Bau<u>forschung</u>

Verbunddübel im Brandfall

T 3353

⁺ Fraunhofer IRB Verlag

T 3353

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

2018

ISBN 978-3-7388-0119-4

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

CIVIL ENGINEERING CONCRETE STRUCTURES AND STRUCTURAL DESIGN DEPARTMENT OF EXPERIMENTAL CONCRETE CONSTRUCTION Jun. Prof. Dr. – Ing. Catherina Thiele

Paul-Ehrlich-Straße Gebäude 14, Zimmer 517 67663 Kaiserslautern Phone (0631) 205 – 3833 Fax (0631) 205 – 3555 e-mail: catherina.thiele@bauing.uni-kl.de

Projekt:

Verbunddübel im Brandfall

Kontakt:

M.Sc. Mayur Patil Dipl. Ing. Marie Reichert www.massivbau-kl.de

Datum:

02/05/2017

C. thicle

Jun.-Prof. Dr.-Ing. Catherina Thiele

M. Reichert

Dipl.-Ing. Marie Reichert

Mayur Patil, M. Sc.

Inhaltsverzeichnis

Verbunddübel im Brandfall –DIBT

1.	Allgemeine Informationen	4
2.	Zielsetzung	4
3.	Literaturstudie	5
3.1.	Richtlinien, Leitlinien und Normen	5
3.1.1	. Beurteilung der Tragfähigkeit ohne Feuerbeanspruchung	5
3.1.2	. Evaluation of anchorages in concrete concerning resistance to fire – TR 020	5
3.1.3	. DIN EN 1363-1 [2]	8
3.1.4	. European Assessment Document (EAD) 330087-00-0601	9
4.	Einführende Grundlagen	12
4.1.	Verbunddübel und ihr Tragmechanismus	12
4.2.	Einfluss des Lastfalls Brand auf den Tragmechanismus von Verbunddübeln	13
5.	Betonversagen von Verbunddübeln im Brandfall	14
6.	Stahlversagen von Verbunddübeln im Brandfall	14
7.	Verbundversagen von Verbunddübeln im Brandfall	28
7.1.	Temperaturverteilung über die Verankerungstiefe mithilfe einer FE-Simulation mit ANSYS	30
7.1.1	. Eingabeparameter und Randbedingungen	30
7.1.2	. Parameterstudie	34
7.1.3	. Vergleich von Temperaturdaten aus Brandversuchen und Simulation	42
7.2.	Verbundspannungs-Temperaturbeziehung	47
7.3.	Vergleichsrechnungen zu Brandversuchen	55
7.3.1	. Anwendung des Berechnungsverfahrens auf Mörtel B	55
7.3.2	. Anwendung des Berechnungsverfahrens auf Mörtel C	61
7.3.3	. Einflussfaktoren auf Berechnungsverfahren	69
8.	Einfluss von Rissen auf die Tragfähigkeit von Verbunddübeln im Brandfall	72
8.1.	Versuchsdurchführung von Brandversuchen in gerissenem Beton	72
8.2.	Rissverhalten im Brandfall	74
9.	Fazit / Zusammenfassung	75
9.1.	Thermische Analysen	75
9.2.	Feuerwiderstandsprüfungen nach EAD 330087-00-0601	75
9.3.	Berechnung des Feuerwiderstands von Verbunddübeln	75
9.4.	Vorschlag zur Versuchsdurchführung und Auswerteverfahren	76
~ / /	Vereinfachtes Remessungsmodell	76

9.4.2	Experimentelle/Rechnerische Bestimmung des Feuerwiderstands7	7
10.	Literatur8	2
11.	Anhang A – Vergleich der thermischen Simulation mit Versuchsergebnissen	3
12.	Anhang B11	2

1. Allgemeine Informationen

Das Forschungsprojekt "Verbunddübel im Brandfall" unterstützt und finanziert durch das Deutsche Institut für Bautechnik (DIBt) wurde im Zeitraum von Januar 2015 bis April 2017 an der Technischen Universität Kaiserslautern bearbeitet. Neben dem DIBt haben die folgenden Firmen das Projekt finanziell und beratend unterstützt: Chemofast Anchorig GmbH, Fischerwerke GmbH & Co. KG und Hilti AG.

2. Zielsetzung

Produkte zur Verankerung von Lasten in Beton sind nicht durch DIN- bzw. EN – Normen geregelt. Deshalb müssen diese nicht geregelten Bauprodukte durch eine allgemeine Bauaufsichtliche Zulassung (abZ) oder eine europäische Zulassung (ETA) qualifiziert werden. Für die unterschiedlichen Arten von Befestigungsmittel existieren europäische technische Zulassungsleitlinien (ETAG´s/EAD). Ergänzt werden diese Zulassungsleitlinien durch Technische Berichte (TR) in denen spezielle Aspekte näher beleuchtet werden.

Die Beurteilung der Feuerwiderstandsstandfestigkeit von mechanischen Befestigungssystemen wird im technischen Bericht TR 020 [1] geregelt. Die Qualifizierung von Verbunddübeln im Brandfall wird in diesem Technical Report jedoch unzulänglich behandelt. Das Prüf- und Auswerteverfahren für die Bewertung der Versagensart Verbundversagen wird nicht beschrieben. Ausgehend von dieser Tatsache wurde das Forschungsprojekt, zur Bestimmung der Tragfähigkeit von Verbunddübel im Brandfall, eingeleitet. Abbildung 2-1 zeigt eine Übersicht über die aktuelle Situation zur Beurteilung von Verankerungen im Brandfall.

Abbildung 2-1: Situation zur Beurteilung von Befestigungsmittel

Bei Verbund- und Verbundspreizdübeln wird ein Verankerungselement aus Metall mit Hilfe eines Mörtels im Beton verankert. Die äußeren Lasten werden durch Verbundspannungen in den Verankerungsgrund eingeleitet. Die Eigenschaften der Verbundmörtel verändern sich bei steigenden Temperaturen stark. Dies hat Auswirkungen auf die übertragbaren Verbundspannungen.

Für Verbund- und Verbundspreizdübel ist die Versagensart Herausziehen beziehungsweise Verbundversagen mehr als bei anderen Befestigungssystemen im Brandfall von Bedeutung. Neben dem Verbundversagen sind auch Stahlversagen und Betonausbruch mögliche Versagensarten und müssen bei der Beurteilung der Tragfähigkeit im Brandfall berücksichtigt werden. Die Versagensart Verbundversagen soll in diesem Forschungsvorhaben mit Schwerpunkt untersucht werden.

Mangels konkreter Handlungsanweisungen herrscht innerhalb der unterschiedlichen Prüfstellen bisher kein einheitlicher Standard für die Versuchsdurchführung und –bewertung von Verbunddübeln im Brandfall.

Die Ziele dieser Studie sind:

- Festlegung von Prüfverfahren für Verbunddübel im Brandfall
- Bestimmung der Einflussparameter auf das Tragverhalten von Verbunddübel bei hohen Temperaturen

3. Literaturstudie

Wie in Kapitel 2 beschrieben fehlen einheitliche Regelungen zur Beurteilung von Verbunddübeln im Brandfall. Im nachfolgenden Kapitel wird der Stand der Wissenschaft und Technik erläutert. Dazu werden die existierenden Richtlinien und Normen zum Thema aufgearbeitet und existierende Forschungsergebnisse präsentiert. Außerdem werden Literaturquellen zur FEM-Simulation vorgestellt.

3.1. Richtlinien, Leitlinien und Normen

3.1.1. Beurteilung der Tragfähigkeit ohne Feuerbeanspruchung

Im Allgemeinen sind die Anforderungen zur Beurteilung von Befestigungsmitteln in der europäisch technischen Zulassungsrichtlinie ETAG 001 [2] geregelt. (Derzeit laufen die Übertragungen der ETAGs in EADs) Angaben zu Feuerwiderstandsprüfungen werden hier jedoch nicht gemacht. Angeben zur Definition des Feuerwiderstandes enthält TR 020.

3.1.2. Evaluation of anchorages in concrete concerning resistance to fire – TR 020

Nach aktuellem Stand der Technik werden Brandversuche an Befestigungen nach der technischen Leitlinie TR 020 [1] "Beurteilung von Verankerungen im Beton hinsichtlich der Feuerwiderstandsfähigkeit" durchgeführt. Der TR erlaubt zwei unterschiedliche Nachweiskonzepte.

Für das vereinfachte Nachweisverfahren wird sowohl ein Versagen unter Zuglast (Stahlversagen, Herausziehen, Betonausbruch und Spalten), ein Versagen unter Querlast (Stahlversagen, pry out) sowie eine Kombination der Einwirkungen berücksichtigt. Für dieses Nachweisverfahren sind keine Brandversuche erforderlich. Die Widerstandswerte werden in Abhängigkeit der in der zugehörigen Zulassung angegeben Werte für Raumtemperatur berechnet.

Für die Versagensart Stahlversagen sind Werte durch Auswertung einer Vielzahl von Versuchen an Metalldübeln festgelegt, vgl. Tabelle 3-1 und Tabelle 3-2.

anchor bolt/thread	anchorage depth	characteristic tension strength of an unprotected anchor made of C-steel in case of fire exposure in the time up to:						
diameter	h _{ef}		σ _{Rk,s,fi} [N/mm²]					
[mm]	[mm]	30 min	60 min	90 min	120 min			
[1111]	[IIIII]	(R 15 to R30)	(R45 and R60)	(R90)	(R120)			
Ø 6 / M6	≥ 30	10	9	7	5			
Ø 8 / M8	≥ 30	10	9	7	5			
Ø 10 / M10	≥ 40	15	13	10	8			
Ø 12 / M12 and greater	≥ 50	20	15	13	10			

Tabelle 3-1: Charakteristische Zugtragfähigkeit einer Ankerstange aus C-Stahl im Brandfall [1]

Tabelle 3-2: Charakteristische Zugtragfähigkeit einer Ankerstange aus Edelstahl (A4) im Brandfall [1]

anchor bolt/thread	anchorage depth	characteristic tension strength of an unprotected anchor made of stainless steel in case of fire exposure in the time up to:				
diameter	h _{ef}	σ _{Rk,s,fi} [N/mm²]				
[mm]	[mm]	30 min	60 min	90 min	120 min	
[[1111]	[IIIII]	(R 15 to R30)	(R45 and R60)	(R90)	(R120)	
Ø 6 / M6	≥ 30	10	9	7	5	
Ø 8 / M8	≥ 30	20	16	12	10	
Ø 10 / M10	≥ 40	25	20	16	14	
Ø 12 / M12 and greater	≥ 50	30	25	20	16	

Für die Sonderfälle Verbund- und Verbundspreizdübel ist eine Bestimmung des Herausziehwiderstandes mit dem vereinfachten Verfahren nicht möglich. Hierzu muss das zweite Konzept, die experimentelle Bestimmung der Feuerwiderstandsfähigkeit, angewendet werden. Es werden mit dem Produkt Brandversuche durchgeführt. So können die Widerstandswerte für die geprüften Versagensarten und oder Belastungsrichtungen in der Zulassung berücksichtigt werden.

Für einen Brandversuch wird das zu prüfende Befestigungsmittel zunächst nach Herstellerangabe montiert. Anschließend wird er mit einer Dauerlast beansprucht. Die Lasteinleitung erfolgt analog zu Abbildung 3-1 mit einem definierten Anbauteil nach Tabelle 3-3. Danach wird das belastete Befestigungsmittel der Einheits-Temperatur-Brandkurve ausgesetzt. Ergebnis des Brandversuchs ist eine Widerstandsdauer die zugehörig zur geprüften Last ist.

Abbildung 3-1: Versuchsaufbau nach TR 020 [1]

Tabelle 3-3: Dimensionen des	Anbauteils nach	i TR 020 [1]

Type of adapter	of ter Load categories Length of the square base plate fla		flange height/ width	profile thickness	distance between the flanges
	N _{Rk,s,fi} [kN]	a [mm]	h / b [mm]	t [mm]	z [mm]
	> 1 - ≤ 3	90	100 / 90	15	60
· ·	> 3 - ≤ 5	90	100 / 90	15	60
	> 5 - ≤ 7	110	120 / 110	20	70
	> 7 - ≤ 9	110	120 / 110	20	70
	> 9 - ≤ 11	120	120 / 120	25	70
	> 11 - ≤ 13	120	120 / 120	25	70

Zur Durchführung der Brandversuche wird neben den Angaben im TR020 auf die Vorgaben in DIN EN 1363-1:1999-10 [2] verwiesen.

Es sollen mindestens je fünf Versuche mit der kleinsten und der mittleren Ankergröße durchgeführt werden. Dabei muss die Feuerwiderstandsdauer bei mindestens vier Versuchen mehr als 60 min betragen.

Anschließend werden die Dübellasten in Stahlspannungen σ_s umgewandelt und über die entsprechende Versagenszeit t_u abgebildet. Es wird eine Trendlinie der Versuchsergebnisse gebildet, diese soll folgender Gleichung folgen;

$$\sigma_{s1} = c_1 + \frac{c_2}{t_{11}}$$

Diese Trendlinie wird nun um einen Faktor c_3 in den untersten Punkt der Versuchsdaten verschoben. Durch Einsetzen der Zeit erhält man so die Feuerwiderstandswerte für die Zeitpunkte t = 60 min, t = 90 min und t = 120 min. Über eine Sekante dieser Kurve durch die Punkte t =

60 min und t = 90 min wird der Feuerwiderstandswert für t = 30 min bestimmt. In Abbildung 3-2 ist das Vorgehen beispielhaft dargestellt.

Abbildung 3-2: Bestimmung der charakteristischen Feuerwiderstandswerte

3.1.3. DIN EN 1363-1 [2]

In DIN EN 1363-1 [2] ist die Durchführung von Feuerwiderstandsprüfungen geregelt, Teil 1 beschreibt die allgemeinen Anforderungen.

Hierzu gehört die Aufheizkurve, im Allgemeinen wird die Ofentemperatur nach der Einheits-Temperatur-Zeit-Kurve (ETK) geregelt. Diese wird durch folgende Gleichung beschrieben.

$$T = 345 \log_{10}(8t+1) + 20$$

Dabei ist

T die mittlere Ofentemperatur, in Grad Celsius;

t die Zeit, in Minuten.

Die Ofentemperatur muss folgende Grenzwerte einhalten:

a)	15%	für	5 < t ≤ 10;
b)	(15-0,5(t – 10) %	für	10 < t ≤ 30;
c)	(5 – 0,083(t – 30) %	für	30 < t ≤ 60;
d)	2,5%	für	t > 60.

Die Ofentemperatur ist mit mindestens einem Plattenthermometer je Brenner zu Messen und zu Steuern. Die Plattenthermometer sollen dem in Abbildung 3-3 dargestellten Aufbau entsprechen.

Legende

- 1 ummanteltes Thermoelement mit wärmegedämmter Messstelle
- 2 punktgeschweißter oder geschraubter Metallstreifen
- 3 Messstelle des Thermoelementes
- 4 Wärmedämmstoff (zum Probekörper ausgerichtet)
- 5 Blechstreifen mit Dicke von (0,7 ± 0,1) mm aus einer Nickel-Stahllegierung
- 6 Fläche "A"

Abbildung 3-3: Aufbau des Platten-Thermometers [2]

Neben der Ofentemperatur soll der Ofeninnendruck während des Brandversuchs überwacht und geregelt werden. Dazu kann von einem Druckgradienten von etwa 8,5 Pa je Meter Prüfofenhöhe ausgegangen werden.

3.1.4. European Assessment Document (EAD) 330087-00-0601

Der EAD 330087-00-0601 [3] "systems for post-installed rebar connections with mortar" beinhaltet den Lastfall Brand. Nachträglich eingemörtelte Bewehrungsanschlüsse werden im Brandfall nicht wie Befestigungen direkt der Brandbeanspruchung ausgesetzt, sie erfahren eine Erhitzung durch den Temperatureintrag über den Beton. Um die Reduzierung der Verbundspannung bei erhöhten Temperaturen zu definieren wird der in Abbildung 3-4 dargestellte Versuchsaufbau verwendet.

Abbildung 3-4: Versuchsaufbau für Brandversuch nach [3]

Bei diesem Versuch wird ein Bewehrungsstahl nach Herstellerangaben mittig in einen stahlummantelten Betonzylinder gesetzt. Unter einer Dauerlast N_{test} wird die Mantelfläche des Zylinders mit einer thermischen Belastung θ beansprucht. Die thermische Belastung wird mit einer Aufheizrate von mindestens 5 °C/min aufgebracht.

Die Temperatur am Bewehrungsstab zum Versagenszeitpunkt wird über das gewichtete Mittel zweier Thermoelemente (befestigt bei 10 mm und 120 mm, vgl. Abbildung 3-4) bestimmt. Das gewichtete Mittel berechnet sich dabei zu 1/3 aus der größeren gemessenen Temperatur und zu 2/3 aus der kleineren Temperatur.

Es müssen mindestens 20 Versuche mit unterschiedlichen Belastungen N_{test} durchgeführt werden. Dabei sind zusätzlich folgende Kriterien einzuhalten:

- a) Die Maximale Differenz zweier Datenpunkte im Intervall von [1 N/mm²; f_{bm(21°C)}] darf 1 N/mm² betragen.
- b) Die Maximale Differenz zweier Versagenstemperaturen $\theta_{failure}$ darf 50 °C betragen.

Außerdem sollen drei Versuche mit einer Verbundspannung von 0,5 N/mm² durchgeführt werden. Das nachfolgend dargestellte Diagramm zeigt beispielhaft die Versuchsergebnisse einer Testreihe und die dazugehörige Trendlinie. Anhand der Trendlinie wird nun ein Abminderungsfaktor abhängig von der Temperatur gebildet, vgl Abbildung 3-5 und Abbildung 3-6.

