Bau<u>forschung</u>

Berechnung des ablaufenden Wassers von einer Gebäudeoberfläche in Abhängigkeit von der Schlagregenmenge

T 3351

¹ Fraunhofer IRB Verlag

T 3351

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

2017

ISBN 978-3-7388-0063-0

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

Fraunhofer-Institut für Bauphysik IBP

Forschung, Entwicklung, Demonstration und Beratung auf den Gebieten der Bauphysik

Zulassung neuer Baustoffe, Bauteile und Bauarten

Bauaufsichtlich anerkannte Stelle für Prüfung, Überwachung und Zertifizierung

Institutsleitung

Prof. Dr. Philip Leistner Prof. Dr. Klaus Peter Sedlbauer

IBP-Bericht BBHB-001/2017/281

Berechnung des ablaufenden Wassers von einer Gebäudeoberfläche in Abhängigkeit von der Schlagregenmenge

Durchgeführt im Auftrag Deutsches Institut für Bautechnik (DIBt) Frau Johanna Bartling Umweltschutz, Nachhaltigkeit / Environmental protection, Sustainability Kolonnenstraße 30 B 10829 Berlin

Der Bericht umfasst 45 Seiten Text 16 Tabellen 12 Abbildungen

Christoph Schwitalla

Valley, 20. Dezember 2016

Gruppenleiter

Bearbeiter

Dr.-Ing. Christian Scherer Dipl.-Ing. (FH) Christoph Schwitalla

Fraunhofer-Institut für Bauphysik IBP Nobelstraße 12 | 70569 Stuttgart Telefon +49 711 970-00 Telefax +49 711 970-3395 www.ibp.fraunhofer.de

Standort Holzkirchen Fraunhoferstr. 10 | 83626 Valley Telefon +49 8024 643-0 Telefax +49 8024 643-366 Standort Kassel Gottschalkstr. 28a | 34127 Kassel Telefon +49 561 804-1870 Telefax +49 561 804-3187

Inhalt

Glossar		3
1	Zusammenfassung	3
2	Einleitung	5
3	Definitionen	5
4	Auswertung von Daten (Literaturrecherche)	8
5 5.1	Berechnungen Berechnung von Proportionalitätsfaktoren aus Niederschlagsdaten	13 13
5.2	Berechnung von Schlagregen- und Regenablaufmengen a Niederschlagsdaten	us 27
6	Diskussion und Ausblick	35

Glossar

Abkürzung <i>R</i> _N	Erläuterung Niederschlagsmenge (Normalregen)	Einheit [m], [mm], [L/m²]
R _s	Schlagregenmenge	[m], [mm], [L/m²]
R _A	Regenablaufmenge	[mm], [m], [L/m²]
U	Windgeschwindigkeit	[m/s]
а	Proportionalitätsfaktor für Schlagregen im Freifeld	[s/m]
F _b	Proportionalitätsfaktor für Schlagregen am Gebäude (Kollisionsregen)	[s/m]
F _a	Proportionalitätsfaktor für Regenablauf	[s/m]

1 Zusammenfassung

Die Auswertung der Literatur und der vorhandenen Messdaten bezüglich Niederschlagsmengen R_N und Schlagregenmengen R_S zeigt, dass eine Abschätzung der Regenablaufmengen R_A bei Kenntnis der jährlichen Niederschlagsmenge und der vorherrschenden mittleren Windgeschwindigkeit *u* möglich ist. Die vereinfachten Gleichungen von Lacy [16] und Choi [17] können für die Berechnung der Schlagregenmenge im Freifeld mit einem Proportionalitätsfaktor a =0,2 s/m und für die Berechnung der Schlagregenmenge am Gebäude mit einem Proportionalitätsfaktor $F_b = 0,1$ s/m verwendet werden. Für ein Gebäude mit einer zur Hauptwindrichtung orientierten Fassade mit einer Fläche von ca. 40 m² wurde experimentell für die Regenablaufmenge R_A ein Proportionalitätsfaktor $F_a = 0,035$ s/m ermittelt. Aus den ermittelten Faktoren kann folgende Faustformel für die Regenablaufmenge auf nicht saugenden Gebäudeoberflächen abgeleitet werden:

 $R_A \sim (a \times 0.5 \times 0.3) \times u \times R_N$ [mm]

dabei gilt:

$$\frac{F_b}{a} \sim 0.5$$

 $\frac{T_a}{F_b} \sim 0.3$

Bei saugenden Untergründen lag der Proportionalitätsfaktor F_a zwischen 0,005 s/m und 0,020 s/m. Somit kann für saugende Untergründe ein mittlerer

Proportionalitätsfaktor $F_a = 0,01$ s/m angegeben werden. Für die Regenablaufmenge R_A von saugenden Untergründen gilt:

$$R_A \sim (a \times 0.5 \times 0.1) \times u \times R_N$$
 [mm]

dabei gilt:

$$\frac{F_b}{a} \sim 0.5$$

 $\frac{F_a}{F_b} \sim 0.1$

Der Proportionalitätsfaktor F_a ist keine statische, sondern eine zeitlich abhängige Größe. Durch Alterung der beregneten Oberfläche verändert sich der Proportionalitätsfaktor mit der Zeit.

In Bild 1 sind die Volumenverhältnisse von Regenablaufmenge, der Schlagregenmenge am Gebäude und im Freiland und dem Normalregen/Niederschlag dargestellt.

Bild 1:

Idealisierte Darstellung der kumulierten Volumenanteile von Regenablauf, Zerstäubung, Adhäsion und Verdunstung an Schlagregen/Kollisionsregen sowie Normalregen/Niederschlag.

Der Jahresniederschlag der ausgewerteten DWD-Messstationen (ohne den Bergstationen wie z. B. Brocken, Feldberg, Zugspitze etc.) lag zwischen 456 mm (Berlin Tegel) und 1697 mm (Oberstdorf). Der Mittelwert des Jahresniederschlags für die genannten DWD-Messstationen betrug 728 mm. Die mittleren Windgeschwindigkeiten bewegten sich zwischen 1,8 m/s (Bamberg) und 4,5 m/s (Helgoland). Der Mittelwert errechnet sich zu 2,5 m/s. Die mittlere jährliche Regenablaufmenge R_A nach Gleichung 12 liegt somit für ein Einfamilienhaus mit einer nicht saugenden Oberfläche (ca. 40 m²) bei ca. 55 L/m²; bei einer saugenden Oberfläche nach Gleichung 13 beträgt die Regenablaufmenge ca. 18 L/m².

2 Einleitung

Mörtel und Putze sind Gemische aus mehreren Komponenten. Sie bestehen aus anorganischen und/oder organischen Bindemitteln, diversen Zuschlagstoffen und Zugabewasser sowie einer Vielzahl an Additiven. Je nach Verwendungszweck kommen unterschiedliche Rezepturen zum Einsatz, die anorganische und organische Bestandteile enthalten. Aus den an der Außenoberfläche von Gebäuden verbauten Baustoffen können daher eine Vielzahl von Stoffen wie z. B. Schwermetalle und Spurenelemente, Salze und organische Stoffe durch ablaufendes Regenwasser ausgewaschen oder durch Tauwasser mobilisiert werden. Die Haupttriebfeder für die Auswaschung der beispielhaft genannten Substanzen aus Fassadenoberflächen ist der Schlagregen. Für den Eintrag der Substanzen in die einzelnen Kompartimente wie Boden und Wasser ist jedoch in erster Linie das ablaufende Wasser verantwortlich. Wie der Schlagregen ein Anteil des Normalregens ist, so ist das von einer Fassadenoberfläche ablaufende Wasser eine Teilmenge des Schlagregens. Mit Hilfe z. B. der DIN EN ISO 15927-3 [1] kann aus Wind- und Regendaten (Normalregen) der Schlagregenindex berechnet werden. Für das ablaufende Regenvolumen existiert eine vergleichbare Berechnungsformel nicht. Im Rahmen einer Datenauswertung sollte ermittelt werden, ob zwischen Schlagregen, Ablaufwasser und der Größe von Testobjekten eine einfach zu ermittelnde Beziehung besteht, die es erlaubt, aus Schlagregen, Größe der beregneten Fassade und ggf. Materialklasse das resultierende Ablaufvolumen abzuschätzen. Als Datengrundlage für die Abschätzung dienten Daten und Ergebnisse der Bundesanstalt für Materialforschung und -prüfung (BAM), des Dr. Robert-Murjahn-Instituts (RMI) und des Fraunhofer-Instituts für Bauphysik IBP. Eine Literaturrecherche sollte die experimentelle Datenbasis hinsichtlich der Materialien und der Volumina ergänzen.

3 Definitionen

Der Deutsche Wetter Dienst (DWD) versteht in der Meteorologie unter dem Begriff **Niederschlag** die Ausscheidung von Wasser aus der Atmosphäre im flüssigen und/oder festen Aggregatzustand, die man am Erdboden messen oder beobachten kann. Dabei wird unterschieden zwischen fallenden (z. B. Regen), aufgewirbelten (z. B. Schneetreiben), abgelagerten (z. B. Schneedecke) und abgesetzten (z. B. Reif) Niederschlägen. Die fallenden Niederschläge sind definiert als das Ausscheiden von Wasser aus Wolken, das den Erdboden in flüssiger und/oder fester Form erreicht.

Die Messung des Niederschlags erfolgt mit einem Niederschlagsmesser (Ombrometer) genannt. Die häufigste Bauform ist der Niederschlagsmesser nach Hellmann. Dieser besteht gemäß einer Norm der World Meteorological Organization [2] aus einem Zylinder aus Edelstahl oder Zinkblech und hat eine von einem scharfkantigen Messingring begrenzte Auffangfläche von 200 cm². Die Niederschlagserfassung erfolgt dabei klassisch mit einem Auffanggefäß oder mit einem Signalausgang (Niederschlagsgeber). Hier existieren wiederum zwei Messprinzipien: Löffel oder Wippe.

Die Erfassung des Niederschlags wird in Deutschland gemäß der VDI-Richtlinie 3786 Blatt 7 [3] geregelt. Dort heißt es: "Niederschlagsmessgeräte mit Auffangfläche müssen zur Gewährleistung der Vergleichbarkeit der Messergebnisse eine solche von 200 cm² haben". Die Geometrie der Auffangfläche (z. B. Kreis oder Quadrat) ist nicht definiert. Der Auffangfläche eines klassischen Ombrometers nach Hellmann ist kreisförmig. Die Bautiefe der klassischen Niederschlagsmesser von 210 mm verhindert das Zurückspritzen und vermindert das Verdunsten der Regentropfen. Moderne Niederschlagsmesser haben je nach Hersteller eine geringere Bautiefe. Bei beheizten Regenmessern (zum Aufschmelzen von festem Niederschlag) kann es zu Fehlern durch Verdunstung kommen, die durch Rechenalgorithmen korrigiert werden.

Bild 2:

Niederschlagsmesser (Ombrometer) und Schlagregenmesser mit einer Auffangfläche von 200 cm² am IBP in Valley:

a) klassischer Ombrometer mit Auffanggefäß, b) Ombrometer mit elektronischer Datenerfassung, c) Schlagregenmesser mit elektronischer Datenerfassung.

