Bau<u>forschung</u>

Untersuchungsbericht zum Tragverhalten von Kopfbolzen in Leichtbeton

T 3361

¹ Fraunhofer IRB Verlag

T 3361

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

2018 ISBN 978-3-7388-0223-8 Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages. **Fraunhofer IRB Verlag** Fraunhofer-Informationszentrum Raum und Bau Postfach 80 04 69 70504 Stuttgart Nobelstraße 12 70569 Stuttgart Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08 E-Mail irb@irb.fraunhofer.de www.baufachinformation.de

7. Juli 2016

Untersuchungsbericht Nr. 11.02.26 U zum Tragverhalten von Kopfbolzen in Leichtbeton

Auftraggeber

Deutsches Institut für Bautechnik DIBt Kolonnenstr. 30 B 10829 Berlin

Inhalt

1.	Ver	/eranlassung							
2.	Ver	such	sdurchführung	7					
	2.1	Allg	jemeines						
	2.2	Unt	ersuchungsprogramm	7					
	2.3	Her	stellung und Materialeigenschaften der Verankerungsgründe	8					
	2.4	Ver	suchsmuster	. 13					
	2.5	Dur	chführung der Versuche	. 13					
3.	Ver	such	sergebnisse	. 15					
	3.1	Erge	ebnisse der Versuche mit der Versagensart ,Betonausbruch'	. 15					
	3.1.3	1	Übersicht	. 15					
	3.1.	2	Last-Verformungsverhalten	. 17					
	3.1.	3	Bewertung der Ergebnisse der A1-Versuche – niederfester, ungerissener Leichtbeton						
	3.1.	4	Bewertung der Ergebnisse der A3-Versuche – niederfester, gerissener Leichtbeton	.25					
	3.1.	5	Bewertung der Ergebnisse der A2-Versuche – höherfester, ungerissener Leichtbet LC 40/44	ton .28					
	3.2	Erge	ebnisse der Versuche mit der Versagensart ,Herausziehen'	.30					
	3.2.	1	Übersicht	.30					
	3.2.	2	Last-Verformungsverhalten	.32					
	3.2.	3	Bewertung der Versuche zur Versagensart ,Herausziehen' – A1conf-Versuche	. 33					
4.	Faz	it und	l Zusammenfassung	.36					
	4.1	Übe	rblick	.36					
	4.2	Aus	blick	.36					
Ar	hänge.			.42					

Quellenangabe

[1]	EOTA	ETAG 001 Guideline for European Technical Approval of Metal Anchors
		for Use in Concrete, Edition 1997, Amended November 2006
[2]	DIN	DIN SPEC 1021-4-1 - Bemessung der Verankerung von Befestigungen
		in Beton, August 2009
[3]	DIN	DIN EN 1992 – Eurocode 2: Bemessung und Konstruktion von
		Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine
		Bemessungsregeln und Regeln für den Hochbau, Januar 2011
[4]	DIN	DIN EN 206: Beton – Festlegung, Eigenschaften, Herstellung und
		Konformität, Juli 2014
[5]	DIN	DIN EN 12390-13- Prüfung von Festbeton – Teil 13: Bestimmung des
		Elastizitätsmoduls unter Druckbelastung (Sekantenmodul), Juni 2014
[6]	DIN	DIN EN 12390-6- Prüfung von Festbeton – Teil 6: Spaltzugfestigkeit
		von Probekörpern, September 2010
[7]	DIN	DIN EN 12390-1 Prüfung von Festbeton – Teil 1: Form, Maße und
		andere Anforderungen für Probekörper und Formen, Dezember 2012
[8]	Kroll, M.	Diplomarbeit - Zum Tragverhalten von Kopfbolzen in Leichtbeton bei
		der Versagensart Herausziehen, November 2012
[9]	Kibarov, P.	Diplomarbeit - Tragverhalten von Kopfbolzen in hochfestem Leichtbeton
		unter zentrischem Zug, Dezember 2012
[10]	Akyol, T.	Bachelorarbeit - Tragverhalten von Kopfbolzendübel im gerissenen
		Leichtbeton LC 20/22 bei der Versagensart Betonausbruch, 24.07.2013
[11]	Eligehause	n, R., Mallée, R. Befestigungstechnik in Betonkalender 1997, Teil
		II, Ernst & Sohn, 1997
[12]	EOTA	ETAG 029 Guideline for European Technical Approval of Metal Injection
		Anchors for Use in Masonry, Edition April 2013
[13]	Wesche, K.	Baustoffe für tragende Bauteile, Teil 2, Beton – Mauerwerk, Bauverlag
		GmbH, 3. Auflage, 1993

Tabellenverzeichnis

Tabelle 2.1	Untersuchungsprogramm – Versagensart ,Betonausbruch ¹⁾	7
Tabelle 2.2	Untersuchungsprogramm – Versagensart ,Herausziehen'	3
Tabelle 2.3	Mischungszusammensetzung der Leichtbetone pro m ³	Э
Tabelle 2.4	verwendete Versuchsuntergründe10	C
Tabelle 2.5	Ergebnisse der E-Modul-Untersuchungen12	1
Tabelle 2.6	Ergebnisse der Spaltzug-Untersuchungen im niederfesten Leichtbeton LC 20/22	2
Tabelle 2.7	Ergebnisse der Spaltzug-Untersuchungen im höherfesten Leichtbeton LC 40/441	3
Tabelle 3.1	Versuchsergebnisse ,Kopfbolzen in Leichtbeton – Versagen durch Ausbruch'16	5
Tabelle 3.2	Ergebnisse ,Kopfbolzen in Leichtbeton – Versagen durch Herausziehen'	1

Abbildungsverzeichnis

Abbildung 1	Abmessungen der verwendeten Kopfbolzen6
Abbildung 2	Positionierung des Kopfbolzens in der Schalung für Risskörper [10]
Abbildung 3	Probekörper zur Ermittlung der zentrischen Zugfestigkeit nach dem Versuch11
Abbildung 4	Schematische Darstellung der Versuchszylinder [9]14
Abbildung 5	Last-Verformungsverhalten im niederfesten Leichtbeton — d10x75 - 1
Abbildung 6	Teil eines Ausbruchkegels – niederfester Leichtbeton LC 20/22
Abbildung 7	Radialrisse im Ausbruchkegel – niederfester Leichtbeton LC 20/22
Abbildung 8	Last-Verformungsverhalten im festeren Leichtbeton LC 40/44 – d16x50 – 119
Abbildung 9	Ausbruchkegel im festeren Leichtbeton LC 40/44 – d16x50 – 119
Abbildung 10	Last-Verformungsverhalten im A2.1 Test – d22x75 – 1 und 5 20
Abbildung 11	Last-Verformungsverhalten im A3 Test – d16x50 – 221
Abbildung 12	Fehlender Kompressionsbereich im A3 Test – d16x50 – 221
Abbildung 13	Abhängigkeit der mittleren Versagenslast von der Verankerungstiefe – A1-Tests 22
Abbildung 14	Abhängigkeit der mittleren Versagenslast von der wirksamen Kopffläche – A1-Tests23
Abbildung 15	Abhängigkeit der mittleren Versagenslast von der Summe aus wirksamer Kopffläche und Verankerungstiefe ^{1,5} – A1-Tests
Abbildung 16	Vergleich der mittleren Versagenslasten in ungerissenem und gerissenem Leichtbeton – A1- und A3-Tests
Abbildung 17	Verhältnis der mittleren Versagenslasten in ungerissenem und gerissenem Leichtbeton in Abhängigkeit von der Verankerungstiefe – A1- und A3-Tests
Abbildung 18	Abhängigkeit der mittleren Versagenslasten von der Verankerungstiefe h _{ef} 1,5 in gerissenem Leichtbeton – A3-Tests27
Abbildung 19	Abhängigkeit der mittleren Versagenslasten von der Verankerungstiefe ^{1,5} und der Wurzel der Festigkeit f _{lc} ^{0,5} – A3-Tests27
Abbildung 20	Gegenüberstellung der mittleren Versagenslasten im niederfesten Leichtbeton LC 20/22 und im höherfesten Leichtbeton LC 40/44 – A1- und A2-Tests
Abbildung 21	Vergleich der Bruchflächen im LC 20/22 und LC 40/44
Abbildung 22	Schichtung der Betonage der Betonplatten der A2-Versuche
Abbildung 23	Last-Verformungsverhalten im Versuch 1 der Größe d16-75-7,5 – Serie A1conf.232
Abbildung 24	Schnitt durch die Versagensstelle – A1conf-Versuche
Abbildung 25	Abhängigkeit der Versagenslast von der Schulterbreite ah – A1conf-Versuche
Abbildung 26	Abhängigkeit der Versagenslast von der Kopffläche Ah – A1conf-Versuche
Abbildung 27	Abhängigkeit der Versagenslast von Kopffläche Ah und Festigkeit flc,test – A1conf-Versuche

1. Veranlassung

Verankerungen in Normalbeton sind bereits seit vielen Jahren bekannt und die Ermittlung der Tragfähigkeit solcher Verankerung ist durch Zulassungen geregelt. Bedingt durch die besonderen Eigenschaften wie Reduktion notwendiger Stahleinlagen, erhöhter Feuerwiderstand sowie verbesserte Wärmedämmung ist der Einsatz von gefügedichtem Leichtbeton in den letzten Jahren stetig gestiegen. Im Jahr 2003 wurden 190.000 m³ Leichtzuschläge zur Herstellung von gefügedichtem Leichtbeton verwendet. Unter anderem sind die folgenden Bauten mit der Hilfe von Leichtbeton errichtet worden:

- die Skiflugschanze bei Oberstdorf,
- das BMW-Hochhaus in München,
- das Kai-Center in Düsseldorf,
- die Rheinbrücke Köln-Deutz,
- die schwimmende Ölförderplattform für das Nordsee-Feld Heidrun sowie
- das Pandion Vista (Kranhaus) in Köln und
- Das obere Geschoss des Flughafens Berlin-Brandenburg.

Im Leichtbeton ist der Kraftfluss aufgrund der geringeren Tragfähigkeit der Leichtzuschläge im Vergleich zum Normalbeton verändert, so dass auch das Tragverhalten von Verankerungen durch die Matrix aus Zementstein und Leichtzuschlag beeinflusst ist. Es kommt industriell geblähter oder natürlich poriger Zuschlag zum Einsatz, der im Vergleich zum Normalzuschlag eine deutlich geringere Festigkeit aufweist, als die umgebende Zementmatrix. Dieser Leichtzuschlag begrenzt daher, anders als im Normalbeton, die Tragfähigkeit von Leichtbeton auf Zug.

Bereits in den derzeit gültigen Regelwerken [3] wird eine weitere Besonderheit des Leichtbetons beschrieben. Im Vergleich zum Normalbeton ist bei gleicher Druckfestigkeit die Zugfestigkeit geringer als beim Normalbeton. Da der Lastabtrag bei Kopfbolzen und Dübeln auch von der Zugfestigkeit anhängt, muss diese veränderte Relation auch einen wesentlichen Einfluss auf die Tragfähigkeit von Kopfbolzen und Dübeln haben.

Das Tragverhalten von Kopfbolzen unter Zugbeanspruchung soll mithilfe der vorliegenden Untersuchungen beschrieben werden. Insbesondere die Versagensarten "Betonausbruch" und "Herausziehen" sind im Rahmen dieser Untersuchungen betrachtet worden.

In der nachfolgenden Abbildung 1 sind die Abmessungen der verwendeten Kopfbolzen dargestellt.

Abbildung 1 Abmessungen der verwendeten Kopfbolzen

Die folgenden Abkürzungen werden zur Beschreibung der maßgeblichen Geometrie verwendet.

- h_{ef} effektive Verankerungstiefe
- h_k Dicke des Kopfes
- a_h Schulterbreite
- d_s Durchmesser des Bolzenschaftes

2. Versuchsdurchführung

2.1 Allgemeines

Die Versuche zur Überprüfung des Tragverhaltens im Leichtbeton wurden in Anlehnung an [1] durchgeführt. Zur Untersuchung der Tragfähigkeit von Kopfbolzenverankerungen in ungerissenem Leichtbeton wurden sowohl der Schaft- und der Kopfdurchmesser als auch die Verankerungstiefe variiert. Mithilfe dieser Parameter soll die Abhängigkeit der Tragfähigkeit abgeleitet werden. Darüber hinaus wurde in zwei unterschiedlichen Festigkeiten und Rohdichten geprüft. Schließlich sollte ebenfalls eine Aussage zur Tragfähigkeit im Riss der Rissweite $\Delta w = o_{,3}$ mm abgeleitet werden.

2.2 Untersuchungsprogramm

Zunächst sollte im niederfesten ungerissenen Leichtbeton an drei verschiedenen Kopfbolzengrößen mit unterschiedlichen wirksamen Kopfflächen die Tragfähigkeit untersucht werden. Es sollten Kopfbolzen zum Einsatz kommen, da bei diesen Verankerungselementen die Last mechanisch eindeutig über die Kopffläche in den Leichtbeton eingeleitet wird. Die Schaftdurchmesser wurden dabei in Anlehnung an vorhandene Kopfbolzen gewählt, aber für den Durchmesser des Kopfes wurden die Standardwerte aufgrund der geringeren lokalen Festigkeit des Leichtbetons vergrößert.

Das folgende in Tabelle 2.1 dargestellte Untersuchungsprogramm wurde zur Ermittlung der Tragfähigkeit von Kopfbolzen in Leichtbeton durchgeführt.

			ch	LC	LC 20/22 D1,4			LC 40/44 D1,8		
Δw	h_{ef}	a _h	ersu	Ø 10	Ø 16	Ø 22	ersu	Ø 10	Ø 16	Ø 22
[mm]	[mm]	[mm]	Ve				٨			
	50	7,5		х	x	-		-	x	-
Q	75	7,5 und 10	Δ.	х	x	х	A2	х	х	х
o	100	7,5 und 10	AI	х	х	х		-	х	-
	150	10		-	-	х		-	-	-
,3	50	7,5	<u>۸</u> ٦	-	х	-				
0	75	7,5	~3	х	х	х				

Tabelle 2.1 Untersuchungsprogramm – Versagensart ,Betonausbruch' 1)

1)

Die Anzahl der Versuche ist mindestens 10. Z. T. wurden mehr Versuche durchgeführt.

Die Versuchsanzahl betrug in jedem Versuch mindestens 10, um eine valide Aussagekraft für jede einzelne Versuchsserie zu bekommen. Außerdem verbessert sich bei diesem Versuchsumfang die Genauigkeit zur Ableitung charakteristischer Lasten.

A1-Versuche mit einer Verankerungstiefe von 150 mm wurden lediglich mit der Größe Ø 22 durchgeführt, da bei den Größen Ø 10 und Ø 16 Stahlversagen maßgebend wäre. Bei den A2- und den A3-Versuchen wurde ein geringerer Umfang untersucht, um zum einen eine Korrelation untereinander, aber insbesondere mit den A1-Versuchen herstellen zu können. Insgesamt wurden 200 Versuche zum kegelförmigen Betonausbruch durchgeführt. Zur Untersuchung der Versagensart ,Herausziehen' wurde lediglich die Schulterbreite a_h und der Schaftdurchmesser d_s, aber nicht die Verankerungstiefe h_{ef} variiert, da diese Versagensart nach derzeitigem Kenntnisstand hauptsächlich auf der Kompression des Leichtbetons an der Kopffläche basiert. Die Tragfähigkeit bei weiter Abstützung hängt sowohl von der Rissbildung innerhalb des Leichtbetons, aber auch von der Kompression am Bolzenkopf ab. Durch die Versuchsserie A1conf zum ,Herausziehen' lässt sich der Prozess der Kompression am Kopf gesondert untersuchen. Die Bezeichnung ,conf' leitet sich im Übrigen von der englischen Bezeichnung confined ab und deutet auf die enge Abstützung im Versuch hin.

Untersuchungen an Kopfbolzen des Durchmessers \emptyset 10 und einer Schulterbreite $a_h = 10 \text{ mm}$ wurden nicht durchgeführt, da Stahlversagen für diese Kombination wahrscheinlich war. Die Kombination aus einem Bolzendurchmesser \emptyset 22 und einer Schulterbreite von $a_h = 5 \text{ mm}$ unterschritt das Verhältnis üblicher Kopfbolzen und wurde daher ebenfalls nicht berücksichtigt. Die Untersuchungen waren zunächst auf die Größe \emptyset 16 begrenzt. Die beiden anderen Größen wurden zusätzlich stichpunktartig untersucht.

Auch bei den Versuchen zum Herausziehen betrug die Versuchsanzahl in jeder Serie mindestens 10, um eine valide Aussagekraft für jede einzelne Versuchsserie zu bekommen und die Genauigkeit zur Ableitung charakteristischer Lasten zu verbessern.

Tabelle 2.2 zeigt das Untersuchungsprogramm zur Versagensart ,Herausziehen'.

			сŀ	LC 20/22 D1,4			
Δw	h_{ef}	a _h	srsu	Ø 10	Ø 16	Ø 22	
[mm]	[mm]	[mm]	Ve				
	75	5,0	٦f	х	х	-	
0'0		7,5	1 COI	х	х	х	
		10	A	-	х	-	

Tabelle 2.2 Untersuchungsprogramm – Versagensart ,Herausziehen'

2.3 Herstellung und Materialeigenschaften der Verankerungsgründe

Für die Untersuchungen standen Leichtbetone der Festigkeitsklassen LC20/22 und LC40/44 entsprechend [2] zur Verfügung. Die Betonrezepturen der verwendeten Mischungen wurden von der Fa. Liapor bereitgestellt, die auch den zugehörigen Zuschlag lieferte. Die Zusammensetzung der Leichtbetone entsprach den in der folgenden Tabelle angegebenen Werten.

	LC 20/22 D1,4			LC 40/44 D1,8			
	Stoffraum	Rohdichte	Einwaage	Stoffraum	Rohdichte	Einwaage	
	dm³/m³	kg/dm³	kg/m³	dm³/m³	kg/dm³	kg/m³	
Liapor 6 4/8	407	1,11	452				
Liapor Sand K o/2	257	1,77	454				
Liapor 8 4/8				422	1,41	595	
Natursand o/2				261	2,63	687	
Kalksteinmehl	34,9	2,20	76,7	18,1	2,20	39,8	
Saugwasser		1,00	136		1,00	50,2	
Zement CEM I 42,5R	102	3,10	315	110	3,10	340	
Anmachwasser	185	1,00	185	175	1,00	175	
Restporen	15,0			14,0			

Tabelle 2.3	Mischungszusammensetzung der Leichtbetone pro m ³	
rabelle 2.3	Mischongszosammensetzong der Leichtbetone prom	

Eine Verwendung von Fließmitteln war trotz Vorgabe nicht erforderlich, da die Frischbetonuntersuchungen bereits eine ausreichende Fließfähigkeit des Frischbetons aufwiesen.

Alle Untergründe wurden in horizontaler Lage betoniert. Eine Bewehrung im Bereich der Kopfbolzen war nicht vorhanden. Die Kopfbolzen wurden auf der Schalseite der Betonelemente angeordnet, in dem sie durch vorbereitete Löcher gesteckt und mit Muttern gesichert wurden. Dadurch war sowohl eine genaue Positionierung als auch eine genaue Einhaltung der Verankerungstiefe möglich. Der Randabstand war immer größer als $c = 3, o h_{ef}$. Zur Vermeidung einer gegenseitigen Beeinflussung der geprüften Bereiche ist gemäß [1] der Abstand benachbarter Dübel immer größer als $s = 4, o h_{ef}$ zu wählen. Aufgrund des veränderten Verhältnisses zwischen Zug- und Druckfestigkeit bei Leichtbeton wurde in diesem Forschungsvorhaben der Achsabstand benachbarter Dübel immer größer als $s = 5, o h_{ef}$ gewählt.

Die folgende Abbildung 2 zeigt den Einbau eines Kopfbolzens.

Abbildung 2 Positionierung des Kopfbolzens in der Schalung für Risskörper [10]

Zur Bestimmung der Druckfestigkeit fanden sowohl Würfel mit einer Kantenlänge von 150 mm, die zusammen mit den Betonplatten hergestellt wurden, als auch Bohrkerne mit einem Durchmesser

und einer Höhe von etwa 100 mm Verwendung. Die ermittelten Druckfestigkeiten sind für die jeweiligen Versuchsserien in den Anhängen aufgeführt.

Folgende Tabelle 2.4 zeigt die verwendeten Betonprobekörper.

Leichtbeton	Versuchs-	Abmessungen 150er Würfel			el	100er Bohrkern	
	serie	lxbxh	f _{c.test}	Alter	Dichte	f _{c.test}	Alter
		[cm ³]	[N/mm ²]	[d]	[kg/m³]	[N/mm ²]	[d]
LC20-110621	LC20-110621 A1 d10X50				1243	26,80	41
LC20-110621	A1 d16x50	120X100X15			1258	26,36	41
LC20-110621	A1	5	27,5	31	1243	10	
LC20-110720	A1 d10x75 A1 d16x75	140X120X20	28,7	30	1262		
LC20-110811	A1 d22x75	240X130X25	32,44	60	1263		
LC20-110818	A1 d22x75	240X130X25	30,53	27	1223		
LC20-110914	Aı	250 x 160 x 35	28,31	35	1246		
LC20-111005	Aı	250 x 160 x 35	30,78	36	1284	33,77	36
LC20-111115	Aı	250 x 190 x 35	29,79	51	1255		
LC20-111124	Aı	250 x 160 x 35	27,05	42	1256		
1 (40-120521	A2.1 d16x50	205 X 100 X 20	60.80	35	2004	48,24	77
2040 120551	A2.1 d16x75	205 × 190 × 20	40,09		2004	51,62	127
LC40-120625	A2.2 d16x50	205 X 190 X 20	27.44	36	1770	42,92	52
	A2.2 d16x75	205 × 290 × 20	5/744	J°	-//0	51,15	102
LC40-120731	A2.1 d10x75 A2.1 d22x75	250 x 190 x 25	47,84	64	1740	43,20	66
LC40-120823	A2.2 d10x75 A2.2 d22x75	250 X 190 X 25	43,08	41	1757	41,54	43
1 ((0 120002	A2 d16x100	160 x 160 x 20	44,85	37	1869		
LC40-120903	A2 d16x100	100 × 100 × 20	51,42	64	1857	43,91	64
1040-120006	A2 d16x100	160 x 160 x 20	46,39	34	1869		
LC40-120900	A2 010/100	100 × 100 × 20	53,08	57	1873	44,68	61
LC20-130107-1	A3	220 X 170 X 20	28.65	70	1282	21,35	74
LC20-130107-2	A3	220 x 1/0 x 20	20,05	/3	1202	22,91	74
LC20-130114-1	A3	220 X 170 X 20	<u> </u>	71	107/	22,61	71
LC20-130114-2	A ₃	220 X 1/0 X 20	20,00	/1	12/4	23,08	72
LC20-130227	A ₃	220 X 200 X 20	23,24	29	1253	20,19	29
LC20-120508	A1conf		24,49	50	1257	25,34	51
LC20-120614	A1conf	150 X 120 X 20	27,80	56	1244	27,62	57
LC20-120725	A1conf		22,69	57	1243	23,34	58

Tabelle 2.4 verwendete Versuchsuntergründe

Der Leichtbetoncharge vom 05.10.2011 wurden Bohrkerne des Durchmessers 50 mm und einer Höhe von etwa 100 mm entnommen, um an diesen Probekörpern die zentrische Zugfestigkeit zu ermitteln. Dazu wurden die Probekörper an beiden Enden mit Lasteinleitungsstempeln versehen, die mit einem Zweikomponenten-Kleber auf Epoxidharzbasis mit den Probekörpern verbunden waren. In Analogie zur E-Modul-Prüfung wurde ein Längen / Durchmesserverhältnis von etwa 2 gewählt, um in der Mitte der Probe einen annähernd einaxialen Spannungszustand hervorzurufen.

Die Ergebnisse dieser Versuche unterliegen einer starken Streuung und genügen nicht den Anforderungen an die Zugfestigkeit gemäß [3] (s. Anhang 6.1). An zwei der zehn Probekörper

konnte eine Vorschädigung, die vermutlich dem Entnahmeprozess geschuldet ist, nachgewiesen werden. Die erwartete Zugfestigkeit nach Norm [3, Tabelle 11.3.1] liegt bei $f_{lctm} = 2,13 \text{ N/mm}^2$, während die ermittelte mittlere Zugfestigkeit lediglich den Wert $f_{lctm} = 1,26 \text{ N/mm}^2$ bei einem Variationskoeffizienten von v = 24,32 % erreicht. Aufgrund des niedrigen Niveaus der Ergebnisse und der hohen Streuung ist eine Vorschädigung aller Probekörper wahrscheinlich, so dass die Ergebnisse verworfen werden.

Die folgende Abbildung zeigt die Bruchflächen der zehn Probekörper nach dem Versuch.

Probekörper 1 bis 5

Probekörper 6 bis 10

Abbildung 3 Probekörper zur Ermittlung der zentrischen Zugfestigkeit nach dem Versuch

Aufgrund dieser Ergebnisse sollten zentrische Zugversuche an Leichtbetonen zur Ermittlung der Zugfestigkeit nach Möglichkeit vermieden oder ggfs. an größeren Bohrkernen durchgeführt werden.

Der Elastizitätsmodul wurde als Sekantenmodul entsprechend der zum Zeitpunkt der Prüfung gültigen Fassung von [7] an Bohrkernen mit einem Durchmesser von etwa 100 mm und einer Höhe von etwa 200 mm ermittelt. Die Bohrkerne wurden der Platte LC20-111005-1 entnommen. Die folgende Tabelle zeigt die ermittelten Werte. Die Einzelwerte befinden sich in Anhang 6.2.

LC20-111005-1	E-Modul	Festigkeit	Trockenrohdichte
	[N/mm²]	[N/mm²]	[kg/m³]
Probe 1	10.500	29,8	
Probe 2	11.300	30,4	
Probe 3	10.700	30,9	
Mittelwert	10.800	30,3	1.284
v [%]	4,0	1,8	

Tabelle 2.5	Ergebnisse der E-Modul-Untersuchungen

Auf der Basis der mittleren Druckfestigkeit von $f_{lcm} = 30,3 \text{ N/mm}^2$ ist der verwendeten Leichtbeton als LC 20/22 einzustufen. Nach [3] lässt sich der E-Modul gemäß folgender Gleichung bestimmen.

$$E_{lc0m} = 9.500 \times f_{cm}^{\frac{1}{3}} \times \left(\frac{\rho}{2.200}\right)^2 = 9.500 \times 30, 3^{\frac{1}{3}} \times \left(\frac{1.284}{2.200}\right)^2 = 10.097 \frac{N}{mm^2}$$
(2-1)

Der ermittelte E-Modul liegt somit etwa 7 % über dem rechnerisch erwarteten Wert der zugehörigen Festigkeitsklasse.

Die Spaltzugfestigkeit wurde an den Leichtbetonprobekörpern ermittelt, in denen die Versuche zum Herausziehen durchgeführt wurden (vgl. Anhang 6.3). Dazu wurden den Untergründen Bohrkerne des Durchmessers 100 mm und einer Länge von ca. 200 mm entnommen und entsprechend DIN EN 12390, Teil 6 [6] geprüft. Zusätzlich wurden Bohrkerne den Leichtbeton-Untergründen höherer Festigkeit LC 40/44 entnommen und für die Ermittlung der Spaltzugfestigkeit verwendet. Die Länge dieser Bohrkerne betrug etwa l = 100 mm.

