Bau<u>forschung</u>

Realistische seismische Lastannahmen für bauliche Anlagen mit erhöhtem Sekundärrisiko. Abschlussbericht

T 1257

¹ Fraunhofer IRB Verlag

T 1257

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

T 1257: Realistische seismische Lastannahmen für bauliche Anlagen mit erhöhtem Sekundärrisiko

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. der Forschungsstelle zur Verfügung gestellt wurde.

Im Originalmanuskript enthaltene Farbvorlagen, wie z.B. Farbfotos, können nur in Grautönen wiedergegeben werden. Auf Anfrage und gegen Aufpreis können von diesen Vorlagen Farbkopien angefertigt werden.

C Copyright by IRB Verlag

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des IRB Verlags.

IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau Postfach 80 04 69, 70504 Stuttgart Nobelstraße 12, 70569 Stuttgart Telefon \bigcirc (0711) 970-2500 Telefax (0711) 970-2508 Telex 7 255 168 izs d

König und Heunisch Beratende Ingenieure

REALISTISCHE SEISMISCHE LASTANNAHMEN FÜR BAULICHE ANLAGEN MIT ERHÖHTEM SEKUNDÄRRISIKO

ABSCHLUSSBERICHT

im Auftrag des Instituts für Bautechnik, Berlin (Aktenzeichen IV/1-5-377/82)

von

D. Hosser H. Klein

mit Beiträgen von

- L. Ahorner, W. Rosenhauer
- H. Berckhemer, J. Kopera
- G. Schneider, Th. Kunze
- G. Waas, H. Werkle, W. Weber

Dezember 1983

le.7

Informationszentrum RAUM und BAU der Fraunhofer-Gesellschaft Inventar-Nr. lfd. Nr. 7 7257

8405/2375

I N	HALT	Seite
	Vorbemerkung	III
	Zusammenfassung	IV
	Abstract	v
	Resume	VI
1.	Einleitung	1
	1.1 Ausgangssituation	1
	1.2 Zielsetzung	2
2.	Grundkonzept	4
з.	Datenbasis	8
	3.1 Erdbebenbibliothek	8
	3.2 Aufbereitung der Daten	9
	3.3 Klassifizierung nach seismischen Kenngrößen	13
	3.4 Klassifizierung nach Untergrundverhältnissen	15
4.	Freifeld-Antwortspektren	17
	4.1 Vorgehensweise	17
	4.2 Untergrund- und intensitätsabhängige Freifeld-	18
	Antwortspektren	
	4.3 Untergrundunabhängige Freifeld-Antwortspektren	29
5.	Starkbebendauer	33
	5.1 Definition der Starkbebendauer	33
	5.2 Statistische Auswertung	36
	5.3 Generierung von Zeitverläufen	37
		2
6.	Synthetische Basisspektren	39
	6.1 Definition und Grundlagen	39
	6.2 Kinematische Herdbruchmodelle	46
	6.3 Ausbreitung im Kristallin und Paläozoikum	47
	6.4 Referenzbeispiele	50
7.	Übertragungsfunktionen	52
	7 1 Grundestzliches	52

	7.2	Untergrundmodellierung	52
	7.3	Berechnungsverfahren	57
	7.4	Schräger Welleneinfall	58
	7.5	Anwendungsbeispiele	56
8.	Emp	Irische Basisspektren	70
	8.1	Abschätzung des Untergrundeinflusses	70
	8.2	Einfluß des sedimentären Festgesteins	74
	8.3	Fourierbetragsspektren für Festgestein	76
	8.4	Intensitätsabhängige Basisspektren	81
9.	Erdl	pebenzonenkarte	83
	9.1	Datenbasis	83
	9.2	Seismizitätsanalyse	91
	9.3	Probabilistische Standortanalysen	97
	9.4	Ergebnisse und Schlußfolgerungen	99
10.	Beme	essungshilfen	104
	10.1	Intensitäts- und untergrundunabhängige Freifeld-	
		Bemessungsspektren	104
	10.2	2 Untergrundunabhängige Freifeld-Bemessungsspektren	111
	10.3	Intensitätsabhängige Festgesteinsspektren	114
11.	Zusa	ammenfassung und Wertung	116
Anh	ang	1 Bezeichnungen	
Anh	ang	2 Literaturzusammenstellung	5.e
Anh	ang :	3 Liste der verwendeten Seismogramme	
Anh	ang	4 Vergleich verschiedener Untergrundklassifizierung	en
Anh	ang	Zusammenstellung von Freifeld-Antwortspektren	
Anh	ang	6 Berechnung synthetischer Basisspektren	
Anh	ang	7 Berechnung von Übertragungsfunktionen	
Anh	ang	3 Übertragungsfunktionen für deutsche Standorte	
An h	ang	Modellrechnungen zum Festgesteinseinfluß	

VORBEMERKUNG

Das Forschungsvorhaben "Realistische seismische Lastannahmen" wurde von König und Heunisch, Beratende Ingenieure, gemeinsam mit den Seismologen Prof. Ahorner (Erdbebenstation Bensberg der Universität Köln), Prof. Berckhemer (Institut für Meteorologie und Geophysik der Universität Frankfurt/M.) und Prof. Schneider (Institut für Geophysik der Universität Stuttgart) durchgeführt. Beiträge zu speziellen Fragen wurden außerdem auf freiwilliger Basis von der Hochtief AG, Frankfurt/M., geleistet. Die Erarbeitung der Erdbebenzonenkarte wurde dadurch ermöglicht, daß die Interatom GmbH Statistik- und Probabilistik-Rechenprogramme zur Verfügung gestellt und die Benutzung der firmeneigenen Rechenanlage gestattet hat. Durch eine finanzielle Unterstützung der Kraftwerk Union AG wurde die Mitwirkung von Herrn Dr. Rosenhauer möglich, der die betreffenden Programme erstellt hat. Hierfür sei den genannten Firmen an dieser Stelle, im Namen aller Beteiligten ganz herzlich gedankt.

Die Projektkoordination und Federführung für die Berichterstellung wurde von König und Heunisch wahrgenommen. Der vorliegende Abschlußbericht wurde von D. Hosser und H. Klein auf der Grundlage von Textbeiträgen von H. Berckhemer und J. Kopera (zu Abschnitten 1.1, 2, 3.3, 3.4, 5.1, 6.1, 8.1, 8.2, Anhang 4 und 9), G. Schneider und Th. Kunze (zu Abschnitten 6 und 7 sowie Anhang 6 und 3), L. Ahorner und W. Rosenhauer (zu Abschnitt ⁹), G. Waas, H. Werkle und W. Weber (zu Abschnitten 7.3, 7.4 und Anhang 7) erstellt.

Frankfurt/M. im Dezember 1983

G. König

REALISTISCHE SEISMISCHE LASTANNAHMEN FÜR BAULICHE ANLAGEN MIT ERHÖHTEM SEKUNDÄRRISIKO

ZUSAMMENFASSUNG

Das Forschungsvorhaben hatte zum Ziel, seismische Lastannahmen zu entwickeln, die den seismischen Verhältnissen in der Bundesrepublik bestmöglich Rechnung tragen. Insbesondere sollten die Abhängigkeit der Lastannahmen von der Erdbeben-Intensität und den Untergrundverhältnissen am betrachteten Standort sowie die Auftretenshäufigkeit der Intensität realistischer als bisher berücksichtigt werden.

Im ersten Arbeitspaket wurden deshalb für deutsche Verhältnisse repräsentative Erdbeben-Registrierungen hinsichtlich Frequenzgehalt und Starkbebendauer statistisch ausgewertet. Es wurden intensitäts- und untergrundabhängige Freifeld-Antwortspektren, untergrundunabhängige Freifeld-Antwortspektren, intensitätsabhängige Festgestein-Fourierspektren und untergrundabhängige Starkbebendauern mit Mittelwerten und Standardabweichungen ermittelt. Die Ergebnisse wurden zu Bemessungshilfen aufbereitet.

Im zweiten Arbeitspaket wurden synthetische Basisspektren der Erregung an der Basis der Sedimentdecke aus kinematischen Herdbruchmodellen berechnet. Außerdem wurden Übertragungsfunktionen für die Sedimentdecke (zwischen Basis und Freifeld) am Beispiel mehrerer deutscher Standorte bestimmt. Durch genauere Analysen des schrägen Welleneinfalls wurde gezeigt, daß die Annahme eindimensional vertikal propagierender Scherwellen für die praktische Berechnung von Übertragungsfunktionen hinreichend genau ist. Mit Hilfe theoretischer Überlegungen konnten die Basisspektren in Festgestein- oder Freifeldspektren umgerechnet und so mit empirisch ermittelten Spektren verglichen werden.

Das letzte Arbeitspaket umfaßte eine Seismizitätsanalyse der Bundesrepublik zur Erstellung einer Erdbebenzonenkarte. Ein umfangreicher Erdbebenkatalog wurde mit Mitteln der Extremwertstatistik ausgewertet; hieraus wurden Verteilungen von Maximalamplituden, Herdtiefen und Intensitätsabnahmebeziehungen für 30 verschiedene Seismizitätszonen gewonnen. In einer probabilistischen Standortanalyse für über 700 Standorte wurden die jeweiligen Intensitäts-Häufigkeits-Beziehungen errechnet, auf deren Grundlage die Erdbebenzonenkarte für eine gegebene Intensitäts-Häufigkeit gezeichnet werden konnte. REALISTIC SEISMIC LOAD ASSUMPTIONS FOR STRUCTURES WITH INCREASED SECONDARY RISK

ABSTRACT

The research project aimed at the development of seismic load assumption which should describe best the seismic conditions in the Federal Republic of Germany. Especially, the load assumptions as a function of earthquake characteristics such as earthquake intensity and subsoil conditions at the site as well as the frequency of the intensity had to be considered more realistically than before.

At first, earthquake registrations representative for German conditions were evaluated statistically with respect to frequency content and strong motion duration. Free-field response spectra as a function of intensity and subsoil, subsoil independent response spectra, Fourierspectra on rock and strong motion duration as a function of subsoil were evaluated by means of 50-percentile (median) and standard deviation. Smoothed spectra to be used for the dimensioning of structures are given.

In the next step, synthetic base spectra of the earthquake excitation at the base of the sediment layers were calculated with the help of kinematic models of the focal event. In addition, transmission functions were determined for the sediment cover (between base and freefield) by referring to several German locations. By means of more exact analyses of inclined waves it could be shown that the usual assumption about vertical propagating shear waves is sufficient for the calculation of transmission functions. For comparison purposes the base spectra can be converted into rock or free-field spectra by the help of frequency-dependent empiric factors.

Finally, a seismicity analysis for the Federal Republic of Germany was conducted resulting in a seismicity map. An extensive updated earthquake catalogue was evaluated with the help of the statistics of extremes; distributions of maximum magnitudes, focal distances and site-intensity - focal distance relations were evaluated for 30 different seismic zones. Exceedance rates of site intensity were determined in a probabilistic site analysis for more than 700 locations. Based on the results it was possible to draw a map of earthquake zones for given frequency of site intensity.

DES CHARGES SISMIQUES RÉALISTIQUES POUR DES CONSTRUCTIONS AVEC UN RISQUE SECONDAIRE AUGMENTÉ

RESUME

Le programme de recherches se donnait pour but d'évaluer de charges sismiques qui tiennent compte le mieux possible des conditions sismiques en Allemagne Fédérale. Surtout, il fallait considerer d'une manière plus réaliste l'intensité du séisme et des conditions du sous - sol à la site considerée ainsi que la fréquence d'apparation de l'intensité.

Premièrement, on évaluait par une analyse statistique des enregistrements des séismes représentant les conditions allemands le contenu de fréquences et la durée des mouvements forts. On trouvait des spectres moyens de réponse et l'écart-type qui dépendent de l'intensité et des conditions du sous-sol, des spectres de réponse indépendant du sous-sol, des spectres-Fourier pour la roche dépendant de l'intensité et, enfin, des périodes de mouvement fort dépendant du sous-sol.

Deuxièmement, on a calculé les spectres de base synthetiques de l'excitation au fond de la couche sédimentaire à l'aide des modèles kinematiques de la fracture focale. De plus, on a détérminé à l'exemple de plusieurs sites en Allemagne les fonctions de transmission pour la couche sédimentaire.

Des analyses plus exactes sur les ondes inclinées ont montré que l'hypothèse selon laquelle le cisaillement se propage verticalement à une dimension est suffissante pour les calculations pratiques des fonctions de transmission. A l'aide de facteurs empiriques les spectres de base pouvaient être convertis en spectres de roches ou de libre-champs. Ainsi, on pouvait les comparer aux spectres statistiques.

Dernièrement on a fait une analyse de la sismicité allemande pour pouvoir dresser une carte de zones sismiques. Un catalogue complet des séimes a été analysé avec les moyens de la statistique des extrêmes. On pouvait obtenir les distributions des magnitudes maximales, des distances focales et de l'intensité pour 30 zones sismiques différentes. Dans une analyse probabiliste pour plus de 700 sites, on a détérminé respectivement les relations entre l'intensité et la fréquence sur la base desquelles on a pu dessiner une carte de zones sismiques pour une frequence donnée de l'intensité.

1. EINLEITUNG

1.1 Ausgangssituation

Die Grundlage einer seismischen Risikoanalyse bildet die Häufigkeitsverteilung der am Standort zu erwartenden Erschütterungsintensitäten I. Diese wird aufgrund der historischen seismischen Ereignisse und der seismotektonischen Situation unter Verwendung statistischer Methoden ermittelt. Die Intensitätsangaben sind in realistische physikalische Parameter umzusetzen, die als Lastannahmen in baudynamische Berechnungen Eingang finden können. Speziell für Standorte in seismisch weniger aktiven Gebieten wie der Bundesrepublik ist dieses Problem bisher unbefriedigend gelöst.

- 1 -

Üblicherweise werden den Standortintensitäten I Maximalwerte a_{max} der horizontalen Freifeldbeschleunigung zugeordnet, die dann als Einhängewerte für die Skalierung von Standard-Antwortspektren dienen. Beide Schritte geben Anlaß zur Kritik. Erstens haben sich die amax/I-Relationen in Veröffentlichungen des letzten Jahrzehnts aufgrund neuerer Meßdaten erheblich verschoben und damit zu einer Verunsicherung beigetragen, die möglichst beseitigt werden sollte. Zum anderen mehren sich die Zweifel, ob a max überhaupt eine repräsentative und als ingenieurseismischer Parameter geeignete Größe ist. Alternativ wurde von japanischen Ingenieursseismologen [1.1] , aber auch von Housner [1.2] als Skalierungsfaktor V die maximale Freifeldgeschwindigkeit vorgeschlagen. Aber auch diese ergibt nur eine punktuelle Einhängung der Standard-Antwortspektren (bei mittleren Frequenzen) und ist insofern relativ starken Streuungen unterworfen. Vielleicht noch gravierender aber ist, daß Antwortspektren fehlen, die sowohl für die seismotektonischen Verhältnisse (mit Magnituden M<6) als auch für die geologischen Untergrundverhältnisse in der Bundesrepublik relevant sind. Das derzeit verwendete USAEC Standardspektrum basiert auf Strong motion-Seismogrammen von Beben mit M > 6,5 aus Kalifornien. Es wurde zwar durch Absenken im tieffrequenten Bereich deutschen Verhältnissen in etwa angepaßt [1.3], jedoch ist dies stets als Behelfslösung angesehen worden. Auch der Versuch von Berckhemer und Schneider [1.4], aus einigen wenigen schwächeren kalifornischen Beben ein gemitteltes Spektrum für den Gebrauch in Deutschland zu bilden, kann bei der jetzt vorhandenen Datenbasis nicht mehr als Stand der Wissenschaft angesehen werden. Insbesondere konnte bisher dem Wunsch nach standortspezifischen Spektren nicht entsprochen werden.

1.2 Zielsetzung

Aus diesem Grunde wurde beim Institut für Bautechnik im Herbst 1982 ein Forschungsvorhaben beantragt mit dem Ziel, die nach dem Stand von Wissenschaft und Technik verfügbaren Methoden zur Ermittlung realistischer seismischer Lastannahmen parallel anzuwenden und zu vergleichen. Dabei sollten Vor- und Nachteile, Anwendungsgrenzen und erforderliche Eingangsdaten herausgearbeitet werden. Auf der Grundlage der derzeit vorhandenen Datenbasis sollten Bemessungshilfen erarbeitet werden, die in Abhängigkeit von Art und Qualität der jeweiligen Eingangsdaten alternativ zur Festlegung seismischer Lastannahmen in der Praxis genutzt werden können.

Im einzelnen wurden folgende Teilziele angestrebt:

 Definition standortspezifischer Bemessungsspektren (Einmassenschwinger-Antwortspektren) für die Freifelderregung in Abhängigkeit der für den Standort maßgeben-

- 2 -

den Intensität und Untergrundverhältnisse (Abschnitt 4),

- Definition standortspezifischer Dauern starker Bodenbewegungen in Abhängigkeit der für den Standort maßgebenden Intensität und Untergrundverhältnisse (Abschnitt 5),
- Definition regional gültiger Bemessungsspektren (Einmassenschwinger-Antwortspektren oder Fourier-Betragsspektren) für die seismische Erregung an der Oberkante des Festgesteins in Abhängigkeit der für den Standort maßgebenden Intensität (Abschnitt 6 und 8),
- Beschreibung und Erprobung von Methoden zur Berechnung der seismischen Erregung im Freifeld ausgehend von Festgesteinspektren unter Berücksichtigung der Untergrundverhältnisse am Standort (Abschnitt 7),
- Definition standortunabhängiger Freifeld-Bemessungsspektren für mittlere Untergrundverhältnisse unter Berücksichtigung der Standortintensität (Abschnitt 4.3),
- 6. Festlegung einer Erdbeben-Zonenkarte für die Bundesrepublik mit Angabe der Bereiche, in denen bestimmte Standortintensitäten mit vorgegebener Häufigkeit erreicht oder überschritten werden (Abschnitt ⁹).

- 3 -

2. GRUNDKONZEPT

Der Verlauf der seismischen Welle vom Erdbebenherd zum Standort einer zu errichtenden baulichen Anlage bzw. der Seismographenstation kann näherungsweise als Kette linearer Filter dargestellt werden (Bild 2.1).

 $A(\omega) = H(\omega) \cdot G(\omega) \cdot S(\omega)$

Bild 2.1 Übertragung seismischer Wellen vom Herd zum Standort

Sind die seismische Erregung an einem Glied der Kette und die Übertragungsfunktionen der nachfolgenden Glieder der Systemkette bekannt, so läßt sich die Erregung des letzten Kettengliedes, nämlich das Spektrum der Freifeldbewegung, durch Multiplikation der Systemfunktionen berechnen. Die zuverlässigsten Ergebnisse sind dann zu erwarten, wenn die Erregung so vorgegeben wird, daß vorliegende Informationen über die Standortverhältnisse optimal genutzt werden.

Liegen Informationen über die physikalischen Eigenschaften des Standortuntergrundes bis zum Grundgebirge vor, z. B. in Form von Tiefenprofilen der Dichte g(z), der seismischen Wellengeschwindigkeiten $V_p(z)$ und $V_S(z)$ sowie der Dämpfungsgröße Q^{-1} , so kann die Erregung im Grundgebirge (Kristallin) und somit an der Basis der Sedimentdecke ("Basisspektrum") eingeführt und die Durchlaßfunktion $S(\omega)$ für die Sedimentdecke am Standort mit der Thomson-

- 4 -

Haskell-Matrizen - Methode [2.1] berechnet werden. Da die risikobestimmende Bodenbewegung von S-Wellen herrührt, wird es als aureichend erachtet, die Berechnung der spektralen Durchlaßfunktion für SH-Wellen durchzuführen (Abschnitt 7). Als gute Näherung kann mit senkrechtem Strahleinfall gerechnet werden. Wichtig ist jedoch die Berücksichtigung der Dämpfung.

Häufig werden die Informationen über den Standortuntergrund aus Bohrungen oder seismischen Messungen nicht bis zum kristallinen Grundgebirge reichen, sondern allenfalls bis in sedimentäres Festgestein. In diesem Falle ist es wünschenswert, eine spektrale Anregungsfunktion, die im wesentlichen durch den Herdvorgang und die Dämpfung im Festgestein bestimmt ist, an der Oberkante des sedimentären Festgesteins anzusetzen; wir sprechen dann vom "Festgesteinsspektrum". In einer speziellen Untersuchung soll festgestellt werden, inwieweit sedimentäres Festgestein ins Grundgebirge einbezogen werden darf, ohne daß sich das Festgesteinsspektrum signifikant vom Kristallinspektrum unterscheidet (Abschnitt 8.2 und Anhang 9).

Für die Ermittlung der Anregungsfunktion gibt es zwei grundsätzlich verschiedene Wege:

- Eine analytische Berechnung der Herdfunktion H(ω) mit Hilfe einfacher kinematischer Herdbruchmodelle. Die darin vorkommenden Parameter, insbesondere das Seismische Moment, die Herdausdehnung, die Bruchausbreitungsgeschwindigkeit und die Abstrahlungsrichtung können aus allgemeinen Zusammenhängen erschlossen werden. Dieser Weg wird in Abschnitt 6 beschritten.
- Eine empirische Ermittlung von Basisspektren oder Festgesteinsspektren aus Strong motion-Seismogrammen

geeigneter Erdbeben (Abschnitt 8). Dies setzt voraus, daß Seismogramme von Erdbeben verfügbar sind, die hinsichtlich Magnitude, Herdentfernung, Herdtiefe und Herdmechanismus für das Sicherheitsbeben am Standort repräsentativ sind und daß hinreichende Informationen über den Stationsuntergrund vorliegen.

Eingangs wurde erwähnt, daß die Standortintensität diejenige Größe ist, die sich am wenigsten verfälscht aus erdbebenstatistischen Betrachtungen ergibt und außerdem unmittelbar die makroseismischen Wirkungen der Erdbebenerschütterungen zum Ausdruck bringt. Aus diesem Grund wird hier versucht, den Einfluß der Erdbebenstärke auf die Anregungsfunktion durch Klassifizierung nach Intensitäten zu erfassen (Abschnitt 3.3). Natürlich ist die Standortanregungsfunktion auch von der Herdentfernung R abhängig [2.2] . Diese wird jedoch für die Verhältnisse in der Bundesrepublik durch relativ enge Schranken begrenzt, so daß ihr Einfluß auf das Herdspektrum von untergeordneter Bedeutung sein dürfte. Um den vermuteten starken Untergrundeinfluß auf die Seismogramme nachzuweisen, wird eine grobe Klassifizierung der Registrierstationen nach 3 Untergrundtypen vorgenommen. Somit besteht auch die Möglichkeit, die Seismogramme auf einen einheitlichen Festgesteinsuntergrund zu reduzieren (Abschnitt 8,1 und 8.2).

Das Basisspektrum oder Festgesteinsspektrum wird hier als Fourier-Betragsspektrum der Beschleunigung A(ω) definiert; es entspricht derjenigen Wellenbewegung, die an der Basis der Sedimentdecke für die Berechnung der Freifeldbewegung anzusetzen ist. Demnach erhält man auch für das Freifeld zunächst ein Fourier-Betragsspektrum, das anschließend nach den einfachen Näherungsformeln

$R_v(\omega, D=0)$	$\geq A(\omega)$	(2.1)
$R_a(\omega, D=0)$	≥ω·A (ω)	(2.2)

- 6 -

und durch Multiplikation mit Korrekturfaktoren K (z. B. nach Riznichenko et al. [2.3]) für schwache Schwingerdämpfung (D)

 $R_{v,a}(\omega,D) \approx K(D) \cdot R_{v,a}(\omega,D=0)$ (2.3)

in Einmassenschwinger-Antwortspektren R für die Geschwindigkeit bzw. R_a für die Beschleunigung umgesetzt wird. Da die Anregungsspektren bereits hinsichtlich Größe und Form für bestimmte Standortintensitäten gelten, erübrigt sich die bisher notwendige Skalierung des Freifeldspektrums mit Hilfe der Maximalbeschleunigung a_{max} oder Maximalgeschwindigkeit v_{max}.

Um empirisch die Abhängigkeit der Freifeldspektren von Standortintensität und Untergrund zu untersuchen, werden die einzelnen Intensitäts- und Untergrundklassen jeweils 3etrennt statistisch ausgewertet. Die erhaltenen Mittelwertoder 84 %-Fraktil-Spektren können immer dann als Bemessungsspektren verwendet werden, wenn keine über die Grobklassifizierung hinausgehenden geologischen und baugrunddynamischen Informationen über den Standort vorliegen.

Als Ersatz für die bei Fourier-Betragsspektrum und Antwortspektrum verlorengegangenen Phaseninformationen werden zusätzlich Mittelwerte und Standardabweichungen der Starkbebendauer für die o.g. Intensitäts- und Untergrundklassen ermittelt (Abschnitt 5). Dies ist wichtig zur Generierung von künstlichen Zeitverläufen mit dem durch die Spektren vorgegebenen Frequenzgehalt.

- 7 -

3. DATENBASIS

3.1 Erdbebenbibliothek

Als Basis für die statistische Auswertung von Festgestein- und Freifeldregistrierungen wurden von König und Heunisch in Zusammenarbeit mit dem Institut für Massivbau der TH Darmstadt und dem Institut für Meteorologie und Geophysik der Universität Frankfurt folgende Aufzeichnungen von Erdbeben-Zeitverläufen beschafft:

- 383 unkorrigierte Beschleunigungszeitverläufe aus dem Friaul, aufgenommen zwischen dem 6.5.1976 und dem 15.9.1976 durch CNEN/ENEL - Italien
- 12 korrigierte Beschleunigungszeitverläufe aus dem Friaul, aufgenommen zwischen dem 11.9.1976 und dem 15.9.1976 durch CEA - Frankreich
- 340 unkorrigierte amerikanische Beschleunigungszeitverläufe, Registrierungszeitraum 1933 - 1971, vertrieben durch World Data Center, Boulder
- 435 unkorrigierte algerische Geschwindigkeitszeitverläufe, registriert zwischen dem 22.10.1980 und dem 26.11.1980 durch CEA - Frankreich
- 51 unkorrigierte deutsche Beschleunigungszeitverläufe, registriert durch die Station Jungingen/Schwäb. Alb zwischen dem 11.2.1977 und dem 29.11.1980

Den einzelnen Verläufen konnten durch Literaturrecherchen folgende seismische Kennwerte zugeordnet werden [3.1 - 3.4]:

- Magnitude (Nahbebenmagnitude MWA oder M)
- Epizentralentfernung R_p (km)
- Epizentralintensität I (MM o. MSK) (nicht für Algerien)
- Untergrundklasse (M, A oder R siehe Abschnitt 3.4).

Eine Übersicht über den derzeitigen Stand der Erdbebenbibliothek findet sich in Anhang 3.

3.2 Aufbereitung der Daten

Die vorliegenden Zeitverläufe waren zum größten Teil (bis auf 12) unkorrigiert geliefert worden, so daß vor einer weiteren Auswertung eine Korrektur erforderlich wurde.

Es wurde ein Programm zur Korrektur digitalisierter, gemessener Erdbebenzeitverläufe erstellt. Das Rechenprogramm basiert auf dem amerikanischen Standardkorrekturverfahren, das in [3.5] beschrieben ist. Die Leistungen sind im einzelnen (siehe Bild 3.1):

- 1. Lineare Interpolation der Beschleunigungszeitverläufe
- 2. Baseline-Korrektur
- 3. Deconvolution (dynamische Seismometer-Korrektur)
- 4. Tiefpaßfilterung im Zeitbereich mit Ormsby-Filter zur Elimination hochfrequenter Digitalisierungsfehler
- Hochpaßfilterung mit Ormsby-Filter zur Beseitigung niederfrequenter Fehler
- 6. Ermittlung der Geschwindigkeits- und Verschiebungszeitläufe aus dem korrigierten Beschleunigungszeitverläufen.

Der Frequenzverlauf des Ormsby-Bandpaßfilters mit den cutoff-Frequenzen 0,5 und 27 Hz ist in Bild 3.2 dargestellt. Das Ergebnis der Zeitverlaufkorrektur ist aus Bild 3.3 zu ersehen am Beispiel der NS-Komponente vom 15. 9. 1976, 3.15 h von Codroipo (Friaul, Zeitverlauf Nr. 340 der Liste).

Bild 3.1

Flußdiagramm des Hauptprogramms zur Korrektur von Erdbebenzeitverläufen

Bild 3.2 Frequenzverlauf des Ormsby-Bandpaßfilters mit den cut-off-Frequenzen 0,5 und 27 Hz

Bild 3.3 Vergleich zwischen unkorrigiertem und korrigiertem Beschleunigungszeitverlauf

- 12 -

3.3 Klassifizierung nach seismischen Kenngrößen

Wie in Abschnitt 2 erläutert, soll eine Klassifizierung der vorhandenen Seismogramme nach der Standortintensität und den Untergrundverhältnissen an den Registrierorten vorgenommen werden. Nach der Literatur [3.1 - 3.4] kann den Seismogrammen in der Regel die lokale Magnitude MWA (\cong M_L), in einigen Fällen zusätzlich die Epizentralintensität I_O sowie die Epizentralentfernung R_E und die Herdtiefe h zugeordnet werden. Aus diesen Angaben muß die Standortintensität I rechnerisch ermittelt werden. Hierzu ist zunächst der für Erdbebengebiete der Bundesrepublik relevante Bereich der zugrundeliegenden makroseismischen Kenngrößen abzustecken.

Für Erdbeben in der Größenordnung eines Sicherheitserdbebens muß im Oberrheingraben, nach Ausschluß des Basler Erdbebens von 1356, mit einer maximalen Magnitude MWA = 5,75 gerechnet werden. Dies trifft etwa auch für das Gebiet der Hohenzollernalb zu. Unter der Annahme, daß ein Erdbeben in der Größenordnung des Basler Bebens (MWA ≈ 6.4 , vgl. Ahorner [3.6]) auch entlang der östlichen Randverwerfung des Oberrheingrabens möglich ist, wären Maximalmagnituden bis MWA = 6,5 in Rechnung zu stellen. Nach unten kann die Magnitude bei etwa MWA = 4,5 begrenzt werden, weil unterhalb dieser Größenordnung eine Gefährdung baulicher Anlagen nicht zu erwarten ist. Somit kann für Gebiete der Bundesrepublik der Magnitudenbereich repräsentativer Vergleichsbeben auf

$4,5 \leq MWA \leq 6,5$

festgelegt werden.

Da die Bebenherde in der Bundesrepublik fast durchweg weniger als 20 km tief liegen, werden nur Vergleichsbeben mit $h \le 20$ km ausgewertet. Die Abschätzung des seismischen Risikos in der Bundesrepublik ist hauptsächlich für Standorte in oder nahe seismotektonisch aktiven Einheiten von Bedeutung. Dann sind aber nur standortnahe Ereignisse risikobestimmend. Entsprechend sind nur Registrierungen in kleiner Herdentfernung R relevant. Der Herdentfernungsbereich wurde ursprünglich auf $R \leq 30$ km begrenzt; im Hinblick auf Standorte außerhalb von Herdzonen und zur Verbreiterung der Datenbasis wurde er bei kleineren Intensitäten bis $R \leq 60$ km erweitert.

Im einzelnen werden folgende drei Intensitätsklassen betrachtet, denen bestimmte Herdentfernungsbereiche zugeordnet sind:

Klasse	1:	I	=	6.0	-	6.9	R	≤	60	km
Klasse	2:	I	=	7.0	-	7.9	R	≤	40	km
Klasse	3:	I	=	8.0	-	8.9	R	≤	30	km.

Sofern die Epizentralentfernung R_E oder Hypozentralentfernung R und die Epizentralintensität I_O bekannt sind, wird die Standortintensität I am Registrierort aus folgender Beziehung nach Sponheuer [3.7] berechnet

I (R) = $I_0 + 3 \cdot \log (h/R) + 3 \cdot \alpha \cdot \log e \cdot (h-R)$ (3.2) mit R_E = Epizentralentfernung in km R = Hypozentralentfernung in km $= \sqrt{R_{E^2} + h^2}$ h = Herdtiefe in km $\alpha \approx 2.5 \times 10^{-3}$ = Energieabsorptionskoeffizient in km⁻¹

Für den Fall, daß nicht die Epizentralintensität, jedoch die lokale Erdbebenmagnitude MWA bekannt ist, kann die Intensität I

in der Herdentfernung R mit Hilfe der Beziehung von Ahorner [3.6]

 $I(R) = 1,5 MMA + 2 - 3 \log R - 1,3 \cdot 0 \cdot (R-10)$ (3.3)

ermittelt werden. Der Formel liegt die Magnituden-Epizentralintensitätsbeziehung von Karnik [3.8] zugrunde mit einer Herdtiefe von h ≈ 10 km (siehe Abschnitt 9.1).

Strong motion-Seismogramme liegen aus den Erdbebengebieten Deutschlands nur in sehr begrenztem Umfang vor (Hohenzollerngraben) und beziehen sich mit Ausnahme des Albstadtbebens 1978 auf Erdbeben mit M < 4,5. Von den über tausend der Arbeitsgruppe zur Verfügung stehenden digitalisierten Strong motion-Seismogrammen aus den USA, Algerien, Italien und der Bundesrepublik erfüllen am weitestgehenden diejenigen aus dem Friaul-Gebiet in Oberitalien die oben angeführten Auswahlkriterien. Die Herdtiefen der Friaul-Beben von 5 - 11 km [3. 9] sind durchaus charakteristisch auch für stärkere Beben in der Bundesrepublik. Dies trifft jedoch nicht unbedingt für den Herdvorgang zu, der im Friaul zwischen flachen überschiebungen (Hauptstoß vom 6.5.1976, vgl. Müller [3.10]) und horizontalen Scherbrüchen (Blattverschiebungen) (Nachstöße, vgl. Ebblin [3.16]) variiert.

3.4 Klassifizierung nach Untergrundverhältnissen

Es ist schon mehrfach versucht worden, für eine zumindest qualitative Berücksichtigung des Untergrunds auf die Freifeld-Bodenbewegung eine Einteilung in Untergrundklassen vorzunehmen (z.B. durch Hayashi et al. [3.11], Seed et al.[3.12] Newmark [3.13, 3.17]). In Anlehnung an diese Arbeiten wird hier folgende Einteilung vorgenommen (V_p = Druckwellen-

geschwindigkeit):

Klasse	Kennzeichen V _P m/s	
А	Holozän, Lockersedi- mente und Böden niedri- ger Impedanz, mindestens ≤1000 5 m mächtig	
М	mittelsteif, halbver- 1000 festigte Sedimente, we 3000 der (A) noch (R)	
R	Fels, gut verfestigtes, wenig poröses Gestein ≥3000	
K	kristallines Grundgebirge (nur zu Vergleichszwecken) ≥4500	

Beim Fehlen von seismischen Geschwindigkeitsangaben wird vorgeschlagen, den Klassen die in Tabelle 3.1 angegebenen Rechenwerte der Druckwellengeschwindigkeit V_p , Scherwellengeschwindigkeit V_s , Dichte q und Poisson-Zahl v zuzuordnen (vgl. z. B. Schön [3.14], Christensen [3.15]).

Tabelle 3.1 Rechenwerte für die Untergrundklassen

Klasse	A	M	R	ĸ
V _p m/s	800	2000	4000	5000
V _s m/s	300	900	2300	3200
g g/cm ³	1,8	2,1	2,4	2,7
ν	0,42	0,35	0,25	0,25

Es ist zu beachten, daß mit abnehmender Kompaktion die Poisson-Zahl v signifikant ansteigt.

4. FREIFELD-ANTWORTSPEKTREN

4.1 Vorgehensweise

Für die gemäß Abschnitt 3.3 und 3.4 ausgewählten Freifeld-Beschleunigungszeitverläufe wurden Pseudogeschwindigkeits-Antwortspektren berechnet, wobei die Frequenz in logarithmischer Teilung mit 10 Schritten/log. Einheit von 0,5 bis 25 Hz gesteigert wurde. Die Amplituden wurden in logarithmierter Form gespeichert.

Bei der statistischen Auswertung werden in den Frequenzschritten jeweils Mittelwert und Standardabweichung der logarithmierten Geschwindigkeitsamplituden einer Klasse errechnet. Die Ergebnisse werden grafisch dargestellt. Hierbei entsprechen die Mittelwerte MW der logarithmierten Amplituden der 50 %-Fraktile (= Zentralwert einer logarithmischen Normalverteilung); die Kurven MW + 1S (Mittelwert + Standardabweichung) entsprechen den üblicherweise für eine Bemessung zugrundezulegenden 84 %-Fraktilen.

Da die Mittelwerte der Standortintensitäten in den Intensitätsklassen nicht genau in der Klassenmitte liegen, sondern zufällig davon abweichen, sind für die Weiterverwendung die errechneten Antwortspektren noch jeweils mit dem Faktor F zu skalieren, der von Ahorner in [4.1] vorgeschlagen wurde:

$$F = 10^{0,3} (I_m - \overline{I})$$
(4.1)

mit

$$I_m = Klassenmitte (6,5; 7,5 oder 8,5)$$

 $\overline{I} = mittlere Intensität der Klasse$

Aus den Pseudogeschwindigkeits-Antwortspektren läßt sich in einfacher Weise auch die Beschleunigung a oder Verschiebung d ablesen, wenn eine dreifach-logarithmische Teilung eingetragen wird unter Beachtung der Beziehungen

$$d = \frac{v}{\omega} = \frac{v}{2\pi \cdot f}$$
(4.2)

- $a = v \cdot \omega = v \cdot 2\pi \cdot f$
- 4.2 Untergrund- und intensitätsabhängige Freifeld-Antwortspektren

Als Ergebnisse der statistischen Auswertungen von Geschwindigkeits-Antwortspektren gemäß Abschnitt 4.1 für die 9 Untergrund- und Intensitätsklassen sind in Bild 4.1 bis 4.9 jeweils die 50 %-Fraktile (MW), 84 %-Fraktile (MW + 1S) und 16 %-Fraktile (MW-1S) im doppeltlogarithmischen Maßstab über der Frequenz f aufgetragen. Außerdem ist die mittlere Intensität I der Stichprobe sowie der Skalierungsfaktor F für die Klassenmitte gemäß G1. (4.1) angegeben. Man erkennt hieraus, daß

- der Frequenzgehalt bei Untergrundklasse R im Bereich von etwa 1 - 10 Hz relativ konstant ist,
- die mittleren Frequenzen von 2 6 Hz bei Untergrundklasse M höhere Spektralwerte aufweisen als bei Klasse R,
- die Spektralwerte im niedrigen Frequenzbereich 1 2 Hz
 bei Untergrundklasse A relativ oder absolut höher ausfallen
 als bei Untergrundklassen M und R
- die Spitzenwerte der Spektren innerhalb einer Untergrundklasse mit wachsender Intensität zu den niedrigeren Frequenzen wandern,
- die Spektralamplituden bei allen Untergrundklassen im hohen Frequenzbereich ab etwa 7 Hz gleichmäßig mit der Intensität wachsen,
- im mittleren und niedrigen Frequenzbereich die Unterschiede in den Spektralamplituden benachbarter Intensitätsklassen mit zunehmender Intensität geringer werden.

Die Abhängigkeit der Freifeldspektren von der Untergrundklasse einerseits und der Intensitätsklasse andererseits ist offensichtlich so ausgeprägt, daß sie die Verwendung untergrund- und intensitätsabhängiger Spektren in jedem Falle rechtfertigt. Aufgrund der unterschiedlichen Zunahme der Spektralamplituden in den verschiedenen Frequenzbereichen erscheint die Skalierung eines 'Standardspektrums" über einen frequenzunabhängigen Faktor fragwürdig (siehe Abschnitt 4.3).

Es bleibt anzumerken, daß trotz der großen Anzahl verfügbarer Erdbeben-Zeitverläufe (über 1.200) aufgrund der vereinbarten Auswahlkriterien nur relativ wenige Zeitverläufe in den neun Untergrund- und Intensitätsklassen verblieben (vgl. Tabelle 4.1). Hinzu kommt, daß praktisch nur Registrierungen aus dem Friaul in Frage kommen. Besonders bei den Spektren für Untergrundklassen A und R ist aus diesem Grunde eine gewisse Skepsis am Platze. Hier wäre es wünschenswert, in einem nächsten Schritt die Datenbasis zu erweitern, um die Ergebnisse weiter abzusichern.