Für die Erfassung des Schlag- oder Kollisionsregens gibt es keine normativen Vorgaben. Um Messdaten zu generieren, anhand derer sich die Größen Niederschlag, Schlagregen und Kollisionsregen vergleichen lassen, wird vorgeschlagen, auch für Schlagregenmesser eine Auffangfläche von 200 cm² zu verwenden. Der Schlagregenmesser sollte als eine Regenfalle konzipiert sein, die das Zurückspritzen und das Verdunsten der Regentropfen verhindert. Der einzige Unterschied zum klassischen Niederschlagsmesser ist die Ausrichtung der Auffangfläche, die nicht mehr horizontal, sondern nun vertikal ist. In der Literatur finden sich unterschiedliche Bauformen und Abmessungen für Schlagregenmesser. In der Tabelle 1 sind einige Beispiele zusammengestellt.

Quelle	Fläche	Bautiefe	Bauform
Ritchie und Davison [4], [5]	116 cm ²	50 mm	rechteckig
Beijer und Johansson [4], [6]	314 cm ²	nicht bekannt	halbmondförmig
Kubilay et al [7]	400 cm ²	20 mm	quadratisch
IBP	200 cm ²	45 mm	quadratisch

Tabelle 1: Abmessungen und Bauformen für Schlagregenmesser.

Bei der Betrachtung der Wechselwirkung zwischen dem flüssigen Niederschlag und einer vertikalen Gebäudeoberfläche wurden die Begriffe Schlagregen und Normalregen eingeführt. Normalregen und Schlagregen sind keine meteorologischen, sondern bauphysikalische Begriffe. Die verwendete Nomenklatur basiert auf den Begriffen der klassischen Mechanik. Normalregen bezieht sich auf die vereinfachte Betrachtung, dass der fallende Regen nur von der Gewichtskraft beeinflusst im freien Fall entlang der Normalen (Senkrechten) zur Erdoberfläche fällt. Beim Schlagregen erfahren die Regentropfen einen äußeren Impuls (Schlag, Kraftstoß) und werden abhängig von der Masse (Tropfendurchmesser) unterschiedlich stark von der Normalen abgelenkt. Am Ende fallen sie auf den Erdboden oder sie kollidieren mit einem Gegenstand, beispielsweise einer Gebäudeoberfläche. Der Anteil der Regentropfen, die tatsächlich auf eine vertikale Gebäudeoberfläche auftreffen (Kollisionsregen), unterscheidet sich vom Anteil des Schlagregens im Freifeld. Verantwortlich hierfür sind Störungen der Windanströmung durch ein Gebäude, sogenannte Blockeffekte. Durch die Kollision (siehe Bild 3) teilt sich das Kollisionsregenvolumen in Regenablauf-, Adhäsions-, Absorptions-, Zerstäubungs- und Verdunstungsvolumen auf (Gleichung 1) [4].

 $V_{Kollision} = V_{Ablauf} + V_{Adhäsoin} + V_{Zerstäubung} + V_{Absorption} + V_{Verdunstung}$

(1)

Bild 3: Wechselwirkung zwischen Niederschlag und Fassade nach [4].

4 Auswertung von Daten (Literaturrecherche)

Der Schlagregen und damit verbunden der Kollisionsregen haben einen großen Einfluss auf die hygrothermischen Eigenschaften einer Gebäudefassade und somit direkt auf ihre Langzeitbeständigkeit. Durch Schlagregen verursachte Schäden werden seit mehreren Jahrzehnten wissenschaftlich untersucht. Einen ausführlichen Überblick über die Forschungsarbeiten der letzten 80 Jahre zum Thema Schlagregen und Regenablaufwasser an Gebäudefassaden geben B. Blocken, D. Derome und J. Carmeliet in [4]. Die häufigsten Schäden sind:

- Eindringen von Wasser in das Fassaden-Material
- Frostschäden
- Aussalzeffekte durch Feuchtigkeit
- Entfärbung
- Risse durch thermisch und hygrisch bedingte Spannungen und Dehnungen.

8

Des Weiteren hat das ablaufende Wasser einen Einfluss auf das ästhetische Erscheinungsbild einer Fassade. Das Ablaufwasser ist für die Ausbildung von hellen bzw. dunklen Ablaufspuren, die auf Auswaschung von Pigmenten oder Farbstoffen und den Transport von Schmutzpartikeln zurückzuführen sind, verantwortlich. Untersuchungen der letzten fünf Jahre befassten sich auch zunehmend mit der Thematik der Auswaschung (Leaching) von Wirkstoffen und Pigmenten durch den Schlagregen (u. a. [8] – [13]).

Neben den Messdaten der BAM und des IBP sind in der Tabelle 2 publizierte Regenablaufmengen von bewitterten Probeköpern zusammengestellt. Die durchgeführte Literaturrecherche konzentrierte sich hauptsächlich auf folgende Begriffe:

- Schlagregen driving rain
- Regenablauf run off
- Auslaugung/Auswaschung leaching.

Insgesamt wurden 73 Publikationen erfasst, 57 davon zu den Themen Schlagregen und Regenablauf. Tabelle 2 umfasst folgende Angaben:

- Ort der Bewitterung, Literaturquelle und die beregnete Fläche
- Bewitterungszeitraum
- kumulierte Normalregenmenge R_N
- kumulierte Schlagregenmenge Rs
- kumulierte Regenablaufmenge RA
- mittlere Windgeschwindigkeit *u* (* keine Angabe, Wert wurde aus Angaben von WetterOnline [14] ergänzt)
- berechneter Proportionalitätsfaktor Fa
- Orientierung des beregneten Probekörpers
- Material des beregneten Probekörpers

9

Tabelle 2: Ergebnisse der Recherche.

Ort/Quelle Beregnete Fläche	Zeitraum	R _w [mm]	R _s [mm]	R _A [mm]	n [m/s]	<i>F</i> _a [s/m]	Orientierung	Material
IPB Valley [8]	05/2010 bis	1150	429	148,5	2,7	0,048	M	Putz
21,7 m ²	06/2011		483	131,6	2,7	0,042	M	Putz
			0301	371	2,7	0,035	M	Putz mineralisch
IPB Valley [9]	05/2010 bis	0200	707	396	2,7	0,037	M	Putz pastös
21,7 m ²	06/2013	0/60	3761	336	2,7	0,031	M	Putz mineralisch
			0/71	349	2,7	0,032	M	Putz pastös
				5,4	2,7	0,002	0	Putz pastös
			28	6,6	2,7	0,002	0	Putz pastös
				3,2	2,7	0,001	0	Putz mineralisch
				48,0	2,7	0,014	S	Putz pastös
			324,4	43,5	2,7	0,012	S	Putz pastös
IPB Valley	10/2013 bis			12,8	2,7	0,003	S	Putz mineralisch
7,2 m ^{2 *)}	03/2015	1001		193,0	2,7	0,055	M	Putz pastös
			503,4	196,5	2,7	0,056	M	Putz pastös
				46,1	2,7	0,013	M	Putz mineralisch
				32,8	2,7	600'0	Z	Putz pastös
			122,6	32,0	2,7	600'0	Z	Putz pastös
				14,5	2,7	0,004	Z	Putz mineralisch
				358,1	2,7	0,102	M	Putz mineralisch
IPB Valley	10/2013 bis		015 015	18,6	2,7	0,005	M	Putz mineralisch
0,5 m ^{2 *)}	03/2015	t 20-		355,1	2,7	0,101	M	Putz pastös
				189,5	2,7	0,054	W	Putz pastös

Bericht Nr. BBHB-001/2017/281 Berechnung des ablaufenden Wassers von einer Gebäudeoberfläche in Abhängigkeit von der Schlagregenmenge

10

Fraunhofer-Institut für Bauphysik IBP

				43	2,5*	0,012	SW	Farbe1/Holz
		1370	272	52	2,5*	0,015	SW	Farbe1/Holz
	0//2014		1	36	2,5*	0,010	SW	Farbe2/Holz
MPA Eberswalde	08/2012 bis 07/2014	1070	195	38	2,5*	0,014	SW	Farbe1/Holz
Nollerstrasse	11/2012 bis 07/2014	927	156	25	2,5*	0,011	SW	Farbe1/Holz
			127	23	2,5*	0,012	SW	Textil
	08/2012 bis	077		34	2,5*	0,018	NO	Textil
	11/2013	143		24	2,5*	0,013	NN	Textil
				37	2,5*	0,020	SO	Textil
MPA Eberswalde Drachenkopf ** ⁾	05/2012 bis 11/2013	1001	161	49	2,5*	0,020	SW	Farbe1/Holz
				50	2,6*	0,020	SSW	Farbe1/Holz
	08/2013 bis	OEO		55	2,6*	0,022	SSW	Farbe2/Holz
	06/2015	<i>ч</i> сч		40	2,6*	0,016	SSW	Farbe3/Faserzement
				29	2,6*	0,012	SSW	Farbe4/Faserzement
0 56 m2 ***)	08/2013 bis	0C9		34	2,6*	0,020	SSW	Farbe5/Holz
	06/2015	000		34	2,6*	0,020	SSW	Farbe6/Holz
	08/2013 bis 03/2014	316		6	2,6*	0,011	SSW	Textil
				118	2,6*	0,050	Ν	Beschichtung
IME Schmallenberg [10]	03/2010 bis	100		15	2,6*	0,006	0	Beschichtung
3,75 m ²	02/2011	106		69	2,6*	0,029	S	Beschichtung
				208	2,6*	680'0	M	Beschichtung
				207	2,6*	0,088	N	Beschichtung
IME Schmallenberg [10]	03/2010 bis	100		50	2,6*	0,021	0	Beschichtung
0,18 m²	02/2011	301		129	2,6*	0,055	S	Beschichtung
				332	2,6*	0,142	M	Beschichtung
EMPA Dübendorf [10] 1,31 m ²		815		65	2,4*	0,033	M	Putz

Bericht Nr. BBHB-001/2017/281 Berechnung des ablaufenden Wassers von einer Gebäudeoberfläche in Abhängigkeit von der Schlagregenmenge

;-

Fraunhofer-Institut für Bauphysik IBP

RMI Ober Ramstadt [11]		117	15	4,3*	0,030	M	Farbe
EAWAG Dübendorf [12] 1,4 m ²	372 d	875	70	×7′Z	0,033	M	Putz /Styrolbinder
			8	×7'Z	£00'0	M	Holz/HySiwAg 140°
EMPA Dübendorf [13]	Juni 2009 bis	500	8	×7'Z	0,003	M	Holz/HySi 140°
1,1 m ²	Juni 2010	040	24	5,4*	0,011	M	Holz/OARwAg 94°
			13	2,4*	0,006	M	Holz/AARwB 103°

noch nicht veröffentlichte Ergebnisse des Fraunhofer IBP

von der MPA zur Verfügung gestellte Ergebnisse

von der BAM zur Verfügung gestellte Ergebnisse *) (***) (***)

Fraunhofer-Institut für Bauphysik IBP

12 Bericht Nr. BBHB-001/2017/281 Berechnung des ablaufenden Wassers von einer Gebäude-oberfläche in Abhängigkeit von der Schlagregenmenge

5 Berechnungen

5.1 Berechnung von Proportionalitätsfaktoren aus Niederschlagsdaten

Auf einen fallenden Regentropfen wirken die Schwerkraft G, dieser entgegen der Luftwiderstand W und im allgemeinen senkrecht dazu die Windkraft U. Unter dem Einfluss dieser Kräfte erreicht der Regentropfen seine resultierende Geschwindigkeit und seinen Einfallswinkel gegen eine Wand.

Die Schlagregenmenge lässt sich bei freier ungestörter Windströmung näherungsweise aus dem Kräftediagramm nach Bild 4 bestimmen [15].

Kräfte- und Geschwindigkeitsvektoren an einem fallenden Regentropfen [15].

