided civil and infrastructure engineering 20 (2005), S.184-193
- Rangan, V.: Tests on Slabs in the Vicinity of Edge Columns. In: ACI Structural Journal 87 (1991), S.623-629
- Rangan, V.B.; Hall, A.S.: Moment and Shear Transfer between Slab and Edge Column. In: ACI Journal 80 (1983), S.183-191
- Regan, P.E.; Braestrup, M.W.: Punching Shear in Reinforced Concrete A-State-of-the-Art-Report. CEB Bulletin No. 168, 1985
- Sherif, A.G.: Behaviour of Reinforced Concrete Flat Slabs. The University of Calgary, Department of Civil Engineering, Diss., 1996

- Sherif, A.G.; Dilger, W.H.: Tests of Full-Scale Continuous Reinforced Concrete Flat Slabs. In: ACI Structural Journal 97 (2000), S.455-467
- Stamenkovic, A.; Chapman, J.C.: Local strength of flat slabs at column heads. Report 39, Construction Industry Research and Information Association, London, 1972
- Tankut L.: The behavior of the reinforced concrete flat plate structures subjected to various combinations of vertical and horizontal loads. University of London; Diss., 1969
- Zaghlool, E.R.F.: Strength and behaviour of corner and edge column-slab connections in reinforced concrete flat plates. University of Calgery, Canada, Diss., 1971

B.6 Auswertedatenbank von Durchstanzversuchen im Bereich von Innenstützen an Flachdecken aus Stahlfaserbeton

А	В	С	D	Е	F	G	Н	Ι	J
			_	Stützen-				ſ	
Nr.	Forscher	h	d	form	<i>c</i> ₁	ρ_l	$f_{\mathit{cm,cyl}}$	$f^{J}_{ct,R,u}$	V _{Test}
[-]	[-]	[mm]	[mm]	[-]	[mm]	[%]	[MPa]	[MPa]	[MN]
1	Swamy2	125	100	k	170	0,56	46,4	0,58	0,244
2	Swamy3	125	100	k	170	0,56	45,0	0,68	0,263
3	Swamy4	125	100	k	170	0,56	43,9	0,75	0,281
4	Swamy5	125	100	k	170	0,56	45,0	0,68	0,267
5	Swamy6	125	100	k	170	0,56	45,2	0,69	0,239
6	Swamy8	125	100	k	170	0,75	49,0	0,72	0,256
7	Swamy9	125	100	k	170	0,37	49,1	0,72	0,179
8	Swamy10	125	100	k	170	0,47	44,1	0,67	0,203
9	Swamy11	125	100	k	170	0,75	44,1	0,67	0,262
10	Swamy12	125	100	k	170	0,75	43,8	0,67	0,249
11	Swamy13	125	100	k	170	0,75	46,7	0,70	0,237
12	Swamy16	125	100	k	170	0,56	37,2	0,60	0,213
13	Swamy18	125	100	k	170	0,75	43,8	0,78	0,266
14	Walraven2	140	110	k	250	0,09	46,9	0,45	0,110
15	Walraven3	140	110	k	250	0,09	44,6	0,62	0,157
16	Walraven5	140	110	k	250	1,00	44,7	0,43	0,462
17	Walraven6	140	110	k	250	1,00	46,1	0,64	0,454
18	Walraven8	140	110	k	250	1,83	43,0	0,42	0,503
19	Walraven9	140	110	k	250	1,83	43,0	0,61	0,540

Datenbank nach TEUTSCH.

Quellen für die Auswertedatenbank von Durchstanzversuchen im Bereich von Innenstützen an Flachdecken aus Stahlfaserbeton

- Swamy, N.; Ali, S.A.R.: Punching shear behavior of reinforced slab–column connections made with steel fiber concrete. In: ACI Structural Journal 79 (1982), S.392–406
- Teutsch, M.: Querkraft- und Durchstanztragfähigkeit von Stahlfaserbetonbauteilen. Bericht des Instituts für Baustoffe, Massivbau und Brandschutz der TU Braunschweig, März 2008 (unveröffentlicht)
- Walraven, J. C.; Pat, M.G.M.; Markov: Die Durchstanztragfähigkeit von faserverstärkten Stahlbetonplatten. Beton + Fertigteil-Technik (1987), Heft 2, S.108-113

B.7 Auswertedatenbank von Durchstanzversuchen im Bereich von Innenstützen an Flachdecken mit Vorspannung

Datenbank nach HÄUSLER.