Intermod-	Intensitätsklasse							
klasso		1		2	3			
ATUSSE .	Anzahl	Standort	Anzahl	Standort	Anzahl	Standort		
м	2	Maiano	2	Maiano	2	Tolmezzo		
	2	Tarcento	2	Tarcento	2	Tarcento		
	4	Tolmezzo	2	Cormino	4	Forgaria		
	6	Forgaria	4	Forgaria		_		
R	4	San Rocco	2	San Rocco	4	San Rocco		
	1	Somplago	2	Somplago	2	Somplago		
A	2	Codroipo	2	Codroipo	4	Buia		
	2	Buia	4	Buia	6	Molinis		

Tabelle 4.1 Zuordnung der verwendeten Zeitverläufe zu den Untergrund- und Intensitätsklassen

Bild 4.1 Gemittelte Pseudogeschwindigkeits-Antwortspektren
für Untergrundklasse M und Intensitätsklasse 1
(Dämpfung D = 5 %)

Bild 4.2 Gemittelte Pseudogeschwindigkeits-Antwortspektren
für Untergrundklasse M und Intensitätsklasse 2
(Dämpfung D = 5 %)

Bild 4.3 Gemittelte Pseudogeschwindigkeits-Antwortspektren
für Untergrundklasse M und Intensitätsklasse 3
(Dämpfung D = 5 %)

- 22 -

Bild 4.4 Gemittelte Pseudogeschwindigkeits-Antwortspektren
für Untergrundklasse R und Intensitätsklasse 1
(Dämpfung D = 5 %)

Bild 4.5 Gemittelte Pseudogeschwindigkeits-Antwortspektren
für Untergrundklasse R und Intensitätsklasse 2
(Dämpfung D = 5 %)

Bild 4.6 Gemittelte Pseudogeschwindigkeits-Antwortspektren
für Unterorundklasse R und Intensitätsklasse 3
(Dämpfung D = 5 %)

Bild 4.7 Gemittelte Pseudogeschwindigkeits-Antwortspektren
für Untergrundklasse A und Intensitätsklasse 1
(Dämpfung D = 5 %)

- 26 -

Bild 4.8 Gemittelte Pseudogeschwindigkeits-Antwortspektren
für Untergrundklasse A und Intensitätsklasse 2
(Dämpfung D = 5 %)

Bild 4.9 Gemittelte Pseudogeschwindigkeits-Antwortspektren für Untergrundklasse A und Intensitätsklasse 3 (Dämpfung D = 5 %)

- 28 -

Obgleich der Untergrundeinfluß auf den Frequenzgehalt der Antwortspektren in Abschnitt 4.2 verdeutlicht wurde, sollen entsprechend der Zielsetzung des Vorhabens auch untergrundunabhängige Freifeld-Antwortspektren ermittelt werden. Diese können vornehmlich dann benutzt werden, wenn hinreichende Informationen für eine Klassifizierung des Untergrundes in eine der drei gewählten Untergrundklassen nicht vorliegen.

Die Vorgehensweise bei der Ermittlung der Spektren entspricht wiederum der in Abschnitt 4.1 beschriebenen. Allerdings werden jetzt nur noch drei Intensitätsklassen betrachtet, während eine Unterscheidung von Untergrundklassen entfällt.

Die Ergebnisse der statistischen Auswertung sind in Bild 4.10 bis 4.12 geplottet. Von der Form her ähneln die Spektren am ehesten denen der Untergrundklasse M. Dies leuchtet auch unmittelbar ein, da diese Untergrundklasse die größte Anzahl Zeitverläufen aufweist und somit dominieren muß. Die von Verschiebung der Spitzenwerte mit zunehmender Intensität zu niedrigen Frequenzen ist auch hier klar erkennbar. Daher empfiehlt sich die Beibehaltung der drei Intensitätsklassen. Falls jedoch nur ein "Standardspektrum" gewünscht wird, um die Vorgabe der Erdbebenlasten weitestgehend zu vereinheitlichen, dann sollte das Spektrum für die mittlere Intensitätsklasse gewählt werden. Eine Skalierung für andere Standortintensitäten kann mit dem in Abschnitt 4.1 angegebenen Faktor F erfolgen, der sowohl bei einer Verringerung als auch bei einer Vergrößerung der Intensität auf der sicheren Seite liegt.

Bild 4.10 Gemittelte Pseudogeschwindigkeits-Antwortspektren
für mittlere Untergrundverhältnisse und Intensitätsklasse 1
(Dämpfung D = 5 %)

- 30 -

Bild 4.11 Gemittelte Pseudogeschwindigkeits-Antwortspektren
für mittlere Untergrundverhältnisse und Intensitätsklasse 2
(Dämpfung D = 5 %)

Bild 4.12 Gemittelte Pseudogeschwindigkeits-Antwortspektren
für mittlere Untergrundverhältnisse und Intensitätsklasse 3
(Dämpfung D = 5 %)

5. STARKBEBENDAUER

5.1 Definition der Starkbebendauer

Neben der spektralen Amplitudenverteilung spielt die Dauer der Starkbebenphase eine entscheidende Rolle für das Schadenspotential einer seismischen Erschütterung. Zahlreiche Vorschläge zur Definition und Bestimmung einer hierfür geeigneten Maßgröße aus Strong motion-Seismogrammen sind in der Literatur zu finden.

Bei Schwellenwertkriterien wird der Zeitraum vom ersten bis zum letzten Überschreiten eines vorgegebenen Wertes der Bodenbeschleunigung bzw. der Schwinggeschwindigkeit als Maß für die Bebendauer definiert, z. B. Bolt [5.1], Page et al. [5.2]. Das Problem liegt dabei in der Festlegung relevanter Schwellwerte, die von Bauwerkstruktur zu Bauwerkstruktur verschieden sein können.

Einer alternativen Definition der Starkbebendauer t_s liegt die einem Bauwerk zugeführte seismische Energie zugrunde. Als Energie wird hier das Integral über das Quadrat der Schwingungsamplituden des Strorgmotion-Seismogramms verstanden. Die verschiedenen Definitionen unterscheiden sich durch den prozentualen Betrag der Energie, die der Starkbebenphase zugeordnet wird.

Neben den Definitionen von Husid [5.3]: $t_s = t_E$ (95 %) und Danovan [5.4]: $t_s = t_E$ (90 %) sind besonders die Definitionen von Trifunac und Brady [5.5]: $t_s = t_E$ (95 %)- t_E (5%) und Kennedy [5.6]: $t_s = t_E$ (75 %) - t_E (5 %) von Interesse. Hierbei bedeutet t_E (x %) die Zeit, bei welcher das Energieintegral x % des Endwerts erreicht hat. Durch die Festlegung des Beginns der Starkbebenphase bei t_E (5 %) wird einmal die Unsicherheit des Einschaltvorgangs des Strong motion-Seismographen beseitigt und zum anderen die ingenieurseismisch weniger relevante P-Phase des Seismogramms eliminiert.

Diese integralen Kriterien haben gegenüber den Schwellwertkriterien den Vorteil, von Zufälligkeiten im Zeitverlauf unabhängiger zu sein und die Dauer unabhängig vom Amplitudenniveau zu beschreiben. Ihnen ist insbesondere dann der Vorzug zu geben, wenn die Dauer als Parameter zur Generierung synthetischer Seismogramme verwendet werden soll. Ob nach dem Vorschlag von Trifunac und Brady die Integrationsdauer zwischen 5 und 95 % der Energie als Signaldauer bezeichnet wird oder nach Kennedy die Obergrenze bei 75 % der Energie angesetzt wird, ist letztlich nicht entscheidend, wenn nur bei Verwendung der Werte die entsprechende Definition berücksichtigt wird. Andere, kompliziertere integrale Definitionen von z. B. McCann und Shah [5.7]und Vanmarcke und Lai [5.8] sollen hier nicht berücksichtigt werden.

In der vorliegenden Studie wird entsprechend Kennedy [5.6] die Dauer durch das Integral der Bodenbeschleunigung zwischen 5 und 75 % der Gesamtenergie als Starkbebendauer bezeichnet (Bild 5.1).

1 THESSALDNIKI, JUNE20, 1978 V ML=6.4 ING.-S.-DAUER= 4.2 SEC EPD=31[KM] H=n *AUFBER.**->AEDU

Bild 5.1 Energiebezogene Definition der Starkbebendauer

5.2 Statistische Auswertung

Die Starkbebendauern nach der vorgenannten Definition wurden für alle ausgewählten Erdbebenzeitverläufe berechnet und für die drei Intensitätsklassen getrennt statistisch ausgewertet. Es ergaben sich die in Tabelle 5.1 zusammengestellten Mittelwerte und Standardabweichungen.

Tabelle 5.1 Mittelwerte t und Standardabweichungen Sts der untergrund- und intensitätsabhängigen Starkbebendauern

			In	tensit	ät I	(MSK)	
Untergrund- klasse	6	- 7	7	- 8	8 - 9		
	Ēs	Sts	ťs	, s _{ts}	, t _s	s _{ts}	
М	2,3	1,2	2,5	1,1	2,4	1,0	
A	5,4	4,4	6,1	2,8	3,1	1,6	
R	1,4	0,8	1,9	0,8	1,4	0,7	

Die auf den ersten Blick verwunderlichen Ergebnisse lassen sich so erklären, daß hohe Intensitäten einerseits nur bei kleinen Herdentfernungen anzutreffen sind und andererseits die maßgebende Magnitude zunimmt. Es ist bekannt, daß die Starkbebendauer bei konstanter Magnitude mit abnehmender Herdentfernung kleiner wird; bei gleicher Herdentfernung nimmt die Dauer mit der Magnitude zu. Die beiden Einflüsse - mit I abnehmende Herdentfernung und zunehmende Magnitude heben sich also offentsichtlich teilweise auf, wobei die ungünstigste Kombination bei der mittleren Intensitätsklasse erreicht wird.

3

Für die weitere Arbeit wird angesichts des relativ kleinen Unterschiedes vereinfachend von einer intensitätsunabhängigen, jedoch baugrundspezifischen Starkbebendauer ausgegangen. In Tabelle 5.2 sind einmal die gewichteten Mittelwerte und Standardabweichungen der Starkbebendauern für die drei Untergrundklassen angegeben, die man bei Zusammenfassen der drei Intensitätsklassen unter Berücksichtigung der jeweiligen Anzahl von Beobachtungen erhält. Zum andern sind die entsprechenden Kennwerte aus einer gesonderten statistischen Auswertung aufgeführt, bei der alle Intensitäten im Bereich $6 \le I \le 9$ und alle Herdentfernungen $R \le 60$ km zugelassen waren. Für die praktische Anwendung werden die in den letzten beiden Spalten eingetragenenen "Bemessungswerte" empfohlen; die Variationskoeffizienten betragen hierbei einheitlich 60 %.

Tabelle 5.2 Mittelwerte und Standardabweichungen baugrundspezifischer Starkbebendauern

Untergrund-	6 ≤ gewi	I ≤ 9 chtet	6 ≤ R ≤	I ≤ 9 60 km	Bemessungs- werte		
XIUSSE -	ī,	Sts	Ŧs	Sts	Ŧs	Sts	
м	2,4	1,3	2,3	1,6	2,4	1,4	
A	4,5	2,9	3,7	2,3	4,0	2,4	
R	1,5	0,8	1,6	1,2	1,6	1,0	

5.3 Generierung von Zeitverläufen

Für die Generierung künstlicher Zeitverläufe als Erregung für dynamische Berechnungen nach der Zeitverlauf-Methode kann aufgrund der Definition der Starkbebendauer in Abschnitt 5.1 die in Bild 5.2 gezeichnete Fensterfunktion für die Beschleunigung a vorgegeben werden. Die Starkbebendauer t_s ist i. a. mit den Bemessungswerten \overline{t}_s gemäß Tabelle 5.2, vorletzte Spalte, einzusetzen. Bei nichtlinearen dynamischen Berechnungen muß im Rahmen von Parametervariationen ggf. auch die Auswirkung einer um 60 % höheren Starkbebendauer untersucht werden.

Bild 5.2 Fensterfunktion für die Generierung von Beschleunigungs-Zeitverläufen

6. SYNTHETISCHE BASISSPEKTREN

6.1 Definition und Grundlagen

Wie in Abschnitt 2 dargestellt, lassen sich standortbezogene Freifeld-Antwortspektren auch dadurch gewinnen, daß ein Fourier-Betragsspektrum an der Basis der Sedimentdekke vorgegeben und mit der spektralen Durchlaßfunktion (Übertragungsfunktion) des Standortuntergrundes multipliziert wird. Das vorgegebene Fourier-Betragsspektrum wird als Basisspektrum bezeichnet. Es wird als derjenige Spektralverlauf verstanden, der im Erdinnern an der Oberfläche des variszischen Grundgebirges bzw. der Oberkante des Paläozoikums (Material mit einer Kompressionswellengeschwindigkeit $V_p \geq 4,0$ km/s) beobachtet werden könnte.

- 39 -

Im vorliegenden Abschnitt werden synthetische Basisspektren mit Hilfe von kinematischen Herdbruchmodellen berechnet. Zum Vergleich werden in Abschnitt 8 empirische Basisspektren durch Reduktion von Freifeld-Registrierungen ermittelt.

Ausgangspunkt für die Berechnung synthetischer Basisspektren bildet die Aktivitätskurve, welche die beobachtete Verteilung der maximalen Oberflächenwellenmagnitude (ML) über die Herdtiefe (z) unter Kristallinoberkante beschreibt (Bild 6.1, Tabelle 6.1).

Nr. Dat	um I	Herdgebiet	(km)						Contraction of the second second
			((km)	(MSK)	(MSK)	(MSK)
1 197 Apr	0 v 10 v	Vestalb	2	3.9	3.5	1	6.2	5.7	5-6
2 186	9/71 0	roß-Gerau	6	-	4,7	3	7.8	7.1	7
3 197	8 1	Vestalb	6.5	5.7	5.05	1	7.9	7.8	7-8
4 193	5 0	Derschwaben	9	5.8	5.3	2	8.2	8.0	7-8
5 191	1 1	vestalb	10	6.1	5.6	1	8.6	8.5	8
6 135	6 E	Basler Jura	13	-	5.9	2	9.0	8.9	9
7 192 Dec	4 M 11	Vestalb	14	-	4.7	1	6.5	6.4	6+
8 193. Feb	3 M	Vestalb	21	-	4.3	1	5.3	5.2	5

Tabelle	6.1	Ereignisse,	die	bei	der	Aufstellung	der
		Aktivitätsku	urve	verv	vende	et wurden	

st. = Kristallinoberkante (h - d Sed.)

Die Seismizität eines größeren Gebietes (seismischer Energieumsatz je Volumen- und Zeiteinheit) ist von der Geschwindigkeit abhängig, mit der sich Kriechbewegungen im oberen Erdmantel und innerhalb der unteren Erdkruste vollziehen. Die Deformationsgeschwindigkeit dieser Tiefenbereiche des Erdkörpers überträgt sich als Spannungsrate auf die obere Erdkruste. Letztere Schicht ist partiell in der Lage, auch über längere Zeiträume (z. B. von 1000 a) hinweg elastische Spannungen anzusammeln und damit die wichtigste Voraussetzung für die Entstehung eines seismischen Herdprozesses zu liefern. Die ungleichförmige Verteilung der Seismizität, wie man sie innerhalb einer Region beobachten kann, wird durch die rheologische Reaktion der die Oberkruste aufbauenden Strukturen auf die von unten übertragenden Spannungen bestimmt.

Mit zunehmender Tiefe und damit auch mit ansteigender Temperatur verringert sich innerhalb der Erdkruste die Viskosität der Gesteine. Gebiete mit höherem Wärmefluß und damit auch steilerem Temperatur-Tiefengradienten zeigen eine geringere maximale Herdtiefe als Gebiete mit geringerem Wärmefluß. Das sei durch ein Beispiel aus dem Untersuchungsgebiet demonstriert (nach Bram [6.1], Gelbke [6.2], Gilg [6.3] und Hänel [6.4]) (Tabelle 6.2).

Tabelle 6,2 Zusammenhang zwischen Wärmefluß und maximaler Herdtiefe

Gebiet	Wärmefluß (mW/m²)	max. Herdtiefe (km)
Süddeutsches Dreieck	etwa 70	etwa 22
Oberrheingraben	etwa 90	etwa 15
Westvogesen	etwa 120	etwa 12

- 42 -

Die Aktivitätskurve wird also in einem Gebiet mit höherem Wärmefluß bereits in geringerer Tiefe "abgeschnitten". Eine Abnahme der Deformationsgeschwindigkeit bzw. der Spannungsrate hat die gleiche Wirkung: Nur noch in den höher viskosen, d. h. mehr oberflächennahen Schichten liegt die Spannungsrate über der Relaxationsrate.

Von der Oberfläche aus betrachtet kann die Dicke des seismisch reagierenden Tiefenintervalls durch die Auflage seismisch inkompetenter Sedimente reduziert werden. Das ist vor allem in den großen tertiären und quartären Senkungszonen der Fall: im Molassebecken, im Oberrheingraben, in Norddeutschland. Die aus Beobachtungen an Schadenbeben in Süddeutschland abgeleitete Aktivitätskurve wurde deshalb auf die Tiefe unter der Kristallinoberkante bezogen.

Zur Berechnung der Basisspektren für den gesamten Verlauf der Aktivitätskurve wird auf eine aus Beobachtungen in Mitteleuropa gewonnene Beziehung zwischen Oberflächenwellenmagnitude (ML) und seismischem Herdmoment (M_O) zurückgegriffen (Bild 6.2, Tabelle 6.3).

Die Ausgleichsgerade ist in guter Übereinstimmung mit den von Geller [6.5] in Kalifornien bestimmten Relationen zwischen ML und M_o. Sein Ausgangsmaterial beschränkt sich allerdings auf Ereignisse mit einer Oberflächenwellenmagnitude ML \geq 5.0. Bei kleineren Ereignissen treten sehr starke Streuungen in den empirischen Beziehungen zwischen Herdparametern auf.

- 44 -

Ereignis	ML	M ₀ (Nm)	h _o (km)					
16 Nov 1911 Schw. Alb	5.6	3.75 • 10 ¹⁷	12 - 12					
20 Jul 1913 Schw. Alb	4.7	4.1 • 10 ¹⁶	13					
07 Jun 1931 Doggerbank	4.7	4.0 • 10 ¹⁶	12 - 13					
27 Jun 1935 Oberschwaben	5.4	1.4 • 10 ¹⁷	8.5 - 9.5					
11 Jun 1983 Brüssel	4.4	1.05 • 10 ¹⁶	n					
02 May 1943 Schw. Alb	4.5	2.2 · 10 ¹⁶	- 12 - 13					
28 May 1943 Schw. Alb	5.1	1.15 • 10 ¹⁶	8 - 9					
14 Mar 1951 Euskirchen	5.0	4.7 • 10 ¹⁶	8 - 9					
26 Feb 1969 Schw. Alb	3.9	4.2 • 10 ¹⁵	8					
22 Jan 1970 Schw. Alb	4.5	$2.25 \cdot 10^{16}$	8					
09 Sep 1978 Schw. Alb	5.05	4.66 • 10 ¹⁶	6.5					
09 Sep 1978 Schw. Alb	3.8	1.39 • 10 ¹⁵	7.0					
n = normal = Herd in der oberen Erdkruste								

Tabelle 6.3 Mitteleuropäische Ereignisse für die Beziehung Magnitude-Moment

6.2 Kinematische Herdbruchmodelle

Wie im Zwischenbericht Mai 1983 ausführlich dargestellt, wurde zunächst das einfache Herdmodell von Brune [6.6] den Berechnungen des Basisspektrums zugrundegelegt. Vergleiche zwischen gemessenen und empirischen Spektren haben jedoch gezeigt, daß die Modelle nach Brune wie auch nach Aki [6.7, 6.8] zu einer relativ schlechten Übereinstimmung mit den beobachteten Verläufen führen. Daher wird jetzt auf Ansätze nach Savage [6.9] zurückgegriffen. Diese passen sich vor allem wegen einer größeren Anzahl zu berücksichtigender Herdparameter besser an die seismotektonische Realität an.

Der Betrag der spektralen Amplitudendichte der seismischen Bodenverschiebung u ist durch folgende Beziehung gegeben:

 $|\mathbf{u}| = \mathbf{R}_{o} \cdot \mathbf{M}_{o} \cdot \mathbf{\tilde{G}} \cdot \mathbf{\tilde{D}}_{o} \mathbf{\tilde{I}}_{o} \mathbf{ms}$ (6.1)

Die einzelnen Faktoren bedeuten:

$$\begin{split} & R_{o} = R_{o}^{SH} (\vartheta, \varphi) = Abstrahlcharakteristik für SH-Wellen \\ & \vartheta = horizontaler Abstrahlwinkel (°) \\ & \varphi = vertikaler Abstrahlwinkel (°) \\ & M_{o} = G \cdot q_{o} \cdot A_{o} = Betrag des Herdmoments (Nm) \\ & G = Schermodul (N/m²) \\ & q_{o} = mittlerer Betrag der Herddislokation (m) \\ & A_{o} = Herdfläche (m²) \\ & \widetilde{G} = (4 \, \pi \, g \, s \cdot v_{s}^{-1})^{-1} = geometrische Abnahme des Herdmoments \\ & \widetilde{D}_{o} = Direktivität (Doppler-Effekt der Bruchausbreitung) \\ & nach Savage [6.9], Formel 10 \\ & \widetilde{I}_{o} = Impulsaufbaufunktion nach Savage [6.9], Formel 11. \end{split}$$

6.3 Ausbreitung in Kristallin und Paläozoikum

Die geometrische Abnahme des Momenteinflusses bis zur Oberkante Kristallin/Paläozoikum wird durch den Faktor \tilde{G} in Abschnitt 6.2 berücksichtigt.

Weitere amplitudenverkleinernde Einflüsse werden durch ein Zusammenspiel zwischen Abstrahlcharakteristik und Absorption bewirkt. Die Abstrahlcharakteristik für SH-Wellen, die hier ausschließlich betrachtet werden, wird in folgender Form berücksichtigt (vgl. Bild 6.3):

$$R_0^{SH} = \cos 2 \sqrt[3]{cos \varphi} = R_0$$

Der vertikale Abstrahlwinkel wird jeweils so $\sigma e w \ddot{a} b l t$, daß das Zusammenspiel zwischen Absorption und Abstrahlfunktion ein Maximum ergibt. Es wird hier der in Süddeutschland bei größeren Schadenbeben häufig zu beobachtende Typ der horizontalen Dislokation auf vertikal einfallender Herdfläche gewählt. Der horizontale Abstrahlwinkel wird einheitlich zu $\sqrt{s} = 0^{\circ}$ angenommen. Bei Beben mit Überschiebungs- und Abschiebungscharakter ist $R_{c} \approx 1.0$.

Bezüglich der Ausbreitungsqualität von SH-Wellen werden Vergleichsrechnungen für $Q_s = -50$, 100 und 200 ausgeführt. Diese Werte entsprechen der Ausbreitung innerhalb einer Scherzone bzw. in größeren Entfernungen vom Herdgebiet, wie der folgenden Übersicht zu entnehmen ist (Tabelle 6.4).

Q _S	Quelle	Lit. 6.10 6.11	
50 - 200	Hasegawa Hoang-Trong		
< 100 = 50	Kurita Scherbaum	6.12 6.13	
75 - 150	Bakun u. Bufe Bakun et al.	6.14	
>150	Cheng et al. Schneider	6.16 6.17	
	Q _S 50 - 200 < 100 = 50 75 - 150 >150	Q_SQuelle50 - 200Hasegawa Hoang-Trong< 100	

Tabelle 6.4 Ausbreitungsqualität für die obere Herdkruste

- 49 -

6.4 Referenzereignisse

Aus der Gesamtzahl aller Berechnungen werden hier die Ergebnisse für drei Ereignisse gezeigt, die zu einem für Mitteleuropa typischen Schadensbild geführt haben. Sie liegen auf der regionalen Aktivitätskurve (Bild 6.1) und entsprechen drei bekannten Schadenbeben (Referenzbeben):

Groß-Gerau	1871	(ML	=	4.7,	^z o	=	3.0	km,	S	=	3.6	km)
Albstadt	1978	(ML	=	5.0,	z _o	=	5.5	km,	S	×	6.3	km)
Basel	1356	(ML	=	5.9,	z o	=	11.0	km,	s	=	14.9	km)

Die Eingangsdaten für die Berechnungen und die Ergebnisse für verschiedene Bruchabläufe (unilateral, Vorderseite $\vartheta = o^{\circ}$; unitlateral, Rückseite $\vartheta = 180^{\circ}$; bilateral) sind in Anhang 6 dokumentiert. Es ist bekannt, daß beispielsweise bei den größeren Ereignissen der westlichen Schwäbischen Alb die unilaterale Bruchausbreitung nach Süden dominiert.

Bild 6.3 zeigt, daß die stärksten Erschütterungen dort zu erwarten sind, wo für eine bestimmte Frequenz (hier 10 Hz) ein Maximalwert aus dem Zusammenspiel zwischen Abstrahlung (bezüglich des vertikalen Abstrahlwinkels φ) und der Amplitudenabnahme durch Absorption resultiert (Absorptionskoeffizient α ; Ausbreitungsqualität Q_c).

Bild 6.4 zeigt die Kombination der Basisspektren für die drei Referenzbeben. Hierin ist nur der bilaterale Fall berücksichtigt, da er alle anderen Fälle des Bruchablaufs abdeckt.

Bild 6.4 Basisspektren für die Referenzbeben bei bilateraler Bruchausbreitung

7. ÜBERTRAGUNGSFUNKTIONEN

7.1 Grundsätzliches

Der Einfluß des Untergrundes auf die Bodenbewegungen im Freifeld beruht auf folgenden Phänomenen:

- frequenzunabhängige Amplitudenerhöhung beim Übergang der seismischen Welle aus dem Festgestein mit hoher akustischer Impedanz in eine weniger verfestigte Deckschicht mit niedriger Impedanz,
- frequenzselektive Amplitudenanhebung durch Resonanz in der Deckschicht,
- Amplitudenabnahme infolge inelastischer Absorption in der Deckschicht, wobei Sedimente im allgemeinen eine wesentlich höhere Absorption als die kristallinen Gesteine des Grundgebirges aufweisen. Bei trockenen und wenig porösen Gesteinen ist die Amplitudenabnahme durch Absorption (bezogen auf die Längeneinheit des Strahlwegs) etwa proportional, bei porösen wassergesättigten oder teilgesättigten Sedimenten dagegen überproportional mit der Frequenz ansteigend; bei starken Bodenbewegungen steigen, infolge von Hystereeffekten, die Absorptionsverluste überproportional mit der Amplitude an,
- frequenzunabhängige geometrische Amplitudenabnahme durch größeren Abstand vom Herd bei mächtigen Sedimentauflagen von mehreren Kilometern.

7.2 Untergrundmodellierung

Für die Ermittlung der Übertragungsfunktion ist der Untergrund am betrachteten Standort bis hinab zum Grundgebirge bzw. zur Festgesteinsoberfläche (siehe Abschnitt 8.1) zu modellieren. Das Grundgebirge, ggf. mit einem Festgesteinsanteil, wird als elastischer Halbraum abgebildet. Hierauf liegen die einzelnen Sedimentschichten mit unterschiedlicher Mächtigkeit. Die Eigenschaften der Schichten werden durch folgende Parameter beschrieben:

- Schichtdicke h_i (in m) - Dichte Q_i (in kg/m³) Schemeellen sochwindicheit W (in m(s))
- Scherwellengeschwindigkeit V (in m/s)
- Qualitätsfaktor Q_i oder
- Dämpfungsmaß D, (in %)

In der Regel ist es notwendig, mindestens zwei Schichten über dem Halbraum zu unterscheiden. Hierfür wird folgende Einteilung empfohlen:

- Oberschicht: Lockersedimente, Quartär
- Mittelschicht: sedimentäres Festgestein, Tertiär, Mesozoikum
- Halbraum: Kristallin, präpermische Ablagerungen

Bei fehlender Berücksichtigung der Mittelschicht wirkt sich der größere Impedanzkontrast zwischen Oberschicht und Halbraum in Richtung auf eine zu große Anhebung der Übertragungsfunktion aus. Dies ist an Bild 7.1 und 7.2 für den Standort Biblis im Oberrheingraben verdeutlicht. Im Vergleich zu Bild 7.1, das auf der empfohlenen Modellierung basiert, sind die Amplituden bei Bild 7.2 (ohne Mittelschicht) im relevanten Frequenzbereich deutlich vergrößert. Eine feinere Abbildung der Mittelschicht (vgl. Bild 7.3 mit 4 Schichten über dem Halbraum) bringt dagegen nur noch relativ geringe Veränderungen gegenüber Bild 7.1.

Bild 7.1 Übertragungsfunktion für den Standort Biblis bei Modellierung durch zwei Schichten über Halbraum

- 54 -

Bild 7.2 Übertragungsfunktion für den Standort Biblis bei Modellierung durch eine Schicht über Halbraum

- 55 -

- 56 -

7.3 Berechnungsverfahren

Die Ausbreitung von Wellen in einem linear-elastischen oder viskoelastischen Kontinuum kann durch SV-, P- und SH-Wellen vollständig beschrieben werden. SV- und P-Wellen treten im allgemeinen gemeinsam auf. Ihnen liegt die Betrachtung des Kontinuums im ebenen Dehnungszustand zugrunde. SH-Wellen werden als skalares Feld mit den Verschiebungen senkrecht zur betrachteten Ebene beschrieben.

Analytische Lösungen für SH-Wellen sowie SV- und P-Wellen in einem geschichteten elastischen Kontinuum wurden bereits 1950 - 1953 von Thomson und Haskell entwickelt [7.1 - 7.3].

Diese Verfahren können aber, abgesehen von einfachen Fällen, erst mit Hilfe von Computern sinnvoll angewandt werden. In einer Erweiterung für viskoelastisches Materialverhalten wird das Verfahren von Roesset und Jones [7.4 -7.6] verwendet.

Neben der analytischen Methode können auch halbanalytische -Methoden, bei denen der Boden in vertikaler Richtung diskretisiert wird, angewandt werden. Lösungen für SH- sowie SV- und P-Wellen wurden von Roesset [7.6] und Kausel und Roesset [7.7] angegeben. Rechentechnische Vorteile bringt die halbanalytische Methode bei Böden mit starker Schichtung.

Für die Ausbreitung in der Sedimentdecke werden meist vertikal propagierende Wellen angenommen. Dies erscheint gerechtfertigt, da bei hinreichend großem Unterschied der Ausbreitungsgeschwindigkeiten zwischen Grundgestein und Sedimenten (Impedanzsprung) der Einfallswinkel im Grundgestein nach dem Snell'schen Brechungsgesetz keinen großen Einfluß auf die Ausbreitungsrichtung in der Sedimentdecke hat. Bei Berechnungen im Frequenzbereich lassen sich auch für mehrere Schichten geschlossene Lösungen angeben. Eine mögliche Vorgehensweise auf der Grundlage der angegebenen Literatur ist in Anhang 7 skizziert. Nichtlineares Materialverhalten kann hierbei wegen der Anwendung des Superpositionsprinzips nur mit Hilfe iterativ linearer Rechnungen erfaßt werden. Berechnungen im Zeitbereich werden hauptsächlich dann verwendet, wenn beliebige Materialgesetze für die Sedimentschichten berücksichtigt werden sollen und ein diskretisiertes Modell vorgegeben ist (z. B. [7.6 u. 7.8]). Daneben können iterativ lineare Rechnungen unter Verwendung äquivalenter Materialkennwerte durchgeführt werden [7.9].

7.4 Schräger Welleneinfall

Mit wachsender Epizentralentfernung und flacher werdenem Einfallswinkel der seismischen Welle nehmen die Amplituden der Übertragungsfunktion ab. Andererseits beherrschen dann zunehmend Reflexionen, später auch Oberflächenwellen (Loveund Rayleigh-Wellen) das Gesamtsignal. Die zunächst sehr starke Amplitudenabminderung wird dadurch bei Epizentralentfernungen oberhalb 20 km wieder ausgeglichen.

Da sich technisch relevante Einwirkungen eines mitteleuropäischen Bebens vorwiegend auf den Epizentralbereich ($R_E \lesssim 5$ km) konzentrieren, bleiben genauere Betrachtungen dieser Effekte im allgemeinen außer acht.

Im folgenden wird näher untersucht, welchen Einfluß der Einfallswinkel der seismischen Welle im Halbraum auf die Übertragungsfunktion der Sedimentdecke haben kann und in welchen Fällen ein Abweichen von der üblichen Berechnungsmethode mit vertikal propagierenden SH-Wellen sinnvoll ist. Hierbei werden SV-, P- und SH-Wellen berücksichtigt. Die Lösung der Bewegungsgleichungen des viskoelastischen Kontinuums kann für den ebenen Dehnungszustand (SV- und P-Wellen) im Frequenzbereich geschrieben werden (vgl. Anhang 7) [7.10 - 7.12]

 $\begin{cases} \vec{u} & (x, z, t) \\ \widehat{w} & (x, z, t) \end{cases} = \begin{cases} u & (z) \\ w & (z) \end{cases} \cdot e^{-i(\omega \cdot t - k \cdot x)}$ (7.1) mit $\vec{u}, \widetilde{w}, u, w$ Verschiebungskomponenten (Bild 7.4) t, ω Zeit, Kreisfrequenz k Wellenzahl

In gleicher Weise können auch die Normalspannung $\tilde{\sigma}(x, z, t)$ und die Schubspannung $\tilde{\tau}(x, z, t)$ in die ausschließlich von der vertikalen Richtung abhängigen Spannungsgrößen $\tilde{\sigma}(z)$ und $\tau(z)$ überführt werden. Die Wellenzahl k bezieht sich auf die Wellenausbreitung in horizontaler Richtung. Sie steht bei einer aus dem Halbraum schräg einfallenden Welle mit dem Einfallswinkel in Beziehung. Bei einer einfallenden P-Welle gilt

 $k = \frac{\omega}{v_{P,HR}} \cdot \cos \psi_{P}$ (7.2a)

und bei einer SV-Welle

 $k = \frac{\omega}{\nabla} \cdot \cos \psi_{SV}$ (7.2b)

Hierbei bedeuten $\psi_{\rm P}$, $\psi_{\rm SV}$ die Einfallswinkel und $V_{\rm P,HR}$, $V_{\rm S,HR}$ die Kompressions- bzw. Scherwellengeschwindigkeit im Halbraum.

Für eine homogene Bodenschicht können die Beziehungen zwischen den von der Vertikalen abhängigen Spannungs- und Verschiebungsgrößen als Übertragungsmatrix beschrieben werden. Ebenso läßt sich eine Übertragungsmatrix zwischen den Amplituden der einfallenden sowie der reflektierten P- und SV-Wellen und den Spannungs- und Verschiebungsgrößen an der

Bild 7.4 Bezeichnungen für Spannungen und Verschiebungen in einer homogenen Schicht, SV- und P-Wellen

Bild 7.5 Bezeichnungen für Spannungen und Verschiebungen in einer homogenen Schicht, SH-Wellen
Halbraumoberfläche angeben (siehe Anhang 7). Damit läßt sich das Verfahren der Übertragungsmatrizen für der Fall eines geschichteten Bodens über einem homogenen Halbraum anwenden. Als Lösung erhält man die Verschiebungen an der Oberfläche des geschichteten Bodens infolge einer im Halbraum einfallenden Welle.

Für SH-Wellen ergibt sich eine ähnliche Formulierung; die Beschreibung der Verschiebungen vereinfacht sich hier zu (vgl. Bild 7.5):

$$\widetilde{v}(x, z, t) = v(z) \cdot e^{i(\omega t - kx)}$$
(7.3)

Die Wellenzahl läßt sich für eine mit dem Winkel $\psi_{\rm SH}$ an der Oberfläche des elastischen Halbraums einfallende Welle beschreiben:

$$k = \frac{\omega}{v_{S,HR}} \cdot \cos \psi_{SH}$$
(7.4)

Die Übertragungsmatrizen für eine homogene Schicht und für den Übergang von den Wellenamplituden im Halbraum zu den Spannungs- und Verschiebungsgrößen an der Halbraumoberfläche sind in (Anhang 7) angegeben.

Am Beispiel des bereits in Abschnitt 7.2 behandelten Standorts Biblis werden die Übertragungsfunktionen für die SVund SH-Wellen (Verschiebungen u, w und v) in Abhängigkeit des Einfallswinkels ψ getrennt ermittelt und in Bild 7.6 bis 7.8 grafisch dargestellt. Offensichtlich hat ein von der Senkrechten (ψ = 90°) abweichender Einfallswinkel bei den Horizontalverschiebungen u und v generell eine Amplitudenabnahme, bei SV zusätzlich eine Frequenzverschiebung zur Folge. In dem für Bauwerke relevanten Frequenzbereich f > 1 Hz sind jedoch die Unterschiede bei Einfallswinkeln zwischen 45° und 90° relativ gering. Bei den Vertikalverschiebungen w treten deutlich Frequenzverschiebungen auf, die u. U. von Bedeutung sein könnten.

PS1 = 20 GRAD ABS

Zusammenfassend ist zu sagen, daß die Berücksichtigung des Untergrundeinflusses nach der Theorie der eindimensionalen Wellenausbreitung mit Beschränkung auf vertikal einfallende SH-Wellen für baupraktische Belange hinreichend genau ist und gegenüber vollständigen Lösungen auf der sicheren Seite liegt.

7.5 Anwendungsbeispiele

Am Beispiel von drei deutschen Standorten, die den in Abschnitt 3.4 definierten Untergrundklassen zuzurechnen sind und für die detaillierte geologische und baugrunddynamische Angaben vorlagen,

- M: Jungingen
- A: Leopoldshafen
- R: Obrigheim (eigentlich Zwischenstufe M R)

sollen im folgenden die typischen Unterschiede der Übertragungsfunktionen aufgezeigt werden.

Bei Untergrundklasse M (Bild 7.9) beginnt die Übertragungsfunktion im niederfrequenten Bereich mit 2,0 (aufsteigende und an der Oberfläche reflektierte Welle), erreicht ihr Maximum bei f = 1-2 Hz und fällt dann bis f = 10 Hz langsam, danach infolge der Dämpfung rasch ab,

Die Untergrundklasse A (Bild 7.10) ist durch eine starke Überhöhung im niederfrequenten Bereich mit dem Maximum bei f = 0, 1 - 0, 2 Hz gekennzeichnet. Oberhalb f = 1 Hz ist ein rascher Abfall der Amplituden festzustellen, so daß Frequenzen f > 10 Hz nur noch sehr schwach im Freifeld ankommen.

Typisch für die Untergrundklasse R (Bild 7.11) ist eine relativ schwache Überhöhung zwischen 2,0 und 4,0 im Frequenzbereich f < 2 Hz, ein nahezu konstanter Verlauf bis etwa f = 10 Hz mit einem anschließenden allmählichen Abfall.

Übertragungsfunktionen für weitere deutsche Standorte sind in Anhang 8 zusammengestellt. Die Berechnungen wurden mit einem gegenüber Anhang 7 etwas vereinfachten Verfahren durchgeführt.

(Untergrundklasse M)

LAUFZEIT DER DIR. WELLE IN S = 2.97954026ABSTRAHLCHAR. DER DIR. WELLE = 1

Bild 7.10 Übertragungsfunktion für den Standort Leopoldshafen (Untergrundklasse A)

- 68 -

heim (Untergrundklasse M - R)

8. EMPIRISCHE BASISSPEKTREN

8.1 Abschätzung des Untergrundeinflusses

Die verschiedenen Phänomene beim Durchgang der seismischen Welle durch die Sedimentdecke wurden bereits in Abschnitt 7 erörtert.

Die dort qualitativ angegebenen Einflüsse lassen sich mit einigen vereinfachenden Annahmen recht gut abschätzen. Hierdurch ist es insbesondere möglich, die Anwendbarkeit vorliegender Freifeldspektren für eine bestimmte Untergrundsituation ausgehend von einem Basisspektrum zu überprüfen. Andererseits können durch Daten abgesicherte Freifeldspektren auf Festgestein- oder Basisspektren reduziert werden zum Vergleich mit analytisch ermittelten Spektren. Letzteres soll in diesem-Abschnitt geschehen.

Die frequenzunabhängige Amplitudenerhöhung infolge eines Impedanzsprunges von $g_1 \cdot v_{S1}$ auf $g_2 \cdot v_{S2}$ kann bei kontinuierlichem Übergang und senkrechtem Strahleneinfall durch den Faktor

$$D' = \frac{2g_1 \cdot v_{S1}}{g_1 \cdot v_{S1} + g_2 \cdot v_{S2}}$$
(8.1)

quantifiziert werden. Bei stetigem Geschwindigkeitsübergang (keine Reflexion) ergibt sich aus dem Energieerhaltungsgesetz

$$D^{*} = \begin{pmatrix} \frac{g_1 \cdot \nabla_{S1}}{g_2 \cdot \nabla_{S2}} \end{pmatrix}^{1/2}$$
(8.2)

D' und D" unterscheiden sich bei mäßigem Impedanzunterschied nur wenig, wobei D" eine obere, D' eine untere Schranke für die Realität darstellt. Die frequenzselektive Amplitudenanhebung durch Resonanz in der Deckschicht erfolgt bei der Resonanzfrequenz

$$f_{o} = \frac{\nabla_{S}}{4h}$$
(8.3)

wenn h die Dicke der Deckschicht ist.

Die Amplitudenabnahme durch Absorption in der Deckschicht ist durch den Faktor

$$A = \exp\left(-\frac{\pi \cdot f \cdot h}{\Omega_{\rm S} \cdot V_{\rm S}}\right)$$
(8.4)

gegeben; der Qualitätsfaktor Q_S (akustische Güte des Mediums) liegt bei mäßig bis schwach verfestigten Oberflächensedimenten zwischen 10 und 50.

Mit diesen Einflußfaktoren lassen sich die Unterschiede der in Abschnitt 3.4 definierten Untergrundklassen näher charakterisieren. Als gemeinsame Bezugsgröße wird zusätzlich eine Untergrundklasse K (Kristallin) eingeführt, für die das in Abschnitt 6 definierte Basisspektrum gelten soll.