Die Schlagregenmenge R_s ist

$$R_S = R_N \times \frac{u}{n} \quad [mm/h] \tag{2}$$

wobei R_N die stündliche Normalregenmenge, u die Windgeschwindigkeit und v die Fallgeschwindigkeit der Regentropfen bedeuten.

Nach Lacy [16] besteht folgende Beziehung zwischen der Fallgeschwindigkeit der Regentropfen und der Regenintensität:

$$v = 4,505 \times R_N^{0,123} \quad [m/s] \tag{3}$$

Auf Grund der Gleichungen (2) und (3) ergibt sich folgender Zusammenhang zwischen Schlagregen, Windgeschwindigkeit und Normalregen:

$$R_S = 0.222 \times u \times R_N^{0.88} \quad [mm/h] \tag{4}$$

Die abgeleitete Gleichung gilt für den Idealfall einer ungestörten Windströmung und einer mittleren Größe der Regentropfen, für welche die Beziehung (4) zutrifft. Niederschläge zeigen jedoch im allgemeinen ein breites Tropfenspektrum und sind, insbesondere wenn es sich um Schauerniederschläge handelt, mit stark böigen und in der Richtung wechselnden Winden verbunden. Unter Berücksichtigung möglicher Schwankungen in der Windgeschwindigkeit und Tropfengröße erscheint daher eine Vereinfachung der Beziehung (4) gerechtfertigt, die ebenfalls auf Vorschlag von Lacy [16] zurückgeht.

$$R_S = a \times u \times R_N \quad [mm] \tag{5}$$

Dies bedeutet, dass die Schlagregenmenge dem Produkt aus der während des Regens herrschenden mittleren Windgeschwindigkeit u und der Normalregenmenge R_N proportional ist. Das Produkt aus der mittleren Windgeschwindigkeit und der Normalregenmenge heißt nach Lacy Schlagregenindex. Als Proportionalitätsfaktor fand Lacy [16] aus einer großen Zahl von Messungen bei Regenfällen von unterschiedlicher Dauer und Intensität den Wert a = 0,206 s/m.

Die Normalregen- und Schlagregenmessungen im Freifeld von Künzel und Schwarz [15] in dem Zeitraum von April 1966 bis November 1967 am IBP in Valley ergaben einen Proportionalitätsfaktor a = 0,2 s/m.

Die Berechnung des Proportionalitätsfaktors *a* aus den aktuellen Normal- und Schlagregendaten am IBP in Valley (Zeitraum 09.12.2013 bis 21.02.2016) ist im Bild 5 dargestellt. Die Auswertung der Daten ergab einen Proportionalitätsfaktor *a* = 0,203 s/m. Die gemessenen Normal- und Schlagregenwerte im Freifeld werden in Meter [m] angegeben. Als Periode wurde eine Woche angesetzt. Die verwendeten Messdaten sind in der Tabelle 3 zusammengefasst. Die einzelnen berechneten Werte für den Proportionalitätsfaktor *a* variieren zwischen 0,02 s/m und 1,81 s/m. Bei einzelnen Niederschlagsereignissen können die Werte für Schlagregen im Freiland oberhalb der Normalregenwerte liegen. In Ausnahmefällen wir trotz gemessenen Schlagregenmengen kein Normalregen erfasst. Für diese Beobachtungen sind die direkt am Ombrometer vorherrschenden Windverhältnisse verantwortlich.

In dem genannten Zeitraum (09.12.2013 bis 21.02.2016) betrug die kumulierte Niederschlagsmenge R_N (Normalregen) 2274 mm oder 2,274 m. Die kumulierte Schlagregenmenge R_s lag bei 1367 mm oder 1,367 m. Die mittlere Windgeschwindigkeit u war 2,7 m/s. Durch Umstellung der Gleichung (5)

$$a = \frac{R_S}{u \times R_N} \quad [s/m] \tag{6}$$

kann aus der mittleren Windgeschwindigkeit u und den Daten für kumulierten Normalregen R_N und Schlagregen R_s der Proportionalitätsfaktor a berechnet werden. Er beträgt für den o. g. Beobachtungszeitraum a = 0,222 s/m.

Bild 5:

Proportionalitätsfaktor a: Zusammenhang zwischen gemessenen Schlagregen und dem Schlagregenindex (Produkt aus Normalregen und Windgeschwindigkeit), ermittelt aus den experimentellen Daten am IBP (Tabelle 3).

Tabelle 3:

Experimentelle Daten für den kumulierten Normalregen, den kumulierten Schlagregen und die mittleren Windgeschwindigkeiten für jeweils eine Periode von sieben Tagen im Zeitraum von 09.12.2013 bis 21.02.2016 am IBP in Valley; der Proportionalitätsfaktor *a* wurde für die jeweilige Periode berechnet.

Datum	<i>R</i> _N [mm]	<i>R</i> ₅[mm]	<i>u</i> [km/h]	<i>u</i> [m/s]	<i>a</i> [s/m]
15.12.2013	3,0	2,9	7,6	2,1	0,46
22.12.2013	0,7	0,5	5,9	1,6	0,41
29.12.2013	3,6	8,1	11,3	3,1	0,71
05.01.2014	3,3	5,0	7,6	2,1	0,72
12.01.2014	12,9	9,0	8,7	2,4	0,29
19.01.2014	4,7	8,3	6,6	1,8	0,97
26.01.2014	25,3	21,4	10,7	3,0	0,28
02.02.2014	5,6	6,5	7,1	2,0	0,58
09.02.2014	3,0	4,2	8,7	2,4	0,58
16.02.2014	7,8	6,1	12,1	3,4	0,23
23.02.2014	10,0	5,3	7,7	2,1	0,25
02.03.2014	1,8	0,9	7,6	2,1	0,23
09.03.2014	1,9	0,9	7,7	2,1	0,21
16.03.2014	4,3	13,9	12,1	3,4	0,96
23.03.2014	27,7	11,9	11,9	3,3	0,13
30.03.2014	1,3	4,0	7,1	2,0	1,55

Datum	R_N [mm]	Rs[mm]	<i>u</i> [km/h]	<i>u</i> [m/s]	<i>a</i> [s/m]
06.04.2014	0,0	0,0	7,3	2,0	
13.04.2014	8,5	6,1	10,7	3,0	0,24
20.04.2014	16,0	7,7	10,4	2,9	0,17
27.04.2014	18,7	7,3	8,7	2,4	0,16
04.05.2014	24,5	8,6	8,6	2,4	0,15
11.05.2014	31,1	19,2	12,7	3,5	0,17
18.05.2014	29,9	10,6	12,3	3,4	0,10
25.05.2014	1,1	0,1	9,4	2,6	0,02
01.06.2014	33,1	13,7	9,9	2,7	0,15
08.06.2014	18,6	5,5	7,0	1,9	0,15
15.06.2014	22,3	3,6	7,1	2,0	0,08
22.06.2014	8,8	1,8	8,3	2,3	0,09
29.06.2014	41,6	12,3	7,7	2,1	0,14
06.07.2014	17,4	4,1	9,6	2,7	0,09
13.07.2014	60,1	44,6	13,6	3,8	0,20
20.07.2014	3,5	1,9	6,3	1,7	0,31
27.07.2014	60,2	25,9	9,3	2,6	0,17
03.08.2014	88,5	34,2	8,4	2,3	0,17
10.08.2014	51,6	19,8	8,3	2,3	0,17
17.08.2014	27,7	7,3	10,7	3,0	0,09
24.08.2014	20,6	9,3	8,1	2,3	0,20
31.08.2014	57,1	11,9	8,6	2,4	0,09
07.09.2014	17,4	1,5	7,6	2,1	0,04
14.09.2014	29,2	10,3	8,0	2,2	0,16
21.09.2014	40,0	17,9	7,4	2,1	0,22
28.09.2014	11,4	8,0	9,0	2,5	0,28
05.10.2014	18,1	2,3	5,7	1,6	0,08
12.10.2014	0,0	0,0	6,3	1,7	
19.10.2014	18,0	6,5	7,0	1,9	0,19
26.10.2014	98,6	125,5	13,1	3,7	0,35
02.11.2014	0,2	0,2	6,4	1,8	0,56
09.11.2014	10,8	9,4	7,9	2,2	0,40
16.11.2014	2,4	2,3	8,0	2,2	0,44
23.11.2014	24,5	28,1	8,3	2,3	0,50
30.11.2014	0,3	0,3	9,9	2,7	0,41
07.12.2014	4,9	1,8	6,0	1,7	0,22
14.12.2014	4,7	3,3	9,3	2,6	0,27
21.12.2014	31,4	34,2	14,9	4,1	0,26
28.12.2014	16,5	1,3	14,0	3,9	0,02
04.01.2015	47,3	35,7	14,0	3,9	0,19
11.01.2015	13,2	33,0	22,1	6,2	0,41
18.01.2015	10,2	9,7	10,4	2,9	0,33
25.01.2015	4,0	0,3	8,4	2,3	0,04
01.02.2015	19,0	16,2	12,7	3,5	0,24

Datum	R_N [mm]	<i>R</i> s[mm]	<i>u</i> [km/h]	<i>u</i> [m/s]	<i>a</i> [s/m]
08.02.2015	7,5	1,7	12,9	3,6	0,06
15.02.2015	0,0	1,9	8,4	2,3	
22.02.2015	4,4	3,7	6,6	1,8	0,46
01.03.2015	14,0	15,5	8,7	2,4	0,46
08.03.2015	16,3	28,5	11,3	3,1	0,56
15.03.2015	3,0	1,9	7,7	2,1	0,30
22.03.2015	12,8	5,1	8,1	2,3	0,18
29.03.2015	18,3	11,6	12,9	3,6	0,18
05.04.2015	34,2	38,9	18,5	5,1	0,22
12.04.2015	0,6	0,3	9,3	2,6	0,17
19.04.2015	21,7	8,1	11,4	3,2	0,12
26.04.2015	2,5	1,5	8,6	2,4	0,26
03.05.2015	71,7	33,2	10,0	2,8	0,17
10.05.2015	27,0	17,2	9,9	2,7	0,23
17.05.2015	29,6	17,3	7,7	2,1	0,27
24.05.2015	105,4	22,7	7,4	2,1	0,10
31.05.2015	37,9	13,1	9,4	2,6	0,13
07.06.2015	63,7	24,0	8,1	2,3	0,17
14.06.2015	16,3	17,0	7,9	2,2	0,48
21.06.2015	42,2	19,1	10,0	2,8	0,16
28.06.2015	16,9	14,9	9,4	2,6	0,34
05.07.2015	5,1	0,0	6,4	1,8	0,00
12.07.2015	16,3	8,7	9,4	2,6	0,20
19.07.2015	22,2	29,0	8,7	2,4	0,54
26.07.2015	7,5	0,9	8,7	2,4	0,05
02.08.2015	9,4	3,9	10,7	3,0	0,14
09.08.2015	30,9	8,7	8,4	2,3	0,12
16.08.2015	15,0	4,2	8,1	2,3	0,12
23.08.2015	19,5	4,5	6,4	1,8	0,13
30.08.2015	4,4	1,9	7,6	2,1	0,21
06.09.2015	57,6	21,6	10,0	2,8	0,14
13.09.2015	0,2	0,0	7,3	2,0	0,00
20.09.2015	19,3	7,1	9,1	2,5	0,15
27.09.2015	10,9	6,5	7,3	2,0	0,29
04.10.2015	0,9	0,9	10,0	2,8	0,35
11.10.2015	53,2	23,2	7,4	2,1	0,21
18.10.2015	42,9	6,5	6,1	1,7	0,09
25.10.2015	4,9	2,1	6,6	1,8	0,24
01.11.2015	0,2	0,7	7,3	2,0	1,81
08.11.2015	0,0	0,4	6,1	1,7	
15.11.2015	0,6	1,4	14,3	4,0	0,59
22.11.2015	54,9	38,2	19,9	5,5	0,13
29.11.2015	4,4	6,9	10,7	3,0	0,53
06.12.2015	6,8	19,5	15,9	4,4	0,65