Α	В	С	D	Е	F	G
	Bez. im		Platten			
	Versuchs-		Geo-			Stützen-
Nr.	bericht	Forscher	metrie	h	d	form
[-]	[-]	[-]	[-]	[mm]	[mm]	[-]
1	I3	Stahlton AG (1975)	k	260	234	q
2	I4	Stahlton AG (1975)	k	260	234	q
3	I5	Stahlton AG (1975)	k	260	234	q
4	P7	ralong / Brändli / Thürlimanı	k	175	157	k
5	P8	ralong / Brändli / Thürlimanı	k	176	162	k
6	P9	ralong / Brändli / Thürlimanı	k	182	168	k
15	V1	Kordina / Nölting (1984)	k	150	128	k
16	V2	Kordina / Nölting (1984)	k	150	128	k
17	V3	Kordina / Nölting (1984)	k	150	128	k
18	V7	Kordina / Nölting (1984)	k	150	128	k
19	V8	Kordina / Nölting (1984)	k	150	128	k
20	A1	assanzadeh / Sundquist (199	q	180	150	k
21	B3	assanzadeh / Sundquist (199	q	220	190	k
22	M4	Melges (2001)	q	160	134,7	q
23	LP4	Corrêa (2001)	q	130	105	q
24	LP5	Corrêa (2001)	q	130	105	q
25	LP6	Corrêa (2001)	q	130	105	q
26	AR8	Ramos (2003)	q	100	80	q
27	AR10	Ramos (2003)	q	100	80	q
28	AR11	Ramos (2003)	q	100	80	q
29	AR12	Ramos (2003)	q	100	80	q
30	AR16	Ramos (2003)	q	100	80	q
31	A1	Silva (2005)	q	125	109	q
32	A2	Silva (2005)	q	127	113	q
33	B1	Silva (2005)	q	124	114	q
34	B2	Silva (2005)	q	124	110	q
35	B3	Silva (2005)	q	124	108	q
36	B4	Silva (2005)	q	124	106	q
37	C1	Silva (2005)	q	126	111	q
38	C2	Silva (2005)	q	122	105	q
39	C3	Silva (2005)	q	124	106	q
40	C4	Silva (2005)	q	123	102	q
41	D1	Silva (2005)	q	124	100	q
42	D2	Silva (2005)	q	123	106	q
43	D4	Silva (2005)	q	125	111	q
52	L1	Carvalho (2005)	q	200	162	q
53	L1A	Carvalho (2005)	q	200	165	q
54	S 1	Carvalho (2005)	q	200	156	q