Klasse K: Die Freifeldbewegung ist in guter Näherung durch das "Basisspektrum" multipliziert mit einem Faktor 2 für die Reflexion an der freien Oberfläche zu beschreiben. Umgekehrt kann aus Strong motion-Seismogrammen am Standort der Klasse K unmittelbar das Basisspektrum abgeleitet werden.

Klasse R: Entsprechend Gl.(8.2) folgt die Freifeldbewegung in Klasse R durch frequenzunabhängige Multiplikation des Freifeldspektrums der Klasse K mit D". Mit den in Abschnitt 3.4, Tabelle 3.1, angegebenen Rechenwerten der Klassen K und R ergibt sich D" \approx 1,25. Klasse M: Die Freifeldbewegung der Klasse K wäre nach Gl.(8.2) bei Einsetzen der Rechenwerte der Tabelle 3.1 mit D" \approx 2,2 zu multiplizieren. Dies wird in der Regel durch erhöhte Absorption in der Deckschicht mindestens zum Teil wieder aufgehoben. So ist z. B. für h = 1 km und Q_S = 30 nach Gl.(8.4),

$$A = \exp(-0, 12f)$$
.

Der Gesamteinfluß ist für die gewählten Zahlenwerte als Funktion der Frequenz in Bild 8.1 skizziert.

Bild 8.1 Einfluß von Amplitudenerhöhung und Absorption beim Übergang von Klasse K nach Klasse M

Es ist zu erwarten, daß bei Freifeldspektren der Untergrundklasse M die spektralen Amplituden bevorzugt im tieferen und mittleren Frequenzbereich gegenüber den Klassen K und R angehoben werden. Dies bestätigt sich auch qualitativ beim Vergleich der entsprechenden Bilder in Abschnitt 4.2. Klasse A: Alluvium Lockersedimente können bei mittleren Schichtdicken 10 < h < 50 m von etwa einem Drittel der Resonanzfrequenz (G1.(8.3))

$$f_0 = \frac{300}{4 \cdot h} = 1,5 - 7,5 \text{ Hz}$$

an frequenzselektiv zu beträchtlichen Amplitudenüberhöhungen führen, wobei die mittlere Amplitudenüberhöhung infolge des Impedanzsprungs zum Liegenden dem Faktor D' nach Gleichung (8.1) entspricht. Es ist bekannt, daß z. B. Talsohlen mit dünner Alluvialbedeckung des Grundgebirges zu lokal hohen seismischen Intensitäten führen [8.1] "Sehr dünne Lockerbodenbedeckung (< 5 m) folgt der Bewegung des Liegenden ohne wesentliche Beeinflussung der Schwingungsamplitude. Bei sehr mächtiger Lockerbodenbedeckung kann die anelastische Absorption als Tiefpaßfilter wirken und Resonanzschwingungen unterdrücken.

Strong motion-Seismogramme von Standorten mit Untergrundklasse A können aus den genannten Gründen nur bedingt zur Ermittlung von Basisspektren verwendet werden. Für Bauten an typischen Standorten der Klasse A empfiehlt sich zur Abschätzung der Freifeldbewegung die Multiplikation von Basisspektren mit dem Impedanzverhältnisfaktor (GL (8.2)) für die Rechenwerte der Tabelle 3.1

$$D^{*} = 2 \left(\frac{3 \cdot 2 \cdot 2 \cdot 7}{0 \cdot 3 \cdot 1 \cdot 8} \right)^{1/2} = 8$$

wobei der Faktor 2 wieder durch die Reflexion an der freien Oberfläche bedingt ist.

8.2 Einfluß des sedimentären Festgesteins

Das ursprüngliche Konzept dieser Studie ging von der Voraussetzung aus, daß hinreichende geologisch-geophysikalische Informationen bis hinunter zum kristallinen Grundgebirge vorliegen, Deshalb wurde das Standard-Anregungsspektrum auch zunächst als Kristallin-Spektrum bezeichnet. In fast allen bisher praktisch aufgetretenen Fällen jedoch war diese Voraussetzung nicht erfüllt. Bohrungen und oberflächennahe sprengseismische Untersuchungen enden, selbst unter günstigen Umständen, meist im sedimentären Festgestein. Es stellt sich also die Frage, inwieweit ein "Kristallin-Spektrum" durch kompaktes sedimentäres Festgestein von der Kristallin-Oberkante bis zur geophysikalisch erschlossenen "Basis" der Sedimentdecke des Standorts verändert wird. Zu diesem Zweck wurden für senkrecht einfallende S Wellen mit dem Thomson-Haskell Algorithmus die Durchlaßfunktionen für verschiedene sedimentäre Festgesteinsmodelle berechnet. Eine Auswahl der Ergebnisse enthält Anhang 9.

Die Oszillationen des Durchlaß-Spektrumssind, wie zu erwarten, am stärksten, wenn der Übergang vom Kristallin $(V_S = 3,2 \text{ km/s}, Q = 2,8 \text{ g/cm}^3)$ zu den Decksedimenten $(V_S = 1,2 \text{ km/s}, Q = 2,2 \text{ g/cm}^3)$ über nur <u>eine</u> Festgesteinsschicht $(V_S = 1,75 \text{ km/s}, Q = 2,4 \text{ g/cm}^3)$ mit relativ starken Geschwindigkeitssprüngen erfolgt (Modell 1 in Anhang 9). Dann kommt es zu Resonanzschwingungen in dieser Schicht. Jedoch variiert die Durchlaßfunktion (Bewegungsamplitude an der Oberkante des Festgesteins zur Bewegungsamplitude an der Oberkante Kristallin)nicht mehr als $\stackrel{+}{=}$ 10 % um einen frequenzunabhängigen Mittelwert, der sich auf einfache Weise aus dem Durchlaßfaktor nach Gl. (S.1) berechnet

- 74 -

$$D^{3} = \frac{2 \cdot g_{K} \cdot \nabla_{SK}}{g_{K} \cdot \nabla_{SK} + g_{B} \cdot \nabla_{SB}}$$
(8.5)

Die Indizes bedeuten: S = Scherwellen, K = Kristallin, B = Basisfestgestein.

Erfolgt der Übergang vom Kristallin zur Basis der Decksedimente jedoch stetig über einen Tiefenbereich von wenigen Kilometern, so schwankt die Durchlaßfunktion (Modell 4, Anhang 9) nur ganz wenig um den Wert, der sich bei Erhaltung des Energieflusses vom Kristallin zur Basis der Decksedimente durch Gl.(8.2) ergibt

$$D'' = \left(\frac{g_{K} \cdot \nabla_{SK}}{g_{B} \cdot \nabla_{SB}}\right)^{1/2}$$
(8.6)

Es genügt also offenbar, die Wirkung einer Schicht kompakten sedimentären Festgesteins durch einen frequenzunabhängigen Faktor zu berücksichtigen.

Analog zu den Überlegungen in Abschnitt 8.1 ergibt die Multiplikation des Kristallin-Spektrums mit D" den Maximalwert und die Multiplikation mit D' den Minimalwert für das "Basis"-Spektrum, sofern $e_{\rm K} \cdot V_{\rm SK}$ die akustische Impedanz des Kristallin und $g_{\rm B} \cdot V_{\rm SB}$ diejenige des Festgesteins ist.

- 75 -

Bild 8.2 Faktoren D' und D" beim Übergang vom Kristallin zum Festgestein

In Bild 8.2 sind für die Impedanz des Kristallin $Z_{K} = g_{K} \cdot V_{SK} = 9$ und verschiedene Impedanzwerte $Z_{B} = g_{B} \cdot V_{SB}$ für das "Basis"-Festgestein die Faktoren D' bzw. D" aufgetragen. Man sieht, daß sich nur für sehr hohe Impedanzkontraste D' und D" signifikant unterscheiden. Da anzunehmen ist, daß in der Regel die Struktur des Basis-Sedimentgesteins zwischen derjenigen einer homogenen Einzelschicht und derjenigen eines gleichmäßigen Impedanz-Gradienten liegt, wird vorgschlagen, den Mittelwert von D' und D" zur Berechnung des "Basis"-Spektrums aus dem "Kristallin"-Spektrum zu benutzen. In dieser Betrachtung ist die Absorption in den sedimentären Festgesteinen so behandelt wie diejenige im Kristallin.

8.3 Fourier-Betragsspektren für Festgestein

Sozusagen als "Abfallprodukt" der statistischen Auswertungen von Freifeldspektren können aus der Bodenklasse R wertvolle Informationen über die Erdbeben-Erregung im Festgestein ge-

- 76 -

wonnen werden. Zu diesem Zweck wurden die Fourier-Betragsspektren der Beschleunigung statistisch ausgewertet. Sie entsprechen nach Abschnitt 2 etwa den Pseudogeschwindigkeits-Antwortspektren für eine Dämpfung D = 0 %. Die Ergebnisse für die drei Intensitätsklassen sind in Bild 8.3 bis 8.5 geplottet. Man erkennt den für Felsregistrierungen typischen breiten Frequenzgehalt. Im hohen Frequenzbereich sind die Fourier-Betragsspektren "unruhiger" als die Geschwindigkeits-Antwortspektren.

Auch bei den Fourierspektren ist noch eine Skalierung auf die Mitte der Intensitätsklassen erforderlich; der Faktor F ergibt sich analog Abschnitt 4.1 mit den bereits bei den Freifeld-Antwortspektren der Untergrundklasse R angegebenen Zahlenwerten.

Bild 8.3 Fourier-Betragsspektrum der Beschleunigung für Festgestein und Intensitätsklasse 1

Bild 8.4 Fourier-Betragsspektrum der Beschleunigung für Festgestein und Intensitätsklasse 2

Bild 8.5 Fourier-Bestragsspektrum der Beschleunigung für Festgestein und Intensitätsklasse 3

8.4 Intensitätsabhängige Basisspektren

Nach Abschnitt 8.2 liegen die Amplituden der im Abschnitt 8.3 statistisch ermittelten Festgesteinsspektren etwa um den frequenzunabhängigen Durchlaßfaktor $\overline{D} \approx \frac{1}{2} (D' + D'') \approx 1,25$ höher als die des zugehörigen Kristallinspektrums. Zum Vergleich mit den synthetischen Basisspektren in Abschnitt 6, die für die Kristallinoberfläche definiert sind, ist demnach eine Reduktion der Fourier-Betragsspektren mit dem Faktor $1/\overline{D} = 0,8$ erforderlich.

Außerdem gelten die Festgesteinsspektren für das Freifeld und enthalten somit auch den Anteil der an der Bodenoberfläche reflektierten seismischen Welle. Bei Beschränkung auf die in die Sedimentdecke einfallende Welle reduzieren sich die Spektralamplituden weiter auf die Hälfte.

Folglich ergeben sich empirische intensitätsabhängige Basisspektren aus den Fourier-Betragsspektren für Festgestein durch Multiplikation mit einem Faktor 0,8 · 0,5 = 0,4. Die so modifizierten 84 %-Fraktil-Spektren sind in Bild 8.6 gezeichnet. Ein Vergleich mit den in Bild 6.4 dargestellten Basisspektren zeigt eine gute Übereinstimmung des Spektrums für die mittlere Intensitätsklasse (I = 7,5) mit dem synthetischen Spektrum des Baseler Bebens im maßgebenden Freguenzbereich f = 1 - 5 Hz; das emirische Spektrum für I = 6,5 liegt etwas unter dem synthetischen Spektrum des Groß-Gerau-Bebens. Durch die Einhüllung sowohl flacher kleiner, als auch tiefer starker Beben weisen die synthetischen Basisspektren einen etwas breiteren Frequenzgehalt auf als die aus den Beobachtungen abgeleiteten Spektren. Dies bleibt jedoch ohne Einfluß auf die Bauwerksauslegung.

- 81 -

9. ERDBEBENZONENKARTE

9.1 Datenbasis

Die wichtigste Datenbasis für die Seismizitätsanalyse und die seismologische Regionalisierung bildet der von der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) unter der Federführung von G. Leydecker und unter Mitarbeit aller deutschen seismologischen Forschungsinstitute zusammengestellte Erdbebenkatalog. Dieser umfaßt den Zeitraum von etwa 1000 n. Chr. bis 1979 und wird jährlich ergänzt. Im Rahmen des vorliegenden Forschungsvorhabens wurde der Levdecker-Katalog überarbeitet und durch Erdbeben aus den Nachbargebieten der Bundesrepublik (Belgien, Niederlande, Frankreich, Schweiz, Österreich, DDR) ergänzt. Der überarbeitete Katalog enthält nun 1732 Erdbeben, welche den Magnitudenbereich von $2 \le M_T^{*)} \le 6,5$ und den Intensitätsbereich II $\le I_O \le X$ MSK Skala überdecken. Die stärksten Ereignisse wurden nicht im Bereich der Bundesrepublik, sondern im benachbarten Ausland ausgelöst (Schweiz, Österreich, Italien). Das Datenformat des Kataloges wurde so abgeändert, daß es mit den in Bensberg zur Verfügung stehenden Rechensystemen und Programmen verarbeitet werden kann. Zur Erleichterung der gebietsmäßigen Auswertung wurden die Herdangaben auf ein rechtwinkliges Koordinatensystem (UTM-Gitter) umgerechnet. Einen Eindruck vom Aufbau des Kataloges vermittelt die in Tabelle [9.1] exemplarisch dargestellte Katalogseite. Neben Datum, Herdzeit, UTM-Koordinaten des Epizentrums, Herdtiefe (beides in km mit Angabe des geschätzten Fehlers () sind die Lokalbebenmagnitude M_{τ} und die makroseismische Intensität im Epizentrum I (MSK-Skala) sowie die Radien des Schadensgebietes (R6) und des fühlbar erschütterten Gebietes (R2R, beide in km) aufgeführt. Die Codezahl in der letzten Spalte gibt einen Hinweis auf die Zugehörigkeit zu einer bestimmten seismotektonischen Region und auf die Entstehungsur-

*) In diesem Abschnitt wird noch die alte Bezeichnung M_L anstelle von MWA verwendet.

Bild 9.1 Eine Seite aus dem Erdbebenkatalog, welcher insgesamt 1732 Ereignisse für den Zeitraum 1000 -1979 umfaßt und auf Datenträgern abgespeichert ist.

SEITE 10

DATUM JJJJ	1 MM	ממ	HEF		SS.3	EPIZE RRR.R	NTRUM HHHH.H	Q	TIEFE	E MAG Q M.M	INT I.I	R6	R2R	AA	GEBIET (EEEEEEEEEEEE	RKKT
: 902	09	10	22	50	00.0	1067.	5345.5	0	00.0	0*3.4	5.0	99	000	00	MANNERSDORF	36T
1902	10	01	22	40	.09.0	1943.	5287.4	0	00.0	0*3.4	5.0	90	000	00	W. NEUSTADT	36T
1902	10	8 3	20	45	00.0	498.8	5357.3	0	04.0	2*3.4	5.0	99	027	00	HECHINGEN	73T
1902	13	09	14	38	00.0	500.0	5359.1	0	08.0	4*3.7	4.5	90	037	00	HECHINGEN	73T
1902	11	26	12	15	00.0	774.1	5512.3	2	09.O	0 4.3	6.0	99	040	00	TACHAU	99T
1903	91	25	09	45	00.0	439.1	5437.3	0	02.0	1*2.3	5.0	00	010	00	KANDEL	53T
1903	01	25	09	45	00.0	439.1	5437.3	б	00.0	0 3.5	5.0	00	000	00	KANDEL	53T
1903	01	25	13	45	00.0	439.1	5437.3	0	00.0	0?3.7	4.0	00	000	00	KANDEL	53T
1903	01	25	15	00	00.0	439.1	5437.3	0	00.0	0?3.7	4.0	00	000	00	KANDEL	53T
1903	01	25	00	30	99.0	439.1	5437.3	9	00.0	0?3.7	4.0	00	000	00	KANDEL	53T
1903	01	26	16	00	00.0	439.1	5437.3	6	03.0	3*3.6	5.5	00	050	00	KANDEL	53T
1903	91	26	16	45	00.0	439.1	5437.3	0	05.0	3*3.6	5.5	00	040	90	KANDEL	53T
1903	01	31	23	30	00.0	583.5	5217.1	0	00.0	0*3.4	5.0	00	000	09	ARLBERG	86T
1903	92	21	21	09	00.0	723.0	5576.9	2	95.0	4?4.7	6.0	00	070	00	BRAMBACH	94T
1 903	92	25	23	12	00.0	735.1	5577.2	3	00.0	0?4.4	5.5	00	000	00	ADORF	94T
1903	03	95	04	45	99.9	439.1	5437.3	Ø	92.0	1*2.8	5.0	99	010	0 0	KANDEL	53T
1903	93	05	20	37	00.0	749.1	5583.4	2	10.0	0*4.9	6.5	00	135	00	ASCH	94T
.03	93	06	04	57	00.0	749.1	5583.4	3	11.0	0*4.5	5.5	90	120	99	ASCH	94T
1903	03	19	23	57	99.0	1004.	5294.9	0	99.9	0*3.4	5.0	99	000	99	MUERZZUSCHLAG	86T
1903	93	22	96	98	00.0	439.1	5437.3	4	03.0	2*4.3	7.0	96	040	10	KANDEL	53T
1.903	03	26	10	10	00.0	439.1	5437.3	6	00.0	0*3.0	4.5	00	000	00	KANDEL	53T
1903	03	29	20	30	00.0	500.0	5346.2	0	09.0	5*3.8	4.5	99	047	00	TAILFINGEN	73T
1993	94	27	16	08	00.0	742.8	5566.4	3	00.0	074.2	5.0	00	000	0 0	RADIUMBAD	94T
1903	97	21	13	58	00.0	448.3	5427.9	0	00.0	0?3.7	4.0	00	000	0 0	KARLSRUHE	53T
1903	07	22	13	30	00.0	439.1	5437.3	6	03.0	3#3.2	4.5	00	040	99	KANDEL	53T
1903	93	11	05	30	00.0	612.6	5410.3	2	00.0	0*2.5	4.0	99	009	99	NOERDLINGEN	75T
1903	11	12	09	30	00.0	960.0	5368.9	0	00.0	0*3.4	5.0	00	000	00	NEUKIRCHEN	86T
1903	12	14	22	21	00.0	711.4	5253.8	0	00.0	0*3.4	5.0	99	000	00	JENBACH	36T
1903	12	15	00	00	00.0	557.0	5576.3	2	00.0	0*2.4	3.5	00	007	99	BRUECKENAU	90T
1903	12	15	90	00	00.0	571.6	5632.0	2	01.0	1*2.1	4.0	99	000	88	VACHA	00T

sachen des Erdbebens (T = tektonische Erdbeben, E = Einsturzbeben, B = bergbaulich bedingtes Ereignis, usw.).

Von wesentlicher Bedeutung für die Ermittlung des lokalen und regionalen Erdbebengefährdungspotentials ist eine möglichst zuverlässige und über den Beobachtungszeitraum möglichst einheitliche stärkemäßige Skalierung der Erdbeben im Hinblick auf die makroseismische Intensität im Epizentrum, die Lokalbebenmagnitude und auf die Abnahme der makroseismischen Intensität mit der Entfernung vom Epizentrum. Außerdem sind Abschätzungen von bestimmten seismotektonischen Herdparametern, welche den Frequenzinhalt der abgestrahlten seismischen Wellen beeinflussen (z. B. Herdmoment, Radius der Herdfläche), von Interesse.

Im Rahmen des Forschungsvorhabens wurde deshalb versucht, aus den makroseismischen und instrumentellen Beobachtungsdaten von gut untersuchten mitteleuropäischen Erdbeben ein einheitliches System von empirischen Beziehungen abzuleiten, welches eine Umrechnung zwischen den die Stärke eines Erdbebens charakterisierenden Parametern ermöglicht. Bild 9.1 zeigt die Abnahme der makroseismischen Intensität mit der Herdentfernung, abgeleitet aus den mittleren Isoseistenradien von 19 gut beobachteten Erdbeben des Zeitraums 1846 – 1965. Die Daten sind auf die Einheitsintensität I $_{10}$ km normiert, die in 10 km Abstand vom Herd (Hypozentralabstand mit Berücksichtigung der Herdtiefe) auftritt. Die Intensitätsabnahme läßt sich in Anlehnung an die theoretische Abnahmeformel von Sponheuer [9.2] durch folgende Beziehung darstellen:

 $I(R) = I_{10 \text{ km}} + 3 - 3 \log (R) - 1, 3 \cdot \alpha \cdot (R-10)$ (9.1)

Dabei bedeuten: I(R) = makroseismische Intensität nach MSK-Skala, beobachtet in der Entfernung R (km) vom Herd

- R = Herdentfernung (Hypozentralentfernung) in km
- I_{10 km} = makroseismische Intensität in 10 km Herdentfernung
 - \$\mathcal{L}\$ = Absorptionskoeffizient in km⁻¹
 (normal 0,001 0,005)

Bild 9.2 zeigt den aus den Beobachtungen abgeleiteten Zusammenhang zwischen der makroseismischen Intensität I₁₀ km in 10 km Herdentfernung und der instrumentell bestimmten Lokalbebenmagnitude M_L für insgesamt 25 Erdbeben in Mitteleuropa, wobei auch die Schadenbeben von Euskirchen 1951 (M_L = 5,7), Albstadt 1978 (M_L = 5,7) und Friaul 1976 (M_L = 6,5) berücksichtigt sind. Die für Mitteleuropa gültige Beziehung zwischen der Einheitsintensität I₁₀ km und der Lokalbebenmagnitude M_L lautet:

$$I_{10 \text{ km}} = 1,5 \text{ M}_{L} - 1,0 (\pm 0,6)$$
 (9.2)

Durch Kombination der beiden Beziehungen erhält man als Formel zur Berechnung der makroseismischen Intensität I (M_L, R) in beliebiger Herdentfernung R (in km) in Abhängigkeit der Lokalbebenmagnitude M_T :

 $I(M_{T}, R) = 1,5 \cdot M_{T} + 2 - 3 \cdot \log(R) - 1,3 \cdot \alpha \cdot (R-10)$ (9.3)

Durch Umstellung erhält man daraus eine Bestimmungsgleichung für die Lokalbebenmagnitude M_L (Richter-Skala) aus makroseismischen Daten (Ahorner [9.3]):

$$M_{T} = 0,67 \cdot I_{n} - 1,33 + 2 \cdot \log(R_{n}) + 0,87 \cdot \alpha \cdot (R_{n} - 10) \quad (9.4)$$

 ${\rm I_n}$ ist dabei die makroseismische Intensität (MSK-Skala) in der Entfernung ${\rm R_n}$ (in km) vom Hypozentrum. Der Absorptions-koeffizient α wird in km⁻¹ angegeben. Er liegt bei starken mitteleuropäischen Erdbeben zumeist in der Größenordnung

- 86 -

Bild 9.1 Abnahme der makroseismischen Intensität I (MSK-Skala) mit der Hypozentralentfernung R (km) bei 19 mitteleuropäischen Erdbeben im Zeitraum 1846-1965 (nach Ahorner & Rosenhauer [9.4]). Die Intensität ist auf den Wert I R = 10 km normiert.

Bild 9.2 Beziehung zwischen der makroseismischen Intensität I_{10km} (MSK) in 10 km Hypozentralentfernung (nicht Epizentralentfernung!) und der instrumentell bestimmten Lokalbebenmagnitude M_L (Richter-Skala) für 25 mitteleuropäische Erdbeben (Ahorner [9.3])

von $\alpha = 0,001 - 0,005 \text{ km}^{-1}$.

Wenn man davon ausgeht, daß der mittlere Radius R_S (im km) des fühlbar erschütterten Gebietes etwa mit der Intensität II - III (= 2,5° MSK) gleichzusetzen ist und der Unterschied zwischen Hypozentralentfernung und Epizentralentfernung in größerem Abstand vom Herd bei Erdbeben geringer Herdtiefe (wie sie in Mitteleuropa vorwiegend vorkommen) vernachlässigt werden kann, dann vereinfacht sich die obige Beziehung zur Magnitudenbestimmung zu folgender Form:

$$M_{T} = 2 \log(R_{c}) + 0,87 \alpha (R - 10) + 0,33 \qquad (9.5)$$

Der besondere Vorteil der oben aufgeführten Intensitätsabnahmegesetze und Intensitäts-Magnitude-Beziehungen ist, daß bei der Ableitung auschließlich deutsche bzw. mitteleuropäische Erdbeben verwendet wurden. Die Formeln berücksichtigen daher die spezifischen Eigenheiten der mitteleuropäischen Erdbebengebiete, welche in mancherlei Hinsicht nicht mit den Erdbebengebieten in anderen Teilen der Erde (z. B. in Kalifornien oder in Japan) verglichen werden können.

Auf Grund der mitgeteilten Beziehungen ist es möglich, die Lokalbebenmagnitude M_L auch für solche Erdbeben zu berechnen, von denen nur makroseismische Beobachtungen vorliegen. Dies trifft für die überwiegende Mehrzahl der im Erdbebenkatalog enthaltenen Erdbeben zu. Die makroseismisch bestimmten Lokalmagnituden M_L sind im Katalog durch einen vorgesetzten Stern gekennzeichnet (vgl. Tabelle 9.1). Bei der Berechnung wurde vom Schüttergebietsradius R_s und (soweit vorhanden) von den Radien der einzelnen Isoeisten sowie dem Wertepaar Epizentralintensität und Herdtiefe ausgegangen und der Mittelwert aus allen Bestimmungen in den Katalog übernommen.

Über die Lokalbebenmagnitude M_L können die seismotektonischen Herdparameter nach generalisierten Beziehungen abgeschätzt werden, z. B. das Herdmoment M_O oder der Herdradius r_O . Beide Größen sind für die Ermittlung des Herdspektrums von Bedeutung (vgl.Abschnitt 6).

In Bild 9.3 sind für zahlreiche deutsche Erdbeben der letzten Jahre, die herdnah mit digitalen Registrierinstrumenten aufgezeichnet wurden, die aus den Raumwellenspektren abgeleiteten Herdmomente M_{O} gegen die instrumentell bestimmte Lokalbebenmagnitude M_{L} aufgetragen. Dabei wird der Magnitudenbereich von $1 < M_{L} < 5,7$ durch Daten überdeckt (unter Einschluß des Albstadt-Erdbebens 1978). Die daraus abzuleitende generalisierte Beziehung zwischen diesen beiden Größen, gültig für unser Gebiet, lautet (Ahorner [9.3]):

$$\log M_{dyn-cm} = 17,4 + 1,1 M_{T}$$
 (9.6)

Mit Hilfe der angegebenen Beziehungen ist es möglich, die auf dem Gebiet der Bundesrepublik beobachteten Erdbeben nach einheitlichen Gesichtspunkten zu skalieren und damit optimale Ausgangsbedingungen für eine seismologische Regionalisierung auf probabilistischer Basis zu schaffen.

Bild 9.3 Beziehung zwischen dem Logarithmus des Herdmomentes log M_o und der Lokalbebenmagnitude ML für 27 mitteleuropäische Erdbeben der Jahre 1977-1983 (nach Ahorner [9.3]).

9.2 Seismizitätsanalyse

Ziel der Seismizitätsanalyse ist es, durch regionale Magnituden-Häufigkeitsverteilungen $\lambda(>M_L)$ und durch Herdtiefenverteilungen die Wahrscheinlichkeit für einen Herd an einem beliebigen Punkt des Krustenvolumens in einem die Bundesrepublik umfassenden Gebiet modellmäßig festzulegen.

- 91 -

Dazu werden 30 meist rechteckförmige Zählgebiete festgelegt, für die aus dem Katalog (Abschnitt 9.1) mit dem Programm STATSEIS 2 etwa 90 <u>Basislisten</u> von Magnitudenextrema zusammengestellt wurden (Bild 9.4). Hieraus können ca. 150 <u>lückenlose Listen</u> durch Zusammenfassen von z. B. 5-Jahres-Extremwerten zu 10-Jahres-, 15-Jahres- usw. Extremwerten gewonnen werden, die – meist verschieden weit in die Vergangenheit zurückreichend – nur relativ wenige abgeschätzte Werte enthalten.

Zusätzlich zu dieser etwa 3000 Werte umfassenden Datenbasis für Teilgebiete werden sehr viel umfangreichere Listen mit bis zu 160 Extremwerten für das Gesamtgebiet gewonnen. Die Auswertung wird nach dem in [9.5] genauer dargestellten Verfahren der Extremwertstatistik vorgenommen. Ein Ergebnis für das Gesamtgebiet sind ausgezeichnete Schätzwerte für die Magnitudenobergrenze:

$$\lambda(>M_{max}) = 0 \text{ für } M_{max} = 6 3/4$$
 (9.7)

Da M_{max} nur mit geringer Genauigkeit benötigt wird, genügt es, für die Teilgebiete mit weniger guten M_{max} -Bestimmungen einen der Werte 6, 6 1/4, 6 1/2, 6 3/4 versuchsweise anzusetzen und nach Prüfung auf Verträglichkeit mit den Daten zu akzeptieren (vgl. Abschnitt 3.3).

UTM-GITTER, ZONE 32U

.....

ABTEILUNG ERDBEBENGEOLOGIE, GEOLOGISCHES INSTITUT, UNIVERSITAET KOELN

1 92

1

Als die zentralen Beziehungen zur Datenauswertung erweisen sich die zur Extremwertstatistik äquivalenten Umrechnungsformeln für den Erwartungswert m und die Streuung σ auf andere Flächen (A—A') und Bezugszeiten (T—T'):

$$\sigma' = \sigma \left(\frac{AT}{A'T'}\right)^{\tau} \qquad m' = \begin{cases} m + f_1 / f_2 \cdot (\sigma' - \sigma') & (\tau > 0) \\ m - \sigma' \frac{\gamma \sigma}{\pi} \ln \left(\frac{AT}{A'T'}\right) & (\tau = 0) \end{cases}$$
(9.8)

mit

$$f_1 = \Gamma(1+\tau) = \int_0^\infty x^2 e^{-x} dx \; ; \; f_2^2 = \Gamma(1+2\tau) - \Gamma^2 \; (1+\tau)$$

Sie erlauben dadurch, daß alle (häufig mehr als 20) Schätzungen für ein Teilgebiet auf $T_0 = 10$ a umgerechnet werden, eine hochredundante Bestimmung der Parameter der Magnitudenhäufigkeitsverteilungen (siehe Tabelle 9.2):

$$\lambda (>M_{\rm L}) / \frac{1}{10a} = (f_1 - f_2 \cdot \frac{M - m(10a)}{\sigma(10a)} 1/\tau$$
 (9.9)

Die generell gefundende überraschend exakte Übereinstimmung der Resultate aus verschiedenartigsten lückenlosen Listen eines Teilgebiets kann einerseits als Bestätigung für die Gültigkeit der Extremwertstatistik, andererseits als Nachweis für die zeitliche Konstanz von $\lambda(>M_L)$ angesehen werden, wenn Nachbeben (wie bei der dargestellten Auswertung) eliminiert sind.

Die komplizierten Abgrenzungen der tatsächlichen Herdzonen wurden anhand der Lage der historischen Epizentren unter Einbeziehung der geotektonischen Kenntnisse festgelegt. Der Einfluß dieses wichtigsten und schwierigsten Schritts der Modellbildung ist gegenüber früheren Untersuchungen gesunken, da die unvermeidlichen Ungenauigkeiten der Herdzonengrenzen in den Endergebnissen weitestgehend erfaßt werden (siehe Abschnitt 9.3).

- 93 -

Tabelle	9.2	Gumbel-Paramete	r zur	Berechnung	der	nic	nt, nor	-
		mierten Magnitu	nierten Magnitudeneintrittsraten					
		die Zählgebiete						

Zählge	biec, Fläche/10 ⁴ kmm²	Gu m (10a)	а b е 1 б (10а)	τ ²	ara Mmax	meter M(10 ⁻³ /a)
BEL	Belgien, 2.0	3.94	1.04	0,34	6 3/4	6.09
NRB 1	Nördliche Niederrhein- ische Bucht, 1.2	3.74	0.68	0,24	6 1/4	5.33
NRB 2	Südliche Niederrhein- ische Bucht, 0.5	4.33	0.87	0.33	6 3/4	6.16
VEN	Hohes Venn, 0.51	3.77	0.59	0.21	6 1/4	5.23
MRG	Mittlerer Oberrhein- graben, 0.77	4.03	0.53	0.21	6 1/4	5.33
HUN	Hunsrück und Saar-Mahe- Gebiet, 1,32	3.21	0,43	0.12	6 1/4	4.41
VOG	Vogesen, 1.5	3.36	0.60	0.18	6 1/4	4.89
ORG 1	Nördlicher Oberrhein- Graben mit Mainzer Becken und Taunus-Südrand, 0.54	3.62	0.81	0.25	6 1/2	5.49
ORG 2	Mittlerer Oberrhein- Graben 0.77	3.83	0.72	0.24	6 1/2	5.53
ORG 3	Südlicher Oberrhein-Gra- ben mit Basler Gebiet 1.05	4.10	0.63	0.21	6 3/4	5.66
SCH 1	Nördlicher Schwarzwald, 0.42	3.49	0.63	0.20	6 1/4	5.06
SCH 2	Südlicher Schwarzwald,0.64	3.96	0.50	0.19	6 1/4	5.21
SWA	Schwäbische Alb, 0.15	5.22	0.64	0.39	6 3/4	6.46
NWU	Nord-Württemberg, 0.84	3.03	0.60	0.16	6 1/4	4.59
OSA	Ostalb, Oberschwaben, 0.585	3.56	0.84	0.28	6 1/4	5.42
BOD	Bodensee-Gebiet, 0.425	4.00	0.61	0.24	6 1/4	5.43
SAL	Schweizer Alpen, 2.2	4.15	1.48	0.55	6 3/4	6.52
ARL	Ostschweiz, Vorarlberg, 0.425	4.21	0.58	0.20	6 3/4	5.65
TIR	Tirol und nördliche Kalkalpen, 1.7	4.21	0.86	0.31	6 3/4	6.07
Umgebu nordõs	ng eines Standorts in der tlichen Bundesrepublik, 12.6	1.33	1.82	0.36	6	5.00
Vogtla zung,	nd und nördliche Fortset- 2.8	3.58	1.25	0.40	6 1/2	5,98
FRA	Fränkische Alb, 1.35	2.89	. 1.25	0.34	6 1/4	5.46
BAW	Bayrischer Wald, 3.42	3.31	0.78	0.26	6	5.10
Salzbu	rger Gebiet, 0.5	3.92	0.75	0.29	6 1/4	5.57
TAU	Tauern, 1.0	3.67	0.62	0.21	6 1/4	5.18
NOR	Nieder-Österreich, 2.25	3.66	0.77	0.24	6 1/2	5.46
008	Ober-Österreich.	4.13	0.69	0.26	6 1/2	5.71
		4.12	0.68	0.29	6 1/4	5.63
Semmer	ing, 2.0	4.98	0.51	0.26	6 3/4	6.16
Gesamt aktive	gebiet ohne seismisch Zonen, 43.5	4.4	0.64	0.37	6	5.67
전 (10	³ /a): Magnitude, die im Zäh	lgebiet :	ait			

Kleinere Seismizitätsunterschiede werden in einigen Fällen durch Korrekturfaktoren bei der Zuordnung der Zählgebietsergebnisse berücksichtigt. Für die nicht statistisch auswertbaren Gebiete wird die Eintrittsrate durch Einordnung anhand der Ergebnisse Tabelle 9.2 abgeschätzt.

Auswertungen zur Herdtiefe bezüglich Anzahl und Energiefreisetzung zeigen, daß Herde tiefer als 15 km bis 20 km im Untersuchungsgebiet eine praktisch vernachlässigbare Wahrscheinlichkeit haben (vgl. Abschnitt 3.3); dies führt zur Änderung des bisher verwendeten Modells (Bild 9.5). Entsprechende Diagramme werden für alle wichtigen Herdgebiete der Bundesrepublik angefertigt und als Grundlage der probabilistischen Analyse des Erdbebengefährdungspotentials mit benutzt.

Als Gesamtergebnis liegt ein verläßliches Seismizitätsmodell für Mitteleuropa vor, das eine gute abgesicherte Basis in der erforderlichen Detaillierung für regionale probabilistische seismische Standortanalysen darstellt. TIEFENMAESSIGE VERTEILUNG DER ERDBEBENHAEUFIGKEIT UND ENERGIESUMME

PROGRAMM 'SEIS TIEFE' REGION: BUNDESREPUBLIK DEUTSCHLAND GESAMT BRD ZEITBEREICH VON 1000 BIS 1979 RECHTSWERT VON 250 BIS 850 HOCHWERT VON 2500 BIS 6000 MAGNITUDE VON 0.0 BIS 7.0 QUALITAET FUER HERDTIEFE: +/-5 KM EREIGNISTYP: T

ABTEILUNG FUER ERDBEBENGEOLOGIE, GEOLOGISCHES INSTITUT, UNIVERSITAET ZU KOELN

Bild 9.5

Beispiel für die Verarbeitung der Daten des Erdbebenkataloges. Dargestellt ist für alle Erdbeben des Kataloges mit genauer bekannter Herdtiefe (Herdtiefenfehler kleiner oder gleich 5 km) und tektonischer Entstehung (Ereignistyp T) die tiefenmäßige Verteilung der Erdbebenhäufigkeit N (pro Tiefenintervall von 1 km) und der seismischen Energieauslösung (Summe der Quadratwurzeln der bei den einzelnen Erdbeben freigesetzten seismischen Energie).

Man erkennt, daß sich die seismische Aktivität in Mitteleuropa ganz überwiegend auf den Bereich der oberen Erdkruste (oberhalb 15 km Tiefe) konzentriert.
9.3 Probabilistische Standortanalyse

Da das Monte-Carlo-Simulationsverfahren PSSAEL in [9.5] und [9.6] ausführlicher beschrieben ist, soll hier nur auf die wichtigsten Punkte hingewiesen werden.

Bei der Simulation von Herden werden statt der Abgrenzungslinien Grenzbereiche zwischen den eigentlichen Herdzonen (den "Kernzonen") betrachtet. In diesen "Übergangszonen" werden ortsabhängige Magnitudeneintrittsraten in Abhängigkeit von der Entfernung zu den Kernzonen angesetzt:

$$\lambda (>M_{\rm L}, x, y) = \frac{a_1 \cdot \lambda_1 (>M_{\rm L}) + a_2 \cdot \lambda_2 (>M_{\rm L}) + \cdots}{a_1 + a_2 + \cdots}$$
(9.10)

$$\lambda_i (>M_L)$$
: Eintrittskarte in Kernzone i
 a_i^{-1} : Abstand des Orts x, y von Kernzone i

Hierdurch wird - der Abgrenzungsungenauigkeit entsprechend ein stetiger Übergang der Seismizität zwischen stark unterschiedlichen Gebieten erreicht.

Der wichtigste Vorteil der Simulation ist, daß die Intensitäts-Herdzuordnung als stochastische Korrelation genau so behandelt werden kann, wie sie sich bei beobachteten Ereignissen zeigt [9.3], vgl. Cl. (9.9):

I (R,
$$M_L$$
) = 1,5 M_L - a_1 - $a_2 \log_{10}$ (R/10 km)
- a_3 (R/km - 10) (9.11)
 a_1 = 1,0 (0,4...1,6) a_2 = 3(2,5...4) a_3 = 3·10⁻³ (10⁻³..10⁻²)
R = hypozentrale Herdentfernung

Die Größen a₁, a₂, a₃ werden für jedes Herdereignis mit Zufallszahlen im Bereich der angegebenen Streubreiten neu bestimmt. Auf diese Weise wird die Unsicherheit der Abkling-

- 97 -

kurve und die der Magnituden-Intensitätszuordnung durch individuelle Streuungen beschrieben und in die Endergebnisse einbezogen.

Im Herdtiefenmodell wird berücksichtigt, daß Ereignisse mit größeren Magnituden wegen der Herdausdehnung nur in einem Bereich größerer Herdtiefen auftreten können.

Aus den simulierten Ereignissen werden zwei Hauptergebnisse durch einfache statistische Auswertung gewonnen. Es sind dies die Eintrittsrate $\Lambda(>I)$ für die Intensität am Standort und die Magnituden-Herdentfernungsbereiche, die standortspezifisch relevant für interessierende Intensitätswerte sind. Die Intensitätseintrittsrate gestattet es, durch die Wahl der Bemessungs-Intensität den Risikoaspekt quantitativ und angemessen abzuhandeln, während die Spezifizierung der wahrscheinlichsten Herddaten (Magnitude, Herdentfernung) es ermöglicht, realistische ingenieurseismische Kenndaten (Spektren, Zeitdauern usw.) aus Aufzeichnungen (Abschnitt 4 und 5) oder Modellrechnungen (Basisspektren, vgl. Abschnitte 6 und 8) zu gewinnen. Rechnungen für ein ganzes Raster von Standorten wurden durchgeführt, um die probabilistischen Zonenkarten (Abschnitt 9.4) zu erstellen. Ergebnisse zu den je nach Intensität relevanten Magnituden und Herdentfernungsbereichen sind unterschiedlich je nach Lage des Standorts zu den Herdzonen, können jedoch als Basisinformation für die Aufstellung der standortsunabhängien intensitätsbezogenen Spektren (Abschnitt 4.3) dienen.