Datum	<i>R</i> _N [mm]	<i>R</i> ₅[mm]	<i>u</i> [km/h]	<i>u</i> [m/s]	<i>a</i> [s/m]
13.12.2015	7,4	6,8	8,4	2,3	0,39
20.12.2015	13,0	5,7	7,0	1,9	0,23
27.12.2015	0,6	0,5	8,3	2,3	0,34
03.01.2016	7,7	9,1	8,7	2,4	0,49
10.01.2016	20,4	6,1	8,7	2,4	0,12
17.01.2016	19,9	24,9	20,0	5,6	0,23
24.01.2016	2,8	2,7	6,4	1,8	0,53
31.01.2016	43,7	29,8	10,9	3,0	0,23
07.02.2016	10,8	20,5	16,4	4,6	0,42
14.02.2016	11,4	27,7	12,9	3,6	0,68
21.02.2016	23,2	26,7	13,1	3,7	0,31

Im Freifeld ist die gemessene Schlagregenmenge in den meisten Fällen größer als vor oder an einer Gebäudefassade. Choi [17] berechnete aus (7) den Proportionalitätsfaktor *F*_b am Gebäude.

$$F_b = \frac{R_S}{u \times R_N} \quad [s/m] \tag{7}$$

Er wertete dabei Daten von vier Messstationen aus (siehe Tabelle 4) und errechnete einen Mittelwert $F_b = 0,1$ s/m.

Tabelle 4: Ergebnisse der Messstationen nach Choi [17].

Messstation	Jährlicher Nieder-	Jährlicher Schlag-	Mittlere Windge-	Proportionalitäts-
	schlag <i>R</i> _N [mm]	regen Rs [mm]	schwindigkeit <i>u</i> [m/s]	faktor F_b [s/m]
Mascot	1138	467	3,40	0,121
Sydney	1315	466	3,12	0,114
Richmond	878	162	2,17	0,085
Bankstown	875	222	2,48	0,102

Der Schlagregen am Gebäude (Kollisionsregen) kann somit wie folgt berechnet werden:

$$R_S = F_b \times u \times R_N \quad [mm]$$

Aus den experimentell ermittelten Schlagregendaten von Blocken und Carmeliet aus [18] und [19] wurden Werte für den Proportionalitätsfaktor F_b von 0,07 s/m bzw. 0,06 s/m berechnet. Die Literaturwerte für Schlagregen R_s , "catch ratio" η (Verhältnis von R_s zu R_N) und mittlere Windgeschwindigkeit usowie die berechneten Werte für F_b (berechnet nach (9)) sind in den folgenden Tabellen (Tabelle 5 und Tabelle 6) zusammengefasst.

$$F_b = \frac{\eta}{\mu} \tag{9}$$

Tabelle 5:

Experimentelle Schlagregendaten vom 0205.02.2002; Niederschlag	
$R_N = 15,7 \text{ mm} [18].$	

Regenfalle Nr.	<i>R</i> s [mm]	η	<i>u</i> [m/s]	<i>F</i> _b [s/m]
1	2,51	0,16	4	0,04
2	3,45	0,22	4	0,06
3	2,98	0,19	4	0,05
4	2,36	0,15	4	0,04
5	2,51	0,16	4	0,04
6	2,51	0,16	4	0,04
7	3,14	0,20	4	0,05
8	3,93	0,25	4	0,06
9	2,98	0,19	4	0,05
10	4,55	0,29	4	0,07
11	3,77	0,24	4	0,06
12	4,08	0,26	4	0,07
13	6,12	0,39	4	0,10
14	6,12	0,39	4	0,10
15	4,24	0,27	4	0,07
16	6,44	0,41	4	0,10
17	5,34	0,34	4	0,09
18	4,24	0,27	4	0,07
19	6,75	0,43	4	0,11
20	6,91	0,44	4	0,11
Mittelwert	4,25	0,27	4	0,07

Regenfalle Nr.	<i>R</i> _s [mm]	η	<i>u</i> [m/s]	F_b [s/m]
1	4,27	0,16	4	0,04
2	5,61	0,21	4	0,05
3	4,27	0,16	4	0,04
4	3,20	0,12	4	0,03
5	4,01	0,15	4	0,04
6	3,47	0,13	4	0,03
7	5,34	0,20	4	0,05
8	6,68	0,25	4	0,06
9	4,27	0,16	4	0,04
10	6,94	0,26	4	0,07
11	6,41	0,24	4	0,06
12	6,14	0,23	4	0,06
13	10,41	0,39	4	0,10
14	9,88	0,37	4	0,09
15	7,48	0,28	4	0,07
16	10,68	0,40	4	0,10
17	9,08	0,34	4	0,09
18	6,94	0,26	4	0,07
19	10,95	0,41	4	0,10
20	11,21	0,42	4	0,11
Mittelwert	6,86	0,26	4	0,06

Tabelle 6: Experimentelle Schlagregendaten vom 25.-26.02.2002; Niederschlag $R_N = 26,7 \text{ mm} [19].$

Aus den experimentellen Schlagregendaten Daten von Kubilay, Derome et al. aus [7] und [20] wurden Werte für den Proportionalitätsfaktor F_b von 0,08 s/m bzw. 0,11 s/m berechnet. Die Literaturwerte für Schlagregen R_s , "catch ratio" η (Verhältnis von R_s zu R_N) und mittlere Windgeschwindigkeit u sowie die berechneten Werte für F_b (berechnet nach (8)) sind in den folgenden Tabellen (Tabelle 7 bis Tabelle 14) zusammengefasst.

Regenfalle Nr.	<i>R</i> _s [mm]	η	<i>u</i> [m/s]	<i>F</i> _b [s/m]
1	2,02	0,17	2	0,08
2	1,65	0,14	2	0,07
3	1,31	0,11	2	0,05
4	2,06	0,17	2	0,09
5	2,18	0,18	2	0,09
6	2,15	0,18	2	0,09
7	1,70	0,14	2	0,07
8	1,50	0,13	2	0,06
9	1,29	0,11	2	0,05
10	0,81	0,07	2	0,03
11	0,84	0,07	2	0,04
12	2,28	0,19	2	0,10
13	1,93	0,16	2	0,08
14	2,15	0,18	2	0,09
15	1,51	0,13	2	0,06
16	1,25	0,10	2	0,05
Mittelwert	1,66	0,14	2	0,07

Tabelle 7: Experimentelle Schlagregendaten vom 20.-21.02.2014; Niederschlag $R_N = 12 \text{ mm} [7].$

Tabelle 8:

Experimentelle Schlagregendaten vom 02.-03.08.2014; Niederschlag $R_N = 18 \text{ mm} [7].$

Regenfalle Nr.	<i>R</i> s [mm]	η	<i>u</i> [m/s]	<i>F</i> _b [s/m]
1	2,84	0,16	1,5	0,11
2	2,72	0,15	1,5	0,10
3	2,10	0,12	1,5	0,08
4	2,93	0,16	1,5	0,11
5	3,21	0,18	1,5	0,12
6	3,17	0,18	1,5	0,12
7	2,62	0,15	1,5	0,10
8	2,38	0,13	1,5	0,09
9	2,08	0,12	1,5	0,08
10	1,80	0,10	1,5	0,07
11	1,57	0,09	1,5	0,06
12	3,33	0,19	1,5	0,12
13	2,76	0,15	1,5	0,10
14	2,75	0,15	1,5	0,10
15	2,22	0,12	1,5	0,08
16	1,88	0,10	1,5	0,07
Mittelwert	2,52	0,14	1,5	0,09

Tabelle 9:

Regenfalle Nr.	<i>R</i> _s [mm]	η	<i>u</i> [m/s]	<i>F</i> _b [s/m]
A1	15,06	0,21	1,5	0,14
A2	12,41	0,17	1,5	0,11
A3	10,13	0,14	1,5	0,09
A4	13,92	0,19	1,5	0,13
A5	10,80	0,15	1,5	0,10
A6	8,60	0,12	1,5	0,08
A7	13,57	0,19	1,5	0,13
A8	11,09	0,15	1,5	0,10
A9	9,64	0,13	1,5	0,09
Mittelwert	11,69	0,16	1,5	0,11

Experimentelle Schlagregendaten vom 30.05-01.06.2013; Niederschlag $R_N = 72 \text{ mm} [20].$

Tabelle 10:

Experimentelle Schlagregendaten vom 30.05-01.06.2013; Niederschlag $R_N = 72 \text{ mm} [20].$

Regenfalle Nr.	<i>R</i> s [mm]	η	<i>u</i> [m/s]	<i>F</i> _b [s/m]
B1	14,32	0,20	1,5	0,13
B2	11,14	0,15	1,5	0,10
B3	8,53	0,12	1,5	0,08
B4			1,5	
B5	9,70	0,13	1,5	0,09
B6	8,20	0,11	1,5	0,08
B7	13,55	0,19	1,5	0,13
B8			1,5	
B9	7,22	0,10	1,5	0,07
Mittelwert	10,38	0,14	1,5	0,10

Regenfalle Nr.	<i>R</i> _s [mm]	η	<i>u</i> [m/s]	<i>F</i> _b [s/m]
A1	6,91	0,20	1,5	0,13
A2	6,12	0,17	1,5	0,12
A3	5,40	0,15	1,5	0,10
A4	6,71	0,19	1,5	0,13
A5	5,23	0,15	1,5	0,10
A6	4,52	0,13	1,5	0,09
A7	6,20	0,18	1,5	0,12
A8	5,67	0,16	1,5	0,11
A9	4,88	0,14	1,5	0,09
Mittelwert	5,74	0,16	1,5	0,11

Tabelle 11: Experimentelle Schlagregendaten vom 09.-10.06.2013; Niederschlag $R_N = 35 \text{ mm} [20].$

Tabelle 12:

Experimentelle Schlagregendaten vom 09.-10.06.2013; Niederschlag $R_N = 35 \text{ mm} [20].$

Regenfalle Nr.	<i>R</i> s [mm]	η	<i>u</i> [m/s]	<i>F</i> _b [s/m]
B1	6,39	0,18	1,5	0,12
B2	5,29	0,15	1,5	0,10
B3	4,84	0,14	1,5	0,09
B4			1,5	
B5	4,90	0,14	1,5	0,09
B6	4,36	0,12	1,5	0,08
B7	6,17	0,18	1,5	0,12
B8			1,5	
B9	3,85	0,11	1,5	0,07
Mittelwert	5,11	0,15	1,5	0,10

Regenfalle Nr.	<i>R</i> _s [mm]	η	<i>u</i> [m/s]	<i>F</i> _b [s/m]
A1	10,30	0,29	1,8	0,16
A2	7,76	0,22	1,8	0,12
A3	6,44	0,18	1,8	0,10
A4	8,31	0,23	1,8	0,13
A5	7,05	0,20	1,8	0,11
A6	5,31	0,15	1,8	0,08
A7	8,82	0,25	1,8	0,14
A8	7,00	0,19	1,8	0,11
A9	6,01	0,17	1,8	0,09
Mittelwert	7,44	0,21	1,8	0,11