Seite 11 von 113

Schlussbericht Verbunddübel im Brandfall –DIBT

Abbildung 3-5: Beispiel für die Bestimmung der Verbundspannung als Funktion der Temperatur

Abbildung 3-6: Beispiel für den Abminderungsfaktor $k_{fi}(\theta)$

Im Artikel von *Pinoteau* [4] werden unterschiedliche Heizarten (Beheizung durch Gas oder elektrische Aufheizung) sowie unterschiedliche Aufheizraten miteinander verglichen. Mit dem Ergebnis das beide dieser Faktoren keinen erheblichen Einfluss auf das Versuchsergebnis haben.

4. Einführende Grundlagen

In diesem Kapitel sollen allgemeine Informationen zu Verbunddübeln und ihren Unterarten sowie deren Tragmechanismen vorgestellt. Außerdem soll der Einfluss der Temperaturbeanspruchung auf den Tragmechanismus und die Versagensarten kurz erläutert werden.

4.1. Verbunddübel und ihr Tragmechanismus

Unter dem Begriff Verbunddübel werden alle Systeme zum Einkleben von Gewindestangen in verschiedenen Untergründen zusammengefasst. Neben Zwei-Komponenten-Injektionssystemen können auch Patronensysteme verwendet werden. In der Regel besteht ein Mörtel aus zwei Komponenten; Harz und Härter. Unterschiedliche Zuschläge werden den Komponenten beigemischt. In diesem Forschungsprojekt wurde sich auf die Untersuchung von Injektionssystemen im Beton konzentriert.

Der Setzvorgang eines Verbunddübels gliedert sich grob in die folgenden Arbeitsschritte:

- Erstellung des Bohrlochs
- Reinigung des Bohrlochs
- Injektion des Mörtels
- Setzen der Ankerstange
- Aushärten

Nach dem Aushärten des Mörtels können durch Stoffschluss Kräfte von der Ankerstange über den Mörtel in den Verankerungsgrund eingeleitet werden. Die Kraft die pro Flächeneinheit an Mantelfläche der Ankerstange übertragen werden können wird im allgemeinen Verbundspannung T genannt.

Bei Raumtemperaturen können nun drei wesentliche Versagensarten zum Bruch der Verbindung führen. Überschreitet die Dübelbelastung die maximal übertragbare Verbundspannung eines Mörtels kommt es zum Verbundversagen, also ein produktabhängiges Versagen. Diese Versagensform kann an der Grenzfläche zwischen Stahl und Mörtel sowie zwischen Mörtel und Beton auftreten.

Wenn die Verbundeigenschaften des Mörtels ausreichend gut sind kann Betonausbruch die maßgebende Versagensform für

h

das System werden. Dabei sind die in den Beton eingeleiteten Kräfte Abbildung 4-1: Tragmechanismus so groß, dass die Zugtragfähigkeit des Betons überschritten wird und eines Verbunddübels ein kegelförmiger Ausbruch entsteht.

Bei großen Einbindetiefen und sehr guten Mörteleigenschaften können von einem Verbunddübel so große Kräfte aufgenommen werden, dass die Stahlzugfähigkeit der Ankerstange zum maßgebenden Faktor wird. Bei Überschreiten der Stahlbruchgrenze kommt es zum Stahlversagen.

4.2. Einfluss des Lastfalls Brand auf den Tragmechanismus von Verbunddübeln

Im Folgenden wird ein einseitig brandbeanspruchtes Bauteil betrachtet, in dem auf der brandzugewandten Seite Verbunddübel verwendet wurden. Die feuerzugewandte Seite wird dabei sehr großen Temperaturbeanspruchungen ausgesetzt. Die erhöhten Temperaturen werden sowohl vom Beton ins Innere des Bauteils transportiert, als auch über die gut wärmeleitende Ankerstange. Dadurch erwärmt sich der Mörtel eines Verbundsystems während eines Brandszenarios sehr schnell. Mit steigender Temperatur verschlechtern sich die Eigenschaften von Injektionsmörteln rapide. Je nach Art der Mörtels verändern ihre Eigenschaften mit steigender Temperatur.

Durch die hohe Sensibilität von Mörtelsystemen gegenüber sehr hohen Temperaturen werden die Verbundeigenschaften mit fortschreitendem Brand schlechter und ein **Verbundversagen** wird wahrscheinlicher.

Auch die aus Stahl bestehende Ankerstange hat keinen großen Feuerwiderstand und die Stahlbruchgrenze sinkt mit steigenden Temperaturen schnell. Da dieser Bereich direkt dem Feuer ausgesetzt ist, kann es für große Verankerungstiefen oder kleine Stahldurchmesser zum **Stahlversagen** kommen.

Ein Betonversagen trat bei den im Rahmen dieses Forschungsvorhabens durchgeführten Versuchen nicht auf.

5. Betonversagen von Verbunddübeln im Brandfall

Die Versagensart Betonausbruch ist weniger von der Verankerungsart mehr von der Verankerungstiefe einer Befestigung abhängig. Vor allem für Verbunddübel, bei denen die Spannungen im Gegensatz zu vielen mechanischen Befestigungsmitteln sehr gleichmäßig in den Beton eingeleitet werden, kann davon ausgegangen werden, dass Betonversagen keine relevante Versagensform ist.

In der Dissertation von Reick [5] werden Finite-Elemente-Simulationen beschrieben die zeigen, dass ein Versagen durch Betonausbruch im Brandfall meist nicht maßgebend ist. Des Weiteren sind im Rahmen dieser Arbeit Versuche mit Kopfbolzendübeln verschiedener Einbindetiefe durchgeführt worden. Die sich dort ergebenden Betonausbruchslasten liegen weit über den Werten für Verbund- oder Stahlversagen bei einem Verbunddübel.

6. Stahlversagen von Verbunddübeln im Brandfall

Die Zugtragfähigkeit von Stahl verschlechtert sich rapide mit größer werdenden Temperaturen. Daher wird für große Verankerungstiefen oder kleine Ankerdurchmesser für Verbunddübel im Brandfall häufig Stahlversagen maßgebend.

Das Stahlversagensniveau ist weitestgehend von der Art des verwendeten Stahls abhängig. Die Art des Befestigungsmittels oder die Eigenschaften des verwendeten Injektionsmörtels beeinflussen den Widerstand gegen Stahlversagen nur geringfügig. Daher ist diese Versagensform nahezu produktunabhängig.

Dennoch verlangt das Regelwerk des TR 020 [1] die Prüfung von Stahlversagenswerten für jeden neuen Verbundmörtel. Andernfalls können die im TR 020 angegebenen charakteristischen Feuerwiderstandswerte für Kohlenstoffstahl oder Edelstahl herangezogen werden, vgl. Tabelle 3-1 und Tabelle 3-2 aus Kapitel 3.1.2.

Vergleicht man diese Werte mit den Stahlversagenswerten die in Brandversuchen ermittelt wurden, liegen die Tabellenwerte stark auf der konservativen Seite.

Zum weiteren Vergleich sind im Folgenden Auszüge aus Eurocode 3 Teil 1-2 [6] zur Reduzierung der Stahlzugfestigkeit unter Brandbeanspruchung gegeben. Der Tragfähigkeitsverlust von Kohlenstoffstahl bei extremen Temperaturen wird wie in Tabelle 6-1 beschrieben festgelegt. Anhang D dieser Norm gibt Abminderungsfaktoren für den Tragfähigkeitsverlust von Schrauben auf Zug bei erhöhten Temperaturen an, vgl. Tabelle 6-2. Beide Angaben sind allerdings unabhängig vom Ankerstangendurchmesser, obwohl eine höhere Stahlzugfestigkeit für große Ankerdurchmesser aufgrund geringerer Kerntemperaturen zur vermuten ist.

	Abminderungsfaktoren bei Temperatur θ_a relativ zu dem Wert f_y oder E_a bei 20 °C				
Stahl- temperatur θ_a	Abminderungsfaktor (relativ zu f_y) für die effektive Fließgrenze $k_{y,0} = f_{y,0} / f_y$	Abminderungsfaktor (relativ zu f_y) für die Proportionalitätsgrenze $k_{p,0} = f_{p,0} / f_y$	Abminderungsfaktor (relativ zu E_a) für die Steigung im elastischen Bereich $k_{E,0} = E_{a,0} / E_a$		
20 °C	1,000	1,000	1,000		
100 °C	1,000	1,000	1,000		
200 °C	1,000	0,807	0,900		
300 °C	1,000	0,613	0,800		
400 °C	1,000	0,420	0,700		
500 °C	0,780	0,360	0,600		
600 °C	0,470	0,180	0,310		
700 °C	0,230	0,075	0,130		
800 °C	0,110	0,050	0,090		
900 °C	0,060	0,0375	0,0675		
1 000 °C	0,040	0,0250	0,0450		
1 100 °C	0,020	0,0125	0,0225		
1 200 °C	0,000	0,0000	0,0000		
ANMERKUNG Zwischenwerte dürfen linear interpoliert werden.					

Tabelle 6-1: Ab	minderungsfaktorer	n für Kohlenstoffstahl	unter erhöhten	Temperaturen

Tabelle 6-2: Abminderungsfaktoren für Schrauben auf Zug unter erhöhten Temperaturen

Temperatur	Abminderungsfaktor für	Abminderungsfaktor für
$ heta_{a}$	Schrauben AC K _{b,0} (AC	Schweißnähte AC> K _{w,0} (AC
	(Zug und Schub)	
20	1,000	1,000
100	0,968	1,000
150	0,952	1,000
200	0,935	1,000
300	0,903	1,000
400	0,775	0,876
500	0,550	0,627
600	0,220	0,378
700	0,100	0,130
800	0,067	0,074
900	0,033	0,018
1 000	0,000	0,000

Bereits in der Dissertation von Reick [5] wurde erkannt, dass die Geometrie des Anbauteils erheblichen Einfluss auf die Temperaturverteilung am Dübel, und somit auch auf die Stahlversagenslast hat. Aufgrund dessen ist die Geometrie des Anbauteils in der Richtlinie zur Beurteilung von Befestigungen im Brandfall (TR 020) festgelegt, vgl. Kapitel 3.1.2.

In Brandversuchen können im Allgemeinen zwei Arten des Stahlversagens festgestellt werden. Zum einen das **Querschnittsversagen (Abriss)**, bei dem ein Stahlversagen durch Überschreitung der temperaturabhängigen Zugtragfähigkeit im klassischen Sinn eintritt. Zum anderen das **Versagen der Mutter** bzw. das **"Abkrempeln" des Gewindes (Abkrempeln)** das heißt, der Gewindegang wird so stark erhitzt, dass die Mutter über die Gewindestange gezogen wird. Beide Versagensarten sind in Abbildung 6-1 dargestellt.

Abbildung 6-1: Arten des Stahlversagens

Abbildung 6-2 zeigt den in Reick [5] durchgeführten Vergleich zwischen den Versagensformen Abreißen und Abkrempeln. Dort konnte kein Wechsel der Versagensarten bei einer bestimmten Stahlspannung oder Versagenszeit festgestellt werden. Aufgrund der geringen Größe der Datenbasis und der eng beieinander liegenden Trendlinien wurden die beiden Versagensarbeiten in [5] gemeinsam ausgewertet.

Abbildung 6-2: Vergleich der Versagensarten Abreißen und Abkrempeln [5]

Zur Vereinheitlichung der Feuerwiderstandswerte für das Stahlversagen von Gewindestangen, wurde die Idee einer Datenbank für Stahlversagenswerte fortgesetzt. Aufgrund der Vereinheitlichung der Anbauteilgeometrie mit der Einführung des TR 020 konnte eine neue Datenbasis zusammengetragen werden. Ausgewertet wurden Daten mit und ohne Luftspalt zwischen Anbauteil und Beton. In Abbildung 6-3 sind nun die Ergebnisse der Versagensarten Mutterversagen ("Abkrempeln") und Gewindeabriss aus der Datenbasis von neun Brandberichten [interne Literaturquellen], in denen durchgehend Anbauteile nach TR 020 verwendet wurden, ausgewertet.

Abbildung 6-3: Vergleich der Versagensarten Abreißen und Abkrempeln aus eigener Datenbank

Die Ergebnisse zeigen, dass auch hier beide Versagensarten bei allen Versagenszeiten auftraten. Jedoch ist eine eindeutige Tendenz vom Auftreten eines Gewindeabrisses für kleine Stahlspannungen und höheren Versagenszeiten sowie dem Eintreten von Mutterversagen für große Stahlspannungen und kurze Branddauern festzustellen. Betrachtet man beide Versagensarten einzeln ergibt die Auswertung des Querschnittsversagens kleinere Feuerwiderstände für kurze Brandbeanspruchungen, für größere Brandbeanspruchungen nähern sich die beiden Trendlinien einander an. Die Auswertung der Ergebnisse mit Mutterversagen führt zur gleichen Trendlinie wie die gemeinsame Auswertung aller Daten. Da für niedrige Feuerwiderstandszeiten meist Mutterversagen eintritt werden im Folgenden beide Versagensarten gemeinsam ausgewertet auch wenn es sich formal um zwei Grundgesamtheiten handelt.

Da für Verbunddübel in der Regel handelsübliche Gewindestangen verwendet werden, liegt es nahe die Feuerwiderstandswerte gegenüber Stahlversagen zu vereinheitlichen. Dazu wurde eine Datenbank mit Ergebnissen aus Brandversuchen von mehrerer Versuchsberichten verschiedener Produkte angelegt. Die Versuche wurden in unterschiedlichen Prüfinstituten durchgeführt. Abbildung 6-3 zeigt alle Ergebnisse dieser Datenbank unabhängig vom Ankerdurchmesser. In allen Versuchen wurden Gewindestangen aus Kohlenstoffstahl verwendet. Die genaue Stahlgüte

ist nicht in jedem der Berichte angegeben, es wird davon ausgegangen dass es sich um Gewindestangen der Güte 5.8 handelt. Alle Einzelwerte der Datenbank sind in Anhang A aufgelistet.

Im Folgenden wurden die Versuchsergebnisse aus der Datenbank getrennt nach Dübeldurchmesser ausgewertet. Dabei wurde zunächst eine Auswertung nach TR 020 durchgeführt, die genaue Vorgehensweise ist in Kapitel 3.1.2 beschrieben. Die Darstellungen Abbildung 6-4 bis Abbildung 6-9 enthalten neben den Einzelwerten der Versuchsergebnisse die Graphen zur Auswertung nach TR 020 (σ_{s1} = Trendlinie der Datenpunkte; σ_{s2} = verschobene Trendlinie durch den untersten Datenpunkt; σ_{s3} = Sekante durch σ_{s2} (60 min) und σ_{s2} (90 min)). Außerdem wurde eine statistische Auswertung der Versuchsergebnisse vorgenommen. Es wurde nach Gleichung (6.3) σ_{s4} als ein 95%-fraktil Wert bei einem Vertrauensniveau von 75% ermittelt. Für die Streuung wurde ein Mindestwert von 15% angenommen. Analog zur Auswertung nach TR020 wurde der Feuerwiderstandswert nach 30 min σ_{s5} berechnet. Die Streuung und die Standardabweichung der Versuchsergebnisse um die Trendlinie werden mit den Gleichungen (6.1) und (6.2) bestimmt.

$$c_{\nu} = \sqrt{\frac{1}{n_{test} - 1} \sum_{i=1}^{n_{test}} (\frac{\sigma_{test}}{\sigma_{s,1}} - 1)^2}$$
(6.1)

$$s_{v} = \sqrt{\frac{1}{n_{test}} \sum_{i=1}^{n_{test}} (\sigma_{test} - \sigma_{s,1})^{2}}$$
(6.2)

$$\sigma_{s4} = \sigma_{s1} \cdot (1 - k \cdot c_v) \tag{6.3}$$

Die Feuerwiderstandswerte für 30 min, 60 min, 90 min und 120 min die sich aus der Auswertung nach TR020 und bezogen auf den Mittelwert der Versuchsergebnisse ergeben sind in den Tabellen Tabelle 6-3 bis Tabelle 6-8 aufgelistet.