9.4 Ergebnisse und Schlußfolgerungen

Nach dem im vorausgehenden Abschnitt beschriebenen Verfahren wird die standortbezogene Eintrittsrate für die makroseismische Intensität unter Verwendung des großräumigen Seismizitätsmodelles für mehr als 700 rasterartig über das Gebiet der Bundesrepublik verteilte Standorte berechnet. Die Rasterpunkte sind im Normalfall 25 km voneinander entfernt. In Gebieten mit sehr niedriger Seismizität (z. B. Norddeutschland) wird die Maschenweite entsprechend vergrößert, in Gebieten mit hoher Seismizität wird mit kleineren Maschenweiten gearbeitet.

Als Ergebnis der probabilitischen Analyse stehen drei Seismizitätskarten im Maßstab 1:1 Million zur Verfügung, auf denen Isolinien der makroseismischen Intensität für bestimmte jährliche Überschreitenswahrscheinlichkeiten $(10^{-3}, 10^{-4}$ und $10^{-5})$ dargestellt sind. Eine dieser Karten wird als Beispiel in verkleinertem Maßstab in Bild 9.6 gezeigt.

Die erwähnten probabilistischen Seismizitäten können als Grundlage für die Erstellung einer neuen Erdbebenzonenkarte für die Bundesrepublik Deutschland dienen, welche gegenüber früheren Erdbebenzonenkarten, wie sie beispielsweise in der DIN 4149 (Neufassung) oder in der KTA-Regel 2201.1 abgebildet sind, einige wesentliche Verbesserungen aufweist:

Die verschiedenen Erdbebenzonen sind in der neuen Karte nach ihrem tatsächlichen Gefährdungsgrad abgegrenzt, der sich nicht nur nach der größten zu erwartenden Erdbebenintensität, sondern auch nach der Häufigkeit richtet, mit der bestimmte Intensitäten auftreten. Ein Standort, an dem die Intensität VIII MSK statistisch gesehen nur einmal in 1000 Jahren vorkommt, ist bezüglich seines Gefährdungspotentials anders zu beurteilen als ein Standort, wo dieselbe Intensität alle 50 Jahre zu erwarten ist. Der Gesichtspunkt der Erdbebenhäufigkeit ist bei den früheren Erdbebenzonenkarten nicht oder nur unzureichend berücksichtigt worden.

- Das-für die probabilistische Analyse verwendete großräumige Seismizitätsmodell beinhaltet die Gesamtheit aller in historischer Zeit auf dem Gebiet der Bundesrepublik beobachteten Erdbeben sowie allgemeine geologische und seismotektonische Modellvorstellungen. Ein einzelnes Erdbeben, das bezüglich seiner Stärke und Herdlage oftmals fehlerhaft beobachtet sein kann (vor allem, wenn es sich um ein historisches Ereignis handelt), beeinflußt das Endergebnis der probabilistischen Analyse nur wenig. Bestimmend für das Ergebnis ist vielmehr die auf den Standort bezogene Summe der Wirkungen aller in der näheren und weiteren Umgebung vorkommenden Erdbeben. Ihre Auswirkungen fließen entsprechend der jeweiligen Erdbebenstärke, Herdentfernung und Häufigkeit korrekt in das probabilistische Ergebnis ein.
- Probabilistisch ermittelte Erdbebenzonenkarten vermeiden eine "fixistische" Betrachtungsweise der seismischen Aktivität. Diese Betrachtungsweise, die bei der Erstellung der älteren Karten angewandt wurde, geht davon aus, daß sich künftige Erdbeben genau an den gleichen Stellen ereignen wie die in früheren Jahrhunderten aufgetretenen Erdbeben. Alle potentiellen Erdbebenherde werden in ihrer Lage als bekannt vorausgesetzt und man geht stillschweigend davon aus, daß keine neuen Herde hinzukommen, die bisher noch nicht aktiv waren. Aus heutiger seismotektonischer Sicht ist aber eher anzunehmen, daß Erdbebenherde, welche vor einigen Jahrzehnten oder Jahrhunderten starke Erdbeben hervorgebracht haben, weitgehend entspannt sind und nun eine längere Periode der Spannungsakkumulation und damit der seismischen Ruhe durchmachen.

- 101 -

Diese Ruheperiode kann bei den geringen Deformationsgeschwindigkeiten der tektonischen Erdkrustenbewegungen in Mitteleuropa einige 100 oder auch einige 1000 Jahre ausmachen. Es ist damit viel wahrscheinlicher, daß das nächste starke Erdbeben in einer tektonisch mobilen Region nicht am gleichen Punkt wie das vorausgehende, sondern an einer anderen Stelle stattfindet, möglicherweise gerade zwischen zwei historisch belegten Erdbebenherden. Wenn man die Erdbebentätigkeit des Bundesgebietes unter diesem Aspekt betrachtet, so lassen sich in der Tat zahlreiche Beispiele dafür finden, daß starke Schadenbeben an Stellen aufgetreten sind, wo vorher nie ein ähnliches Ereignis beobachtet worden ist. Dies gilt beispielsweise für die großen Schadenbeben in der Niederrheinischen Bucht bei Tollhausen 1878 und Euskirchen 1950/1951, für das Schadenbeben im Mittelrheingebiet bei St. Goar 1846 und für das Schadenbeben bei Ebingen 1911 auf der Schwäbischen Alb. Die probabilistische Methode berücksichtigt das Wandern von Erdbebenherden innerhalb einer seismotektonischen Gebietseinheit dadurch, daß die historisch beobachtete Seismizität bei der statistischen Auswertung gleichmäßig über die Gebietseinheit verteilt wird.

Bei probabilistischen Seismizitätskarten ist stets zu berücksichtigen, daß von einem mehr oder weniger detaillierten Seismizitätsmodell ausgegangen wird, bei dem die in historischer Zeit beachtete seismische Aktivität auf bestimmte Teilflächen des Modelles und auf den gewählten Bezugszeitraum gleichmäßig verteilt ist. Man erhält daher im Ergebnis regionale, über bestimmte Flächengrößen und Zeiträume gemittelte Intensitätswerte, die umso besser mit den historischen Beobachtungen übereinstimmen, je kleiner die Teilflächen des Modelles gewählt werden können. Die Verfeinerung des Modelles ist jedoch nicht in unbegrenztem Maße möglich, sondern wird durch die verfügbaren seismologischen und geologisch-tektonischen Beobachtungsdaten beschränkt.

In jedem Fall stellen die durch die probabilistische Analyse gewonnenen regionalen Intensitätswerte ein wichtiges Hilfsmittel dar, um Gebietszonen unterschiedlicher Seismizität bezüglich ihres Gefährdungsgrades miteinander zu vergleichen und objektiv gegeneinander abzugrenzen. Dabei genügt es, wenn man die regionalen Intensitäten als ein relatives Maß für die Erdbebengefährdung benutzt.

Lokale geologische Einflüsse auf die Erdbebenintensität können in einem großmaßstäblichen Seismizitätsmodell, welches für das Gesamtgebiet der Bundesrepublik gilt, naturgemäß nicht berücksichtigt werden. Für die praktische Anwendung der im Rahmen des vorliegenden Forschungsvorhabens erstellten probabilistischen Erdbebengefährdungskarten ist daher daran gedacht, die aus den Karten für einen konkreten Standort abzulesenden regionalen Intensitätswerte mit einem lokalen Korrekturwert ⊿I zu ergänzen, welcher sich aus den örtlichen geologischen Gegebenheiten ergibt (Schichtenaufbau des Standortuntergrundes, Vorhandensein von größeren tektonischen Störungszonen in der näheren Umgebung des Standortes usw.).

Über die Größe des lokalen Korrekturwertes ⊿I in Abhängigkeit von den örtlichen geologischen Gegebenheiten werden zur Zeit Überlegungen und Überschlägige Berechnungen durchgeführt. Hier liegt noch ein wichtiges Arbeitsfeld für künftige Forschungen.

10. BEMESSUNGSHILFEN

10.1 Untergrund- und intensitätsabhängige Freifeld-Bemessungsspektren

Die in Abschnitt 4.2 und Anhang 5 angegebenen Freifeld-Antwortspektren müssen für eine einfache paraktische Anwendung noch aufbereitet werden. Dies geschieht durch:

- Skalierung auf die Klassenmitte der Intensitätsklasse mit dem Faktor F nach Gl. (4.1)
- Glättung auf einen 4-Geradenzug
- Umrechnung von Pseudogeschwindigkeit v cm/s in Bodenbeschleunigung a m/s² nach Gl. (4.2)
- Berücksichtigung verschiedener Dämpfungswerte.

Das Ergebnis der ersten beiden Schritte ist in Bild 10.1 für Untergrundklasse M und 84 %-Fraktilen gezeichnet. Bei der Glättung wurde im mittleren und hohen Frequenzbereich $(2,0 \le f \le 25 \text{ Hz})$ in etwa eine Regressionsgerade durch die errechneten Spektralamplituden gelegt. Im niedrigen Frequenzbereich f < 1 Hz wurden die Geraden so angehoben, daß die Verschiebungen annähernd konstant bleiben. Dadurch soll den möglichen Auswirkungen der verwendeten Filterung unter 0,5 Hz begegnet werden. Im oberen Frequenzbereich wurde die für $f \le 25$ Hz geltende Gerade bis $f \approx 33$ Hz fortgesetzt; dann wurde eine konstantbleibende Beschleunigung unterstellt.

Eine Umsetzung der in Bild 10.1 dargestellten Pseudogeschwindigkeiten in Beschleunigungen ist zwar mit Hilfe des eingezeichneten dreifach-logarithmischen Maßstabes möglich; sie erscheint jedoch für die Praxis zu umständlich. Daher wird als Bemessungshilfe gemäß dem dritten Schritt die Beschleunigung a errechnet und gesondert dargestellt; für Untergrundklasse M ist dies in Bild 10.2. geschehen.

Bild 10.1 Geglättete 84 %-Fraktil-Freilfeld-Antwortspektren
für Untergrundklasse M (D = 5 %)

Die entsprechenden Bemessungsspektren für die Untergrundklassen R und A sind in den Bildern 10.3 und 10.4 aufgetragen. Eine Zusammenstellung der Eckpunkte aller Spektren - einschließlich der grafisch nicht dargestellten 50 %-Fraktilen von V - findet sich in Tabelle 10.1. Bei der Ermittlung des Spektrums für Untergrundklasse A, Intensität I = 8,5 wurden - im Gegensatz zu Bild 4.8 in Abschnitt 4.2 - die Zeitverläufe vom Standort Molinis ausgeklammert, weil aufgrund des untypischen Frequenzgehaltes Zweifel an der Einstufung von Molinis in Klasse A aufgekommen waren.

Alle dargestellten Freifeld-Antwortspektren gelten für ein Dämpfungsmaß von D = 5 % (der kritischen Dämpfung). Analog können auf der Basis der in Anhang 5 zusammengestellten Diagramme Bemessungsspektren für andere Dämpfungswerte ermittelt werden; auf diesen vierten Schritt wird jedoch hier verzichtet. Alternativ können die für D = 5 % geltenden Spektren über empirische frequenzabhängige Umrechnungsfaktoren für andere Dämpfungswerte modifiziert werden, wie in Abschnitt 2 bereits erwähnt wurde.

Bei der Anwendung der untergrund- und intensitätsabhängigen Freifeld-Antwortspektren ist in der Regel noch eine Skalierung auf die vom Seismologen bzw. nach der Erdbebenzonenkarte (Abschnitt 9) festgelegte Standortintensität I erforderlich. Diese Skalierung darf innerhalb einer Intensitätsklasse mit dem frequenzunabhängigen Skalierungsfaktor F gemäß Gl. (4.1) erfolgen, wobei jetzt die Abweichung von der mittleren Intensität I_m der Intensitätsklasse zu erfassen ist:

$$F = 10^{0}, 3 \cdot (I - I_m)$$
(10.1)

- 106 -

Bild 10.2 Geglättete 84 % - Fraktil-Freifeld-Bemessungsspektren für Untergrundklasse M (D = 5 %)

Bild 10.3 Geglättete 84 % - Fraktil-Freifeld-Bemessungsspektren für Untergrundklasse R (D = 5 %)

Bild 10.4 Geglättete 84 % - Fraktil-Freifeld-Bemessungsspektren für Untergrundklasse A (D = 5 %)

- 109 -

Tabelle 10.1 Eckpunkte der untergrund- und intensitätsabhängigen Freifeld-Antwortspektren

Unter-	Inten-			A	1	3	(2	E)
grund- klasse	sitäts- klasse	I F	f	v50% v84% a84%	f	v50% v84% a84%	f	$v_{50\%} v_{84\%} a_{84\%} a_{84\%}$	f	v50% v84% a84%
М	1	6,36 1,10	25	0,340 0,591 0,928	8,5	2,250 4,087 2,183	3,0	4.914 9.363 1,765	0,5	0,854 1,743 0,055
	2	7,32 1,13	25	0,698 1,492 2,344	6,5	9,416 16,744 6,838	2,5	15,270 34,186 5,370	0,5	4,206 7,142 0,224
	3	8,28 1,16	25	1.460 2,424 3,808	6,5	14,271 25,969 10,606	2,0	33,455 65,232 8,197	0,5	8,212 18,285 0,578
R	1	6,24 1,20	25	0,338 0,478 0,751	7,8 7,0	2,140 3,802 1,672	1,0	2,140 3,802 0,239	0,5	0,891 1,549 0,049
	2	7,30. 1,15	25	0,393 0,760 1,194	4,5 4,0	4,906 14,815 3,723	0,8	4,906 14,815 0,745	0,5	2,403 7,775 0,244
	3	8.23 1,21	25	0,746 1,327 2,084	5,0 4,0	2,951 22,531 5,663	0,9	2,951 22,531 1,274	0,5	4,100 12,222 0,389
A	1 -	6,5 1,0	25	0,199 0,275 0,433	8,0	1,171 1,655 0,832	2,5	3,836 7,788 0,832	0,5	0,939 2,709 0,085
	2	7,6 0,93	25	3,912 5,920 0,930	5,5	3,664 6,760 2,336	1,2	17,026 3,098 2,336	0,5	5,906 13,578 0,427
	3 *	8,35 1,11	25	7,566 12,270 1,927	5,0	7,724 14,383 4,519	1.2	32,184 59,935 4,519	0,5	8,869 26,265 0,825

·* · · ·

3

In gleicher Weise wie in Abschnitt 10.1 können auf der Grundlage von Abschnitt 4.3 untergrundunabhängige Freifeld-Bemessungsspektren ermittelt werden, die bei nicht näher bekannten Untergrundverhältnissen anzuwenden sind. Die Spektren sind nach wie vor nach der Standortintensität I auszuwählen und ggf. nach Gl. (10.1) zu skalieren.

In Bild 10.5 sind die Beschleunigungs-Antwortspektren für die drei Intensitätsklassen aufgetragen; die Dämpfung beträgt ebenfalls D = 5 %. Die zugehörigen Eckpunkte sind in Tabelle 10.2° angegeben.

Bild 10.5 Untergrundunabhängige 84 % - Fraktil-Freifeld-Bemessungsspektren (D = 5 %)

Inten-	_		A		В	С		D		
sitäts- klasse	I F	f	v50% v84% a84%	f	v50% v84% a84%	f	v50% v84% a84%	f.	v50% v84% a84%	
1	6,36 1,10	25	0,303 0,515 0,808	8,0	2,298 3,727 1,874	3,0	3,642 7,268 1,370	0,5	1,489 2,903 0,091	
2	7,40 1,07	25	0,500 1,070 1,681	6,0	6,017 12,006 4,526	2,5	9,536 23,409 3,677	0,5	4,930 11,826 0,372	
3	8,26 1,18	25	1,076 1,786 2,805	6,0	9,159 17,454 6,580	2,0	16,289 44,862 5,638	0,5	10,786 21,031 0,661	

Tabelle 10.2: Eckpunkte der untergrundunabhängigen Freifeld-Antwortspektren

10.3 Intensitätsabhängige Festgestein-Bemessungsspektren

Nach Abschnitt 2 ist es vorteilhaft, die seismische Erregung an der Basis der Sedimentdecke vorzugeben, wenn Aufbau und Eigenschaften der Sedimentschichten an einem Standort näher bekannt sind (z.B. aus Tiefbohrungen). Hierfür können auf der Grundlage von Abschnitt 8.3 und 8.4 empirische Bemessungsspektren abgeleitet werden, die zweckmäßig als Fourier-Betragsspektren der Beschleunigung angegeben werden.

Gegenüber den an der Oberfläche anstehenden Festgesteins aufgezeichneten Fourier-Betragsspektren (Abschnitt 8.3) sind die Amplituden gemäß Abschnitt 8.4 noch um einen Faktor 0,5.0,8 zu reduzieren, wenn sie für die an der Sedimentbasis einfallende Welle gelten sollen. Das Ergebnis ist in Bild 10.6 gezeichnet.

Man erkennt, daß sich die Intensitätsabhängigkeit nur im mittleren und niedrigen Frequenzbereich auswirkt. Eine geringfügige Verschiebung der unteren Eckfrequenz mit zunehmender Intensität nach links wurde bei der Glättung außer acht gelassen. Die ansteigenden Äste der Spektren wurden wieder etwas angehoben, um den Filtereffekt bei der Zeitverlaufskorrektur auszugleichen.

Der Untergrundeinfluß kann nach Abschnitt 7 über eine Übertragungsfunktion berücksichtigt werden, die mit dem Bemessungsspektrum zu multiplizieren ist. Anschließend ist eine nochmalige Glättung des Freifeld-Fourierspektrums sowie eine Umrechnung in ein Anwortspektrum unter Berücksichtigung der Dämpfung vorzunehmen (vgl. Abschnitt 2).

- 114 -

Bild 10.6 Intensitätsabhängige 84 % - Fraktil-Festgestein-Bemessungsspektren (D = 5 %)

11. ZUSAMMENFASSUNG UND WERTUNG

Der vorliegende Abschlußbericht faßt die Ergebnisse der einzelnen Arbeitspakete des Forschungsvorhabens "Realistische seismische Lastannahmen" zusammen. Die Arbeitspakete wurden so konzipiert, daß sie den Themenkreis "seismische Lastannahmen für Bauwerke" möglichst vollständig und zum Teil redundant abdecken. Dies erschien dringend erforderlich, da die derzeitige Praxis bei nahezu allen Einzelfragen unbefriedigend ist und der in den letzten Jahren erheblich gewachsene seismologische Kenntnisstand in Verbindung mit einer breiter gewordenen Datenbasis realistischere Ansätze erlaubt. Verbleibende Unsicherheiten sollten durch Annäherung über alternative Lösungswege eingegrenzt werden.

Erklärtes Ziel des Forschungsvorhabens war es, die derzeit meist in Anlehnung an Vorgaben für seismisch aktive Gebiete wie Kalifornien festgelegten Lastannahmen für Bauwerke mit erhöhtem Sekundärrisiko durch realistischere Annahmen zu ersetzen, die den besonderen seismischen Verhältnissen in der Bundesrepublik bestmöglich Rechnung tragen. Hierzu gehört vor allem, daß die Lastannahmen der an einem betrachteten Standort zu erwartenden größten Intensität und nach Möglichkeit auch den Untergrundverhältnissen angepaßt sind. Beide Einflüsse bestimmen maßgeblich den Freguenzgehalt der seismischen Erregung sowie die Dauer starker Bodenbewegungen. Die für Deutschland typischen Erdbeben zeichnen sich durch einen geringeren Freguenzgehalt und kürzere Starkbebendauern aus als die für Kalifornien typischen Erdbeben.

Ein Arbeitspaket des Vorhabens befaßte sich daher damit, instrumentelle Aufzeichnungen von Erdbeben zu sammeln und hinsichtlich Frequenzgehalt und Starkbebendauer statistisch auszuwerten, welche für deutsche und mitteleuropäische Verhältnisse repräsentativ sind. Diese Arbeiten wurden von König und Heunisch durchgeführt mit seismologischer Beratung durch Prof. Berckhemer. Als Ergebisse der Untersuchung wurden

- untergrund- und intensitätsabhängige Freifeld-Antwortspektren für drei Untergrundklassen (M, R und A) und drei Intensitätsklassen (6-7, 7-8 und 8-9)
- untergrundunabhängige intensitätsabhängige Freifeld-Antwortspektren und
- untergrundabhängige und in erster Näherung intensitätsunabhängige Starkbebendauern

mit den zugehörigen Streubreiten ermittelt. Für die praktische Anwendung wurden die Antwortspektren durch Berechnung von 84 % - Fraktilen und Glättung auf einen Polygonzug als Bemessungshilfen aufbereitet.

Im zweiten Arbeitspaket wurde eine alternative Vorgabe der seismischen Lastannahmen verfolgt. Dabei wurden aus speziellen Informationen über den Herdvorgang Modellspektren der Erregung an der Oberfläche des Kristallins bzw. an der Basis der Sedimentdecke als "Basisspektren" analytisch bestimmt. Wesentliche Einflußgrößen sind das seismische Moment, die Bruchausbreitung sowie die geometrische Abnahme bei der Ausbreitung im Kristallin. Es wurden Basisspektren für drei Referenzbeben hergeleitet, die die Gesamtheit der in der Bundesrepublik möglichen Schadenbeben nach oben abgrenzen.

Der Einfluß des Untergrundes an dem betrachteten Standort wird bei diesem Vorgehen ebenfalls analytisch mit Hilfe einer Übertragungsfunktion erfaßt. Die Berechnung für eine eindimensionale Ausbreitung von SH-Wellen in vertikaler Richtung wird erläutert und auf einige deutsche Standorte angewendet. Es werden Hinweise zur Modellabbildung des Untergrundes gegeben. Diese Arbeiten wie die zu den Basisspektren wurden hauptsächlich von der Stuttgarter Arbeitsgruppe unter Prof. Schneider ausgeführt. Als besonderer Aspekt wurde in einem Beitrag der Hochtief AG die Auswirkung schräg in die Sedimentdecke einfallender Wellen behandelt. Es zeigte sich, daß die Berechnung mittels eindimensionaler Wellenausbreitung für praktische Belange genügend genau ist und im Vergleich zur genaueren Betrachtung des mehrdimensionalen Wellenfeldes aus P-, SV- und SH-Wellen auf der sicheren Seite liegt.

Im Sinne der erwähnten Redundanz wurden die in diesem Arbeitspaket ermittelten synthetischen Basisspektren anhand der aus den Erdbebenregistrierungen an Felsstandorten rückgerechneten empirischen Basisspektren von König und Heunisch gemeinsam mit Prof. Berckhemer überprüft. Die Übereinstimmung ist in dem für Bauwerke relevanten Frequenzbereich zufriedenstellend.

Im dritten Arbeitspaket befaßte sich die Bensberger Arbeitsgruppe von Prof. Ahorner mit der Seismizitätsanalyse des Bundesgebietes und der Erstellung einer Erdbebenzonenkarte nach dem derzeitigen Kenntnisstand. Gegenüber früheren Arbeiten auf diesem Gebiet wurden einige entscheidende Verbesserungen erzielt:

- ein erweiterter Erdbebenkatalog mit über 1700 Ereignissen als Datenbasis
- spezielle aus dieser Datenbasis abgeleitete Zusammenhänge zwischen Herdparametern, Nahbebenmagnitude und Standortintensität
- Ein Seismizitätsmodell auf der Basis historischer Erdbeben sowie allgemeiner geologischer und seismologischer Modellvorstellungen
- eine probabilistische Abgrenzung der Erbebenzonen unter Berücksichtigung der Intensitäts-Häufigkeits-Beziehung
- die probabilistische Erfassung der verbleibenden Unsicherheiten in den Eingangsdaten des Seismizitätsmodells mittels Monte-Carlo-Simulation .

Auf diese Weise konnten verläßlichere Erdbebenzonenkarten erstellt werden, welche die früheren, sich zum Teil widersprechenden Karten (DIN 4149neu und KTA 2201.1) ersetzen können.

Insgesamt läßt sich feststellen, daß das Forschungsvorhaben bei allen Arbeitspaketen deutliche Fortschritte gegenüber der derzeitigen Praxis erbracht und die gesteckten Ziele im wesentlichen erreicht hat. Insbesondere konnten realistischere und konsistentere Lastannahmen entwickelt werden als derzeit verwendet werden. Trotzdem muß ein gewisser Vorbehalt angemeldet werden. Er betrifft einerseits die Datenbasis für die statistischen Auswertungen von Erdbebenzeitverläufen. Obgleich über 1200 Zeitverläufe digitalisiert vorlagen, konnten aufgrund der vereinbarten Auswahlkriterien nur 84 Zeitverläufe in die endgültige Auswertung einbezogen werden. Dadurch ist vor allem die Datenbasis für Antwortspektren der Untergundklassen R(ock) und A(lluvium) etwas dürftig. Eine Erweiterung durch Hinzunahme weiterer Strong motion-Seismogramme wäre wünschenswert; sie dürfte allerdings an den aufgezeigten Tendenzen kaum etwas ändern. Auch bezüglich der analytischen und empirischen Basisspektren ist eine weitere Absicherung sinnvoll und möglich. Im ersten Fall betrifft dies besonders die Parameter des Herdvorgangs, bei denen noch einige konservative Annahmen getroffen werden mußten. Diese führen offensichtlich zu etwas anderen Spektralverläufen als bei den empirischen Basisspektren. Letztere sind allerdings mit dem gleichen Vorbehalt zu versehen wie die Freifeld-Antwortspektren.

Unabhängig davon können jedoch seismische Lastannahmen für besondere Bauwerke in der vorgeschlagenen Weise und unter Verwendung der angebotenen Bemessungshilfen nunmehr hinreichend realistisch festgelegt werden.

König und Heunisch Beratende Ingenieure

REALISTISCHE SEISMISCHE LASTANNAHMEN FÜR BAULICHE ANLAGEN MIT ERHÖHTEM SEKUNDÄRRISIKO

ANHANG 1

zum

ABSCHLUSSBERICHT

BEZEICHNUNGEN

BEZEICHNUNGEN

Zu 1. Einleitung:

I	= makroseismische Intensität (MSK-Skala)
a _{max}	= maximale Freifeld-Bodenbeschleunigung (m/s^2)
v _{max}	= maximale Freifeld-Bodengeschwindigkeit (cm/s)
М	= Erdbebenmagnitude (Richter-Skala)
Zu 2. Grund	lkonzept:
ω	= 2 $\pi \cdot f$ = Kreisfrequenz
H (ယ)	= Herdspektrum (Fourier-Betragsspektrum, i.d.R. der Beschleunigung in cm/s)
G (س)	= spektrale Durchlaßfunktion (Übertragungs- funktion) des Grundgebirges
R	= hypozentrale Herdentfernung (km)
S (చు)	= spektrale Durchlaßfunktion (Übertragungs- funktion) der Sedimentdecke
g (z)	= tiefenabhängige Dichte der Sedimente (kg/m³)
V _P .	= Druckwellengeschwindigkeit (m/s o. km/s)
V _S	= Scherwellengeschwindigkeit (m/s o. km/s)
Q	= Qualitätsfaktor von Kristallin oder Sedimenten
Q ⁻¹	= Dämpfungsmaß
A (نن)	= Fourier-Betragsspektrum (der Beschleunigung in cm/s) für die Freifeld-Bewegung
$R_a(\omega,D)$	= Einmassenschwinger-Antwortspektrum der Be- schleunigung a (cm/s ² o. m/s ²)

$R_v(\omega,D)$	= Einmassenschwinger-Antwortspektrum der Pseudo- geschwindigkeit (cm/s)
D	= Dämpfungsmaß (i.d.R. % der kritischen Dämpfung)
^K (D)	= frequenzabhängiger Korrekturfaktor zur Berücksichti- gung einer schwachen Dämpfung D
a _{max}	<pre>= maximale Freifeld-Bodenbeschleunigung (cm/s² o. m/s²)</pre>
v _{max}	<pre>= maximale Freifeld-Bodengeschwindigkeit (cm/s)</pre>

Zu 3. Datenbasis:

MWA	= Lokale Magnitude, Nahbebenmagnitude (Richter-
	Skala) \cong M _L \cong M
MWA max	= maximale Magnitude eines Erdbebengebietes
MWAmin	= minimale, für bautechnische Belange maßgebende Magnitude
R _E	= epizentrale Herdentfernung (km)
I _o	= Epizentralintensität (MM- oder MSK-Skala)
h	= Herdtiefe unter Bodenoberfläche (km)
R	= hypozentrale Herdentfernung (km) = $\sqrt{R_E^2 + h^2}$
I	= makroseismische Intensität am Standort = Stand- ortintensität (MSK-Skala)
œ	= Energieabsorptionskoeffizient (km ⁻¹)
v _P	= Druckwellengeschwindigkeit (m/s o. km/s)
v _s	= Scherwellengeschwindigkeit (m/s o. km/s)
ç	= Dichte (g/cm ³ o. kg/m ³)
ν	= Poisson-Zahl

- 2 -

"m	=	mittlere (Standort-) Intensität einer In- tensitätsklasse (MSK-Skala)
I	=	Mittelwert der (Standort-)Intensität der Stichprobe einer Intensitätsklasse (MSK- Skala)
a	=	Bodenbeschleunigung (Cm/s ² o. m/s ²)
V	=	Pseudogeschwindigkeit (cm/s)
	=	Bodenverschiebung (cm)
ω	=	2 π · f = Kreisfrequenz
f	=	Frequenz (Hz)
F	=	Skalierungsfaktor für Spektralamplituden (v oder a)
D	=	Dämpfungsmaß (% der kritischen Dämpfung)
Zu 5. Starkbel	ber	ndauer:
Zu 5. Starkbel t	oer =	ndauer: Zeitdauer nach Beginn des Erdbebens (s)
Zu 5. Starkbel t ^t S	er = =	ndauer: Zeitdauer nach Beginn des Erdbebens (s) Starkbebendauer (s)
Zu 5. Starkbel t ^t s t _E (x %)	= = =	ndauer: Zeitdauer nach Beginn des Erdbebens (s) Starkbebendauer (s) Zeitdauer in der das Integral ∫a²dt x % sei- nes Endwertes erreicht
Zu 5. Starkber t ^t s t _E (x %) ŧ _S	= = =	ndauer: Zeitdauer nach Beginn des Erdbebens (s) Starkbebendauer (s) Zeitdauer in der das Integral ∫a²dt x % sei- nes Endwertes erreicht Mittelwert der Starkbebendauer für die sta- tistisch ausgewertete Stichprobe einer Unter- grunds- und Intensitätsklasse
Zu 5. Starkber t ts t _E (x %) t _S		ndauer: Zeitdauer nach Beginn des Erdbebens (s) Starkbebendauer (s) Zeitdauer in der das Integral ∫a²dt x % sei- nes Endwertes erreicht Mittelwert der Starkbebendauer für die sta- tistisch ausgewertete Stichprobe einer Unter- grunds- und Intensitätsklasse Standardabweichung der Starkbebendauer

ao	=	maximal	е	Bodenbeschleunigung	eines	Erdbebens
C .		(cm/s ²	٥.	m/s²)		

= Zeitdauer nach Beginn des Erdbebens (s)

t

Zu 6. Synthetische Basisspektren:

a) Herd = Oberflächenwellenmagnitude ML = $G \cdot q \cdot A_{o}$ = Betrag des Herdmoments (Nm) M = Schermodul (N/m²) G = mittlerer Betrag der Herddislokation (m) q_ = Herdfläche (m²) A Ao $= I_{o} \cdot W_{o}$ 10 = Herdlänge (m) wo = Herdtiefenerstreckung (m) = $\sqrt{A_0/\pi}$ = Herdradius (m) ro = $\sqrt{A_0}$ = Herdseitenlänge (m) bo V_{FO} = mittlerer Betrag der Bruchgeschwindigkeit (m/s²) 2 = horizontaler Abstrahlwinkel (°) φ = vertikaler Abstrahlwinkel (°) = R_0^{SH} (ϑ, φ) = Abstrahlcharakteristik für SH-Ro Wellen

b) Ausbreitungsmedium

= Scherwellengeschwindigkeit (m/s)

- 4 -

vs

9	= Dichte (kg/m ³)
ç	$= 0.33 v_{s} + 1630$
Q _s	= Ausbreitungsqualität für S-Wellen (d.I.)
R _E	= Epizentralentfernung auf der Basisoberkante (m)
^z o	= Herdtiefe für Basisoberkante (m)
S	= Hypozentralentfernung zur Basisoberkante (m)

c) Signal und Spektrum

	÷
f	= Frequenz (Hz)
ω	= Kreisfrequenz (s ^{-†})
fc	= Eckfrequenz (Hz)
ы	= Eckkreisfrequenz
<u>u</u>	<pre>= spektrale Amplitudendichte der Bodenverschiebung (m/Hz = ms)</pre>
<u>a</u>	<pre>= spektrale Amplitudendichte der Bodenbeschleuni- gung (m/s²/Hz = m/s)</pre>

- Zu 7. Übertragungsfunktionen:
- h_i = Schichtdicke der Sedimentschicht i (km)
 = Dichte der Sedimentschicht i (g/cm³ o. kg/m³)
 V_{Si} = Scherwellengeschwindigkeit (m/s o. km/s)
 Q_i = Qualitätsfaktor der Schicht i
 D_i = Dämpfungsmaß der Schicht i (%)
 Ψ₁ = Einfallswinkel der seismischen Welle (gegen die Horizontale gemessen) in der Sedimentdecke

Ψ_2	= Einfallswinkel der seismischen Welle im Grund- gebirge
^R E	= epizentrale Herdentfernung (km)
Io	= Epizentralintensität (MSK-Skala)
I	= Standortintensität (MSK-Skala)
Zu 8. Empi	rische Basisspektren:
Ş	= Dichte (g/cm ³)
vs	= Scherwellengescheindigkeit (m/s)
Z	= $9 \cdot v_s$ = Impedanz
D'	= Durchlaßfaktor für diskontinuierlichen Über- gang
D"	= Durchlaßfaktor für kontinuierlichen Übergang
fo	= Resonanzfrequenz (Hz)
h	= Dicke der Deckschicht (km)
A	= Amplitudenabnahmefaktor
Qs	= Qualitätsfaktor
SK, VSK	= Angaben für Kristallin
¢ _B , ^V _{SB}	= Angaben für Basis-Festgestein
D	= 1/2 (D' + D") = mittlerer Durchlaßfaktor

÷

- 6 -

zu 9. Erdbebenzonenkarte:

×.		
ML	=	Lokalbebenmagnitude (= MWA)
I	=	Epizentralintensität (MSK-Skala)
I(R)	=	makroseismische Intensität in der
		Hypozentralentfernung R (MSK-Skala)
I _{10km}	=	Intensität in der Hypozentralentfernung 10 km
In	=	Intensität in der Hypozentralentfernung R _n
a	=	Absorptionskoeffizient (km ⁻¹)
R	=	Mittlerer Radius des fühlbar erschütterten
		Gebietes (km)
Mo	=	Herdmoment (dyn.cm)
ro	=	Herdradius (km)
Mmax	=	Magnitudenobergrenze
(x)	=	mittlere Übershcreitensrate von x
A, A'	=	Bezugsfläche des Erdbebengebietes (km²)
т, т'	=	Bezugszeitraum (Jahre)
m	=	Erwartungswert der Extremwerte
6	=	Standardabweichung der Extremwerte
7	=	Schiefe der Extremwertverteilung
Γ.	=	Gamma-Funktion
f ₁ , f ₂	=	Koeffizienten
a ₁ , a ₂ ,	=	Regressionskoeffizienten
zu 10. Bemes	SSI	ingshilfen:
v	=	Pseudogeschwindigkeit (cm/s)
a	=	Beschleunigung (m/s ²)
a	=	Fourier-Betrag der Beschleunigung (cm/s)
f	=	Frequenz (Hz)
F	=	Skalierungsfaktor für v oder a
Im	=	mittlere Intensität einer Intensitätsklasse
V.s	=	x %-Fraktile der Pseudogeschwindigkeit
ave	=	x %-Fraktile der Beschleunigung
D	=	Dämpfungsmaß (% der kritischen Dämpfung)

- 7

König und Heunisch Beratende Ingenieure

REALISTISCHE SEISMISCHE LASTANNAHMEN FÜR BAULICHE ANLAGEN MIT ERHÖHTEM SEKUNDÄRRISIKO

ANHANG 2

zum

ABSCHLUSSBERICHT

LITERATURZUSAMMENSTELLUNG

LITERATURZUSAMMENSTELLUNG

Zu 1. Einleitung:

1.1 Hisada, T., Y. Ohsaki, M. Wataba and T. Ohta: Design Spectra for Stiff Structures on Rock, Reprint, University of Tokyo, 1979

- 1 -

- 1.2 Housner, G. W.: IASPEI General Assembly, Plenary Lecture, London - Ontario, 1981
- 1.3 Schneider, G.: Gutachten GKN II Auslegung gegen Erdbeben, 1975
- 1.4 Berckhemer, H.: Gutachten, Kernkraftwerk Biblis - Block B; Seismologische Gutachten für die Berechnung der möglichen Erdbebenbeanspruchung, 1971

Zu 2. Grundkonzept:

- 2.1 Haskell, N. A.: Crustal reflection of plane SH-Waves. J. Geophys. Res., 65 (1960), 4147 - 4150
- 2.2 Sponheuer, W.: Methoden zur Herdtiefenbestimmung in der Makroseismic. Freiburger Forschungsreihe, Reihe C 88, 1960, 1 - 120
- 2.3 Riznichenko, T. G. Kondrat'Yeva and S. S. Seyduzova: Fourier Spectra and Response Spectra of Seismic Oscillations. Izv. Earth Physics, 6 (1976) 3 - 14

Zu 3. Datenbasis:

- 3.1 CNEN Proceedings of the Specialist Meeting on the 1976 Friaul Earthquake and the Antiseismic Design of Nuclear Installations, Rom, 1978
- 3.2 Trifunac, M. D. and A. G. Brady: On the Correlation of Seismic Intensity Scales with the Peaks of Recorded Strong Ground Motion. Bull. Seismol. Soc. Am. 65 (1975), 139 162
- 3.3 Schreiben von CEA, Paris, vom 18. 11. 1982
- 3.4 Schneider, G. und J. Wieck: Veröffentlichungen in "Mitteilungen des Instituts für Bautechnik", Heft 2/79, 1/80 und 2/81
 - 3.5 Trifunac, M. D. et al.: Routine Computer Processing of Strong-Motion Accellerograms
 - 3.6 Ahorner, L.: Seismicity and Neotectonic Structural Activity of the Rhine Graben System in Central Europe - In: A. R. Ritsema and A. Gürpinar (edits.), Seismicity and Seismic Risk in the Offshore North Sea Area, pp. 101 - 111, Reidel Publ. Comp., Dordrecht, 1982
 - 3.7 Sponheuer, W.: Methoden zur Herdtieferbestimmung in der Makroseismic. Freiburger Forschungsreihe, Reihe C 88, 1960, 1 - 120
 - 3.8 Karnik, V.: Seismicity of the European Area, Part 1. D. Reidel Publ. Comp., Dordrecht, 1969

- 3.9 EMSC Working Group: Revised Hypocentres and Magnitude Determinations of Major Friuli Shocks, 1976. Bull. Geoph-Appl.-Vol. XIX, n. 72, Special Issue: Proc. of the International Meeting on the Friuli Earthquake, 1978
- 3.10 Müller, G.: Fault-Plane Solution of the Earthquake in Northern Italy, 6. May 1976, and Implications for the Tectonics of the Eastern Alps. J. Geophys. 42 (1977), 343 - 349
- 3.11 Hayashi, S., H. Tsuchida and E. Kurata: Average Response Spectra for Various Subsoil Conditions. "3rd Joint Meeting, U.S. - Japan Panel on Wind and Seismic Effects, UJNR, Tokyo, May 10 - 12, 1971
- 3.12 Seed, H. B., C. Ugas and J. Lysmer: Site-Dependent Spectra for Earthquake-Resistant Design. EERC, Berkeley, California, 1974 Lysmer, J., H. B. Seed and P. B. Schnabel: Influence of Base-Rock Characteristics on Ground Response. Bull. Seis. Soc. Am. 61 (1971), 1213 -1231
- 3.13 Newmark, N. M., J. A. Blume and K. Kapur: Design Response Spectra for Nuclear Power Plants. Paper presented at the Structural Engineering ASCE Conf., San Francisco, California, April 1973
- 3.14 Schön, J.: Petrophysik. Enke-Verlag Stuttgart (Akademie-Verlag, Berlin, DDR), 1983
- 3.15 Christensen, N. I.: Seismic Velocities. In: R. S. Carmichael (Edit.): Handbook of Physical Properties of Rocks, Vol. II., 1982

- 3 -

- 3.16 Ebblin, C.: Orientation of stresses and strains in the Piedemont Area of Eastern Friauli, NE-Italy. In: Bull. dic Geofisica 1976, Vol. 14,72, Part 1, 599 - 579
- 3.17 Newmark, N.M. and W.J. Hall: Seismic Design Criteria for Nuclear Facilities. 4th World Conf. Earthquake Engineering, Santiago, Chile, 1969
- Zu 4. Freifeld-Antwortspektren:
 - 4.1 Ahorner, L.: Realistische Abschätzung der Erdbeben-Lastannahmen für den Standort SNR-300 bei Kalkar am Niederrhein nach dem derzeitigen seismologischen Kenntnisstand. Bericht für Risikoorientierte Analyse zum SNR-300, Bensberg, 20. 3. 1983.
- Zu 5. Starkbebendauer:
 - 5.1 Bolt, B. A.: Duration of Strong Ground Motion. Proc. of 5th WCEE, Rome, 1973
 - 5.2 Page, R. A., D. M. Boore, W. B. Joyner and H. W. Coulter: Ground Motion Values for Use in the Seismic Design of the Trans-Alaska Pipeline System. U. S. Geol. Surv., Circ. 672, 1972
 - 5.3 Husid, R., H. Median and J. Rios: Analysis de Terremodos Norteamericanos y Japonsesses, Revista del IDIM 8, Chile, 1969
 - 5.4 Donovan, N. C.: Earthquake Hazards for Buildings. Proc. National Workshops on Building Pract. for Disaster Mitigation, Nat. Bureau of Standards, Boulder, Colorado, 1972
- 5.5 Trifunac, M. D., and A. G. Brady: A Study of the Duration of Strong Earthquake Ground Motions. Bull. Seism. Soc. Am., 65 (1975), 581 - 626
- 5.6 Kennedy, R. P.: Peak acceleration as a measure of damage. 4th Intern. Seminar on Extreme Load Design of Nuclear Power Facilities, Paris, August 1981
- 5.7 McCann, W.-Jr. and H. C. Shah: Determining Strong-Motion Duration of Earthquakes. Bull. Seism. Soc. Am., 69 (1979), 1253 - 1265
- 5.8 Vanmarcke, E. H. and S. S. Lai: Strong-Motion Duration and RMS Amplitude of Earthquake Records. Bull. Seism. Soc. Am. 70 (1980), 1293 - 1307

Zu 6. Synthetische Basisspektren:

- 6.1 Braun, K.: Heat flow measurements in the Federal Republic of Germany. In: Terrestrial Heat Flow in Europe. Berlin-Heidelberg-New York: Springer Verlag, 1979
- 6.2 Gelbke, C.: Lokalisierung von Erdbeben in Medien mit beliebiger Geschwindigkeits-Tiefen-Verteilung unter Einschluß späterer Einsätze und die Hypozentren im Bereich des südlichen Oberrheingrabens von 1971 - 1975. Dissertation, Universität Karlsruhe, 1978.
- 6.3 Gilg, B.: Hypozentrumsbestimmung von lokalen Erdbeben im Bereich des Oberrheingrabens der Jahre 1971 - 1975. Diplomarbeit, Geophysik. Institut d. Universität Karlsruhe, 1980.