Die folgende Gleichung zeigt das Verhältnis zwischen Spaltzugfestigkeit $f_{\rm ct,SZ}$ und der Druckfestigkeit $f_{\rm lc}.$

$$f_{ct,SZ} = k \times f_{lc}^{2/3}$$
 (2-2)

Die zu erwartende Spaltzugfestigkeit ist vom verwendeten Zuschlag abhängig und streut daher stärker als beim Normalbeton. Wesche [13] nennt für den Faktor k Werte zwischen k = 0,16 und k = 0,37. Für Prüflinge, die an der Luft getrocknet sind, wird ein Mittelwert von k = 0,23 angegeben.

Betonplatte	mittlere Spaltzug- festigkeit	Variations- koeffizient	Druck- festigkeit	erwartetes Minimum	erwartetes Maximum	erwartetes Mittel bei Luftlagerung	Korrelation
	$\mathbf{f}^{t}_{ct,SZ,m}$	v	f_{lc}	$f_{ct,SZ,min}$	$f_{ct,SZ,max}$	f _{ct,SZ,m}	f ^t _{ct,SZ,m} / f _{ct,SZ,m}
	[N/mm²]	[%]	[N/mm²]	[N/mm²]	[N/mm²]	[N/mm²]	[-]
LC20-120508-1	1,98	13,9	27,2	1,45	3,35	2,08	0,95
LC20-120508-2	1,89	12,4	23,5	1,31	3,03	1,89	1,00
LC20-120614-1	2,09	15,2	26,4	1,42	3,28	2,04	1,02
LC20-120614-2	2,22	21,9	28,8	1,50	3,48	2,16	1,03
LC20-120725-1	1,74	24,3	24,4	1,35	3,11	1,93	0,90
LC20-120725-2	1,63	17,5	22,3	1,27	2,93	1,82	0,89

 Tabelle 2.6
 Ergebnisse der Spaltzug-Untersuchungen im niederfesten Leichtbeton LC 20/22

Die Tabelle 2.6 stellt die ermittelten Spaltzugfestigkeiten im niederfesten Leichtbeton LC 20/22 den zu erwartenden Werten gegenüber.

Es zeigt sich, dass die ermittelten Spaltzugfestigkeiten im zu erwartenden Bereich und sogar nahe dem rechnerischen Mittelwert liegen.

Die im höherfesten Leichtbeton LC 40/44 ermittelten Spaltzugfestigkeiten sind in Tabelle 2.7 dargestellt.

Betonplatte	mittlere Spaltzug- festigkeit	Variations- koeffizient	Druck- festigkeit	erwartetes Minimum	erwartetes Maximum	erwartetes Mittel bei Luftlagerung	Korrelation
	f ^t ct,SZ,m	v	f _{lc}	f _{ct,SZ,min}	f _{ct,SZ,max}	f _{ct,SZ,m}	
	[N/mm²]	[%]	[N/mm²]	[N/mm²]	[N/mm²]	[N/mm²]	[-]
LC40-120531	2,42	22,4	48,2	2,12	4,90	3,05	0,79
LC40-120625	2,58	14,4	42,9	1,96	4,54	2,82	0,92
LC40-120731	2,97	14,1	43,2	1,97	4,56	2,83	1,05
LC40-120823	3,34	7,32	41,5	1,92	4,44	2,76	1,21
LC40-120903	3,01	21,8	43,9	1,99	4,61	2,86	1,05
LC40-120906	2,67	12,3	44,7	2,01	4,66	2,90	0,92

Tabelle 2.7 Ergebnisse der Spaltzug-Untersuchungen im höherfesten Leichtbeton LC 40/44

2.4 Versuchsmuster

Zur Herstellung der Versuchsmuster wurden handelsübliche Schrauben der Festigkeitsklasse 10.9 verwendet. Der Schraubenkopf wurde entfernt und ein der Schraube entsprechendes Gewinde auf das Ende des Schaftes geschnitten. Dieses Gewinde diente dann der Aufnahme des neuen Kopfs. Das Material des Kopfs bestand aus hochvergütetem Stahl der Werkstoffnummer 1.7225, um ein Versagen des Kopfs oder der Verbindung zum Schaft auszuschließen.

Eine Zeichnung der Kopfbolzen ist in Abbildung 1 dargestellt.

2.5 Durchführung der Versuche

Für die Versuchsreihen A1, A2 und A3 standen Abstützdurchmesser in den Abstufungen d = 235 mm, d = 295 mm, d = 450 mm, d = 600 mm und d = 700 mm zur Verfügung. Der Durchmesser der Abstützung wurde dabei in den A1-Versuchen in Analogie zum Normalbeton mindestens zum Vierfachen der Verankerungstiefe gewählt, um einen ungestörten Ausbruch des Leichtbetons zu ermöglichen. Für die A2- und A3-Versuche wurde der Abstützdurchmesser aufgrund der Ergebnisse in den A1-Versuchen auf das Sechsfache der Verankerungstiefe vergrößert.

Die Versuche zur Versagensart Herausziehen wurden mit enger Abstützung (confined tests) durchgeführt. Die Abstützdurchmesser betrugen bei allen Versuchen 47 mm.

Es wurden zwei unterschiedliche Versuchseinrichtungen verwendet. Für Versuche, die eine Tragfähigkeit bis etwa 85 kN erwarten ließen, wurde ein servo-hydraulisches System der Firma Hänchen verwendet. Darüber hinaus kam ein Hydrauliksystem der Fa. Enerpac zum Einsatz, mit dem Kräfte bis max. 300 kN gemessen werden können. Die Laststeigerung wurde so gewählt, dass ein Versagen zwischen 60 s und 180 s erreicht wurde.

Die folgende Abbildung zeigt die Versuchsaufbauten im Bild sowie schematisch.

Abbildung 4 Schematische Darstellung der Versuchszylinder [9]

Die Verformungsmessung erfolgte mit einem induktiven Wegaufnehmer mit einem Messbereich von 50 mm, der mithilfe einer Umlenkung direkt auf dem Anschlussgewinde des Kopfbolzens die Verformung erfasste.

Die Versuchsdurchführung und die verwendeten Mess- und Montagemittel entsprachen den Vorgaben der ETAG oo1[1]. Die detaillierten Testparameter können den entsprechenden Anhängen entnommen werden.

3. Versuchsergebnisse

3.1 Ergebnisse der Versuche mit der Versagensart ,Betonausbruch'

3.1.1 Übersicht

Die in diesem Abschnitt zitierten 5%-Quantile wurden auf der Basis einer Normalverteilung der Versagenslasten mit einer Aussagewahrscheinlichkeit von 90% bestimmt. Sämtliche Versuchsergebnisse in diesem Bericht sind detailliert als Anlagen beigefügt.

In der nachfolgenden Tabelle werden folgende Abkürzungen verwendet.

n	Anzahl der Versuche
V	Variationskoeffizient der ausgewerteten Stichprobe
h^{t}_{ef}	effektive Verankerungstiefe
C1	Randabstand im Versuch
A _H	$= \pi x (a_h^2 + d_s x a_h)$ in Zugrichtung wirksame Kopffläche
f _{lc,test}	Festigkeit der Betonuntergründe zum Versuchszeitpunkt
f _{Ic}	Bezugsfestigkeit des Leichtbetons, bezogen auf einen Würfel mit einer Kantenlänge von
	150 mm
$\rho_{\text{lc,test}}$	Trockenrohdichte der Betonuntergründe zum Versuchszeitpunkt
ρ_{lc}	Bezugsrohdichte des Leichtbetons gemäß [3]
F _{Ru,m}	mittlere Versagenslast der Stichprobe im Versuch
$F_{Rk,o}$	5%-Quantil der Stichprobe
Abkürzung	g der verschiedenen Versagensarten:
CF	Versagen durch kegelförmigen Ausbruch des Betons
Sp	Versagen durch Spalten des Betons

Po Versagen durch Herausziehen des kompletten Dübels

Kombinationen der obigen Versagensarten sind ebenfalls möglich.

	Bemerkungen	T10: unberücksichtigt aufgrund von Spalten	T8: unberücksichtigt aufgrund von Spalten			T8: unberücksichtigt aufgrund von Spalten														T5+6 vorgeschädigt!																	
erteilung	F _{Rk,0} [kN]	20,80	29,33	36,50	38,35	24,22	37,46	49,35	35,83	46,05	43,76	59,34	62,76	53,21	54,27	40,85	21,07	35,16	35,50	49,38	36,53	36,38	31,98	52,87	50,71		14,54			1,18	8,43	9,19	16,21	14,06			11,30
Normalv	F _{Ru,m} [kN]	24,16	36,18	45,36	45,18	27,81	43,21	54,29	49,59	65,29	60,67	74,91	70,47	88,39	87,26	49,05	29,22	49,21	52,48	62,59	45,79	51,54	67,35	60'90	62,52	21,57	17,90	23,25	18,50	10,78	11,15	11,24	18,57	17,90	19,33	18,03	18,44
	Versagensart	9xCF	9xCF	5xPo/CF	5xPo/CF	9xCF	10xCF	5xPo/CF	1xPo/Sp 4xPo/CF	4xCF	4xCF	5xCF	5xCF	1xPo/Sp 4xPo/CF	5xPo/Sp	8xCF	8xCF	6xCF	5xCF 1xS	4xCF	6xCF	6xCF	6xCF	8xCF	4xCF	2xCF	3xCF	2xCF	1xCF	3xCF	3xCF	6xCF	6xCF	6xCF	1xCF	2xCF	4xCF
-	Plc] ³]	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3
	P _{lc,test} [kg/dm	1,24	1,26	1,26	1,26	1,24	1,26	1,26	1,22	1,26	1,22	1,26	1,26	1,25	1,28	1,75	1,75	1,74	1,76	1,75	1,75	1,74	1,76	1,72	1,71	1,28	1,28	1,28	1,28	1,28	1,28	1,25	1,28	1,28	1,28	1,28	1,25
-	f _{lc}	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	44,0	44,0	44,0	44,0	44,0	44,0	44,0	44,0	44,0	44,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0
	f _{lc,test} ìm]	27,5	28,7	29,8	27,0	27,5	28,7	32,4	30,5	32,4	30,5	29,8	27,0	28,3	30,8	40,9	37,4	43,2	41,6	40,9	37,4	43,2	41,6	43,9	44,7	21,3	22,9	22,6	23,1	22,6	23,1	20,2	21,3	22,9	22,6	23,1	20,2
-	Α _H [π	412,3	412,3	412,3	412,3	553,7	553,7	553,7	553,7	1005	1005	1005	1005	1005	1005	553,7	553,7	412,3	412,3	553,7	553,7	1005	1005	553,7	553,7	412,3	412,3	412,3	412,3	553,7	553,7	553,7	553,7	553,7	1005	1005	1005
-	ъ С	182,0	218,0	347,0	347,0	181,0	218,0	341,0	341,0	222,0	222,0	468,0	468,0	446,0	446,0	185,0	185,0	150,0	150,0	185,0	185,0	250,0	250,0	185,0	185,0	150,0	150,0	150,0	150,0	185,0	185,0	185,0	185,0	185,0	250,0	250,0	250,0
	h ^e f	51,0	74,8	98,6	98,2	49,8	74,5	96,8	101,1	75,4	75,3	99,0	99,4	149,8	150,5	49,7	50,2	75,4	75,4	74,7	74,8	74,5	75,8	100,5	100,9	74,9	76,0	76,0	75,4	50,4	50,7	50,3	75,1	76,1	76,4	75,8	76,2
_	۷ [%]	5,25	7,15	5,74	4,44	4,87	5,19	2,68	8,16	7,45	7,04	6,11	3,22	11,70	11,12	6,07	10,13	9,23	10,46	5,33	6,54	9,51	16,98	4,79	4,77	9,57	3,54	1,02		16,76	4,60	5,89	4,11	6,94		6,71	9,79
	<u>د</u> ت	6	6	5	5	6	10	5	5	4	4	5	5	5	5	8	8	9	9	4	9	9	9	8	4	2	З	2	٢	3	3	9	9	9	-	2	4
	Verankerungs- grund	LC20/22	LC20/22	LC20/22	LC20/22	LC20/22	LC20/22	LC20/22	LC20/22	LC20/22	LC20/22	LC20/22	LC20/22	LC20/22	LC20/22	LC40/44	LC40/44	LC40/44	LC40/44	LC40/44	LC40/44	LC40/44	LC40/44	LC40/44	LC40/44	LC20/22											
-	Größe	10×50	10x75	10×100	10×100	16x50	16x75	16×100	16×100	22x75	22x75	22×100	22×100	22×150	22×150	16x50	16x50	10x75	10x75	16x75	16x75	22x75	22×75	16×100	16×100	10x75	10x75	10x75	10x75	16x50	16x50	16x50	16x75	16x75	22x75	22×75	22×75
-	Test	A1	A1	A1.1	A1.2	A1	A1	A1.1	A1.2	A1.1	A1.2	A1.1	A1.2	A1.1	A1.2	A2.1	A2.2	A2.1	A2.2	A2.1	A2.2	A2.1	A2.2	A2.1	A2.2	A3.1	A3.2	A3.3	A3.4	A3.1	A3.2	A3.3	A3.1	A3.2	A3.1	A3.2	A3.3

Tabelle 3.1 Versuchsergebnisse ,Kopfbolzen in Leichtbeton – Versagen durch Ausbruch'

3.1.2 Last-Verformungsverhalten

Die folgende Abbildung zeigt exemplarisch das Last-Verformungsverhalten im Versuch 1 der Größe d10x75 im niederfesten ungerissenen Leichtbeton LC 20/22.

Abbildung 5 Last-Verformungsverhalten im niederfesten Leichtbeton – d10x75 - 1

Die erste Auffälligkeit im Last-Verformungsverhalten ist in Abbildung 5 mit der Stelle A gekennzeichnet. Bei einer Last von etwa 5 kN bricht in Abhängigkeit von der Größe der Kopffläche das poröse Gerüst innerhalb der Zuschlagkörner zusammen und es kommt zur Kompression des unmittelbaren Lasteinleitungsbereichs. Die folgende Abbildung 6 zeigt den Kompressionsbereich. Abbildung 6 zeigt auf der rechten Seite außerdem einen Kopfbolzen nach dem Versuch. Es ist deutlich die Relativverschiebung zwischen Kopfbolzen und Betonoberfläche zu erkennen, die ebenfalls die Kompression im unmittelbaren Lasteinleitungsbereich belegt. Die dargestellte Mutter diente ursprünglich der Sicherung des Kopfbolzens in der Schalung und saß daher vor dem Versuch bündig versenkt in der Betonoberfläche.

Im Punkt B kommt es zu einer weiteren Verringerung der Steifigkeit, deren Ursache in der Rissbildung innerhalb des Ausbruchkegels zu suchen ist. Im Gegensatz zum Normalbeton überwiegen radial verlaufende Risse, die beispielhaft in Abbildung 7 gezeigt sind.

Der dargestellte Ablauf des Versagensprozesses ist ebenfalls durch die Form des Ausbruchkegels belegt. Zunächst sorgt das Zusammenbrechen des Korngerüsts für die Kompression des unmittelbar beanspruchten Leichtbetons. Am Ende dieser Kompression setzt dann die Rissbildung des Ausbruchs an.

Eine weitere Auffälligkeit ist ebenfalls in Abbildung 6 dargestellt. Die Neigung der Mantellinie des Ausbruchkegels liegt bei den Verankerungen in Leichtbeton bei etwa 20° zur Ebene der Betonoberfläche, während sie bei Normalbeton üblicherweise bei etwa 37,5° [11] liegt.

Auch die Form der Ausbruchfläche an der Oberfläche ist im Vergleich zum Normalbeton verändert. Während auf der einen Seite die Ausbruchkegelteile die Abstützung berühren oder sogar darunter verlaufen, gibt es auf der anderen Seite keine Berührung mit der Abstützung.

Abbildung 6 Teil eines Ausbruchkegels – niederfester Leichtbeton LC 20/22

Abbildung 7 Radialrisse im Ausbruchkegel – niederfester Leichtbeton LC 20/22

Im festeren ungerissenen Leichtbeton LC 40/44 ist die Kompression der Zuschläge nicht mehr so deutlich, da die Zuschläge durch eine höhere Festigkeit keine mit dem niederfesten Leichtbeton vergleichbare Kompression erfahren (Bereich A). Die folgende Abbildung 8 zeigt das Last-Verformungsverhalten im Versuch A2.1-1 der Größe d16x50.

Ein deutlich ausgeprägter Kompressionsbereich, wie im niederfesten Leichtbeton im A1-Versuch, ist bei den Versuchen im höher festen Leichtbeton nicht feststellbar. Die folgende Abbildung zeigt den Ausbruchkegel im ersten A2-Versuch der Größe d16x50.

Die Rissbildung läuft im Leichtbeton höherer Festigkeit LC 40/44 analog zur Rissbildung im niederfesten Beton ab. Auch hier zeigen sich deutlich mehr Radialrisse, die im Leichtbeton höherer Festigkeit häufig auch die Tragfähigkeit begrenzen. Die folgende Abbildung 10 zeigt die Versuche 1

und 5 der Größe d22x75 im höherfesten Leichtbeton LC 40/44. Bei beiden Versuchen zeigt die Last-Verformungskurve ein erstes Maximum bei etwa 48 kN und einen anschließenden steilen Lastabfall, der auf die Radialrissbildung hindeutet. Im Versuch 5 ist im Gegensatz zu Versuch 1 aber noch eine anschließende Laststeigerung auf etwa 61 kN möglich, während bei Versuch 1 das zweite Maximum lediglich einen Wert von 42 kN erreicht.

Es ist daher erforderlich, das erste Maximum der Versuche im höherfesten Leichtbeton LC 40/44 als Versagen durch Rissbildung zu definieren, da mögliche weitere und höhere Maxima nicht zuverlässig reproduziert werden können.

Abbildung 10 Last-Verformungsverhalten im A2.1 Test – d22x75 – 1 und 5

Die Versuche im gerissenen niederfesten Leichtbeton LC 20/22 ,A3' zeigen kaum Kompression, sondern hauptsächlich eine Verringerung der Steifigkeit durch Rissbildung. Im A1-Versuch mit der Größe d10 liegt der Kompressionsbereich für die drei untersuchten Verankerungstiefen 50 mm, 75 mm und 100 mm zwischen 4 kN und 5 kN. In den A3-Versuchen der Größe d10 ist dieser Bereich nicht zu erkennen.

Bei der Größe d16 liegt der Kompressionsbereich, dessen Höhe sich aus den A1-Versuchen ableiten lässt, bei einer Last von etwa 12 kN bis 16 kN und daher etwa auf dem Niveau des Versagens der A3-Versuche. Bei der Größe d22 liegt die Versagenslast in den A3-Tests ebenfalls etwa auf dem Niveau der Kompression aus dem A1-Versuch.

Abbildung 11 Last-Verformungsverhalten im A3 Test – d16x50 – 2

Die Bruchfläche entlang des Kopfbolzens d16x50 im A3-Versuch (niederfest – gerissen) ist in der folgenden Abbildung gezeigt. Auch hier ist kein Kompressionsbereich zu erkennen.

Abbildung 12 Fehlender Kompressionsbereich im A3 Test – d16x50 – 2

Es kann gefolgert werden, dass die Rissbildung maßgeblich für die Tragfähigkeit der Verankerung war und die lokale Tragfähigkeit der Zuschläge höher lag, als die Systemtragfähigkeit. Diese Erkenntnis lässt sich ebenfalls durch die A1-Versuche an der Größe d16 verifizieren, da die Kompression der Zuschläge bei der Größe d16 im A1-Versuch bei einer Last von etwa 14 kN beginnt.

Es liegt somit der Schluss nahe, dass die Rissbildung der maßgebliche Faktor für die Begrenzung der Tragfähigkeit ist und die lokale Festigkeit des Zuschlags in diesen Versuchen lediglich eine untergeordnete Rolle spielt.

3.1.3 Bewertung der Ergebnisse der A1-Versuche – niederfester, ungerissener Leichtbeton

Die Ergebnisse der Versuche im ungerissenen, niederfesten Leichtbeton der Festigkeitsklasse LC 20/22 zeigen sowohl eine Abhängigkeit von der Verankerungstiefe als auch von der Kopffläche. Im folgenden Diagramm ist die Abhängigkeit der Versuchsergebnisse der einzelnen Kopfbolzengrößen von der Verankerungstiefe dargestellt. Außerdem ist die theoretische Tragfähigkeit im Normalbeton der gleichen Festigkeit gezeigt. Die Kompression wurde dabei außer Acht gelassen, d. h. es erfolgte keine rechnerische Anpassung der Verankerungstiefe.

Es zeigt sich, dass sich für die drei Größen jeweils ein linearer Trend der mittleren Versagenslast über die Verankerungstiefe ableiten lässt. Darüber hinaus wird jedoch auch deutlich, dass es zusätzliche Parameter für die Ableitung einer Bemessungsformel geben muss, da sich für gleiche Verankerungstiefen unterschiedliche Tragfähigkeiten abhängig vom Durchmesser ergeben.

Zusätzlich wird durch den Vergleich mit der Bemessung nach CEN [2] unter der Berücksichtigung einer Festigkeit von f_{lc} = 22 N/mm² deutlich, dass der derzeitige Ansatz zur Bemessung nicht ohne Modifikation auf Verankerungen in Leichtbeton übertragbar ist.

Der Ausgangspunkt des Versagens liegt am Rand des Kopfes des Kopfbolzens, so dass mit steigender Kopffläche auch eine größere Mantelfläche des Ausbruchkegels und folglich eine höhere Tragfähigkeit folgt. Als weiterer Parameter, der die Tragfähigkeit beeinflusst, wurde daher die wirksame Kopffläche A_H untersucht. Die folgende Abbildung zeigt die Abhängigkeit der Versuchsergebnisse von der wirksamen Kopffläche A_H der Kopfbolzen.

Abbildung 14 Abhängigkeit der mittleren Versagenslast von der wirksamen Kopffläche – A1-Tests

In diesem Diagramm zeigt sich ebenfalls, analog zu Abbildung 13, ein bereichsweise linearer Trend zwischen mittlerer Tragfähigkeit und der wirksamen Kopffläche der Verankerung. Eine Kombination beider Einflussgrößen scheint daher naheliegend.

Durch Iteration der Parameter ergibt sich eine Kombination beider Einflussgrößen gemäß folgender Proportionalitätsbeziehung.

$$F_{Ru,m} \sim \left(h_{ef}^{1,5} + A_H\right) \tag{3-1}$$

Die folgende Abbildung 15 stellt die mittleren Versagenslasten im Versuch der Summe aus wirksamer Kopffläche und der dritten Wurzel des Quadrats der effektiven Verankerungstiefe gegenüber.

Abbildung 15 Abhängigkeit der mittleren Versagenslast von der Summe aus wirksamer Kopffläche und Verankerungstiefe^{1,5} – A1-Tests

Abbildung 15 verdeutlicht, dass sich die mittleren Versagenslasten sehr gut durch einen linearen Trend in Abhängigkeit von der Summe aus der dritten Wurzel des Quadrats der Verankerungstiefe h_{ef}^{1,5} sowie der wirksamen Kopffläche A_H abbilden lassen. Die Gültigkeit des Trends ist dabei auf den untersuchten Bereich eingegrenzt.

Aufgrund der empirischen Herleitung dieser Abhängigkeit ergibt sich keine einheitenkonforme Lösung, deren Anwendbarkeit zunächst auf den untersuchten Bereich einzuschränken ist.

3.1.4 Bewertung der Ergebnisse der A3-Versuche – niederfester, gerissener Leichtbeton

Im gerissenen Leichtbeton der Festigkeitsklasse LC 20/22 wurden hauptsächlich Versuche mit einer Verankerungstiefe von 75 mm durchgeführt. Zusätzlich wurde die Größe d16x50 untersucht. Die Rissbreite in allen Versuchen betrug $\Delta w = 0,30$ mm. Es wurde davon ausgegangen, dass die Rissbreiten im Leichtbeton denen im Normalbeton ähneln.

Bei diesen Versuchen war, im Vergleich zu den Versuchen im ungerissenen niederfesten Leichtbeton, kein Einfluss der wirksamen Kopffläche mehr erkennbar. Die folgende Abbildung zeigt einen Vergleich mit den Versuchen im ungerissenen Leichtbeton LC 20/22 (A1-Tests) und der rechnerischen Tragfähigkeit nach CEN [2] im gerissenen Normalbeton der Festigkeit 22 N/mm².

Abbildung 16 Vergleich der mittleren Versagenslasten in ungerissenem und gerissenem Leichtbeton – A1- und A3-Tests

Im Normalbeton beträgt das Verhältnis der Tragfähigkeiten im ungerissenen und gerissenen Beton etwa 0,7 [1, Anhang B, Gleichungen (2.3) und (2.4)]. Aus Abbildung 16 lässt sich ableiten, dass dieses Verhältnis im Leichtbeton LC 20/22 deutlich geringer zu sein scheint. Die folgende Abbildung zeigt das Verhältnis α_m der mittleren Tragfähigkeiten im ungerissenen und gerissenen Beton in Abhängigkeit von der Verankerungstiefe.

Abbildung 17 Verhältnis der mittleren Versagenslasten in ungerissenem und gerissenem Leichtbeton in Abhängigkeit von der Verankerungstiefe – A1- und A3-Tests

Der Grund für das unterschiedliche Tragverhalten zwischen ungerissenem und gerissenem Leichtbeton konnte nicht ermittelt werden. Es ist aber davon auszugehen, dass die geringere Zugfestigkeit des Leichtbetons im Vergleich zum Normalbeton ein wesentlicher Grund ist.

Aber die Abhängigkeit der mittleren Versagenslast von der dritten Wurzel des Quadrats der Verankerungstiefe konnte ermittelt werden. Es ergibt sich, dass die Ergebnisse lediglich von der Verankerungstiefe und nicht von der Kopffläche abhängen.

Eine Darstellung der mittleren Versagenslasten über der dritten Wurzel des Quadrats der Verankerungstiefe zeigt das folgende Diagramm.

Abbildung 18 Abhängigkeit der mittleren Versagenslasten von der Verankerungstiefe h_{ef}^{1,5} in gerissenem Leichtbeton – A₃-Tests

Daher lässt sich die Tragfähigkeit der untersuchten Kopfbolzen im gerissenen Leichtbeton LC20/22 bei einer Rissweite von $\Delta w = 0,3$ mm analog zur bekannten Bemessung gemäß ETAG oo1 [1, Anhang C] in Abhängigkeit von der Verankerungstiefe und der Festigkeit ausdrücken.

Abbildung 19 Abhängigkeit der mittleren Versagenslasten von der Verankerungstiefe^{1,5} und der Wurzel der Festigkeit flc^{0,5} – A3-Tests

In der Abbildung 19 sind die mittleren Versagenslasten dem Produkt h_{ef}^{1,5} x f_{lc}^{0,5} gegenüber gestellt. Außerdem werden die Mittelwerte der Versagenslasten der einzelnen Versuchsreihen mit zwei linearen Trends gezeigt. Der eine Trend bezieht nicht den Ursprung in Berechnungen ein, so dass sich ein y-Achsenabschnitt von etwa 1,5 kN ergibt. Unter Berücksichtigung des Ursprungs ergibt sich eine geringfügig höhere Steigung der Trendlinie. Mit der folgenden Gleichung (3-2) lassen sich daher die Versuchsergebnisse der A3-Versuche gut annähern.

$$F_{Ru,m}(A3) = 6.3 \times h_{ef}^{1.5} \times \sqrt{f_{lc}}$$
(3-2)

3.1.5 Bewertung der Ergebnisse der A2-Versuche – höherfester, ungerissener Leichtbeton LC 40/44

Die Versuche in Leichtbeton höherer Festigkeit LC 40/44 führten nicht zu schlüssigen Resultaten. Wie bei den Versuchen in niederfestem Leichtbeton LC 20/22 wurden die Versuche über mehrere Versuchsuntergründe verteilt, um die Streuung aus der Herstellung der Versuchsuntergründe ebenfalls zu erfassen.