Abbildung 6-4: Auswertung der Versuchsergebnisse für M6 Gewindestangen

Tabelle 6-3: Auswertung	der Versuchsergebnisse für l	M6 Gewindestangen
J	5	J

s _v =	11,37							
c _v =		56,31%						
Berechnung	nach TR020 bezogen auf MW $\sigma_{s4} = \sigma_{s1}^{*}(1 - k^{*}cv)$							
M6	σ _{Rk,s,fi()}	N _{Rks,fi}	σ _{Rk,s,fi()}	N _{Rks,fi}	σ _{Rk,s,fi()}	N _{Rks,fi}		
	[N/mm²]	[kN]	[N/mm²]	[k N]	[N/mm²]	[kN]		
R30	14,84	0,30	44,35	0,89	0,00	0,00		
R60	12,05	0,24	26,13	0,53	0,00	0,00		
R90	9,25	0,19	20,06	0,40	0,00	0,00		
R120	7,85	0,16	17,02	0,34	0,00	0,00		

Abbildung 6-5: Auswertung der Versuchsergebnisse für M8 Gewindestangen

Tabelle 6-4: Auswertur	g der Versuchse	rgebnisse für M8	Gewindestangen
	0	0	0

s _v =	9,12					
c _v =		28,82%				
Berechnung	nach TR020 bezogen auf MW $\sigma_{s4} = \sigma_{s1}^{*}(1 - k^{*}cv)$					
M8	σ _{Rk,s,fi()}	N _{Rks,fi}	σ _{Rk,s,fi()}	N _{Rks,fi}	σ _{Rk,s,fi()}	N _{Rks,fi}
	[N/m m ²]	[kN]	[N/mm²]	[k N]	[N/mm²]	[kN]
R30	22,08	0,81	58,38	2,14	19,52	0,71
R60	17,48	0,64	32,64	1,19	15,45	0,57
R90	12,89	0,47	24,06	0,88	11,39	0,42
R120	10,59	0,39	19,77	0,72	9,36	0,34

Abbildung 6-6: Auswertung der Versuchsergebnisse für M10 Gewindestangen

Tabelle 6-5: Auswertung de	r Versuchseraebnisse für	M10 Gewindestangen
J	J	J

s _v =	10,90					
c _v =		36,81%				
Berechnung	nach TR020 bezogen auf MW $\sigma_{s4} = \sigma_{s1}^{*}(1 - k^{*}cv)$					
M10	σ _{Rk,s,fi()}	N _{Rks,fi}	σ _{Rk,s,fi()}	N _{Rks,fi}	σ _{Rk,s,fi()}	N _{Rks,fi}
	[N/mm²]	[kN]	[N/mm²]	[kN]	[N/mm²]	[kN]
R30	20,33	1,18	71,73	4,16	14,04	0,81
R60	15,49	0,90	37,03	2,15	10,70	0,62
R90	10,65	0,62	25,46	1,48	7,36	0,43
R120	8,23	0,48	19,67	1,14	5,68	0,33

Abbildung 6-7: Auswertung der Versuchsergebnisse für M12 Gewindestangen

s _v =	7,05					
c _v =			20,3	19%		
Berechnung	nach	nach TR020 bezogen auf MW $\sigma_{s4} = \sigma_{s1}^{*}(1 - k^{*}cv)$				
M12	σ _{Rk,s,fi()}	N _{Rks,fi}	σ _{Rk,s,fi()}	N _{Rks,fi}	σ _{Rk,s,fi()}	N _{Rks,fi}
	[N/mm²]	[kN]	[N/mm²]	[k N]	[N/mm²]	[kN]
R30	36,28	3,06	81,93	6,91	34,24	2,89
R60	27,17	2,29	40,85	3,44	25,65	2,16
R90	18,06	1,52	27,16	2,29	17,05	1,44
R120	13,51	1,14	20,31	1,71	12,75	1,08

Abbildung 6-8: Auswertung der Versuchsergebnisse für M16 Gewindestangen

Tabelle 6-7: A	Auswertuna der	Versuchseraebnisse fü	r M16 Gewindestangen
		J	<u> </u>

s _v =	8,53					
c _v =			23,4	19%		
Berechnung	nach TR020 bezogen auf MW $\sigma_{s4} = \sigma_{s1} * (1 - k*cv)$					
M16	σ _{Rk,s,fi()}	N _{Rks,fi}	σ _{Rk,s,fi()}	N _{Rks,fi}	σ _{Rk,s,fi()}	N _{Rks,fi}
	[N/mm²]	[kN]	[N/mm²]	[kN]	[N/mm²]	[kN]
R30	30,71	4,82	68,25	10,72	27,89	4,38
R60	25,35	3,98	41,74	6,55	23,02	3,61
R90	19,98	3,14	32,91	5,17	18,15	2,85
R120	17,30	2,72	28,49	4,47	15,71	2,47

Abbildung 6-9: Auswertung der Versuchsergebnisse für M20 Gewindestangen

Tabelle 6-8: Auswertung	der Versuchseraebnisse für I	M20 Gewindestangen
J	5	J

s _v =	5,08					
c _v =		11,99%				
Berechnung	nach TR020 bezogen auf MW $\sigma_{s4} = \sigma_{s1}^{*}(1 - k^{*}cv)$					
M20	σ _{Rk,s,fi()}	N _{Rks,fi}	σ _{Rk,s,fi()}	N _{Rks,fi}	σ _{Rk,s,fi()}	N _{Rks,fi}
	[N/mm²]	[kN]	[N/mm²]	[kN]	[N/mm²]	[kN]
R30	57,00	13,97	101,17	24,79	44,55	10,91
R60	42,63	10,44	50,30	12,32	33,32	8,16
R90	28,26	6,92	33,34	8,17	22,08	5,41
R120	21,07	5,16	24,86	6,09	16,47	4,03

Betrachtet man die einzelnen Auswertungen kann beobachtet werden, dass die resultierenden aufnehmbaren Spannungen nach TR020 für die kleineren Größen (M6 und M8) aufgrund einer größeren Streuung der Ergebnisse deutlich geringer sind. Auch bei der statistischen Auswertung führt die große Streuung der Versuchsergebnisse einzelner Ankergrößen teilweise sehr geringen Feuerwiderstandswerten.

In Abbildung 6-10 und Tabelle 6-11 sind die Ergebnisse der Auswertung der Datenbank mit den Angaben aus TR020 und DIN EN 1993-1-2 (EC3) verglichen. Für die Umrechnung der Abminderungsfaktoren nach EC3 auf Stahlspannungen vgl. Tabelle 6-9, wurde für die Fließgrenze des Kohlenstoffstahls ein Wert von $f_{y,b}$ = 400 N/mm² und eine Zugfestigkeit von $f_{u,b}$ = 500 N/mm² angenommen (entspricht Schraubenfestigkeit 5.8). Dabei wurde beispielhaft die Auswertung nach 60 min Branddauer herangezogen, die Auswertungen für 30 min, 90 min und 120 min zeigen den gleichen Trend.

ETK			reduction fac	tor DIN EN 1993-1	-2 Tabelle 3.1
time temperature		lowerlimit	upper limit	interpolation	
	[min]	[°C]	[-]	[-]	[-]
	30	841,8	0,06	0,11	0,089
	60	945,3	0,04	0,06	0,051
	90	1006,0	0,02	0,04	0,039
	120	1049,0	0,02	0,04	0,030

Tabelle 6-9: Umrechnung des Abminderungsfaktors nach EC 3 Tab. 3.1 [6] auf die Temperaturen nach ETK

Tabelle 6-10: Umrechnung	des Abminderungsfaktors	nach EC 3 Tab. D.1	[6] auf die	Temperaturen nach ETK
	5		L 1 1	1

E	ТК	reduction factor DIN EN 1993-1-2 Tabelle D.1						
time	temperature	lowerlimit	upper limit	interpolation				
[min]	[°C]	[-]	[-]	[-]				
30	841,8	0,033	0,067	0,047				
60	945,3	0	0,033	0,015				
90	1006,0	0	0	0,000				
120	1049,0	0	0	0,000				

Es wird deutlich, dass die Angaben in TR020 (vereinfachtes Auswerteverfahren) für alle Ankergrößen die niedrigsten Ergebnisse liefern. Vergleicht man dies mit dem Mittelwert der Datengrundlage wurde in den Versuchen im Mittel eine zwei- bis dreifache Spannungen erreicht, der Trend über den Ankerdurchmesser spiegeln die Versuchsergebnisse aber ebenso dar. Die in Eurocode 3 angegebenen Abminderungsfaktoren sind Durchmesser unabhängig und liegen für die mittleren Dübelgrößen etwa zwischen den Versuchsergebnissen und den Angaben in TR020. Durch die über den Ankerdurchmesser stark unterschiedlich streuenden Ergebnisse liefert die Auswertung der Datenbank nach TR020 einen sprunghaften Verlauf, auch hier liegen alle Ergebnisse deutlich über den Angaben des vereinfachten Verfahrens nach TR020.

	σ _{s,fi} [N/mm²]																							
	TR020			DIN EN 1993-1-2 Tabelle 3.1				DIN EN 1993-1-2 Tabelle D.1			Auswertung d. Datenbank m. Streuband			Auswertung d. Datenbank nach TR020			Auswertung d. Datenbank anhand MW							
	30	60	90	120	30	60	90	120	30	60	90	120	30	60	90	120	30	60	90	120	30	60	90	120
M6	10	9	7	5	36	20	16	12	21	7	0	0	0	0	0	0	15	12	9	8	44	26	20	17
M8	10	9	7	5	36	20	16	12	21	7	0	0	20	15	11	9	22	18	13	11	54	30	22	19
M10	15	13	10	8	36	20	16	12	21	7	0	0	14	11	7	6	20	16	11	8	72	37	26	20
M12	20	15	13	10	36	20	16	12	21	7	0	0	34	26	17	13	37	27	17	12	86	41	26	18
M16	20	15	13	10	36	20	16	12	21	7	0	0	28	23	18	16	26	23	19	17	62	41	34	31
M20	20	15	13	10	36	20	16	12	21	7	0	0	45	33	22	16	57	43	28	21	101	50	33	25

Tabelle 6-11: Vergleich der Auswerteverfahren und den Angaben nach TR020 und EC3

Abbildung 6-10: Vergleich der Auswerteverfahren und den Angaben aus TR020 und EC3 nach 60 min Branddauer

Die zuvor angeführten Überlegungen haben das Ziel den Feuerwiderstand gegenüber Stahlversagen von Kohlenstoffstahl für alle Produkte zu vereinheitlichen. Die Auswertungen zeigen dass eine Vereinheitlichung auf einem höheren Niveau als der bisherigen Werte nach TR020 sinnvoll ist. Aus den Ergebnissen der Datenbasis kann eine gemeinsame Trendlinie abgeleitet werden. Es wird aber auch deutlich, dass die sehr großen Streuungen bei der Bewertung berücksichtigt werden müssen.

Folgende Faktoren können zu Abweichungen der Stahlversagenswerte zwischen unterschiedlichen Brandberichten/Prüfinstituten bzw. Produkten führen:

• **Versuchsaufbau:** Trotz den recht genauen Regelungen zur Durchführung von Brandversuchen, unterscheiden sich die Versuchsaufbauten in jedem Prüfinstitut. Die einheitliche Festlegung der Geometrie des Anbauteils ist dabei zwar hilfreich, aber auch

die Temperatur- und Strahlungsverhältnisse sowie die Strömungsverhältnisse im Brandraum können einen Einfluss auf die Temperaturen am Befestigungsmittel haben.

• Energieableitung in den Beton: Je nach Einbindetiefe in den Beton, sowie den Werkstoffparametern und dem Feuchtegehalt des Betons kann die Temperatur im Stahl unterschiedlich gut in den Beton weitergeleitet werden.

Beide aufgeführten Faktoren können zwar zu Abweichungen führen, stehen aber nach bisherigem Kenntnisstand einer Vereinheitlichung von Feuerwiderstandswerten für das Stahlversagen von handelsüblichen Gewindestangen nicht entgegen.

Tabelle 6-12 zeigt einen Vorschlag für die Anpassung der Feuerwiderstandswerte gegenüber Stahlversagen von Kohlenstoffstahl. Die Werte basieren auf dem linearen Trend der Ergebnisse der Auswertung nach TR020. Aufgrund mangelnder Versuchsergebnisse für Ankerdurchmesser größer M12 werden die Zugfestigkeiten mit M12 gleichgesetzt. Da sowohl die Annahme von geringeren Temperaturen im Querschnitt großer Ankerstangendurchmesser als auch der aus den Versuchsergebnissen hervorgehende Trend über die Ankerdurchmesser, größere Stahlzugfestigkeiten im Brandfall für größere Ankerdurchmesser vermuten lassen, liegt diese Annahme auf der sicheren Seite.

thread diameter	anchorage depth	characteristic tension strength of an unprotected anchor made of C-steel in case of fire exposure in the time up to:								
	h _{ef}	σ _{Rks,fi} [N/mm²]								
[mm]	[mm]	30 min (R15 to R30)	60 min (45 and R60)	90 min (R90)	120 min (R120)					
M6	≥ 30	14	12	9	7					
M8	≥ 30	20	15	11	9					
M10	≥ 40	25	19	14	11					
M12 and greater	≥ 50	30	23	16	13					

Tabelle 6-12: Angepasste Feuerwiderstände gegenüber Stahlversagen für C-Stahl

7. Verbundversagen von Verbunddübeln im Brandfall

Die Injektionsmörtel die zur Befestigung von Ankerstangen verwendet werden sind in der Regel nicht für die sehr hohen Temperaturen wie sie während eines Brandes auftreten ausgelegt. Mit steigender Temperatur verschlechtern sich die Verbundeigenschaften der Mörtel und damit sinkt der Feuerwiderstand. Vor allem für kurze Einbindetiefen (d.h. sehr hohe Temperaturen entlang der Verankerungstiefe) wird Verbundversagen zur maßgebenden Versagensart.

Das im Folgenden beschriebene Bemessungsverfahren soll es ermöglichen mit Hilfe weniger Brandversuche auf die Widerstandswerte der großen Anzahl an Kombinationsmöglichkeiten von Ankerdurchmesser und Einbindetiefe eines Produkts rückführen zu können. Des Weiteren ermöglicht das Verfahren die Übertragbarkeit der Ergebnisse auf andere Brandkurven (Außenbrandkurve, Tunnelbrandkurve, individuelle Brandkurven). Dabei wird eine Kombination aus Temperaturdaten aus FEM-Simulationen und Ergebnissen des Brandersatzversuches (vgl. 3.1.4) nach EAD 330087-00-0601 [3] verwendet.

Tabelle 7-1: Vorgehen zur Berechnung von Feuerwiderstandswerten

Im ersten Schritt der Bemessung müssen für die Simulation der Temperaturen entlang der Ankerstange die Randbedingungen festgelegt werden. Es wird dabei sowohl der Ankerdurchmesser sowie die Verankerungstiefe festgelegt, als auch der Zeitpunkt in der Temperatur-Zeit-Kurve nach [2] an dem der Feurwiderstand berechnet werden soll, vgl. Abbildung

7-1. Mit diesen Eingabewerten wird anschließend eine FEM-Simulation durchgeführt. Diese liefert für jeden Punkt der Einbindetiefe die zugehörige Temperatur zum zuvor gewählten Zeitpunkt des Einheitsbrandes, siehe Abbildung 7-2. Des Weiteren wird die Beziehung von Verbundspannung und Temperatur, die nach [3] ermittelt werden kann herangezogen, siehe Abbildung 7-3. Anschließend wird jedem Abschnitt der Verankerungstiefe die, der dort vorherrschenden Temperatur zugehörige Verbundspannung zugeordnet, siehe Abbildung 7-4. Bildet man das Integral der Verbundspannung über die Verankerungstiefe erhält man die Feuerwiderstandslast zur zuvor definierten Zeit.

Im Folgenden werden nun die einzelnen Berechnungsschritte und Berechnungsgrundlagen genauer untersucht sowie Vergleichsrechnungen zu vorliegenden Brandergebnissen durchgeführt.

7.1. Temperaturverteilung über die Verankerungstiefe mithilfe einer FE-Simulation mit ANSYS

Der erste Berechnungsschritt sieht eine thermisch-transiente Analyse zur Ermittlung der Temperaturverteilung entlang der Verankerungstiefe bei einem bestimmten Brandszenario vor.

Die Ausbreitung von Wärme in Baustoffen kann, wenn die physikalischen Eigenschaften des Werkstoffs bekannt sind, sehr gut simuliert werden. Unter Zuhilfenahme von thermischen Simulationen kann somit der Einfluss verschiedenster Parameter auf die Temperaturverteilung entlang eines Verbunddübels untersucht werden.

7.1.1. Eingabeparameter und Randbedingungen

Die numerischen 3D-Simulationen wurden mit der Software ANSYS Mechanical durchgeführt. In diesem Forschungsbericht wurde die Einheitstemperaturzeitkurve (ETK) [2] als Brandszenario für weitere Untersuchungen ausgewählt. Die im Folgenden beschriebenen Simulationen können für beliebige Temperatur-Zeit-Kurven durchgeführt werden. Die Probekörper der im Folgenden beschriebenen Simulation wurden mit der thermischen Belastung der ETK belastet [2]. Die Materialeigenschaften von Stahl und Beton wurden den Eurocodes [6, 7] entnommen. Die Abbildung 7-5 bis Abbildung 7-8 zeigen die Temperaturabhängigkeit der physikalischen Größen spezifische Wärmekapazität und Wärmeleitfähigkeit von Beton und Stahl. Für die Dichte von Stahl wurde ein Wert von 7900 kg/m³ angenommen, die Dichte von Beton liegt zwischen 2000 kg/m³ und 2600 kg/m³.

Abbildung 7-5: spezifische Wärmekapazität von Beton in Abhängigkeit des Feuchtegehalts [7]

Abbildung 7-6: Wärmeleitfähigkeit von Beton [7]

Abbildung 7-7: spezifische Wärmekapazität [6]

Abbildung 7-8: Wärmeleitfähigkeit von Kohlenstoffstahl [6]

Für die Simulation wurde ein rotationssymmetrischer Versuchskörper gewählt. Dabei wurde der Durchmesser des Betonzylinders so gewählt, dass die Ränder keinen Einfluss auf die Temperatur am Dübel haben, aus dieser Bedingung ergab sich ein Maß von 170 mm.

Abbildung 7-9 zeigt die Randbedingungen die in der Simulation verwendet wurden. Die Unterseite des Zylinders wurde dabei dem Feuer ausgesetzt, die Oberseite befindet sich frei an der Luft. Die Mantelflächen des Zylinders wurden als adiabatisch definiert, das heißt hier findet kein Wärmeaustausch statt. Die Größen zur Definition der Randbedingungen wurden nach Eurocode verwendet. Für den Wärmeübergangskoeffizient für die der Luft ausgesetzten Modellseite wurde 25 W/mK angenommen, für die dem Beton angrenzenden Flächen wurden 4 W/mK angenommen. Der Emissionsgrad von 0,7 wurde für Stahl und Beton definiert, um die Strahlungswirkung zu berücksichtigen.