- 5 -

- 6.4 Hänel, R. (Herausgeber): Atlas of Subsurface Temperatures in the European Community. Hannover: Verlag Th. Schäfer GmbH, 1980.
- 6.5 Geller, R. J.: Scaling Relations for Earthquake Source Parameters and Magnitudes. Bull. Seism. Soc. Am 66 (1976), 1500 - 1523
- 6.6 Brune, J.: Tectonic Stress and Spectra of Seismic Shear-Waves from Earthquakes. Journ. Geophys. Res. 75 (1970), 4997 - 5003
- 6.7 Aki, K.: Scaling Law of Seismic Spetrum. Journ. Geophys. Res. 72 (1967), 1217 - 1231
- 6.8 Aki, K.: Scaling Law of Earthquake Source Time Function. Geophys. J. R. astr. Soc. 31 (1972), 3 - 25
- 6.9 Savage, J. C.: Relation of Corner Frequency to Fault Dimensions. Journ. Geophys. Res. 77 (1972), 3788 -3795
- 6.10 Hasegawa, H. S.: Theoretical Synthesis and Analysis of Strong Motion Spectra of Earthquakes. Canadian Geotech. J. 11 (1974), 278 - 297
- 6.11 Hoang-Trong, P.: Some Medium properties of the Hohenzollern (Swabian Jura, Western Germany) inferred from the Q_p/Q_s - Analysis. Phys. Earth's and Planet. Int. 31 (1983), 119 - 131
- 6.12 Kurita, I.: Attenuation of Shear Waves along the San Andreas Fault Zone in Central California. Bull. Seism. Soc. Am. 65 (1975), 277 - 292

- 6 -

- 6.13 Scherbaum, F.: Untersuchungen zur Struktur der Pund S-Phasen im Epizentralgebiet. Dissertation Universität Stuttgart, 1980
- 6.14 Bakun, W. H., Bufe, Ch. G.: Shear-Wave Attenuation along the San Andreas Fault Zone in Central California. Bull. Seism. Soc. Am. 65 (1975), 437 -459
- 6.15 Bakun, W. H., Bufe, Ch. G., Stewart, R. M.: Body-Wave Spectra of Central California Earthquakes. Bull. Seism. Soc. Am. 66 (1976), 363 - 384
- 6.16 Cheng, C. C., Mitchell, B. J.: Crustal Q Structure in the United States from Multi-Mode Surface Waves. Bull. Seism. Soc. Am. 71 (1981), 161 - 181
- 6.17 Schneider, G.: Seismological Study of the Urach Geothermal Anomaly. The Urach Geothermal Project. Schweizbart'sche Verlagsbuchhandlung Stuttgart, 1982

Zu 7. Übertragungsfunktionen:

- 7.1 Haskell, N. A.: The Dispersion of Surface Waves on Multilayered Media . Bull. Seism. Soc. Am. 43 (1953)
- 7.2 Haskell, N. A.: Crustal reflection of Plane SH-Waves. Journ. of Geophys. Res. 65 (1960)
- 7.3 Thomson, W. T.: Transmission of Elastic Waves through a Stratified Solid Medium. Journal of Appl. Physics, 21 (1950)

- 7 -

- 7.4 Roesset, J. M., T. J. Jones: Soil Amplification of SV and P Waves. MIT Research Report R 70 - 3, Massachusetts Institute of Technology, Cambridge, Mass., 1970
- 7.5 Roesset, J. M.: Soil Amplification, ICCAD Course on Soil Dynamics for Earthquake Design. S. Margherita, Italy, Jan. 21 - 23, 1976
- 7.6 Roesset, J. M.: Soil Amplification of Earthquakes, in "Numerical Methods in Geotechnical Engineering", Ed. Desai C. S. and Christian, J. T., McGraw-Hill, New York, 1977
- 7.8 Richart, F. E. Jr.: Some Effects of Dynamic Soil Properties on Soil-Structure Interaction. ASCE, Journal of the Geotechnical Engineering Division, Vol. 101, No. GT 12, December 1975
- 7.9 Lysmer, J., T. Udaka, C. F. Tsai and H. B. Seed: FLUSH-a Computer Program for Approximate 3-D Analysis of Soil Structure Interaction Problems. EERC-Report 75 - 30. Earthquake Engineering Center, University of California, Berkeley, November 1975
- 7.10 Wolf, J. P., P. Obernhuber: Free-Field Response from Surface and Inclined Body Waves, 6th Conf. on Struct. Mechanics in Reactor Techn. (SMIRT), K 2/1, Paris 1981
- 7.11 Wolf, J. P., P. Obernhuber: Free-Field Response from Inclined SH-Waves and Love-Waves, Earthquake Engineering and Struct. Design, 10, 1982
- 7.12 Wolf, J. P., P. Obernhuber: Free-Field Response from Inclined SV- and P-Waves and Rayleigh-Waves, Earthquake Engineering and Struct. Design, 10,1982

Zu 8. Empirische Basisspektren:

8.1 Richter, C. F.: Elementary Seismology. Freeman & Co., 1958

Zu 9. Erdbebenzonenkarte

- 9.1 Leydecker, G., H.P. Harjes: Seismische Kriterien zur Standortauswahl kerntechnischer Anlagen in der Bundesrepublik Deutschland. - Bundesanstalt für Geowissenschaften und Rohstoffe, Abschlußbericht BMFT-Forschungsprojekt, Hannover 1978
- 9.2 Sponheuer, W.: Methoden zur Herdtiefenbestimmung in der Makroseismik. Freiburger Forschungsreihe, Reihe C 88, 1960, 1- 120
- 9.3 Ahorner, L.: Seismicity and Neotectonic Structural Activity of the Rhine Graben System in Central Europe. In: Seismicity and Seismic Risk in the Off-shore North Sea Area (A. R. Ritsema, A. Gürpiner, Edts.), NATO Advanced Study Institutes Series C, Vol. 99. D. Reidel Publishing Company, Dordrecht, Holland, 1982
- 9.4 Ahorner, L. and W. Rosenhauer: Seismic Risk Evaluation for the Upper Rhine Graben and its Vicinity. Journ. Geophys. 44 (1978), 481-497
- 9.5 Rosenhauer, W.: Methodological Aspects Encountered in the Lower Rhine Area Seismic Hazard Analysis. In: Seismicity and Seismic Risk in the Off-shore North Sea Area (vgl. 9.3)

9.6 Rosenhauer, W.: Probabilistische seismische Standortanalyse. III. Seminar der Gesellschaft für Sicherheitswissenschaften (gfs), 23./24. Juni 1983, Kraftwerk Union, Offenbach

Weitere Referenzen in den genannten Unterlagen.

REALISTISCHE SEISMISCHE LASTANNAHMEN FÜR BAULISCHE ANLAGEN MIT ERHÖHTEM SEKUNDÄRRISIKO

ANHANG 3

zum

ABSCHLUSSBERICHT

LISTE DER VERWENDETEN ZEITVERLÄUFE

H. Klein

D. Hosser

J. Kopera

LISTE DER VERWENDETEN SEISMOGRAMME

Zu den in Abschnitt 3.1 des Haupttextes genannten Zeitverläufen sind in der beiliegenden Computerliste folgende Daten - soweit bekannt - erfaßt: D = Hypozentralentfernung R (km) DEP = Epizentralentfernung R_F (km) = Nahbebenmagnitude MWA (\cong M_T) MAG = Epizentralintensität I (MSK bzw. MM) EPI = Standortintensität I (MSK) INT = Maximalbeschleunigung a max (m/s²) AMAX SC = Soil conditions - Rock Medium Alluvium = Location - Ground LO Tunnel Basement Dam

Die Klassifizierung nach Untergrundklassen (SC) erfolgte aufgrund der nachfolgend zusammengestellten Kurzbeschreibungen der Untergrundverhältnisse, die der in Abschnitt 3 unter [3.1 - 3.4] genannten Literatur entnommen wurden.

Die Kurzbeschreibungen der in die endgültige Auswertung aufgenommenen Standorte aus dem Friaul-Gebiet (Italien) sind vorangestellt. Sie wurden gesondert überprüft. Die weiteren Beschreibungen wurden ungeprüft übernommen.

- 1 -

Beschreibung des Stationsuntergrunds der strong motion Akzelerographen von bearbeiteten FRIAUL Registrierungen:

1. BUIA: Rezente, alluviale Ablagerungen relativ großer Mächtigkeit Ref.: (3)

2. FORGARIA-CORNINO: Rezente, alluviale Ablagerungen (Kies, Sand, Schlamm), etwa 10-15m mächtig überlagern Mergel und Sandstein des Miozän; geneigtes Grundgebirge.

Ref.: (1)

3. MAIANO:

Etwa 20m Kies-Sandgemisch mit schlammigen, linsenförmigen Toneinlagerungen, überlagert einer mächtigen Basis aus steifem Ton mit Kies (aus stratigraphischer Bohrung bis 30m . Tiefe).

Aus refraktionsseismischen Messungen:

iefe der Schichtung in Meter	P-Wellengeschwindigkeit in m/s
2	500
20	800
20	3000

Ref.: (1)

4. San ROCCO:

: Anstehender harter Kalkstein

Ref.: (1)

Lagiger, zerklüfteter Kreide-Kalkstein, etwa 100m mächtig, auf schräg einfallendem Sandstein und Mergel des Miozän.

Ref.: (2)

5. SOMPLAGO:

Zerklüfteter Kalkstein- und Dolomitkomplex der Trias.

Ref.: (3)

Geophysikalische Messungen ergaben eine Kompressionswellengeschwindigkeit $v_p \approx 4300 \text{m/s}$ unterhalb der Station D innerhalb eines unterirdischen Wasserkraftwerks und $v_p \approx 3000 \text{m/s}$ für die Stationen E (tail race) und F (cables tunnel). Ref.: (1) 7.&8. TOLMEZZO I & II: Zerklüfteter Kalkstein- und Dolomitkomplex der Trias. Ref.: (3)

Geschwindigkeitstiefenprofil aufgrund geophysikalischer Messungen:

Tiefe der Schichtung
in MeterP- Wellengeschwindigkeit0 - 2in m/s0 - 24502 - 20900202500 - 4100

Ref.: (4)

9. MOLINIS:

Stratigraphische Standortbeschreibung nach

Schichtmächtigkeit in Meter	Stratigraphische Beschreibung
20	Moränenschutt und rezentes
	Alluvium
50	Konglomerat des Pliozän
50	Miozän
100	Eozän
?	Kalkstein

10. CORNINO:

Stratigraphische Standortbeschreibung nach

Schichtmächtigkeit	Stratigraphische Beschreibung
in Meter	-
10	Alluvium (Schuttkegel)
100	Oberkreide (Mergel)
?	Eozän
?	Kalkstein

- 3 -

Weitere Stationen im Friaul (nach [3.1]):

ASIAGO: dünn geschichteter, stark gebrochener Jura-Kalkstein

BARCIS: Schuttkegel (über 4 m) überlagert stark gebrochenen blättrigen Kreide-Kalkstein

CASTELFRANCO: angeschwemmte Gletscherablagerungen (Kies) (50-60 m) überlagern sandige schlammige Sedimente des Quartär

CODROIPO:Angeschwemmte Gletscherablagerungen (Kies) (50 - 60 m) überlagern sandige schlammige Sedimente des Quartär

CONEGLIANO: Angeschwemmte Gletscherablagerungen (Kies) (etwa 35 m) überlagern Konglomerate mit Mergel und Ton im Wechsel

CORTINA D'AMP.: Massiver gespaltener - Dolomit aus dem Trias

FELTRE: Dünn geschichteter kalkreicher Mergel und mergeliger Kalkstein mit geschupptem Bruch MALCESINE: Ziemlich zementierte angeschwemmte Konglomorate (über 40 m) überlagert geschichteter Kalkstein aus dem Jura

- 5 -

- MONSELICE: Dünn geschichteter kalkhaltiger Mergel und mergeliger Kalkstein mit geschuppten Brüchen
- TREGNAGO: Tuffstein mit roter Erde und Kieselstein (über 3 m) überlagert kreidehaltigen Kalkstein und Mergel

- 6 -

Erdbebenaufzeichnungen USA (nach [3.2]):

ALEX BLDG, SF. - Sand und Ton über dünn gelagertem Schiefer und Sandstein

- CHOLAME SHANDON Alluvium NO. 2
- CHALAME SHANDON Unkonsolidierter seichter Erdboden und NO.5 Alluvium überlagert locker konsolidierten Sand, Kies, Schlamm und Ton.
- CHOLAME SHANDON Alluvium NO.8
- CHOLAME SHANDON Unkonsolidierter seichter Erdboden und NO.12 Alluvium überlagert locker konsolidierten Sand, Kies, Schlamm und Ton.

EL CENTRO - Alluvium mehrere 1000 Fuß

EUREKA

- FERNDALE 1500 Fuß locker konsolidierte schwere Konglomerate, Sandstein und Ton aus den Plio-Pleistozen
- GLDN. GATE PK. Zutageliegen von "Franciscan chert" und dünn eingelagertem Schiefer

HELENA

HOLLISTER CAL.

HOLLYWOOD PENTH. - 700 Fuß Alluvium

	- 7 -
HOLLYWOOD BSMT.	- 700 Fuß Alluvium
HLWD. STGE, BSMT.	- 700 Fuß Alluvium
ML. WD. STGE. PELOT	- 700 Fuß Alluvium
OAKLAND C. M. BSMT	 - ca. 250 Fuß unkonsolidierte aus dem Quartär stammende terassenförmige Ablagerungen.
OLYMPIA WASHINGTON	 Sand- und Schlammfüllungen über Alluvium (jung) – unkonsolidierter Ton, Schlamm, Sand und Kies.
PASADENA	
SAN DIEGO	- Alluvium (flach) = 50 - 100 Fuß über sedimentarem Fels
SANTA BARBARA	- ca. 600 Fuß zement. Alluvium über Sand, Schlamm und Ton.
SAN LUIS OBISPO	- Dünne Schichten Alluvium und Flußkies über Sandstein, Konglomerat und Schiefer
SAN JOSE	- Unkonsolidiertes Alluvium und den Gezeiten ausgesetzte Ablagerungen.
SAN ONOFRE	
SEATTLE	
SF. STATE BLDG	- Dünensand über Ton, SAND und Kies 200 Fuß zum Grundgestein - Schiefer mit eingelagertem feinkornigem Sandstein.
S. P. BLDG. BSMT.	 Sandschicht über Ton, Sand und Kies. 285 Fuß zum "Franciscan" Grundgestein aus Sandstein und Schiefer
с. 	

- 8 -

TAFT

- Alluvium, Sand und dünne Schichten Kies aus dem Quartär über 2000 Fuß konsolidiertem Kies, Sand und Ton.

TEMBLOR - Serpentinen unbestimmten Alters und hartes mehrfach gebrochenes Grundgestein.

VERNON

Erdbebenaufzeichnungen Algerien (nach [3.3]):

- Oued Fodda: Mächtige kalkartige Schichten, mehrere 100 m dick, Station unter dem Sporn eines Felsens liegend.
- El Abbadia: Starke, junge alluviate Schicht von ecwa 20 m Dicke.
- Ouled Abbes: Konglomerate und toniger Sand über einer mächtigen Schicht groben Sandes. Etwas geneigt, bilden sie ein schwach hügeliges Relief.

Erdbebenaufzeichnungen Schwäb. Alb (nach [3.4]):

Jungingen: Mittelfeste Gesteine des unteren Doggers; Gesamtmächtigkeit der Sedimente ca. 1 km. Spezielle Referenzen zu den Untergrundbeschreibungen der Friaul-Stationen (aus [3.1]):

- Ref.: 1 Muzzi, F. und Vallini: The Friuli 1976 Earthquake Considered as a "Near Source Earthquake", Presentation and Discussion of the Surface Recordings, In: OECD-NEA/CSNI, Proc. of Specialist Meeting on: The 1976 Friuli Earthquake and the Antiseismic Design of Nuclear Installations, 1978, Report No. 28, Vol. I - III, 460 - 526.
- Ref.: 2 Cervellati, R., C. S. N. Cassaccia: Experience on the Performance of CNEN Seismic Instrumentation in Friuli, In: OECD-NEA/CSNI, Proc. of Specialist Meeting, 1978, 244 - 305.
- Ref. 3 Bosili, M., S. Polinari, G. Tinelli (CNEN); Beradi, R., A. Berenzi and L. Zonetti: Strong Motion Records of Friuli Earthquake. In: OECD-NEA/CSNI, Proc. of Specialist Meeting, 1978, 375 - 386.
- Ref.: 4 Beradi, R., F. Capozza and L. Zonetti: Analysis of Rock Motion and Underground during the 1976 Friuli Seismic Period. In: OECD-NEA/CSNI, Proc. of Specialist Meeting, 1978, 527 - 540.

NR	STANDORT		CP	DATUM	ZEIT	Γı	MAG	EFI	INT	ANAX	S	Н
001	TOLMEZZO1		NS	060576	1959	26	4.5	6.5	5,2	1,00	ri	10
002	TOLMEZZ01	S	VT	060576	1959	26	4.5	6.5	5.2	0.44	M	10
003	TOLMEZZOI		EW	060576	1959	26	4.5	6.5	5.2	1.58	m	10
004	ASTAGO		NC	040574	2000	140	4.5	10.0	5.0	0.30	5	7
004 005	ACTACO	C	UT	040576	2000	1 40	2.5	10.0	5 0	0.15	-	5
003	451460	3	~!	080378	2000	140	0+0	10.0	3.0	0.13	5	
006	ASIAGO		EW	0605/6	2000	148	6.5	10.0	3,8	0.20	R	/
007	BARCIS		NS	060576	2000	54	6.5	10.0	7.3	0.34	M	7
008	BARCIS	S	VT	060576	2000	54	6.5	10.0	7.3	0.15	M	7
009	BARCIS		EW	060576	2000	54	6.5	10.0	7.3	0.32	m	7
010	CASTEL EBANCO		NS	060576	2000	129	6.5	10.0	6.0	0.31	A	7
011	CASTEL EBANCO	c	IIT	040574	2000	170	4 5	10.0	4.0	0.12	A	7
011	CHSTELF KARCO	3		000378	2000	127		10.0		0.12		<u>_</u>
012	CASTELFRANCU		EW	0605/6	2000	129	6+0	10.0	6+0	0+27	m	1
013	CODROIPO		NS	060576	2000	34	6.5	10.0	7.9	0.65	A	/
014	CODROIPO	S	VT	060576	2000	34	6.5	10.0	7.9	0.38	A	7
015	CODROIPO		EW	060576	2000	34	6.5	10.0	7.9	0.87	A	7
016	CODBOTEO	S	FW	060576	2000	48	6.5	10.0	7.4	0.87	A	7
017	CONECT TAND		NC	040574	2000	90	4.5	10.0	4.4	0.54	A	7
010	CONECL TANO	C	UT	040574	2000	60	4 5	10 0	4 4	0.71	4	-
010	CONECLIANO	3		000070	2000	20	0+0	10.0		0.01	~	
019	CUREGLIANU		EW	080578	2000	90	0.0	10.0	0.0	0.78	m	2
020	CORTINA		NS	060576	2000	90	6.5	10.0	6.6	0.13	R	/
021	CORTINA	S	VT	060576	2000	90	6.5	10.0	6.6	0.12	F:	7
022	CORTINA		EW	060576	2000	90	6.5	10.0	6.6	0.17	R	7
023	FELTRE		NS	060576	2000	110	6.5	10.0	6.3	0.46	M	7
024	FELTRE	S	UT	060576	2000	110	6.5	10.0	6.3	0.31	M	7
025		-	=1.1	040574	2000	110	4 5	10.0	4 7	0.48	M	7
020	YAL OFOTHE		E.W	000070	2000	107	0.0	10.0	5.5	0.40		-
020	MALLESINE		NS	060576	2000	18/	0.0	10.0	3+3	0.34	m	_
027	MALCESINE	S	VT	060576	2000	187	6.5	10.0	5.5	0.21	m	/
028	MALCESINE		EW	060576	2000	187	6.5	10.0	5.5	0.38	m	7
029	MONSELICE		NS	060576	2000	171	6.5	10.0	5.6	0.23	m	7
030	MONSELICE	S	UT	060576	2000	171	6.5	10.0	5.6	0.10	m	7
031	MONSELICE	G	UT	040574	2000	171	4.5	10.0	5.4	0.10	ini.	7
077	HONGELICE	-		000070	2000	474	/ E	10.0	5.0	0 10	24	-
220	TOUNSELICE		EW.	080378	2000	1/1	0+3	10.0	3,0	7 /7	11	4
033	TULMEZZUI	250	NS	0605/6	2000	23	0.0	10.0	8+4	3+0/	m	
034	TOLMEZZO1	S	VT	060576	2000	23	6.5	10.0	8.4	2.77	ří	7
035	TOLMEZZO1		EW	060576	2000	23	6.5	10.0	8.4	3.24	M	7
036	TREGNAGO		NS	060576	2000	188	6.5	10.0	5.5	0.31	m	7
037	TREGNAGO	S	UT	060576	2000	188	6.5	10.0	5.5	0.19	M	7
030	TEEGNAGO	-	E1.	040574	2000	199	4.5	10.0	5.5	0.33	iri	7
030	TOL YEZZO1		NC	000378	0007	100	4.0	10.0	5.0	1 20	24	6
037	TOLMEZZUI	-	NS	0/05/8	0023	28	4.7	0+3	3.0	1.40	r1	7
040	IULMEZZUI	S	VI	0/05/6	0023	28	4.9	6.5	3.0	0.56	m	9
041	TOLMEZZO1		EW	070576	0023	28	4.9	6.5	5.0	0.78	m	- 9
042	TOLMEZZO1		NS	070576	1342	34	4.3	6.0	5.6	0.11	m	26
043	TOLMEZZ01	S	VT	070576	1342	34	4.3	6.0	5.6	0.11	M	25
044	TOL MEZZO1	101200101	FW	070576	1342	34	4.3	6.0	5.6	0.30	M	26
045	TOL MEZZO1		NG	080574	0310	24	4.5	6.0	4.8	0.46	M	10
040	TOL YEZZOI	C	NC	000570	0710	24	4.5	4.0	1.0	0 44	24	10
040	TOLHEZZOI	5	142	080378	0310		4.0	0+0	4.0	0,40	ri	10
04/	TULMEZZUI	5	VI	080576	0310	24	4.0	6.0	4.8	0.09	m	10
048	IULMEZZ01		EW	080576	0310	24	4.5	6.0	4.8	0.35	m	10
049	FORGARIA-CORNINO		NS	090576	0053	28	5.5	8.0	5.9	0.43	M	6
050	FORGARIA-CORNINO	S	VT	090576	0053	28	5.5	8.0	5.9	0.26	m	6
051	FORGARIA-CORNINO		EΨ	090576	0053	28	5.5	8.0	5.9	0.37	m	6
052	MATANO		NG	090574	0053	21	5.5	8.0	4.3	0.83	M	4
051	HATANO	C	ILT.	070070	0000	21	5.5	0.0	4.7	A 70	3.4	2
033	MATANO	5	21	090578	0053	21	3+3	8.0	0.3	0.27	r	0
054	MATANO		EW	090576	0053	21	5.5	8.0	0.0	0.48	M	6
055	TULMEZZ01		NS	090576	0053	32	5.5	8.0	5.8	0.41	m	6
056	TOLMEZZ01	S	VT	090576	0053	32	5.5	8.0	5.8	0.22	m	6
057	TOLMEZZO1		EW	090576	0053	32	5.5	8.0	5.8	0.34	m	6
058	FORGARIA-CORNING		NS	100576	0435	11	4.7	6.5	5.4	0.31	M	107
150	EORGARIA-CORNINO	G	UT	100574	0475	11	4.7	6.5	5.4	0.14	m	5
040	EORGARIA-CORNING	5	FU	100574	0435	4 4	0 7	4 5	5 4	0 70	11	5
000	FORCADIA CODUING	0	EW	100378	0435	11	7.7	0.0	5+4	0.30	11	0
001	FUNDINIA-CUKNINU	Э	EW	1005/6	0433	11	4 + /	0+0	0.4	0.30	M	0
062	MATANO		NS	100576	0435	11	4.7	6.5	5.4	0.48	M	5
063	MAIANO	S	VT	100576	0435	11	4.7	6.5	5.4	0.15	m	5
064	MAIANO		EW	100576	0435	11	4.7	6.5	5.4	0.38	m	5

065	FURGARIA-CURNINU			NS	110576	2244	8	5.3	7.5 7.4	1.90	m	8
066	FORGARIA-CORNINO		S	VT	110576	2244	8	5.3	7.5 7.4	1.68	m	8
067	FORGARIA-CORNINO			EΨ	110576	2244	8	5.3	7.5 7.4	3.08	M	8
068	MAIANO			NS	110576	2244	11	5.3	7.5 7.0	0.75	m	8
069	MAIANO		S	VT	110576	2244	11	5.3	7.5 7.0	0.51	m	8
070	MAIANO			EΨ	110576	2244	11	5.3	7.5 7.0	0.83	m	8
071	TARCENTO			NS	110576	2244	16	5.3	7.5 6.6	0.36	5	8
072	TARCENTO		c	IIT	110574	2244	14	5.7	7 5 4 4	0 15	E	0
077	TAPOENTO		5	EU	110574	2244	14	5.5	7 5 4 4	0.13	E	00
073	TANCERTO			LW	110576	2274	10	5+5	7+3 0+0	0.77	2	0
0/4	TULMEZZU2			NS	1105/6	2244	1/	5.5	1.0 6.0	0.30	m	8
0/5	TULMEZZU2		5	VI	1105/6	2244	17	5+3	7.5 6.5	0.24	m	8
076	TOLMEZZO2		S	VT	110576	2244	17	5.3	7.5 6.5	0.24	M	8
077	TOLMEZZO2			EΨ	11057.6	2244	17	5.3	7.5 6.5	0.32	M	8
078	TOLMEZZO1			NS	110576	2244	17	5.3	7.5 6.5	0.27	ří	8
079	TOLMEZZ01		S	VT	110576	2244	17	5.3	7.5 6.5	0.18	m	8
080	TOL MEZZOI		-	FW	110576	2244	17	5.3	7.5 6.5	0.32	M	8
001	FORCARIA-CORNINO			NC	170576	1700	10	4 7		0 74	in	10
001	FORGANIA-CORNING		-	CS	1303/8	1304	10	4+3	J+J J+J	0.14	ri M	10
082	FURGARIA-CURNINU		5	21	1305/6	1304	10	4+3	2.2 2.2	0.61	m	10
083	FORGARIA-CORNINO			EW	130576	1304	10	4.3	5.5 5.5	0.66	m	10
084	TARCENTO			NS	130576	1304	17	4.3	5.5 4.8	0.19	R	10
085	TARCENTO		S	VT	130576	1304	17	4.3	5.5 4.8	0.12	R	10
086	TARCENTO			EW	130576	1304	17	4.3	5.5 4.8	0.18	R	10
087	TOLMEZZ01			NS	130576	1304	23	4.3	5.5 4.4	0.19	M	10
088	TOL MEZZO1		S	UT	130576	1304	23	4.3	5.5 4.4	0.15	M	10
089	TOL MEZZOI		0	FU	130576	1304	23	4.3	5.5 4.4	0.13	M	10
000	FORCARIA CORNING			LW	150570	1004	20	4.0	5.5 4.4	0.1D	2	
090	FURGARIA-LURNINU		~	NS	1505/6	0426	24	4+2	3+3 4+9	0.15	n	10
091	FURGARIA-LURNINU		5	NS	1505/6	0426	24	4.2	5+5 4+9	0.15	m	10
092	FORGARIA-CORNINO		S	VT	150576	0426	24	4.2	5.5 4.9	0.10	m	16
093	FORGARIA-CORNINO			EW	150576	0426	24	4.2	5.5 4.9	0.28	rí	16
094	FORGARIA-CORNINO			NS	180576	0130	9	4.3	5.5 5.1	0.59	m	7
095	FORGARIA-CORNINO		S	VT	180576	0130	9	4.3	5.5 5.1	0.42	m	7
096	FORGARIA-CORNINO			FW	180576	0130	9	4.3	5.5 5.1	0.62	m	7
097	S. BOCCO			NS	180576	0130	ŝ	4.3	5.5 5.2	0.39	R	7
000	S 80000		c	IIT	190574	0170		1.0	5 5 5 0	0 70	E	-7
070	5+R0000		5		100576	0130	0	4+3	J.J J.2 E E E D	0.30	n Ei	-
099	SARUCCU		-	EW	1805/6	0130	8	4.3	3+3 3+2	0.49	n	2
100	FORGARIA-CORNINO		S	NS	180576	0239	5	3.7	4.5 3.6	0.23	m	3
101	FORGARIA-CORNINO		S	VT	180576	0239	5	3.7	4.5 3.6	0.22	m	3
102	FORGARIA-CORNINO		S	EΨ	180576	0239	5	3.7	4.5 3.6	0.26	m	3
103	FORGARIA-CORNINO		S	NS	010676	0433	20	3.4	0.0-2.1	0.14	M	4
104	FORGARIA-CORNINO		S	VT	010676	0433	20	3.4	0.0-2.1	0.09	M	4
105	FORGARIA-CORNINO		S	EW	010676	0433	20	3.4	0.0-2.1	0.08	M	4
106	FORGARIA-CORNINO		5	FW	010676	0433	20	3.4	0.0-2.1	0.08	m	4
107	FORGARIA-CORNINO		-	NS	010474	1721	-0	4.2	5.5 2.4	0.27	M	,
100	FORGARIA-CORNINO		C	IIT	010474	1701	6	1 2	5 5 7 4	0.14		1
100	FORGARIA-CORRINO		5	VI EU	010676	1721	~	4+2	J+J 2+0	0.10		-
109	FURGARIA-LURNINU			EW	010676	1/21	7	4+2	0.0 2.0	0+20	n	1
110	TULMEZZU2		14250	NS	0106/6	1/21	20	4.2	5.5 1.6	0.19	m	1.
111	TOLMEZZ02		S	VT	010676	1721	20	4.2	5.5 1.6	0.08	M	1
112	TOLMEZZO2			EΨ	010676	1721	20	4.2	5.5 1.6	0.21	M	1
113	TOLMEZZO1			NS	010676	1721	20	4.2	5.5 1.6	0.14	m	1
114	TOLMEZZO1		S	VT	010676	1721	20	4.2	5.5 1.6	0.07	m	1
115	TOLMEZZO1			EW	010676	1721	20	4.2	5.5 1.6	0.15	m	1
116	SOMPLAGO USCITA			NS	010676	1721	20	4.2	5.5 1.6	0.09	ĸ	1
117	SOMELAGO USCITA	1	6	UT	010474	1721	20	4.2	5.5 1.6	0.09	ĸ	1
110	COMPLACE USCITA		5	E.L	010676	1701	20	1 2	5.5 1.0	0 14	K.	-
110	SONFLAGO OSCITA			EW	010878	1/41	20	7 · 2	J.J I.6	0+10	1	10
119	FURGARIA-CURNINU		221	NS	080876	1214	21	4+0	6.0 3.5	0.4/	rı V	17
120	FURGARIA-CURNINU		S	VT	0806/6	1214	27	4.5	6.0 5.5	0.28	'n	19
121	FORGARIA-CORNINO		S	VT	080676	1214	27	4.5	6.0 5.5	0.28	m	19
122	FORGARIA-CORNINO			EΨ	080676	1214	27	4.5	6.0 5.5	0.44	m	19
123	MAIANO PIANO		S	NS	080676	1214	26	4.5	6.0 5.6	0.20	ri	19
124	MAIANO PIANO		S	VT	080676	1214	26	4.5	6.0 5.6	0.12	m	19
125	MAIANO FIANO		S	EW	080676	1214	26	4.5	6.0 5.6	0.13	M	19
124	MATANO ASC		S	NS	080474	1214	26	4.5	6.0 5.4	0.50	m	19
127	MATANO 450		6	UT	080474	1214	24	4.5	6.0 5.4	0.14	M	10
120	MATANO ADO		0 0	EU	000070	1014	20	A =	4050	0 71	i i	1.0
120			3	E.W	080878	1214	20	4.0	0.0 3.0	0.71	11 H	17
129	FURGARIA-CURNINO		-	NS	090676	1848	13	4.2	5.5 5.4	0.72	L J	13
130	FURGARIA-CORNINO		S	VT	090676	1848	13	4.2	5.5 5.4	0.45	m	13
131	FORGARIA-CORNINO			EW	090676	1848	13	4.2	5.5 5.4	0.64	m	13

$\begin{array}{c} 132\\ 1334\\ 1335\\ 1334\\ 1335\\ 1336\\ $	TOLMEZZO2 TOLMEZZO2 TOLMEZZO1 TOLMEZZO1 TOLMEZZO1 TOLMEZZO1 TOLMEZZO1 MAIANO ASC MAIANO ASC MAIANO ASC MAIANO ASC MAIANO PIANO MAIANO PIANO MAIANO PIANO MAIANO PRATO MAIANO PRATO MAIANO PRATO MAIANO PRATO SOMPLAGO USCITA SOMPLAGO USCITA SOMPLAGO USCITA SOMPLAGO USCITA SOMPLAGO USCITA FORGARIA-CORNINO FORGARIA-CORNINO FORGARIA-CORNINO FORGARIA-CORNINO FORGARIA-CORNINO FORGARIA-CORNINO S.ROCCO S.ROCCO	
161 162 163 164 165 166 167 168 169	TOLMEZZO2 TOLMEZZO2 TOLMEZZO2 TOLMEZZO1 TOLMEZZO1 TOLMEZZO1 TOLMEZZO1 MAIANO ASC MAIANO ASC	
170 171 172 173 174 175 176 177 178 179	MAIANO ASC MAIANO PIANO MAIANO PIANO MAIANO PIANO MAIANO PRATO MAIANO PRATO SOMPLAGO USCITA SOMPLAGO USCITA SOMPLAGO USCITA	
181 182 183 184 185 186 187 188 187 188 189 190 191	FORGARIA-CORNINO FORGARIA-CORNINO FORGARIA-CORNINO S.ROCCO S.ROCCO TOLMEZZO2 TOLMEZZO2 TOLMEZZO2 TOLMEZZO1 TOLMEZZO1	
192 193 194 195 196 197 198	TOLMEZZO1 MAIANO ASC MAIANO ASC MAIANO ASC MAIANO FIANO MAIANO FIANO MAIANO FIANO	

		NS	090676	1848	18	4.2	5.5	5.0	0,34	m	13
18	S	VT	090676	1848	18	4.2	5.5	5.0	0.12	m	13
		EW	090676	1848	18	4.2	3.3	5.0	0.31	m	13
	_	NS	090676	1848	18	4.2	3.5	5.0	0.34	m	13
2	S	NS	090676	1848	18	4.2	5.5	5.0	0.34	m	13
	S	VT	090676	1848	18	4.2	5.5	5.0	0.12	m	13
		EΨ	090676	1848	18	4.2	5.5	5.0	0.29	M	13
	S	NS	090676	1848	14	4.2	5.5	5.4	0.35	m	13
3	S	VT	090676	1848	14	4.2	5.5	5.4	0.14	M	13
	S	EΨ	090676	1848	14	4.2	5.5	5.4	0.34	M	13
3	S	NS	090676	1848	14	4.2	5.5	5.4	0.13	m	13
	S	VT	090676	1848	14	4.2	5.5	5.4	0.09	M	13
	S	EW	090676	1848	14	4.2	5.5	5.4	0.09	M	13
1	S	NS	090676	1848	14	4.2	5.5	5.4	0.15	m	13
	S	UT	090676	1848	14	4.2	5.5	5.4	0.14	M	13
3	s	FM	090676	1848	14	4.2	5.5	5.4	0.12	M	13
3	-	NS	090474	1848	16	4.2	5.5	5.2	0.15	ĸ	13
	c	UT	090474	1949	14	4.2	5.5	5.2	0.10	ĸ	13
2	6	EU.	090474	1040	14	A 7	5.5	5.0	0 12	K.	1 72
	2	C.W	070070	1040	10	4.2	5.5	5.2	0.10	IN LE	17
	-	EW	090676	1848	10	4+2	3.3	2.2	0.12	N	13
1	5	NS	1006/6	1304	15	3.3	4.0	3.1	0.11	M	14
-	5	VI	1008/8	1304	15	3+3	4+0	3.1	0.08	m	14
\$	S	EΨ	100676	1304	15	3.3	4.0	3.7	0.09	M	12
		NS	110676	1716	18	4.4	6.0	6.0	1,00	m	18
	S	VT	110676	1716	18	4.4	6.0	6.0	0.56	rí	18
		EW	110676	1716	18	4.4	6.0	6.0	0.89	m	18
		NS	090676	1848	14	4.2	5.5	5.3	0.30	R	13
\$	S	VT	090676	1848	14	4.2	5.5	5.3	0.13	R	13
		EW	090676	1848	14	4.2	5.5	5.3	0.38	F'	13
		NS	110676	1716	24	4.4	6.0	5.6	0.28	М	18
	s	VT	110676	1716	24	4.4	6.0	5.6	0.10	М	18
62		EW	110676	1716	24	4.4	6.0	5.6	0.19	M	18
		NS	110676	1716	24	4.4	6.0	5.6	0.30	M	18
(S	UT	110474	1714	24	4.4	4.0	5.4	0.11	m	19
1	5	UT.	110474	1710	24	A A	4 0	5+0	0 11		10
	2	~L	1100/0	1710	24	4+4	6.0	J+0	0.11	11	10
	-	EW	1106/8	1/10	24	4.4	0.0	3+0	0+21	EL C	10
	2	143	1100/0	1/10	17	4+4	0.0	3+7	0+42	f"	13
	5	21	1106/6	1/16	19	4.4	6.0	5+9	0.34	m	18
1	5	EW	1106/6	1/16	19	4.4	6.0	2+4	0.5/	m	18
1	S	NS	110676	1/16	19	4,4	6.0	59	0.19	m	18
5	5	VT	110676	1716	19	4.4	6.0	5.9	0.15	m	18
	S	EW	110676	1716	19	4.4	6.0	5.9	0.15	M	18
-	S	NS	110676	1716	19	4.4	6.0	5.9	0.23	M	18
1	S	VT	110676	1716	19	4.4	6.0	5.9	0.18	M	18
\$	S	EΨ	110676	1716	19	4 • 4	6.0	5.9	0.18	m	18
		NS	110676	1716	22	4.4	6.0	5.7	0.16	К	18
	S	VT	110676	1716	22	4.4	6.0	5.7	0.07	ĸ	18
		EW	110676	1716	22	4.4	6.0	5.7	0.24	К	18
		NS	170676	1428	19	4.4	6.5	2.6	0.49	'n	1
5	S	NS	170676	1428	19	4.4	6.5	2.6	0.49	M	1
-	S	UT	170676	1428	19	4.4	6.5	2.6	0.29	M	1
	-	FW	170676	1428	19	4.4	6.5	2.6	0.53	M	1
		NG	110474	1714	19	A . A	4.0	4.0	0.45	R	18
	2	IIT	110676	1716	10	A A	4 0	4 0	0 71	D	10
	9	E LI	110474	1714	10	A A	4 0	4 0	0.75	0	10
		E.W	170678	1/10	10	4+4	0+0	4.0	0.33	n	10
- 23	_	NS	1/06/6	1428	33	4 • 4	6.0	1.7	0.11	m	1
	S	VT	170676	1428	33	4.4	6+5	1.9	0.00	m	1
		EΨ	170676	1428	33	4 + 4	6.5	1.9	0.08	M	1
		NS	170676	1428	33	4.4	6.5	1.9	0.10	m	1
-	S	VT	170676	1428	33	4.4	6.5	1.9	0.09	m	1
		EW	170676	1428	33	4.4	6.5	1.9	0.10	m	1
-	S	NS	170676	1428	22	4.4	6.5	2.4	0.85	'n	1
\$	S	VT	170676	1428	22	4.4	6.5	2.4	0.13	М	1
	S	EW	170676	1428	22	4.4	6.5	2.4	0.75	m	1
1	s	NS	170676	1428	22	4.4	6.5	2.4	0.19	m	1
	S	VT	170676	1428	22	4.4	6.5	2.4	0,13	m	1
\$	S	EW	170676	1428	22	4.4	6.5	2.4	0.15	M	1