Die folgende Abbildung stellt die mittleren Versagenslasten der verschiedenen Größen, Verankerungstiefen und Untergründen den Ergebnissen im niederfesten Leichtbeton LC 20/22 gegenüber.

Abbildung 20 Gegenüberstellung der mittleren Versagenslasten im niederfesten Leichtbeton LC 20/22 und im höherfesten Leichtbeton LC 40/44 – A1- und A2-Tests

Abbildung 20 zeigt, dass die Ergebnisse der Größe 16 bei einer Verankerungstiefe von 50 mm und 75 mm einer großen Streuung unterliegen. Für die Größe 22 liegen die Ergebnisse im LC 40/44 zum Teil sogar unterhalb der Werte, die im LC 20/22 erzielt wurden.

Die Ergebnisse der Versuche an den Größe d16x50 und d16x75 wurden jeweils in denselben Untergründen erzielt, d. h. etwa 50 % der Versuche mit der Größe d16x50 wurden zusammen mit der Hälfte der Prüflinge der Größe d16x75 auf einer Betonplatte angeordnet. Die verbliebenen Prüfungen befanden sich gemeinsam auf einer weiteren Platte. Die Herstellung dieser Platten erfolgte aufgrund der Größe in drei Betonierabschnitten, d. h. der Leichtbeton wurde in mehreren Lagen eingebracht. Die erste Mischung fiel durch ein großes Ausbreitmaß auf und lässt daher auf einen im Vergleich mit den anderen Mischungen zu großen Wassergehalt und daher eine geringere Festigkeit schließen. Das Versagensbild einiger dieser Versuche zeigt darüber hinaus einen höheren Anteil an Verbundbrüchen entlang der Mantellinie des Ausbruchkegels. Bei den Versuchen im niederfesten Leichtbeton LC 20/22 war die Bruchfläche durch Kornbruch gekennzeichnet, d. h. Risse verliefen durch das Korn und nicht herum. Die folgende Abbildung 21 zeigt den Unterschied der Bruchflächen zwischen LC 20/22 und LC 40/44.

LC 20/22 – d22x100 – Versuch 5

Abbildung 21 Vergleich der Bruchflächen im LC 20/22 und LC 40/44

Es wird deutlich, dass der Anteil gebrochener Körner innerhalb der Bruchfläche im LC 40/44 deutlich geringer ist. Im Bruchzustand war daher im LC 20/22 der Bruch des Korn maßgebend, während im Leichtbeton höherer Festigkeit LC 40/44 die Verbundzone zwischen Zementmatrix und Korn aufgrund eines zu hohen Wassergehalts versagt hat.

Zur Ermittlung der Materialeigenschaften wurden im Zuge der Betonage der Untergründe Würfel mit einer Kantenlänge von 150 mm hergestellt. Dabei wurden die Würfelschalungen sortenrein entsprechend der Charge befüllt. Eine Durchmischung fand nicht statt.

Aufgrund des lagenweisen Einbringens des Leichtbetons ergibt sich daher im Verankerungsbereich der Größen d16x50 aber auch d16x75, dass die Leichtbetoncharge mit dem hohen Wassergehalt und der geringen Festigkeit das Tragverhalten der Kopfbolzen maßgeblich bestimmt. Die folgende Abbildung illustriert die Schichtung im Beton aufgrund des Betonageablaufs.

Als Festigkeit ist daher lediglich ein Wert von $f_{lc} = 31,5 \text{ N/mm}^2$ berücksichtigt. Die Dicke dieser ersten Betonlage entsprach etwa der Verankerungstiefe 50 mm, so dass die Versuche mit der Größe d16x50 eine Beeinflussung zeigen, während die Versuche an der Größe d16x75 ohne Auffälligkeit sind.

Für die Versuchsreihen d10x75 und d22x75 wurde analog den vorgenannten Versuchen verfahren. Die Prüflinge wurden je zur Hälfte auf zwei Betonuntergründe verteilt. Die Größe d10x75 führt dabei zu schlüssigen Ergebnissen, da sich nur eine geringe Varianz in Abhängigkeit von der verwendeten Betonplatte zeigt. Für die Größe d22x75 hingegen liegen die Werte der ersten Teilserie etwa auf gleichem Niveau, wie die Versuche in niederfestem Beton. Die Ergebnisse der zweiten Teilserie jedoch liegen etwa 16 kN unter denen der ersten Teilserie im LC 40/44.

Es lässt sich somit keine schlüssige Erklärung für die Ergebnisse finden und eine rechnerische Ableitung der Versuchsergebnisse ist nicht möglich.

3.2 Ergebnisse der Versuche mit der Versagensart ,Herausziehen'

3.2.1 Übersicht

Die in diesem Abschnitt zitierten 5%-Quantile wurden auf der Basis einer Normalverteilung der Versagenslasten mit einer Aussagewahrscheinlichkeit von 90% bestimmt. Sämtliche Versuchsergebnisse in diesem Bericht sind detailliert als Anlagen beigefügt.

In der nachfolgenden Tabelle werden folgende Abkürzungen verwendet.

n	Anzahl der Versuche
v	Variationskoeffizient der ausgewerteten Stichprobe
h^{t}_{ef}	effektive Verankerungstiefe
a _h	Schulterbreite
C1	Randabstand im Versuch
As	maßgebender Stahlquerschnitt in Zugrichtung
A _H	= π x (a _h ² + d _s x a _h) in Zugrichtung wirksame Kopffläche
f _{lc,test}	Festigkeit der Betonuntergründe zum Versuchszeitpunkt
f _{lc}	Bezugsfestigkeit des Leichtbetons, bezogen auf einen Würfel mit einer Kantenlänge von
	150 mm
$\rho_{\text{lc,test}}$	Trockenrohdichte der Betonuntergründe zum Versuchszeitpunkt
ρ_{lc}	Bezugsrohdichte des Leichtbetons gemäß [3]
F _{Ru,m}	mittlere Versagenslast der Stichprobe im Versuch
F _{Rk,o}	5%-Quantil der Stichprobe
Abkürzung	der verschiedenen Versagensarten:

Po Versagen durch Herausziehen des Kopfbolzens ohne kegelförmigen Ausbruch

Zunächst war es erforderlich, einen geeigneten Abstützdurchmesser zur Ermittlung des Herauszieh-Widerstands zu finden. Daher wurden die ersten Versuche der Größe d10 mit einem Abstützdurchmesser von 37 mm durchgeführt. Dieser Durchmesser wurde in Analogie zu ETAG 029 [12, Annex A] zu 1,5 x d bis 2,0 x d gewählt. Es zeigte sich jedoch, dass kein Versagen durch Herausziehen mit diesem Durchmesser erreicht werden konnte. Daher wurden alle weiteren Versuche mit einem Durchmesser der Abstützung von 47 mm durchgeführt.

Die folgende Tabelle 3.2 stellt die Ergebnisse der Versuche zur Versagensart ,Herausziehen' zusammen.

															Normalve	erteilung
Größe Verank	Verank	erungs-	c	>	h^{t}_{ef}	'n	ပ်	A_{s}	Α	f _{lc,test}	f _{lc}	$\rho_{\rm lc,test}$	P _{lc}	Versagens-	$F_{Ru,m}$	$F_{Rk,0}$
gr	gr	nnd	Ŀ	[%]	·	[mm]		-	Ľ	nm²]		[kg/c	dm ³]	art	[kN]	[kN]
10x75x5,0 LC	LC	20/22	5	6,68	75,0	5,0	120	78,5	235,6	26,40	22,0	1,24	1,3	5xPo	53,59	41,42
10x75x5,0 LC	ΓC	:20/22	4	2,33	75,0	5,0	120	78,5	235,6	28,83	22,0	1,24	1,3	4xPo	49,66	45,09
10x75x7,5 LC	ΓC	:20/22	4	9,47	75,0	7,5	150	78,5	412,3	27,19	22,0	1,26	1,3	4xPo	66,03	41,29
10x75x7,5 LC	ГС	20/22	5	4,45	75,0	7,5	150	78,5	412,3	23,48	22,0	1,26	1,3	5xPo	64,57	54,79
16x75x5,0 LC	ΓC	:20/22	5	8,51	75,0	5,0	155	201,1	329,9	26,40	22,0	1,24	1,3	5xPo	67,69	48,10
16x75x5,0 LC	ΓC	20/22	5	4,13	75,0	5,0	155	201,1	329,9	28,83	22,0	1,24	1,3	5xPo	67,60	58,10
16x75x7,5 LC	ΓC	:20/22	5	3,44	75,0	7,5	185	201,1	553,7	27,19	22,0	1,26	1,3	5xPo	85,43	75,44
16x75x7,5 LC	ΓC	20/22	5	4,44	75,0	7,5	185	201,1	553,7	23,48	22,0	1,26	1,3	5xPo	78,39	66,54
16x75x10,0 L0		C20/22	3	2,15	75,0	10,0	215	201,1	816,8	24,40	22,0	1,24	1,3	ЗхРо	89,42	79,23
16x75x10,0 L0		C20/22	5	2,66	75,0	10,0	215	201,1	816,8	22,28	22,0	1,24	1,3	5xPo	87,73	79,78
22x75x7,5 L		C20/22	4	1,49	75,0	7,5	220	380,1	695,1	24,40	22,0	1,24	1,3	4xPo	91,07	85,68
22x75x7,5 L		C20/22	5	8,50	75,0	7,5	220	380,1	695,1	22,28	22,0	1,24	1,3	5xPo	86,16	61,27

Tabelle 3.2 Ergebnisse ,Kopfbolzen in Leichtbeton – Versagen durch Herausziehen'

3.2.2 Last-Verformungsverhalten

Die folgende Abbildung 23 zeigt exemplarisch das Verformungsverhalten im Versuch A1conf.2-1 der Größe d16-75-7,5.

Abbildung 23 Last-Verformungsverhalten im Versuch 1 der Größe d16-75-7,5 – Serie A1conf.2

Analog den Versuchen mit weiter Abstützung (Serie A1) ist eine erste Abnahme der Steifigkeit im Lastbereich zwischen 5 kN und 10 kN zu erkennen (Bereich A). Ab einer Last von etwa 20 kN bis 25 kN (Bereich B) sinkt die Steifigkeit weiter, bis bei etwa 80 kN die Höchstlast erreicht wird. Auch Bereich B ist bereits aus den A1-Versuchen bekannt. Das Last-Verformungsverhalten bei enger Abstützung ist somit dem bei weiter Abstützung bis zu einer Last von etwa 25 kN sehr ähnlich. Die Annahme, dass zunächst der lokal hoch beanspruchte Leichtbeton in der Lasteinleitungszone am Kopf des Kopfbolzens komprimiert wird und erst im Anschluss die Rissbildung einsetzt, ist damit bestätigt.

Das Versagen in den A1conf-Versuchen ist durch eine Art Durchstanzen gekennzeichnet, das in den Anhängen und in Tabelle 3.2 als Herausziehen gekennzeichnet ist. Die folgende Abbildung 24 zeigt einen Kopfbolzen mit dem umgebenden Leichtbeton nach dem Versuch. Der Bereich des komprimierten Leichtbetons oberhalb des Bolzenkopfes ist deutlich zu erkennen. Außerdem sind die Risse zu sehen, entlang derer das Schubversagen stattgefunden hat.

Abbildung 24 Schnitt durch die Versagensstelle – A1conf-Versuche

3.2.3 Bewertung der Versuche zur Versagensart ,Herausziehen' – A1conf-Versuche

Die Versuche zur Versagensart ,Herausziehen' zeigen eine Abhängigkeit der Versagenslast von der Schulterbreite.

Abbildung 25 Abhängigkeit der Versagenslast von der Schulterbreite ah – A1conf-Versuche

In Abbildung 25 ist die mittlere Versagenslast in Abhängigkeit von der Schulterbreite gezeigt. Es wird deutlich, dass bei gleicher Schulterbreite die Last mit zunehmendem Schaftdurchmesser steigt. Zusätzlich ist im Diagramm gegenübergestellt, welche Tragfähigkeiten sich nach der bisherigen Berechnung gemäß CEN [2] ergeben würden. Es zeigt sich, dass bei Anwendung der bisherigen Formel die Tragfähigkeiten zum Teil deutlich überschätzt würden. Eine Anpassung ist daher auch für die Versagensart "Herausziehen" erforderlich.

Der gemeinsame Einfluss von Schaftdurchmesser und Schulterbreite lässt sich durch die wirksame Kopffläche ausdrücken. Im folgenden Diagramm ist daher die mittlere Tragfähigkeit in Abhängigkeit von der wirksamen Kopffläche A_h dargestellt. Auch in diesem Diagramm ist zur Orientierung die rechnerische Tragfähigkeit nach der derzeit gültigen Bemessung für Normalbeton [2] gezeigt.

Abbildung 26 Abhängigkeit der Versagenslast von der Kopffläche A_h – A1conf-Versuche

Die derzeitige Bemessungsformel für Normalbeton nach der folgenden Gleichung hat eine Steigung von 8,4 = 6 x 1,4, die auf die Ergebnisse im Leichtbeton nicht übertragbar ist.

$$F_{Ru,m,p} = 6 \times 1.4 \times A_h \times f_{ck,cube}$$
(3-3)

Die Ergebnisse im Leichtbeton hingegen lassen sich zwar bereichsweise durch einen linearen Trend annähern, aber dieser bezieht den Ursprung nicht mit ein. Eine Tragfähigkeit von 41,9 kN bei einer Kopffläche $A_h = o$ ist die mechanisch sinnlose Folge. Im Diagramm ist daher zusätzlich ein logarithmischer Trend gezeigt, der die Ergebnisse der Untersuchungen besser annähert, als die lineare Regression. Dieser logarithmische Trend liefert bei einer Kopffläche von $A_h = 42 \text{ mm}^2$ eine Tragfähigkeit von F = o. Bei einem Schaftdurchmesser von 10 mm entspräche das einer Schulterbreite von $a_h \approx 1,2$ mm. Der logarithmische Trend liefert somit auch das mechanisch sinnvollere Ergebnis in Bezug auf den Nulldurchgang.
Wird in diese Betrachtung auch noch die Festigkeit des Untergrundes einbezogen, lässt sich der in der folgenden Abbildung 27 dargestellte Zusammenhang ableiten. Die Gültigkeit ist dabei auf en in den Versuchen geprüften Bereich eingegrenzt (6 N bis 20 N).

Abbildung 27 Abhängigkeit der Versagenslast von Kopffläche Ah und Festigkeit flc,test – A1conf-Versuche

Auch bei dieser Betrachtung ergibt die Näherung mit Hilfe des natürlichen Logarithmus die mechanisch sinnvollere Lösung. Unter Annahme einer Festigkeit von $f_{lc} = 22 \text{ N/mm}^2$ ergibt sich eine Tragfähigkeit von F = 0 kN für eine Schulterbreite von $a_h = 1,85 \text{ mm}$.

Für die rechnerische Ermittlung der mittleren Tragfähigkeit von Kopfbolzen in niederfestem Leichtbeton LC 20/22 lässt sich somit die folgende Formel ableiten.

$$F_{Ru,m,p}(LC\ 20/22) = 36.038 \times \ln(A_h \times f_{lc}) - 264.000 \tag{3-4}$$

Aufgrund des Versuchsumfangs und der untersuchten Kopfbolzengeometrie hat diese Formel zunächst nur Gültigkeit bei Einhaltung der untersuchten Parameter. Diese Parameter sind zum einen die Festigkeitsklasse LC 20/22 sowie zum anderen die Kopfbolzengeometrie. Zur allgemeinen Anwendung der Gleichung sind deutlich mehr Versuche mit unterschiedlicher Geometrie und Festigkeiten des Leichtbetons nötig.

4. Fazit und Zusammenfassung

4.1 Überblick

Im Rahmen der Untersuchungen im ungerissenen niederfesten Leichtbeton konnten zwei wesentliche Mechanismen im Versagensprozess erarbeitet werden. Zum einen ist die Rissbildung hauptursächlich für das Versagen durch Betonausbruch. Die Risse sind jedoch, anders als im Normalbeton hauptsächlich radial orientiert. Daher scheint die Anordnung von Oberflächenbewehrung zur Minimierung und Verteilung der Risse unumgänglich. Zum anderen wird im unmittelbaren Lasteinleitungsbereich am Kopf des Kopfbolzens der Leichtzuschlag stark komprimiert. Es stellt sich heraus, dass das Tragverhalten sowohl von der Verankerungstiefe als auch von der wirksamen Kopffläche des Kopfbolzens abhängt.

Im gerissenen niederfesten Leichtbeton der Rissweite $\Delta w = 0.3$ mm ist die Kompression der Leichtzuschläge nicht mehr zweifelsfrei nachweisbar und auch die Abhängigkeit der Versagenslast von der wirksamen Kopffläche A_h ist nicht mehr gegeben. Eine durchgängige Bemessungsvorschrift, wie sie im cc-Verfahren nach [2] Verwendung findet, ist daher zunächst nicht möglich. Auf der sicheren Seite liegend, sollte aber auch im gerissenen Leichtbeton von einer Kompression ausgegangen werden.

Der Einfluss höherer Festigkeit und auch weiterer Rohdichten sollte durch Untersuchungen in Leichtbeton der Festigkeitsklasse LC 40/44 ermittelt werden. Die Ergebnisse sind aber nicht einheitlich und lassen keinen mechanisch sinnvollen Schluss in Bezug auf die Abhängigkeit der Tragfähigkeit zu. Der Einfluss der Rohdichte wurde daher ebenfalls nicht erfasst.

Zur Versagensart, Herausziehen' wurden insgesamt 60 Versuche durchgeführt und die Resultate mit der derzeitigen Bemessungsformel nach [2] verglichen. Im Leichtbeton kann der bisherige Bemessungsansatz jedoch nicht uneingeschränkt verwendet werden. In dieser Arbeit wurde daher auf Basis des natürlichen Logarithmus ein neuer Ansatz zur rechnerischen Ermittlung der Tragfähigkeit erarbeitet. Zusätzlich lassen sich aus dem Last-Verformungsverhalten Rückschlüsse auch für die Versuche mit Betonausbruch ableiten.

Zu den Untersuchungen der Tragfähigkeit wurden begleitend immer auch die Druckfestigkeit an Würfeln und Bohrkernen untersucht. Zusätzlich wurde die Zugfestigkeit zunächst durch zentrische Zugversuche erfasst. Es ergaben sich aus diesen Versuchen keine schlüssigen Ergebnisse, weil die Bohrkerne durch den Entnahmeprozess zu starke Vorschädigungen aufwiesen. In der Folge wurde die Zugfestigkeit auf Basis der Spaltzugfestigkeit ermittelt. Außerdem wurde an einigen Proben der E-Modul des Leichtbetons gemessen. Sowohl die Spaltzugfestigkeit als auch der E-Modul zeigten keinerlei Besonderheiten, sondern lagen im Erwartungsbereich nach [13].

4.2 Ausblick

Die Unterschiede zwischen dem Tragverhalten in Normal- und Leichtbeton sind deutlich stärker ausgefallen als im Vorfeld der Untersuchungen zu vermuten war. Insbesondere die nicht vernachlässigbare Abhängigkeit im niederfesten ungerissenen Leichtbeton von der wirksamen Kopffläche erfordert weitere Untersuchungen.

Darüber hinaus lässt die große lokale Verformungsfähigkeit des Leichtbetons starke Lastumlagerung innerhalb von Gruppen zu. Die Tragfähigkeit von Gruppen ist daher gesondert zu untersuchen.

Eine genaue Aussage zum Einfluss von Festigkeit und Rohdichte ist nach den vorliegenden Untersuchungen nicht möglich. Die in diesem Bericht dargestellten Untersuchungen sollten wiederholt und erweitert werden, um diese für die Beurteilung wesentlichen Einflüsse erfassen zu können.

Zusätzlich beeinflusst die lokale Kompression des Leichtzuschlags das Tragverhalten maßgeblich. Auch aus diesem Grund sollten weitere Zuschläge mit unterschiedlichen Festigkeiten untersucht werden. Die Tragfähigkeit bei der Versagensart ,Herausziehen' ist in dieser Hinsicht besonders interessant.

Durch Verwendung von Kopfbolzen wurde eine eindeutige Lasteinleitung durch das Wirkprinzip Formschluss bei den vorliegenden Untersuchungen zu Grunde gelegt. Im Hinblick auf nachträgliche Befestigungen sollten weitere Produkte untersucht werden. Aufgrund der geringen lokalen Festigkeit der Leichtzuschläge, bieten sich hier Systeme an, die die Einwirkung über eine möglichst große Fläche verteilen und an den Untergrund weiterleiten.

Kopfbolzen im Leichtbeton scheinen für eine praktische Nutzung keine bevorzugte Befestigungsvariante zu sein. Vermutlich sind Injektionsbefestigungen günstiger, da eine Kompression nicht zu erwarten ist und eine relativ große Oberfläche für die Übertragung der Ankerkraft in den Leichtbeton zur Verfügung steht.

Dortmund, 07.Juli 2016

Dr.-Ing. K. Block Es folgen 95 Blatt Anlagen.

Dipl.-Ing. Rainer Becker

Tabelle 4 Übersicht über die Anhänge

Versuchsbeschreibung							
Aı	Zugversuche LC20/22 ungerissen – weite Abstützung	1					
A2	Zugversuche LC40/44 ungerissen – weite Abstützung	2					
A ₃	Zugversuche LC20/22 Rissweite 0,3 mm – weite Abstützung	3					
A1 conf	Zugversuche LC20/22 ungerissen – enge Abstützung	4					
Ermittlung der Betonkenndaten – Druckfestigkeit							
Ermittlung der Betonkenndaten – Zug- und Spaltzugfestigkeit, E-Modul							

Anhang 2.7 kind of test anchor size description of test project FV-Leichtbet. Charateristic resistance for tension loading d22x75 A2.1 11.02.26 not influenced by edge and spacing effects anchor dimensions & test rigg base material & installation forces / statistics $F_{Ru,m}^{t} = 51,54 \text{ kN}$ connecting thread : M22 base material : LC40/44 ; LC40-120731-1 strength / density : 47,8 N/mm² / 1,74 kg/dm³ diameter of shaft d_s : 22 mm v = 9,51 % width of shoulder a_h: 10 mm $F_{Rk,NV}^{t} = 36,39 \text{ kN}$ dimensions : 250x190x25 cm³ length of shaft ls : 75 mm $F_{Rk,log}^{t} = 38,73 \text{ kN}$ height of head h_k : 22 mm tester : PK T_{inst} : -h_{ef}: 75,0 mm edge distance : 1 test dev. / Ø: Doli / 450 mm t_{fix}: 22,0 mm temperature : 20,0 °C test speed : 2 mm/min force-displacemant diagram 85 80 75 70 65 60,63 60 55 52,35 50,77 50.80 50 47,97 [kN] 46,75 45 force 40 35 30 25 20 15 10 5 0 5 7 0 2 3 4 6 8 9 10 11 12 13 14 15 17 19 20 1 16 18 displacement [mm] summary test number 7 10 11 12 1 2 3 4 5 6 8 9 [mm] ---anchor length ---------overstand 29,06 28,15 29,50 30,11 29,80 30,20 [mm] cone depth [mm] 60,36 66,25 65,18 64,32 64,73 64,27 date of test [dd.mm] 01.10 01.10 01.10 01.10 01.10 01.10 15:17 15:28 15:42 15:49 15:55 16:05 test time [hh:mm] N_1 47,97 52,35 50,77 46,75 48,91 49,36 [kN] δ_{FtRu} 0,50 0,38 0,44 0,30 3,43 3,08 [mm] F_{Ru}^{t} 47,97 46,75 60,63 50,80 [kN] 52,35 50,77 kind of failure CF CF CF CF CF CF annotation kind of failure : S = steel failure, Po = pull out, Pt = pull through, CF = failure of base material, Sp = splitting

Anhang 3.1														
project		anchor si	ize	Ch	to rio	deso	cription of	f test		kind of test				
11 02 26		d16x5	50	not influenced by edge and spacing effects								A3		
t	est rigg				minuor	base ma	terial & ir	nstallation		.010	forces / statistics			
connecting thread : M16			base material : LC 20/22 · LC20-130114-1								$F_{Bum}^{t} = 11.10 \text{ kN}$			
diameter of shaft de : 16 mm			strer	nath / d	ensitv ·	22.6 N	, l/mm² /	1.274 k	a/dm ³	v = 8.45%				
width of shoulder a_b : 7.5 mm				dimensions \cdot 220x177x20 cm ³								$F_{DLNV}^{t} = 8.81 \text{ kN}$		
length of shaft l_{e} : 50 mm					annor	$F^{t}_{Rk \log} = 8,99 \text{ kN}$								
height of			KK,IOG											
- 3	е	dae dis												
test dev. / Ø:Doli / 295 mm				tempe										
test speed :	10 m	m/min				```								
force-displacemant diagram														
14														
	12,80											-	12,50	
12 ++++++++++++++++++++++++++++++++++++				11.44	4	4 11,4	6			• 1.	1 34			
					0.56		10.59	- -1-1,() <mark>9-10</mark> ,9	7+	10	,95		
10 -	$\mathbf{\lambda}$	10,2	.1					.	-					
			9,32		\									
<u> </u>														
NX K								/						
e														
9 6														
4														
2														
0	2	4	6	8	10	12	2 1	4 [·]	16	18	20	22	24	
					disp	laceme	nt [mm]]						
						summary	/							
test number		1	2	3	4	5	6	7	8	9	10	11	12	
anchor length	[mm]	78,23	78,21	78,01	78,07	78,02	77,86	78,71	81,50	78,79	78,76	78,11	78,75	
overstand	[mm]	29,12	27,16	27,11	27,94	26,28	27,59	28,20	31,13	28,38	28,40	28,91	27,93	
embed. depth	[mm]	49,11	51,05	50,90	50,13	51,74	50,27	50,51	50,37	50,41	50,36	49,20	50,82	
cone depth	[mm]	16	16	16	16	16	16	16	16	16	16	16	16	
edge distance	[mm]	434/348	346	441/351	451/356	353	434/356	439/278	278	439/277	439/276	275	437/277	
date of test [do	d.mm]	22.03	22.03	22.03	25.03	25.03	25.03	27.03	27.03	27.03	27.03	27.03	27.03	
test time [hh:mm]		12:22	12:17	12:10	17:53	17:58	18:04	14:04	14:15	14:24	16:10	16:30	16:40	
O _{FtRu}		1,49	1,67	0,50	1,07	0,01	0,65	0,32	0,45	0,01	0,45	0,00	0,53	
F` _{Ru} kind of fo ^{ll} ure	[KN]	12,80	10,21	9,32	11,44	10,56	11,46	10,59	11,09	10,97	11,34	10,95	12,50	
king of fallure		UF		СГ					СГ	UF			UL	
T4-6: LC20-130	T4-6: LC20-130114-2 T7-12: LC20-130227-1 f_{lc} = 20.2 N/mm ² ρ_{lc} = 1.253 kg/dm ³													
kind of failu	ire: S	S = steel f	failure,	Po = pul	lout, P	t = pull th	rough,	CF = fail	ure of ba	se mater	ial, Sp	= splitting	3	