Tabelle 13: Experimentelle Schlagregendaten vom 16.-19.09.2013; Niederschlag $R_N = 36 \text{ mm} [20].$

Tabelle 14:

Experimentelle Schlagregendaten vom 16.-19.09.2013; Niederschlag $R_N = 36 \text{ mm} [20].$

Regenfalle Nr.	<i>R</i> s [mm]	η	<i>u</i> [m/s]	<i>F</i> _b [s/m]
B1	10,00	0,28	1,8	0,15
B2	6,87	0,19	1,8	0,11
B3	5,50	0,15	1,8	0,08
B4	9,25	0,26	1,8	0,14
B5	6,07	0,17	1,8	0,09
B6	4,80	0,13	1,8	0,07
B7	9,52	0,26	1,8	0,15
B8	6,68	0,19	1,8	0,10
B9	4,41	0,12	1,8	0,07
Mittelwert	7,01	0,19	1,8	0,11

Aus den experimentellen Daten des IBP wurde die Proportionalitätsfaktoren F_b für den Regenablauf R_A nach (10) berechnet.

$$F_a = \frac{R_A}{u \times R_N} \quad [s/m] \tag{10}$$

In der Tabelle 15 sind die aus experimentellen Daten berechneten Proportionalitätsfaktoren für verschiedene mineralisch und pastös gebundene Putze und Mörtel zusammengefasst. Bei saugenden Varianten lag der Proportionalitätsfaktor F_a zwischen 0,005 s/m und 0,027 s/m. Bei nicht saugenden Varianten bewegte sich der Proportionalitätsfaktor F_a zwischen 0,041 s/m und 0,104 s/m. Der Werte der Proportionalitätsfaktoren F_a für die pastösen Varianten bewegen sich zwischen 0,06 s/m und 0,10 s/m also im Bereich des von Choi [17] vorgeschlagenen Proportionalitätsfaktors $F_b = 0,1$ s/m. Auch die Messergebnisse von Blocken, Carmeliet und Kubilay liefern vergleichbare Ergebnisse für den Proportionalitätsfaktor F_b . Bei kleinen Probekörpern, die aus nicht saugenden Materialien bestehen, gilt für die Proportionalitätsfaktoren $F_a = F_b$. Den Zusammenhang zwischen der beregneten Fläche und dem Proportionalitätsfaktor F_a am Standort Valley zeigt Bild 6. Der Kurvenverlauf kann durch die Gleichung (11) beschrieben werden.

$$y = -0.01 \ln(x) + 0.074 \tag{11}$$

Zusammenhang zwischen berechneten Proportionalitätsfaktor F_a und der beregneten Fläche.

Tabelle 15:

Experimentelle Regenablaufdaten und berechnete Proportionalitätsfaktoren für unterschiedliche mineralische und pastöse Putz- und Mörtelvarianten sowie für zwei Metallbleche als Blindwerte.

Variante	Тур	R_N [mm]	$R_A[mm]$	<i>u</i> [m/s]	F _a [s/m]
1	Mörtel mineralisch	1304	19	2,7	0,005
2	Putz mineralisch	1304	22	2,7	0,006
3	Putz mineralisch	1304	26	2,7	0,007
4	Putz mineralisch	1304	31	2,7	0,009
5	Putz mineralisch	1304	32	2,7	0,009
6	Putz mineralisch	1304	35	2,7	0,010
7	Putz mineralisch	1304	39	2,7	0,011
8	Putz mineralisch	1304	40	2,7	0,011
9	Putz mineralisch	1304	48	2,7	0,014
10	Mörtel mineralisch	1304	56	2,7	0,016
11	Putz mineralisch	1304	68	2,7	0,019
12	Putz mineralisch	1304	97	2,7	0,027
13	Putz mineralisch	1304	144	2,7	0,041
14	Metallblech	1304	155	2,7	0,044
15	Mörtel mineralisch	1304	169	2,7	0,048
16	Putz pastös	1304	196	2,7	0,056
17	Putz pastös	1304	214	2,7	0,061
18	Putz pastös	1304	230	2,7	0,065
19	Metallblech	1304	232	2,7	0,066
20	Putz pastös	1304	263	2,7	0,075
21	Putz pastös	1304	273	2,7	0,078
22	Putz pastös	1304	277	2,7	0,079
23	Putz pastös	1304	279	2,7	0,079
24	Putz pastös	1304	288	2,7	0,082
25	Putz pastös	1304	291	2,7	0,083
26	Putz pastös	1304	295	2,7	0,084
27	Putz pastös	1304	297	2,7	0,084
28	Putz pastös	1304	301	2,7	0,085
29	Putz pastös	1304	305	2,7	0,087
30	Putz mineralisch	1304	310	2,7	0,088
31	Putz mineralisch	1304	313	2,7	0,089
32	Putz pastös	1304	328	2,7	0,093
33	Putz mineralisch	1304	361	2,7	0,103
34	Putz pastös	1304	367	2,7	0,104
35	Putz mineralisch	1304	367	2,7	0,104

5.2 Berechnung von Schlagregen- und Regenablaufmengen aus Niederschlagsdaten

Ausgehend von den monatlichen Niederschlagsdaten und den mittleren Windgeschwindigkeiten von 68 Messstationen des Deutschen Wetterdienstes [21] für den Zeitraum von Mai 2015 bis November 2016 wurden mit den Proportionalitätsfaktoren a = 0,200 s/m, $F_b=0,100$ s/m und $F_a=0,035$ s/m die Schlagregenmengen R_5 im Freifeld, die Schlagregenmenge R_5 am Gebäude und die Regenablaufmenge R_A für ein Ein- bis Zweifamilienhaus mit einer zur Hauptwindrichtung orientierten Gebäudefläche von ca. 40 m² berechnet. Als Bezugsobjekt diente hierbei das sogenannte Zwillingshaus aus [8] und [9]. Dieses Haus steht repräsentativ für ca. 12,5 Millionen Einfamilienhäuser und 3 Millionen Zweifamilienhäuser in Deutschland [22]. Der jährliche Niederschlag R_N wurde aus den Daten für den oben genannten Zeitraum berechnet. Tabelle 16 fasst diese Berechnungen für die jeweilige Messstation zusammen. In den folgenden Bildern ist das Verhältnis zwischen der Schlagregenmengen R_s im Freifeld (Bild 7), der Schlagregenmenge R_s am Gebäude (Bild 8) sowie die Regenablaufmenge R_A (Bild 9) und der jährlichen Niederschlagsmenge für die ausgewerteten Messstationen graphisch aufbereitet. Die mittlere jährliche Regenablaufmenge R_A für die ausgewerteten Messstationen liegt bei 64 L/m².

DWD	-Messstationen; Ver	gleich Messstation	IBP Valley.					
	geo. Länge Ost	geo. Breite Nord	Höhe über NN			Rs Freifeld	<i>R</i> _s Gebäude	R_A Regenab-
	[0]	[0]	[m]	R_N [mm]	<i>u</i> [m/s]	[mm]	[mm]	lauf [mm]
Aachen	6,08	50,78	180	846	3,0	508	254	68
Angermünde	14,00	53,17	50	459	2,5	229	115	40
Arkona	13,43	54,68	40	570	3,8	433	217	76
Augsburg	10,90	48,37	500	800	2,2	352	176	62
Bad Lippspringe	8,82	51,78	143	807	2,3	371	186	65
Bamberg	10,90	49,90	240	621	1,8	224	112	68
Berlin Dahlem	13,27	52,45	50	517	2,6	269	134	47
Berlin Tegel	13,28	52,58	35	456	2,6	237	119	41
Berlin Tempelhof	13,38	52,47	46	495	2,5	248	124	43
Bremen	8,80	53,07	10	666	2,8	373	187	65
Brocken	10,62	51,80	1100	1560	5,2	1622	811	284
Cottbus	14,33	51,77	70	609	2,1	256	128	45
Cuxhaven	8,70	53,87	10	944	3,3	623	311	109
Dresden Klotzsche	13,77	51,12	219	752	2,7	406	203	17
Düsseldorf	6,78	51,22	50	715	2,8	400	200	20
Emden	7,22	53,37	10	826	2,8	462	231	81
Erfurt/Weimar	11,32	50,98	220	466	2,8	261	130	46
Fehmarn	11,20	54,43	10	569	3,7	421	211	74
Feldberg	8,03	47,85	1246	1906	4,3	1640	820	287
Fichtelberg	12,95	50,43	1200	1138	4,6	1047	523	183
Frankfurt am Main	8,68	50,12	110	615	2,5	308	154	54
Freudenstadt	8,42	48,47	700	1254	2,5	627	313	110
Fürstenzell	13,32	48,52	380	929	2,2	409	204	72

Aus monatlichen Niederschlagsdaten des DWD für den Zeitraum von Mai 2015 bis November 2016 berechneter Jahresnieder-schlag R_{N} , Schlagregenmenge R_{s} im Freifeld, Schlagregenmenge R_{s} am Gebäude und die Regenablaufmenge R_{A} für 68 Tabelle 16:

Fraunhofer-Institut für Bauphysik IBP

Bericht Nr. BHB-001/2017/281 2 Berechnung des ablaufenden Wassers von einer Gebäudeoberfläche in Abhängigkeit von der Schlagregenmenge

28

	geo. Länge Ost	geo. Breite Nord	Höhe über NN			<i>R</i> _S Freifeld	R _s Gebäude	R_A Regenab-
rioi i	[0]	[0]	[m]	R_N [mm]	<i>u</i> [m/s]	[mm]	[mm]	lauf [mm]
2	12,12	50,88	267	591	2,7	319	160	26
nberg	8,65	50,62	216	549	2,4	264	132	46
	14,97	51,15	210	641	2,5	321	160	56
	13,38	54,08	10	514	2,6	267	134	47
	26'2	50,63	411	775	2,8	734	217	92
Isbüttel	10,02	53,63	20	804	2,8	450	225	62
	6773	52,38	60	655	2,7	354	177	62
	88'1	54,18	10	816	4,5	734	292	129
	11,92	50,32	500	706	2,2	311	155	54
herg	11,03	47,78	1000	1369	2,8	767	383	134
	8,48	51,18	800	1220	3,7	902	451	158
	10,32	47,72	700	1306	1,9	967	248	28
_	10,13	54,37	10	816	2,6	424	212	74
	7,10	50,73	50	783	2,4	376	188	99
	6,18	47,67	400	926	1,9	352	176	62
	<i>1</i> ,87	48,33	170	749	2,1	315	157	55
	26'11	51,48	100	520	2,7	182	140	67
	8,43	55,02	4	700	4,1	574	287	100
	11,63	52,13	50	488	2,0	195	86	75
	8,47	49,48	100	649	2,2	285	143	50
	11,93	53,32	06	580	2,3	267	133	47
	10,42	50,57	380	658	2,3	303	151	53
ghafen	11,75	48,35	448	760	2,2	335	167	65
abrück	7,63	51,97	60	823	2,4	395	198	69
	12,80	52,92	40	512	2,0	205	102	36
	7,15	53,70	10	788	3,5	551	276	96
veiler	6,87	50,35	477	696	2,4	334	167	58

Fraunhofer-Institut für Bauphysik IBP

Bericht Nr. BHB-001/2017/281 29 Berechnung des ablaufenden Wassers von einer Gebäudeoberfläche in Abhängigkeit von der Schlagregenmenge