199	MALANO FRATO	5	NS	1/06/6	1428	22	4.4	6.5	2.4	0.07	m	1
200	MAIANO FRATO	S	VI	170676	1428	22	4.4	6.5	2.4	0.10	M	1
201	MALANU PRATU	5	EW	1/06/6	1428	22	4+4	6+5	2.4	0.18	M	1
202	SUMPLAGU FIANU	~	NS	1/06/6	1428	32	4.4	6.5	1.7	0.05	K	1
203	SUMPLAGU FIANU	5	21	1/06/6	1428	32	4.4	6.5	1.9	0.03	K	1
204	SUMPLAGU FIANU		EW	170676	1428	32	4.4	0.0	1+7	0.02	N	1
205	SUMPLAGU USCITA	-	NS	1/06/6	1428	32	4.4	6+5	1.9	0.05	K	1
206	SOMPLAGO USCITA	S	01	170676	1428	32	4.4	6.5	1.9	0.08	ĸ	1
207	SUMPLAGU USCITA		EW	1/06/6	1428	32	4.4	6+5	1.9	0.09	ĸ	1
208	TOLMEZZ02		NS	260676	1113	24	4.3	6.0	5.5	0.12	M	17
209	TOLMEZZ02	S	VΤ	260676	1113	24	4.3	6.0	5.5	0.07	M	17
210	TOLMEZZO2	- 201	EΨ	260676	1113	24	4.3	6.0	5.5	0.16	M	17
211	TOLMEZZO2	S	EW	260676	1113	24	4.3	6+0	5.5	0.16	M	17
212	TOLMEZZO1		NS	260676	1113	24	4.3	6.0	5.5	0.13	M	17
213	TOLMEZZO1	S	VT	260676	1113	24	4.3	6.0	5.5	0.06	M	17
214	TOLMEZZO1		EΨ	260676	1113	24	4+3	6.0	5.5	0.17	M	17
215	MAIANO ASC	S	NS	260676	1113	18	4.3	6.0	5.9	0.19	M	17
216	MAIANO ASC	S	VT	260676	1113	18	4.3	6.0	5.9	0.19	m	17
217	MAIAND ASC	S	EΨ	260676	1113	18	4.3	6.0	5.9	0.19	M	17
218	MAIANO PIANO	S	NS	260676	1113	18	4.3	6.0	5.9	0.07	M	17
219	MAIANO PIANO	S	VT	260676	1113	18	4.3	6.0	5.9	0.05	m	17
220	MAIANO FIANO	S	EW	260676	1113	18	4.3	6.0	5.9	0.06	М	17
221	MAIANO PRATO	S	NS	260676	1113	18	4.3	6.0	5.9	0.08	m	17
222	MAIAND PRATO	S	VT	260676	1113	18	4.3	6.0	5.9	0.09	М	17
223	MAIANO FRATO	S	EW	260676	1113	18	4.3	6.0	5.9	0.10	M	17
224	SOMFLAGO FIANO		NS	260676	1113	20	4.3	6.0	5.8	0.08	К	17
225	SOMFLAGO FIANO	S	VT	260676	1113	20	4.3	6.0	5.8	0.08	ĸ	17
226	SOMFLAGO FIAND	S	VT	260676	1113	20	4.3	6.0	5.8	0.08	ĸ	17
227	SOMPLAGO PIANO		EΨ	260676	1113	20	4.3	6.0	5.8	0.06	ĸ	17
228	SOMPLAGD USCITA		NS	260676	1113	20	4.3	6.0	5.8	0.10	К	17
229	SOMPLAGO USCITA	S	VT	260676	1113	20	4.3	6.0	5.8	0.11	к	17
230	SOMPLAGO USCITA		EΨ	260676	1113	20	4.3	6.0	5.8	0.10	К	17
231	TARCENTO		NS	140776	0539	19	4.1	6.0	5.7	0.75	R	16
232	TARCENTO	S	VT	140776	0539	19	4.1	6.0	5.7	0.33	R	16
233	TARCENTO		EW	140776	0539	19	4.1	6.0	5.7	0.66	R	16
234	MAIAND ASC	S	NS	140776	0539	24	4.1	6.0	5.5	0.22	M	16
235	MAIAND ASC	S	VT	140776	0539	24	4.1	6.0	5.5	0.10	M	16
236	MAIAND ASC	S	EΨ	140776	0539	24	4.1	6.0	5.5	0.23	m	16
237	MAIANO FIANO	S	NS	140776	0539	24	4.1	6.0	5.5	0.09	m	16
238	MAIANO FIANO	S	VT	140776	0539	24	4.1	6.0	5.5	0.07	M	16
239	MATANO PTANO	s	FW	140776	0539	24	4.1	6.0	5.5	0.10	M	16
240	MATAND PRATO	S	NS	140776	0539	24	4.1	6.0	5.5	0.12	M	16
241	MATANO PRATO	5	NS	140776	0539	24	4.1	6.0	5.5	0.12	M	16
242	MATANO PRATO	S	UT	140776	0539	24	4.1	6.0	5.5	0.06	m	16
243	MATANO PRATO	ŝ	FH	140776	0539	24	4.1.	6.0	5.5	0.08	M	16
244	SOMPLAGO USCITA	0	NS	140776	0539	20	4.1	6.0	5.7	0.08	ĸ	1.4
245	SOMPLAGO USCITA	S	UT	140776	0539	20	4.1	6.0	5.7	0.12	K	16
246	SOMPLAGO USCITA	0	FW	140776	0539	20	4.1	6.0	5.7	0.17	ĸ	16
247	SOMELAGO DUOTA		NS	140776	0539	20	4.1	6.0	5.7	0.11	K	16
248	SOMPLAGO DUDTA	S	UT	140776	0539	20	4.1	6.0	5.7	0.07	ĸ	16
240	SOMPLAGE QUOTA	5	FW	140776	0539	20	4.1	6.0	5.7	0.10	ĸ	16
250	TARCENTO	S	NS	150776	1259	5	3.8	5.5	3.4	0.33	E	1
250	TARCENTO	5	IIT	150776	1250	5	7 0	5.5	7.0	0.21	D	-
201	TARCENTO	5	EU	150776	1250	5	7.0	5.5	3.4	0.45	E	1
202	EOBCARTA-CORNINO	5	E.W	130776	1000	7	3.0	5+5	2.4	0 10	2	4
200	FORGARIA-CORRING	~	CZI	000776	1720	5	4.0	5+5	4.0	0+17	11	1
204	FURGARIA-CURNINU	DC	NI.	060976	1928	37	4.0	3.3	4.0	0.10	ri H	1
200	FURGARIA-LURNINU	5	EW	060976	1928	3	4.0	5.5	4.0	0.22	ri M	1
206	FURGARIA-CURNINU		EW	060976	1928	3	4+0	0.0	4.0	0.22	n	1
257	SUMPLAGE USCITA	-	RS	060976	1928	12	4.0	5.5	2.2	0.08	N	1
258	SUMPLAGE USCITA	5	VT	060976	1928	12	4.0	5.5	2.2	0.04	N	1
259	SUMPLAGD USCITA		EW	060976	1928	12	4.0	5.5	2.2	0.10	N	1
260	BUIA	002	NS	060976	1928	6	4.0	5.5	3.1	0.32	ñ	1
261	BUIA	S	VT	060976	1928	6	4.0	5.5	3.1	0.21	A	1
262	BUIA		E₩	060976	1928	6	4.0	5.5	3.1	0.20	ĥ	1.
263	FORGARIA-CORNINO		NS	070976	1108	5	4.4	5.5	5.4	0.33	m	5
264	FORGARIA-CORNINO	S	VT	070976	1108	5	4.4	5.5	5.4	0.19	M	5
265	FORGARIA-CORNINO		E₩	070976	1108	5	4.4	5.5	5.4	0.24	M	5

266	TOLMEZZ02	-	NS	070976	1108	20	4.4	5.5 3.6	0.17	m	Ē
267	TOLMEZZO2	5	21	070976	1108	20	4.4	3.5 3.6	0.10	m	5
268	TOLMEZZUZ		EW	070978	1108	20	4.4	5.5 3.6	0.14	m M	5
267	TULMEZZUI	~	NS	0/09/6	1108	20	4.4	2.2 3.0	0.11	M	5
270	TOLMEZZOI	5	VI.	0/09/6	1108	20	4.4	2.2 3.0	0.08	m	2
2/1	TULMEZZUI	5	21	0/09/8	1108	20	4.4	3.3 3.0	0.08	m	0
2/2	TULMEZZUI	-	EW	0/09/6	1108	20	4.4	3.3 3.6	0.14	m	5
273	MAIANU PRATU	S	NS	070976	1108	7	4.4	5.5 5.0	0.0/	m	5
274	MALANU PRATU	S	VT	070976	1108	/	4,4	5.5 5.0	0.14	M	5
275	MAIANO PRATO	S	EW	070976	1108	7	4.4	5.5 5.0	0,10	M	5
276	MAIANO PIANO	S	NS	070976	1108	7	4.4	5.5 5.0	0.09	ħ	5
277	MAIANO FIANO	S	VT	070976	1108	7	4.4	5.5 5.0	0.10	M	5
278	MAIANO PIANO	S	EW	070976	1108	7	4.4	5.5 5.0	0.09	M	5
279	MAIANO ASC	S	NS	070976	1108	7	4.4	5.5 5.0	0.29	m	5
280	MAIANO ASC	S	VT	070976	1108	7	4.4	5.5 5.0	0.15	'n	5
281	MAIANO ASC	S	EW	070976	1108	7	4.4	5.5 5.0	0.29	m	5
282	SOMPLAGO USCITA		NS	070976	1108	15	4 + 4	5.5 4.0	0.24	К	5
283	SOMPLAGO USCITA	S	VT	070976	1108	15	4.4	5.5 4.0	0.11	К	5
284	SOMPLAGO USCITA		EW	070976	1108	15	4 . 4	5.5 4.0	0.27	К	5
285	SOMPLAGO GALLERIA		NS	070976	1108	15	4.4	5.5 4.0	0.08	ĸ	5
286	SOMPLAGO GALLERIA	S	NS	070976	1108	15	4.4	5.5 4.0	0.08	К	5
287	SOMPLAGO GALLERIA	S	VT	070976	1108	15	4.4	5.5 4.0	0.14	ĸ	5
288	SOMPLAGO GALLERIA		EW	070976	1108	15	4.4	5.5 4.0	0.09	ĸ	5
289	FORGARIA-CORNINO		NS	110976	1631	22	5.5	7.5 6.4	0.95	'n	10
290	FORGARIA-CORNINO	S	VT	110976	1631	22	5.5	7.5 6.4	0.51	m	10
291	FORGARIA-CORNINO		EW	110976	1631	22	5.5	7.5 6.4	1.15	M	10
292	S.80CC0	4	NS	110976	1631	22	5.5	7.5 6.4	0.42	R	10
293	5.80000	S	UT	110976	1631	22	5.5	7.5 6.4	0.20	R	10
294	5.80000	-	FU	110976	1431	22	5.5	7.5 6.4	0.71	F	10
205	TARCENTO		NC	110074	1471	17	5.5	7.5 7.1	2.04	5	10
204	TARCENTO	c	UT	110974	1471	17	5.5	7.5 7 1	0 71	D	10
207	TARCENTO	3	511	110974	1471	17	5.5	7 5 7 1	1.05	0	10
200	COMPLACE OUGTA		NC	110976	1471	1 4	5.5	7.5 7.1	1.00	K	10
270	SOMPLAGO QUOTA	C	UT	110976	1471	14	5.5	7 5 7 0	0.37	K	10
277	SOMPLAGE QUOTA	0 0	EU.	110976	1231	14	5.5	7.5 7.0	0.34	K	10
300	SOMPLAGE QUOTA	3	Ew EU	110970	1/71	14	J+J E E	7.5 7.0	0.34	5	10
301	DUTA		EW	110978	1031	14	3.3	7.5 7.0	0.34	A	10
302	BUIN	~	C M	110978	1031	14	3+3	7.5 7.0	0+47	n	10
303	BUIA	5	21	110978	1031	14	2.2	7.5 7.0	0.22	n	10
304	BUIN		EW	110976	1031	14	3.3	7.5 7.0	0.40	n	10
305	BARLIS	-	NS	110976	1635	51	3+7	8.5 7.2	0.09	m	20
306	BARCIS	5	VI	110976	1635	51	5.9	8.5 7.2	0.06	m	20
30/	BARCIS		EW	110976	1635	51	5.9	8.5 7.2	0.10	m	20
308	CUDROIPO	102217	NS	110976	1635	45	5.9	8.5 7.4	0.19	A	20
309	CODROIPO	S	NS	110976	1635	45	5.9	8.5 7.4	0.19	A	20
310	CODROIPO		EW	110976	1635	45	5.9	8.5 7.4	1.34	A	20
311	CONEGLIANO		NS	110976	1635	84	5.9	8.5 6.5	0.14	A	20
312	CONEGLIANO	S	VT	110976	1635	84	5.9	8.5 6.5	0,10	A	20
313	CONEGLIANO		EW	110976	1635	84	5.9	8.5 6.5	0.12	ñ	20
314	FORGARIA-CORNINO		NS	110976	1635	26	5.9	8.5 8.1	1.33	M	20
315	FORGARIA-CORNINO	S	VT	110976	1635	26	5.9	8.5 8.1	1.19	M	20
316	FORGARIA-CORNINO	S	VT	110976	1635	26	5.9	8.5 8.1	1.19	m	20
317	FORGARIA-CORNINO		EW	110976	1635	26	5,9	8.5 8.1	2.35	M	20
318	S+ROCCO		NS	116976	1635	26	5.9	8.5 8.1	0.92	R	20
319	S.ROCCO	S	VT	116976	1635	26	5.9	8.5 8.1	0.48	R	20
320	S.ROCCO		EW	116976	1635	26	5.9	8.5 8.1	0.95	R	20
321	TREGNAGO		NS	110976	1635	182	5.9	8.5 5.4	0.08	m	20
322	TREGNAGO	S	VT	110976	1635	182	5.9	8.5 5.4	0.07	m	20
323	TREGNAGO		EW	110976	1635	182	5.9	8.5 5.4	0.11	M	20
324	SOMPLAGO QUOTA		NS	110976	1635	22	5.9	8.5 8.3	0.63	K	20
325	SOMPLAGO QUOTA	S	UT	110976	1635	22	5.9	8.5 8.3	0.34	ĸ	20
326	SOMPLAGO QUOTA	1000	EW	110976	1635	22	5.9	8.5 8.3	0.62	K	20
327	BUIA		NS	110976	1635	23	5.9	8.5 8.3	2.33	A	20
328	BUIA	S	UT	110976	1635	23	5.9	8.5 8.3	0.93	A	20
329	BUIA	-	FW	110974	1635	23	5.9	8.5 8.3	1.08	A	20
330	FORGARIA-CORNING		NS	130974	1854	17	4.4	6.0 5.3	0.26	m	10
331	FORGARIA-CORNING	S	NS	130974	1854	17	4.4	6.0 5.3	0.24	M	10
332	EDEGARIA-CORNINO	0	UT	130974	1854	17	4.4	6.0 5.7	0.20	m	10
~ ~ ~ ~	, SUGULTI COULTIN	0	4 1	100110	1004	1	- + -	0.0 0.0	~ ·	11	

	FOROLOTI CORVENO		P** 1 1				12		2-2-22	
333	FURGARIA-CURNINU		EW	1309/6	1854	1/	4,4	6.0 5.3 0.	16 M	10
334	SOMPLAGO QUOTA		NS	130976	1854	13	4.4	6.0 5.6 0.	09 K	10
335	SOMELAGO RUDTA	S	UT	130976	1854	13	4.4	6.0 5.6 0.	07 K	10
774	SOMELAGO OLOTA	-	511	130074	105.4	17	A A	40540	10 1	10
000	SUNFERBO ROUTH		Lw	130778	1004	13	4+4	0.0 0.0 0.	TOK	10
331	ROIA		NS	1309/6	1854	13	4+4	6.0 5.6 0.	68 A	10
338	BUIA	S	VT	130976	1854	13	4.4	6.0 5.6 0.	68 A	10
339	BUTA		EΨ	130976	1854	13	4.4	6.0 5.6 0.	65 A	10
340	CODECTEC		NC	150074	0715	10	4 4	0 5 4 4 1	70 4	10
340	CODROIPO	-	CN	130776	0313	42	0+1	0+J 0+0 1+	50 n	10
341	CUNKUIFU	5	VI	1509/6	0315	42	6.1	8+5 6+6 0+	23 A	10
342	CODROIPO		EΨ	150976	0315	42	6.1	8.5 6.6 0.	29 A	10
343	CONEGI TANO		NS	150976	0315	82	6.1	8.5 5.7 0.	13 A	10
700	CONECT TANO	C	UT	15007/	0715	00	1 1	0 5 5 7 0	A0 A	10
344	COREGLIAND	5	VI	130976	0315	84	0.1	8+3 3+7 0+	UB H	10
345	CONEGLIAND		EΨ	150976	0315	82	6.1	8.5 5.7 0.	20 A	10
346	FORGARIA-CORNINO		NS	150976	0315	19	6.1	8.5 7.6 2.	63 M	10
347	FORGARIA-CORNINO	S	UT	150976	0315	19	6.1	8.5 7.6 0.	99 M	10
740	FORCARIA-CORNINO	-	E.L	150074	0715	10	/ 1	0.5 7.0 0.	10 4	10
348	FURDARIA-CORMINO	•	EW	130976	0315	14	0.1	8.3 /.6 2.	18 M	10
349	S.ROCCO		NS	150976	0315	19	6.1	8.5 7.6 0.	69 R	10
350	S.ROCCO	S	VT	150976	0315	19	6.1	8.5 7.6 0.	59 R	10
351	5.80000		FW	150976	0315	19	6.1	8.5 7.6 1.	23 B	10
750	TOFONADO		10	150770	0010	101	0.1	0.0 /.0 1.	1 1	10
302	TREGNAGO		NS	1509/6	0315	181	6+1	8.5 4.5 0.	11 M	10
353	TREGNAGO	S	VΤ	150976	0315	181	6.1	8.5 4.5 0.	06 M	10
354	TREGNAGO		Eω	150976	0315	181	6.1	8.5 4.5 0.	10 M	10
755	BUITA		NC	150074	0715	15	4.1	0 5 7 0 1	10 4	10
300	DUTA	-	145	150778	0315	10	0+1	0.0 7.7 1.		10
356	BUIA	5	V1	1509/6	0315	15	6+1	8.5 7.9 0.	82 A	10
357	BUIA		EΨ	150976	0315	15	6.1	8.5 7.9 0.	96 A	10
358	FORGARIA-CORNINO		NS	150976	0438	22	4.5	6.5 6.2 0.	58 M	18
750	EDEGARTA-CORNINO	S	UT	150974	0438	22	4.5	4.5 4.2 0.	75. M	18
337	FORONAIN-CONKINO	5		150778	0430	~~	7+5	4.5 6.2 0.		10
360	FURGARIA-CURNINU		EW	1509/6	0438	22	4.5	6.5 6.2 0.	54 M	18
361	FORGARIA-CORNINO	S	Eω	150976	0438	22	4.5	6.5 6.2 0.	54 M	18
362	SOMPLAGO QUOTA		NS	150976	0438	19	4.5	6.5 6.4 0.	60 K	18
747	MOLTNIC		NC	110974	1475	22	5.0	0 5 0 7 7	A5. A	20
303	HOLINIS		RS	110778	1030	÷	5.7	0.0 0.0 2.		20
364	MOLINIS		EW	110976	1635	22	5.9	8.5 8.3 2.	11 A	20
365	MOLINIS	S	VT	110976	1635	22	5.9	8.5 8.3 0.	70 A	20
366	MOLINIS		NS	150976	0315	14	6.1	8.5 8.0 0.	96 A	10
747	HOLINIC		FU	15007/	0010 071E	4 4	4 4	0 5 0 0 1	A0 A	10
30/	HULINIS	-	Ew	130778	0315	14	0+1	0.0 0.0 1.	40 n	10
368	MOLINIS	S	VT	150976	0315	14	6.1	8.5 8.0 0.	35 A	10
369	MOLINIS		NS	150976	0921	21	6.0	9.0 8.2 1.	00 A	12
370	MOL TNTS		FW	150976	0921	21	6.0	9.0 8.2 0.	95 A	12
771	MOLITAITE	c	LIT.	150074	0001	24	2 0	0 0 0 2 0	EL A	12
3/1	HOLINIS	5	VI.	130978	0721		0.0	7.0 0.2 0.	J0 n	14
372	CORNINO		NS	150976	0315	20	6.1	8.5 7.5 0.	74 M	10
373	CORNINO		EΨ	150976	0315	20	6.1	8.5 7.5 0.	62 M	10
374	COENTNO	S	UT	150976	0315	20	6.1	8.5 7.5 0.	43 M	10
404	BUTA	G	UT.	150974	0478	10	A 5	45440	17 4	10
101	DUTA	5		150770	0430	17	7.5	0.0 0.4 0.	7.0	10
405	BUIN		EW	1509/6	0438	19	4.5	6.5 6.4 0.	34 A	18
406	SOMPLAGO QUOTA		NS	150976	0458	9	4.4	6.0 5.5 0.	14 K	7
407	SOMPLAGO QUOTA	S	VT	150976	0458	9	4.4	6.0 5.5 0.	07 K	7
408	SOMPLAGO DUDTA		FW	150976	0458	9	4.4	6.0 5.5 0.	10 K	7
100	DADCTC		AIC	150074	0001		1 0	0 0 7 7 0	10 4	10
407	DULCIS	(<u>111</u>	CM	1307/0	0721	44	0+0	7.0 7.2 0.	10 11	1 4
410	BARCIS	S	VT	150976	0921	44	6.0	9.0 7.2 0.	09 m	12
411	BARCIS		EΨ	150976	0921	44	6.0	9.0 7.2 0.	22 M	12
412	CODECTED		NS	150976	0921	44	6.0	9.0 7.2 0.	40 A	12
447	CODPOIDO	0	IIT	15007/	0001	~~		0 0 7 2 0		
410	CODROIPO	5	21	150976	0921	44	0+0	7.0 7.2 0.	13 M	14
414	CONROIFO		E₩	150976	0921	44	6.0	9.0 7.2 0.	36' A	12
415	CONEGLIANO		NS	150976	0921	81	6.0	9.0 6.4 0.	18 A	12
416	CONEGL TAND	5	UT	150976	0921	81	6.0	9.0 6.4 0	A OO	12
117	CONECL TAND	-	-ii	15007/	0001	01	2.0	0 0 4 4 0	07 11	10
41/	CORECLIARO		Εw	130976	0921	81	0.0	7.0 0.4 0.	26 M	14
418	CORTINA		NS	150976	0921	80	6.0	9.0 6.4 0.	08 K	12
419	CORTINA	S	VT	150976	0921	80	6.0	9.0 6.4 0.	08 F	12
420	CORTINA		FW	150974	0921	80	6.0	9.0 6.4 0.	11 5	12
421	EEL TRE		NC	15007/	0001	100	2.0	9.0 4.1 0	15 -	10
		104-00	110	100770	0721	100	0.0	7.0 0.1 0.	10 11	14
422	FELIKE	S	VT	150976	0921	100	6.0	9.0 6.1 0.	07 m	12
423	FELTRE		EΨ	150976	0921	100	6.0	9.0 6.1 0.	15 m	12
424	FORGARIA-CORNINO		NS	150976	0921	20	6.0	9.0 8.3 3.	20 M	12
425	EDEGARTA-CORNINO	S	UT	150974	0921	20	6.0	9.0 8.7 1	64 M	12
120	EODGADIA-CODUTIO	5	E II	15007/0	0001	20		0 0 0 7 7	20 1	4 -
440	LOUGUNIU-CONNINO		EW	1204/9	0721	20	0.0	7.0 0.3 3.	22 M	12

427 428 429	S.ROCCO S.ROCCO S.ROCCO	S	NS VT EW	150976 150976 150976	0921 0921 0921	20 20 20	6.0 6.0 6.0	9.0 9.0 9.0	8.3 8.3 8.3	1.23 0.79 2.35	R R R	12 12 12
430	MALCESINE		NS	150976	0921	185	6.0	9.0	5.2	0.16	M	12
431	MALCESINE	S	VT	150976	0921	185	6.0	9.0	5.2	0.06	M	12
432	MALCESINE		Eω	150976	0921	185	6.0	9.0	5.2	0.24	M	12
433	TARCENTO		NS	150976	0921	20	6.0	9.0	8.3	1.20	R	12
434	TARCENTO	S	VT	150976	0921	20	6.0	9.0	8.3	0.43	R	12
435	TARCENTO		EW	150976	0921	20	6.0	9.0	.8.3	1.08	R	12
436	TREGNAGO		NS	150976	0921	178	6.0	9.0	5.3	0.16	m	12
437	TREGNAGO	S	VT	150976	0921	178	6.0	9.0	5.3	0.09	M	12
438	TREGNAGO		EΨ	150976	0921	178	6.0	9.0	5.3	0.18	m	12
439	BUIA		NS	150976	0921	18	6.0	9.0	8.4	0.76	A	12
440	BUIA	S	VT	150976	0921	18	6.0	9.0	8.4	0.78	A	12
441	BUIA		EΨ	150976	0921	18	6.0	9.0	8.4	0.82	A	12
442	TOLMEZZO	S	NS	150976	0937	15	3.4.	5.0	3.5	0.13	m	5
443	TOLMEZZO	S	VT	150976	0937	15	3.4	5.0	3.5	0.05	M	5
444	TOLMEZZO	S	ΕW	150976	0937	15	3.4	5.0	3.5	0.14	rí	5
445	FORGARIA-CORNINO		NS	150976	0945	14	4.2	6.0	4.6	0.24	m	5
446	FORGARIA-CORNINO	S	VT	150976	0945	14	4.2	6.0	4.6	0.19	m	5
447	FORGARIA-CORNINO		EW	150976	0945	14	4.2	6.0	4.6	0,35	m	5

.

.

/NR /STANDORT	/COMP.	DATUM .	ZEIT.	DEP.	MAG,	EPI/A	MAX/SC	C/LO
001 EL CENTRO	WEST	180540	2037	10	6.7	10	A	C
002 EL CENTRO	VERT	180540	2037	10	6.7	10	A	G
003 FERNDALE	544W	071051	2011	53	5.8	7	A	3
004 FERNDALF	N466	071051	2011	53	5.8	7	A	G
005 FERNDALE	VERT	071051	2011	53	5.8	7	A	G
006 PASALENA	SUED	210752	0453	127	7.6	11		В
007 PASADENA	WEST	210752	0453	127	7.6	11		в
008 PASADENA	VERT	210752	0453	127	7.6	11		в
009 TAFT	N21E	210752	0453	42	7.7	11	A	Т
010 TAFT	\$69E	210752	0453	42	7.7	11	A	т
011 TAFT	VERT	210752	0453	42	7.7	11	A	Т
012 SANTA BARBARA	N42E	210752	0453	89	7.7	11	A	в
013 SANTA BARBARA	S48E	210752	0453	89	7.7	11	A	B
014 SANTA BARBARA	VERT	210752	0453	89	7.7	11	A	в
015 HLWD STGE BSMT	SUED	210752	0453		7.7	11	A	
016 HLWD STOE BSMT	EAST	210752	0453		7.7	11	A	
017 HLWD STGE BSMT	VERT	210752	0453		7.7	11	A	
018 HLWD STGE PFLOT	SUED	210752	0453		7.7	11	A	
019 HLWD STGE PELOT	EAST	210752	0453		7.7	11	A	
020 HLWD STGE PELOT	VERT	210752	0453		7.7	11	A	
021 EUREKA	N11W	211254	1156	25	6.5	7	A	B
022 EUREKA	N79E	211254	1156	25	6+5	7	A	B
023 EUREKA	VERT	211254	1156	25	6.5	7	A	в
024 FERNDALE	N44E	211254	1156	30	6+5	7	A	
025 FERNDALE	N46W	211254	1156	30	6.5	7	A	
026 FERNDALE	VERT	211254	1156	30	6.5	7	A	
027 SAN JOSE	N59E	040955	1801	10	5+8	7	A	в
028 SAN JOSE	NJIW	040955	1801	10	5.8	/	A .	B
029 SAN JOSE	VERT	040955	1801	10	5.8	7	A	В
030 EL CENTRO	SUED	090256	0633		6.8		A	G
031 EL CENTRO	WEST	090256	0633		6.8		A	G
032 EL CENTRO	VERT	090256	0633		6.8		A.	G
033 EL CENTRO	SUED	090256	0725		6+4		n,	
034 EL CENTRU	WEST	090256	0725		6+4		m	
OSD EL CENTRU	VERT	090256	0/25	10	6.4		A	T
AZZ C D DIDC DONT	VERI	220357	1144	18	5+3	4	n A	D D
AZO C D DIDC DONT	NASU	220337	1144	10	5.5			5
ATO ALEY DIDG OF	NOOL	220337	1100	15	5.5	-	M	D
OAD ALEY BLUG SE	NRIE	220357	1144	15	5.3	2	M	B
OAL ALEY BLDG GE	HEDT	220357	1144	15	5.3	2	M	Ð
042 GLDN CATE PK	NIOF	220357	1100	12	5.3	7	B	B
047 GLDN CATE PK	SBUL	220337	1100	12	5.3	7	B	B
OAA GLDN CATE PK	UEBT	220357	1100	10	5.7	7	B	B
045 S E STATE BLUS	SAGE	220357	1100	10	5.3	7	M	B
046 S F STATE BLDG	5814	220357	1144	14	5.3	7	M	B
047 S E STATE BLDS	UFET	220357	1100	14	5, 7	7	M	B
048 DAKLAND C H BSMT	NZAF	220357	1144	24	5.3	7	M	2
049 DAKLAND C H BSMT	SAAF	220357	1144	24	5.3	7	M	
050 DAKLAND C H BSMT	UFRT	220357	1144	24	5.3	7	м	
051 HOLLISTER CAL	SOIW	080461	2323	21	5.6	7	A	в
052 HOLLISTER CAL	N89W	080461	2323	21	5.6	7	A	B
053 HOLLISTER CAL	VERT	080461	2323	21	5.6	7	A	B
054 EL CENTRO CAL	SUED	080468	1830		6.5	7	A	G
055 EL CENTRO CAL	WEST	080468	1830		6.5	7	A	G
056 EL CENTRO CAL	VERT	080468	1830		6.5	7	A	G
057 SAN DIEGO	VERT	080468	1830	96	6.5	7	A	
058 SAN DIEGO	EAST	080468	1830	96	6.5	7	A	
059 SAN DIEGO	SUED	080468	1830	96	6.5	7	A	
060 VERNON	SOBW	100333	1754		6.3	9		B
061 VERNON	N82W	100333	1754		6.3	9		В
062 VERNON	VERT	100333	1754		6.3	9		В
063 HOLLYWOOD PENTH	NORD	021033	0110		5.4	6	A	
064 HOLLYWOOD PENTH	EAST	021033	0110		5.4	6	A	

065	HOLLYWOOD PENTH	VERT	021033	0110		5.4	6	A	ъ	
065	HOLLYWOOD BSMI	WEST	021033	0110		5.4	6	A	B	
068	HOLLYWOOD BSMT	VERT	021033	0110		5.4	5	A	B	
069	EL CENTRO	SUED	301234	0552	58	6.5	9	A		
070	EL CENTRO	WEST	301234	0552	58	6.5	9	A		
071	EL CENTRO	VERT	301234	0552	58	6.5	9	A		
072	HELENA	SUED	311035	1138	8	6+0	8	R		
073	HELENA UEI ENA	WEST	311035	1138	0	6+0	80	R D		
075	FERNDAL F	NASE	110938	2210	o	5,5	4	A		
076	FERNDALE	845E	110938	2210		5.5	6	A		
077	FERNDAL F	VERT	110938	2210		5.5	6	A		
078	FERNDAL F	VERT	090241	0145		6.4		A	G	
079	FERNDALE.	N45E	090241	0145		6.4		A	G	
080	FERNDALF	S45E	090241	0145		6.4	-	A	G	
081	SEATTLE	SO2W	130449	1156		7+1	8	M		
082	SEATTLE	NSSW	130447	1156		7 1	0	M		
084	OLYMPIA WASHINGTON	NOAL	130449	1156	20	7.1	8	A	G	
085	OLYMPIA WASHINGTON	N86E	130449	1156	20	7.1	8	A	G	
086	OLYMPIA WASHINGTON	VERT	130449	1156	20	7.1	8	A	G	
087	FERNDALE	N44E	220952	0441		5.5	7	A		
088	FERNDALE	S46E	220952	0441		5.5	7	A		
089	FERNDALE	VERT	220952	0441		5.5	7	A		
090	TAFT	N21E	120154	1534	43	5.9	8	A.		
091		SAPE	120154	1534	43	5.9	8	A		
072	DI YMPTA MACHINCTON	COAF	120104	1334	40	1+7	0		C	
094	OLYMPIA WASHINGTON	5844	290465	0728	58	6.5	8	A	G	
095	OLYMPIA WASHINGTON	VERT	290465	0728	58	6.5	8	A	G	
096	CHOLAME SHANDON NO2	N65E	270666	2026	1	5.6	7	A	G	
097	CHOLAME SHANDON NO2	VERT	270666	2026	1	5.6	7	A	G	
098	CHOLAME SHANDON NOS	NOSW	270666	2026	5	5.3	7	A	G	
099	CHOLAME SHANDON NOS	NSSE	270666	2026	5	5.3	7	A	G	
100	CHOLAME SHANDON NO5	VERT	270666	2026	5	5.3	7	A	G	
101	CHULAMI SHANDON NUS	NSOL	2/0666	2028	9	3+5	_	A	6	
102	CUDLAME SHANDON NOS	NAUW	270666	2026	9	5.3	7	Å	G	
104	CHOLAME SHANDON NO12	NSOF	270666	2028	38	5.3	7	A	G	
105	CHOLAME SHANDON NO12	N40W	270666	2026	38	5.3	7	A	G	
106	CHOLAME SHANDON NO12	VERT	270666	2026	38	5.3	7	A	G	
107	TEMBLOR	NGSW	270666	2026	6	5.3	7	R	G	
108	TEMBLOR	S25₩	270666	2026	6	5,3	7	R	G	
109	TEMBLOR	VERT	270666	2026	6	5.3	7	R	G	
110	SAN LUIS DBISPO	N36W	270666	2026	77	5.3	7	R		
111	SAN LUIS UBISPU	S54W	270666	2026	77	5+5		R D		
113	FUREKA	SIIF	101267	0406	51	5.8	6	M		
114	EUREKA	N79E	101267	0406	51	5.8	6	M		
115	EUREKA	VERT	101267	0406	51	5.8	6	M		
116	SAN ONOFRE	N57W	080468	1830	122	6.5	7	R		
117	SAN ONOFRE	VERT	080468	1830	122	6.5	7	R		
118	SAN ONOFRE	N33E	080468	1830	122	6.5	7	R		
119	S.FER.PACOIMA DAM1	S16E	090271	0600	4	6.6	11	R	D	
120	S-FER-PACOIMA DAMI	S74W	090271	0600	4	6.6	11	R	D	
122	S.FER. PACOINA DAMO	SZAN	090271	0600	4	0+0	11	B	n	
123	S.FER.PACDIMA DAM2	SIAF	090271	0400	4	6.6	1 1	R	n	
124	S.FER.PACOIMA DAM2	VERT	090271	0500	4	6.6	11	B	Ď	
125	S.FER.PACOIMA DAM3	574W	090271	0600	4	6.6	11	R	D	
126	S.FER.PACOIMA DAM3	S16E	090271	0600	4	6+6	11	R	DI.	
127	S+FER+PACOIMA DAM3	VERT	090271	0600	4	6+6	11	R	D	
128	S.FER.PACDIMA DAM4	574W	090271	0600	4	6.6	11	R	D	
129	S.FER.FACDIMA DAM4	S16E	090271	0600	4	5+5	11	R	D	
130	S FER PACATMA DAME	CZAU	090271	0600	4	6+6	11	R P	n	
TOT	O+LEV+LUCOTUM DUWO	3/44	0702/1	0000	4	0+0	TT	n	T)	

132	S.FER.PACDIMA DAM5	S16E	090271	0600	4	6+6	11	R	D
133	S.FER. PACOIMA DAMS	VERT	090271	0600	4	6.6	11	E:	D
174	C EED DACOTHA DAMA	S7411	090271	0400	Δ	4.4	11	R	TI
175	C FER PACOTYA DAY	CILE	000071	0400		4 4	4 4	D	T1
130	S+FER+FAGUINA DAMO	STOP	070271	0000	7	0+0	11		1
136	S.FER.PACDIMA DAM6	VERT	090271	0300	4	6.6	11	к	L
137	S.FER.PACDIMA DAM7	S74W	090271	0600	4	6.6	11	R	I I
138	S.FER.PACDIMA DAM7	S16E	090271	0600	4	6.6	11	5	D
170	S. FER. PACOTMA DAM7	UFRT	090271	0600	4	6.6	11	5	TI.
1.07		NAAU	070271	0,000	20	/ /	4 4	~	A.,
1.40	S.FER.UNION BLODI LA	WOOW	070271	0800	2.0	0+0	11	F1	
141	S.FER.ORION BLVD1 LA	590W	090271	0600	20	6+6	11	A	
142	S.FER.ORION BLVD1 LA	VERT	090271	0600	20	6.6	11	A	
143	S.FER.ORION BLUDA LA	NOOW	090271	0600	20	6.6	11	A	
1 4 4	S. FER ORTON BLUDA LA	SPOU	090271	0600	20	4.4	1 1	A	
1.45	OFFERIORIER DEVEN	UPDT	000071	00.00		, ,	4 4	~	
140	S.FER.UKIUN BLODA LA	VERT	090271	0800	20	0+0	11	ņ	
146	S.FER.ORION BLVD8 LA	NOOM	0902/1	0600	50	6.6	11	A	
147	S.FER.ORION BLVD8 LA	590W	090271	0600	20	6.6	11	A	
148	S.FER.ORION BLVD8 LA	VERT	090271	0600	20	6.6	11	A	
1 49	S. FFR. 1. STREFT BS IA	NZAF	090271	0600	41	6.6	11	A	
1 - 1	C FED & CTDEET DO LA	NEAL	000071	0400		4 4	4 4		
150	SAFENALASINEEI DO LA	NJ4W	070271	0000		0+0			
151	S.FER.1.STREET BS LA	VERT	090271	0600	41	6.6	11	A	
152	S.FER.1.STREET 8 LA	N36E	090271	0600	41	6.6	11	A	
153	S.FER.1.STREET 8 LA	N54W	090271	0600	41	6.6	11	A	
150	C FED 1 CTDEET O IA	UFET	000771	0400	A1	4.4	11	A	
104	STERT STREET O LA		070271	0000	41	, ,	4 4		
155	S.FER. 1. SIREFI 1/ LA	NJOE	090271	0600	41	0+0	11	n.	
156	S.FER.1.STREET 17 LA	N54W	090271	0600	41	6+6	11	A	
157	S.FER.1.STREET 17 LA	VERT	090271	0600	41	6.6	11	A	
158	S.FFR.FTG.STR.SBS LA	N52W	090271	0600	41	6.6	11	A	
150	C FED FTC STD SDS IA	6381	090271	0400	41	4.4	4 1	A	
1.17	STERTIONSINASDS LA	0000	070271	0000	~ 1		4.4	~	
160	5+FER+F10+518+585 LA	VERI	090271	0800	41	0+0	11	m	
161	S.FER.FJG.STR. 19 LA	N52W	090271	0600	41	6+6	11	A	
162	S.FER.FIG.STR. 19 LA	S38M	090271	0600	41	6+6	11	A	
163	S.FER.FIG.STR. 19 LA	VERT	090271	0600	41	6.6	11	A	
144	S. FER. CAST. D. R. BOUTE	NOIF	090271	0600	21	6.6	11	 M	
104	STERICHOTIO P DOUTE	NICOLL	000071	0000	24		4.4	24	
165	S+FER+CASI+U+R+RUUTE	NO7W	090271	0800	<: 1 m d	0+0	11	FI	
166	S.FER.CAST.O.R.ROUTE	VERT	090271	0600	21	6+6	11	m	
167	S.FER.HOLL.ST. BS LA	SOOM	090271	0600	35	6.6	11	A	
168	S.FER.HOLL.ST. BS LA	N90E	090271	0600	35	6.6	11	A	
140	S.FFR. HOLL ST. BS IA	UFRT	090271	0600	35	6.6	11	A	
107	C FED UDIL CT DE LA	COOU	000071	0400	75	4 4	11	A	
170	STERTULLISI FE LA	300W	070271	0000	30	0+0	4.4	~	
1/1	SAFERAHULLASIA PE LA	NYUL	0902/1	0800	30	0+0	TT	n	
172	S.FER.HOLL.ST. PE LA	VERT	090271	0600	35	6.6	11	A	
173	S.FER.AV.OF ST.SB LA	N46W	090271	0600		6.6	11	A	
174	S.FER.AV.OF ST.SB LA	544W	090271	0600		6.6	11	A	
175	C FED AU OF ST SD LA	UFET	090271	0600		4.4	11	A	
170	STERTING OF OT O LA	CAAL	000071	0000		4 4	4 4	~	
1/6	STERTAVOL SITY LA	544W	090271	0800		0+0	11	'n	
1//	S.FER.AV. UF ST.9 LA	N46W	0902/1	0600		6+6	11	A	
178	S.FER.AV.DF ST.9 LA	VERT	090271	0600		6.6	11	A	
179	S.FER.AV. DF ST. 21 LA	N46W	090271	0600		6.6	11	A	
180	S.FER.AV. OF ST. 21 LA	544W	090271	0600		6.6	11	A	
101	C FED AN OF ST 21 LA	UFDT	000071	0400		4 4	1 1	A	
181	S+FER+AV+UP SI+21 LA	VENT	090271	0000		0+0	11	ņ	
182	S.FER.S.MARENGO ST.1	N38M	0902/1	0600		6.6	11	M	
183	S.FER.S.MARENGO ST.1	S52₩	090271	0600		6.6	11	A	
184	S.FER.S. MARENGO ST.1	VERT	090271	0600		6.6	11	A	
185	S. FER. S. MARENGO ST. A	NZSH	090271	0400		6.6	11	A	
100	C FED C MADENCO CT A	CEOU	000271	0400		4 4	4 4	A	
100	3+FC.N+3+MANEN00 31+4	0024	070271	0000		0.0	4.4		
187	S.FER.S.MARENGO ST.4	VERT	0902/1	0600		6.6	11	n	
188	S.FER.S.MARENGO ST.8	N38M	090271	0600		6.6	11	A	
189	S.FER.S.MARENGO ST.8	S52W	090271	0600		6.6	11	A	
190	S.FER.S. MARENCO ST. 8	UFRT	090271	0600		6.6	11	A	
101	C. FER UTI CU DI UN DE	SOOU	090271	0400	70	4.4	11	M	
100	C EED UTLOU DUDD DO	0000	000071	0400	70	4 1	4 4	M	
172	S+FER+WILSH+BLVII+BS	370W	0702/1	0800	37	0+0	11	ri U	
193	S.FER.WILSH.BLVD.BS	VERT	090271	0600	39	6+6	11	m	
194	S.FER.WILSH.BLVD.5	SOOW	090271	0300	39	6+6	11	M	
195	S.FER.WILSH.BLVD.5	590W	090271	0600	39	6.6	11	M	
194	S.FER.WTI SH. BLUD. 5	UFRT	090271	0600	39	6.6	11	M	
107	S.FER. UTI SU DI UTI 1A	NOOF	090271	0400	70	6.6	11	M	
1.71		COAL	000071	0400	70	4 4	4 4	*	
100			11 11 1 1 1	100101	. 5 7	0.40	1 1	1.1	