Anhang 3.2

Anhang 3.											1g 3.3		
project	ze	description of test								kind of test			
11 02 26	d1	16x7	′ 5	not influenced by edge and spacing effects							A3		
te	base material & installation								forces / statistics				
connecting thread : M16			b	ase ma	$F_{p,m}^{t} = 18.24 \text{ kN}$								
diameter of shaft d : 16 mm			strer	nath / de	ensity :	21.4 N	, /mm² /	1.282 k	a/dm ³	v = 5.71%			
width of shoulder a: 75 mm			01101	dimen	.g, ann	$F_{p_1,p_2}^{t} = 15.69 \text{ kN}$							
length of shaft la : 75 mm					annon	F ^t	. = 15	.88 kN					
height of	head h	.: 16	mm										
				e	dae dis		≜						
test dev /Ø · Doli / 450 mm			temperature $\cdot 20.0 ^{\circ}\text{C}$. t. $\cdot 16.0 \text{mm}$										
test speed :	10 mm/	/min			tompo	ataro .	,-		-11X	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		
•				f	orco-disr	lacaman	t diagram	1					
torce-displacemant diagram													
30		 			[]					[]			
28		+								 			
26		+											
24		+								+			
22													
20			20	19.64	1					0,36			
18 18	,39, 18,3	35	3⊭ ∎ 18,0	3	176			7 86 -			7 6 /		
Z 16	f					16,92	7,33		17,42		7,54		
9 14	<u> </u>					+		+		/			
5 14													
		-+- } -+								+	 		
10									1				
8		+											
6		+											
4													
2		<u>†</u> /-			+ +					+			-+
0		+			<u> </u>								
0 2	4	6	8	10	12	14	16	18 2	20 2	2 24	1 26	28	30
					disp	laceme	nt [mm]						
					:	summary	,						
test number		1	2	3	4	5	6	7	8	9	10	11	12
anchor length	[mm] 1	19,1	119,9	118,7	118,9	119,6	119,5	119,8	119,4	120,6	117,3	119,2	120,1
overstand	[mm] 2	27,78	28,33	27,33	29,68	27,87	28,29	28,71	27,39	28,94	24,56	24,89	29,24
embed. depth	[mm] 7	75,29	75,54	75,34	73,24	75,74	75,22	75,05	76,01	75,64	76,78	78,27	74,90
cone depth	[mm]	16	16	16	16	16	16	16	16	16	16	16	16
edge distance	[mm]	441	884	439	437/366	351	443	440	440	438	436/366	350	442
date of test [dd	.mm] 1	5.03	15.03	15.03	15.03	15.03	15.03	20.03	20.03	20.03	20.03	20.03	20.03
test time [hh	:mm] 1	2:40	12:50	13:00	14:37	14:45	14:52	15:25	15:32	15:39	17:26	17:37	17:45
δ _{FtRu}	[mm] ´	1,08	1,15	1,05	0,81	0,88	1,12	0,31	0,53	0,56	1,14	1,03	1,22
F ^t _{Ru}	[kN] 1	8,39	18,35	19,32	18,03	19,64	17,66	16,92	17,33	17,86	17,42	20,36	17,54
kind of failure		CF	CF	CF	CF	CF	CF	CF	CF	CF	CF	CF	CF
					a	annotatio	1						
T7-12: LC20-130107-2 $f_{lc} = 22,9$ N/mm ² $\rho_{lc} = 1,282$ kd/dm ³ kind of failure . So steel failure . Bo a pull out . Bt a pull through . CE a failure of base motorial . So a solitting													

Anhang 3.4

Anhang 4.5 kind of test anchor size description of test project Charateristic resistance for tension loading FV-Leichtbet. d16x75x5,0 A1conf.1 11.02.26 not influenced by edge and spacing effects forces / statistics anchor dimensions & test rigg base material & installation $F_{Ru,m}^{t} = 67,69 \text{ kN}$ connecting thread : M16 base material : LC 20/22 ; LC20-120614-1 diameter of shaft d_s: 16 mm strength / density : 27,8 N/mm² / 1,244 kg/dm³ 8,51 % v = dimensions : 150x120x20 cm³ width of shoulder a_h : 5,0 mm $F_{Rk,NV}^{t} = 48,10 \text{ kN}$ $F^{t}_{Rk,log} = 50,50 \text{ kN}$ length of shaft l_s : 75 mm height of head h_k: 16 mm T_{inst}: 5 Nm tester : MK ┦ h_{ef} : 75,0 mm edge distance : ዋ test dev. / Ø : Doli / 47 mm temperature : 20,0 °C t_{fix}:-test speed : 4 mm/s force-displacemant diagram 80 74,78 75 71,41 68,53 70 62,34 65 61,42 60 55 50 45 [k] 40 Kraft 35 30 25 20 15 10 5 0 15 20 0 5 10 25 30 35 40 45 50 55 60 65 Verformung [mm] summary 7 10 12 test number 1 2 3 4 5 6 8 9 11 [mm] 29,12 28,82 29,09 28,17 27,57 overstand 09.08 09.08 09.08 09.08 09.08 date of test [dd.mm] test time [hh:mm] 13:21 13:30 13:43 13:52 14:04 δ_{FtRu} [mm] 16,93 18,04 16,55 18,40 18,19 74,78 68,53 [kN] 71,41 62,34 61,42 F^t_{Ru} kind of failure CF CF CF CF CF annotation kind of failure : S = steel failure, Po = pull out, Pt = pull through, CF = failure of base material, Sp = splitting

Anhang 4.10

Anhang 4.11

Anhang 4.12

Betonkörper : LC20-11	1124_c15	0	Pr	üfling : 150	Der Würfel		Nennma	Nennmaß d = 150 mm			
Abmessungen [mm ³] :	2500 x 16	600 x 350			V	erwendung	g kalibriete	r Formen? Ja			
Herstelldatum :	24.11.11	Pi	rüfdatum :	05.01.12			Prüfer :				
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung			
Probekörpergeometrie	e (maxima	le Abweich	nung vom	Nennmaß	0,5 % = 0,7	'5 mm)					
Länge1 oben	[mm]	149,88	150,18	150,06				+;+;+			
Länge2 oben	[mm]	149,88	150,27	149,95				+;+;+			
Länge3 oben	[mm]	149,61	150,14	149,98				+;+;+			
Länge1 unten	[mm]	149,89	150,03	150,21				+;+;+			
Länge2 unten	[mm]	149,99	150,07	150,23				+;+;+			
Länge3 unten	[mm]	149,95	150,09	150,32				+;+;+			
Breite1 oben	[mm]	148,56	149,80	150,21				-;+;+			
Breite2 oben	[mm]	148,16	149,52	148,81				-;+;-			
Breite3 oben	[mm]	147,84	147,00	149,85				-;-;+			
Breite1 unten	[mm]	149,68	148,74	149,01				+;-;-			
Breite2 unten	[mm]	149,68	149,43	149,00				+;+;-			
Breite3 unten	[mm]	149,08	150,32	149,88				-;+;+			
Höhe1	[mm]	150,19	150,00	149,81				+;+;+			
Höhe2	[mm]	150,33	150,34	149,80				+;+;+			
Höhe3	[mm]	149,90	150,04	149,99				+;+;+			
Höhe4	[mm]	149,98	149,90	149,92				+;+;+			
Abweichung zwischen oberer Fläche und Grundfläche (maximal 1,0 %)											
Abweichung	[%]	0,98	0,40	0,05				+;+;+			
Ebenheit der Lasteinle	itungsfläd	chen (zulä	ssige Abw	eichung ±0),0006xd =	0,09 mm)					
Ebenheit	[mm]										
Rechtwinkligkeit der V	Vürfelseite	en (zulässi	ige Abweic	hung ±0,5	mm)						
Rechtwinkligkeit	[mm]										
Masse des wasserges	ättigten P	robekörpe	rs m _a [kg]								
17.01.2012	16:00	5,290	5,337	5,477							
Masse des Probekörpe	ers unter \	Nasser m _v	, (Das Gew	icht des T	ragebügel	ist wegzu	tarieren!) [kg]			
17.01.2012	16:00										
Volumen	[m³]	0,003348	0,003360	0,003363				0,0034 m ³			
Gewicht nach Trocknu	ing im Ofe	en bei (105	5 ±5) °C (Ko	onstanz be	i Abweich	ung ≤ 0,2 %	6 innerhalk	o 24 h)			
05.01.2012	14:20	5,224	5.301	5,290							
25.01.2012	15:00	4,312	4,408	4,459				-:-:-			
01.02.2012	14:20	4,217	4,282	4,380				-;-;-			
18.02.2012	11:00	4,206	4,272	4,370				-;-;-			
		,		,				, ,			
	1										
Rohdichte	[kg/m³]	1256						1256 kg/m ³			
Maximale Kraft im Dru	ckversucl	า					Formfaktor :	1,00			
max F	[kN]	605,0	586,5	624,3				(v = 3,02 %)			
f _{ck,cube150}	[N/mm²]	27,12	26,19	27,82				27,0 N/mm ²			

Betonkörper : LC20-111115_c150Prüfling : 150er WürfelNennmaß d = 150 mm									
Abmessungen [mm ³] :	2500 x 16	500 x 350			V	erwendung	g kalibriete	er Formen? Ja	
Herstelldatum :	15.11.11	Pr	ufdatum :	05.01.12			Prufer :		
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung	
Probekörpergeometrie	(maxima	le Abweich	nung vom l	Nennmaß	0,5 % = 0,7	'5 mm)			
Länge1 oben	[mm]	150,59	149,69	150,13				+;+;+	
Länge2 oben	[mm]	150,42	149,76	149,97				+;+;+	
Länge3 oben	[mm]	150,24	149,88	149,93				+;+;+	
Länge1 unten	[mm]	149,92	150,10	149,96				+;+;+	
Länge2 unten	[mm]	150,06	149,78	149,55				+;+;+	
Länge3 unten	[mm]	150,12	149,74	150,40				+;+;+	
Breite1 oben	[mm]	151,24	150,58	149,96				-;+;+	
Breite2 oben	[mm]	149,13	151,28	149,53				-;-;+	
Breite3 oben	[mm]	148,52	151,76	150,40				-;-;+	
Breite1 unten	[mm]	148,89	151,81	149,80				-;-;+	
Breite2 unten	[mm]	149,22	150,88	149,80				-;-;+	
Breite3 unten	[mm]	149,70	150,52	149,54				+;+;+	
Höhe1	[mm]	150,89	150,12	149,33				-;+;+	
Höhe2	[mm]	149,84	149,96	150,03				+;+;+	
Höhe3	[mm]	150,01	150,22	149,78				+;+;+	
Hőhe4	[mm]	150,13	149,92	149,91				+;+;+	
Abweichung zwischen	oberer Fl	äche und	Grundfläcl	he (maxim	al 1,0 %)				
Abweichung	[%]	0,50	0,03	0,19				+;+;+	
Ebenheit der Lasteinleitungsflächen (zulässige Abweichung ±0,0006xd = 0,09 mm)									
Ebenheit	[mm]								
Rechtwinkligkeit der W	/ürfelseite	en (zulässi	ge Abweic	hung ±0,5	mm)				
Rechtwinkligkeit	[mm]								
Masse des wasserges	ättigten P	robekörpe	rs m _a [kg]						
17.01.2012	10:00	5,318	5,190	5,209					
Masse des Probekörpe	ers unter \	Nasser m,	, (Das Gew	vicht des T	ragebügel	ist wegzu	tarieren!) [kg]	
17.01.2012	10:00						, -	•-	
Volumen	[m ³]	0.003373	0.003398	0.003366				0.0034 m ³	
Gewicht nach Trocknu	na im Ofe	en bei (105	+5) °C (Ko	onstanz be	i Abweich	una < 0.2 %	6 innerhalt	o 24 h)	
05 11 2012	14.00	5 256	5 181	5 152		g _ 0,_ /		, ,	
25.01.2012	15:00	4 436	4 374	4 310					
01 01 2012	14.20	4 317	4 246	4 222				, , 	
18.02.2012	11:00	4.299	4.215	4.210				-:-:-	
		.,	.,	.,				, ,	
		<u> </u>							
Rohdichte	[kg/m³]	1275	1241	1251				1255 kg/m ³	
Maximale Kraft im Dru	ckversuc	า					Formfaktor :	1,00	
max F	[kN]	683,2	682,4	647,6				(v = 2,89 %)	
f _{ck,cube150}	[N/mm²]	30,43	30,14	28,82				29,8 N/mm ²	

					Herst	elldatum :	05.10.11	
Beto	nkörper :	LC20-111	005_d100		Prüfdatum	n / Prüfer :	10.11.11	M.H.
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Prüfer
Probekörperg	eometrie	-						
Länge	[mm]							
Mittelwert								
Breite /	[mm]	94,7	94,6	94,3				
Durchmesser	[11111]	94,5	94,3	94,6				
Mittelwert		94,6	94,5	94,5				
Höhe /	[mm] /	101,5	100,1	101,5				
Gewicht	[kg]							
Mittelwert		101,5	100,1	101,5				
Gewicht bei l	uftfeuchte	er Lagerun	g					
Gewicht	[kg]							
Rohdichte	[kg/dm ³]							
Maximale Kra	ft im Dru	ckversuch						
max F	[kN]	222,6	229,5	223,0				
max f	[N/mm²]	33,3	34,5	33,5				
Formfaktor :	0,95	no	rm. Festigk	eit f _{c,c150} =	32,08 N/m	m²	v = 1,89 %	

Ermittlung der Kennwerte von Leichtbeton gemäß DIN EN 206

٦,

52,0 $I_{c,c150} =$ iyr Rohdichte $\rho_{g,u} =$

Beto	nkörper :	LC20-111	005_c150		Herst Prüfdatum	05.10.11 10.11.11	M.H.	
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Prüfer
Probekörperg	eometrie							
Längo	[mm]	150,0	150,1	150,1				
Lange	[]	150,1	150,1	150,1				
Mittelwert		150,0	150,1	150,1				
Breite /	[mm]	149,8	146,0	149,2				
Durchmesser	fuuul	147,7	146,2	148,1				
Mittelwert		148,8	146,1	148,7				
Höhe /	[mm] /	150,1	150,3	150,1				
Gewicht	[kg]	150,0	150,1	150,1				
Mittelwert		150,1	150,2	150,1				
Gewicht bei lu	uftfeuchte	er Lagerun	g					
08.12.2011	16:00				4,959	5,015	5,0	
15.12.2011	14:15				4,371	4,402	4,4	
21.12.2011	10:50				4,215	4,245	4,3	
10.01.2012	13:00				4,152	4,170	4,2	
12.01.2012	11:00				4,151	4,169	4,2	
Gewicht	[kg]				4,151	4,169	4,188	
Rohdichte	[kg/dm ³]				1,277	1,281	1,295	
Maximale Kra	ft im Druc	ckversuch			-			
max F	[kN]	723,0	671,0	655,0				
max f	[N/mm ²]	32,4	30,6	29,4				
Formfaktor :	1,00	no	rm. Festigk	eit f _{c.c150} =	30,78 N/m	m²	v = 4,97 %	

Ermittlung der Kennwerte von Leichtbeton gemäß DIN EN 206

Rohdichte $\rho_{g,u}$ = 1,284 kg/dm³

v = 1,44 %

Ermittlung der Kennwerte von Leichtbeton gemäß DIN EN 206

Beto	nkörper :	LC20-111	005_c150	_	Herst Prüfdatum	elldatum : n / Prüfer :	14.09.11 19.10.11	
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Prüfer
Probekörperg	jeometrie							
Längo	[mm]	150,0	149,8	149,7	149,9	149,8	149,7	
Lange	[]	149,7	150,1	150,6	150,1	149,6	149,7	
Mittelwert		149,8	150,0	150,2	150,0	149,7	149,7	
Breite /	[mm]	148,6	147,1	147,3	147,1	147,9	149,2	
Durchmesser	fuuul	149,8	147,3	145,7	147,8	148,1	147,9	
Mittelwert		149,2	147,2	146,5	147,4	148,0	148,5	
Höhe /	[mm] /	149,8	149,7	149,6	149,9	149,6	149,8	
Gewicht	[kg]	149,9	150,4	149,7	149,7	149,7	149,9	
Mittelwert		149,9	150,0	149,6	149,8	149,7	149,9	
Gewicht bei l	uftfeuchte	er Lagerun	g					
					5,143	5,111	5,187	
					4,198	4,170	4,194	
					4,159	4,132	4,175	
					4,147	4,122	4,171	
					4,140	4,116	4,167	
					4,138	4,114	4,165	
Gewicht	[kg]				4,138	4,114	4,165	
Rohdichte	[kg/dm ³]				1,249	1,241	1,250	
Maximale Kra	ft im Druc	ckversuch						
max F	[kN]	681,0	595,0	605,0				
max f	[N/mm ²]	30,5	27,0	27,5				
	1 00		rm Fastial	coit f	20.2 N/mm	-2		

Formfaktor : 1,00

norm. Festigkeit $f_{c,c150}$ = 28,3 N/mm² Rohdichte $\rho_{g,u}$ = 1,25 kg/dm³

v = 6,67 %

v = 2,05 %

Beto	nkörper :	LC20-110	818_c150	-	Herst Prüfdatum	elldatum : n / Prüfer :	18.08.11 14.09.11	МК
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Prüfer
Probekörperg	jeometrie							
Längo	[mm]	150,0	150,0	149,9	150,0	150,0	149,8	
Lange	[]	149,8	148,1	149,9	149,9	150,0	149,9	
Mittelwert		149,9	149,0	149,9	150,0	150,0	149,8	
Breite /	[mm]	149,2	148,8	150,1	145,1	146,7	144,8	
Durchmesser	fuuul	149,7	149,9	148,9	150,4	151,2	149,1	
Mittelwert		149,4	149,3	149,5	147,7	148,9	146,9	
Höhe /	[mm] /	150,1	149,9	150,1	150,1	150,0	150,2	
Gewicht	[kg]	150,3	150,0	150,1	150,2	150,4	150,3	
Mittelwert		150,2	150,0	150,1	150,1	150,2	150,3	
Gewicht bei I	uftfeuchte	er Lagerun	g					
					4,904	4,905	5,0	
					4,040	4,062	4,2	
					4,049	4,012	4,2	
					4,041	4,072	4,2	
					4,050	4,074	4,2	
Gewicht	[kg]				4,040	4,012	4,161	
Rohdichte	[kg/dm ³]				1,215	1,195	1,258	
Maximale Kra	ft im Druc	ckversuch	•					
max F	[kN]	697,0	651,0	699,0				
max f	[N/mm ²]	31,1	29,3	31,2				
Formfaktor :	1,00	no	orm. Festigk	eit f _{c,c150} =	30,5 N/mn	1 ²	v = 3,61 %	

Ermittlung der Kennwerte von Leichtbeton gemäß DIN EN 206

Rohdichte $\rho_{g,u}$ = 1,22 kg/dm³

v = 6,48 %

Herstelldatum : 11.08.11 Betonkörper : LC20-110811_c150 Prüfdatum / Prüfer : 10.10.11 M									
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Prüfer	
Probekörperg	jeometrie								
	[incomes]	150,01	150,02	150,05	149,97	150,04	150,07		
Lange	[mm]	149,90	150,11	150,02	149,96	150,03	150,27		
Mittelwert		149,96	150,07	150,04	149,97	150,04	150,17		
Breite /	[148,91	149,28	149,03	139,72	136,86	136,69		
Durchmesser	[mm]	149,26	149,37	148,07	138,70	136,73	136,79		
Mittelwert		149,09	149,33	148,55	139,21	136,80	136,74		
Höhe /	[mm] /	150,07	149,91	149,91	150,00	150,27	150,11		
Gewicht	[kg]	150,06	149,95	149,95	150,04	150,15	150,25		
Mittelwert		150,07	149,93	149,93	150,02	150,21	150,18		
Gewicht bei luftfeuchter Lagerung									
					4,804	4,716	4,866		
					4,002	3,867	4,040		
					3,954	3,843	3,991		
					3,940	3,835	3,978		
					3,936	3,833	3,974		
					3,935	3,832	3,973		
Gewicht	[kg]				3,935	3,832	3,973		
Rohdichte	[kg/dm ³]				1,256	1,243	1,288		
Maximale Kra	ft im Druc	kversuch							
max F	[kN]	744,0	717,0	714,0					
max f	[N/mm ²]	33,3	32,0	32,0					
Formfaktor : 1,00 norm. Festigkeit $f_{c,c150} = 32,4 \text{ N/mm}^2$ $v = 2,25 \%$ Rohdichte $\rho_{g,u} = 1,26 \text{ kg/dm}^3$ $v = 5,78 \%$									

Ermittlung der Kennwerte von Leichtbeton gemäß DIN EN 206

Beto	nkörper :	LC20-1107	720_c150	C	Herste Prüfdatum	20.07.11 19.08.11	RB	
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Prüfer
Probekörperg	jeometrie							
Länge	[mm]	150,0	149,9	149,9	149,8	150,1	149,7	
Lange	[[[[[[]]]]]]	150,0	150,0	149,9	150,0	149,7	149,7	
Mittelwert		150,0	150,0	149,9	149,9	149,9	149,7	
Breite /	[151,0	150,5	149,5	151,2	150,0	150,9	
Durchmesser	[mm]	150,9	150,7	149,3	150,5	150,0	149,6	
Mittelwert		150,9	150,6	149,4	150,9	150,0	150,2	
Höhe /	[mm] /	149,9	150,0	149,9	149,7	149,8	149,7	
Gewicht	[kg]	150,0	149,8	149,9	149,8	149,8	149,8	
Mittelwert		149,9	149,9	149,9	149,8	149,8	149,7	
Gewicht bei l	uftfeuchte	er Lagerun	g					
					5,184	5,108	5,1	
					4,318	4,228	4,3	
					4,308	4,221	4,3	
					4,303	4,218	4,3	
Gewicht	[kg]				4,303	4,218	4,250	
Rohdichte	[kg/dm ³]				1,271	1,253	1,262	
Maximale Kra	ft im Drug	kversuch						
max F	[kN]	657,0	636,0	648,0				
max f	[N/mm²]	29,0	28,2	28,9				
Formfaktor :	1,00	no	rm. Festigk	$eit f_{c,c150} =$	28,71 N/m	m²	v = 1,65 %	

Ermittlung der Kennwerte von Leichtbeton gemäß DIN EN 206

v = 1,65 %

Rohdichte $\rho_{g,u}$ = 1,26 kg/dm³ v = 3,40 %

Ermittlung der Kennwerte von Leichtbeton gemäß DIN EN 206

Beto	nkörper :	LC20-110	621_c150		Herstelldatum: 21.06.11 Prüfdatum / Prüfer: 22.07.11				
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Prüfer	
Probekörperg	jeometrie								
Längo	[mm]	150,0	149,7	150,1	150,0	149,9	150,0		
Lange	[]	150,0	149,8	150,0	150,0	150,0	150,2		
Mittelwert		150,0	149,7	150,0	150,0	149,9	150,1		
Breite /	[mm]	150,4	148,8	150,0	150,4	150,2	148,2		
Durchmesser	fuuul	149,5	148,8	150,9	151,4	149,8	149,7		
Mittelwert		149,9	148,8	150,4	150,9	150,0	149,0		
Höhe /	[mm] /	150,0	149,8	150,0	150,0	149,9	150,1		
Gewicht	[kg]	150,1	149,7	150,0	150,2	149,9	150,0		
Mittelwert		150,1	149,8	150,0	150,1	149,9	150,1		
Gewicht bei l	uftfeuchte	er Lagerun	g						
			4,426	4,496	4,577				
			4,348	4,414	4,495				
			4,303	4,374	4,459				
			4,117	4,189	4,283				
			4,114	4,186	4,280				
			4,114	4,185	4,280				
Gewicht	[kg]		4,114	4,185	4,280				
Rohdichte	[kg/dm ³]		1,233	1,236	1,260				
Maximale Kra	ft im Druc	kversuch							
max F	[kN]	551,0				662,0	639,0		
max f	[N/mm ²]	24,5				29,4	28,6		

Formfaktor: 1,00

Beto	nkörper :	LC20-110	621-d10-50)	Herst Prüfdatum	elldatum : n / Prüfer :	21.06.11 01.08.11	MiH
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Prüfer
Probekörperg	jeometrie							
Länge	[mm]							
Mittelwert								
Breite /	[mm]	99,2	99,2	99,4	99,6	99,5	99,4	
Durchmesser	[11111]	99,5	99,3	99,2	99,2	99,2	99,6	
Mittelwert		99,4	99,3	99,3	99,4	99,3	99,5	
Höhe /	[mm] /	101,8	100,0	102,1	101,9	99,4	101,9	
Gewicht	[kg]	101,9	100,3	102,0	102,1	99,9	101,9	
Mittelwert		101,8	100,2	102,1	102,0	99,7	101,9	
Gewicht bei l	uftfeuchte	er Lagerun	g					
					1,162	1,132	1,164	
					1,016	0,982	1,012	
					0,987	0,957	0,987	
					0,986	0,956	0,986	
					0,986	0,956	0,986	
Courieht	[leal				0.096	0.056	0.096	
Gewicht	[KG]				0,986	0,956	0,986	
Kondichte	[kg/dm ³]				1,246	1,237	1,245	
Maximale Kra	itt im Druc	ckversuch			1			
max F	[kN]	210,8	184,5	196,5				
max f	[N/mm ²]	28,6	25,1	26,7				

Ermittlung der Kennwerte von Leichtbeton gemäß DIN EN 206

Formfaktor : 0,95

norm. Festigkeit f_{c,c150} = 26,80 N/mm² Rohdichte $\rho_{g,u}$ = 1,24 kg/dm³

v = 6,56 %

v = 1,39 %

Beto	nkörper :	LC20-110	621-d16-50)	Herst Prüfdatum	elldatum : n / Prüfer :	21.06.11 01.08.11	MiH
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Prüfer
Probekörperg	geometrie	-	-	-				
Länge	[mm]							
Mittelwert								
Breite /	[mm]	99,9	99,2	97,3	99,2	99,1	99,4	
Durchmesser	[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[99,2	99,2	100,0	99,9	99,4	99,2	
Mittelwert		99,5	99,2	98,7	99,5	99,3	99,3	
Höhe /	[mm] /	102,2	100,9	99,1	101,8	101,1	99,2	
Gewicht	[kg]	102,0	101,0	98,9	101,3	101,0	99,0	
Mittelwert		102,1	101,0	99,0	101,5	101,0	99,1	
Gewicht bei l	uftfeuchte	er Lagerun	g					
					1,156	1,159	1,149	
					1,002	0,996	0,991	
					0,987	0,982	0,974	
					0,987	0,982	0,974	
					0,987	0,982	0,974	
Gewicht	[kg]				0,987	0,982	0,974	
Rohdichte	[kg/dm ³]				1,249	1,256	1,269	
Maximale Kra	ft im Drug	ckversuch						
max F	[kN]	189,6	185,9	204,2				
max f	[N/mm²]	25,6	25,3	28,1				
E a mar fal star a	0.05		www. Eastial	call f	00.00 NI/m			

Ermittlung der Kennwerte von Leichtbeton gemäß DIN EN 206

Formfaktor: 0,95

norm. Festigkeit $f_{c,c150} = 26,36 \text{ N/mm}^2$ Rohdichte $\rho_{g,u} = 1,26 \text{ kg/dm}^3$

v = 5,80 %

v = 0,52 %

Betonkörper : LC40-120531-c150 Prüfling: 150er Würfel Nennmaß d = 150 mm Abmessungen [mm³] : 2050 x 1900 x 200 Verwendung kalibrieter Formen? Ja Herstelldatum : 31.05.12 Prüfdatum : 05.07.12 Prüfer : PK Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 Probe 6 Bewertung Probekörpergeometrie (maximale Abweichung vom Nennmaß 0,5 % = 0,75 mm) Länge1 oben 150,44 150,28 149,96 [mm] +;+;+ Länge2 oben [mm] +;+;+ Länge3 oben [mm] +;+;+ Länge1 unten 150,00 [mm] +;+;+ Länge2 unten [mm] +;+;+ Länge3 unten +;+;+ [mm] 150,26 Breite1 oben 149,99 150,16 [mm] +;+;+ Breite2 oben 150,00 [mm] +;+;+ Breite3 oben [mm] +;+;+ Breite1 unten [mm] +;+;+ Breite2 unten [mm] +;+;+ Breite3 unten [mm] +;+;+ Höhe1 [mm] 151,57 150,91 150,23 -;-;+ Höhe2 [mm] +;+;+ Höhe3 [mm] +;+;+ Höhe4 [mm] +;+;+ Abweichung zwischen oberer Fläche und Grundfläche (maximal 1,0 %) Abweichung 0,16 0,03 [%] 0,06 +;+;+ Ebenheit der Lasteinleitungsflächen (zulässige Abweichung ±0,0006xd = 0,09 mm) Ebenheit [mm] Rechtwinkligkeit der Würfelseiten (zulässige Abweichung ±0,5 mm) Rechtwinkligkeit [mm] Masse des wassergesättigten Probekörpers ma [kg] Masse des Probekörpers unter Wasser m_w (Das Gewicht des Tragebügel ist wegzutarieren!) [kg] 0,003386 0,003381 0,003377 0,0034 m³ Volumen [m³] Gewicht nach Trocknung im Ofen bei (105 \pm 5) °C (Konstanz bei Abweichung \leq 0,2 % innerhalb 24 h) 6,910 6,768 6,650 Rohdichte [kg/m³] 2040 2002 1969 2004 kg/m³ Maximale Kraft im Druckversuch Formfaktor: 1,00 max F 973,0 946.0 842.0 (v = 7,49 %) [kN] [N/mm²] 43,21 42,03 37,42 40,9 N/mm² f_{ck,cube150} ggfls. Bruchbild