Die Ergebnisse der thermischen Simulation wurden mit Ergebnissen einer anderen Forschungseinrichtung verglichen. Zum Vergleich wurden von beiden Instituten die Temperaturwerte entlang der Verankerungstiefe eines einbetonierten Dübels mit einem Durchmessen von 16 mm auf einer Einbindetiefe von 120 mm ermittelt. Die Betonplatte hatte dabei eine Dicke von 174 mm. Abbildung 7-10 zeigt den Vergleich der Ergebnisse bei einer Brandbeanspruchung von 90 min. Der Grund für die Unterschiede der Temperaturwerte bis 20 mm Tiefe ist unbekannt und wird weiter untersucht. Es könnten Unterschiede in den Materialeigenschaften oder den Randbedingungen sein.

Abbildung 7-10: Vergleich der Simulationsergebnisse beider Institute

Die Ergebnisse der Temperatursimulationen für unterschiedliche Dübeldurchmesser und Verankerungstiefen sind in Anhang graphisch dargestellt.

7.1.2. Parameterstudie

Die Temperaturverteilung entlang der Verankerungstiefe hängt von unterschiedlichen Faktoren ab, folgende Parameter werden im Rahmen dieser Parameterstudie untersucht;

- Verankerungstiefe
- Ankerdurchmesser
- Feuchte des Betons
- Mörtelschicht
- Art des Anbauteils

In den im Folgenden beschriebenen Simulationen wird die Ankerstange vereinfacht als zylindrisch angenommen ohne die Gewindegänge an der Oberfläche zu berücksichtigen.

In Abbildung 7-11 und Abbildung 7-12 sind die Eingabeparameter und die Ergebnisse der Untersuchung der Einbindetiefe dargestellt. Verwendet wurde für alle vier Simulationen ein Ankerdurchmesser von 12 mm bei den Einbindetiefen 60 mm (A), 90 mm (B), 120 mm (C) und 150 mm (D). Die in Abbildung 7-12 angegeben Temperaturdaten beziehen sich immer auf das Ende der Einbindetiefe. In allen Simulationen wurden die Mörtelschicht und das Anbauteil vernachlässigt.

Abbildung 7-11: Untersuchung unterschiedlicher Einbindetiefen mit Temperaturmessung am tiefsten Punkt
Verbunddübel im Brandfall –DIBT

Schlussbericht

Abbildung 7-12: Ergebnisse der Untersuchung der Einbindetiefe mit Messpunkten am tiefsten Punkt

Wie zu erwarten sind die Temperaturen am Ende der Ankerstange niedriger, je tiefer die Ankerstange eingebunden ist.

Anschließend werden die Versuchskörper A, B, C und D wie in der vorherigen Simulation beibehalten. Die Temperaturen werden aber nun für alle Körper bei der Einbindetiefe bei 60 mm ausgegeben.

Abbildung 7-13: Untersuchung des Einflusses der Verankerungstiefe mit Temperaturmessung bei 60 mm

Verbunddübel im Brandfall –DIBT

Schlussbericht

Abbildung 7-14: Ergebnisse des Einflusses der Verankerungstiefe mit Temperaturmessung bei 60 mm

Abbildung 7-14 zeigt, dass bei einem Dübel mit größerer Verankerungstiefe die Temperaturen identischer Tiefe deutlich geringer sind. Dies kann dadurch begründet werden, dass durch die bessere Wärmeleitfähigkeit von Stahl die Temperaturen schlechter an den umgebenden Beton abgegeben werden können. Zum Ende der Verankerungstiefe entsteht so ein Wärmestau. Aus diesem Grund ist der Effekt umso größer, je näher die Temperaturen am Ende der Verankerung gemessen werden.

Anschließend wurde der Einfluss des Ankerdurchmessers auf die Temperaturverteilung am Dübel untersucht. Abbildung 7-15 zeigt die vier Modelle für diese Untersuchung. Untersucht wurden die Durchmesser 6 mm (A), 12 mm (B), 18 mm (C) und 24 mm (D). Alle Dübel weisen eine Verankerungstiefe von 120 mm auf.

Abbildung 7-15: Untersuchung des Einflusses des Ankerdurchmessers

Zeit [min]

Abbildung 7-16: Ergebnisse der Untersuchung des Einflusses des Ankerdurchmessers

Wie in Abbildung 7-16 gezeigt wird, liefert die Simulation an der Betonoberfläche des kleinsten Durchmessers höhere Temperaturen als für den größten Dübeldurchmesser. Ein Grund könnte sein, dass der kleinste Dübeldurchmesser den kleinsten Umfang und die geringste Fläche hat. Dieser kleine Dübeldurchmesser hat weniger Kapazität die Wärme abzuleiten, als ein Dübel mit Ende großem Durchmesser. Am der Verankerungstiefe kann ein deutlicher Temperaturunterschied zwischen den unterschiedlichen Ankerdurchmessern erkannt werden. Die Temperaturen sind für den kleinsten Durchmesser deutlich geringer als für den größten, der Temperaturunterschied zwischen 10 mm Ankerdurchmesser und 24 mm beträgt in diesem Beispiel circa 200 °C. Grund hierfür ist, dass eine Befestigung mit großem Durchmesser mehr Querschnittsfläche hat die sich im Brandraum erhitzt, eine größere Menge an Wärme kann also in den Beton eingeleitet werden. Da die Querschnittszunahme bei größerem Durchmesser größer ist als die des Umfangs, wächst die Mantelfläche also die Fläche über die Wärme wieder in den Beton abgegeben werden kann nicht proportional mit, folglich entstehen an einem Dübel mit großem Durchmesser höhere Temperaturen. Die thermische Leitfähigkeit von Beton ist gering und somit verhindert er die Wärmeausbreitung entlang der Verankerungstiefe an der Stahl-Beton Schnittstelle. Dies ist der Grund weshalb die Temperatur in der Tiefe für große Dübeldurchmesser höher ist und für kleine Dübeldurchmesser kleiner.

In den vorangegangenen Simulationen wurde zur einfacheren Simulation das System Verbunddübel auf eine zylindrische Ankerstange aus Stahl, eingebettet in Beton reduziert. Die die Ankerstange umgebende Mörtelschicht wurde vernachlässigt. Im Folgenden soll nun der mögliche Einfluss dieser Schicht auf die Temperaturen entlang der Ankerstange untersucht werden.

Da die physikalischen Eigenschaften von Verbundmörteln produktabhängig sind und zunächst keine ausreichenden Informationen vorlagen wurde im ersten Schritt eine 1 mm Dicke Mörtelschicht mit besonders guten Dämmeigenschaften untersucht.

Abbildung 7-17: Untersuchung des Einflusses der Mörtelschicht, extrem dämmende Mörtelschicht

In Abbildung 7-17 ist in Model A ein Zylinder dargestellt in den eine Ankerstange ohne Mörtelschicht eingebettet ist, im Model B wurde eine Mörtelschicht berücksichtigt. Es wurden die Temperaruten an den Kontaktflächen zwischen Stahl und Mörtel (SM) sowie Mörtel und Beton (MC) gemessen. In Model A wurden analog die Temperaturen an der Kontaktfläche Stahl zu Beton (SC) und die davon 1 mm entfernte Stelle im Beton (CC) ausgelesen. Für die Mörtelschicht wurde für diese Simulation eine Wärmeleitfähigkeit von 0,1 W/mK gewählt, dies entspricht in etwa der Wärmeleitfähigkeit von Polystyrol.

Abbildung 7-18: Ergebnisse der Untersuchung des Einflusses der Mörtelschicht, extrem dämmende Mörtelschicht

Abbildung 7-18 zeigt die Ergebnisse dieser Simulation. Hätte ein Mörtel eine solch niedrige Wärmeleitfähigkeit, hätte dies sehr große Auswirkungen auf die Temperaturen an der

Ankerstange. Der simulierte Temperaturunterschied am Stahl beträgt circa 100 °C. Je näher die physikalischen Eigenschaften denen von Beton sind, desto geringer wird der Einfluss.

Mit den gleichen Modellen (A + B) wurde anschließend eine Simulation mit realen Mörteleigenschaften durchgeführt. Die Daten dazu wurden von einem Hersteller zur Verfügung gestellt. Die Ergebnisse sind in Abbildung 7-19 dargestellt. Hier kann kein signifikanter Unterschied in den Temperaturen festgestellt werden.

Abbildung 7-19: Ergebnisse der Untersuchung des Einflusses der Mörtelschicht, reale Mörteleigenschaften

Da die Feuchte des Betons Einfluss auf die spezifische Wärmekapazität hat und diese zwischen verschiedenen Realtests stark unterschiedlich sein kann, wurde der Einfluss dieser variable im Rahmen der Parameterstudie untersucht. Es wurden dazu die Temperaturen entlang der Verankerungstiefe unter Annahme eines Probekörpers mit 0% Feuchte mit denen bei 1,5% Feuchte und 3% Feuchte verglichen. Abbildung 7-20 zeigt die Eingabemodelle für die Simulation.

Schlussbericht

Abbildung 7-20: Untersuchung des Einflusses der Betonfeuchte

Abbildung 7-21: Ergebnisse der Untersuchung der Betonfeuchte

Die Resultate zeigen, dass je höher die Betonfeuchte im Probekörper ist, desto niedriger sind die Temperaturen am Dübel. Dies erklärt sich dadurch, dass mit steigender Betonfeuchte die Erhöhung der spezifischen Wärmekapazität zwischen 100°°C und 200°°C zunimmt und somit die Wärme an der Ankerstange schneller in den Beton übertragen werden können. Die maximale Differenz die in dieser Simulation festgestellt werden konnte beträgt 20°C.

Im Rahmen der Möglichkeiten die diese FE-Simulation bietet, können allerdings nicht alle Effekte der Betonfeuchte berücksichtigt werden. Beispielsweise kann das durch die hohen Temperaturen freiwerdende Wasser und dessen Transport in einer Simulation nicht dargestellt werden. Es ist denkbar, dass dieser Effekt noch einen viel größeren Einfluss auf die Temperatur an der

Ankerstange haben kann als die Änderungen der physikalischen Eigenschaften von feuchtem Beton an sich.

Im Rahmen der Forschungsarbeit von Reick [5] wurde bereits festgestellt, dass Art und Größe des Anbauteils zur Einleitung der Kräfte in den Dübel großen Einfluss auf die Temperaturen an der Ankerstange haben. Daher wurde im Folgenden auch dieser Parameter anhand drei verschiedener Modelle untersucht. Wie in Abbildung 7-22 gezeigt, wurde die Temperaturverteilung eines Dübels ohne Anbauteils (C) mit der eines Dübels mit einem plattenförmigen Anbauteils ohne Luftspalt (B) und dem eines Dübels mit O-förmigem Anbauteil mit Luftspalt (A) in Anlehnung an TR020 [1] verglichen.

Abbildung 7-22: Untersuchung des Einflusses des Anbauteils

Abbildung 7-23: Ergebnisse der Untersuchung des Einflusses des Anbauteils

In Abbildung 7-23 ist das Ergebnis der Simulation ohne Anbauteil (C) mit einer gestrichelten Linie, mit Stahlplatte (B) mit einer Strick-Punkt-Linie und mit Anbauteil nach TR020 (A) mit einer

durchgezogenen Linie dargestellt. Es wird deutlich, dass ein Anbauteil immer einen Teil der Hitze abschirmt und somit zu geringeren Temperaturen am Dübel führt. Die Verwendung einer Stahlplatte ohne Luftspalt hat vor allem in den ersten 60 min des Brandes und in den Oberflächennahen Regionen einen großen Einfluss auf die Temperaturen. Bei der Verwendung eines Anbauteils mit Luftspalt ändert sich der Verlauf der Temperaturerhöhung nur gering, im Betrag jedoch sind die Temperaturen an allen Stellen der Verankerungstiefe durch die größere Abschirmung des massigen Bauteils teilweise deutlich geringer.

7.1.3. Vergleich von Temperaturdaten aus Brandversuchen und Simulation

Die in der thermischen Simulation gewonnen Ergebnisse sollen anschließend durch Versuchsergebnisse in realen Bränden bestätigt werden.

Im Rahmen von Brandversuchen wurden im Wesentlichen folgende Parameter untersucht;

- Ankerdurchmesser
- Verankerungstiefe
- Stahlgüte
- Einbetonierte und eingeklebte Dübel

Für die Durchführung von Brandversuchen an Befestigungsmitteln steht der TU Kaiserslautern ein Kombi-Brandofen mit den Abmessungen 3,00 m x 3,00 m x 4,00 m zur Verfügung. Alle im nachfolgenden beschriebenen Versuche wurden nach den Vorgaben des Technical Report TR020 [1] und der DIN EN 1363-1 [2] durchgeführt.

Die Temperaturmessung erfolgte über Thermoelemente (vgl. Abbildung 7-24) des Typs K sowie Mantelthermoelemente (keine Abbildung) des Typs K.

Abbildung 7-24: Thermoelemente zur Temperaturmessung

Es wurden bisher zwei Arten des Versuchsaufbaus realisiert. Im ersten Fall wird der Brandraum auf eine kleine Brandkammer mit den Abmessungen 1,00 m x 1,50 m x 1,50 m und nur einem Brenner reduziert, vgl. Abbildung 7-25. Die Belastung der Dübel erfolgt bei diesem Aufbau in horizontaler Richtung, mit Totlasten oder hydraulischen Pressen.

Abbildung 7-25: Versuchsaufbau mit reduziertem Brandraum

Abbildung 7-26: Versuchsaufbau mit vier Brennern

In Abbildung 7-26 ist ein weiterer Versuchsaufbau dargestellt. In diesem Fall werden vier der zur Verfügung stehenden 14 Brenner verwendet. Die Dübel werden dabei vertikal mit Totlasten oder hydraulischen Zylindern belastet, wobei sich die Belastungseinrichtung unter dem Brandraum befindet.

Nachfolgende Abbildung 7-27 zeigt beispielhaft einen Vergleich von Simulation und Versuchsergebnis. Es wird deutlich, dass Simulationsergebnis und Versuchsergebnis in sehr guter Übereinstimmung stehen.

Abbildung 7-27: Vergleich von Simulation und Realbranddaten für einen Gewindestab M16 mit 120 mm Setztiefe

Die nachfolgenden Diagramme Abbildung 7-28 bis Abbildung 7-31 zeigen beispielhaft die Übereinstimmung der Simulationsergebnisse mit Temperaturmessungen aus Realbränden.

Weitere Vergleiche finden sich in Anhang B.

Abbildung 7-28: Vergleich der Versuchsergebnisse Nr. 402 / 410 / 506 und Simulationsergebnissen nach 30 min

Abbildung 7-29: Vergleich der Versuchsergebnisse Nr. 402 / 410 / 506 und Simulationsergebnissen nach 60 min

Abbildung 7-31: Vergleich der Versuchsergebnisse Nr. 402 / 410 / 506 und Simulationsergebnissen nach 120 min

Die grafischen Darstellungen (Anhang B) zeigen, dass die Simulation mit den in Realität auftretenden Temperaturen in sehr guter Übereinstimmung steht. Bei genauerer Betrachtung fällt jedoch auf, dass in Einzelfällen Abweichungen bis zu 200°C auftraten. Vor allem für die größeren Durchmesser scheint die Simulation den Durchmessereffekt zu überschätzen.

Diese Annahme wird durch nachfolgende Darstellung (Abbildung 7-32) bestätigt. Es ist ein Trend abfallender Trend von kleinen zu großen Durchmessern zu erkennen.

Die Abbildung zeigt, dass das Verhältnis zwischen Simulationsergebnis und Testergebnis in allen Ergebnissen zwischen 1,8 und 0,6 liegt. Je länger der Brand andauernd desto besser ist die Übereinstimmung zwischen Versuch und Simulation. So liegt der Faktor zwischen Simulation und Test für die Ergebnisse nach 120 min Branddauer zwischen 1,25 und 0,6.

Abbildung 7-32: Verhältnis von Simulations- und Testergebnis über den Ankerdurchmesser

In Abbildung 7-33 ist überprüft ob die Verankerungstiefe einen Einfluss auf die Simulationsgenauigkeit hat. Der Mittelwert des Verhältnisses zwischen Simulations- und Versuchsergebnis liegt bei 1,0, ein Trend über die Verankerungstiefe ist nicht zu erkennen.

Abbildung 7-33: Verhältnis von Simulations- und Testergebnis über die Verankerungstiefe

7.2. Verbundspannungs-Temperaturbeziehung

Für die Bewertung von Mörteleigenschaften bei hohen Temperaturen liegt ein Europäisches Bewertungsdokument (EAD) für nachträglich eingemörtelte Bewehrungsstäbe vor. Die Versuche wurden während der Forschung zur Untersuchung der Einflussparameter der Verbundspannung-Temperatur Beziehung genutzt. Abbildung 7-34 zeigt den Versuchsaufbau.

Abbildung 7-34: Versuchsaufbau des Heizmanschettenversuchs nach TR020 [1]

Gemäß EAD werden Bewehrungsstäbe mit einem Durchmesser von 12 mm in einen zylindrischen Betonkörper eingebaut. Neben einer mechanischen Dauerlast mit der der Dübel belastet wird, wird eine thermische Last auf den lateralen Seiten des Zylinders aufgebracht. Die Umsetzung der thermischen Last, entweder mit einem elektrischen oder einem Gasofen ist nicht definiert. Eine minimale Aufheizgeschwindigkeit von 5°C/min ist angegeben. In [7] wurde der Einfluss der Aufheizgeschwindigkeit untersucht und es wurde kein maßgeblicher Einfluss festgestellt. Auf dieser Grundlage wurde ein elektrischer Ofen mit einer Aufheizungsrate von 10°C/min in den Versuchen verwendet, wie im Folgenden beschrieben wird. Nach der Richtlinie müssen mindestens zwanzig Laststufen getestet werden. In Abbildung 7-35 ist ein Beispiel für die Ergebnisse von Feuerwiderstandsprüfungen gegeben.