Α	Н	Ι	J	K	L	М
				_		
				ΣP_{u}		
Nr.	c_1	ρ_l	$f_{\mathit{cm,cyl}}$	innerhalb 0,5d	d_p	V _{Test}
[-]	[mm]	[%]	[MPa]	[MN]	[mm]	[MN]
1	300	0,86	25,5	1,489	170	1,716
2	300	0,44	28,4	1,489	170	1,589
3	300	0,44	27,8	1,489	170	1,501
4	300	0,69	31,2	0,748	129	0,767
5	300	0,15	29,6	0,748	138	0,687
6	300	0,15	35,0	0,748	139	0,813
15	200	0,62	33,6	0,419	103	0,450
16	200	0,90	36,0	0,398	103	0,525
17	200	0,62	36,0	0,728	100	0,570
18	200	0,62	31,2	0,440	103	0,475
19	200	0,62	35,2	0,448	103	0,518
20	250	0,18	32,3	1,306	151	0,668
21	250	0,29	40,2	1,264	191	1,113
22	180	0,88	51,9	0,549	120	0,773
23	150	1,17	50,7	0,229	81	0,390
24	150	1,17	50,7	0,381	81	0,475
25	150	1,17	52,4	0,336	81	0,437
26	200	1,64	41,1	0,448	65	0,380
27	200	1,64	41,0	0,348	66	0,371
28	200	1,64	37,6	0,239	65	0,342
29	200	1,64	31,0	0,224	61	0,280
30	200	1,64	30,3	0,442	65	0,351
31	100	0,62	37,8	0,284	91	0,380
32	100	0,47	37,8	0,560	97	0,315
33	200	0,60	40,1	0,604	98	0,583
34	200	0,48	40,1	0,624	94	0,488
35	200	0,63	40,1	0,276	90	0,520
36	200	0,50	40,1	0,292	89	0,459
37	300	0,61	41,6	0,628	94	0,720
38	300	0,50	41,6	0,644	89	0,557
39	300	0,64	41,6	0,312	90	0,637
40	300	0,52	41,6	0,310	85	0,497
41	200	0,68	44,1	0,288	83	0,497
42	200	0,50	44,1	0,284	90	0,385
43	300	0,48	44,1	0,612	95	0,532
52	250	0,66	37,2	0,480	152	0,699
53	250	0,65	25,3	0,486	137	0,750
54	250	0,69	37,8	0,501	139	0,900

Anhang B

Quellen für die Auswertedatenbank von Durchstanzversuchen im Bereich von Innenstützen an Flachdecken mit Vorspannung

- Carvalho, A. L.: Puncao em Lajes Cogumelo de Concreto Protendido com Cabos Nao-Aderentes e Armadura de Cisalhamento. Tese de Doutorado, Universidade de Brasilia, 2005
- Corrêa, G. S.: Puncionamento em Lajes Cogumelo Protendidas com Cabos Nao Aderentes. Department of Civil Environmental Engineering, University of Brasilia, MSc dissertation, 2001
- Häusler, F.: Zum maximalen Durchstanzwiderstand von Flachdecken mit und ohne Vorspannung. Rheinisch-Westfälische Technische Hochschule Aachen, Fakultät für Bauingenieurwesen, Diss., 2009
- Hassanzadeh, G.: Betongplattor pa pelare Dimensioneringsmetoder för plattor med icke vidhäftendespännarmering. TRITA-BKN, Bulletin 43, KTH Stockholm, 1998
- Kordina, K.; Nölting, D.: Versuche zum Durchstanzen ohne Verbund vorgespannter Flachdecken. Institut für Baustoffe, Massivbau und Brandschutz, TU Braunschweig, 1984
- Melges, J. L. P.: Análise Experimental da Puncao em Lajes de Concreto Armado e Protendido. Tese de Doutorado, Escola de Engenharia de Sao Carlos, 2001
- Pralong, J.; Brändli, W.; Thürlimann, B.: Durchstanzversuche an Stahlbeton- und Spannbetonplatten. Bericht 7305-3, Institut für Baustatik und Konstruktion ETH Zürich, 1979
- Ramos, A.; Lucio, V.: Safety on Punching of Prestressed Flat Slabs. Proceedings of the 2nd International fib Congress, Neapel, 2006
- Silva, R. J. C.: Puncao em Lajes Cogumelo Protendida. PhD thesis, Department of Civil Environmental Engineering, University of Brasilia, 2004
- Silva, R.; Regan, P.; Melo, G.: Punching of Post-Tensioned Slabs Tests and Codes. ACI Structural Journal (2007), S.123-132
- Stahlton in: Herzog, M.: Einfluss der Spanngliedanordnung auf den Durchstanzwiderstand vorgespannter Flachdecken nach Versuchen. Beton- und Stahlbetonbau, Heft 12, 1979.
- Stahlton in: Kordina, K.; Nölting, D.: Tragfähigkeit durchstanzgefährdeter Stahlbetonplatten
 Entwicklung von Bemessungsvorschlägen. Deutscher Ausschuss für Stahlbeton, Heft
 371, Berlin, Ernst & Sohn, 1986