Betonkörper : LC40-12		Prüfling :	Bohrkern		Nennma	Nennmaß d = 100 mm kalibrieter Formen? Ja			
Abmessungen [mm ³] :	2050 x 19	00 x 200			V	erwendung	g kalibriete	r Formen? Ja	
Herstelldatum :	31.05.12	Pr	rüfdatum :	16.08.12			Prüfer :	PK	
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung	
Probekörpergeometrie	(max. Ab	weichung	: Höhe 10 9	% = 10,00 ı	mm)				
Durchmesser1 oben	[mm]	94,23	94,14	94,10					
Durchmesser2 oben	[mm]	94,18	94,13	94,16					
Durchmesser1 mitte	[mm]	94,14	94,16	94,23					
Durchmesser2 mitte	[mm]	94,16	94,18	94,17					
Durchmesser1 unten	[mm]	94,23	94,16	94,16					
Durchmesser1 unten	[mm]	94,19	94,17	94,19					
Höhe1	[mm]	101,84	100,84	101,48					
Höhe2	[mm]	101,95	100,74	101,42					
	[mm]								
	[mm]								
	[mm]								
	[mm]								
	[mm]								
	[mm]								
	[mm]								
	[mm]								
	[]								
		. ,							
Ebenheit der Lasteinle	itungsflad	chen (zula	ssige Abw	eichung ±0),0006xd =	0,06 mm)			
Ebenheit	[mm]								
Rechtwinkligkeit der M	lantelfläch	ne (zulässi	ige Abweic	hung ±0,5	mm)				
Rechtwinkligkeit	[mm]								
Masse des wasserges	ättigten Pi	robekörpe	rs m _a [kg]						
	_								
Masse des Probekörpe	ers unter V	Nasser m.	, (Das Gew	vicht des T	ragebügel	ist weazu	tarieren!) [kal	
		v	(0.730	0.607	0.7		
Volumon	[m3]				0,730	0,097	0,7	$0.0007 m^{3}$	
Cowieht neeh Treeknu		n ha: /405	· 5) °C (//	noton- ho	0,000731		0,000700	0,0007 111	
			±5) C (KC		Abweich	ung $\leq 0, 2^{-7}$) 24 II)	
		1,369	1,337	1,365	1,395	1,381	1,387	16.08.2012	
					1,241	1,224	1,234	;-;-;-	
					1,239	1,223	1,232	;+;+;+	
Rohdichte	[kg/m³]				1694	1751	1739	1728 kg/m³	
Maximale Kraft im Drug	ckversuch	า					Formfaktor :	1,00	
max F	[kN]	320,0	346,0	342,0				(v = 4,20 %)	
f _{ck,cube150}	[N/mm ²]	45,93	49,69	49,11				48,2 N/mm ²	
ggfls. Bruchbild									
			-			-			

Betonkörper : LC40-120531-d100-2 Prüfling : Bohrkern Nennmaß d = 100 mm Abmessungen [mm³] : 2050 x 1900 x 200 Verwendung kalibrieter Formen? Ja Herstelldatum : 31.05.12 Prüfdatum : 05.10.12 Prüfer : PK Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 Probe 6 Bewertung Probekörpergeometrie (max. Abweichung: Höhe 10 % = 10,00 mm) Durchmesser1 oben 94,23 94,20 94,23 [mm] Durchmesser2 oben 94,23 94,20 94,23 [mm] Durchmesser1 mitte [mm] 94,23 94,20 94,23 Durchmesser2 mitte 94,23 94,20 94,23 [mm] 94,23 94,20 94,23 Durchmesser1 unten [mm] 94,20 94,23 Durchmesser1 unten 94,23 [mm] Höhe1 104,53 104,40 103,81 [mm] Höhe2 104,53 104,40 103,81 [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] Ebenheit der Lasteinleitungsflächen (zulässige Abweichung ±0,0006xd = 0,06 mm) Ebenheit [mm] Rechtwinkligkeit der Mantelfläche (zulässige Abweichung ±0,5 mm) Rechtwinkligkeit [mm] Masse des wassergesättigten Probekörpers ma [kg] Masse des Probekörpers unter Wasser m_w (Das Gewicht des Tragebügel ist wegzutarieren!) [kg] Volumen [m³] 0,000729 0,000728 0,000724 0,0007 m³ Gewicht nach Trocknung im Ofen bei (105 \pm 5) °C (Konstanz bei Abweichung \leq 0,2 % innerhalb 24 h) 1,369 1,337 1,365 Rohdichte 1878 1838 1885 1867 kg/m³ [kg/m³] Maximale Kraft im Druckversuch Formfaktor : 1,00 max F [kN] 337,0 372,0 370,8 (v = 5,54 %) 48,32 51,6 N/mm² [N/mm²] 53,38 53,17 f_{ck,cube150} ggfls. Bruchbild

Betonkörper : LC40-12	0625-c150)	Pri	üfling : 150	Der Würfel		Nennma	ß d = 150 mm
Abmessungen [mm ³] :	2050 x 19	900 x 200			V	erwendung	g kalibriete	r Formen? Ja
Herstelldatum :	25.06.12	Pr	üfdatum :	31.07.12			Prüfer :	PK
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung
Probekörpergeometrie	(maxima	le Abweich	nung vom l	Nennmaß	0,5 % = 0,7	'5 mm)		
Länge1 oben	[mm]	150,27	150,23	150,21				+;+;+
Länge2 oben	[mm]	150,40	150,34	150,50				+;+;+
Länge3 oben	[mm]	150,59	150,53	150,69				+;+;+
Länge1 unten	[mm]	150,54	150,47	150,61				+;+;+
Länge2 unten	[mm]	150,39	150,38	150,54				+;+;+
Länge3 unten	[mm]	150,33	150,43	150,26				+;+;+
Breite1 oben	[mm]	149,80	151,01	150,90				+;-;-
Breite2 oben	[mm]	148,08	150,57	151,85				-;+;-
Breite3 oben	[mm]	149,35	149,51	151,72				+;+;-
Breite1 unten	[mm]	151,38	149,10	149,68				-;-;+
Breite2 unten	[mm]	150,87	147,61	149,59				-;-;+
Breite3 unten	[mm]	150,93	148,62	149,84				-;-;+
Höhe1	[mm]	150,20	149,97	150,29				+;+;+
Höhe2	[mm]	150,16	149,84	150,11				+;+;+
Höhe3	[mm]	150,14	150,04	150,31				+;+;+
Höhe4	[mm]	151,07	150,70	150,69				-;+;+
Abweichung zwischen	oberer Fl	äche und	Grundfläch	ne (maxim	al 1,0 %)			
Abweichung	[%]	1,33	1,25	1,19				-;-;-
Ebenheit der Lasteinleitungsflächen (zulässige Abweichung ±0,0006xd = 0,09 mm)								
Ebenheit	[mm]							
Rechtwinkligkeit der Würfelseiten (zulässige Abweichung ±0.5 mm)								
Rechtwinkligkeit	[mm]		_	_				
Masse des wassergesä	ittigten Pi	robekörpe	rs m _a [kg]					
		•						
Masse des Probekörpe	ers unter V	Nasser m.	, (Das Gew	vicht des T	ragebügel	ist weazu	tarieren!) [kal
		v	(3 309	3 358	3 358	51
Volumen	[m3]				0.003316	0,000	0,000	0.0033 m ³
Cowiebt pach Trockpu		n hoi (105	+5) °C (Ka	notonz ho		0,00000000000000000000000000000000000	(innerhalk	0,0000 m
			±3) C (KC			$ung \le 0, z 7$		0 24 11)
		6,730	6,730	6,730	6,730	6,968	6,953	31.07.2012
					5,841	6,163	6,150	;-;-;-
					5,735	6,042	6,042	;-;-;-
					5,728	6,032	6,033	;+;+;+
					5,726	6,028	6,032	;+;+;+
Rohdichte	[kg/m³]				1727	1791	1793	1770 kg/m³
Maximale Kraft im Drue	ckversuch	า					Formfaktor :	1,00
max F	[kN]	712,0	883,0	940,0				(v = 13,95 %)
f _{ck,cube150}	[N/mm²]	31,54	39,30	41,48				37,4 N/mm²
ggfls. Bruchbild								

Betonkörper : LC40-120625-d100-1				Prüfling :	Bohrkern		Nennmaß d = 100 mm			
Abmessungen [mm ³] :	2050 x 19	900 x 200		Ū	V	erwendung	g kalibriete	r Formen? Ja		
Herstelldatum :	25.06.12	Pr	üfdatum :	16.08.12			Prüfer :	PK		
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung		
Probekörpergeometrie	(max. Ab	weichung	: Höhe 10 '	% = 10,00 ı	mm)					
Durchmesser1 oben	[mm]	94,09	94,09	94,10	94,11	94,10	94,18			
Durchmesser2 oben	[mm]	94,15	94,14	94,14	94,15	94,17	94,19			
Durchmesser1 mitte	[mm]	94,13	94,11	94,15	94,11	94,19	94,17			
Durchmesser2 mitte	[mm]	94,15	94,14	94,13	94,14	94,18	94,19			
Durchmesser1 unten	[mm]	94,18	94,15	94,15	94,14	94,19	94,15			
Durchmesser1 unten	[mm]	94,15	94,15	94,13	94,15	94,19	94,19			
Höhe1	[mm]	102,11	102,20	102,07	100,78	101,31	104,24			
Höhe2	[mm]	102,09	102,16	102,08	100,70	101,30	104,30			
	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									
			-							
Ebenheit der Lasteinle	itungsfläd	chen (zulä	ssige Abw	eichung ±(0,0006xd =	0,06 mm)				
Ebenheit	[mm]									
Rechtwinkligkeit der N	lantelfläc	he (zulässi	ige Abweid	hung ±0,5	mm)					
Rechtwinkligkeit	[mm]									
Masse des wasserges	ättigten P	robekörpe	rs m _a [kg]							
		-								
Masse des Probekörpe	ers unter \	Nasser m.	, (Das Gew	vicht des T	ragebügel	ist wegzu	tarieren!) [ka]		
· · ·							, -	01		
Volumen	[m³]	0.000711	0.000711	0.000710	0.000701	0.000706	0.000726	0.0007 m ³		
Gewicht nach Trocknu	ing im Ofe	en bei (105	+5) °C (K	onstanz be	i Abweich	una < 0 2 %	6 innerhall	24 h)		
		1 295	1 270	1 272	1 259	1 260	1 /10	, 24 11)		
		1,305	1,379	1,372	1,550	1,300	1,419			
Rohdichte	[ka/m³]	1949	1939	1931	1937	1927	1954	1940 ka/m³		
Maximale Kraft im Dru	ckversucl	1					Formfaktor :	1,00		
max F	[kN]	306.5	294.0	289.4	298.2	306.8	297.9	(v = 2,28 %)		
fok outpo150	[N/mm ²]	44 03	42 25	41.58	42 85	44.05	42 76	42.9 N/mm ²		
aafls. Bruchhild	[]	11,00	12,20	11,00	12,00	11,00	12,10	.2,0 14/11/1		
33.0. 2.30.0.0	1		I							

Betonkörper : LC40-120625-d100-2 Prüfling : Bohrkern Nennmaß d = 100 mm Abmessungen [mm³] : 2050 x 1900 x 200 Verwendung kalibrieter Formen? Ja Herstelldatum : 25.06.12 Prüfdatum : 05.10.12 Prüfer : PK Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 Probe 6 Bewertung Probekörpergeometrie (max. Abweichung: Höhe 10 % = 10,00 mm) Durchmesser1 oben 94,21 94,25 94,18 [mm] Durchmesser2 oben 94,13 94,25 94,18 [mm] Durchmesser1 mitte 94,18 [mm] 94,13 94,25 Durchmesser2 mitte 94,13 94,25 94.18 [mm] 94,13 94,25 94,18 Durchmesser1 unten [mm] 94,25 94,13 Durchmesser1 unten 94,18 [mm] Höhe1 102,95 102,36 105,43 [mm] Höhe2 102,95 102,36 105,43 [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] Ebenheit der Lasteinleitungsflächen (zulässige Abweichung ±0,0006xd = 0,06 mm) Ebenheit [mm] Rechtwinkligkeit der Mantelfläche (zulässige Abweichung ±0,5 mm) Rechtwinkligkeit [mm] Masse des wassergesättigten Probekörpers ma [kg] Masse des Probekörpers unter Wasser m_w (Das Gewicht des Tragebügel ist wegzutarieren!) [kg] Volumen [m³] 0,000717 0,000714 0,000734 0,0007 m³ Gewicht nach Trocknung im Ofen bei (105 \pm 5) °C (Konstanz bei Abweichung \leq 0,2 % innerhalb 24 h) 1,359 1,359 1,404 Rohdichte 1896 1903 1912 1904 kg/m³ [kg/m³] Maximale Kraft im Druckversuch Formfaktor : 1,00 max F [kN] 349,8 358,6 360,9 (v = 1,58 %) 50,25 51,2 N/mm² [N/mm²] 51,40 51,81 f_{ck,cube150} ggfls. Bruchbild

Betonkörper : LC40-12	0731-c150)	Pri	üfling : 150	0er Würfel		Nennma	ß d = 150 mm			
Abmessungen [mm ³] :	2500 x 19	900 x 200			V	erwendung	g kalibriete	r Formen? Ja			
Herstelldatum :	31.07.12	Pi	rüfdatum :	03.10.12			Prüfer :	PK			
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung			
Probekörpergeometrie	(maxima	le Abweicl	nung vom	Nennmaß	0,5 % = 0,7	′5 mm)					
Länge1 oben	[mm]	149,99	150,03	149,69				+;+;+			
Länge2 oben	[mm]	150,11	150,08	149,93				+;+;+			
Länge3 oben	[mm]	150,29	150,17	150,27				+;+;+			
Länge1 unten	[mm]	150,06	150,24	149,85				+;+;+			
Länge2 unten	[mm]	150,09	150,10	149,69				+;+;+			
Länge3 unten	[mm]	149,76	150,24	151,54				+;+;-			
Breite1 oben	[mm]	150,28	148,52	150,76				+;-;-			
Breite2 oben	[mm]	150,11	148,83	150,75				+;-;+			
Breite3 oben	[mm]	150,26	148,87	151,30				+;-;-			
Breite1 unten	[mm]	149,67	151,44	150,22				+;-;+			
Breite2 unten	[mm]	150,45	150,81	149,99				+;-;+			
Breite3 unten	[mm]	150,81	149,69	149,89				-;+;+			
Höhe1	[mm]	150,05	150,34	149,99				+;+;+			
Höhe2	[mm]	150.02	150.28	150.03				+:+:+			
Höhe3	[mm]	150.10	150.63	150.01				+:+:+			
Höhe4	[mm]	150,02	150,21	149,97				+;+;+			
Abweichung zwischen	oberer Fl	äche und	Grundfläcl	ne (maxim	al 1,0 %)						
Abweichung	[%]	0,04	1,35	0,34				+;-;+			
Ebenheit der Lasteinleitungsflächen (zulässige Abweichung ±0,0006xd = 0,09 mm)											
Ebenheit	[mm]										
Rechtwinkligkeit der Würfelseiten (zulässige Abweichung +0.5 mm)											
Rechtwinkligkeit	[mm]	(J - <i>j</i> -	,						
Masse des wasserges	ittiaten P	robekörne	rsm [ka]								
		obolicipo									
Maaaa daa Drahakärna	ro untor l	Nacaarm		iaht daa T	rogobügol		torioron!) [kal			
								ĸġj			
	F 01				3,345	3,370	3,392				
Volumen	[m³]				0,003352	0,003377	0,003399	0,0034 m³			
Gewicht nach Trocknu	ng im Ofe	en bei (105	5 ±5) °C (Ko	onstanz be	ei Abweich	ung ≤ 0,2 %	6 innerhalk	o 24 h)			
		6,397	6,483	6,589	6,390	6,709	6,604	05.10.2012			
					5,785	6,129	6,010	;-;-;-			
					5,713	6,045	5,926	;-;-;-			
					5,701	6,025	5,912	;-;-;-			
					5,698	6,021	5,909	;+;+;+			
					5,698	6,021	5,908	;+;+;+			
					5,697	6,020	5,9	;+;+;+			
Rohdichte	[kg/m³]				1700	1783	1738	1740 kg/m³			
Maximale Kraft im Drug	ckversuch	1					Formfaktor :	1,00			
max F	[kN]	998,0	1089,0	1148,0				(v = 6,92 %)			
f _{ck,cube150}	[N/mm²]	44,26	48,45	50,80				47,8 N/mm ²			
ggfls. Bruchbild											

Betonkörper : LC40-120731-d100 Prüfling : Bohrkern Nennmaß d = 100 mm Abmessungen [mm³] : 2500 x 1900 x 200 Verwendung kalibrieter Formen? Nein Herstelldatum : 31.07.12 Prüfdatum : 05.10.12 Prüfer : PK Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 Probe 6 Bewertung Probekörpergeometrie (max. Abweichung: Höhe 10 % = 10,00 mm) Durchmesser1 oben 94,15 94.18 94,16 [mm] Durchmesser2 oben 94,18 94,16 [mm] 94,15 Durchmesser1 mitte 94,18 94,16 [mm] 94,15 Durchmesser2 mitte 94,15 94.18 94.16 [mm] 94,15 94,18 94,16 Durchmesser1 unten [mm] Durchmesser1 unten [mm] 94,15 94,18 94,16 Höhe1 96,93 106,40 103,44 [mm] 103,44 Höhe2 96,93 106,40 [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] Ebenheit der Lasteinleitungsflächen (zulässige Abweichung ±0,0006xd = 0,06 mm) Ebenheit [mm] Rechtwinkligkeit der Mantelfläche (zulässige Abweichung ±0,5 mm) Rechtwinkligkeit [mm] Masse des wassergesättigten Probekörpers ma [kg] Masse des Probekörpers unter Wasser m_w (Das Gewicht des Tragebügel ist wegzutarieren!) [kg] Volumen [m³] 0,000675 0,000741 0,000720 0,0007 m³ Gewicht nach Trocknung im Ofen bei (105 \pm 5) °C (Konstanz bei Abweichung \leq 0,2 % innerhalb 24 h) 1,284 1,364 1,322 Rohdichte 1903 1840 1835 1859 kg/m³ [kg/m³] Maximale Kraft im Druckversuch Formfaktor : 1,00 max F [kN] 337,1 276,4 289,0 (v = 10,68 %) 43,2 N/mm² [N/mm²] 48,42 39.68 41,50 f_{ck,cube150} ggfls. Bruchbild

Betonkörper : LC40-120823-c150 Prüfling : 150er Würfel Nennmaß d = 150 mm									
Abmessungen [mm ³] :	2500 x 19	00 x 200			V	erwendung	g kalibriete	r Formen? Ja	
Herstelldatum :	23.08.12	Pr	üfdatum :	03.10.12			Prüfer :	PK	
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung	
Probekörpergeometrie	(maxima	le Abweich	nung vom	Nennmaß	0,5 % = 0,7	′5 mm)			
Länge1 oben	[mm]	151,30	149,85	152,06				-;+;-	
Länge2 oben	[mm]	150,60	149,56	151,55				+;+;-	
Länge3 oben	[mm]	151,16	151,20	151,27				-;-;-	
Länge1 unten	[mm]	151,26	150,05	151,17				-;+;-	
Länge2 unten	[mm]	150,51	149,69	150,05				+;+;+	
Länge3 unten	[mm]	150,27	149,54	149,59				+;+;+	
Breite1 oben	[mm]	150,17	150,22	149,94				+;+;+	
Breite2 oben	[mm]	150,29	150,07	150,05				+;+;+	
Breite3 oben	[mm]	150,16	150,08	150,27				+;+;+	
Breite1 unten	[mm]	150,20	149,99	150,25				+;+;+	
Breite2 unten	[mm]	150,31	150,20	150,15				+;+;+	
Breite3 unten	[mm]	150,13	150,12	150,11				+;+;+	
Höhe1	[mm]	150,12	150,03	150,19				+;+;+	
Höhe2	[mm]	150,26	150,02	150,20				+;+;+	
Höhe3	[mm]	150,11	150,31	150,28				+;+;+	
Höhe4	[mm]	150,04	150,07	150,37				+;+;+	
Abweichung zwischen oberer Fläche und Grundfläche (maximal 1,0 %)									
Abweichung	[%]	0,22	0,31	0.85				+;+;+	
Ebenheit der Lasteinle	itunasfläd	hen (zulä	ssige Abw	eichuna ±(0.0006xd =	0.09 mm)		, ,	
Ebenheit	[mm]	(j	-,	-,,			
Rechtwinkligkeit der W	lürfelseite	n (zulässi	ae Abweic	huna +0.5	mm)				
Rechtwinkligkeit	[mm]		90 / 10 11 010	nung ±0,0	,				
Masso dos wassorgos	ittiaton P	robokörno	re m [ka]						
Masse des Wassergesa		operoibe	i s ili _a [ky]						
				· · · · ·		• .			
Masse des Probekorpe	ers unter V	wasser m _v	, (Das Gew	icht des l	ragebugel	ist wegzu	tarieren!) [kgj	
					3,335	3,347	3,361		
Volumen	[m³]				0,003342	0,003354	0,003368	0,0034 m³	
Gewicht nach Trocknu	ng im Ofe	en bei (105	±5) °C (Ko	onstanz be	ei Abweich	ung ≤ 0,2 %	6 innerhalk	o 24 h)	
		6,497	6,503	6,528	6,630	6,708	6,655	11.10.2012	
					5,918	6,046	6,047		
					5,840	5,930	5,944		
					5,836	5,924	5,937		
					5,833	5,919	5,932		
					5,832	5,919	5,930	;+;+;+	
Rohdichte	[kg/m³]				1745	1765	1761	1757 kg/m³	
Maximale Kraft im Drue	ckversuch	า					Formfaktor :	1,00	
max F	[kN]	839,0	1021,0	1062,0				(v = 12,29 %)	
f _{ck,cube150}	[N/mm²]	37,03	45,35	46,86				43,1 N/mm ²	
ggfls. Bruchbild									

ggfls. Bruchbild

Anhang 5.2.10

Ermittlung der Kennwerte von Beton gemäß DIN EN 12390 und DIN EN 13791 Betonkörper : LC40-120823-d100 Prüfling : Bohrkern Nennmaß d = 100 mm Abmessungen [mm³] : 2500 x 1900 x 200 Verwendung kalibrieter Formen? Ja Herstelldatum : 23.08.12 Prüfdatum : 05.10.12 Prüfer : PK Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 Probe 6 Bewertung Probekörpergeometrie (max. Abweichung: Höhe 10 % = 10,00 mm) Durchmesser1 oben 94,26 94,25 94,26 [mm] Durchmesser2 oben 94,26 94,25 94,26 [mm] Durchmesser1 mitte [mm] 94,26 94,25 94,26 Durchmesser2 mitte 94,26 94,25 94,26 [mm] 94,26 94,25 94,26 Durchmesser1 unten [mm] 94,25 Durchmesser1 unten [mm] 94,26 94,26 Höhe1 103,94 106,60 101,93 [mm] Höhe2 103,94 106,60 101,93 [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] Ebenheit der Lasteinleitungsflächen (zulässige Abweichung ±0,0006xd = 0,06 mm) Ebenheit [mm] Rechtwinkligkeit der Mantelfläche (zulässige Abweichung ±0,5 mm) Rechtwinkligkeit [mm] Masse des wassergesättigten Probekörpers ma [kg] Masse des Probekörpers unter Wasser m_w (Das Gewicht des Tragebügel ist wegzutarieren!) [kg] Volumen [m³] 0,000725 0,000744 0,000711 0,0007 m³ Gewicht nach Trocknung im Ofen bei (105 \pm 5) °C (Konstanz bei Abweichung \leq 0,2 % innerhalb 24 h) 1,395 1,427 1,345 Rohdichte 1923 1919 1891 1911 kg/m³ [kg/m³] Maximale Kraft im Druckversuch Formfaktor : 1,00 max F [kN] 311,6 281,0 276,9 (v = 6,54 %) 44,65 40,28 41,5 N/mm² [N/mm²] 39,68 f_{ck,cube150}

Betonkörper : LC40-120903-c150-1		Pri	üfling : 150	0er Würfel		Nennma	ıß d = 150 mm	
Abmessungen [mm ³] :	1600 x 16	600 x 250			V	erwendung	g kalibriete	r Formen? Ja
Herstelldatum :	03.09.12		Prüfdatun	10.10.12			Prüfer :	РК
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung
Probekörpergeometrie	(maxima	le Abweicl	nung vom	Nennmaß	0,5 % = 0,7	'5 mm)		
Länge1 oben	[mm]	150,25	150,48	150,25				+;+;+
Länge2 oben	[mm]	150,97	148,35	150,43				-;-;+
Länge3 oben	[mm]	149,97	149,30	149,20				+;+;-
Länge1 unten	[mm]	149,81	151,01	149,27				+;-;+
Länge2 unten	[mm]	149,36	152,28	147,76				+;-;-
Länge3 unten	[mm]	149,79	151,70	148,61				+;-;-
Breite1 oben	[mm]	150,09	150,06	150,03				+;+;+
Breite2 oben	[mm]	150,02	150,05	150,15				+;+;+
Breite3 oben	[mm]	150,18	150,33	150,56				+;+;+
Breite1 unten	[mm]	150,11	150,17	149,96				+;+;+
Breite2 unten	[mm]	150,28	150,29	150,11				+;+;+
Breite3 unten	[mm]	150,25	150,50	150,26				+;+;+
Höhe1	[mm]	150,02	149,97	150,10				+;+;+
Höhe2	[mm]	149,85	150,01	149,86				+;+;+
Höhe3	[mm]	150,08	150,10	150,03				+;+;+
Höhe4	[mm]	149,95	150,11	149,98				+;+;+
Abweichung zwischen	oberer Fl	äche und	Grundfläc	ne (maxim	al 1.0 %)			
Abweichung	[%]	0.42	1.65	1.04				+:-:-
Ebenheit der Lasteinle	itunasfläd	hen (zulä	sside Abw	eichung +(0006xd -	0 09 mm)		- 1 1
Ebenheit	[mm]					0,00)		
Boohtwinkligkoit dor M		n (zuläggi		hung .05				
		en (zulassi	ige Abweic	nung ±0,5	mm)			
Rechtwinkligkeit	[mm]							
Masse des wasserges	ättigten P	robekörpe	rs m _a [kg]		I			
Masse des Probekörpe	ers unter \	Nasser m _v	, (Das Gew	vicht des T	ragebügel	ist wegzu	tarieren!) [kg]
Volumen	[m³]	0,003378	0,003393	0,003362				0,0034 m³
Gewicht nach Trocknu	ng im Ofe	en bei (105	5 ±5) °C (Ko	onstanz be	i Abweich	ung ≤ 0,2 %	% innerhall	o 24 h)
		6,369	6,423	6,152				
Rohdichte	[kg/m³]	1885	1893	1830				1869 kg/m³
Maximale Kraft im Drue	ckversucl	า	-				Formfaktor :	1,00
max F	[kN]	1104.0	997.0	929.0				(v = 8,56 %)
fck cube150	[N/mm ²]	49.01	44 09	41.45				44.8 N/mm ²
aafls. Bruchbild	r 1	,•.	,	,		L		
00								