Abbildung 7-35: Beispiel für die Ergebnisse nach einer Feuerwiderstandsprüfung nach EAD

Die in die Grafik eingetragenen Temperaturen sind definiert nach einem gewichteten Mittelwert von TE1 und TE2 (1/3 höherer Wert und 2/3 tieferer Wert). Für die Bestätigung dieser Berechnung wurde ein Test mit zwölf Thermoelementen entlang der Einbindetiefe durchgeführt.

Abbildung 7-36 zeigt den Vergleich der Temperaturen die während des Tests (gepunktete Linie) gemessen wurden und der Temperaturen aus der numerischen Simulation (durchgezogene Linie) zu verschiedenen Zeitpunkten. Es wird deutlich dass die Realität und die Berechnung gut übereinstimmen.

Abbildung 7-36: Vergleich der simulierten und reellen Temperaturen entlang des Dübels

Der Durchschnitt der Temperaturen über die Einbindetiefe entspricht für den untersuchten Bereich dem gewichteten Mittel aus der Temperatur an der Messstelle TE1 und TE2.

Um die Ergebnisse dieses Versuchs zur Umrechnung auf Brandversuche heranzuziehen sollten die Versuchsergebnisse möglichst unabhängig von Dübeldurchmesser und Dübelgeometrie sein.

Zuerst wurde der Einfluss von verschiedenen Oberflächenstrukturen getestet. Als Referenzprüfung wurde ein Bewehrungsstab mit zwei Reihen diagonalen Rippen mit zusätzlich längslaufenden Rippen (bezogene Rippenfläche = 0,076) genutzt. 20 Laststufen wurden getestet mit drei zusätzlichen Versuchen bei einer Laststufe von 0,5 N/mm². Diese wurden mit einem Bewehrungsstab mit anderer Rippengeometrie (vier Rippenreihen / bezogene Rippenfläche = 0,082) und einer Gewindestange verglichen. Mit dem zweiten Bewehrungsstab wurden sechs Laststufen und ein Test bei 0,5 N/mm², mit der Gewindestange zehn Laststufen sowie drei Versuche bei 0.5 N/mm² durchgeführt. Außerdem wurde eine Vergleichsserie mit einem GEWI-Stab sowie mit Bewehrungsstäben anderer Durchmesser durchgeführt. Alle Versuche wurden mit dem gleichen Mörtel, der gleichen Einbindetiefe und dem gleichen Reinigungsverfahren durchgeführt. Die Diagramme Abbildung 7-37 bis Abbildung 7-40 zeigen die Versuchsergebnisse sowie die dazugehörigen Näherungskurven.

Schlussbericht

Abbildung 7-37: Vergleich zweier Bewehrungsstäbe Mörtel (A)

Abbildung 7-38: Vergleich zwischen Bewehrungsstab und GEWI (Mörtel A)

Schlussbericht Verbunddübel im Brandfall –DIBT

Abbildung 7-39: Vergleich zwischen Bewehrungsstab und Gewindestange (Mörtel A)

Abbildung 7-40: Vergleich des Ankerdurchmessers (Mörtel A)

Betrachtet man die Ergebnisse in Abbildung 7-37 wird deutlich, dass Bewehrungsstäbe mit unterschiedlicher Geometrie zu anderen Ergebnissen führen können. Es fällt auf, dass vor allem für den Bereich niedriger Temperaturen nahe Raumtemperatur der Unterschied umso größer ist.

Neben unterschiedlichen Bewehrungsstäben wurden GEWI-Stäbe verwendet, die Ergebnisse mit diesem Stab führen zu keinen signifikanten Unterschieden, vgl. Abbildung 7-38.

Vergleicht man die Ergebnisse von rebar1 mit den Ergebnissen bei Verwendung eines Gewindestabs wird deutlich, dass die Versuche mit Gewindestangen bei fast jeder Laststufe eine höhere Temperatur erreicht haben. Dies umfasst hohe Laststufen wie auch niedrige Laststufen mit einer 50°C höheren Versagenstemperatur für Gewindestäbe.

In Abbildung 7-40 ist der Vergleich zwischen Bewehrungsstäben unterschiedlichen Durchmessers dargestellt. Aus diesen Ergebnissen geht hervor, dass vor allem für größerer Durchmesser deutlich geringere Ergebnisse Versagenstemperaturen erreicht wurden.

Abbildung 7-41: Vergleich des Einflusses von Ankerdurchmesser und Ankerstangentyp (Mörtel B, Epoxidharzbasis)

Abbildung 7-41 zeigt die Ergebnisse der gleichen Prüfung für ein anderes Mörtelsystem. Neben dem Bewehrungsstab mit dem Durchmesser 12 mm wie es die Leitlinie vorschreibt wurden auch hier Gewindestäbe verschiedener Durchmesser verwendet. Im Ergebnisdiagramm können aber keine signifikanten Unterschiede zwischen den verschiedenen Ankertypen festgestellt werden.

An einem weiteren Injektionssystem wurde der Einfluss der Feuchte des Versuchskörpers untersucht. Um einen Einfluss der Betonfeuchte auf das Versuchsergebnis zu vermeiden, wurden Versuchskörper aus Stahl verwendet. In Abbildung 7-42 sind die Versuchskörper dargestellt. Abbildung 7-43 zeigt die Ergebnisse gegenübergestellt mit den Versuchsergebnissen, welche in einem nach den Anforderungen aus EAD 330087-00-0601 [3] getrockneten stahlummantelten Betonzylinder durchgeführt wurden. In beiden Fällen wurde handelsüblicher Bewehrungsstahl (d = 12 mm) mit einer Setztiefe von 120 mm verwendet.

Abbildung 7-42: Versuche in Versuchskörpern aus Stahl

Abbildung 7-43: Vergleich des Einflusses der Versuchskörper Feuchte (Mörtel C)

In den im Rahmen dieses Forschungsprojekts durchgeführten Versuchen konnten beim Vergleich von Versuchskörpern aus Beton und Stahl keine Unterschiede in den Versuchsergebnissen festgestellt werden. Dies lässt vermuten, dass die Betonfeuchte für ausreichend getrocknete Versuchskörper (mindestens drei Monate bei Raumtemperatur gelagert oder bei 80 °C bis zur Massekonstanz getrocknet) keinen Einfluss auf das Versuchsergebnis hat. Allerdings ist anzumerken, dass dies im Rahmen dieses Forschungsprojekts nur Stichprobenartig und nicht

abschließend untersucht wurde. Um eine abschließende Aussage über den Einfluss der Betonfeuchte auf den in EAD 330087-00-0601 [3] beschriebenen Versuchsaufbau zu treffen, ist die Durchführung von Versuchen in feuchtem Beton sinnvoll.

7.3. Vergleichsrechnungen zu Brandversuchen

Im Folgenden wird die oben beschriebene Berechnung auf zwei Mörtelsysteme angewendet. Injektionssystem Mörtel B ist ein auf Epoxidharz basierender Mörtel, Mörtel C ist ein zementgebundenes Injektionssystem. Mit beiden Mörtelsystemen wurden parallel Versuche durchgeführt, mit denen die Berechnungsergebnisse verglichen werden.

Für die Temperaturen entlang des Dübels wurde die in Kapitel 7.1 mithilfe von FE-Simulationen ermittelte Datenbasis zugrunde gelegt. Für die Simulation wurden Gewindestangen aus Kohlenstoffstahl inklusive Anbauteil nach TR020 berücksichtigt.

7.3.1. Anwendung des Berechnungsverfahrens auf Mörtel B

Die Verbundspannungs-Temperatur-Beziehung die dem Berechnungsverfahren zu Grunde liegt basiert auf den in Tabelle 7-2 und Abbildung 7-44 dargestellten Versuchsergebnissen. Die Versuche wurden nach EAD 330087-00-0601 [3] durchgeführt.

anchorage depth	diameter	TC1	TC2	TC Oven	Bond temp.	Time	Load	Bond stress
[mm]	[mm]	[°C]	[°C]	[°C]	[°C]	[min]	[kN]	[N/mm²]
		53	53	330	53	24	45,2	10
		19	51	391	30	24	52,0	11,5
		94	51	313	65	24	49,8	11
		73	59	324	64	21	41,2	9,1
		72	67	278	69	25	38,0	8,4
		62	74	304	66	20	47,5	10,5
		65	66	319	65	28	34,4	7,6
		89	66	342	74	2	30,8	6,8
		86	65	340	72	30	27,1	6
120	12	74	74	346	74	28	23,1	5,1
120	12	89	68	334	75	29	19,9	4,4
		285	345	587	305	120	2,7	0,6
		276	323	569	292	119	5,4	1,2
		102	105	381	103	37	15,8	3,5
		149	157	485	152	76	9,0	2
		111	108	474	109	56	12,7	2,8
		253	336	568	281	132	2,7	0,6
		256	331	573	281	125	2,7	0,6
		276	309	561	287	119	5,4	1,2
		238	321	579	266	110	6,3	1,4
200	20	280	330	559	297	130	17,6	1,4
200	20	264	314	548	281	124	25,1	2
160	16	317	312	576	314	122	7,2	0,9
100	10	281	275	544	277	120	12,9	1,6
80	Q	42	52	288	45	26	7,8	3,9
	0	113	120	432	115	48	6,0	3
100	10	138	124	443	129	62	7,5	2,4
100	10	267	261	559	263	99	5,7	1,8

 Tabelle 7-2: Ergebnisse der Heizmanschettenversuche mit rebar aus, Intern [1]

Auf Grundlage der Versuchsergebnisse mit Bewehrungsstäben wurde die in Abbildung 7-44 und Tabelle 7-3 beschriebene Verbundspannungs-Temperatur-Beziehung für die Berechnung zu Grunde gelegt. Dabei wurde eine maximale Verbundspannung von 10 N/mm² angenommen. Die Verbundspannung nimmt anschließend mit steigender Temperatur ab, bis sie bei 300 °C mit 0 angenommen wird. Um die Verbundspannungs-Temperatur-Beziehung möglichst genau zu berücksichtigen, wurde diese mit Hilfe einer abschnittsweisen, linearen Funktion angenähert. Dieses Verfahren kann grundsätzlich als Alternative zur Darstellung der Verbundspannungs-Temperatur-Beziehung mit Hilfe von Regressionsfunktionen angewendet werden. Besonders bei sprunghaften Verläufen oder horizontal verlaufenden Bereichen bietet sich das Verfahren der abschnittsweise linearen Funktion an.

Abbildung 7-44: Graphische Darstellung der Ergebnisse der Heizmanschettenversuche und Wahl einer Eingabekurve

Tabelle 7-3: Eingabekurve für Berechnungsverfahren

Temperature [°C]	21	60	75	150	260	350
Bond strength [N/mm²]	10	10	4	2	2	0

In den folgenden Abbildung 7-45 - Abbildung 7-51 sind die Ergebnisse der oben beschriebenen Berechnung mit den Versuchsergebnissen (Intern [2]) verglichen.

Abbildung 7-45: Vergleich von Berechnungsverfahren und Versuchsergebnissen für M10-50

Abbildung 7-46: Vergleich von Berechnungsverfahren und Versuchsergebnissen für M10-60

Abbildung 7-47: Vergleich von Berechnungsverfahren und Versuchsergebnissen für M12-55

Abbildung 7-48: Vergleich von Berechnungsverfahren und Versuchsergebnissen für M16-70

Abbildung 7-49: Vergleich von Berechnungsverfahren und Versuchsergebnissen für M16-80

Schlussbericht Verbunddübel im Brandfall –DIBT

Abbildung 7-50: Vergleich von Berechnungsverfahren und Versuchsergebnissen für M24-95

Abbildung 7-51: Vergleich von Berechnungsverfahren und Versuchsergebnissen für M30-120

Aus dem Vergleich von Berechnungsverfahren und Versuchsergebnissen geht hervor, dass die Berechnungsergebnisse vergleichbare Ergebnisse wie die Versuche liefern. Es wird aber auch deutlich, dass die Realbrandversuche stark streuen und somit in Teilen deutlich bessere, teilweise aber schlechtere Ergebnisse liefern.

7.3.2. Anwendung des Berechnungsverfahrens auf Mörtel C

Die Verbundspannungs-Temperatur-Beziehung die dem Berechnungsverfahren zu Grunde liegt basiert auf den in Tabelle 7-4 und Abbildung 7-52 dargestellten Versuchsergebnissen. Die Versuche wurden nach EAD 330087-00-0601 [3] durchgeführt.

anchorage depth	diameter	TC1	TC2	Bond temp.	Load	Bond stress
[mm]	[mm]	[°C]	[°C]	[°C]	[kN]	[N/mm²]
		340	432	370	2,1	0,5
		328	403	353	2,1	0,5
		342	417	367	2,1	0,5
		304	375	328	4,4	1,0
		278	322	293	5,1	1,2
		237	298	258	6,0	1,4
		218	271	235	7,6	1,8
		222	257	234	9,7	2,2
		209	255	224	11,5	2,6
		181	223	195	13,1	3,0
		184	220	196	15,2	3,5
120	12	191	217	200	17,4	4,0
		159	188	168	19,4	4,5
		165	227	186	21,1	5,0
		150	193	164	23,6	5,6
		120	169	136	26,8	6,2
		138	133	134	28,7	6,8
		143	137	139	31,7	7,5
		100	121	107	36,4	8,5
		98	115	103	37,9	9,0
		100	107	102	43,9	10,0
		95	122	104	46,4	11,0
		92	105	96	51,0	12,0

Tabelle 7-4: Versuchsergebnisse aus Heizmanschettenversuchen mit rebar aus, Intern [3]

Abbildung 7-52: Ergebnisse der Heizmanschettenversuche und Eingabekurve für Berechnungsverfahren

Taballa 7 E.	Lingshakung	für Darachnunge	vorfohron
Tabelle 7-5.	Епдарекці ve	iur berechnungs	venamen

Temperature T [°C]	21	100	$\tau(T) = 32 5 e^{-0.01T}$	360	400
Bond strength τ [N/mm²]	12	12	1(1) = 32,38	0,5	0

Auf Grundlage der Versuchsergebnisse mit Bewehrungsstäben wurde die in Abbildung 7-52 und Tabelle 7-5 beschriebene Verbundspannungs-Temperatur-Beziehung für die Berechnung zu Grunde gelegt. Dabei wurde eine maximale Verbundspannung von 12 N/mm² angenommen. Die Verbundspannung nimmt anschließend mit steigender Temperatur mit der angegebenen Funktion ab, bis sie bei 400 °C zu 0 angenommen wird.

Tabelle 7-6 zeigt die Ergebnisse aus Brandversuchen (Quelle: Intern [4]).

Anchor diameter	Anchorage depth	Load	Failure time	Failure type	
[mm]	[mm]	[kN]	[min]	[-]	
		1	66	pullout	
10	60	1,5	60	pullout	
10		0,5	185	no failure	
	85	0,5	180	no failure	
		2	56		
		1,5	81	pullout	
	70	1	81	punout	
12	/0	1,8	72		
		0,5	185	no failure	
		0,75	93	pullout	
	90	1	158	pullout	
		3	73	pullout	
	80	1,5	82		
16		1	101		
	100	1	180	no failure	
		2,5	118	pullout	
20	90	3,5	75	pullout	
20	110	2,5	137	punout	
24		6,5	52		
	96	5,5	72	pullout	
24		2	106		
	120	2,5	142	pullout	

Tabelle 7-6: Ergebnisse aus Brandversuchen

In Tabelle 7-7 sind die berechneten Feuerwiderstände für die Versagensart Auszug angegeben. Teilweise ist der Feuerwiderstand gegen Auszugversagen so groß, dass Stahlversagen maßgebend wird. Die in Tabelle 7-8 angegebenen Werte wurden auf Grundlage der in der Stahldatenbank gesammelten Erfahrungswerte in Kapitel 6 ermittelt. Angegeben sind hier die Feuerwiderstände die sich nach Auswertung in Anlehnung an TR020 bezogen auf die Mittelwerte der Datenbasis ergeben.

Tabelle 7-7: Feuerwiderstandswerte nach Berechnungsverfahren

Anchor		Fire resist	ance [kN]	
AIICHUI	30	60	90	120
M10-60	3,94	0,56	0,00	0,00
M10-85	12,90	3,74	1,34	0,48
M12-70	6,26	1,12	0,10	0,00
M12-90	15,02	4,39	1,59	0,57
M16-80	8,69	1,62	0,15	0,00
M16-100	19,68	5,82	2,16	0,77
M20-90	12,05	2,39	0,31	0,00
M20-110	25,64	7,65	2,92	1,07
M24- <mark>95</mark>	13,49	2,44	0,15	0,00
M24-120	32,90	9,93	3,88	1,48

Anchor	Fire resistance [kN]					
Anchor	30	60	90	120		
M8	1,98	1,11	0,82	0,68		
M10	4,15	2,16	1,49	1,16		
M12	7,27	3,46	2,19	1,56		
M16	9,78	6,45	5,35	4,79		

Tabelle 7-8: Feuerwiderstandswerte für C-Stahl (aus Kapitel 6)

Abbildung 7-53: Vergleich von Berechnungsverfahren und Versuchsergebnissen für M10-60

Abbildung 7-54: Vergleich von Berechnungsverfahren und Versuchsergebnissen für M10-85

Abbildung 7-55: Vergleich von Berechnungsverfahren und Versuchsergebnissen für M12-70

Abbildung 7-56: Vergleich von Berechnungsverfahren und Versuchsergebnissen für M12-90

Schlussbericht Verbunddübel im Brandfall –DIBT

Abbildung 7-57: Vergleich von Berechnungsverfahren und Versuchsergebnissen für M16-80

Abbildung 7-58: Vergleich von Berechnungsverfahren und Versuchsergebnissen für M16-100

Schlussbericht Verbunddübel im Brandfall –DIBT

Abbildung 7-59: Vergleich von Berechnungsverfahren und Versuchsergebnissen für M20-90

Abbildung 7-60: Vergleich von Berechnungsverfahren und Versuchsergebnissen für M20-110

Abbildung 7-61: Vergleich von Berechnungsverfahren und Versuchsergebnissen für M24-96

Abbildung 7-62: Vergleich von Berechnungsverfahren und Versuchsergebnissen für M24-120

7.3.3. Einflussfaktoren auf Berechnungsverfahren

Im diesem Kapitel werden mögliche Gründe für ein Abweichen der Berechnung vom realen Brandversuch erläutert.