199	S.FER.WILSH.BLVD.10	VERT	090271	0600	39	6.6	11	M
200	S.FER.HOLI YW.BLVD.BS	NOOE	090271	0600		6.6	11	A
201	S.FER.HOLLYW.BLVD.BS	N90E	090271	0600		6.6	11	A
202	S.FER.HOLLYW.BLVD.BS	VERT	090271	0600		6.6	11	A
203	S.FER.HOLLYW.BL.VD.6	SOOW	090271	0600		6.6	11	A
204	S.FER.HOLLYW.BLVD.6	590W	090271	0600		6.6	11	A
205	S.FER.HOLLYW.BLVD.6	VERT	090271	0600		6.6	11	A
206	S.FER.HOLLYW.BLVD.12	NOOE	090271	0600		6.6	11	A
207	S.FER.HOLLYW.BLUD.12	NOOF	090271	0400		6.6	11	A
208	S.FER.HOLLYW.BLUD.12	UFET	090271	0400		6.6	11	A
200	C CED WHEELED DIDCE	COOL	000071	0400	00	4 4	11	4
207	SAFERAMILELER RIDGE	NOOF	070271	0000	00	4 4	4 4	
210	SAFERAWHEELER RIDGE	NYUE	070271	0000	07	0+0	44	
211	S+FER+WHEELER RIDGE	VERI	090271	0000	67	0+0	11	
212	S.FER.4480 WILSH.BS	N75W	090271	0300	39	6.6	11	m
213	S.FER.4680 WILSH.BS	NISE	090271	0600	39	6.6	11	M
214	S.FER.4680 WILSH.BS	VERT	090271	0400	39	6+6	11	M
215	S.FER.4680 WILSH.3	N15E	090271	0600	39	6.6	11	M
216	S.FER.4680 WILSH.3	N75W	090271	0600	39	6.6	11	M
217	S.FER.4680 WILSH.3	VERT	090271	0600	39	6.6	11	м
218	S.FER.4680 WILSH.6	N15E	090271	0600	39	6.6	11	м
219	S.FER.4680 WILSH.6	N75W	090271	0600	39	6.5	11	M
220	S.FER.4680 WILSH.6	VERT	090271	0600	39	6.6	11	м
221	S.FER.3470 WILSH.SB	NOOE	090271	0600	39	6.6	11	A
222	S.FER.3470 WILSH.SB	590W	090271	0600	39	6.6	11	A
223	S.FER. 3470 WTI SH. SB	UFRT	090271	0400	39	6.6	11	A
224	S. FER. 3470 WILCHISS	NOOF	090271	0400	70	4.4	11	A
225	C FED 7470 UTLOU S	NOOL	000271	0400	70	4 4	4 4	
220	SAFERAJ4/V WILSHAJ	NYUE	090271	0000	37	0+0	11	
220	S+FER+34/0 WILSH+J	VERT	090271	0000	37	0.0	11	
22/	S.FER. 34/0 WILSH.11	NOOF	0902/1	0600	.59	6+6	11	A
228	S.FER.3470 WILSH.11	NYOE	090271	0600	39	6+6	11	A
229	S.FER.3470 WILSH.11	VERT	090271	0600	39	6+6	11	A
230	S.FER.WATER POW.B.BS	WOGN	090271	0600	39	6.6	11	A
231	S.FER.WATER FOW.B.BS	540W	090271	0600	39	6.6	11	A
232	S.FER.WATER POW.B.BS	VERT	090271	0600	.39	6.6	11	A
233	S.FER.WATER POW.B.7	N50W	090271	0600	39	6+6	11	A
234	S.FER.WATER POW.B.7	540W	090271	0600	39	6.6	11	A
235	S.FER.WATER POW.B.7	VERT	090271	0600	39	6.6	11	A
236	S.FER.WATER POW.B.15	NSOW	090271	0600	39	6.6	11	A
237	S.FER.WATER POW.B.15	540W	090271	0600	39	6.6	11	A
238	S.FER.WATER POW.B.15	VERT	090271	0600	39	6.6	11	A
239	S.FER.S.FEL .DAM OUT	SORE	090271	0600	30	6.6	11	м
240	S.FER.S.FEL DAM DUT	582W	090271	0400	30	6.6	11	M
241	S. FER. S. FEL. DAM OUT	UFET	090271	0400	30	4.4	11	м
242	S FEB S FEL DAM COF	CIEC	000071	0400	70	4 4	4 4	
242	STER STEL DIA COE	5136	070271	0000	30	0+0	1 4	11
243	SAFERASAFELADAN CRE	5/JW	070271	0000	30	0+0	11	11 14
244	SAFERASAFELADAA UKE	VERI	0902/1	0800	.50	0+0	11	m
245	S+FER+61H SIR+BS	500W	0902/1	0300	39	6+6	11	A
246	S.FER.61H SIR.BS	NYOL	0902/1	0600	39	6+6	11	A
24/	S+FER+6IH SIR+BS	VERT	090271	0600	39	6+6	11	A
248	S.FER.6TH STR.4	SOOM	090271	0600	39	6.6	11	A
249	S.FER.6TH STR.4	N90E	090271	0300	39	6.6	11	A
250	S.FER.6TH STR.4	VERT	090271	0600	39	6.6	11	A
251	S.FER.6TH STR.PENTH.	SOOW	090271	0600	39	6.6	11	A
252	S.FER.6TH STR.PENTH.	N90E	090271	0600	39	6.6	11	A
253	S.FER.6TH STR.PENTH.	VERT	090271	0600	39	6.6	11	A
254	S.FER.VERNON CMD BLG	N83W	090271	0600	46	6.5	11	A
255	S.FER.VERNON CMD BLG	507W	090271	0600	46	6.6	11	A
256	S.FER.VERNON CMD BLG	VERT	090271	0600	46	6.6	11	A
257	S. FER. ENG. BLOG S. ANA	SOAF	090271	0400		4.4	11	A
258	S.FER.ENG. RLDG C ANA	COAL	000071	0400		4 4	11	4
750	S.FER.ENC. BLDG C ANA	UTET	090271	0400		4 4	11	
740	C EED MIN C D CIENT	COOF	000271	0/00		4 4	4 4	с И
244	C FED MIN O D OLENT	570E	0702/1	0000		0+0	11	r1
201	STER HUN STBILLENI	3204	0902/1	0800.		0+0	11	M
202	STER HUN STB ULLNU.	VERT	0902/1	0800		0+0	TT	m
263	S.FER.SUUTH UL.ST.BS	553E	090271	0600		6+6	11	A
264	S.FER.SOUTH OL.ST.BS	537W	090271	0400		6+6	11	A
265	S.FER.SOUTH OL.ST.BS	VERT	090271	0600		6.6	11	A

266	S.FER.SOUTH 0L.ST.4	N37E	090271	0600		6+6	11	A	
247	S. FER. SOUTH DL. ST. 4	SEGE	090271	0600		6.6	11	A	
240	S FER SOUTH OL ST.A	UFET	090271	0400		4.4	11	A	
200	C FED CONTU OL CT C	CETE	000271	0400		4 4	4 4		
207	SAFERADUUTA ULASIAO	533E	070271	0000		0+0	11	E C	
270	S+FER+SUUIH UL+SI+8	53/W	0902/1	0500		6+6	11	A	
271	S.FER.SOUTH OL.ST.8	VERT	090271	0600		6.6	11	A	
272	S.FER.ZUNAL AV.BS	S62E	090271	0600	42	6.6	11	M	
273	S.FER.ZONAL AV.BS	S28W	090271	0600	42	6.6	11	M	
274	S.FER. 70NAL AV. BS	UFRT	090271	0600	42	6.6	11	M	
275	S. FER. ZONAL AU. 5	SADE	090271	0400	47	4.4	11	M	
274	C FED ZONAL AU F	COOL	0000001	0400	40	4 4	4 4	M	
2/0	S+FER+ZURAL AV	020W	070271	0000	42	0+0	T T	ri V	
2//	S+FER+ZUNAL AV+5	VERT	0902/1	0800	42	6+6	11	m	
278	S.FER.ZONAL AV.9	S62E	090271	0600	42	6.6	11	M	
279	S.FER.ZONAL AV.9	S28W	090271	0600	42	6+6	1.1	M	
280	S.FER.ZONAL AV.9	VERT	090271	0600	42	6.6	11	M	
281	S.FER.NETH BOB.BL.SB	SARE	090271	0600		6.6	11	A	
202	C FED NOTH DOD DI CD	CODU	090271	0400		4.4	11	A	
202	STER NOTH BOD DL OD	SVEW	070271	0000		0+0	4 4	~	
283	5.FER.NICH KUB.BL.SB	VENT	090271	0800		0+0	11	m	
284	S.FER.NKTH RUB.BL.4	288E	0902/1	0600		6.6	11	A	
285	S.FER.NRTH ROB.BL.4	502W	090271	0600		6.6	11	A	
286	S.FER.NRTH ROB.BL.4	VERT	090271	0600		6.6	11	A	
287	S.FER.NRTH ROB.BL.9	S88E	090271	0600		6.6	11	A	
288	S. FER. NOTH BOB. BL . 9	502W	090271	0600		6.6	11	A	
200	C FED NOTH DOD DI O	UFPT	000071	0400		4 4	4 4	4	
207	S+FER+RAIH NUD+BL+7	OFT	070271	0000		0+0	4 4		
290	5.FER.046 5.0L.51.85	SOUL	0902/1	0800		0.0	11	n	
291	S.FER.646 S.OL.ST.BS	537W	090271	0600		6+6	11	A	
292	S.FER.646 S.OL.ST.BS	VERT	090271	0600		6.6	11	A	
293	S.FER. 646 S. DL. ST. 4	S53E	090271	0600		6.6	11	A	
294	S.FER.646 S.OL.ST.4	S37W	090271	0600		6.6	11	A	
295	S.FFR. 646 S.DL. ST.A	UFRT	090271	0600		6.6	11	A	
204	C FED 444 C OL CT DO	CETE	000271	0400		4 4	11		
270	5+FER+646 5+0L+31+RU	SJSE	070271	0000		0+0	11	-	
297	S.FER.646 S.UL.SI.RU	53/W	090271	0600		6.6	11	A	
298	S.FER.646 S.OL.ST.RO	VERT	090271	0600		6.6	11	A	
299	S.FER.ED.COMP.COLTON	SOOM	090271	0600		6+6	11	A	
300	S.FER.ED.COMP.COLTON	N90E	090271	0600		6.6	11	A	
301	S.FER.ED.COMP.COLTON	VERT	090271	0600		6.6	11	A	
302	S.FER.FT.TE.ION	NOOF	090271	0600	70	6.6	11	M	
707	S FED ET TE ION	NOOE	000271	0400	70	4 4	1 1	M	
303	S+FER+FI+IESON	NTOE	070271	0000	70	0+0	4 4	11	
304	S+FER+FI+IFJUN	VERT	090271	0800	10	0+0	11	m	
305	S+FER+PUMP+PL+PEARLB	NOOL	090271	0600	4/	6+6	11	A	
306	S.FER.PUMP.PL.PEARLB	N90W	090271	0600	47	6.6	11	A	
307	S.FER.FUMP.PL.FEARLB	VERT	090271	0600	47	6.6	11	A	
308	S.FER.OSD PUM.CORMAN	NOOE	090271	0600		6.6	11	M	
309	S. FER. DSD PUM. CODMAN	NOON	090271	0600		6.6	11	M	
710	C FED DOD DUM CODMAN	HEDT	000271	0400		4.4	11	M	
714	STER USU PURIOUNIAN	COOL	070271	0000		/ /	4 4	~	
211	S+FER+UCLA KF+LAB+LA	5000	090271	0800		0+0	11		
312	S.FER.UCLA RE.LAB.LA	N90E	090271	0300		6.6	11	A	
313	S.FER.UCLA RE.LAB.LA	VERT	090271	0600		6+6	11	A	
314	S.FER.CALT.LAB.PASAD	SOOW	090271	0600	37	6.6	11	R	
315	S.FER.CALT.LAB.PASAD	590W	090271	0600	37	6.6	11	R	
316	S. FER. COLT. LAB. PASAD	UFRT	090271	0600	37	6.6	11	R	
317	S. FER. CALT. ATH. PASAD	NOOF	090271	0400	30	4.4	11	M	
310	C FED CALT ATH PACAD	NOOF	000071	0,000	70		4 4	24	
318	S+FER+LALI+AIH+PASAD	NYUL	090271	0800	30	0.0	11	ri V	
319	S.FER.CALT.ATH.PASAD	VERT	090271	0600	30	6+6	11	m	
320	S.FER.CALT.MI.LIB.BS	NOOE	090271	0600	30	6+6	11	M	
321	S.FER.CALT.MI.LIB.BS	N90E	090271	0600	30	6.6	11	M	
322	S.FER.CALT.MI.LIB.BS	VERT	090271	0600	30	6.6	11	M	
323	S.FER.CALT.MI.I TB.10	NOOF	090271	0600	30	6.6	11	M	
774	S. FER. CALT MT I TO 10	NOAE	090271	0400	30	6.6	11	M	
705	C EED CALT MT LTD 40	HEDT	000071	0400	20	6 4	4 4	×	
320	S+FER+UMLI+MI+LIB+10	VENT	070271	0000	20	0+0	4 4	N	
326	SAFERAJEI PRUALABABS	582E	0902/1	0800	30	0+0	11	r1	
327	S.FER.JET PRO.LAB.BS	208W	090271	0600	30	6.6	11	M	
328	S.FER.JET PRO.LAB.BS	VERT	090271	0600	30	6.6	11	M	
329	S.FER.JET PRO.LAB.9	S82E	090271	0600	:30	6.6	11	Μ	
330	S.FER.JET PRD.LAB.9	SOSW	090271	0600	30	6.6	11	M	
331	S.FER.JET PRO.LAB.9	VERT	090271	0600	30	6.6	11	M	
332	S.FER.WEST ATH ST.RS	N38F	090271	0600		6.6	11	A	
and had done	WYI MILYWEDT OTH OTHDO	a share that has	w / when / sh	wwwv			-	••	

333	S.FER.WEST 6TH ST.BS	N52W	090271	0600		6.6	11	A	
334	S.FER.WEST 6TH ST.BS	VERT	090271	0600		6.6	11	A	
335	S.FER.WEST 6TH ST.42	N52W	090271	0600		6.6	11	A	
336	S.FER.WEST 6TH ST.42	N38E	090271	0600		6+6	11	A	
337	S.FER.WEST 6TH ST.42	VERT	090271	0600		6.6	11	A	
338	S.FER.FIRE ST.FALMD.	S60E	090271	0600	33	6.6	11	A	
339	S.FER.FIRE ST.PAI MD.	S30W	090271	0600	33	6.6	11	A	
340	S.FER.FIRE ST.FALMD.	VERT	090271	0600	33	6.6	11	A	
341	ARTIFICIAL (R.G.1.60)								
342	OLYMPIA WASH.	N86E	130449	1156	20	7.1	8	A	G
343	TAFT KERN CO	S69E	210752	0453	42	7.7	11	A	
344	EL CENTRO IMP.VALLEY		151079						
345	S.FER.PACOIMA DAM	S14W	090271	0600	3	6.4	11	R	D
346	S.FER.HOLL.STO.PE LO	N90E	090271	0600	21	6.4	11		
347	EL CENTRO NOS IMP.V.		151079		1	6.6			
348	GOLETA S.BARBARA		130878		4	5.1			
349	COYOTE LAKE ARR.NO.2		060879		7	5.7			
350	CHOLAME NO2 PARKE.	N65E	270666	2026	1	5.6	7	A	G
351	GAVILAN COLL, HOLL,	567N	281174		13	5.2			G

NR /STANDORT	/COMF	DATUM .	ZEIT	DEP/	MAG,	/EPI/	AMAX	/SC/	LO
001 EL ABADIA	VT	221080	1850	0	0.0			A	G
002 EL ABADIA	NS	221080	1850	0	0.0			۸	G
003 EL ABADIA	EW	221080	1850	0	0.0			A	G
004 EL ABADIA	VT	221080	2026	0	0.0			A	G
005 EL ABADIA	NS	221080	2026	0	0.0			A	G
006 EL ABADIA	EW	221080	2026	0	0.0			A	G
007 EL ABADIA	VT	221080	2244	3	3.5			A	G
008 EL ABADIA	NS	221080	2244	3	3.5			A	G
009 EL ABADIA	EW	221080	2244	3	3.5			A	G
010 EL ABADIA	UT	231080	0605	ō	0.0			A	G
011 EL ABADIA	NS	231080	0605	0	0.0			A	G
012 EL ABADIA	FW	231080	0405	õ	0.0			A	5
O17 EL ADADIA	UT	231080	0443	10	3.7			A	G
	NC	271000	0447	10	77			4	G
	ELL	231080	0043	10	3 + 7				0
OID EL ADADIA		231080	10540	27	3.1			n A	0
UIS EL ABADIA	V1	241080	1200	20	4+2			n	0
017 EL ABADIA	NS	241080	1258	23	4+2			e e e e e e e e e e e e e e e e e e e	6
018 EL ABADIA	Eω	241080	1258	23	4.2			A	U C
019 EL ABADIA	VI	241080	1303	0	0.0			A	6
020 EL ABADIA	NS	241080	1303	0	0.0			A	G
021 EL ABADIA	EΨ	241080	1303	0	0.0			A	G
022 EL ABADIA	VT	241080	1312	22	0.0			A	G
023 EL ABADIA	NS	241080	1312	22	0.0			A	G
024 EL ABADIA	EW	241080	1312	22	0.0			A	G
025 EL ABADIA	VT	241080	1511	10	2.9			A	G
026 EL ABADIA	NS	241080	1511	10	2.9			A	G
027 EL ABADIA	EW	241080	1511	10	2.9			A	G
028 EL ABADIA	VT	241080	1625	15	4.1			A	G
029 EL ABADIA	NS	241080	1625	15	4.1			A	G
030 EL ABADIA	FW	241080	1625	15	4.1			A	G
031 EL ABADIA	UT	241080	2331	11	3.6			A	G
072 EL ADADIA	NC	241080	2771	11	3.4			A	G
	EU	241000	2331	4 4	3.0	12			6
		241000	2001	* *	3+0				0
OJA EL ABADIA	NC	251080	0423	č	3+0			n A	0
OSS EL ABADIA	R9	251080	0423	0	3+0			n A	0
USO EL ABADIA	EW	201080	0423	10	3+0				0
037 EL ABADIA	V1	251080	0516	17	3+/			m	6
038 EL ABADIA	NS	251080	0516	1/	3.1			n A	6
039 EL ABADIA	EW	251080	0516	1/	3.1			n .	5
040 EL ABADIA	VT	251080	1246	<u>7</u>	3.1			A	G
041 EL ABADIA	NS	251080	1246	7	3.1			A	G
042 EL ABADIA	EW	251080	1246	7	3.1			A	G
043 EL ABADIA	VT	251080	1304	10	3.5			A	G
044 EL ABADIA	NS	251080	1304	10	3.5			A	G
045 EL ABADIA	E₩	251080	1304	10	3.5			A	G
046 EL ABADIA	VT	251080	1902	12	2.7			A	G
047 EL ABADIA	NS	251080	1902	12	2.7			A	G
048 EL ABADIA	EW	251080	1902	12	2.7			A	G
049 EL ABADIA	UT	261080	0228	21	4.5			A	G
050 EL ABADITA	NS	261080	0228	21	4.5			A	G
051 EL ABADIA	FW	261080	0228	21	4.5			A	G
052 EL ABADIA	UT	261080	0554		3.0			A	G
OSZ EL ADADIA	NC	241090	0554	-	3.0			A	6
	EU	261000	0554	7	3.0			A	G
		271000	0770	77	4.2			A	G
	NC	271000	0770	3/	4.2			A	6
ODO EL MEMDIM	CN CU	271080	0338	3/	4+2			A	6
US/ EL ABADIA	EW	2/1080	0338	3/	4+2			M	0
058 EL ABADIA	VT	281080	0018	17	3.7			n	6
059 EL ABADIA	NS	281080	0018	17	3.7			A	6
060 EL ABADIA	ΕW	281080	0018	17	3.7			A	G
061 EL ABADIA	VT	281080	2035	6	3.7			A	G
062 EL ABADIA	NS	281080	2035	6	3.7			A	G
063 EL ABADIA	EW	281080	2035	6	3.7			A	G
064 EL ABADIA	VΤ	291080	0130	9	4.4			A	G

065 EL ABADIA	NS	291080 0130	9 4.4	A G
066 EL ABADIA	EW	291080 0130	9 4.4	A G
067 EL ABADIA	VT	301080 0102	6 3.4	A G
068 EL ABADIA	NS	301080 0102	6 3.4	A G
069 EL ABADIA	E₩	301080 0102	6 3.4	A G
070 EL ABADIA	VT	301080 0835	8 4.0	A G
071 FL ABADITA	NS	301080 0835	8 4.0	AG
072 EL ABADIA	FU	301080 0835	8 4.0	A G
077 EL ABADITA		301000 2044	11 7 0	A G
		701000 2040	11 7 0	A C
074 EL ABADIA	NS	301080 2048	11 3+7	n 0
0/5 EL ABADIA	EW	301080 2046	11 3.9	M G
076 EL ABADIA	VT	301080 2338	10 5.0	AU
077 EL ABADIA	NS	301080 2338	10 5.0	A G
078 EL ABADIA	EW	301080 2338	10 5.0	A G
079 EL ABADIA 1	VT	301080 2342	0 0.0	A G
080 EL ABADIA 1	NS	301080 2342	0 0.0	A G
081 FL ABADIA 1	EW	301080 2342	0 0.0	AG
082 EL ABADITA 2	UT	301080 2342	0 0.0	A G
087 EL ABADITA 2	NS	301080 2342	0 0.0	A G
COA EL ADADIA O		701000 2342	0 0 0	A G
V84 EL ABADIA 2	EW	301080 2342	0 0.0	н U
085 EL ABADIA 3	VI	301080 2342	0 0.0	m G
086 EL ABADIA 3	NS	301080 2342	0 0.0	AG
087 EL ABADIA 3	EW	301080 2342	0 0.0	A G
088 EL ABADIA	VT	311080 0135	18 3.9	A G
089 EL ABADIA	NS	311080 0135	18 3.9	A G
090 EL ABADIA	E₩	311080 0135	18 3.9	A G
091 EL ABADIA	VT	311080 0553	10 3.7	A G
092 EL ABADIA	NS	311080 0553	10 3.7	A G
097 EL ABADTA	FW	311080 0553	10 3.7	A G
ODA EL ADADIA		311000 1970	0 7.7	AG
		311000 1030	9 3 1 7	
095 EL ABADIA	C M	311080 1830	7 3+7	A 0
096 EL ABADIA	ΕW	311080 1830	9 3.1	n G
097 EL ABADIA	VT	311080 2100	9 3+5	AG
098 EL ABADIA	NS	311080 2100	9 3.5	A G
099 EL ABADIA	EW	311080 2100	9 3.5	A G
100 EL ABADIA	VT	011180 0042	7 2.6	A G
101 EL ABADIA	NS	011180 0042	7 2.6	A G
102 EL ABADIA	EW	011180 0042	7 2.6	A G
103 EL ABADIA	UT	011180 1026	0 0.0	AG
104 EL ABADIA	NS	011180 1026	0 0.0	A G
105 EL ABADITA	FU	011180 1026	0 0.0	AG
104 EL ADADIA		011100 1020	0 7 1	A G
103 EL ADADIA	×7	011100 1730	7 3+4	
107 EL ABADIA	NS .	011180 1738	9 3+4	m G
108 EL ABADIA	E₩	011180 1738	9 3+4	A U
109 EL ABADIA	VT	021180 0521	12 3.9	A G
110 EL ABADIA	NS	021180 0521	12 3.9	A G
111 EL ABADIA	E₩	021180 0521	12 3.9	A G
112 EL ABADIA	VT	031180 0721	11 3.5	A G
113 EL ABADIA	NS	031180 0721	11 3.5	A G
114 FL ABADIA	FW	031180 0721	11 3.5	A G
115 EL ABADITA	UT	051100 0974	4 2.9	AG
114 EL ADADIA	NC	051100 0700	1 2 9	AG
	RO	031100 0730	4 2+7	
117 EL ABADIA	EW	051180 0936	4 2+9	m G
118 EL ABADIA	V1	0/1180 160/	24 3.9	A G
119 EL ABADIA	NS	071180 1607	24 3.9	A G
120 EL ABADIA	E₩	071180 1607	24 3.9	A G
121 EL ABADIA	VT	081180 0207	22 4.2	A G
122 EL ABADIA	NS	081180 0207	22 4.2	A G
123 EL ABADIA	E₩	081180 0207	22 4.2	A G
124 EL ABADIA	VT	081180 0754	30 5.1	A G
125 EL ABADIA	NS	081180 0754	30 5.1	A G
126 EL ABADIA	FW	081180 0754	30 5.1	AG
107 EL ADADIA		001100 1070	22 4 2	AG
100 EL ADADIA		001100 1030	22 4+2	A C
100 EL ADADIA	6 1	071180 1830	22 4+2	
ITA FF URUNIU	Eω	091180 1830	22 4.2	n U
130 EL ABADIA	VT	101180 0001	31 4.9	A G
131 EL ABADIA	NS	101180 0001	31 4.9	A G

132 EL ABADIA	EW	101180	0001	31 4.9		A G
177 EL ADADITA	UT	101180	0335	22 3.8		A G
	NC	101100	0000 0775	22 7 0		A C
134 EL ABADIA	CM	101180	0333	22 3+0		H 0
135 EL ABADIA	E₩	101180	0335	22 3.8		AU
136 EL ABADIA	VT	111180	0129	21 4.2		A G
137 EL ABADITA	NS	111180	0129	21 4.2		A G
	EU	111100	0100	21 1 2		A C
138 EL ABADIA	EΨ	111180	0127	21 4 · 2		m 0
139 EL ABADIA	VT	121180	1922	5 2.9		A G
140 EL ABADIA	NS	121180	1922	5 2.9		AG
141 EL ABADITA	FW	121180	1922	5 2.9		A G
		101100	075/	21 4 2		A C
142 EL ABADIA	VI	121180	2300	21 4.2		m G
143 EL ABADIA	NS	121180	2356	21 4.2		A G
144 EL ABADIA	EW	121180	2356	21 4.2		A G
145 EL ABADITA	UT	131180	2352	0 0.0		AG
	NC	171100	2752	0 0 0		AG
140 EL HBHDIN	143	131100	2002	0 0.0		1 0
147 EL ABADIA	EW	131180	2352	0 0.0		A G
148 EL ABADIA	VT	151180	0012	8 4.0		A G
149 EL ABATITA	NS	151180	0012	8 4.0		A G
1EO EL ADADIA	EU	151100	0012	0 1 0		AG
IJV EL HBHDIN		101100	0012	0 4.0		
151 EL ABADIA	VT	151180	0658	8 3.2		A G
152 EL ABADIA	NS	151180	0658	8 3.2		A G
153 EL ABADIA	EW	151180	0458	8 3.2		A G
	117	101100	4/4/	~ ~ ~		A C
154 EL ABADIA	V1	191180	1919	0 0.0		n u
155 EL ABADIA	NS	191180	1616	0 0.0		A G
156 EL ABADIA	EΨ	191180	1616	0 0.0		A G
157 EL ABADIA	UT	211180	0811	0 0.0		AG
	NC	211100	0011	0 0 0		A G
108 EL ABADIA	C S	211100	0811	0 0.0		H U
159 EL ABADIA	Eω	211180	0811	0 0.0		A G
160 EL ABADIA	VT	231180	1703	0 0.0		A G
161 EL ABADIA	NS	231180	1703	0 0.0		A G
	EU	271100	1707	0 0 0		AG
102 EL HDHDIN	E.44	231100	1703	0 0.0		
163 OULED ABBES	VT	211080	1222	0 0.0		m G
164 OULED ABBES	NS	211180	1222	0 0.0		MG
165 DULED ABBES	EΨ	211180	1222	0 0.0		MG
1// OULED ADDEC	117	211090	1074	500		MG
100 UULED HABES	VI.	211000	1020	5 0.0		
167 DULED ABBES	NS	211090	1826	5 0.0		m u
168 OULED ABBES	EW	211080	1826	5 0.0		MG
149 DULED ABRES	UT	211080	1916	5 2.3		MG
	NC	211000	1014	5 0 7		MG
170 DULED MBBES	NS .	211000	1710	J 2+3		11 0
1/1 UULED ABBES	EW	211080	1916	5 2.5		m u
172 OULED ABBES	VT	221080	0658	0.0		MG
173 OULED ABBES	NS	221080	0658	0 0.0		MG
174 OULED ADDEC	FU	221090	0459	0 0 0		MG
174 UULED HDBES	E.W	221000	0000			
175 DULED ABBES	VI	221080	0704	1 2.1		m G
176 DULED ABBES	NS	221080	0704	7 2.7		MG
177 DULED ABBES	EW	221080	0704	7 2.7		MG
170 OULED ADDES	UT	221090	1220	24 3.9		MG
178 DULED HBBES	N.C	221000	1000	20 0.0		× C
1/4 UULED ABBES	NS .	221080	1227	20 3.0		
180 DULED ABBES	E₩	221080	1229	26 3.8		m G
181 OULED ABBES	VT	231080	0953	36 4.5		MG
192 OULED ARRES	NS	231080	0958	36 4.6		MG
		071000	0050	7/ 1/		× c
183 UULED ABBES	EW	231080	0958	30 4+0		n o
184 OULED ABBES	VT	241080	1258	23 4.2		MG
185 OULED ABBES	NS	241080	1258	23 4.2		MG
194 OULET ARRES	FM	241080	1258	23 4.2		MG
	117	241000	1710	27 0 0		× c
18/ UULED ABBES	VI	241080	1312	23 0.0		
188 OULED ABBES	NS	241080	1312	23 0.0		m G
189 OULED ABBES	EΨ	241080	1312	23 0.0		MG
190 DULED ABBES	UT	241080	1625	24 4.1	# 1 1	MG
101 OULED ADDEC	NC	241000	1405	74 4 1		MC
171 OULED MBDES	RO I	241000	1020	24 4+1		X 0
192 UULED ABBES	EW	241080	1625	24 4.1		m u
193 OULED ABBES	VT	241080	2331	11 3.6		MG
194 DULED ABBES	NS	241080	2331	11 3.6		MG
105 OULED ADDEC	FU	241000	2771	11 7 4		MG
173 UULED MBBES		241000	2001	1 0+0		M C
140 DOLED UBBER	VI.	251080	0423	0 3.3		
197 OULED ABBES	NS	251080	0423	6 3.3		MG
198 OULED ABBES	EW	251080	0423	6 3.3		MG
		and a second sec				

ų,

199	OULED ABBES		VT NS	261080 261080	0228	29 29	4.5				M	G
201	OULED ABBES		EW	261080	0228	29	4.5				М	G
202	OULED ABBES		VT	261080	1409	0	0.0				M	G
203	OULED ABBES		NS	261080	1409	0	0.0				M	G
204	OULED ABBES		EW	261080	1409	0	0.0				M	G
205	OULED ABBES		VT	271080	0740	6	3.6				M	G
206	OULED ABBES		NS	271080	0740	6	3.6				M	G
207	OULED ABBES		EW	271080	0740	6	3+6			1	M	6
208	UULED ABBES		VI	301080	2338	24	5.0				۳ M	G
209	UULED ABBES		NS EU	301080	2338	24	5.0				сі Ж	G
210	OULED ABBES		LIT	071190	1409	A1	7.0				M	G
212	OULED ABBES		NS	071180	1408	41	3.9				M	G
213	OULED ABBES		EW	071180	1608	41	3.9				M	G
214	OULED ABBES		VT	081180	0207	29	4.2				М	G
215	OULED ABBES		NS	081180	0207	29	4.2				М	G
216	OULED ABBES		EW	081180	0207	29	4.2				М	G
217	OULED ABBES		VT	081180	0754	13	5.1				M	G
218	OULED ABBES		NS	081180	0754	13	5.1				M	G
219	OULED ABBES		EW	081180	0754	13	5.1				M	G
220	OULED ABBES		VT	091180	0509	2	3.1				m M	0
221	UULED ABBES		EN EN	091180	0509	5	3+1				M	G
222	OULED ABBES		UT	091180	1830	20	4.2				M	G
224	OULED ABBES		NS	091180	1830	29	4.2				M	G
225	OULED ABBES		EW	091180	1830	29	4.2				M	G
226	OULED ABBES		VT	101180	0001	30	4.9				М	G
227	OULED ABBES		NS	101180	0001	30	4.9				М	G
228	OULED ABBES		EW	101180	0001	30	4.9				M	G
229	OULED ABBES		VT	121180	2356	5	4.2	•			М	G
230	OULED ABBES		NS	121180	2356	5	4.2				M	G
231	OULED ABBES		EW	121180	2356	5	4.2		2/		M	G
232	OULED ABBES		VT	151180	0012	19	4.9				m	6
233	OULED ABBES		RS EU	151180	0012	10	4+7				M	G
234	OULED ABBES		UT	231180	1703	0	0.0				м	G
236	OULED ABBES		NS	231180	1703	õ	0.0				M	G
237	OULED ABBES		EW	231180	1703	0	0.0				М	G
238	CHAMP LIBRE(PISTE	2)	VT	251180	1915	0	0.0					
239	CHAMP LIBRE(PISTE	2)	NS	251180	1915	0	0.0					
240	CHAMP LIBRE(PISTE	2)	EW	251180	1915	0	0.0					
241	RADIER (PISTE 1)		VT	251180	1915	0	0.0					
242	RADIER (PISTE 1)		NS	251180	1915	0	0.0					
243	RADIER (PISTE 1)		EW	251180	1915	0	0.0					
244	CHAMP LIBRE(PISTE	2)	NC	201100	0130	0	0.0					
240	CHAMP I TREE (PISTE	2)	FW	261180	0130	õ	0.0					
247	RADIER (PISTE 1)	- /	UT	261180	0130	õ	0.0					
248	RADIER (PISTE 1)		NS	261180	0130	Ō	0.0					
249	RADIER (PISTE 1)		EW	261180	0130	0	0.0					
250	OUED FODDA		VT	221080	04	0	0.0				R	G
251	OUED FODDA		NS	221080	04	0	0.0				R	G
252	OUED FODDA		EW	221080	04	0	0.0				R	G
253	OUED FODDA		VT	221080	0644	0	0.0				ĸ	6
254	UUED FUDDA		NS FU	221080	0644	0	0.0				n D	G
200	OUED FODDA		EW	221080	0450	0	0.0				R	0
257	OUED FODDA		NS	221080	0458	0	0.0				B	G
258	OUED FODDA		EW	221080	0658	ŏ	0.0				8	G
259	OUED FODDA		VT	221080	1831	0	0.0				R	G
260	OUED FODDA		NS	221080	1831	0	0.0				R	G
261	OUED FODDA		EW	221080	1831	0	0.0				R	G
262	OUED FODDA		VT	221080	2026	0	0.0				R	G
263	OUED FODDA		NS	221080	2026	0	0.0				R	G
264	OUED FODDA		EW	221080	2026	20	0.0				50	G
200	OUED FUDDA		V I	221080		- U	2+2				0	U

.