Betonkörper : LC40-120903-c150-2		Pr	üfling : 150	Der Würfel		Nennma	Nennmaß d = 150 mm			
Abmessungen [mm ³] :	1600 x 16	600 x 250			V	erwendung	g kalibriete	r Formen? Ja		
Herstelldatum :	03.09.12		Prüfdatun	06.11.12			Prüfer :	РК		
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung		
Probekörpergeometrie	(maxima	le Abweicl	nung vom	Nennmaß	0,5 % = 0,7	′5 mm)				
Länge1 oben	[mm]	150,08	150,13	150,06				+;+;+		
Länge2 oben	[mm]	150,02	150,04	150,22				+;+;+		
Länge3 oben	[mm]	149,94	150,20	150,53				+;+;+		
Länge1 unten	[mm]	150,00	150,17	150,04				+;+;+		
Länge2 unten	[mm]	150,19	150,25	150,24				+;+;+		
Länge3 unten	[mm]	150,20	150,36	150,57				+;+;+		
Breite1 oben	[mm]	151,28	148,97	150,34				-;-;+		
Breite2 oben	[mm]	150,97	148,35	150,07				-;-;+		
Breite3 oben	[mm]	149,71	148,00	149,97				+;-;+		
Breite1 unten	[mm]	150,21	149,28	149,00				+;+;-		
Breite2 unten	[mm]	151,06	149,12	149,47				-;-;+		
Breite3 unten	[mm]	149,70	149,07	149,67				+;-;+		
Höhe1	[mm]	149,89	150,13	150,23				+;+;+		
Höhe2	[mm]	149,48	149,74	149,99				+;+;+		
Höhe3	[mm]	149,89	150,02	150,31				+;+;+		
Höhe4	[mm]	150,28	150,25	150,07				+;+;+		
Abweichung zwischen oberer Fläche und Grundfläche (maximal 1 0 %)										
Abweichung	[%]	0.14	0.57	0.49	ui 1,0 70 ,			+.+.+		
Ebonhoit der Lecteinle	[/0]	bon (rulë) 0006vd -	0.00 mm)		1,1,1		
	lungshat	inen (zula	ssiye Abw	elchung ±	J,0000xu =	0,09 mm)				
Ebenheit	[mm]									
Rechtwinkligkeit der W	/ürfelseite	en (zulässi	ige Abweic	hung ±0,5	mm)					
Rechtwinkligkeit	[mm]									
Masse des wasserges	ättigten P	robekörpe	rs m _a [kg]							
Masse des Probekörpe	ers unter \	Nasser m _v	, (Das Gew	vicht des T	ragebügel	ist wegzu	tarieren!) [kg]		
Volumen	[m³]	0,003385	0.003353	0,003379				0,0034 m³		
Gewicht nach Trocknu	na im Ofe	en bei (105	5 ±5) °C (Ko	onstanz be	i Abweich	una ≤ 0.2 %	6 innerhalb	o 24 h)		
		6.348	6 278	6 160		g = 0,= 7		, ,		
		0,010	0,210	0,100						
Dahdiahta	[] (a /m 3]	1075	1070	1000				40E7 kay/ma3		
Maximala Kroft im Dru		10/5	10/2	1023				1007 Kg/m ³		
		1400.0	1010.0	1000.0			Formfaktor :	1,00		
max ⊢	[KN]	1192,0	1243,0	1032,0				(v = 9,76 %)		
t _{ck,cube150}	[N/mm²]	52,78	55,62	45,86				51,4 N/mm ²		
ggfls. Bruchbild										

ggfls. Bruchbild

Anhang 5.2.13

Ermittlung der Kennwerte von Beton gemäß DIN EN 12390 und DIN EN 13791 Betonkörper : LC40-120903-d100-1 Prüfling : Bohrkern Nennmaß d = 100 mm Abmessungen [mm³] : 1600 x 1600 x 250 Verwendung kalibrieter Formen? Ja Herstelldatum : 03.09.12 Prüfdatun 06.11.12 Prüfer : PK Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 Probe 6 Bewertung Probekörpergeometrie (max. Abweichung: Höhe 10 % = 10,00 mm) Durchmesser1 oben 94,45 94.66 94.44 94.53 94,51 [mm] Durchmesser2 oben 94,47 94,60 94,53 94,59 [mm] 94,49 Durchmesser1 mitte 94,56 94,47 94,54 94,50 [mm] 94,47 94.49 Durchmesser2 mitte 94.57 94.47 94,55 94.45 [mm] 94,50 94,52 94,48 94,45 94,47 Durchmesser1 unten [mm] Durchmesser1 unten 94,48 94,47 94,45 94,50 94,50 [mm] Höhe1 103,20 104,84 103,99 105,08 104,61 [mm] Höhe2 103,28 104,83 103,98 105,14 104,55 [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] Ebenheit der Lasteinleitungsflächen (zulässige Abweichung ±0,0006xd = 0,06 mm) Ebenheit [mm] Rechtwinkligkeit der Mantelfläche (zulässige Abweichung ±0,5 mm) Rechtwinkligkeit [mm] Masse des wassergesättigten Probekörpers ma [kg] Masse des Probekörpers unter Wasser m_w (Das Gewicht des Tragebügel ist wegzutarieren!) [kg] Volumen [m³] 0,000724 0,000736 0,000729 0,000737 0,000733 0,0007 m³ Gewicht nach Trocknung im Ofen bei (105 ±5) °C (Konstanz bei Abweichung ≤ 0,2 % innerhalb 24 h) 1,349 1,367 1,381 1,397 1,389 Rohdichte 1863 1858 1894 1895 1894 1881 kg/m³ [kg/m³] Maximale Kraft im Druckversuch Formfaktor : 1,00 max F [kN] 287,3 299,8 317,8 324,3 311,0 (v = 4,79 %) 40,96 45,31 46,23 44,35 43,9 N/mm² [N/mm²] 42,72 f_{ck,cube150}

Betonkörper : LC40-12	10-120903-d100-2			Prüfling :	Bohrkern		Nennma	ß d = 100 mm
Abmessungen [mm ³] :	1600 x 16	600 x 250		-	V	erwendung	g kalibrieter Formen? Ja	
Herstelldatum :	03.09.12		Prüfdatun	14.11.12			Prüfer :	РК
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung
Probekörpergeometrie	(max. Ab	weichung	: Höhe 10 %	% = 10,00 r	nm)			
Durchmesser1 oben	[mm]							
Durchmesser2 oben	[mm]							
Durchmesser1 mitte	[mm]							
Durchmesser2 mitte	[mm]							
Durchmesser1 unten	[mm]							
Durchmesser1 unten	[mm]	-				-		
Höhe1	[mm]							
Höhe2	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
Ebonhoit dor Lastoinlo	itungefläg	bon (zulä	seigo Abw) 0006vd -	0.06 mm)		
	inungsnat	ileli (zula:		schung ±	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,00 mm)		
Rechtwinkligkeit der M	antelflaci	ne (zulass	ige Abweic	hung ±0,5	mm)			
Rechtwinkligkeit	[mm]							
Masse des wasserges	ättigten Pi	robekörpe	rs m _a [kg]					
Masse des Probekörpe	ers unter V	Nasser m _v	, (Das Gew	icht des T	ragebügel	ist wegzu	tarieren!) [kg]
					0,733	0,730	0,731	
Volumen	[m³]				0,000734	0,000731	0,000732	0,0007 m³
Gewicht nach Trocknu	ng im Ofe	en bei (105	5 ±5) °C (Ko	onstanz be	i Abweich	ung ≤ 0,2 %	% innerhalk	o 24 h)
					1,405	1,385	1,393	14.11.2012
					1,264	1,253	1,262	;-;-;-
					1,263	1,252	1,261	;+;+;+
Rohdichte	[ka/m³]				1720	1712	1722	1718 kg/m³
Maximale Kraft im Dru	ckversuch	<u>ו</u>			-		Formfaktor :	1,00
max F	[kN]							
f	[N/mm2]							
ck,cube150	[11/11111]]							
ggiis. Druchbliu								

Betonkörper : LC40-120906-c150-1 Prüfling: 150er Würfel Nennmaß d = 150 mm Abmessungen [mm³] : 1600 x 1600 x 250 Verwendung kalibrieter Formen? Ja Herstelldatum : 06.09.12 Prüfdatum : 10.10.12 Prüfer : PK Probe 1 | Probe 2 | Probe 3 | Probe 4 | Probe 5 | Probe 6 | Bewertung Probekörpergeometrie (maximale Abweichung vom Nennmaß 0,5 % = 0,75 mm) 150,72 150.29 Länge1 oben [mm] 150,78 +;+;-150,87 149,88 _änge2 oben [mm] 150,41 +;-;+ Länge3 oben [mm] 150,37 150.83 149,41 +;-;+ 149.42 150,26 149,97 Länge1 unten [mm] +;+;+ 149,04 149,41 150,76 Länge2 unten [mm] -;+;-[mm] 149,69 149,85 151,52 Länge3 unten +:+:-Breite1 oben 150,13 150,10 150,21 [mm] +;+;+ Breite2 oben 149.85 149,90 149,99 [mm] +;+;+ Breite3 oben 150,03 149,94 150,05 [mm] +;+;+ Breite1 unten 149,92 150,06 150,31 [mm] +;+;+ Breite2 unten 150,02 149,98 150,02 +;+;+ [mm] Breite3 unten [mm] 150,13 150,00 150,15 +;+;+ Höhe1 150,07 149,71 149,77 +;+;+ [mm] Höhe2 149,78 149,80 149,56 [mm] +;+;+ Höhe3 [mm] 150,11 149,79 149,77 +;+;+ Höhe4 150,25 149,88 150,31 [mm] +;+;+ Abweichung zwischen oberer Fläche und Grundfläche (maximal 1,0 %) Abweichung 0,73 0.53 0.54 [%] +;+;+ Ebenheit der Lasteinleitungsflächen (zulässige Abweichung ±0,0006xd = 0,09 mm) Ebenheit [mm] Rechtwinkligkeit der Würfelseiten (zulässige Abweichung ±0,5 mm) Rechtwinkligkeit [mm] Masse des wassergesättigten Probekörpers ma [kg] Masse des Probekörpers unter Wasser m_w (Das Gewicht des Tragebügel ist wegzutarieren!) [kg] Volumen [m³] 0,003375 0,003376 0,003383 0,0034 m³ Gewicht nach Trocknung im Ofen bei (105 ±5) °C (Konstanz bei Abweichung ≤ 0,2 % innerhalb 24 h) 6,118 6,378 6,449 Rohdichte 1813 1889 1906 1869 kg/m³ [kg/m³] Maximale Kraft im Druckversuch Formfaktor : 1,00 max F [kN] 907,0 1098,0 1132,0 (v = 11,44 %) 40,32 [N/mm²] 48,72 50,14 46,4 N/mm² f_{ck,cube150} ggfls. Bruchbild

Betonkörper : LC40-120906-c150-2			Pr	üfling : 150	Der Würfel		Nennma	ıß d = 150 mm
Abmessungen [mm ³] :	1600 x 10	600 x 250			V	erwendung	g kalibriete	r Formen? Ja
Herstelldatum :	06.09.12	Pi	rüfdatum :	02.11.12			Prüfer :	PK
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung
Probekörpergeometrie	e (maxima	le Abweich	nung vom	Nennmaß	0,5 % = 0,7	′5 mm)		
Länge1 oben	[mm]	150,18	150,04	150,13				+;+;+
Länge2 oben	[mm]	150,18	150,04	150,13				+;+;+
Länge3 oben	[mm]	150,18	150,04	150,13				+;+;+
Länge1 unten	[mm]	150,18	150,04	150,13				+;+;+
Länge2 unten	[mm]	150,18	150,04	150,13				+;+;+
Länge3 unten	[mm]	150,18	150,04	150,13				+;+;+
Breite1 oben	[mm]	150,16	151,23	149,18				+;-;-
Breite2 oben	[mm]	150,16	151,23	149,18				+;-;-
Breite3 oben	[mm]	150,16	151,23	149,18				+;-;-
Breite1 unten	[mm]	150,16	151,23	149,18				+;-;-
Breite2 unten	[mm]	150,16	151,23	149,18				+;-;-
Breite3 unten	[mm]	150,16	151,23	149,18				+;-;-
Höhe1	[mm]	150,11	149,94	150,17				+;+;+
Höhe2	[mm]	150,11	149,94	150,17				+;+;+
Höhe3	[mm]	150,11	149,94	150,17				+;+;+
Höhe4	[mm]	150,11	149,94	150,17				+;+;+
Abweichung zwischen	oberer F	äche und	Grundfläc	he (maxim	al 1,0 %)			
Abweichung	[%]	0,00	0,00	0,00				+;+;+
Ebenheit der Lasteinle	itungsfläd	chen (zulä	ssiae Abw	eichuna ±().0006xd =	0.09 mm)		
Ebenheit	[mm]			J	,	-, ,		
Rechtwinkligkeit der W	liirfalsaita	n (zulässi	i ao Abwoic	- - - - - - - - - - - - - - - - - - -	mm)			
Rechtwinkligkoit				nung ±0,0	,			
	[[[]]]]							
	attigten P	горекогре	rs m _a [kg]					
			_			_		
Masse des Probekörpe	ers unter	Nasser m _v	_v (Das Gew	icht des T	ragebügel	ist wegzu	tarieren!) [kg]
Volumen	[m³]	0,003385	0,003402	0,003363				0,0034 m³
Gewicht nach Trocknu	ing im Ofe	en bei (105	5 ±5) °C (Ko	onstanz be	i Abweich	ung ≤ 0,2 %	6 innerhall	o 24 h)
		6,162	6,396	6,457				02.11.2012
Rohdichte	[kg/m³]	1820	1880	1920				1873 kg/m³
Maximale Kraft im Dru	ckversucl	n	-				Formfaktor :	1,00
max F	[kN]	1009,0	1269,0	1312,0				(v = 13,83 %)
f _{ck cube150}	[N/mm²]	44.74	55.93	58.58				53.1 N/mm ²
agfls. Bruchbild		,	,	,				
33	1							

			•					• • • • • •		
Betonkörper : LC40-12	korper : LC40-120906-d100-1				Prüfling : Bohrkern Nennmaß d = 100 mm					
Abmessungen [mm ³] : Herstelldatum :	1600 x 10 06.09.12	000 x 250 Pr	üfdatum :	06.11.12	V	erwendung	g Kallbriete Prüfer :	er Formen? Ja PK		
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Rewertung		
Probekörpergeometrie	(may Ab	weichung			mm)	TIODE J		Dewentung		
					04.42	04 54	04.44			
Durchmesser1 oben	[mm]	94,59	94,57	94,57	94,42	94,54	94,41			
Durchmesser2 oben	[mm]	94,50	94,51	94,59	94,44	94,53	94,43			
Durchmesser1 mille	[[[]]]	94,00	94,51	94,04	94,44	94,40	94,40			
Durchmesser2 mille	[[[]]]] [mm]	94,00	94,49	94,54	94,40	94,40	94,41			
Durchmesser1 unten	[[[]]]] [mm]	94,00	94,50	94,51	94,47	94,43	94,42			
	[[]]]] [mm]	94,55	94,09 102 72	94,03	94,49	94,40 104 62	94,40 104 19			
	[[]]]] [mm]	103,30	103,73	101,91	104,25	104,02	104,10			
nonez	[[[]]]] [mm]	103,15	103,77	101,91	104,19	104,30	104,23			
	[[[]]]] [mm]									
	[[]]]] [mm]									
	[[]]]] [mm]									
	[[]]]] [mm]									
	[[]]]] [mm]									
	[[]]]] [mm]									
	[[]]]] [mm]									
	[[[[[[
	1									
Ebenheit der Lasteinle	itungsfläd	chen (zuläs	ssige Abw	eichung ±	0,0006xd =	0,06 mm)				
Ebenheit	[mm]									
Rechtwinkligkeit der M	lantelfläc	he (zulässi	ige Abweid	hung ±0,5	mm)					
Rechtwinkligkeit	[mm]									
Masse des wasserges	ättigten P	robekörpe	rs m _a [kg]							
Masse des Probekörpe	ers unter \	Wasser m.	(Das Gew	/icht des T	ragebügel	ist weazu	tarieren!) I	kal		
		Vi					//	51		
Volumen	[m³]	0 000725	0 000728	0.000716	0.000730	0 000733	0.000730	0.0007 m ³		
Gewicht nach Trocknu	na im Ofe	o,000/20	+5) °C (K	onstanz be		una < 0.2	/ innerhall	0,0007 m		
			±3) C (RC			4 202	4 0 4 0	5 24 11)		
		1,308	1,334	1,301	1,351	1,383	1,342			
			ļ			ļ	ļ			
Pohdiahta	[ka/m3]	1004	1000	1001	1050	1000	1020	1050 ka/m3		
Maximala Kraft im Dour		1004	1032	1901	0001	0001	Formfolder	1 002 Kg/m		
		200.0	200 7	000.0	000.0	0.40.0				
		306,9	302,7	333,0	299,0	342,0	297,0	(V = 6,07 %)		
T _{ck,cube150}	[N/mm²]	43,70	43,12	47,40	42,67	48,77	42,40	44,7 N/mm ²		
ggfls. Bruchbild										

Ermittlung der Ken	nwerte	von Beto	on gemäl	3 DIN EN	12390 u	nd DIN E	N 13791	
Betonkörper : LC40-12	0906-d10	0-2		Prüfling :	Bohrkern		Nennma	ß d = 100 mm
Abmessungen [mm ³] :	1600 x 16	600 x 250		_	V	erwendung	g kalibriete	r Formen? Ja
Herstelldatum :	06.09.12	Pr	üfdatum :	14.11.12			Prüfer :	PK
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung
Probekörpergeometrie	(max. Ab	weichung	: Höhe 10 '	% = 10,00 ı	nm)			
Durchmesser1 oben	[mm]							
Durchmesser2 oben	[mm]							
Durchmesser1 mitte	[mm]							
Durchmesser2 mitte	[mm]							
Durchmesser1 unten	[mm]							
Durchmesser1 unten	[mm]							
Höhe1	[mm]							
Höhe2	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
Ebenheit der Lasteinle	itungsfläc	chen (zuläs	ssige Abw	eichung ±0),0006xd =	0,06 mm)		
Ebenheit	[mm]							
Rechtwinkligkeit der M	lantelfläch	ne (zulässi	ge Abweid	hung ±0,5	mm)			
Rechtwinkligkeit	[mm]							
Masse des wassergesä	ittigten P	robekörpe	rs m _a [kg]					
Masse des Probekörpe	ers unter \	Nasser m _v	, (Das Gew	icht des T	ragebügel	ist wegzu	tarieren!) [kg]
-					0.761	0.724	0.730	
Volumen	[m³]				0.000763	0.000725	0.000731	0.0007 m³
Gewicht nach Trocknu	na im Ofe	en bei (105	±5) °C (Ko	onstanz be	i Abweich	una ≤ 0.2 %	6 innerhalt	o 24 h)
	J		-/ - (1 449	1 323	1 401	14.11.2012
					1,320	1,020	1,101	:-:-:-
					1.318	1,198	1.270	; ; ;
					.,	.,	.,	, , , , , ,
Rohdichte	[kg/m³]				1728	1651	1736	1705 kg/m³
Maximale Kraft im Drug	ckversucl	า					Formfaktor :	1,00
max F	[kN]							
f _{ck,cube150}	[N/mm ²]							
ggfls. Bruchbild								

Betonkörper : LC20-13	0107_c15	0	Pr	üfling : 150	Der Würfel	iel Nennmaß d = 150 m		
Abmessungen [mm ³] :	2200 x 17	700 x 200			V	erwendung	g kalibriete	r Formen? Ja
Herstelldatum :	07.01.201	13					Prüfer :	TA
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung
Probekörpergeometrie	(maxima	le Abweich	nung vom	Nennmaß	0,5 % = 0,7	'5 mm)		
Länge1 oben	[mm]	150,07	150,28	149,93				+;+;+
Länge2 oben	[mm]	150,27	150,36	150,18				+;+;+
Länge3 oben	[mm]	150,19	150,34	149,99				+;+;+
Länge1 unten	[mm]	150,22	150,06	149,92				+;+;+
Länge2 unten	[mm]	150,51	150,26	149,92				+;+;+
Länge3 unten	[mm]	150,50	150,25	149,99				+;+;+
Breite1 oben	[mm]	151,95	157,87	156,18				-;-;-
Breite2 oben	[mm]	151,06	158,50	158,41				-;-;-
Breite3 oben	[mm]	151,64	156,08	158,36				-;-;-
Breite1 unten	[mm]	150,94	155,87	156,89				-;-;-
Breite2 unten	[mm]	150,64	158,45	158,67				+;-;-
Breite3 unten	[mm]	149,98	157,61	156,94				+;-;-
Höhe1	[mm]	150,66	150,27	150,11				+;+;+
Höhe2	[mm]	150,31	150,70	150,14				+;+;+
Höhe3	[mm]	150,49	150,47	150,16				+;+;+
Höhe4	[mm]	150,35	150,51	150,04				+;+;+
Abweichung zwischen	oberer Fl	äche und	Grundfläc	he (maxim	al 1,0 %)			
Abweichung	[%]	0,53	0,20	0,16				+;+;+
Ebenheit der Lasteinle	itungsfläd	chen (zulä	ssige Abw	eichung ±0),0006xd =	0,09 mm)		
Ebenheit	[mm]							
Rechtwinkligkeit der W	/ürfelseite	en (zulässi	ge Abweic	hung ±0,5	mm)			
Rechtwinkligkeit	[mm]							
Masse des wasserges	ättigten P	robekörpe	rs m _a [kg]					
Masse des Probekörpe	ers unter \	Nasser m _v	, (Das Gew	/icht des T	ragebügel	ist wegzu	tarieren!) [kg]
Volumen	[m³]	0,003415	0,003559	0,003548				0,0035 m³
Gewicht nach Trocknu	ng im Ofe	en bei (105	±5) °C (Ko	onstanz be	i Abweich	ung ≤ 0,2 %	6 innerhalk	o 24 h)
28.05.2013		4.580	4.437	4.518				
04.06.2013		4,567	4,425	4,506				-:-:-
11.06.2013		4,561	4,421	4,502				+;+;+
13.06.2013		4,561	4,421	4,502				+;+;+
		,						
Rohdichte	[kg/m³]	1335	1242	1269				1282 kg/m ³
Maximale Kraft im Drug	ckversucl	n					Formfaktor :	1,00
max F	[kN]	655,0	670,0	680,0				(v = 0,99 %)
f _{ck,cube150}	[N/mm²]	28,86	28,33	28,77				28,7 N/mm ²

Betonkörper : LC20-130107-1_d100				Prüfling :	Bohrkern		Nennma	ıß d = 100 mm	
Abmessungen [mm ³] :	2200 x 17	700 x 200			Ver	wendung k	alibrieter l	Formen? Nein	
Herstelldatum :	07.01.201	13					Prüfer :	ТА	
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung	
Probekörpergeometrie	(max. Ab	weichung	: Höhe 10 [•]	% = 10,00	mm)				
Durchmesser1 oben	[mm]	94,70	94,50	94,51					
Durchmesser2 oben	[mm]	94,67	94,47	94,47					
Durchmesser1 mitte	[mm]	94,69	94,49	94,45					
Durchmesser2 mitte	[mm]	94,48	94,50	94,64					
Durchmesser1 unten	[mm]	94,63	94,48	94,85					
Durchmesser1 unten	[mm]	94,69	94,49	94,70					
Höhe1	[mm]	99,83	101,66	101,34					
Höhe2	[mm]	100,41	101,70	101,88					
	[mm]								
	[mm]								
	[mm]								
	[mm]								
	[mm]								
	[mm]								
	[mm]								
	[mm]								
Ebenheit der Lasteinle	Ebenheit der Lasteinleitungsflächen (zulässige Abweichung ±0,0006xd = 0,06 mm)								
Ebenheit	[mm]								
Rechtwinkligkeit der M	lantelfläci	ne (zulässi	ge Abweid	hung ±0,5	imm)				
Rechtwinkligkeit	[mm]	-	-						
Masse des wasserges	ättigten P	robekörpe	rs m _a [kg]						
		•	41 01						
Masse des Probekörpe	ers unter \	Nasser m.	, (Das Gew	/icht des T	ragebüge	ist weazu	tarieren!) [kal	
11.04.2013	10:05	3.541	3.440	3,410			<u>, </u>		
Volumen	[m ³]	0.000704	0.000713	0.000714				0.0007 m ³	
Gewicht nach Trocknu	na im Ofe	en bei (105	+5) °C (Ko	onstanz be	i Abweich	una < 0.2 %	// innerhall	o 24 h)	
22 03 2015		1 026	1 043	1 038				<i>-</i> ,	
22.00.2010		1,020	1,040	1,000					
<u> </u>									
Rohdichte	[ka/m³]	1457	1463	1453				1458 ka/m³	
Maximale Kraft im Drug	ckversucl	<u>יייי</u> ו				1	Formfaktor ·	1.00	
max F	[kN]	151.0	149.0	150.0				(y = 0.50 %)	
f _{ck cube150}	[N/mm ²]	21.46	21.25	21.34				21,4 N/mm ²	

Betonkörper : LC20-130107-2_d100				Prüfling : Bohrkern Nennmaß d = 100 mm				
Abmessungen [mm ³] :		Verv	wendung k	alibrieter l	Formen? Nein			
Herstelldatum :	07.01.20	13					Prufer :	IA
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung
Probekörpergeometrie	(max. Ab	weichung	: Höhe 10	% = 10,00 r	mm)	-		
Durchmesser1 oben	[mm]	94,51	94,48	94,50				
Durchmesser2 oben	[mm]	94,53	94,49	94,48				
Durchmesser1 mitte	[mm]	94,50	94,50	94,48				
Durchmesser2 mitte	[mm]	94,52	94,52	94,50				
Durchmesser1 unten	[mm]	94,51	94,50	94,53				
Durchmesser1 unten	[mm]	94,53	94,47	94,50				
Höhe1	[mm]	98,14	98,04	100,75				
Höhe2	[mm]	98,22	98,26	100,33				
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
Ebonhoit dor Lastoinle	l itunaeflär	hon (zulä	ssiao Abw	eichung +() 0006vd -	0.06 mm)		
	lungsnat		SSIGE ADW		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,00 mm)		
Ebenneil	[mm]							
Rechtwinkligkeit der M	lantelflac	he (zulassi	ge Abweid	chung ±0,5	mm)			
Rechtwinkligkeit	[mm]							
Masse des wasserges	ättigten P	robekörpe	rs m _a [kg]					
Masse des Probekörpe	ers unter \	Wasser m _v	, (Das Gew	icht des T	ragebügel	ist wegzu	tarieren!) [kg]
Volumen	[m³]	0,000689	0,000688	0,000705				0,0007 m³
Gewicht nach Trocknu	na im Ofe	en bei (105	±5) °C (Ko	onstanz be	i Abweich	una ≤ 0.2 %	6 innerhall	o 24 h)
22 03 2015	- j	1 010	1 001	1 044		g ,		,
22.00.2010		1,013	1,001	1,044				
Dahdiahta	[[(a/m 3]	1170	1151	1404				1 474 100/003
Maximala Kroft im Dour		14/9	1404	1401				1471 Kg/m ³
		400.0	455.0	404.0			Formfaktor :	1,00
	[KIN]	163,0	155,0	164,0				(V = 3,06 %)
Tek cube150	I IN/mm²]	23 23	22.10	23.38	1			22.9 N/mm ²