Die erste Eingangsgröße für die Berechnung des Feuerwiderstands nach einer bestimmten Branddauer ist der Temperaturverlauf über die Verankerungstiefe. Mögliche Einflussfaktoren sind bereits in Kapitel 7.1 beschrieben. Darunter zählen unter anderem:

- Ankerdurchmesser
- Einbindetiefe
- Betonfeuchte
- Anbauteilgeometrie
- Stahlart bzw. –güte

Ankerdurchmesser und Einbindetiefe sind bereits in der Simulation berücksichtigt. Auch die Einflussfaktoren Stahlgüte und Anbauteilgeometrie wurden in der der Berechnung zu Grunde liegenden Simulation bereits berücksichtigt. Die unterschiedliche Betonfeuchte zwischen den Versuchen wird bisher nicht berücksichtigt. Der Einfluss der Betonfeuchte ist zwar vorhanden, wird aber nach aktuellem Wissenstand nicht als ausschlaggebenden Einflussfaktor bewertet.

Anschließend geht die Verbundspannungs-Temperatur-Beziehung in die Berechnung mit ein. Die Einflussfaktoren

- Ankerdurchmesser
- Ankertyp (Bewehrungsstab, Gewindestange, ...)

Wurden bereits in Kapitel 7.2 untersucht. Ein Einfluss konnte nicht eindeutig ausgeschlossen werden. Ob sich diese eventuelle Abhängigkeit auch auf den Brandversuch überträgt kann nach aktuellem Wissensstand nicht bestätigt werden.

Weitere Einflüsse die sich aus der Art und Weise der Ermittlung der Verbundspannungs-Temperatur-Beziehung ergeben sind der Obere und Untere Grenzwert der Funktion. Der verwendete Ofen ermöglicht nur eine maximale Temperatur von 650 °C, außerdem muss die Belastung im vorhandenen Versuchsstand hydraulisch aufgebracht werden. Diese beiden Faktoren führen dazu, dass die zugehörige Versagenstemperatur für sehr kleine Verbundspannungen nicht bestimmt werden kann. Folglich wird die Verbundspannung ab einer gewissen Temperatur zu Null angenommen. Da auch die ggf. verkohlten Mörtelreste geringe Anteile an Last übertragen können wird ein bestimmter Anteil vernachlässigt.

Zur Bewertung dieses Einflusses auf das Ergebnis des Berechnungsverfahrens zeigt Abbildung 7-63 beispielhaft den Vergleich eines Ergebnisses aus Kapitel 7.3.2 mit einer Verlängerung der Verbundspannungs-Temperatur-Beziehung bis auf 500 °C anstelle von 400 °C.

Die Versuchsauswertung nach EAD 330087-00-0601 [3] sieht eine maximale Verbundspannung von 10 N/mm² vor. Viele Injektionssysteme weisen aber unter Raumtemperatur deutlich höhere Verbundspannungen auf. Abbildung 7-64 zeigt den Einfluss auf das Berechnungsergebnis, erweitert man die maximale Verbundspannung im Beispiel von 12 N/mm² auf 20 N/mm².

Abbildung 7-63: Einfluss der Veränderung der max. Temperatur

Abbildung 7-64: Einfluss der Veränderung der max. Verbundspannung

Wird in der Simulation der Temperaturen das Anbauteil nicht berücksichtigt, sind die Temperaturen entlang der Verankerungstiefe deutlich größer. Dies hat auch Auswirkungen auf die Berechnung. Abbildung 7-65 zeigt den Einfluss auf die Berechnung bei Berücksichtigung des Anbauteils in der Simulation.
Verbunddübel im Brandfall – DIBT M10-60 4,5 4,5 [N] 4,0 3,5 3,0 - calculation -0test results (pullout) ٥ 2,5 \diamond test results (no 2,0 failure) 1,5 - calculation without • 1,0 fixture 0,5 \diamond 0,0 0 30 60 90 120 150 180 210 Time [min]

Abbildung 7-65: Einfluss des Anbauteils

8. Einfluss von Rissen auf die Tragfähigkeit von Verbunddübeln im Brandfall

Für viele Anwendungen von Befestigungen ist die Bewertung in gerissenem Beton erforderlich. Welchen Einfluss eine Dübelposition im Riss auf den Feuerwiderstand von Injektionssystemen hat ist bisher unklar.

Die Durchführung von Brandversuchen in gerissenem Beton erfordert einen komplexeren Versuchsaufbau und wird bisher in den unterschiedlichen Prüfinstituten stark unterschiedlich gehandhabt. Welche Auswirkungen die Art der Erzeugung von Rissen hat und ob die Prüfung in gerissenem Beton kritischer ist als in ungerissenem Beton kann nach aktuellem Kenntnisstand im Rahmen dieser Forschungsarbeit nicht abschließend geklärt werden. Die folgenden Kapitel beschreiben den aktuellen Kenntnisstand.

8.1. Versuchsdurchführung von Brandversuchen in gerissenem Beton

Nach aktuellem Stand der Technik werden, auch für die Bewertung des Verbundversgens von Injektionssystemen, Brandversuche nach Kapitel 2.3.1.1 (steel failure) des TR020 [1], d.h. in ungerissenem Beton durchgeführt. Kapitel 2.3.1.2 (pull-out failure) beschreibt hingegen folgendes Vorgehen zur Bewertung des Feuerwiderstands in gerissenem Beton;

- Belastung des Betonbauteils bis Biegerisse auftreten und anschließende Entlastung
- Setzen der Dübel in Biegerisse
- Erneute Belastung (bis zu einer Stahlspannung von 270 N/mm² ± 20 N/mm², entspricht einer Rissbreite von ca. 0,1 mm bis 0,25 mm)
- Belastung des Dübels und Start der Brandbeanspruchung

Dabei ist der Bewehrungsgrad für die Probekörper vorgegeben. Das Anbauteil hat keinen Luftspalt zum Betonbauteil und wird zusätzlich gedämmt. Die Auswertung der Daten erfolgt analog zu Abschnitt 2.3.1.1.

In der Praxis werden die in ungerissenem Beton erzeugten Ergebnisse häufig Stichproben artig in gerissenem Beton bestätigt. Dabei werden neben Biegerissen auch durch Sprengkeile erzeugte Trennrisse verwendet. Die in Abbildung 8-1 und Abbildung 8-2 dargestellten Versuchsergebnisse wurden an Technischen Universität Kaiserslautern erzeugt. Für Mörteltyp B wurden vier Konfigurationen von Ankerdurchmesser, Einbindetiefe und Belastung die in ungerissenem Beton geprüft wurden mit je zwei Versuchsergebnissen im gerissenem Beton bei gleicher Konfiguration verglichen. Für Mörteltyp D wurden für zwei Konfigurationen je fünf Belastungen in ungerissenem Beton geprüft und mit vier/drei Lasten in gerissenem Beton verglichen.

Es wird deutlich, dass keine eindeutige Verschlechterung des Feuerwiderstands durch die Prüfung in gerissenem Beton festgestellt werden kann. Lediglich in drei der geprüften 15 Versuche erbrachten signifikant geringere Versagenszeiten als der im ungerissenen Beton durchgeführte Vergleichsversuch.

Abbildung 8-1: Vergleich von Versuchsergebnissen in gerissenem und ungerissenem Beton (Mörtel B)

Abbildung 8-2: Vergleich von Versuchsergebnissen in gerissenem und ungerissenem Beton (Mörtel D)

8.2. Rissverhalten im Brandfall

Um zu bewerten, ob die Prüfung in gerissenem oder ungerissenem Beton das kritischere Prüfverfahren darstellt sollte die Rissänderung während eines Brandes zunächst untersucht werden.

Es ist davon auszugehen, dass durch den großen Temperaturgradienten zwischen beflammter und unbeflammter Bauteilseite große Eigenspannungen innerhalb des Bauteils auftreten. Am unbeflammten Rand werden große Druckspannungen auftreten am beflammten Rand Zugspannungen. Diese werden zu einer Rissöffnung im für die Befestigung relevanten Bauteilbereich führen. Während eines Brandversuchs kann dies aber nicht beobachtet werden, da sich durch die Ausdehnung des Betons im randnahen Bereich die Risse verschließen. Wie sich die Rissbreite im Verlaufe eines Brandversuchs entwickeln kann versuchstechnisch also nicht bestimmt werden.

In der Dissertation von Reick [5, 5] wurde sich schon mit dieser Thematik beschäftigt. Er ermittelte durch Überlagerung der freien Temperaturausdehnung des Betons mit dem eben gebliebenen Querschnitt (Bernoulli-Hypothese) maximale Zugspannungen im Abstand von 4 cm bis 8 cm vom beflammten Bauteilrand. Die von ihm berechneten Dehnungsverteilungen ergäben eine Rissbreite von 1,5 mm! Es wird aber außerdem darauf hingewiesen, dass eine solche Rissbreite in Realität nie auftreten wird. Welche Umlagerungsprozesse genau während eines Brandes auftreten bleibt also weiterhin unklar.

9. Fazit / Zusammenfassung

In diesem Kapitel werden die Ergebnisse und Erkenntnisse des Forschungsprojekts zusammengefasst. Abschließend wird ein Vorschlag zur Prüfung und Bewertung von Verbunddübeln im Brandfall vorgestellt.

9.1. Thermische Analysen

Die Temperaturen entlang der Ankerstange können für den Brandfall mithilfe thermischer Simulationen ermittelt werden. Der Vergleich der Simulationsergebnisse mit Temperaturmessungen in Realbränden sowie mit Simulationsergebnissen anderer Institute liefert eine gute Übereinstimmung, vgl. Kapitel 7.1. Sodass das Temperaturprofil eines Ankers durch Simulationen mit ausreichender Genauigkeit bestimmt werden kann. Die anhand von Simulationen durchgeführte Parameterstudie ergab folgende Ergebnisse:

- Der Vergleich der Temperaturergebnisse an der Stahl-Beton Schnittstelle zeigt, dass mit Steigerung des Dübeldurchmessers die Temperatur steigt und mit Steigerung der Verankerungstiefe, die Temperatur abnimmt.
- Das Vorhandensein von Mörtel steigert die Temperatur an der Stahloberfläche, wenn der Mörtel im Vergleich zum Beton isolierende Eigenschaften hat.
- Das Vorhandensein von Feuchte bis 3% beeinflusst die Temperaturverteilung geringfügig. Die Verdampfungswirkung und der sich daraus ergebende Wassertransport kann zum aktuellen Zeitpunkt in den Simulationen nicht abgebildet werden.
- Die Art des Anbauteils hat erheblichen Einfluss auf die Temperaturverteilung und sollte daher immer in der Simulation modelliert werden.
- Die Ergebnisse der Temperatursimulationen wurden durch den Vergleich mit 2 anderen Simulationsprogramme und den Vergleich mit im Brand gemessenen Temperaturen verifiziert.

9.2. Feuerwiderstandsprüfungen nach EAD 330087-00-0601

Die Feuerwiderstandsprüfungen nach EAD 330087-00-0601 bieten eine gute Möglichkeit die Mörteleigenschaften bei erhöhten Temperaturen abzuschätzen. Die aus dem Versuch resultierende Verbundspannungs-Temperatur-Beziehung liefert eine Basis zur Berechnung der Feuerwiderstandstragfähigkeit von Verbunddübeln im Brandfall.

Die durchgeführte Parameterstudie ergab folgende Ergebnisse, vgl. Kapitel 7.2:

- Der Ankerdurchmesser kann abhängig von der Mörtelart einen Einfluss auf die Verbundspannungs-Temperatur-Beziehung haben.
- Die Restfeuchte des Betons (Vergleich zwischen getrockneten Betonkörpern und Stahlkörpern) hat keinen Einfluss auf das Ergebnis.
- Die Art der Ankerstange, (Gewindestange / Bewehrungsstab) hat vor allem für hohe Verbundspannungen bzw. Versagenstemperaturen nahe Raumtemperatur einen Einfluss auf die Verbundspannungs-Temperatur-Beziehung.

9.3. Berechnung des Feuerwiderstands von Verbunddübeln

Auf Grundlage der Ergebnisse aus der thermischen Simulation und Feuerwiderstandsprüfungen nach EAD 330087-00-0601 können Feuerwiderstandswerte für ein Verbunddübelsystem mit allen

Kombinationen aus Ankerdurchmesser und Verankerungstiefe bestimmt werden. Das Berechnungsverfahren bietet den Vorteil, dass Feuerwiderstandswerte für beliebige Brandkurven inklusive der Abkühlphasen ermittelt werden können. Der Vergleich mit Ergebnissen aus Realbränden zeigt, dass das Resultat der Kalkulation auf der sicheren Seite liegt, vgl. 7.3. Dies könnte folgende Gründe haben:

- Die Verbundspannungs-Temperatur-Beziehung die anhand des "fire tests" nach EAD 330087-00-0601 ermittelt wird, liefert für besonders hohe Temperaturen meist kein Ergebnis, sodass immer Teilen der Verankerungstiefe keine Verbundspannung zugeordnet werden kann, vgl. Kapitel 7.
- Die tatsächliche Verbundspannungsverteilung entlang des Dübels im Brandfall ist nicht bekannt.

9.4. Vorschlag zur Versuchsdurchführung und Auswerteverfahren

Das im Folgenden beschriebene Vorgehen richtet sich ausschließlich an Verbunddübel bestehend aus Gewindestangen oder Bewehrungsstäben und einem Verbundmörtel.

Anhand der im Rahmen des Forschungsprojekts gewonnenen Erkenntnisse wird folgendes Vorgehen für die Ermittlung des Feuerwiderstands von Verbunddübeln, basierend auf einer Kombination aus Versuchen und Berechnung, vorgeschlagen:

9.4.1. Vereinfachtes Bemessungsmodell

Weiterhin können die Feuerwiderstandswerte für Verbunddübel unter Zugbeanspruchung anhand des vereinfachten Bemessungsmodells nach TR020 Absatz 2.2. bestimmt werden. Dies gilt jedoch nur für die Versagensarten Stahlversagen und Betonausbruch. Der charakteristische Feuerwiderstand für Karbonstahl (C-Stahl) kann dabei mithilfe Tabelle 9-1 erfolgen. Der Feuerwiderstand gegenüber Verbundversagen muss experimentell bestätigt werden.

thread diameter	anchorage depth	characteristic te	ension strength of Lin case of fire ex	f an unprotected a	anchor made of
	h _{ef}	0.3100	σ _{Rk,s,fi} [l	N/mm²]	
[mm]	[mm]	30 min (R15 to R30)	60 min (45 and R60)	90 min (R90)	120 min (R120)
M6	≥ 30	14	12	9	7
M8	≥ 30	20	15	11	9
M10	≥ 40	25	19	14	11
M12 and greater	≥ 50	30	23	16	13

Tabelle 9-1: Angepasste	Feuerwiderstände	aeaenüber	Stahlversagen	für C-Stahl
Tabelle 3-1. Aligepassie	i cuci muci stanuc	gegenuber	Otariiversageri	iui 0-0tani

Die Ermittlung des Feuerwiderstands gegen Querlast kann weiterhin nach TR020 Absatz 2.2.2 erfolgen.

9.4.2. Experimentelle/Rechnerische Bestimmung des Feuerwiderstands

a. Feuerwiderstand gegenüber Stahlversagen

Der Widerstand gegenüber Stahlversagen, kann nach wie vor nach TR020 Abschnitt 2.3.1.1 bestimmt werden.

b. Feuerwiderstand gegenüber Betonausbruch

Der Feuerwiderstand gegenüber Betonausbruch kann nach dem vereinfachten Bemessungsverfahren bestimmt werden vgl. Kapitel 2.2.1.3 des TR020.

c. <u>Feuerwiderstand gegenüber Verbundversagen für feste Einbindetiefen</u>

Weiterhin kann die experimentelle Ermittlung des Feuerwiderstands nach TR020 Abschnitt 2.3. erfolgen. Da die Versuchsanordnung nach Abschnitt 2.3.1.2 Bild 2.5 die Temperaturen entlang der Verankerungstiefe deutlich verringern würde, muss der Versuchsaufbau nach Abschnitt 2.3.1.1 verwendet werden. Die Versuche sollen in gerissenem Beton durchgeführt werden.

d. Feuerwiderstand gegenüber Verbundversagen für flexible Verankerungstiefen

Zur Bestimmung des Feuerwiderstands gegenüber Verbundversagen von auf Zug belasteten Verbunddübeln soll eine Kombination aus Simulation und Brandversuch durchgeführt werden.

Folgendes Versuchsprogramm muss für ein Injektionssystem mit variabler Verankerungstiefe durchgeführt werden.