	+	200 Droite Nord				D Froifold		
DWD-Messstation	yeu. Lange Ust [°]			R_{N} [mm]	u [m/s]	ns rielleiu [mm]	ns debaude [mm]	ha heyenau- lauf [mm]
Nürnberg	11,07	49,45	310	590	2,3	271	136	47
Oberstdorf	10,28	47,52	800	1697	1,8	611	305	107
Öhringen	9,52	49,22	240	772	2,1	324	162	57
Offenbach Wetterpark	8,77	50,10	100	694	1,8	250	125	44
Potsdam	13,07	52,40	30	554	2,8	310	155	54
Regensburg	12,10	49,02	340	639	1,9	243	121	43
Rostock Warnemünde	12,08	54,17	-	552	3,0	331	166	58
Saarbrücken Ensheim	7,12	49,22	298	783	2'2	392	196	69
Schleswig	9,57	54,52	20	976	2,7	527	263	92
Schwerin	11,42	53,63	60	664	2,6	345	173	60
Stötten	9,75	48,60	653	921	2,8	516	258	06
Straubing	12,58	48,88	320	769	2,0	307	154	54
Stuttgart Echterdingen	9,17	48,68	430	611	1,9	232	116	41
Trier Petrisberg	6,63	49,75	150	705	2,5	352	176	62
Wasserkuppe	9,95	50,50	720	1026	3,7	759	380	133
Weiden	12,15	49,67	400	694	1,9	264	132	46
Würzburg	9,93	49,78	190	549	2,3	252	126	44
Zugspitze	10,98	47,42	2950	1904	4,0	1523	761	266
IBP Valley ¹⁾	11,77	47,88	680	1250	2,7	7532)	4012)	115 ²⁾
¹⁾ Kaina	D\\\D-\\Assetation							

¹/Keine UWUD-Messstation ²⁾ aus IBP-Messwerten auf den Zeitraum von 12 Monaten berechnet Bericht Nr. BHB-001/2017/281 30 Berechnung des ablaufenden Wassers von einer Gebäudeoberfläche in Abhängigkeit von der Schlagregenmenge

Fraunhofer-Institut für Bauphysik IBP

Jahresmittel der Niederschlagsmenge für DWD Messstationen (blau); Jahresmittel der Niederschlagsmenge für IBP Valley (grün); Schlagregen am Gebäude berechnet mit Proportionalitätsfaktor $F_b = 0,1$ s/m nach Choi, Gleichung (8) (rot).

Jahresmittel der Niederschlagsmenge für DWD Messstationen (blau); Jahresmittel der Niederschlagsmenge für IBP Valley (grün); Schlagregen am Gebäude berechnet mit Proportionalitätsfaktor $F_a = 0,035$ s/m nach IBP.

Nach DIN 4108-3 [23] können Regionen unter den Gesichtspunkten Wärmeund Feuchteschutz in drei Schlagregenbeanspruchungsgruppen eingeteilt werden.

Beanspruchungsgruppe I

Zone mit geringer Schlagregenbeanspruchung. Hierzu zählen windarme Gebiete, die einen Jahresniederschlag unter 600 mm aufweisen. Nach der Regenbeanspruchungskarte fallen hierunter Gebiete u.a. von Brandenburg, Thüringen, Sachsen-Anhalt, aber auch Küstenbereiche von Mecklenburg-Vorpommern. Weiterhin können Gebäude mit einer besonders windgeschützten Lage der Beanspruchungsgruppe I zugeordnet werden, auch wenn dort höhere Niederschlagsmengen vorhanden sind.

Beanspruchungsgruppe II

Der Zone mit mittlerer Schlagregenbeanspruchung II sind Gebiete mit einer Jahresniederschlagsmenge von 600 mm bis 800 mm zugeordnet. Dazu zählen Teile Niedersachsens, das Rheintal und der Niederrhein, Franken und Hessen. Dieser Gruppe werden zusätzlich Hochhäuser und Häuser in exponierten Lagen zugeordnet, die eigentlich in der Beanspruchungsgruppe I liegen. Windgeschützte Gebäude der Beanspruchungsgruppe III können ebenfalls der Beanspruchungsgruppe II zugeordnet werden.

Beanspruchungsgruppe III

Gebiete mit einer Niederschlagsmenge über 800 mm sind der Beanspruchungsgruppe III zugeteilt. Dazu zählen die Küstenregionen von Niedersachsen und Schleswig-Holstein, alle Mittelgebirgslagen und die Alpenregionen inklusive das Alpenvorland. Weiterhin müssen Hochhäuser und Häuser in exponierter Lage in Gebieten der Beanspruchungsgruppe II der höheren Gruppe zugeordnet werden.

Bild 10:

Gegenüberstellung von errechnetem Schlagregenindex (gelb) und Zonen der Schlagregenbeanspruchung nach DIN 4108-3 [23]. Magdeburg (Minimum) und Helgoland (Maximum) rot gekennzeichnet.

6 Diskussion und Ausblick

Die Volumenanteile der Zerstäubung, Adhäsion, Absorption und Verdunstung werden messtechnisch nicht erfasst (siehe Bild 11). In vielen Fällen ist der gemessene Schlagregen am Gebäude (Kollisionsregen) dem Regenablauf gleich. Dies gilt insbesondere für Regenfallen wie sie in [15] bis [18] beschrieben wurden. Die Wechselwirkung des Schlagregens mit einer Fassade nach [4] wurde im Bild 11 um den Eintrag ins Kompartiment ergänzt. Neben dem Oberflächenablauf (*V*_{AblaufO}) findet ein Eintrag durch die Schicht (*V*_{AblaufS}) und durch die Zerstäubung an der Oberfläche (*V*_{Zerstäubung2}) statt. Durch die Kollision eines Regentropfens mit der Oberfläche können zusätzlich lose Fassadenbestandteile abgeschlagen werden (Erosion). Bei der Thematik Erosion zeigt sich am Beispiel von Titandioxidpartikeln, dass diese von einer Kunststoffmatrix umhüllt sind [24]. Der Eintrag von Mikroplastik aus dem Bereich der Bauwirtschaft in aquatische Ökosysteme wird bereits in den skandinavischen Ländern thematisiert [25]. Der Baubereich wurde hier neben dem Verkehr (Gummiabrieb) als eine wesentliche Quelle für Mikroplastik identifiziert.

Bild 11:

Wechselwirkung des Schlagregens mit einer Fassade am Beispiel eines idealisierten Regentropfens; Darstellung nach B. Blocken und J. Carmeliet [4] (links); rechts vom IBP auf *V_{Eintrag}* angepasste Darstellung.

Aus den experimentellen Daten der Literaturrecherche geht nicht eindeutig hervor, ob der für den $V_{Eintrag}$ relevante Anteil $V_{Ablaufs}$ auch erfasst wurde. Nur bei nicht saugenden Oberflächen, wie z. B. den Metallflächen einer Regenfalle, hat dieser Anteil keine Bedeutung. Im Bild 12 sind zwei grundsätzliche Möglichkeiten, wie das Volumen $V_{Eintrag}$ erfasst werden kann, abgebildet. Für die Berechnung des Proportionalitäts F_a von saugenden Oberflächen wurden ausschließlich experimentelle Daten des IBP verwendet. Hier wurde der für den $V_{Eintrag}$ relevante Anteil $V_{Ablaufs}$ miterfasst.

Die Auswertung der am IBP erhaltenen Ergebnisse hat gezeigt, dass der Proportionalitätsfaktor für den Regenablauf *F*_a sich im Lauf der Zeit verändert. Nach einer Bewitterungszeit von einem Jahr lag er bei 0,048 s/m. Nach drei Jahren sank er auf einen Wert von 0,035 s/m. Die Auswaschung und der Abbau des Hydrophobierungsmittels und die Abwitterung der Oberfläche beeinflussen den Proportionalitätsfaktor, d. h. ggf. müssen (rezeptur – und witterungsbedingte) Alterungsprozesse mit in die Betrachtung einbezogen werden.

Die vereinfachten Gleichungen von Lacy [16] und Choi [17] können für die Berechnung der Schlagregenmenge im Freifeld mit einem Proportionalitätsfaktor a = 0,2 s/m und für die Berechnung der Schlagregenmenge am Gebäude mit einem Proportionalitätsfaktor $F_b = 0,1$ s/m verwendet werden. Für ein Gebäude mit einer zur Hauptwindrichtung orientierten Fassade mit einer Fläche von ca. 40 m² wurde experimentell für die Regenablaufmenge R_A ein Proportionalitätsfaktor $F_a = 0,035$ s/m ermittelt. Aus den ermittelten Faktoren kann folgende Faustformel für die Regenablaufmenge auf nicht saugenden Gebäudeoberflächen abgeleitet werden:

$$R_A \sim (a \times 0.5 \times 0.3) \times u \times R_N \quad [mm] \tag{12}$$

dabei gilt:

$$\frac{F_b}{a} \sim 0.5$$
$$\frac{F_a}{F_b} \sim 0.3$$

Bei saugenden Untergründen lag der Proportionalitätsfaktor F_a zwischen 0,005 s/m und 0,020 s/m. Somit kann für saugende Untergründe ein mittlerer Proportionalitätsfaktor $F_a = 0,01$ s/m angegeben werden. Für die Regenablaufmenge R_A von saugenden Untergründen gilt:

$$R_A \sim (a \times 0.5 \times 0.1) \times u \times R_N \quad [mm] \tag{13}$$

dabei gilt:

$$\frac{F_b}{a} \sim 0.5$$
$$\frac{F_a}{F_b} \sim 0.1$$

Der Jahresniederschlag der ausgewerteten DWD-Messstationen (ohne den Bergstationen wie z. B. Brocken, Feldberg, Zugspitze etc.) lag zwischen 456 mm (Berlin Tegel) und 1697 mm (Oberstdorf). Der Mittelwert des Jahresniederschlags für die genannten DWD-Messstationen betrug 728 mm. Die mittleren Windgeschwindigkeiten bewegten sich zwischen 1,8 m/s (Bamberg) und 4,5 m/s (Helgoland). Der Mittelwert errechnet sich zu 2,5 m/s.

Die mittlere jährliche Regenablaufmenge R_A nach Gleichung 12 liegt somit für ein Einfamilienhaus mit einer nicht saugenden Oberfläche (ca. 40 m²) bei ca. 55 L/m²; bei einer saugenden Oberfläche nach Gleichung 13 beträgt die Regenablaufmenge ca. 18 L/m².