Betonkörper : LC20-130114_c150			Prüfling : 150er Würfel Nennmaß d = 1								
Abmessungen [mm ³] :	2200 x 17	700 x 200			V	erwendung	g kalibriete	r Formen? Ja			
Herstelldatum :	14.01.201	13					Prüfer :	TA			
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung			
Probekörpergeometrie (maximale Abweichung vom Nennmaß 0,5 % = 0,75 mm)											
Länge1 oben	[mm]	149,66	150,01	149,89				+;+;+			
Länge2 oben	[mm]	149,93	150,26	150,11				+;+;+			
Länge3 oben	[mm]	150,25	150,13	150,30				+;+;+			
Länge1 unten	[mm]	149,68	150,03	149,93				+;+;+			
Länge2 unten	[mm]	150,11	150,21	150,20				+;+;+			
Länge3 unten	[mm]	150,45	150,08	150,27				+;+;+			
Breite1 oben	[mm]	153,41	149,43	151,55				-;+;-			
Breite2 oben	[mm]	154,06	151,67	151,90				-;-;-			
Breite3 oben	[mm]	154,96	151,17	151,70				-;-;-			
Breite1 unten	[mm]	153,00	150,05	152,95				-;+;-			
Breite2 unten	[mm]	153,84	153,15	152,60				-;-;-			
Breite3 unten	[mm]	153,06	149,06	152,08				-;-;-			
Höhe1	[mm]	150,03	150,30	150,18				+;+;+			
Höhe2	[mm]	150,14	150,03	150,19				+;+;+			
Höhe3	[mm]	150,06	150,20	150,13				+;+;+			
Höhe4	[mm]	150,02	150,16	150,16				+;+;+			
Abweichung zwischen	oberer Fl	äche und	Grundfläc	he (maxim	al 1,0 %)						
Abweichung	[%]	0,46	0,02	0,57				+;+;+			
Ebenheit der Lasteinle	itungsfläc	chen (zulä	ssige Abw	eichung ±(0,0006xd =	0,09 mm)					
Ebenheit	[mm]										
Rechtwinkligkeit der W	/ürfelseite	en (zulässi	ge Abweic	hung ±0,5	mm)						
Rechtwinkligkeit	[mm]										
Masse des wassergesä	ittigten P	robekörpe	rs m _a [kg]								
Masse des Probekörpe	ers unter \	Nasser m _v	, (Das Gew	vicht des T	ragebügel	ist wegzu	tarieren!) [kg]			
Volumen	[m³]	0,003460	0,003399	0,003429				0,0034 m ³			
Gewicht nach Trocknu	ng im Ofe	en bei (105	±5) °C (Ko	onstanz be	ei Abweich	ung ≤ 0,2 %	6 innerhalb	o 24 h)			
28.05.2013		4,456	4,377	4,324							
04.06.2013		4,443	4,366	4,316				-;-;+			
11.06.2013		4,438	4,362	4,311				+;+;+			
Rohdichte	[kg/m³]	1282	1283	1257				1274 kg/m ³			
Maximale Kraft im Druckversuch Formfaktor : 1,00											
max F	[kN]	677,0	671,0	631,0				(v = 3,78 %)			
f _{ck cube150}	[N/mm²]	29,36	29,65	27,63				28,9 N/mm ²			
Betonkörper : LC20-130114-1_d100				Prüfling :	Bohrkern		Nennma	ıß d = 100 mm			
----------------------------------	----------------	-------------	-------------	-------------	------------	-------------	--------------	------------------------			
Abmessungen [mm ³] :	2200 x 17	700 x 200			Verv	wendung k	alibrieter l	Formen? Nein			
Herstelldatum :	14.01.20	13					Prüfer :	TA			
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung			
Probekörpergeometrie	(max. Ab	weichung	: Höhe 10 '	% = 10,00 ı	nm)						
Durchmesser1 oben	[mm]	94,63	94,53	94,60							
Durchmesser2 oben	[mm]	94,55	94,44	94,61							
Durchmesser1 mitte	[mm]	94,51	94,50	94,49							
Durchmesser2 mitte	[mm]	94,50	94,53	94,52							
Durchmesser1 unten	[mm]	94,54	94,52	94,47							
Durchmesser1 unten	[mm]	94,50	94,55	94,48							
Höhe1	[mm]	97,23	95,07	93,82							
Höhe2	[mm]	98,10	95,13	93,31							
	[mm]										
	[mm]										
	[mm]										
	[mm]										
	[mm]										
	[mm]										
	[mm]										
	[mm]										
Ebenheit der Lasteinle	itungsfläd	chen (zulä	ssige Abw	eichung ±(),0006xd =	0,06 mm)					
Ebenheit	[mm]										
Rechtwinkligkeit der M	lantelfläc	he (zulässi	ge Abweid	hung ±0,5	mm)						
Rechtwinkligkeit	[mm]				-						
Masse des wasserges	ättigten P	robekörpe	rs m₃ [kq]								
11 04 2013	10:31	3 430	3 380	3 353							
Masse des Probekörne	ers unter \	Nasser m	(Das Gew	vicht des T	ragebügel	ist weazu	tarieren!) [ikal			
					lagebagel	ist wegzu					
Volumon	[m3]	0.000696	0.000667	0.000657				$0.0007 m^{3}$			
		0,000000	0,000007	0,000057	i Abweieb		/ innerhell	0,0007 1110			
	ng in Oie T		±5) C (KC		I Abweich	ung ≤ 0,2 7		5 24 N)			
26.03.2015		0,985	0,970	0,948							
		ļ	ļ	ļ							
Pobdiobto	[ka/m3]	1/07	1151	1111				1115 kalm3			
Maximalo Kroft im Drug		1437	1404	1444			Format-lite:	1443 Kg/m3			
		101.0	400.0	450.0			Formfaktor :	1,00			
	[KN]	161,0	163,0	152,0				(V = 3,70 %)			
t _{ck,cube150}	[N/mm²]	22,94	23,23	21,66				22,6 N/mm ²			

Betonkörper : LC20-130114-2_d100				Prüfling :	Bohrkern		Nennma	ıß d = 100 mm
Abmessungen [mm ³] :	2200 x 17	700 x 200			Verv	wendung k	alibrieter l	Formen? Nein
Herstelldatum :	14.01.20	13					Prüfer :	ТА
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung
Probekörpergeometrie	(max. Ab	weichung	: Höhe 10 '	% = 10,00 ı	nm)			
Durchmesser1 oben	[mm]	94,52	94,52	94,55				
Durchmesser2 oben	[mm]	94,57	94,53	94,60				
Durchmesser1 mitte	[mm]	94,50	94,50	94,61				
Durchmesser2 mitte	[mm]	94,52	94,49	94,52				
Durchmesser1 unten	[mm]	94,50	94,50	94,55				
Durchmesser1 unten	[mm]	94,48	94,54	94,57				
Höhe1	[mm]	94,80	96,07	97,06				
Höhe2	[mm]	94,37	96,31	96,75				
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
Ebenheit der Lasteinle	itungsfläd	chen (zulä	ssige Abw	eichung ±0),0006xd =	0,06 mm)		
Ebenheit	[mm]							
Rechtwinkligkeit der M	lantelfläci	he (zulässi	ige Abweid	hung ±0,5	mm)			
Rechtwinkligkeit	[mm]							
Masse des wasserges	ättiaten P	robekörpe	rs m₂ [kɑ]					
J. J			- al Ji					
Masse des Probekörne	I ers unter \	Nasser m	(Das Gew	/icht des T	ragehügel	ist weazu	tarieren!) [kal
					lagebage	ist wegzu		v.81
Volumen	[m3]	0.000664	0.000675	0.000681				0.0007 m ³
Cowicht nach Trocknu		0,000004		0,000001	i Abwoich	una < 0.20	/ innorhall	0,0007 m ²
	ng ini Oie I		5 ± 3 C (KC			ung ≤ 0,2 7		5 24 11)
27.03.2015		0,951	0,974	0,987				
Robdichte	[ka/m31	1433	1443	1450				1442 ka/m ³
Maximale Kraft im Drug		h	טדדי	1700			Formfaktor :	1 00
may F	[kNI]	150.0	160.0	167.0			· Unnakiul .	(y - 2.63%)
f	[N/mm ²]	22.66	22.81	23.78				23 1 N/mm ²
ck,cube150		22,00	22,01	23,10				∠J, I N/IIII1*

Betonkörper : LC20-13	0227_c15	0	Pr	üfling : 150	Der Würfel		Nennma	ıß d = 150 mm
Abmessungen [mm ³] :	2200 x 20	000 x 200			V	erwendung	g kalibriete	er Formen? Ja
Herstelldatum :	27.02.20	13					Prüfer :	TA
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung
Probekörpergeometrie	(maxima	le Abweich	nung vom	Nennmaß	0,5 % = 0,7	75 mm)		
Länge1 oben	[mm]	149,55	149,98	149,68				+;+;+
Länge2 oben	[mm]	149,81	150,15	149,66				+;+;+
Länge3 oben	[mm]	150,12	150,05	150,22				+;+;+
Länge1 unten	[mm]	149,79	149,87	149,52				+;+;+
Länge2 unten	[mm]	149,89	149,83	149,68				+;+;+
Länge3 unten	[mm]	150,21	149,95	150,38				+;+;+
Breite1 oben	[mm]	151,80	150,62	150,68				-;+;+
Breite2 oben	[mm]	150,65	149,50	151,64				+;+;-
Breite3 oben	[mm]	152,83	150,13	151,24				-;+;-
Breite1 unten	[mm]	151,74	152,99	153,00				-;-;-
Breite2 unten	[mm]	150,58	152,77	151,71				+;-;-
Breite3 unten	[mm]	150,99	152,21	153,50				-;-;-
Höhe1	[mm]	150,04	150,05	150,02				+;+;+
Höhe2	[mm]	149,88	150,11	149,99				+;+;+
Höhe3	[mm]	150,04	149,96	150,02				+;+;+
Höhe4	[mm]	150,45	150,34	150,45				+;+;+
Abweichung zwischen	oberer F	läche und	Grundfläc	he (maxim	al 1,0 %)			
Abweichung	[%]	0,34	1,59	1,03				+;-;-
Ebenheit der Lasteinle	itungsfläd	chen (zulä	ssige Abw	eichung ±(0,0006xd =	0,09 mm)		
Ebenheit	[mm]							
Rechtwinkligkeit der W	/ürfelseite	en (zulässi	ge Abweid	hung ±0,5	mm)			
Rechtwinkligkeit	[mm]							
Masse des wasserges	ittiaten P	robekörpe	rs m. [ka]					
Masse des Probekörne	rs unter \	Wasser m	(Das Gew	l /icht des T	ragebügel	ist weazu	tarieren!) [kal
			(240 00)			.ot .rog_u		
Volumen	[m³]	0.003407	0.003408	0.003419				0.0034 m ³
Gewicht nach Trocknu	na im Ofe	en bei (105	+5) °C (Ko	onstanz be	i Abweich	una < 0.2 %	6 innerhall	o 24 h)
24 05 2013		4 370	4 239	4 308		g ,		,
18 05 2013		4 352	4 224	4 291				
04.06.2013		4 342	4 216	4 282				, , _:+:-
11 06 2013		4,338	4 213	4 274				,,, +'+'+
11.00.2010		1,000	1,210	1,271				.,.,.
<u> </u>								
<u> </u>								
Rohdichte	[ka/m³]	1273	1236	1250				1253 ka/m³
Maximale Kraft im Drug	ckversucl	h	.200	.200	<u> </u>		Formfaktor ·	1.00
max F	[kN]	528.0	530.0	526.0				(y = 0.54 %)
fck cube150	[N/mm ²]	23.26	23.35	23 10				23.2 N/mm ²

Betonkörper : LC20-13	0127_d10	00 Prüfling : Bohrkern					Nennma	ıß d = 100 mm
Abmessungen [mm ³] :	2200 x 20	000 x 200			Verv	vendung k	alibrieter l	Formen? Nein
Herstelldatum :	27.01.20	13					Prüfer :	ТА
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung
Probekörpergeometrie	(max. Ab	weichung	: Höhe 10 '	% = 10,00 r	nm)			
Durchmesser1 oben	[mm]	94,50	94,52	94,53				
Durchmesser2 oben	[mm]	94,48	94,56	94,55				
Durchmesser1 mitte	[mm]	94,49	94,54	94,51				
Durchmesser2 mitte	[mm]	94,51	94,50	94,49				
Durchmesser1 unten	[mm]	94,54	94,52	94,54				
Durchmesser1 unten	[mm]	94,52	94,51	94,53				
Höhe1	[mm]	99,29	99,92	99,15				
Höhe2	[mm]	99,94	99,85	99,95				
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
Ebenheit der Lasteinle	itungsfläd	chen (zulä	ssige Abw	eichung ±0),0006xd =	0,06 mm)		
Ebenheit	[mm]		-	_				
Rechtwinkligkeit der N	lantelfläc	he (zulässi	ige Abweid	hung ±0,5	mm)			
Rechtwinkligkeit	[mm]				,			
Masse des wasserges	ättigten P	robekörpe	rs m. [ka]					
11 04 2013	10.31	3 356	3 301	3 347				
Masse des Probekörne	rs unter l	Nasser m	(Das Gew	vicht des T	ragebügel	ist woozu	tarioron!) [kal
					lagebagel	ist wegzu		v.81
Volumen	[m3]	0 000699	0.000701	0 000699				0.0007 m ³
Gewicht nach Trocknu	na im Ofe	o,0000000 n hei (105	+5) °C (K	nstanz be	i Abweich	una < 0.2 º	/ innerhall	0,0007 m
	I OIC				Abweich	ung 20,2 /		52411)
20.03.2015		1,049	0,900	0,975				
Rohdichte	[ka/m ³¹	1501	1407	1396				1435 ka/m ³
Maximale Kraft im Dru	ckversuel	n	1707	1000			Formfaktor :	1 00
max F	[kNI]	136.0	145.0	144.0			· onnaktor .	(y = 3.46 %)
fak auha150	[N/mm ²]	19 39	20.66	20.52				20 2 N/mm ²

Betonkörper : LC20-120508-c150			Prüfling : 150er Würfel Nennmaß d = 150 mm					
Abmessungen [mm ³] :	1500 x 12	200 x 200			V	erwendung	g kalibriete	r Formen? Ja
Herstelldatum :	08.05.12	Pi	rüfdatum :	27.06.12			Prüfer :	MK
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung
Probekörpergeometrie	(maxima	le Abweicl	nung vom	Nennmaß	0,5 % = 0,7	'5 mm)		
Länge1 oben	[mm]	149,95	149,81	150,36	150,33	150,36	150,29	+;+;+;+;+;+
Länge2 oben	[mm]	150,02	149,88	150,29				+;+;+
Länge3 oben	[mm]	150,16	149,94	150,22				+;+;+
Länge1 unten	[mm]	149,95	149,87	150,08	149,69	150,26	150,09	+;+;+;+;+;+
Länge2 unten	[mm]	150,00	150,02	150,17				+;+;+
Länge3 unten	[mm]	150,13	150,18	150,06				+;+;+
Breite1 oben	[mm]	149,93	150,05	149,91	149,88	146,34	149,15	+;+;+;+;-;-
Breite2 oben	[mm]	150,04	149,78	149,19				+;+;-
Breite3 oben	[mm]	149,91	149,31	148,67				+;+;-
Breite1 unten	[mm]	151,53	151,69	149,65	149,82	151,51	149,79	-;-;+;+;-;+
Breite2 unten	[mm]	150,86	152,20	147,94				-;-;-
Breite3 unten	[mm]	150,58	153,22	148,98				+;-;-
Höhe1	[mm]	150,53	149,95	150,06	150,08	150,70	150,10	+;+;+;+;+;+
Höhe2	[mm]	150,11	149,97	149,89				+;+;+
Höhe3	[mm]	150,36	149,94	150,03	150,00	150,30	149,70	+;+;+;+;+;+
Höhe4	[mm]	150,57	150,19	149,86				+;+;+
Abweichung zwischen	oberer Fl	äche und	Grundfläc	ne (maxim	al 1,0 %)		<u>.</u>	
Abweichung	[%]	0.68	1.87	0.39	0.47	3.46	0.30	+:-:+:+:-:+
Ebenheit der Lasteinle	itunasfläd	hen (zulä	ssige Abw	eichung +() 0006xd =	0 09 mm)	-,	-,,-,-,
Ebenheit	[mm]			sionang ±0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,00 1111)		
Boohtwinkligkoit der M		n (zuläggi	ao Abwaia	hung .0 E				
		en (zuidssi	ige Abweic	nung ±0,5				
Rechtwinkligkeit	[mm]							
Masse des wassergesa	attigten P	горекогре	rs m _a [kg]					
Masse des Probekörpe	ers unter \	Nasser m _v	_v (Das Gew	vicht des T	ragebügel	ist wegzu	tarieren!) [kg]
					3,330	3,311	3,283	
Volumen	[m³]				0,003337	0,003318	0,003290	0,0033 m³
Gewicht nach Trocknu	ng im Ofe	en bei (105	5 ±5) °C (Ko	onstanz be	i Abweich	ung ≤ 0,2 %	6 innerhall	o 24 h)
20.06.2012		5,003	4,971	5,037	5,111	5,006	5,072	31.07.2012
27.06.2012					4,396	4,291	4,375	;-;-;-
19.07.2012					4,208	4,120	4,169	;-;-;-
30.07.2012					4,207	4,120	4,169	;+;+;+
Rohdichte	[kg/m³]				1261	1242	1267	1257 kg/m ³
Maximale Kraft im Dru	ckversuc	า					Formfaktor :	1,00
max F	[kN]	554.0	549.0	553.0				(v = 0,95 %)
fak auha150	[N/mm ^{2]}	24 54	24 24	24 70				24 5 N/mm ²
aafls Bruchhild	[]	27,0 7	<u> </u>	27,10		ļ		27,0 14/1111
ggils. Didenblid								

Betonkörper : LC20-120508-d100				Prüfling : Bohrkern Nennmaß d = 100 mm				
Abmessungen [mm ³] :	1500 x 12	200 x 200			V	erwendung	g kalibriete	r Formen? Ja
Herstelldatum :	08.05.12	Pr	üfdatum :	28.06.12			Prüfer :	MK
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung
Probekörpergeometrie	(max. Ab	weichung	: Höhe 10 '	% = 10,00 ı	mm)			
Durchmesser1 oben	[mm]	94,32	94,66	94,39	94,34	94,65	94,33	
Durchmesser2 oben	[mm]	94,43	94,29	94,37	94,38	94,38	94,57	
Durchmesser1 mitte	[mm]							
Durchmesser2 mitte	[mm]							
Durchmesser1 unten	[mm]	94,39	94,36	94,36	94,44	94,37	94,60	
Durchmesser1 unten	[mm]	94,45	94,33	94,40	94,37	94,34	94,35	
Höhe1	[mm]	100,17	96,96	97,81	102,06	94,84	101,95	
Höhe2	[mm]	99,00	96,81	97,32	101,95	93,86	102,31	
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
Ebonhoit dor Lastoinle	itunasfläc	hon (zulä	ssigo Abw	aichung +() 0006vd -	0.06 mm)		
	[mm]		SSIGE ADW	elenung ±	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,00 mm)		
Ebenneit Beschtwischlischeit des M			A I					
Rechtwinkligkeit der M	anteifiaci	ne (zulass	ige Abweid	nung ±0,5	mm)			
Rechtwinkligkeit	[mm]							
Masse des wasserges	attigten P	robekörpe	rs m _a [kg]		-			
		1,004	0,982	0,995	1,022	0,945	1,035	
Masse des Probekörpe	ers unter \	Nasser m _v	, (Das Gew	vicht des T	ragebügel	ist wegzu	tarieren!) [kg]
Volumen	[m³]	0,000697	0,000678	0,000683	0,000714	0,000661	0,000716	0,0007 m³
Gewicht nach Trocknu	ng im Ofe	en bei (105	±5) °C (Ko	onstanz be	i Abweich	ung ≤ 0,2 %	% innerhalk	o 24 h)
	J J	````	, (,
Rohdichte	[kɑ/m³]							
Maximale Kraft im Drug	ckversuch	<u></u>					Formfaktor ·	1 00
max F	[kNI]	10/ /	180 7	186.8	162 /	157 Q	172 2	(y = 8.50 %)
f	[N]/mm2]	ד,דטי 77 70	27.10	26 70	22 24	22 52	24.74	25.3 N/mm ²
ck,cube150	[11/1111-]	21,10	21,10	20,70	20,21	22,00	24,11	23,3 11/111112
gyns. Druchbliu								

Betonkörper : LC20-120614-c150			Prüfling : 150er Würfel Nennmaß d = 150 mm					
Abmessungen [mm ³] :	1500 x 12	200 x 200			V	erwendung	g kalibriete	r Formen? Ja
Herstelldatum :	14.06.12	Pi	rüfdatum :	09.08.12			Prüfer :	MK
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung
Probekörpergeometrie	(maxima	le Abweicl	nung vom	Nennmaß	0,5 % = 0,7	'5 mm)		
Länge1 oben	[mm]	150,29	149,93	149,90	150,,29	150,46	150,04	+;+;+;-;+;+
Länge2 oben	[mm]	150,16	149,90	150,00	150,20	150,34	150,30	+;+;+;+;+;+
Länge3 oben	[mm]	150,05	149,86	149,99	150,05	150,15	150,14	+;+;+;+;+;+
Länge1 unten	[mm]	150,18	149,97	150,01	150,13	150,27	150,26	+;+;+;+;+;+
Länge2 unten	[mm]	150,16	149,88	149,99	150,22	150,40	150,34	+;+;+;+;+;+
Länge3 unten	[mm]	150,06	149,84	149,96	150,14	150,26	150,28	+;+;+;+;+;+
Breite1 oben	[mm]	150,83	148,55	147,75	150,37	150,67	148,75	-;-;+;+;-
Breite2 oben	[mm]	150,01	150,91	149,08	149,80	151,57	148,79	+;-;-;+;-;-
Breite3 oben	[mm]	149,38	150,54	150,60	148,77	150,18	148,20	+;+;+;-;+;-
Breite1 unten	[mm]	151,00	148,76	146,56	146,57	151,28	149,95	-;-;-;-;+
Breite2 unten	[mm]	149,49	149,28	148,76	147,00	150,61	148,82	+;+;-;-;+;-
Breite3 unten	[mm]	147.89	149.61	146.36	146.38	150.43	147.30	-:+:-:+:-
Höhe1	[mm]	149.99	149.68	149.82	150.13	150.77	150.06	+:+:+:+:-:+
Höhe2	[mm]	150.06	150.08	149.44	150.06	149.85	149.90	+:+:+:+:+:+
Höhe3	[mm]	150.21	150.25	149.88	150.14	150.28	150.00	+:+:+:+:+:+
Höhe4	[mm]	150.09	150.25	150.31	150.70	150.27	149.93	+:+:+:+:+:+
Abweichung zwischen	oberer Fl	äche und	Grundfläc	ne (maxim	al 1.0 %)	,	,	- , - , - , - , - , -
Abweichung	[%]	0.43	0.52	1.29	2.02	0.03	0.16	+:+:-:-:+:+
Ebenheit der Lasteinle	itunasfläd	hen (zulä	ssige Abw	eichuna ±().0006xd =	0.09 mm)	-,	- , - , , , - , -
Ebenheit	[mm]	(,	e,ee,		
Poohtwinkligkoit dor M	lürfolcoite	n (zuläcci	ao Abwaia		mm)			
		201055		nung ±0,5				
Rechtwinkligkeit	[mm]							
Masse des wassergesa	attigten P	горекогре	rs m _a [κg]					
Masse des Probekörpe	ers unter \	Nasser m _v	_v (Das Gew	vicht des T	ragebügel	ist wegzu	tarieren!) [kg]
		3,317	3,319	3,294				
Volumen	[m³]	0,003324	0,003326	0,003301				0,0033 m³
Gewicht nach Trocknu	ng im Ofe	en bei (105	5 ±5) °C (Ko	onstanz be	i Abweich	ung ≤ 0,2 %	6 innerhall	o 24 h)
30.07.2012	12:00	4,996	5,017	4,982	5,172	5,196	5,179	31.07.2012
16.08.2012	13:30	4,135	4,153	4,138				-;-;-
06.09.2012	11:30	4,120	4,147	4,128				-;+;-
12.09.2012	16:25	4,116	4,142	4,121				+;+;+
			,					
Rohdichte	[ka/m³]	1238	1245	1249				1244 kg/m ³
Maximale Kraft im Drug	ckversucl	1		· · ·			Formfaktor :	1,00
max F	[kN]				611.0	613.0	645.0	(v = 3,46 %)
fok aubo150	[N/mm ²]				27.48	27.05	28.89	27.8 N/mm ²
aafls Bruchhild	[]				21,10	_1,00	_0,00	,•
33.0. 5.00.000	1							

Betonkörper : LC20-12	stonkörper : LC20-120614-d100			Prüfling : Bohrkern Nennmaß d = 10				
Abmessungen [mm ³] :	1500 x 12	200 x 200			Ve	erwendung	g kalibriete	r Formen? Ja
Herstelldatum :	14.06.12	Pr	üfdatum :	10.08.12			Prüfer :	MK
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung
Probekörpergeometrie	(max. Ab	weichung	: Höhe 10 '	% = 10,00 ı	nm)			
Durchmesser1 oben	[mm]	94,42	94,42	94,50	94,45	94,52	94,55	
Durchmesser2 oben	[mm]	94,47	94,47	94,46	94,56	94,52	94,48	
Durchmesser1 mitte	[mm]							
Durchmesser2 mitte	[mm]							
Durchmesser1 unten	[mm]	94,55	94,57	94,43	94,49	94,46	94,41	
Durchmesser1 unten	[mm]	94,35	94,38	94,42	94,44	94,45	94,45	
Höhe1	[mm]	102,46	101,95	102,33	101,68	100,42	100,86	
Höhe2	[mm]	102.54	102.07	102.66	101.68	100.60	101.00	
	[mm]		,	,	,	,	,	
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[[]]]] [mm]							
	[[[]]]							
	լՠՠֈ							
Ebenheit der Lasteinle	itungsfläd	chen (zulä	ssige Abw	eichung ±(),0006xd =	0,06 mm)		
Ebenheit	[mm]							
Rechtwinkligkeit der M	antelfläc	ne (zulässi	ae Abweid	huna ±0.5	mm)			
Rechtwinkligkeit	[mm]	(<u></u>	g ,-	····· ,			
Massa das wassargasi	ittiaton D	robokärno	re m [ka]					
wasse des wasselgesa		obekorpe		4.0.40	4 004	4 000	1.010	
		1,029	1,040	1,049	1,031	1,000	1,012	
Masse des Probekörpe	ers unter \	Nasser m _v	, (Das Gew	vicht des T	ragebügel	ist wegzu	tarieren!) [kg]
Volumen	[m³]	0,000718	0,000715	0,000718	0,000713	0,000705	0,000707	0,0007 m³
Gewicht nach Trocknu	ng im Ofe	en bei (105	±5) °C (Ko	onstanz be	i Abweich	ung ≤ 0,2 %	% innerhalk	o 24 h)
Robdichto	[ka/m3]							
Maximala Kroft im Drug		<u> </u>						4.00
		100.0	402.0	105.0	044 7	407.0	Formfaktor :	1,00
max F	[KN]	189,8	180,2	185,0	211,7	197,9	196,8	(v = 5,74 %)
f _{ck,cube150}	[N/mm²]	27,09	25,71	26,40	30,19	28,22	28,08	27,6 N/mm ²
ggfls. Bruchbild								