	Ziel der Versuche	Riss- breite	Min	imale \ Dü	Versuc ibelgrö	hsanza Be	hl je	Versuchsbeschreibung
	[-]	[mm]	S	i	m	i	I	[-]
1	Versuch zur Bestätigung der Temperaturdaten aus Simulationen	-	-	-	3	-	-	Dübel mit Thermolementen ohne Belastung
2	Versuche zur Bestätigung der Verbundspannungs-Temperatur- Bezieheung mit Gewindestangen	-	-	-	5	-	-	"fire test" nach EAD 330087-00-0601 mit Gewindestange
3	Optional: Versuche um höheren Temperaturbereich abzudecken, τ < 0,5 N/mm²	-	-	-	1	-	-	"fire test" nach EAD 330087-00-0601 mit Gewindestange
4	Optional: Versuche um obere Verbundspannungsgrenze zu erhöhen, τ > 10 N/mm²	-	-	-	1	-	-	"fire test" nach EAD 330087-00-0601 mit Gewindestange
5	Brandversuche zur Bestätigung der Berechnung	-	3	2	5	2	3	Brandversuch nach TR020 Abschnitt 2.3.1.1
6	Brandversuche in gerissenem Beton	0,3	3	-	5	-	-	Brandversuch nach TR020 Abschnitt 2.3.1.1 + Riss

Tabelle 9-2: Versuchsprogramm

<u>Zu Zeile 1:</u>

Zum Vergleich können durch thermische Simulation ermittelte Temperaturverläufe herangezogen werden. Das verwendete Anbauteil muss in der Simulation berücksichtigt werden. Grundsätzlich kann auf die Simulation des Mörtels verzichtet werden, wenn der Vergleichsversuch nach Zeile 1 die Simulationsdaten bestätigt. (D.h. ausgeschlossen werden kann, dass die Dämmeigenschaften des Mörtels so groß sind, dass sie die Temperaturen entlang des Dübels beeinflussen).

Die Vergleichsversuche nach Zeile 1 sollen die simulierten Temperaturdaten bestätigen. Es sollen drei Dübel mit mittlerem Ankerdurchmesser und minimaler Einbindetiefe verwendet werden, und mit Thermoelementen TC1 (10 mm), TC2 (0,5 * h_{ef}) und TC3 (h_{ef} – 10 mm) bestückt werden. Der Dübel soll anschließend nach Herstellerangaben gesetzt werden. Beim Vergleich der gemessenen Temperaturdaten mit den Simulationsergebnissen sollen folgende Bedingungen eingehalten sein:

- Der Temperaturverlauf über die Verankerungstiefe sowie die Temperaturentwicklung über die Zeit sollen einen ähnlichen Verlauf aufweisen
- Für jeden Einzelwert soll für das Verhältnis von Simulationsergebnis und Versuchsergebnis folgende Bedingung erfüllt sein

$$\frac{1}{1,5} < \frac{T_{sim}}{T_{test}} < 1,5$$

 Der Mittelwert der im Versuch ermittelten Temperaturen T_{test,m} soll kleiner als die simulierten Temperaturen T_{sim,m} + 10% an der gleichen Stelle zur selben Zeit sein

$$T_{test,m} < T_{sim,m} \cdot 1,1$$

• Es dürfen beliebig viele zusätzliche Versuche durchgeführt werden.

<u>Zu Zeile 2:</u>

Versuche nach Zeile 2 werden durchgeführt um die Übertragbarkeit der Verbundspannung-Temperatur-Beziehung aus "fire tests" nach EAD 330087-00-0601 auf Gewindestangen nachzuweisen. Es sollen fünf Versuche mit mittlerem Ankerdurchmesser nach Abschnitt 2.2.3 "resistance to fire" nach EAD 330087-00-0601 durchgeführt werden. Abweichend zur EAD sollen Gewindestangen verwendet werden. Die Bohrlöcher sollen mit dem maßgebenden Bohrverfahren erstellt werden und mit dem maßgebenden Reinigungsverfahren gereinigt werden. Die fünf ausgewählten Belastungen sollen so gewählt werden, dass Ergebnisse über den gesamten Temperaturbereich verteilt, zu erwarten sind. Für die Berechnung darf die Verbundspannungs-Temperatur-Beziehung aus "fire tests" nach EAD 330087-00-0601 herangezogen werden, wenn die Versuchsergebnisse folgende Bedingungen erfüllen:

- Die Einzelabweichung der Versuchsergebnisse soll 50 °C nicht überschreiten.
- Die aus den 5 neuen Versuchen gewonnene Trendlinie darf in keinem Punkt mehr als 20°C von der Trendlinie nach EAD abweichen. Bei größerer Abweichung muss die Temperatur- Verbundspannungsbeziehung für Gewindestangen neu ermittelt werden. D.h. es müssen 15 weitere Versuche durchgeführt werden, die die Vorgaben nach EAD 330087-00-0601 zur minimalen Temperatur- und Verbundspannungsdifferenz einhalten.

Um den Geltungsbereich der Verbundspannungs-Temperatur-Beziehung über die Grenzen nach EAD 330087-00-0601 (maximale Verbundspannung = 10 N/mm²; minimale Verbundspannung = 0,5 N/mm²) zu erweitern, können zusätzliche Versuche mit

- 10 N/mm² < $T_{sust} \le T_{Rk,0}$ (Zeile 4) und/oder
- 0,2 N/mm² < T_{sust} ≤ 0,5 N/mm² (<u>Zeile 3</u>)

durchgeführt werden.

<u>Zu Zeile 5:</u>

Mithilfe der Temperaturen entlang der Verankerungstiefe aus der FE-Simulation und der Verbundspannungs-Temperatur-Beziehung aus den Zeilen 2-5 kann der Feuerwiderstand gegenüber Verbundversagen für alle Kombinationen aus Ankerdurchmesser und Verankerungstiefe und alle Brandkurven berechnet werden. Zur Bestätigung des Ergebnisses sollen Brandversuche nach TR020 Abschnitt 2.3.1.1 durchgeführt werden. Folgende Gesichtspunkte sollen bei der Wahl der Vergleichsversuche berücksichtigt werden.

- Es sollen mit jedem Ankerdurchmesser mindestens 2 Versuche durchgeführt werden (Für die Wahl der Belastung sollen die Berechnungsergebnisse nach 60 min und 90 min herangezogen werden)
- Die kleinste Verankerungstiefe muss geprüft werden
- Mit der mittleren Größe sollen mindestens fünf Versuche durchgeführt werden. Die Versagenszeiten sollen für vier Versuche über 60 min liegen, einer der Versuche soll eine Versagenszeit kleiner 60 min erzielen

Die Versuchsergebnisse nach Zeile 5 müssen größer als die Ergebnisse der Berechnung sein. Für den Vergleich dürfen die Berechnungsergebnisse zwischen 30 min, 60 min, 90 min und 120 min linear interpoliert werden. Ist dies nicht erfüllt muss die Berechnung der Feuerwiderstandswerte entsprechend angepasst werden.

Für die Verwendung weiterer Ankerstangentypen (z. B. unterschiedliche Materialien) und anderer Bohrverfahren sind folgende Gesichtspunkte zu beachten:

- Für Edelstahl Ankerstangen können ohne die Durchführung von Brandversuchen die gleichen Lasten wie für C-Stahl verwendet werden
- Die Ergebnisse der Berechnung sind nicht direkt auf andere Verankerungselemente oder Bohrverfahren übertragbar.

Zu Zeile 6:

Zur Beurteilung des Einflusses von Rissen sollen Brandversuche an im Riss installierten Dübeln durchgeführt werden. Die Rissbreite soll vor Versuchsstart 0,3 mm betragen. Es sollen direkte Vergleichsversuche mit Versuchen nach Zeile 5 mit dem kleinsten und mittleren Verankerungsdurchmesser durchgeführt werden. Die Belastungen der mittleren Verankerungsgröße in gerissenem und ungerissenem Beton sollen jeweils über die Versagenszeit aufgetragen werden und eine passende Potenzfunktion in der Form,

$$\sigma_{b1} = c_1 + \frac{c_2}{t}$$

gewählt werden. Der minimale Quotient der beiden Funktionen im Bereich t = 30 min bis t = 120 min ergibt den Abminderungsfaktor γ_{cr} , vgl. Abbildung 9-1 für gerissenen Beton. Der Abminderungsfaktor muss bis weitere Erkenntnisse vorliegen zwischen 0 und 0,75 liegen. Die Versuchsergebnisse der mit dem kleinsten Durchmesser durchgeführten Versuche müssen den Abminderungsfaktor mindestens bestätigen, d.h. der Quotient aus Versuchsergebnis und Berechnungsergebnis ist für alle Versuche größer 1.

Abbildung 9-1: Beispiel zur Berechnung und Bestätigung des Abminderungsfaktors γ_{cr}

Tabelle 9-3 und Tabelle 9-4 beschreiben das Vorgehen an einem Beispiel. Die Versuchsergebnisse in gerissenem und ungerissenem Beton bei Verwendung des mittleren Ankerdurchmessers sind in Tabelle 9-3 mit N_{test,m} und N_{test,m,cr} gekennzeichnet. In den mit N_{trend,m} und N_{trend,m,cr} gekennzeichneten Zeilen sind die zugehörigen Widerstände für 30 min, 60 min, 90 min und 120 min, ermittelt unter Verwendung einer passenden Potenzfunktion, angegeben. Nach folgender Gleichung wurde der Abminderungsfaktor γ_{cr} ermittelt.

$$\gamma_{cr} = MIN \left\{ \frac{N_{trend,m,cr,30}}{N_{trend,m,30}}; \frac{N_{trend,m,cr,60}}{N_{trend,m,60}}; \frac{N_{trend,m,cr,90}}{N_{trend,m,90}}; \frac{N_{trend,m,cr,120}}{N_{trend,m,120}} \right\}$$

In Tabelle 9-4 sind die Versuchsergebnisse der mit dem kleinsten Ankerdurchmesser in gerissenem und ungerissenem Beton durchgeführten Versuche mit N_{test,s} und N_{test,s,cr} gekennzeichnet. In der mit N_{calc,s} beschriebenen Zeile, sind die Feuerwiderstandswerte für den kleinsten Ankerdurchmesser, der nach dem in diesem Forschungsbericht beschriebenen Berechnungsverfahren für 30 min, 60 min, 90 min und 120 min berechnet wurde, angegeben. Die Beaufschlagung dieser Ergebnisse mit dem oben ermittelten Abminderungsfaktor γ_{cr} ergibt den berechneten Feuerwiderstand für gerissenen Beton N_{calc,s,cr}. Abschließend wird die Einhaltung der folgenden Bedingung überprüft.

$$\frac{N_{test,s,cr}}{N_{calc,s,cr}} \ge 1$$

Schlussbericht Verbunddübel im Brandfall –DIBT

			Ve	ersuchser	gebnisse,	ungeriss	en , Mediu	um		
t [min]	30	42	-	60	61	68	80	90	110	120
N _{trend,m} [kN]	10,97	-	-	2,07	-	-	-	0,78	-	0,39
N _{test,m} [kN]	-	5	-	-	2	1,5	1	-	0,5	-
			١	/ersuchse	ergebnisse	e, gerisse	n , Mediun	n		
t [min]	30	35	53	60	61	76	-	90	99	120
N _{trend,m,cr} [kN]	6,52	-	-	1,42	-	-	-	0,58	-	0,31
N _{test,m,cr} [kN]	-	5	2	-	1,5	1	-	-	0,5	-
$N_{trend,m,cr}/N_{trend,m}$	0,59	-	-	0,69	-	-	-	0,74	-	0,79
Ycr					0,	59				

Tabelle 9-3: Beispiel zur Berechnung des Abminderungsfaktors γ_{cr}

Tabelle 9-4: Beispiel zur Bestätigung des Abminderungsfaktors γ_{cr}

	Versu	chsergeb	nisse und	Berechnu	ungsergeb	nisse, un	gerissen,	Small
t [min]	30	46	-	60	67	90	92	120
N _{calc,s} [kN]	3,3	-	-	0,9	-	0,3		0,2
N _{test,s} [kN]	-	3	-	-	1	-	0,5	-

	Vers	uchsergel	onisse un	d Berechr	ungserge	bnisse , g	gerissen, S	Small
t [min]	30	41	55	60	-	90	90	120
$\gamma_{cr} * N_{calc,s} [kN]$	1,96	1,44	0,78	0,54	-	0,18	0,18	0,12
N _{test, s, cr} [kN]	-	3	1	-	-	-	0,5	-

N _{test,s,cr} / N _{calc,s,cr}	-	2,08	1,29	-	-	-	2,78	-
>1?	-	ја	ja	-	-	-	ја	-

Die sich aus den Versuchen ergebenden Feuerwiderstandswerte für die Versagensart Verbundversagen muss abschließend mit den anderen Versagensarten (Betonausbruch, Stahlversagen) verglichen werden und die maßgebende Versagensart bestimmt werden.

10. Literatur

- [1] TR 020: Feuerwiderstandsfähigkeit von Metalldübeln.
- [2] DIN EN 1363-1: Feuerwiderstandsprüfungen Teil 1: Allgemeine Anforderungen.
- [3] EAD 330087-00-0601: systems for post-installed rebar connections with mortar.
- [4] Pinoteau, N.; Pimienta, P.; Guillet, T. et al.: Effect of heating rate on bond failure of rebars into concrete using polymer adhesives to simulate exposure to fire. International Journal of Adhesion and Adhesives 31 (2011), Heft 8, S. 851–861.
- [5] Reick, M.: Brandverahalten von Befestigungen mit großem Randabstand in Beton bei zentrischer Zugbeanspruchung. Dissertation, Universität Stuttgart, Institut für Werkstoffe im Bauwesen, Stuttgart, 2001.
- [6] DIN EN 1993-1-2: Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-2: Allgemeine Regeln Tragwerksbemessung für den Brandfall.
- [7] DIN EN 1992-1-2: Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken TEil 1-2: Allgemeine Regeln Tragwerksbemessung für den Brandfall.

11. Anhang A – Vergleich der thermischen Simulation mit Versuchsergebnissen

Tabelle 11-1: Temperaturdatenbank – Teil 1

_		-	_	-	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_			_	_	-	_	_
	120 min	0,98	86'0	0,95													1,18	68'0	69'0						1,09	0,99	1,09	1,27	1,06	0,94		
Tsim	90 min	0,98	0,95	0,99	1,04	1,37	1,33	1,06	1,78	1,33	1,07	1,47					1,17	0,87	0,72						1,09	1,00	1,24	1,31	1,05	0,97		
Ttest/	60 min	0,95	0,91	1,11	1,04	1,33	1,42	1,06	1,71	1,12	1,08	1,07					1,11	0,85	0,76						1,09	1,00	1,46	1,33	1,06	1,04		
Ì	30 min	06'0	06'0	1,03	1,07	1,35	1,61	1,08	1,28	1,16	1,13	1,40					1,18	0,82	0,65						1,10	1,13	1,37	1,25	1,13	0,96		
	120 min	929	378	174	814	273	814	814	273	814	814	273	814	273	814	273	858	383	203	r	r	r	or I	or	884	374	148	858	383	203	r	-
	90 min	870	317	132	747	218	747	747	218	747	747	218	747	218	747	218	794	322	157	sdaten vo	sdaten vo	sdaten vo	sdaten vo	sdaten vo	825	303	107	794	322	157	sdaten vo	sdaten vo
ulation	60 min	781	240	89	656	153	656	656	153	656	656	153	656	153	656	153	707	244	108	imulation	imulation	imulation	imulation	imulation	740	213	66	707	244	108	imulation	imulation
Sim	30 min	624	137	45	502	82	502	502	82	502	502	82	502	82	502	82	533	138	56	n keine S	in keine S	in keine S	n keine S	in keine S	581	98	31	533	138	56	n keine S	in keine S
	spunkt	0	60	120	-0,1	100	-0,1	-0,1	100	-0,1	-0,1	100	-0,1	100	-0,1	100	0	60	120	es liege	es liege	es liege	es liege	es liege	0	60	120	0	60	120	es liege	es liege
	gen Mes																															
	Bemerkun																															
	120 min	913	369	166	,		,		,		,	,	,				1011	341	140	972	165	696	365	158	967	369	162	1090	406	191	1057	,
uch	90 min	851	302	130	774	297	992	790	387	992	801	319	ı		,		925	280	112	923	133	899	304	125	898	302	133	1042	338	152	833	,
Vers	60 min	743	219	66	682	203	931	698	262	732	711	163	736	408	767	374	788	206	82	848	66	794	224	94	809	213	97	939	259	112	955	324
	30 min	559	124	47	536	111	808	544	105	583	566	115	585	158	599	112	628	114	37	655	48	591	127	46	640	112	43	667	156	54	609	194
	lesspunkt	0	60	120	10	100	10	10	100	10	10	100	10	100	10	100	0	60	120	0	120	0	60	120	0	60	120	0	60	120	0	60
	Riss		nein	<u> </u>		ueu	nein	5 0 2	ueu	a (geschl.)	1 1400001	a (gescni.)		nein		nen		nein		2 0 2	uleu		nein			nein			nein	<u> </u>		nein
	elastungs- richtung		norizontal		leilite	verukai	vertikal	looliteo.	vertikai	vertikal ji	1 Indiana.		-	vertikal		vertikal		norizontal			TOTIZORUAL		norizontal			norizontal			norizontal			norizontal
	Intergrund		Beton			peron	Beton		Beton	Beton		Beton		Beton		Beton		Beton			noted		Beton			Beton			Beton			Beton
ingungen	Anbauteil		ohne			onne	ohne		onne	ohne		onne	-	onne	-	onne		TR020		01+010	Platte		Platte			TR020			TR020			TR020
Randbedi	Stahl		C-steel		1000	C-steel	C-steel		C-Steel	C-steel	10000	C-steel	-	C-steel		C-steel		C-steel		, c+col	C-steel		C-steel		L	A4			C-Steel			Messing
	Ver- ankerungs- tiefe		120		001	DOT	100	001	00T	100	001	DOT	007	TOO	00	TOO		120		00,1	17N		120		ļ	120			120			120
	Durch- messer		M8		0.110	OTIN	M10	0110	OTIM	M10	0.11 0	OTIM	0	OTIM		0.TIM		M12		C 174	ZTINI		M12			M12			M12			M12
	R.		101		500	107	202		203	204	101	5U2		907	100	707		301		505	302		303			304			305			306
	•				•		•	•		•	•				•			-						_	-							