Literaturverzeichnis

- [1] DIN EN ISO 15927-3:2009-08, Wärme- und feuchteschutztechnisches Verhalten von Gebäuden – Berechnung und Darstellung von Klimadaten – Teil 3: Berechnung des Schlagregenindexes für senkrechte Oberflächen aus stündlichen Wind- und Regendaten
- [2] World Meteorological Organization, 2008, Guide to meteorological instruments and methods of observation. 7th edition, WMO Guide No. 8, Geneve 2008 (ISBN 978-92-63-10008-5)
- [3] VDI 3786 Blatt 7:2010-12, Umweltmeteorologie Meteorologische Messungen Niederschlag
- [4] Blocken B., Derome D., Carmeliet J., 2013, Rainwater runoff from building facades: a review. Building and Enviroment 60, 339-361
- [5] Ritchie T, Davison J.I., 1969, The wetting of walls by rain. Internal report no. 367. Ottawa, Canada: Division of Building Research, National Research Council;
- [6] Beijer O, Johansson A., 1967 Driving rain against external walls of concrete. Research 7:76.Stockholm: Swedish Cement and Concrete Research Institute
- [7] Kubilay A., Derome D., Blocken B., Carmeliet J., 2015, Wind-driven rain on two parallel wide buildings: Field measurements and CFD simulations. J. Wind Eng. Ind. Aerodyn. 146, 11-28
- [8] Breuer K., Mayer F., Scherer Ch., Schwerd R., Sedlbauer K., 2012, Wirkstoffauswaschung aus hydrophoben Fassadenbeschichtungen: verkapselte versus unverkapselte Biozidsysteme. Bauphysik 34, 19-23
- [9] Schwerd R., Scherer Ch., Breuer K., 2015, Wirkstoff-Restgehalte verkapselter und freier Biozide in hydrophoben Fassadenbeschichtungen. Bauphysik 37, 308-314
- [10] Groth T., 2011, The importance of leaching data in the environmental risk assessment under the biocidal products directive 98/8/EC, 2011-05-24/25 Conference in Rapperswil (CH) Leaching of Biocides from Facade Coatings
- [11] Schoknecht U., Töpfer A., 2012, Characterisation of leaching of biocidal active substances of main group 2 ,preservatives' from different materials under weathering conditions. Project No. (FKZ) 3708 65 404, Report No. (UBA-FB) 001641/E <u>http://www.uba.de/uba-info-medien-e/4389.html</u>
- [12] Kaegi R. et al., 2010, Release of silver nanoparticles from outdoor facades. Environmental Pollution 158, 2900-2905

- [13] Künniger T. et al., 2014, Release and environmental impact of silver nanoparticles and conventional organic biocides from coated wooden façades. Environmental Pollution 184, 464-471
- [14] WetterOnline http://www.wetteronline.de/
- [15] Künzel H., Schwarz B., 1968, Die Feuchtigkeitsaufnahme von Baustoffen bei Beregnung. Berichte aus der Bauforschung 51, 99-113
- [16] Lacy R.E., 1965. Driving-rain maps and the onslaught of rain on buildings. In: RILEM/CIB Symposium on Moisture Problems in Buildings, Helsinki, Finland.
- [17] Choi E.C.C., 1999, Wind-driven rain on building faces and the driving-rain index. J. Wind Eng. Ind. Aerodyn 79, 105-122
- [18] Blocken B., Carmeliet J., 2015, Impact, runoff and drying of wind-driven rain on a window glass surface: Numerical modelling based on experimental validation. Building and Enviroment 84, 170-180
- [19] Blocken B., Carmeliet J., 2006, On the accuracy of wind-driven rain measurements on buildings. Building and Enviroment 41, 1798-1810
- [20] Kubilay A., Derome D., Blocken B., Carmeliet J., 2014, High-resolution field measurements of wind-driven rain on an array of low-rise cubic buildings. Building and Environment 78 1-13
- [21] Deutscher Wetterdienst, Klimadaten Deutschland, Zugriff: Dezember 2016 <u>http://www.dwd.de/DE/leistungen/klimadatendeutschland/klimadatendeutschland.html</u>
- [22] Statistisches Bundesamt Destatis, 2016, Bautätigkeit und Wohnungen Bestand an Wohnungen: 31. Dezember 2015, Fachserie 5 Reihe 3
- [23] DIN 4108-3:2014-11, Wärmeschutz und Energie-Einsparung in Gebäuden Teil 3: Klimabedingter Feuchteschutz - Anforderungen, Berechnungsverfahren und Hinweise für Planung und Ausführung
- [24] Kaegi R. et al., 2008, Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environmental Pollution 156, 233–239
- [25] Sundt P., Schulze P. E., Syversen F., 2014, Sources of microplastic- pollution to the marine environment., mepex, Report no: M-321|2015

Gesichtete Literatur

Abadie M. O., Mendes N., 2006, Numerical assessment of wind-driven rain catch ratio. Proceedings of the 11th Brazilian Congress of Thermal Sciences and Engineering -- ENCIT 2006, Braz. Soc. of Mechanical Sciences and Engineering -- ABCM, Curitiba, Brazil,- Dec. 5-8, 2006

Abadie M. O., Mendes N., 2008, Numerical assessment of turbulence effect on the evaluation of wind-driven rain specific catch ratio. International Communications in Heat and Mass Transfer, 1253-1261

Abuku M., Janssen H., Poesen J., Roels S., 2009, Impact, absorption and evaporation of raindrops on building facades. Building and Environment 44, 113–124

Abuku M., Blocken B., Nore K., Thue J. V., Carmeliet J., Roels S., 2009, On the validity of numerical wind-driven rain simulation on a rectangular low-rise building under various oblique winds. Building and Environment 44, 621-632

Abuku M., Janssen H., Roels S., 2009, Impact of wind-driven rain on historic brick wall buildings in a moderately cold and humid climate: Numerical analyses of mould growth risk, indoor climate and energy consumption. Energy and Buildings 41, 101–110

Abuku M., Blocken B., Roels S., 2009, Moisture response of building facades to wind-driven rain: Field measurements compared with numerical simulations. Journal of Wind Engineering and Industrial Aerodynamics 97, 197–207

Baheru T. et al., 2014, Distribution of wind-driven rain deposition on low-rise buildings: Direct impinging rain drops versus surface runoff. Journal of Wind Engineering and Industrial Aerodynamics 133, 27-38

Beijer O, Johansson A., 1967 Driving rain against external walls of concrete. Research 7:76.Stockholm: Swedish Cement and Concrete Research Institute

Best A.C., 1950, The size distribution of raindrops. Q J R Meteorol Soc 76:16-36

Bester K., Lamania X., 2010, Determination of biocides as well as some biocide metabolites from facade run-off waters by solid phase extraction and high performance liquid chromatographic separation and tandem mass spectrometry detection. Journal of Chromatography A 1217, 5204–5214

Bester K., Vollertsen J., Bollmann U. E., 2014, Water driven leaching of biocides from paints and renders: Methods for the improvement of emission scenarios concerning biocides in buildings. Pesticide Research No. 156, ISBN no. 978-87-93178-11-3

Blocken B., Carmeliet J., 2000, Driving Rain on Building Envelopes- I. Numerical Estimation and Full-Scale Experimental Verification. Journal of Thermal Env & Bldg Sci 24, 61-85 Blocken B., Carmeliet J., 2000, Driving Rain on Building Envelopes- II. Representative Experimental Data for Driving Rain Estimation. Journal of Thermal Env & Bldg Sci 24, 89-110

Blocken B., Carmeliet J., 2004, A review of wind-driven rain research in building science. Journal of Wind Engineering and Industrial Aerodynamics 92, 1079–1130

Blocken B., Carmeliet J., 2006, On the accuracy of wind-driven rain measurements on buildings. Building and Enviroment 41, 1798-1810

Blocken B., Roels S., Carmeliet J., 2007, A combined CFD–HAM approach for wind-driven rain on building facades. Journal of Wind Engineering and Industrial Aerodynamics 95, 585–607

Blocken B., Abuku M., Roels S., Carmeliet J., 2009, Wind-driven rain on building facades: some perspectives. EACWE 5 Florence, Italy 19th – 23rd July 2009

Blocken B., Dezsö G., van Beeck J., Carmeliet J., 2009, The mutual influence of two buildings on their wind-driven rain exposure and comments on the obstruction factor. Journal of Wind Engineering and Industrial Aerodynamics 97, 180–196

Blocken B., Carmeliet J., 2010, Overview of three state-of-the-art wind-driven rain assessment models and comparison based on model theory. Building and Environment 45, 691-703

Blocken B., Carmeliet J., 2012, A simplified numerical model for rainwater runoff on building facades: Possibilities and limitations. Building and Environment 53, 59-73

Blocken B., Derome D., Carmeliet J., 2013, Rainwater runoff from building facades: a review. Building and Enviroment 60, 339-361

Blocken B., Carmeliet J., 2015, Impact, runoff and drying of wind-driven rain on a window glass surface: Numerical modelling based on experimental validation. Building and Enviroment 84, 170-180

Bollmann U. E., Vollertsen J., Carmeliet J., Bester K., 2014, Dynamics of biocide emissions from buildings in a suburban stormwater catchment e Concentrations, mass loads and emission processes. Water Research 56, 66-76

Bollmann U. E., Tang C., Eriksson E., Jönsson K., Vollertsen J., Bester K., 2014, Biocides in urban wastewater treatment plant influent at dry and wet weather: Concentrations, mass flows and possible sources. Water Research 60, 64-74

Breuer K., Mayer F., Scherer Ch., Schwerd R., Sedlbauer K., 2012, Wirkstoffauswaschung aus hydrophoben Fassadenbeschichtungen: verkapselte versus unverkapselte Biozidsysteme. Bauphysik 34, 19-23

Briggen P.M., Blocken B., Schellen H. L., 2009, Wind-driven rain on the facade of a monumental tower: Numerical simulation, full-scale validation and sensitivity analysis. Building and Environment 44, 1675–1690 Choi E.C.C., 1999, Wind-driven rain on building faces and the driving-rain index. J. Wind Eng. Ind. Aerodyn 79, 105-122

Coutu S., Rota Ch., Rossi L., Barry D.A., 2012, Modelling city-scale facade leaching of biocide by rainfall. Water Research 46, 3525-3534

Coutu S., Del Giudice D., Rossi L., Barry D. A., 2012, Modeling of facade leaching in urban catchments. Water Resources Research 48, 1-10

Deb Nath U. K., Chiu V., Ge H., 2015, Measurements of wind-driven rain on mid- and high-rise buildings in three Canadian regions. Energy Procedia 78, 2512–2517

Erkal A., D'Ayala D., Sequeira L., 2012, Assessment of wind-driven rain impact, related surface erosion and surface strength reduction of historic building materials. Building and Environment 57, 336-348

Frank W., 1973, Einwirkung von Regen und Wind auf Gebäudefassaden, Berichte aus der Bauforschung 86, 17-40

Ge H., 2015, Influence of time resolution and averaging techniques of meteorological data on the estimation of wind-driven rain load on building facades for Canadian climates. Journal of Wind Engineering and Industrial Aerodynamics 143, 50-61

Giarma C., Aravantinos D., 2014, On building components' exposure to driving rain in Greece. Journal of Wind Engineering and Industrial Aerodynamics 125, 133–145

Groth T., 2011, The importance of leaching data in the environmental risk assessment under the biocidal products directive 98/8/EC, 2011-05-24/25 Conference in Rapperswil (CH) Leaching of Biocides from Facade Coatings

Hall Ch., Kalimeris A. N., 1982, Water Movement in Porous Building Materials--V. Absorptton and Shedding of Rain by Building Surfaces. Building and Environment 17, 257-262

Hedberg Y. S., Goidanich S., Herting G., Wallinder I. O., 2015, Surface-rain interactions: Differences in copper runoff for copper sheet of different inclination, orientation, and atmospheric exposure conditions, Environmental Pollution 196, 363-370

Jungnickel Ch., Stock F., Brandsch T., Ranke J., 2008, Risk Assessment of Biocides in Roof Paint: Part 1: Experimental Determination and Modelling of Biocide Leaching from Roof Paint. Env Sci Pollut Res 15, 258–265

Kaegi R. et al., 2008, Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environmental Pollution 156, 233–239

Kaegi R. et al., 2010, Release of silver nanoparticles from outdoor facades. Environmental Pollution 158, 2900-2905

Kubilay A., Derome D., Blocken B., Carmeliet J., 2013, CFD simulation and validation of wind-driven rain on a building facade with an Eulerian multiphase model. Building and Environment 61, 69-81

Kubilay A., Derome D., Blocken B., Carmeliet J., 2014, High-resolution field measurements of winddriven rain on an array of low-rise cubic buildings. Building and Environment 78 1-13

Kubilay A., Derome D., Blocken B., Carmeliet J., 2014, Numerical simulations of wind-driven rain on an array of low-rise cubic buildings and validation by field measurements. Building and Environment 81, 283-295

Kubilay A., Derome D., Blocken B., Carmeliet J., 2015, Wind-driven rain on two parallel wide buildings: Field measurements and CFD simulations. J. Wind Eng. Ind. Aerodyn. 146, 11-28

Künniger T. et al., 2014, Release and environmental impact of silver nanoparticles and conventional organic biocides from coated wooden façades. Environmental Pollution 184, 464-471

Künzel H., Schwarz B., 1968, Die Feuchtigkeitsaufnahme von Baustoffen bei Beregnung. Berichte aus der Bauforschung 51, 99-113

Künzel, H. M.; Künzel H., Holm, A., 2004, Rain Protection of Stucco Facades. Performance of Exterior Envelopes of Whole Buildings, IX International Conference

Lacy R.E., 1965. Driving-rain maps and the onslaught of rain on buildings. In: RILEM/CIB Symposium on Moisture Problems in Buildings, Helsinki, Finland.