Betonkörper : LC20-12	0725-c150)	Pri	üfling : 150	Der Würfel		Nennma	ß d = 150 mm
Abmessungen [mm ³] :	1500 x 12	200 x 200			V	erwendung	g kalibriete	r Formen? Ja
Herstelldatum :	25.07.12	Pr	üfdatum :	20.09.12			Prüfer :	MK
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung
Probekörpergeometrie	(maxima	le Abweich	nung vom l	Nennmaß	0,5 % = 0,7	'5 mm)		-
Länge1 oben	[mm]	150,48	149,95	149,77				+;+;+
Länge2 oben	[mm]	150,47	150,15	149,94				+;+;+
Länge3 oben	[mm]	149,87	149,90	150,28				+;+;+
Länge1 unten	[mm]	149,77	148,96	147,75				+;-;-
Länge2 unten	[mm]	150,00	148,94	146,67				+;-;-
Länge3 unten	[mm]	150,10	148,91	149,87				+;-;+
Breite1 oben	[mm]	148,35	149,89	150,17				-;+;+
Breite2 oben	[mm]	149,69	149,90	149,91				+;+;+
Breite3 oben	[mm]	147,06	149,85	149,77				-;+;+
Breite1 unten	[mm]	151,33	148,83	151,66				-;-;-
Breite2 unten	[mm]	150,81	150,91	151,14				-;-;-
Breite3 unten	[mm]	150,30	150,26	148,62				+;+;-
Höhe1	[mm]	150,02	150,16	149,98				+;+;+
Höhe2	[mm]	150,04	150,05	150,04				+;+;+
Höhe3	[mm]	149,97	150,00	149,94				+;+;+
Höhe4	[mm]	150,30	150,29	150,40				+;+;+
Abweichung zwischen	oberer Fl	äche und	Grundfläcl	ne (maxim	al 1,0 %)			
Abweichung	[%]	1,43	0,63	0,93	-			-;+;+
Ebenheit der Lasteinle	itungsfläd	hen (zulä	ssige Abw	eichung ±(),0006xd =	0.09 mm)		
Ebenheit			J	<u> </u>				
Rechtwinkligkeit der V	Vürfelseite	en (zulässi	ae Abweic	huna +0.5	mm)			
Rechtwinkligkeit	[mm]		<u>j</u>	.	····· ,			
Masse des wasserges	ättigten Pi	robekörne	rsm [ka]					
		obolicipo						
Maaaa daa Drahakärne				ieht des T	reachäral		terieren I) [
		wasser m _v	, (Das Gew	icht des T	ragebugei	ist wegzu	tarieren!) [ĸġj
					3,336	3,313	3,324	
Volumen	[m³]				0,003343	0,003320	0,003331	0,0033 m³
Gewicht nach Trocknu	ing im Ofe	en bei (105	±5) °C (Ko	onstanz be	i Abweich	ung ≤ 0,2 %	6 innerhalk	o 24 h)
20.09.2012	13:30	4,862	4,893	4,890	5,124	5,052	5,097	31.07.2012
27.09.2012	11:20				4,499	4,453	4,472	;-;-;-
08.10.2012	13:00				4,170	4,117	4,151	;-;-;-
11.10.2012	12:00				4,165	4,114	4,145	;+;+;+
Rohdichte	[kg/m³]				1246	1239	1244	1243 kg/m³
Maximale Kraft im Dru	ckversuch	า					Formfaktor :	1,00
max F	[kN]	514,0	514,0	498,0				(v = 1,71 %)
f _{ck,cube150}	[N/mm²]	22,89	22,93	22,24				22,7 N/mm ²
ggfls. Bruchbild				_				

Betonkörper : LC20-120725-d100				Prüfling : Bohrkern Nennmaß d = 100 mm				
Abmessungen [mm ³] :	1500 x 12	200 x 200			V	erwendung	g kalibriete	r Formen? Ja
Herstelldatum :	25.07.12	Pr	üfdatum :	21.09.12			Prüfer :	MK
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung
Probekörpergeometrie	(max. Ab	weichung	: Höhe 10 °	% = 10,00 ı	nm)			
Durchmesser1 oben	[mm]	94,51	94,87	94,57	94,45	94,50	94,33	
Durchmesser2 oben	[mm]	94,48	94,58	94,68	94,64	94,32	94,52	
Durchmesser1 mitte	[mm]							
Durchmesser2 mitte	[mm]							
Durchmesser1 unten	[mm]	94,82	94,49	94,47	94,49	94,54	94,50	
Durchmesser1 unten	[mm]	94,50	94,51	94,47	94,39	94,47	94,55	
Höhe1	[mm]	101,99	100,04	100,27	98,96	101,75	100,68	
Höhe2	[mm]	101,96	100,21	100,14	99,00	101,83	100,51	
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
Ebonhoit dor Lastoinle	itunasflär	hon (zulä	ssige Abw	eichung +() 0006vd -	0.06 mm)		
	lungsnat	lieli (zula	ssige Abw	elchung ±0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,00 mm)		
	[mm]				`````			
Rechtwinkligkeit der M	antelflaci	ne (zulassi	ige Abweid	nung ±0,5	mm)			
Rechtwinkligkeit	[mm]							
Masse des wasserges	ättigten P	robekörpe	rs m _a [kg]					
		1,016	0,999	1,000	1,008	0,992	0,986	
Masse des Probekörpe	ers unter \	Nasser m _v	, (Das Gew	vicht des T	ragebügel	ist wegzu	tarieren!) [kg]
Volumen	[m³]	0,000716	0,000704	0,000704	0,000694	0,000713	0,000705	0,0007 m ³
Gewicht nach Trocknu	na im Ofe	en bei (105	±5) °C (Ko	onstanz be	i Abweich	una ≤ 0.2 %	6 innerhalt	o 24 h)
	- j	(g _ c,_ ,		,
Pohdichto	[ka/m3]							
Maximala Kroft im Drug		<u> </u>					Earna f. 1 i	4.00
		470.0	475.4	100.1	474.0	4.47.0	Formfaktor :	1,00
	[KIN]	173,0	175,1	166,1	174,0	147,6	147,0	(v = 7,94 %)
t _{ck,cube150}	[N/mm²]	24,63	24,91	23,66	24,81	21,06	20,97	23,3 N/mm ²
ggfls. Bruchbild								

kind of test project anchor size description of test FV-Leichtbet. Tension Tension Tension tests for centric tensile strength 11.02.26 base material & theoretical values forces / statistics test rigg base material : LC 20/22 ; LC20-111005-1 $\sigma_{Ru,m}^{t} = 1,20 \text{ kN}$ 23,70 % strength / density : 30,8 N/mm² V = dimensions : 250 x 160 x 35 cm³ 0,42 kN $\sigma^{\tau}_{Rk,NV} =$ tester : MiH 0,67 kN $\sigma^{t}_{Rk,log} =$ f_{lctm}^{cal} : 2,22 N/mm² test dev. / Ø : Freundl / 150 mm test speed : 50 N/s force-displacemant diagram 4,0 **3**,90 3,8 3,6 3,4 3,2 3,0 2,8 2,64 2,6 2,54 2,4 2,36 2,33 2,28 2,2 force [kN] 2,17 2,0 1,95 1,8 1,6 1,4 1,2 1,0 0,8 0.61 0,6 0,4 0,2 0,17 0,0 2 3 5 6 7 8 9 10 0 1 4 displacement [mm] summary test number 1 2 3 4 5 6 7 8 9 10 11 12 51,7 51,6 51,7 51,7 51,7 51,6 51,7 51,6 51,6 51,6 diameter [mm] 100,3 98,9 101,3 101,2 100,8 100,7 100,1 102,6 101,6 101,4 height [mm] 0,22 0,21 0,27 0.25 0,25 [mm] 0,13 0,32 0.20 0.20 0,04 δ_{FtRu} [kN] 2,28 2,17 2,54 0,61 3,90 2,36 2,33 0,17 1,95 2,64 F^t_{Ru} [kN] 1,09 1,03 1,21 1,86 0,93 1,26 1,13 1,11 σ_{Ru}^{L} CF CF CF CF CF CF CF CF CF kind of failure CF annotation T4 and T8: predamage of the concrete specimen kind of failure : CF = failure of the concrete core

Anhang 6.1

Frmittlung	der Ken	nwerte v	on Leich	ntbeton c	iemäß Di	N FN 20	6 Anha	ang 6.2.1
Linnthang					Herst	elldatum :	05.10.11	
Beto	nkörper :	LC20-111	005_E-Moo	k	Prüfdatum / Prüfer: 10.11			R.B.
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Prüfer
Probekörperg	geometrie							
Länge	[mm]							
Mittelwert								
Breite /	[mm]	94,94	94,47	94,61				
Durchmesser	[11111]	94,28	94,53	94,75				
Mittelwert		94,61	94,50	94,68				
Höhe /	[mm] /	200,5	201,9	199,7				
Gewicht	[kg]							
Mittelwert		200,5	201,9	199,7				
Gewicht bei I	uftfeuchte	er Lagerun	g					
Gewicht	[kg]							
Rohdichte	[kg/dm ³]							
Maximale Kra	aft im Druc	kversuch	-	-	-	-		
max F	[kN]	209,4	214,0	217,4				
max f	[N/mm²]	31,35	32,12	32,50				
Formfaktor :	0.95	no	rm Festial	eit f	32 0 N/mn	ר ²	v – 1 83 %	

Formfaktor : 0,95

norm. Festigkeit $f_{c,c150} = 32,0 \text{ N/mm}^2$ v = 1,83 %Rohdichte $\rho_{g,u}$ =

	Dehnung A	Dehnung B	Spannung A	Spannung B
	[‰]	[‰]	[N/mm²]	[N/mm²]
Probe 1	0,065	0,980	0,76	10,36
Probe 2	0,008	0,848	0,73	10,23
Probe 3	0,088	0,967	0,73	10,12

Anhang 6.2.2

Versuch 1 – Belastungshistorie und Auswertepunkte

Versuch 3 – Belastungshistorie und Auswertepunkte

Anhang 6.3.1 Ermittlung der Kennwerte von Beton gemäß DIN EN 12390 und DIN EN 13791

Betonkörper : LC20-120508-1_SZ								
Abmessungen [mm ³] : 1500 x 1200 x 200								
Herstelldatum :	08.05.2012							

Prüfling : Bohrkern Nennmaß d = 100 mm

Verwendung kalibrieter Formen? Ja Prüfer :

MK

		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung
Probekörpergeometrie	(max. Abv	weichung:	Höhe 10 %	= 10,00 m	m)			
Durchmesser1 oben	[mm]	94,40	94,52	94,34	94,45	94,59		
Durchmesser2 oben	[mm]	94,45	94,54	94,49	94,46	94,53		
Durchmesser1 mitte	[mm]							
Durchmesser2 mitte	[mm]							
Durchmesser1 unten	[mm]	94,52	94,43	94,40	94,51	94,50		
Durchmesser1 unten	[mm]	94,50	94,45	94,44	94,50	94,53		
Höhe1	[mm]	193,00	193,40	194,90	195,30	192,10		
Höhe2	[mm]	193,20	193,10	195,00	195,00	191,70		
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							
	[mm]							

Maximale Kraft im Druckversuch Formfaktor : 1,00									
max F	[kN]	48,6	64,6	63,0	60,3	47,6		(v = 13,87 %)	
f _{ct,SZ}	[N/mm ²]	1,70	2,25	2,18	2,08	1,67		1,98 N/mm ²	
ggfls. Bruchbild									

Betonkörper : LC20-120	0508-2_SZ			Prüfling : Bohrkern			Nennmaß d = 100 mm		
Abmessungen [mm ³] :	1500 x 12	500 x 1200 x 200			Verwendung kalibrieter Form				
Herstelldatum :	08.05.2012						Prüfer :	MK	
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung	
robekörpergeometrie (max. Abweichung: Höhe 10 % = 10,00 mm)									

Durchmesser1 oben	[mm]	94,46	94,55	94,46	94,38		
Durchmesser2 oben	[mm]	94,46	94,54	94,47	94,46		
Durchmesser1 mitte	[mm]						
Durchmesser2 mitte	[mm]						
Durchmesser1 unten	[mm]	94,47	94,56	94,43	94,34		
Durchmesser1 unten	[mm]	94,46	94,50	94,47	94,44		
Höhe1	[mm]	200,10	198,10	196,50	196,70		
Höhe2	[mm]	200,30	198,30	196,70	196,50		
	[mm]						
	[mm]						
	[mm]						
	[mm]						
	[mm]						
	[mm]						
	[mm]						
	[mm]						

Maximale Kraft im Druckversuch Formfaktor : 1,00								
max F	[kN]	62,6	46,0	55,9	58,0			(v = 12,37 %)
f _{ct,SZ}	[N/mm ²]	2,11	1,56	1,92	1,99			1,89 N/mm²
ggfls. Bruchbild								

Anhang 6.3.3 Ermittlung der Kennwerte von Beton gemäß DIN EN 12390 und DIN EN 13791

Probe 1 Probe 2

Betonkörper : LC20-120614-1_SZ								
Abmessungen [mm ³] :	Abmessungen [mm ³]: 1500 x 1200 x 200							
Herstelldatum :	14.06.2012							

Prüfling : Bohrkern Nennmaß d = 100 mm

Verwendung kalibrieter Formen? Ja

			Prüfer :	MK
Probe 3	Probe 4	Probe 5	Probe 6	Bewertung

Probekörpergeometrie (max. Abweichung: Höhe 10 % = 10,00 mm)									
Durchmesser1 oben	[mm]	94,37	94,48	94,40	94,44	94,50			
Durchmesser2 oben	[mm]	94,46	94,47	94,43	94,35	94,56			
Durchmesser1 mitte	[mm]								
Durchmesser2 mitte	[mm]								
Durchmesser1 unten	[mm]	94,56	94,57	94,41	94,47	94,50			
Durchmesser1 unten	[mm]	94,54	94,45	94,53	94,52	94,55			
Höhe1	[mm]	196,00	193,90	196,30	196,80	193,70			
Höhe2	[mm]	196,40	193,90	196,40	196,90	194,00			
	[mm]								
	[mm]								
	[mm]								
	[mm]								
	[mm]								
	[mm]								
	[mm]								
	[mm]								

Maximale Kraft im Druckversuch Formfaktor : 1,00								
max F	[kN]	60,9	47,3	73,3	58,2	63,0		(v = 15,16 %)
f _{ct,SZ}	[N/mm ²]	2,09	1,64	2,52	1,99	2,19		2,09 N/mm ²
ggfls. Bruchbild								

Betonkörper : LC20-120	0614-2_SZ			Prüfling : Bohrkern			Nennmaß d = 100 mm		
Abmessungen [mm ³] :	1500 x 12	500 x 1200 x 200			Verwendung kalibrieter Former				
Herstelldatum :	14.06.2012						Prüfer :	MK	
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung	
Probekörpergeometrie (max. Abweichung: Höhe 10 % = 10,00 mm)									

		-			-		
Durchmesser1 oben	[mm]	94,50	94,55	94,40	94,52	94,39	
Durchmesser2 oben	[mm]	94,46	94,45	94,54	94,48	94,48	
Durchmesser1 mitte	[mm]						
Durchmesser2 mitte	[mm]						
Durchmesser1 unten	[mm]	94,49	94,76	94,48	94,40	94,71	
Durchmesser1 unten	[mm]	94,47	94,41	94,55	94,50	94,49	
Höhe1	[mm]	194,40	194,80	195,00	193,60	194,20	
Höhe2	[mm]	194,70	194,90	195,00	193,30	194,40	
	[mm]						
	[mm]						
	[mm]						
	[mm]						
	[mm]						
	[mm]						
	[mm]						
	[mm]						

Maximale Kraft im Druckversuch Formfaktor : 1,00									
max F	43,5		(v = 21,91 %)						
f _{ct,SZ}	[N/mm ²]	2,18	2,07	2,73	2,62	1,51		2,22 N/mm ²	
ggfls. Bruchbild									

Betonkörper : LC20-120725-1_SZ				Prüfling :	Bohrkern		Nennma	aß d = 100 mm	
Abmessungen [mm ³] :	essungen [mm³] : 1500 x 1200 x 200				Verwendung kalibrieter Fo				
Herstelldatum :	25.07.201	2					Prüfer :	MK	
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung	

Probekörpergeometrie	(max. Abv	weichung:	Höhe 10 %	o = 10,00 m	m)		
Durchmesser1 oben	[mm]	94,52	94,35	94,43	94,29	94,53	
Durchmesser2 oben	[mm]	94,49	94,48	94,61	94,44	94,69	
Durchmesser1 mitte	[mm]						
Durchmesser2 mitte	[mm]						
Durchmesser1 unten	[mm]	94,49	94,47	94,40	94,43	94,63	
Durchmesser1 unten	[mm]	94,60	94,50	94,46	94,52	94,56	
Höhe1	[mm]	199,40	195,10	195,60	197,00	196,80	
Höhe2	[mm]	198,70	194,90	195,70	197,00	197,40	
	[mm]						
	[mm]						
	[mm]						
	[mm]						
	[mm]						
	[mm]						
	[mm]						
	[mm]						

Maximale Kraft im Druckversuch Formfaktor : 1,00									
max F	37,8		(v = 24,29 %)						
f _{ct,SZ}	[N/mm ²]	1,59	2,31	1,47	2,05	1,29		1,74 N/mm ²	
ggfls. Bruchbild									

Betonkörper : LC20-120725-2_SZ				Prüfling :	Bohrkern	Nennmaß d = 100 mm		
Abmessungen [mm ³] :		V	/erwendun	g kalibriete	er Formen? Ja			
Herstelldatum :				Prüfer :	MK			
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Bewertung
Probekörpergeometrie	(max. Abv	veichung:	Höhe 10 %	5 = 10,00 m	m)			
Durahmasaart ahan	[04.40	04 40	04.44	04.44	04 50		

Durchmesser1 oben	[mm]	94,48	94,43	94,44	94,44	94,53	
Durchmesser2 oben	[mm]	94,45	94,67	94,57	94,42	94,44	
Durchmesser1 mitte	[mm]						
Durchmesser2 mitte	[mm]						
Durchmesser1 unten	[mm]	94,50	94,43	94,47	94,40	94,55	
Durchmesser1 unten	[mm]	94,44	94,67	94,57	94,26	94,63	
Höhe1	[mm]	195,80	195,40	195,70	197,00	193,00	
Höhe2	[mm]	195,80	195,60	195,80	196,70	192,60	
	[mm]						
	[mm]						
	[mm]						
	[mm]						
	[mm]						
	[mm]						
	[mm]						
	[mm]						

Maximale Kraft im Druckversuch Formfaktor : 1,00									
max F	[kN]	45,0	41,6	59,0	52,5	38,0		(v = 17,54 %)	
f _{ct,SZ}	[N/mm ²]	1,55	1,43	2,03	1,80	1,33		1,63 N/mm ²	
ggfls. Bruchbild									

Betonkörper : LC40- Abmessungen [mm ³]	Betonkörper : LC40-120531_SZ Abmessungen [mm³] 2050 x 1900 x 200		Prüfling : Bohrkern				Nennmaß d = 100 mm Verwendung kalibrieter Formen? Ja			
Herstelldatum :	31.05.201	12					Prüfer :		PK	
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Probe 7	Bewertung	
Probekörpergeometr	rie (max. A	bweichu	ng: Höhe	10 % = 10	,00 mm)					
Durchmesser1 oben	[mm]	94,05	93,77	94,21	94,30	94,06	93,98	94,11		
Durchmesser2 oben	[mm]									
Durchmesser1 mitte	[mm]									
Durchmesser2 mitte	[mm]									
Durchmesser1 unten	[mm]									
Durchmesser1 unten	[mm]									
Höhe1	[mm]	103,22	102,76	104,61	103,09	103,32	103,81	103,37		
Höhe2	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									

Maximale Kraft im Dr	Formfaktor: 1,00								
max F	[kN]	40,4	33,1	49,4	43,6	28,1	26,0	38,6	(v = 22,38 %)
f _{ct,SZ}	[N/mm ²]	2,65	2,19	3,19	2,86	1,84	1,70	2,53	2,42 N/mm ²
ggfls. Bruchbild									

Betonkörper : LC40-120625_SZ Abmessungen [mm ³] 2050 x 1900 x 200		Z 900 x 200	Prüfling : Bohrkern				Nennmaß d = 100 mm /erwendung kalibrieter Formen? Ja		
Herstelldatum :	25.06.201	12					Prüfer :		PK
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Probe 7	Bewertung
Probekörpergeometr	rie (max. A	bweichu	ng: Höhe	10 % = 10	,00 mm)				
Durchmesser1 oben	[mm]	94,18	94,26	94,12	94,25	94,20	94,14	94,14	
Durchmesser2 oben	[mm]								
Durchmesser1 mitte	[mm]								
Durchmesser2 mitte	[mm]								
Durchmesser1 unten	[mm]								
Durchmesser1 unten	[mm]								
Höhe1	[mm]	105,51	103,18	101,41	105,40	105,31	100,22	102,40	
Höhe2	[mm]								
	[mm]								
	[mm]								
	[mm]								
	[mm]								
	[mm]								
	[mm]								
	[mm]								
	[mm]								

Maximale Kraft im Dr	Formfaktor : 1,00								
max F	[kN]	37,7	46,8	33,5	40,3	33,4	38,0	46,8	(v = 14,40 %)
f _{ct,SZ}	[N/mm ²]	2,42	3,06	2,23	2,58	2,14	2,56	3,09	2,58 N/mm ²
ggfls. Bruchbild									

Betonkörper : LC40-120731_SZ Abmessungen [mm ³] 2500 x 1900 x 200		Z 900 x 200	Prüfling : Bohrkern				Nennmaß d = 100 mm Verwendung kalibrieter Formen? Ja			
Herstelldatum :	31.07.201	12					Prüfer :		PK	
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Probe 7	Bewertung	
Probekörpergeometr	ie (max. A	Abweichu	ng: Höhe	10 % = 10	,00 mm)					
Durchmesser1 oben	[mm]	94,20	94,21	94,26						
Durchmesser2 oben	[mm]									
Durchmesser1 mitte	[mm]									
Durchmesser2 mitte	[mm]									
Durchmesser1 unten	[mm]									
Durchmesser1 unten	[mm]									
Höhe1	[mm]	105,40	100,56	101,85						
Höhe2	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									

Maximale Kraft im Di	Formfaktor :	1,00					
max F	[kN]	46,8	37,7	50,8			(v = 14,11 %)
f _{ct,SZ}	[N/mm ²]	3,00	2,53	3,37			2,97 N/mm ²
ggfls. Bruchbild							

Betonkörper : LC40-120823_SZ Abmessungen [mm ³] 2500 x 1900 x 200			F	Prüfling :	Bohrkern	Vei	Nennmaß d = 100 mm erwendung kalibrieter Formen? Ja			
Herstelldatum :	23.08.201	12					Prüfer :		PK	
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Probe 7	Bewertung	
Probekörpergeomet	rie (max. A	Abweichu	ng: Höhe	10 % = 10	,00 mm)					
Durchmesser1 oben	[mm]	94,27	94,18	94,10						
Durchmesser2 oben	[mm]									
Durchmesser1 mitte	[mm]									
Durchmesser2 mitte	[mm]									
Durchmesser1 unten	[mm]									
Durchmesser1 unten	[mm]									
Höhe1	[mm]	102,82	104,01	104,91						
Höhe2	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									
	[mm]									

Maximale Kraft im Druckversuch								1,00
max F	[kN]	55,0	48,3	50,7				(v = 7,32 %)
f _{ct,SZ}	[N/mm²]	3,61	3,14	3,27				3,34 N/mm ²
ggfls. Bruchbild								

Betonkörper : LC40-120903_SZ Abmessungen [mm ³] 1600 x 1600 x 250			Prüfling : Bohrkern V€			Nennmaß d = 100 mm erwendung kalibrieter Formen? Ja		
03.09.201	2					Prüfer :		PK
	Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Probe 7	Bewertung
e (max. A	bweichu	ng: Höhe	10 % = 10	,00 mm)				
[mm]	94,60	94,43	94,39					
[mm]								
[mm]								
[mm]								
[mm]								
[mm]								
[mm]	104,01	104,18	104,05					
[mm]								
[mm]								
[mm]								
[mm]								
[mm]								
[mm]								
[mm]								
[mm]								
[mm]								
	600 x 16 3.09.201 (mm) [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	1600 x 1600 x 250 03.09.2012 Probe 1 c (max. Abweichun [mm] g (max. Abweichun [mm] [mm]	Image: Probe 1 Probe 2 Probe 1 Probe 2 e (max. Abweichung: Höhe [mm] 94,60 94,43 [mm] 94,60 94,43 [mm] 104,00 104,18 [mm] 104,01 104,18 <	Image: Non-state of the state of the st	Image: Probe 1 Probe 2 Probe 3 Probe 4 e (max. Abweichung: Höhe 10 % = 10,00 mm) [mm] 94,60 94,43 94,39 [mm] 94,60 94,43 94,39 94,39 [mm] 94,60 94,43 94,39 [mm] 104,01 104,18 104,05 [mm] 94,94 94,94 94,94 94,94 [mm] 94,01 104,18 <t< td=""><td>Image: Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 e (max. Abweichung: Höhe 10 % = 10,00 mm) [mm] </td><td>Image: Properation of the second s</td><td>Image Lemma Verwendung kalibrie 600 x 1600 x 250 Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 Probe 6 Probe 7 Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 Probe 6 Probe 7 e (max. Abweichung: Höhe 10 % = 10,00 mm) Image Lemma Image Lemma Image Lemma Image Lemma [mm] 94,60 94,43 94,39 Image Lemma Image Lemma<!--</td--></td></t<>	Image: Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 e (max. Abweichung: Höhe 10 % = 10,00 mm) [mm]	Image: Properation of the second s	Image Lemma Verwendung kalibrie 600 x 1600 x 250 Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 Probe 6 Probe 7 Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 Probe 6 Probe 7 e (max. Abweichung: Höhe 10 % = 10,00 mm) Image Lemma Image Lemma Image Lemma Image Lemma [mm] 94,60 94,43 94,39 Image Lemma Image Lemma </td

Maximale Kraft im Di	Formfaktor :	1,00					
max F	[kN]	55,2	48,8	35,3			(v = 21,79 %)
f _{ct,SZ}	[N/mm ²]	3,57	3,16	2,29			3,01 N/mm ²
ggfls. Bruchbild							

Betonkörper : LC40-120906_SZ Abmessungen [mm ³] 1600 x 1600 x 250			F	Prüfling : Bohrkern V				Nennmaß d = 100 mm Verwendung kalibrieter Formen? Ja			
Herstelldatum :	03.09.201	12					Prüfer :		PK		
		Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Probe 7	Bewertung		
Probekörpergeomet	rie (max. A	Abweichu	ng: Höhe	10 % = 10	,00 mm)						
Durchmesser1 oben	[mm]	94,50	94,39	94,48							
Durchmesser2 oben	[mm]										
Durchmesser1 mitte	[mm]										
Durchmesser2 mitte	[mm]										
Durchmesser1 unten	[mm]										
Durchmesser1 unten	[mm]										
Höhe1	[mm]	104,21	104,50	106,91							
Höhe2	[mm]										
	[mm]										
	[mm]										
	[mm]										
	[mm]										
	[mm]										
	[mm]										
	[mm]										
	[mm]										

Maximale Kraft im Dr	Formfaktor :	1,00					
max F	[kN]	36,3	41,1	47,6			(v = 12,26 %)
f _{ct,SZ}	[N/mm²]	2,35	2,65	3,00			2,67 N/mm ²
ggfls. Bruchbild							