Verbunddübel im Brandfall –DIBT

Tabelle 11-2: Temperaturdatenbank – Teil 2

_																			_							_	_	_	_	_						_
	120 min	1,08	1,03	1,24	1,04	0,96	1,21	1,03	0,99						0,96	0,88	0,73				0,99	0,91	0,83	0,99	0,87	0,74	1,03	0,94	0,96	0,97	0,82	0,62	1,01	0,98	1,08	1 03
Tsim	90 min	1,09	1,01	1,07	1,02	0,96	1,10	1,04	1,10						0,95	0,85	0,71				0,97	0,86	0,78	0,99	0,83	0,72	1,03	0,95	1,00	0,97	0,76	0,63	1,01	0,97	1,08	1 03
Ttest/	60 min	1,10	66'0	1,15	1,02	1,03	1,11	1,07	1,28						0,92	0,78	0,73				0,92	0,79	0,73	0,97	0,75	0,74	1,04	0,98	1,00	0,96	0,73	0,57	0,98	06'0	1,07	1 00
	30 min	1,18	0,99	1,16	1,03	0,92	1,18	1,28	1,30						0,87	0,71	0,59				0,91	0,71	0,62	0,94	0,69	0,63	1,06	0,84	0,81	1,00	0,76	0,68	0,96	0,89	1,09	1 01
	L20 min	913	413	858	383	203	884	374	148	2	2	913	490	403	904	447	262	904	447	262	904	447	262	904	447	262	668	193	114	896	506	340	729	640	687	581
	90 min	851	352	794	322	157	825	303	107	sdaten vo	sdaten vo	850	423	339	841	384	210	841	384	210	841	384	210	841	384	210	837	154	88	830	441	282	659	569	617	510
ulation	60 min	761	274	707	244	108	740	213	66	imulation	imulation	756	335	258	748	305	152	748	305	152	748	305	152	748	305	152	746	112	62	734	355	212	562	471	520	415
Sim	30 min	603	167	533	138	56	581	98	31	en keine S	en keine S	593	208	150	589	192	86	589	192	86	589	192	86	589	192	86	588	64	37	569	228	122	398	312	361	265
	spunkt	0	60	0	60	120	0	60	120	es liege	es liege	0	0,17	06	0	60	120	0	60	120	0	60	120	0	60	120	0	20,17	180	0	60	120	25	8,9,8	30	0 83
	igen Mes												iert 6						iert									12								4
	Bemerkur												einbeton						einbeton																	
	120 min	066	425	1066	400	195	1072	384	147	924	485	927	433	323	866	393	192	439	318	221	892	407	217	895	387	195	929	182	109	873	413	211	739	626	739	598
such	90 min	929	353	850	329	150	911	315	117	856	394	859	360	258	800	325	150	360	254	173	815	332	165	830	318	151	860	146	88	806	335	177	663	550	999	575
Ver	60 min	838	270	814	250	111	823	228	85	751	304	751	269	180	069	239	111	250	159	114	692	241	111	723	229	113	778	110	62	702	257	120	549	425	559	416
	30 min	710	165	616	143	52	683	126	41	596	194	564	150	103	510	137	51	138	90	57	534	136	54	556	133	54	625	54	30	571	173	82	383	278	395	267
	sspunkt	0	60	0	60	120	0	60	120	0	60	0	60	06	0	60	120	0	60	120	0	60	120	0	60	120	0	120	180	0	60	120	25	40	30	L U
	s Me										_																	_			-					
	Rise	1	llau		neiı			neii			llau		neii			neii			neii			neii			neii			neii			neiı					nen
	Belastungs richtung		nonzontal		horizontal			horizontal		- 4	полгопта		horizontal			horizontal			horizontal			horizontal			horizontal			horizontal			horizontal		c1;+	Verukai	Inditation	verukai
	Untergrund		Beton		Beton			Beton			peron		Beton			Beton			Beton			Beton			Beton			Beton			Beton		5070 2070	peron	00400	beton
ingungen	Anbauteil		onne		TR020			TR020			onne		ohne			ohne			ohne			ohne			ohne			ohne			ohne		0~4~	onne	onde	onne
Randbed	Stahl	+J U	C-Steel		vz.			A4		1000	C-Steel		C-steel			C-steel			C-steel			C-steel			C-steel			C-steel			C-steel		1004-5 (C-steel	, c+00	C-steel
	Ver- nkerungs- tiefe	007	170		120			120		ç	ΠQ		90			120			120			120			120			180			120		C L	nc	00	ng
	Durch- messer a	C 77 4	ZTIM		M12			M12		, 11 C	QTIM		M16			M16			M16			M16			M16			M16			M24		0 17 4	NTIM	C 77 v	7TIM
	Nr.	FOC	307		308			309		100	707		103			104		-	105			106			107			108			109		۲ <u>۰</u> ۲	T04	005	402

Seite 84 von 113

Verbunddübel im Brandfall –DIBT

Tabelle 11-3: Temperaturdatenbank – Teil 3

		Randhe	dingungen						Vers	nch				is	mulation				Ttest/	Tsim		
	:	200	20.00											5								
 Durch-	Ver- ankerungs- tiefe	Stahl	Anbauteil	Untergrund	Belastungs- richtung	Riss	Messpunkt	30 min	60 min	90 min	120 min E	3emerkungen	Messpunkt	30 min	60 min	90 min	120 min	30 min	60 min	90 min	120 min	
2111	00	C +200	orqo	Doton	Indianov	sios	40	288	433	537	616		40	302	451	545	614	0,95	0,96	0,99	1,00	
OTIN	00	C-SIGEI	01116	Deloi	Verrikai	lieli	70	177	286	380	459		70,89	197	326	414	482	06'0	0,88	0,92	0,95	
	100	, ates		o to t	Indiana	a i a a	50	255	388	488	565		50	260	397	488	555	0,98	0,98	1,00	1,02	
NZU	OOT	C-steel	onne	peton	vertikal	nen	06	151	245	330	398		89,9	157	267	348	411	0,96	0,92	0,95	0,97	
010	QQ	, ctool	0.040	00400	lolitor.		40	251	393	500	580		40	240	377	468	536	1,05	1,04	1,07	1,08	
8INI	δU	C-Steel	onne	peron	vertikal	nen	70	142	234	324	399		69,87	123	226	308	372	1,15	1,03	1,05	1,07	
010	100	C atra	0 2 4 0	0 et a	l edite en		50	233	361	462	536		50	197	319	403	468	1,18	1,13	1,15	1,14	
OTIM	OOT	C-steel	onne	peton	vertikal	nein	06	117	182	254	316		6'68	06	166	234	292	1,29	1,09	1,08	1,08	
C 19 4	007				l - Dar		60	178	284	374	447		60	167	274	352	413	1,07	1,04	1,06	1,08	
7 TIM	120	C-steel	onne	Beton	vertikal	nen	110	111	146	194	254		109,92	70	129	182	232	1,58	1,14	1,06	1,10	
	0.7		-		-		80	129	203	275	337		80	127	212	277	330	1,01	0,96	0,99	1,02	
QTIM	Π₽Π	C-steel	onne	peton	vertikal	nein	150	52	101	122	156		149,94	49	86	122	155	1,07	1,17	1,00	1,00	
	C L						25	288	491	615	695		25	398	562	659	729	0,72	0,87	0,93	0,95	
OTIM	05	C-steel	onne	Beton	vertikal	nen	40	219	400	523	603		39,8	312	471	569	640	0,70	0,85	0,92	0,94	
0.00	Q,			-	I Davision		30	293	489	608	069		30	361	520	617	687	0,81	0,94	66'0	1,00	
ZTIMI	ρq	C-steel	onne	peton	vertikal	nein	50	205	369	486	567		49,83	265	415	510	581	0,77	0,89	0,95	0,98	
7 17 V	Q				l - Dar		40	254	425	540	625		40	302	451	545	614	0,84	0,94	66'0	1,02	
QTIN	δU	C-Steel	onne	peron	vertikai	ueu	70	151	272	378	462		70,89	197	326	414	482	0,77	0,84	0,91	0,96	
000	100	C ctool	ondo	Doton	Inline	sion	50	212	364	475	559		50	260	397	488	555	0,82	0,92	0,97	1,01	
INIZU	DOT	C-21661		ספוטו	VEILIKAI		90	140	232	311	382		6'68	157	267	348	411	0,89	0,87	0,89	0,93	
010	C0	ر _{د+م} ا	OCOAT	Dotos	lolitor.	sion	40	176	337	465	561		40	176	314	407	477	1,00	1,07	1,14	1,17	
0M	00	C-SIGEI		Detoil	VEILIKAI		70	111	196	301	387		70	96	191	273	338	1,16	1,03	1,10	1,15	
010	100	ر د+مما	OCOAT	Doton	lolitor	sion	50	157	311	437	531		50	155	275	361	427	1,01	1,13	1,21	1,24	
OTINI	DOT	C-21661	07011	ספוטו	VEILIKAI		90	80	156	240	317		06	75	146	212	269	1,07	1,07	1,13	1,18	
C 17 4	007		00001	-	l e litere : .		60	126	237	330	407		60	138	244	322	383	0,91	76'0	1,03	1,06	
ZTIVI	170	C-SIGEI		Deloi	VEILIKAI	IIIIII	110	58	120	165	212		110	61	116	168	216	0,96	1,03	0,98	0,98	
2104	160	ر د+مما	OCOAT	Doton	Inline	sion	80	119	204	281	345		80	113	196	261	313	1,05	1,04	1,08	1,10	
OTINI	ПОТ	C-21661	07011	ספוטו	VEILIKAI	IIIIII	150	38	87	118	144		150	45	81	115	147	0,85	1,08	1,03	0,98	
0104	C L	, ctool	OCOAT	Doton	lolitor.	sion	10	393	610	731	817		10	418	600	669	770	0,94	1,02	1,05	1,06	
OTINI	0r	C-21CCI	07041	DetOIL	ACILINAL		40	216	396	517	595		40	237	401	502	575	0,91	0,99	1,03	1,03	
C 17 4	ç	, ates	OCOUL	o to t	Indiana	a i a a	10	356	547	682	771		10	433	612	708	778	0,82	0,89	96'0	0,99	
ZTINI	00	C-21661	07011	ספוטו	VEILIKAI	IIIIII	50	169	300	417	505		50	212	363	461	532	0,80	0,83	0,91	0,95	
 . 44 C	00		OCOUT		l e litere : .		10	482	675	792	872		10	454	627	719	787	1,06	1,08	1,10	1, 11	
QTIN	δŪ	C-Steel	1 KUZU	peron	verukai	ueu	70	157	282	384	463		70	173	300	389	456	0,91	0,94	66'0	1,02	
							10	365	568	689	773		10	468	635	725	791	0,78	0,89	0,95	0,98	
M20	100	C-steel	TR020	Beton	vertikal	nein	Οb	112	106	171	338		U	144	751	330	207	0.78	0.78	0 0.0	0 96	

Seite 85 von 113

20

0

40

Abbildung 11-1: Vergleich der Versuchsergebnisse Nr. 405 / 501 und Simulationsergebnissen nach 30 min

80

Embedment depth [mm]

100

60

Abbildung 11-2: Vergleich der Versuchsergebnisse Nr. 405 / 501 und Simulationsergebnissen nach 60 min

Seite 86 von 113

Abbildung 11-3: Vergleich der Versuchsergebnisse Nr. 405 / 501 und Simulationsergebnissen nach 90 min

Abbildung 11-4: Vergleich der Versuchsergebnisse Nr. 405 / 501 und Simulationsergebnissen nach 90 min

Schlussbericht Verbunddübel im Brandfall –DIBT

Abbildung 11-5: Vergleich der Versuchsergebnisse Nr. 101 und Simulationsergebnissen nach 30 min

Abbildung 11-6: Vergleich der Versuchsergebnisse Nr. 101 und Simulationsergebnissen nach 60 min

Abbildung 11-7: Vergleich der Versuchsergebnisse Nr. 101 und Simulationsergebnissen nach 90 min

Abbildung 11-8: Vergleich der Versuchsergebnisse Nr. 101 und Simulationsergebnissen nach 120 min

700

600

500

Temperature [°C]

Abbildung 11-9: Vergleich der Versuchsergebnisse Nr. 401 / 409 / 505 und Simulationsergebnissen nach 30 min

Abbildung 11-10: Vergleich der Versuchsergebnisse Nr. 401 / 409 / 505 und Simulationsergebnissen nach 60 min

Abbildung 11-12: Vergleich der Versuchsergebnisse Nr. 401 / 409 / 505 und Simulationsergebnissen nach 120 min

Abbildung 11-13: Vergleich der Versuchsergebnisse Nr. 201 bis 207 und 406 / 502 und Simulationsergebnissen nach 30 min

Abbildung 11-14: Vergleich der Versuchsergebnisse Nr. 201 bis 207 und 406 / 502 und Simulationsergebnissen nach 60 min

Abbildung 11-15: Vergleich der Versuchsergebnisse Nr. 201 bis 207 und 406 / 502 und Simulationsergebnissen nach 90 min

Abbildung 11-16: Vergleich der Versuchsergebnisse Nr. 402 / 410 / 506 und Simulationsergebnissen nach 30 min

Abbildung 11-17: Vergleich der Versuchsergebnisse Nr. 402 / 410 / 506 und Simulationsergebnissen nach 60 min

Abbildung 11-18: Vergleich der Versuchsergebnisse Nr. 402 / 410 / 506 und Simulationsergebnissen nach 90 min

Abbildung 11-19: Vergleich der Versuchsergebnisse Nr. 402 / 410 / 506 und Simulationsergebnissen nach 120 min

Abbildung 11-21: Vergleich der Versuchsergebnisse Nr. 301 bis 309 und 407 / 503 und Simulationsergebnissen nach 60 min

Abbildung 11-22: Vergleich der Versuchsergebnisse Nr. 301 bis 309 und 407 / 503 und Simulationsergebnissen nach 90 min

Abbildung 11-23: Vergleich der Versuchsergebnisse Nr. 301 bis 309 und 407 / 503 und Simulationsergebnissen nach 120 min

Abbildung 11-24: Vergleich der Versuchsergebnisse Nr. 403 / 411 / 507 und Simulationsergebnissen nach 30 min

Abbildung 11-25: Vergleich der Versuchsergebnisse Nr. 403 / 411 / 507 und Simulationsergebnissen nach 60 min

Abbildung 11-26: Vergleich der Versuchsergebnisse Nr. 403 / 411 / 507 und Simulationsergebnissen nach 90 min

Abbildung 11-28: Vergleich der Versuchsergebnisse Nr. 103 und Simulationsergebnissen nach 30 min

Abbildung 11-29: Vergleich der Versuchsergebnisse Nr. 103 und Simulationsergebnissen nach 60 min

Abbildung 11-30: Vergleich der Versuchsergebnisse Nr. 103 und Simulationsergebnissen nach 90 min

Abbildung 11-31: Vergleich der Versuchsergebnisse Nr. 103 und Simulationsergebnissen nach 120 min

Abbildung 11-32: Vergleich der Versuchsergebnisse Nr. 104 bis 107 und Simulationsergebnissen nach 30 min

Abbildung 11-33: Vergleich der Versuchsergebnisse Nr. 104 bis 107 und Simulationsergebnissen nach 60 min

Verbunddübel im Brandfall –DIBT

Schlussbericht

Abbildung 11-35: Vergleich der Versuchsergebnisse Nr. 104 bis 107 und Simulationsergebnissen nach 120 min

Abbildung 11-36: Vergleich der Versuchsergebnisse Nr. 408 / 504 und Simulationsergebnissen nach 30 min

Abbildung 11-39: Vergleich der Versuchsergebnisse Nr. 408 / 504 und Simulationsergebnissen nach 120 min

Schlussbericht Verbunddübel im Brandfall –DIBT

Abbildung 11-42: Vergleich der Versuchsergebnisse Nr. 108 und Simulationsergebnissen nach 90 min
Schlussbericht Verbunddübel im Brandfall –DIBT

Abbildung 11-43: Vergleich der Versuchsergebnisse Nr. 108 und Simulationsergebnissen nach 120 min

Abbildung 11-44: Vergleich der Versuchsergebnisse Nr. 404 / 412 / 508 und Simulationsergebnissen nach 30 min

Abbildung 11-45: Vergleich der Versuchsergebnisse Nr. 404 / 412 / 508 und Simulationsergebnissen nach 60 min

Abbildung 11-46: Vergleich der Versuchsergebnisse Nr. 404 / 412 / 508 und Simulationsergebnissen nach 90 min

Abbildung 11-48: Vergleich der Versuchsergebnisse Nr. 109 und Simulationsergebnissen nach 30 min

Abbildung 11-49: Vergleich der Versuchsergebnisse Nr. 109 und Simulationsergebnissen nach 60 min

Abbildung 11-50: Vergleich der Versuchsergebnisse Nr. 109 und Simulationsergebnissen nach 90 min

Schlussbericht Verbunddübel im Brandfall –DIBT

Abbildung 11-51: Vergleich der Versuchsergebnisse Nr. 109 und Simulationsergebnissen nach 120 min

12. Anhang B

Abbildung 12-1: Temperaturverteilung entlang der Verankerungstiefe des Dübels M6-60/90/120/150

Abbildung 12-1: Temperaturverteilung entlang der Verankerungstiefen des Dübels M12-60/90/120/150

Abbildung 12-2: Temperaturverteilung entlang der Verankerungstiefen des Dübels M18-60/90/120/150

Abbildung 12-3: Temperaturverteilung entlang der Verankerungstiefen des Dübels M24-60/90/120/150