Mirrahimi S., Lim C.H., Mastor Surat S. P. K., 2015, Review of Method to Estimation of Wind-Driven Rain on Building façade. Advances in Environmental Biology 9, 18-23

Nik V. M., Mundt-Petersen S. O., Sasic Kalagasidis A., De Wilde P., 2015, Future moisture loads for building facades in Sweden: Climate change and wind-driven rain. Building and Environment 93, 362-375

Pérez-Bella J. M. et al., 2013, Combined use of wind-driven rain and wind pressure to define water penetration risk into building façades: The Spanish case. Building and Environment 64, 46-56

Pérez-Bella J. M. et al., 2014, A comparison of methods for determining watertightness test parameters of building façades. Building and Environment 78, 145-154

del Rio S., Herrero L., Fraile R., Penas A., 2011, Spatial distribution of recent rainfall trends in Spain (1961–2006). Int. J. Climatol. 31, 656–667

Ritchie T, Davison J.I., 1969, The wetting of walls by rain. Internal report no. 367. Ottawa, Canada: Division of Building Research, National Research Council

Schoknecht U., Töpfer A., 2012, Characterisation of leaching of biocidal active substances of main group 2 ,preservatives' from different materials under weathering conditions. Project No. (FKZ) 3708 65 404, Report No. (UBA-FB) 001641/E http://www.uba.de/uba-info-medien-e/4389.html

Schoknecht U., Sommerfeld T., Borho N., Bagda E., 2013, Interlaboratory comparison for a laboratory leaching test procedure with fac ade coatings. Progress in Organic Coatings 76, 351–359

Schoknecht U., Mathies H., Wegner R., 2016, Biocide leaching during field experiments on treated articles. Environ Sci Eur 28, 1-10

Schwerd R., Scherer Ch., Breuer K., 2015, Wirkstoff-Restgehalte verkapselter und freier Biozide in hydrophoben Fassadenbeschichtungen. Bauphysik 37, 308-314

Statistisches Bundesamt Destatis, 2016, Bautätigkeit und Wohnungen - Bestand an Wohnungen: 31. Dezember 2015, Fachserie 5 Reihe 3

Straube J. F., 2010, Simplified Prediction of Driving Rain on Buildings: ASHRAE 160P and WUFI 4.0. Building Science Digest 148

Straube J.F., Burnett, E.F.P., 2000, Simplified Prediction of Driving Rain on Buildings, Conference Paper

Sundt P., Schulze P. E., Syversen F., 2014, Sources of microplastic- pollution to the marine environment.,mepex, Report no: M-321|2015

Tanga W., Davidson C. I., 2004, Erosion of limestone buildingsurfaces caused by wind-driven rain: 2. Numerical modeling. Atmospheric Environment 38, 5601–5609

Van den Brande T., Leen T., Blocken B., Roels S., 2012, Influence of facade materials on runoff due to wind-driven rain. Proceedings of the 5th IBPC, Kyoto, Japan, May 28-31, 2012

Van den Brande T., Blocken B., Roels S., 2013, Rain water runoff from porous building facades: Implementation and application of a first-order runoff model coupled to a HAM model. Building and Environment 64, 177-186

Van den Brande T., Blocken B., Roels S., 2014, Wind-driven rain and runoff on a medium-rise building: experimental and numerical analysis, Full papers - NSB 2014, 1093-1100

Wangler T. P., Zuleeg S., Vonbank R., Bester K., Boller M., Carmeliet J., Burkhardt M., 2012, Laboratory scale studies of biocide leaching from façade coatings, Building and Environment 54, 168-173

Wittmer I. K., Scheidegger R., Stamm Ch., Gujer W., Bader H. P., 2011, Modelling biocide leaching from facades. Water Research 45, 3453 - 3460

DIN 4108-3:2014-11, Wärmeschutz und Energie-Einsparung in Gebäuden - Teil 3: Klimabedingter Feuchteschutz - Anforderungen, Berechnungsverfahren und Hinweise für Planung und Ausführung

DIN EN ISO 15927-3:2009-08, Wärme- und feuchteschutztechnisches Verhalten von Gebäuden – Berechnung und Darstellung von Klimadaten – Teil 3: Berechnung des Schlagregenindexes für senkrechte Oberflächen aus stündlichen Wind- und Regendaten

VDI 3786 Blatt 7:2010-12, Umweltmeteorologie – Meteorologische Messungen – Niederschlag

World Meteorological Organization, 2008, Guide to meteorological instruments and methods of observation. 7th edition, WMO Guide No. 8, Geneve 2008 (ISBN 978-92-63-10008-5)

Deutscher Wetterdienst, Klimadaten Deutschland, Zugriff: Dezember 2016 <u>http://www.dwd.de/DE/leistungen/klimadatendeutschland/klimadatendeutschland.html</u>

WetterOnline http://www.wetteronline.de/

Bildverzeichnis

3ild 1: Idealisierte Darstellung der kumulierten Volumenanteile von Regenablauf, Zerstäubung, Adhäsion und Verdunstung an Schlagregen/Kollisionsregen sowie Normalregen/Niederschlag.	4
Bild 2: Niederschlagsmesser (Ombrometer) und Schlagregenmesser mit einer Auffangfläche von 200 cm ² am IBP in Valley: a) klassischer Ombrometer mit Auffanggefäß, b) Ombrometer mit elektronischer Datenerfassung, c) Schlagregenmesser mit elektronischer Datenerfassung.	6
3ild 3: Wechselwirkung zwischen Niederschlag und Fassade nach [4].	8
3ild 4: Kräfte- und Geschwindigkeitsvektoren an einem fallenden Regentropfen [15].	13
3ild 5: Proportionalitätsfaktor <i>a</i> : Zusammenhang zwischen gemessenen Schlagregen und dem Schlagregenindex (Produkt aus Normalregen und Windgeschwindigkeit), ermittelt aus den experimentellen Daten am IBP (Tabelle 3).	15
3ild 6: Zusammenhang zwischen berechneten Proportionalitätsfaktor F _a und der beregneten Fläche.	25
3ild 7: Jahresmittel der Niederschlagsmenge für DWD Messstationen (blau); Jahresmittel der Niederschlagsmenge IBP Valley (grün); Schlagregen im Freifeld berechnet mit Proportionalitätsfaktor a = 0,2 s/m nach Lacy, Gleichung (4) (rot).	31
3ild 8: Jahresmittel der Niederschlagsmenge für DWD Messstationen (blau); Jahresmittel der Niederschlagsmenge für IBP Valley (grün); Schlagregen am Gebäude berechnet mit Proportionalitätsfaktor F _b = 0,1 s/m nach Choi, Gleichung (8) (rot).	32
3ild 9: Jahresmittel der Niederschlagsmenge für DWD Messstationen (blau); Jahresmittel der Niederschlagsmenge für IBP Valley (grün); Schlagregen am Gebäude berechnet mit Proportionalitätsfaktor F _a = 0,035 s/m nach IBP.	33
3ild 10: Gegenüberstellung von errechnetem Schlagregenindex (gelb) und Zonen der Schlagregenbeanspruchung nach DIN 4108-3 [23]. Magdeburg (Minimum) und Helgoland (Maximum) rot gekennzeichnet.	34
3ild 11: Wechselwirkung des Schlagregens mit einer Fassade am Beispiel eines idealisierten Regentropfens; Darstellung nach B. Blocken und J. Carmeliet [4] (links); rechts vom IBP auf <i>V_{Eintrag}</i> angepasste Darstellung.	35

Bild 12: Erfassung von $V_{Eintrag}$ nach IBP (links), rechts Erfassung von $V_{Eintrag}$ ohne $V_{Ablaufs}$.

Tabellenverzeichnis

Tabelle 1: Abmessungen und Bauformen für Schlagregenmesser.	7
Tabelle 2: Ergebnisse der Recherche.	10
Tabelle 3: Experimentelle Daten für den kumulierten Normalregen, den kumulierten Schlagregen und die mittleren Windgeschwindigkeiten für jeweils eine Periode von sieben Tagen im Zeitraum von 09.12.2013 bis 21.02.2016 am IBP in Valley; der Proportionalitätsfaktor <i>a</i> wurde für die jeweilige Periode berechnet.	15
Tabelle 4: Ergebnisse der Messstationen nach Choi [17].	18
Tabelle 5: Experimentelle Schlagregendaten vom 0205.02.2002; Niederschlag $R_N = 15,7$ mm [18].	19
Tabelle 6: Experimentelle Schlagregendaten vom 2526.02.2002; Niederschlag $R_N = 26,7$ mm [19].	20
Tabelle 7: Experimentelle Schlagregendaten vom 2021.02.2014; Niederschlag $R_N = 12 \text{ mm}$ [7].	21
Tabelle 8: Experimentelle Schlagregendaten vom 0203.08.2014; Niederschlag $R_N = 18 \text{ mm}$ [7].	21
Tabelle 9: Experimentelle Schlagregendaten vom 30.05-01.06.2013; Niederschlag $R_N = 72$ mm [20].	22
Tabelle 10: Experimentelle Schlagregendaten vom 30.05-01.06.2013; Niederschlag $R_N = 72$ mm [20].	22
Tabelle 11: Experimentelle Schlagregendaten vom 0910.06.2013; Niederschlag R_N = 35 mm [20].	23
Tabelle 12: Experimentelle Schlagregendaten vom 0910.06.2013; Niederschlag R_N = 35 mm [20].	23
Tabelle 13: Experimentelle Schlagregendaten vom 1619.09.2013; Niederschlag R_N = 36 mm [20].	24
Tabelle 14: Experimentelle Schlagregendaten vom 1619.09.2013; Niederschlag R_N = 36 mm [20].	24
Tabelle 15: Experimentelle Regenablaufdaten und berechnete Proportionalitätsfaktoren für unterschiedliche mineralische und pastöse Putz- und Mörtelvarianten sowie für zwei Metallbleche als Blindwerte.	26

Tabelle 16: Aus monatlichen Niederschlagsdaten des DWD für den Zeitraum von Mai 2015 bis November 2016 berechneter Jahresniederschlag R_N , Schlagregenmenge R_s im Freifeld, Schlagregenmenge R_s am Gebäude und die Regenablaufmenge R_A für 68 DWD-Messstationen; Vergleich Messstation IBP Valley.

28