266	OUED	FODDA				NS	221080	2244	28	3.5			F	3	G
26/	OUED	FUDDA				EW	221080	2244	28	5.5			i E	n D	6
200	OUED	FODDA				NS	231080	0643	31	3.7			r F	2	G
270	OUET	FODDA				FU	231080	0443	31	3.7			, F	ż	G
271	OUED	FODDA				UT	231080	0957	0	0.0			5	2	6
272	DUED	FODDA				NS	231080	0957	õ	0.0			F	ż	G
273	OUED	FODDA				FW	231080	0957	0	0.0			F	R	G
274	OUED	FODDA				UT	231080	0958	õ	0.0			F	÷.	G
275	OUED	FODDA				NS	231080	0958	õ	0.0			Ē	R	G
276	OUET	FODDA				EW	231080	0958	· ō	0.0			F	3	G
277	OUED	FODDA	1			UT	241080	0101	0	0.0	~		F	3	G
278	OUED	FODDA	1			NS	241080	0101	ō	0.0			F	ŝ	G
279	OUED	FODDA	1			EW	241080	0101	ō	0.0			F	3	G
280	DUED	FODDA	2			VT	241080	0101	0	0.0			F	3	G
281	OUED	FODDA	2			NS	241080	0101	0	0.0			F	3	G
282	OUED	FODDA	2			EW	241080	0101	0	0.0			F	3	G
283	OUED	FODDA				VT	241080	1257	0	0.0			F	3	G
284	OUED	FODDA				NS	241080	1257	0	0.0			F	3	G
285	OUED	FODDA				EΨ	241080	1257	0	0.0			F	8	G
286	DUED	FODDA				VT	241080	1258	38	4.2			F	3	G
287	OUED	FODDA				NS	241080	1258	38	4.2			F	3	G
288	OUED	FODDA				E₩	241080	1258	38	4.2			F	3	G
289	OUED	FODDA				VT	241080	1303	0	0.0			F	3	G
290	OUED	FODDA				NS	241080	1303	0	0.0			F	S.	G
291	OUED	FODDA				EW	241080	1303	0	0.0			F	8	G
292	OUED	FODDA				VT	241080	1312	18	0.0			F	8	G
293	OUED	FODDA				NS	241080	1312	18	0.0			F	3	G
294	DUED	FODDA				EΨ	241080	1312	19	0.0			F	3	G
295	OUED	FODDA				VT	241080	1625	38	4.1			F	3	G
296	DUED	FODDA				NS	241080	1625	38	4.1			F	3	G
297	OUED	FODDA				EW	241080	1625	38	4.1			F	3	G
298	OUED	FODDA				VT	241080	2331	26	3.6			F	3	G
299	OUED	FODDA		2		NS	241080	2331	26	3.6			F	3	0
300	OUED	FODDA				EW	241080	2331	26	3.6			F	3	G
301	OUED	FODDA				VT	251080	0423	21	3+3			F	3	G
302	OUED	FODDA				NS	251080	0423	21	3.3			F	š	G
303	OUED	FODDA				EΨ	251080	0423	21	3.3			5	s.	G
304	OUED	FODDA				VT	251080	0516	41	3.1				Ś	6
305	DUED	FOUDA				NS	251080	0516	41	3./			1	Š.	0
306	DUED	FUDDA				EΨ	251080	0518	41	3.7	955		r	5	0
307	OUED	FODDA				NC	251080	1902	30	2 + /			r 5	5	G
308	OUED	FUDDA				69	251080	1702	30	2+1) 5	0
307	OUED	FODDA				EW	201080	1702	20	2+/ A E) ;	0
310	DUED	FODDA				NG	261080	0228	40	4+5			r F	2	G
210	OUED	FODDA				EU	261080	0220	45	4+5			5	3	c
313	DUED	FODDA				UT	261080	0554	23	3.0			F	2	G
314	OUED	FODDA				NS	261080	0554	23	3.0			F		G
315	OUED	FODDA				FW	261080	0554	23	3.0			F	ŝ	G
316	DUED	FODDA				UT	261080	0642	27	3.2			F	3	G
317	OUED	FDDDA				NS	261080	0642	27	3.2			F	3	G
318	OUED	FODDA				EW	261080	0642	27	3.2			F	8	G
319	OUED	FODDA				VT	271080	0338	24	4.2			F	R	G
320	OUED	FODDA				NS	271090	0338	24	4+2			F	3	G
321	OUED	FODDA				E₩	271080	0338	24	4.2			F	3	G
322	OUED	FODDA				VT	271080	0740	25	3.6			F	3	G
323	OUED	FODDA				NS	271080	0740	25	3.6			F	8	G
324	OUED	FODDA				EW	271080	0740	25	3.6			F	3	G
325	OUED	FODDA				VT	281080	0018	41	3.7		÷	F	8	G
326	OUED	FODDA				NS	281080	0018	41	3.7			F	3	G
327	OUED	FODDA				EΨ	281080	0018	41	3.7			F	3	G
328	OUED	FODDA				VT	291080	0130	34	4.4			F	8	G
329	OUED	FODDA				NS	291080	0130	34	4.4			F	8	G
330	OUED	FODDA				E₩	291080	0130	34	4.4			F	R	G
331	OUED	FODDA				VT	301080	0102	30	3.4			F	š	G
332	OUED	FODDA				NS	301080	0102	30	3.4			F	r	G

333	OUED	FODDA				EW	301080	0102	30	3.4				R	G
334	OUED	FODDA				VT	301080	0135	30	2.9				R	G
335	OUED	FODDA				NS	301080	0135	30	2.9				R	G
336	OUED	FODDA				EΨ	301080	0135	30	2.9				R	G
337	OUED	FODDA	1			VT	301080	0324	0	0.0				8	G
338	OUED	FODDA	1			NS	301080	0324	0	0.0				R	G
339	OUED	FODDA	1			EW	301080	0324	0	0.0				R	-G
340	OUED	FODDA	2			VT	301080	0324	0	0.0				R	G
341	OUED	FODDA	2			NS	301080	0324	0	0.0				R	G
342	OUED	FODDA	2			EW	301080	0324	0	0.0				R	G
343	OUED	FODDA				VT	301080	0835	33	4.0				R	G
344	OUED	FODDA				NS	301080	0835	33	4.0				R	G
345	OUED	FODDA				EW	301080	0835	33	4.0				R	G
346	OUED	FODDA				VT	301080	1405	0	0.0				R	G
347	OUED	FODDA				NS	301080	1405	0	0.0				R	G
348	OUED	FODDA				Eω	301080	1405	0	0.0				R	G
349	OUED	FODDA				VT	301080	1510	0	0.0				R	G
350	OUED	FODDA				NS	301080	1510	0	0.0				8	G
351	OUED	FODDA				EW	301080	1510	0	0.0				R	G
352	OUED	FODDA				VT	301080	2046	36	3.9				R	G
353	OUED	FODDA				NS	301080	2046	36	3.9				R	G
354	OUED	FODDA				EW	301080	2046	36	3.9				B	G
355	OUED	FODDA				VT	301080	2338	35	5.0				R	G
356	OUED	FODDA				NS	301080	2338	35	5.0				R	G
357	OUED	FODDA				EW	301080	2338	35	5.0				R	G
358	OUED	FODDA				VT	311080	0135	23	3.9				R	G
359	OUED	FODDA				NS	311080	0135	23	3.9				R	G
360	OUED	FODDA				EW	311080	0135	23	3.9				R	G
361	OUED	FODDA				VT	311080	1242	0	0.0				B	G
362	DUED	FODDA				NS	311080	1242	0	0.0		0		R	G
363	OUED	FODDA				EW	311080	1242	0	0.0				B	G
364	OUED	FODDA				νT	311080	2051	23	3+1	10			R	G
365	OUED	FODDA				NS	311080	2051	23	3.1				B	G
366	OUED	FODDA				EW	311080	2051	23	3.1				R	G
367	OUED	FODDA				UT	311080	2100	31	3.5				B	G
368	OUED	FODDA				NS	311080	2100	31	3.5				B	G
369	OUED	FODDA			÷ ,	EΨ	311080	2100	31	3.5				B	G
370	OUED	FODDA				UT	011180	1026	0	0.0				B	G
371	OUED	FODDA				NS	011180	1026	0	0.0				B	G
372	OUED	FODDA		2		EW	011180	1026	ō	0.0				B	G
373	OUED	FODDA				VT	011180	1027	0	0.0				B	G
374	OUED	FODDA				NS	011180	1027	0	0.0				B	G
375	OUED	FODDA				EW	011180	1027	0	0.0				R	G
376	OUED	FODDA				UT	011180	1058	41	3.7				B	G
377	OUED	FODDA				NS	011180	1058	41	3.7				B	G
378	OUED	FODDA				EW	011180	1058	41	3.7				R	G
379	OUED	FODDA				VT	011180	1738	32	3.4				B	G
380	OUED	FODDA				NS	011180	1738	32	3.4				R	G
381	OUED	FODDA				EW	011180	1738	32	3.4				8	G
382	OUED	FODDA				VT	021180	0521	33	3.9				R	G
383	OUED	FODDA				NS	021180	0521	33	3.9				R	G
384	OUED	FODDA				EW	021180	0521	33	3.9				R	G
385	OUED	FODDA				VT	051180	0542	41	3.8				R	G
386	OUED	FODDA				NS	051180	0542	41	3.8				R	G
387	OUED	FODDA				EΨ	051180	0542	41	3.8				B	G
388	OUED	FODDA				VT	081180	0207	0	4.2				B	G
389	OUED	FODDA				NS	081180	0207	0	4.2				R	G
390	OUED	FODDA				ΕW	081180	0207	0	4.2				R	G
391	OUED	FODDA				VT	081180	0754	0	5.1				R	G
392	OUED	FODDA				NS	081180	0754	0	5.1				R	G
393	OUED	FODDA				E₩	081180	0754	0	5.1			s.,	R	G
394	OUED	FODDA				VT	091180	1830	45	4.2				R	G
395	OUED	FODDA				NS	091180	1830	45	4.2				R	G
396	OUED	FODDA				EW	091180	1830	45	4.2				R	G
397	OUED	FODDA				VT	101180	0001	51	4.9				R	G
398	OUED	FODDA				NS	101180	0001	51	4.9				R	G
399	OUED	FODDA				E₩	101180	0001	51	4.9				R	G

400	OUED	FODDA		VT	101180	0335	44	3.8	R	G
401	OUED	FODDA		NS	101180	0335	44	3.8	R	G
402	OUED	FODDA		EW	101180	0335	44	3.8	R	G
403	OUED	FODDA		VT	101180	0748	0	0.0	R	G
404	OUED	FODDA		NS	101180	0748	0	0.0	R	G
405	OUED	FODDA		EΨ	101180	0748	0	0.0	R	G
406	OUED	FODDA		VT	101180	0850	0	0.0	R	G
407	OUED	FODDA		NS	101180	0850	0	0.0	R	G
408	DUED	FODDA		EΨ	101180	0850	0	0.0	R	G
409	OUED	FODDA		VT	101180	1440	22	3.5	R	G
410	OUED	FODDA		NS	101180	1440	22	3.5	R	G
411	OUED	FODDA		EΨ	101180	1440	22	3.5	R	G
412	OUED	FODDA		VT	121180	1224	0	0.0	R	G
413	OUED	FODDA		NS	121180	1224	0	0.0	R	G
414	OUED	FODDA		Eω	121180	1224	0	0.0	R	G
415	OUED	FODDA		VT	121180	1922	25	2.9	R	G
415	OUED	FODDA		NS	121180	1922	25	2.9	B	G
417	OUED	FODDA		EW	121180	1922	25	2.9	B	G
418	OUED	FODDA		VT	121180	2356	24	4+2	R	G
419	OUED	FODDA		NS	121180	2356	24	4+2	R	G
420	OUED	FODDA		EΨ	121180	2356	24	4+2	R	G
421	OUED	FODDA		VΤ	131180	2352	0	0+0	R	G
422	OUED	FODDA		NS	131180	2352	0	0.0	R	G
423	OUED	FODDA		EΨ	131180	2352	0	0.0	R	G
424	OUED	FODDA		VT	141180	0945	24	3+0	ĸ	6
425	OUED	FODDA		NS	141180	0945	24	3.0	R	U
426	OUED	FODDA		EΨ	141180	0945	24	3.0	R	G
427	OUED	FODDA		VT	141180	1245	0	0.0	R .	5
428	OUED	FODDA		NS	141180	1245	0	0.0	R	6
429	OUED	FOUDA		EΨ	141180	1245	0	0.0	R	6
430	OUED	FODDA		ŲΤ	151180	0012	22	4.0	R.	0
431	OUED	FODDA		NS	151180	0012	22	4.0	R	6
432	OUED	FODDA		EΨ	151180	0012	22	4.0	R	G
433	OUED	FODDA		VT	151180	0658	24	3.2	R	U
434	OUED	FODDA	*	NS	151180	0458	24	3+2	R	0
435	OUED	FODDA		EΨ	151180	0658	24	3.2	R	G

÷
NR .	STANDORT		/CF	DATUM .	ZEIT/	/EPD	/MAG/	EPI/	INT/AMA>	(/SC/
001	JUNGINGEN		VT	110277	1833		3.6			
002	JUNGINGEN		NS	110277	1833		3.5			
003	JUNGINGEN		EW	110277	1833		3.6			
004	JUNGINGEN		VT	160178	1809		3.5			
005	JUNGINGEN	<u>v</u> .	NS	130178	1809		3.5			
006	JUNGINGEN	e.	Eω	160178	1809		3.5			
007	JUNGINGEN		VT	160178	2256		3.6			
008	JUNGINGEN		NS	160178	2256		3.6			
009	JUNGINGEN		EΨ	160178	2256		3.6			
010	JUNGINGEN		VT	060278	0455		3.1			
011	JUNGINGEN		NS	060278	0655		3 . 1			
012	JUNGINGEN		EW	060278	0655		3 + 1	8		
013										
014				*						
015										
016		20 								
017										
018										
019	UINGINGEN		UT	250978	0824	9	3.2			
020	UNGINGEN		NS	250978	0874	ò	3.2			
021	UNGINGEN		EU	250978	0824	9	3.2			
022	JOROTROEK		L ₩	200770	1004	1	0+2			
007										
020										
024	UNICTNOCN		117	200070	0140	4.4	7 0			
020	JUNCTNOCH		21	290978	0142	11	3.0			
028	JUNGINGEN		69	290978	0142	11	3+0			
02/	JUNGINGEN		∈₩	2707/8	0142	11	3+0			
028										
029										
030						1				
031	JUNGINGEN		VI	0610/8	1434	6	3.3			
032	JUNGINGEN		NS	061078	1434	6	3.3			
033	JUNGINGEN		EW	061078	1434	6	3+3			
034	JUNGINGEN		VT	071078	0936	6	3.3			
035	JUNGINGEN		NS	071078	0936	6	3.3			
036	JUNGINGEN		EΨ	071078	0936	6	3.3			
037	JUNGINGEN		VT	101078	1303	6	3.1			
038	JUNGINGEN		NS	101078	1303	6	3.1			
039	JUNGINGEN		EW	101078	1303	6	3 + 1			۰.
040	JUNGINGEN		VT	200879	1005	8	2.1	1.0		
041	JUNGINGEN		NS	200879	1005	8	2.1	1.0		
042	JUNGINGEN		EΨ	200879	1005	8	2.1	1.0		
043	JUNGINGEN		VT	010480	1319	2	3.3	3.0		
044	JUNGINGEN		NS	010480	1319	2	3.3	3.0		
045	JUNGINGEN		EW	010480	1319	2	3.3	3.0		
046	JUNGINGEN		VT	210480	1808	5	3.5	5.0		
047	JUNGINGEN		NS	210480	1808	5	3.5	5.0		
048	JUNGINGEN		E₩	210480	1808	5	3.5	5.0		
049	JUNGINGEN		VT	291180	0630	4	2.5	2.0		
050	JUNGINGEN		NS	291180	0630	4	2.5	2.0		
051	JUNGINGEN		EW	291180	0630	4	2.5	2.0		

+ - -

INSTITUT FÜR METEOROLOGIE UND GEOPHYSIK DER JOHANN WOLFGANG GOETHE-UNIVERSITÄT

Feldbergstraße 47 6000 FRANKFURT a. M.-1 Telefon 798 2375

REALISTISCHE SEISMISCHE LASTANNAHMEN FÜR BAULICHE ANLAGEN MIT ERHÖHTEM SEKUNDÄRRISIKO

ANHANG 4

zum

ABSCHLUSSBERICHT

VERGLEICH VERSCHIEDENER UNTERGRUNDKLASSIFIZIERUNGEN

- H. Berckhemer
- J. Kopera

VERGLEICH VERSCHIEDENER UNTERGRUNDKLASSIFIZIERUNGEN

1. Hayashi, S., H.Tsuchida and E.Kurata, 1971 [3.11] 3 Untergrundklassen (vgl. Abb 2): A: = " Very dense sands and gravels " (Sehr dichte, verfestigte Sande und Kiese) B: = " Soils of intermediate characteristics " (Untergrund mit mittlerem Verfestigungsgrad) C: = " Extremely loose soils " (Extrem weiche, unverfestigte Böden) Methode: Mittelung der auf die maximale Beschleunigung normalisierten Beschleunigungsantwortspektren 61 Akzelerogramme von 38 Japan-Beben, darunter viele mit Spitzenbeschleunigungen von $a_{max} = 0,02 - 0,05 g$. Bemerkungen: - relativ niedriges Beschleunigungsniveau - sehr begrenzter Datenumfang für einige Untergrundverhältnisse. 2.Newmark, N.M. and W.J. Hall, 1969 (Ref. 1) 3 Untergrundklassen durch Einführung von Schätzwerten berücksichtigt: Soft ground 1,5 Firm soil: soft rock 1,0 Hard rock 0.67 Tab.1: "Newmark's site factors " 2.2 Newmark, N.M., J.A. Blume and K.Kapur, 1973 [3.13]

2 Untergrundklassen: A: = Alluvium B: = Rock sites - 1 -

Methode:

Tatsächlich wurden 2 unabhängige Studien durchgeführt:

- eine unter Verwendung von 33 Erdbebenregistrierungen mit auf die maximale Bodenbeschleunigung normalisierten Antwortspektren
- eine weitere von 28 Registrierungen, normalisiert bezüglich der maximalen Bodenschwinggeschwindigkeit v_{max}.

Beide Studien führten im wesentlichen zu guter Übereinstimmung. Aus der Interpretation der Spektren wurde von Newmark gefolgert, daß keine statistisch signifikanten Schlüsse aus der Untergrundeinteilung in Alluvium und Rock sites gezogen werden konnten. Alle Spektren, unabhängig von den Standortverhältnissen, Erdbebenmagnitude und makroseismischer Intensität wurden daraufhin zusammen betrachtet und führten zu dem bezüglich der maximalen Beschleunigung normalisierten 84% Fraktile-Spektrum (AEC-Regulatory Guide Spectrum), vgl.Abb.³.

Bemerkungen:

Das AEC-Regulatory Guide Spectrum ist ein sogn. " site- independent spectrum" und nach der Auffassung von Seed et al.,1974 wahrscheinlich repräsentativ für "stiff soils ".

3. Seed, H.B., C.Ugas and J.Lysmer, 1974 [3.12]

4 Untergrundklassen (vgl. Abb. 1)

- (1): = Rock (Fels)
- (2): = Stiff soils less than about 150 ft deep (Steife Böden weniger als etwa 45m mächtig)
- (3): = Deep cohesionless soils with depths greater than about 250 ft (Unverfestigte Böden mit einer Mächtigkeit größer als etwa 75m)
- (4): = Soil deposits consisting of soft to medium stiff clays with associated strata of sand and gravels (Bodenablagerungen, bestehend aus weichen bis mittelsteifem Ton mit eingelagertem Sand und Kies)

- 2 -

Methode:

104 strong-motion records mit a_{max} ≥ 0,05g aus den westlichen U.S.A. und teilweise aus Japan wurden bearbeitet. Den 4 Klassen wurde folgende Datenbasis zugeordnet:

Klasse	Anzahl	der	Registrierungen
(1)	28		
(2)	31		
(3)	30		
(4)	15		
Summe	104		

Bemerkungen:

Abb. l zeigt die gemittelten und bezüglich der maximalen Bodenbeschleunigung normalisierten Beschleunigungs-Antwortspektren der 4 geologischen Standortklassen. Die Unterschiede im Spektralverlauf, abhängig von den Untergrundverhältnissen, sind deutlich erkennbar.

Ein Vergleich mit der Klassifikation A, B, C nach Hayashi et al. , 1971 zeigt:

Hayashi	et	al.,1971	Seed	et al	.,197	4		
(A)			(1)	& (2)		*		
(B)		€	(3)					
(C)		≘	(4)	liegt	aber	etwas	unterhalb	(C)

4. Untergrundklassifizierung der vorliegenden Studie

Klasse	Kennzeichen	v _p m/s	Anzahl der Registrierungen
A	<u>A</u> lluvium, Lockersedimente und Böden niedriger Impedanz, mindestens ≈ 5m mächtig	∠ 1000	24
м	Medium stiff, halbverfestigte Sedimente, weder (A) noch (R)	1000 - 3000	. 38
R.	<u>R</u> ock, gut verfestigtes, wenig poröses Gestein	≥3000	19
ĸ	Kristallines Grundgebirge (nur zu Vergleichszwecken)	≥ 4500	5

4 Untergrundklassen (vgl. Abb.

Die Zuordnung der Beschleunigungszeitverläufe zu den hier definierten Untergrundklassen wurde bereits in dem Kapitel Untergrundklassifizierung ausführlich beschrieben. Diese Klassifizierung lehnt sich an die oben erwähnten Untersuchungen an, unterscheidet sich jedoch in einigen Punkten von diesen, wie dies für die spezifische Fragestellung dieses Forschungsvorhabens angemessen schien (vgl. Abschnitt 2, Haupttext) In den Darstellungen der untergrundabhängigen mittleren Antwortspektren (Absch. 4.2) kommen diese Klassifizierungskriterien ebenso zum Ausdruck, wie die Regionale Beschränkung auf Standorte der Gegend Friaul in Norditalien. Letzeres und die geringe Zahl der Registrierungen, insbesondere der Klassen A u. R, lassen eine Erweiterung der Datenbasis im Anschluß an dieses Vorhaben wünschenswert erscheinen.

Zusätzliche Referenz:

Ref. 1: Newmark, N. M. and W. J. Hall: Seismic Design Criteria for Nuclear Facilities. 4th World Conf. Earthquake Eng., Santiago, Chile, 1969

Abb. 1 Mittlere Beschleunigungs-Antwortspekren für verschiedene Untergrundklassen, nach Seed et al., 1974

König und Heunisch Beratende Ingenieure

REALISTISCHE SEISMISCHE LASTANNAHMEN FÜR BAULICHE ANLAGEN MIT ERHÖHTEM SEKUNDÄRRISIKO

ANHANG 5

zum

ABSCHLUSSBERICHT

ZUSAMMENSTELLUNG VON FREIFELD-ANTWORTSPEKTREN

H. Klein

D. Hosser

ZUSAMMENSTELLUNG VON FREIFELD-ANTWORTSPEKTREN

In diesem Anhang sind analog zu Abschnitt 4.2 Freifeld-Antwortspektren für die drei Untergrundklassen M, R und A mit jeweils drei Intensitätsklassen für D = 4 % und D = 7 % Dämpfung zusammengestellt. Die Plotterzeichnungen enthalten in der Kopfzeile die Dämpfung D und in der zweiten Textzeile links die Bezeichnung der Untergrund- und Intensitätsklasse, z. B.:

> M 67: Untergrundklasse M Intensitätsklasse 1,6 ≤ I < 7</p>

Anschließend an die untergrundabhängigen Spektren folgen untergrundunabhängige Freifeld-Antwortspektren für die drei Intensitätsklassen und die beiden genannten Dämpfungswerte: hier ist die Untergrundklasse durch T gekennzeichnet.

Die Skalierungsfaktoren F sind den entsprechenden Diagrammen mit D = 5 in Abschnitt 4.2 bzw. 4.3 zu entnehmen. Gemittelte Pseudogeschwindigkeits-Spektren D = 4%

Ý.

Gemittelte Pseudogeschwindigkeits-Spektren_D = 4%

Frequenz [Hz]

10

10°

10-1

1.1

Frequenz [Hz]

Gemittelte Pseudogeschwindigkeits-Spektren D = 7%

Frequenz [Hz]

Gemittelte Pseudogeschwindigkeits-Spektren D = 7%

Gemittelte Pseudogeschwindigkeits-Spektren D = 4%

Gemittelte Pseudogeschwindigkeits-Spektren D = 4%

Gemittelte Pseudogeschwindigkeits-Spektren D = 4%

Gemittelte Pseudogeschwindigkeits-Spektren D = 7%

Gemittelte Pseudogeschwindigkeits-Spektren D = 4%

Gemittelte Pseudogeschwindigkeits-Spektren D = 4%

Gemittelte Pseudogeschwindigkeits-Spektren D = 4%

Gemittelte Pseudogeschwindigkeits-Spektren D = 7%

Gemittelte Pseudogeschwindigkeits-Spektren D = 7%

Gemittelte Pseudogeschwindigkeits-Spektren D = 4%

1.1

Gemittelte Pseudogeschwindigkeits-Spektren D = 7%

Freauenz

Francis

INSTITUT FOR GEOPHYSIK

UNIVERSITAT STUTTGART

REALISTISCHE SEISMISCHE LASTANNAHMEN FÜR BAULICHE ANLAGEN MIT ERHÖHTEM SEKUNDÄRRISIKO

ANHANG 6

zum

ABSCHLUSSBERICHT

BERECHNUNG SYNTHETISCHER BASISSPEKTREN

G. Schneider

Th. Kunze

Eingangsgrößen für das Modell Groß-Gerau des Basisspektrum

a) ML = 4.7Ahorner et al. (1970) $M_{\odot} = 1.63.10^{16} \text{ Nm}$ Zwischenbericht $G = 3.10^{10} \text{ N/m}^2$ $\bar{q}_0 = 10^{-1} \text{ m}$ $A_0 = 5.43 \cdot 10^6 m^2$ $l_0 = 3300 \text{ m}$ $w_o = 1650 \text{ m}$ rechteckiger Herd: $w_o = 0.5 \text{ l}_o$ $r_0 = 1320 \text{ m}$ $b_0 = 2330 \text{ m}$ $\bar{v}_{FO} = 0.8 \cdot v_s = 2640 \text{ m/s}$ ം = 0° $\varphi = 55^{\circ}$ $R_0 = 0.56$

b)

vs	=	3300	m/s
8	H	2700	kg/m³
Q _s	=	50 b:	zw. 200
₽ _E	=	2000	m
^z o	=	3000	m
s	=	3600	m

- 2 -

Eingangsgrößen für das Modell Albstadt des Basisspektrums

a) = 5,0 ML Turnovsky (1981) $E_{so} = 2,0 \cdot 10^{12} J$ $= 4,66 \cdot 10^{16}$ Nm M Turnovsky (1981) $G = 3 \cdot 10^{10} \text{ N/m}^2$ $\overline{q}_0 = 10^{-1} \text{ m}$ $A_0 = 1,73 \cdot 10^7 m^2$ Turnovsky (1981) i. = 5880 m $w_0 = 2940 \text{ m}$ r_o = 2350 m = 4160 mbo $= 0,8 \cdot v_s = 2640 \text{ m/s}$ v_{Fo} ~8 = 0° φ = 60° Ro = 0,49 b) v_s = 3300 m/s $= 2700 \text{ kg/m}^3$ 8 = 50 bzw. 200Qs = 3000 mRE $z_0 = 5500 \text{ m}$ = 6265 mS

- 3 -

a)

ML = 5,9 $E_{SO} = 2,24 \cdot 10^{13} J$ $M_{O} = 6,2 \cdot 10^{17} Nm$ G = $3.10^{10} N/m^{2}$ $\overline{q}_{O} = 4,6 \cdot 10^{-1} m$ $A_{O} = 4,5 \cdot 10^{7} m^{2}$ $l_{O} = 9500 m$ $w_{O} = 4740 m$ $r_{O} = 3785 m$ $b_{O} = 6700 m$ $v_{FO} = 0,8 \cdot v_{S} = 2640 m/s$ $A = 0^{\circ}$ $\varphi = 48^{\circ}$ $R_{O} = 0,67$

b)

vs	=	3300 m/s
8	=	2700 kg/m ³
Qs	=	50 bzw. 200
R _E	=	10.000 m
^z o	=	11.000 m
s	=	14.870 m

Geller (1976)

Mayer-Rosa & Cadiot (1979)

REALISTISCHE SEISMISCHE LASTANNAHMEN FÜR BAULICHE ANLAGEN MIT ERHÖHTEM SEKUNDÄRRISIKO

ANHANG 7

zum

ABSCHLUSSBERICHT

BERECHNUNG VON ÜBERTRAGUNGSFUNKTIONEN

H. Werkle

- G. Waas
- W. Weber

BERECHNUNG VON ÜBERTRAGUNGSFUNKTIONEN

A7.1 Vertikal propagierende SH-Wellen

$$\begin{array}{c|c}
\hline \hline U_{n} & \overline{U_{n}} &$$

- 1 -

mit den Randbealingungen

(8)

$$U(x_{1}=0, \pm) = 1$$

 $T(x_{1}=0, \pm) = 0$

und den Übergangsbedingungen

$$\vec{U}(x_{n}=h,t) = \vec{U}(x_{n+n}=0,t)$$

$$\hat{C}(x_{n}=h,t) = \hat{C}(x_{n+n}=0,t)$$

$$(10) \qquad \begin{array}{c} \ddot{U}_{H_{F}} = E_{H_{F}} + F_{H_{F}} \\ -T_{H_{F}} = 2kG \left(E_{H_{F}} - F_{H_{F}} \right) \end{array}$$

$$(1A) = \overline{U}_{Hr} + \overline{U}_{Hr} = \overline{U}_{Hr} + \overline{U}_{Hr}$$

$$- \overline{U}_{Hr} = \overline{U}_{Hr} + \overline{U}_{Hr} = \overline{U}_{Hr} + \overline{U}_{Hr}$$

Sei die Amplitude En der aus dem Halbraum einfallenden Welle bekannt, kann ü. berechnet werden:

(12)
$$\ddot{U}_0 = \frac{2ik_{Hr}G_{Hr}\cdot E_{Hr}}{-T_{Hr}+ik_{Hr}G_{Hr}}$$

Die Dömphing wird durch einen honeplexen
Hodul dangeodelli:
(A3)
$$G = G^* (A + i 2D)$$
 D^* Dömphingsmark, $G^* = reell$
(A4) $A = \frac{\omega}{V_s} = \frac{\omega}{\sqrt{\frac{\omega}{S}}} = \omega \sqrt{\frac{S}{G^*(A+i2D)}}$ (homplexe Wellenzahl)
 $u = e^{i\omega t} \left\{ E \exp(ikx) + F \exp(-ikx) \right\}$
mid $k = Re(k) + i Jm(k)$
outsieigende Welle $reflektierte Welle$
(A5) $u = e^{i\omega t} \left\{ E \exp(iRe(k) \cdot x) exp(-Jm(k)x) + F \exp(-iRe(k) \cdot x) exp(Jm(k)x) \right\}$

Dempfungsterm

$$nuit \quad k = \omega \sqrt{\frac{g}{G^*(A+i2D)}} = \frac{\omega}{V_i^*} \left\{ \frac{\sqrt{1+4D^2 + A}}{2(A+4D^2)} - \frac{i}{2} \sqrt{\frac{1}{2(A+4D^2)}} - \frac{i}{2(A+4D^2)} \right\}$$

$$(h) = -\frac{\omega}{V_i^*} \frac{\sqrt{1}{4+4D^2} - A}{\sqrt{2(A+4D^2)}}$$

Der Demplungs kann betreigt:
(16)
$$\exp\left(\frac{y_{m}(k) \cdot x}{k}\right) = \exp\left(-\frac{\omega}{v_{s}^{*}} \frac{\sqrt{1+4}}{\sqrt{2}(1+4)^{2}} \cdot x\right)$$

$$(\Lambda \overline{r}) \exp(\mathcal{I}_{m}(k) \cdot x) \approx \exp\left(-k^{*} \times \frac{\mathcal{D}}{\Lambda + 2\mathcal{D}^{2}}\right) \approx \exp\left(-k^{*} \times \mathcal{D}\right)$$
$$k^{*} = \frac{\omega}{V_{s}^{*}} = \omega \sqrt{\frac{g}{G^{*}}} \quad \text{reell}$$

A7.2 Schräg einfallende SV-, P- und SH-Wellen

Auf der Grundlage von Abschnitt 7.4 des Haupttextes wurden die Übertragungsmatrizen für die drei Wellenarten ermittelt. Sie sind in den nachfolgenden Tafeln jeweils getrennt für die viskoelastische Deckschicht und für den elastischen Halbraum zusammengestellt, und zwar in

Tafel	1	für	sv-	und	P-Wellen
Tafel	2	für	SH-V	Velle	en.

Tafel 1 Übertragungsmatrizen für SV- und P-Wellen

 $\begin{bmatrix} U_{1} \\ U_{1} \\ W_{1} \\ = \frac{1}{1+s^{2}} \cdot \begin{bmatrix} 2 \cdot \cos(krd) \\ -(1-s^{2}) \cdot \cos(ksd) \\ -(1-s$

Halbraum :

Bezeichnungen:

$$r = \sqrt[7]{\frac{1}{l_x^2} - 1} \qquad l_y = \frac{v_p^* \cdot k}{\omega} \qquad v_p^* = \frac{(n+2G)^*}{s} \qquad (n+2G)^* = (n+2G) \cdot (1+2\xi \cdot i)$$

$$s = \sqrt[7]{\frac{1}{m_x^2} - 1} \qquad m_x = \frac{v_s^* \cdot k}{\omega} \qquad v_s^* = \frac{G^*}{s} \qquad G^* = G \cdot (1+2\xi \cdot i)$$

$$G = Schermodul \qquad \lambda = Lamé-Konstante \qquad A_p \ , A_{sv} = Amplituden \ d.einf. \ kellen \\ S = Dichte \qquad \xi = Dampfungsmaß \qquad B_p, \ B_{sv} = " \qquad d.reflett. =$$

- 5 -

Tafel 2 Übertragungsmatrizen für SH-Wellen

$\frac{Viskoelastische Schicht:}{ \begin{cases} v_2 \\ \tau_2 \end{cases}} = \begin{bmatrix} \cos(ksd) & \frac{\sin(ksd)}{k \cdot s \cdot G^*} \\ k \cdot s \cdot G^* \sin(ksd) & \cos(ksd) \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \tau_1 \end{bmatrix}$

Halbraum :

$$\begin{cases} v_2 \\ \tau_2 \end{cases} = \begin{bmatrix} 1 & 1 \\ i \, k \cdot s \cdot G^* & -i \cdot k \cdot s \cdot G^* \end{bmatrix} \cdot \begin{cases} A_{SH} \\ B_{SH} \end{cases}$$

Bezeichnungen:

$$S = \sqrt[7]{\frac{1}{m_x^2} - 1}$$

$$m_x = \frac{V_s^* \cdot k}{\omega}$$

$$V_s^* = \frac{G^*}{S}$$

$$G^* = G \cdot (1 + 2S_i)$$

$$G = Schermodul$$

$$S = Dichlc$$

$$S = hysteretisches Jämpfungsmaß$$

$$A_{SH} = Amplitude der einfallenden SH-Welle$$

$$B_{SH} = " " reflektierten "$$

INSTITUT FUR GEOPHYSIK

UNIVERSITAT STUTTGART

REALISTISCHE SEISMISCHE LASTANNAHMEN FÜR BAULICHE ANLAGEN MIT ERHÖHTEM SEKUNDÄRRISIKO

ANHANG 8

zum

ABSCHLUSSBERICHT

an S

ÜBERTRAGUNGSFUNKTIONEN FÜR DEUTSCHE STANDORTE

G. Schneider

Th. Kunze

ÜBERTRAGUNGSFUNKTIONEN FÜR DEUTSCHE STANDORTE

Dieser Anhang enthält Übertragungsfunktionen für einige ausgewählte Standort der Bundesrepublik Deutschland, bei denen hinreichende geologische Informationen über die Untergrundverhältnisse vorliegen (Tabelle A8.1).

1 .

Tabelle	A8.	. 1	Liste	der	Standorte	mit	grober	Untergrund-
			angabe	e				

Standort	Region	Untergrund
Biblis	Oberrheingraben	Quartär
Brockdorf	Norddeutschland	Tertiär
Dingelsdorf	Molassebecken	Quartär
Gaisbeuren	Molassebecken	Quartär
Jungingen	Schwäbische Alb	Anstehender Braunjura
Leopoldshafen	Oberrheingraben	Quartär
Lingen	Norddeutschland	Quartär
Lüchow-Dannen- berg	Norddeutschland	Quartär
Obrigheim	Odenwald	Anstehender Buntsandstein
Opfenbach	Molassebecken	Quartär
Scherstetten	Molassebecken	Tertiär

Verwendete Literatur zur Berechnung der Übertragungsfunktionen an den Standorten - Brockdorf

- Lüchow-Dannenberg
- Lingen
- AHORNER, L. (1981): Seismologisches Gutachten für den Standort des geplanten Kernkraftwerkes Emsland KKE bei Lingen. – Abteilung für Erdbebengeologie des Geologischen Instituts der Universität Köln.

BETTENSTAEDT, F. (1949): Paläogeographie des nordwestdeutschen Tertiär mit besonderer Berücksichtigung der Mikropaläontologie. - Erdöl u. Tektonik in Nordwestdeutschland, Hannover/Celle, p. 143 - 171.

- DRONG, H.J. (1979): Diagenetische Veränderungen in den Rotliegendsandsteinen im NW-Deutschen Becken. - Geol. Rdsch. 68, p. 1172 - 1183.
- GRIMMEL, E. (1980): Warum der Salzstock Gorleben-Rambow als Atommüll-Deponie ungeeignet ist. - Z. dt.geol. Ges., 131, p. 487 - 519.
- HOFFMANN, K. (1949): Zur Paläogeographie des nordwestdeutschen Lias und Doggers. -Erdöl und Tektonik in Nordwestdeutschland, Hannover/Celle, p. 113 - 129.
- HOFRICHTER, E. (1980): Probleme der Endlagerung radioaktiver Abfälle in Salzformationen. - Z.dt.geol. Ges., 131, p. 409 - 430.
- JARITZ, W. (1980): Bemerkungen zur Geologie des präquartären Untergrundes in der Umgebung von Gorleben. - Z.dt.geol. Ges., 131, p. 522 - 529.
- JOHN, H. (1983): Die seismischen Geschwindigkeitsfelder des nordwestdeutschen Beckens. - Erdöl-Erdgas-Zeitschrift, <u>99</u>, p. 75 - 81.
- MEYER, K.-D. (1980): Quartäre Tektonik im Unterelbe-Gebiet? Z.dt.geol.Ges., 131, p. 530 - 546.
- SCHERBAUM, F. (1982): Seismic velocities in sedimentary rocks indicators of subsidence and uplift. Geol.Rdsch. 71, p. 519 536.

SCHOTT, W. (1949): Zur Paläogeograhpie des nordwestdeutschen Malms. - Erdöl u.Tektonik in Nordwestdeutschland, Hannover/Celle, p.129 - 135.

- 2 -

SCHRÖDER, B. (1979): Entwicklung des Sedimentbeckens und Stratigraphie der klassischen Germanischen Trias. - Geol.Rdsch., 71, p. 783 - 794.

3 .

- SEITZ, O. (1949): Zur Paläogeographie des Wealden und der Pompeckj'schen Schwelle. - Erdöl u. Tektonik in Nordwestdeutschland, Hannover/Celle, p. 135 - 143.
- TRUSHEIM, F. (1957): Über Halokinese und ihre Bedeutung für die strukturelle Entwicklung Norddeutschlands. - Z.dt.geol. Ges., <u>109</u>, p. 111 - 151.
- ZIEGLER, P.A. (1982): Geological Atlas of Western and Central Europe. -Elsevier Scient. Publ. Company, Amsterdam.

STANDORT BIBLIS

UEBERTRAGUNGSFUNKTION:

ABSTRAHLCHAR. DER DIR. WELLE = 1

DINGELSDORF

UEBERTRAGUNGSFUNKTION:

SCHICHT	SCHICHTDICKE	¥S	Q
NR.	(M)	(M/S)	
1	710	1789	20
2	246	2200	50
З	430	2900	80
4	477	2000	29
5	744	2400	50
HALSEAUM		3490	200

RW -STAT.= 0 HW -STAT.= 0 H-NN = 0 RW -HERD = 0 HW -HERD = 0 HEROTIEFE IN M = 6500 EPIZENTRALENTFERIUNG IN M = 0 TOTALE HEROTIEFE IN M = 6500 LAUFNEG IN M = 6500.00001 MITTL. DICHTE IN KG/MT3 = 2593.14308 MITTL. VS IN M/S = 2918.61538 LAUFZEIT DER DIR. WELLE IN S = 2.22708345 ABSTRAHLCHAR. DER DIR. WELLE = 1

GAISBEUREN

JUNGINGEN

STANDORT LEOPOLDSHAFEN

- 9 -

ABSTRAHLCHAR. DER DIR. WELLE = 1

- 12 -

· :

OPFENBACH

SCHERSTETTEN

UEBERTRAGUNGSFUNKTION:

- 14 -

INSTITUT FÜR METEOROLOGIE UND GEOPHYSIK DER JOHANN WOLFGANG GOETHE-UNIVERSITÄT

Feldbergstraße 47 6000 FRANKFURT a. M.-1 Teleton 798 2375

REALISTISCHE SEISMISCHE LASTANNAHMEN FÜR BAULICHE ANLAGEN MIT ERHÖHTEM SEKUNDÄRRISIKO

-

ANHANG 9

zum

ABSCHLUSSBERICHT

MODELLRECHNUNGEN ZUM FESTGESTEINSEINFLUSS

H. Berckhemer

J. Kopera

MODELLRECHNUNGEN ZUM FESTGESTEINSEINFLUSS

Um den Einfluß sedimentären Festgesteins, das einem kristallinen Grundgebirge überlagert, auf Amplituden- und Spektralgehalt eines an der Kristallinoberkante definierten Fourierspektrums der seismischen Wellenbewegung zu untersuchen, wurden am Institut für Meteorologie und Geophysik der Universität Frankfurt Modellrechnungen ausgeführt. Das verwendete FORTRAN – Programm zur Berechnung der Ausbreitung seismischer Wellen in isotropen geschichteten Medien, basiert auf der Reflektivitätsmethode (G.Müller, 1971,1973) – eine Erweiterung des Thomson-Haskell-Matrizenalgorithmusund wurde in einer modifizierten Version nach P. Temme und G.Müller, 1982 angewandt. Gerechnet wurde für vertikale Wellenausbreitung ebener S-Wellen.

Das verwandte Modell:

Ein Schichtpaket variabler Impedanz $s_i \beta_i$ (Dichte x Wellenausbreitungsgeschwindigkeit) und Mächtigkeit H_i, überlagert einen Halbraum mit konstanter Impedanz $s_i \beta_i$. Dem Schichtpaket liegt ein weiterer Halbraum, bzw. eine Schicht großer Dicke und Dämpfung Q⁻¹ auf, um Oberflächenreflexionen zu unterdrücken oder zumindest stark zu dämpfen. Die Impedanz dieser Überdeckung $g_i \beta_i$ soll kleiner als $g_i \beta_i$ sein.

Die, das sedimentäre Festgestein repräsentierende, Schicht mit $g_i \beta_i$ wurde in zwei Halbräume mit konstanten Randbedingungen eingebettet um Einflüsse von Oberflächeneffekten auf die Resultate zu vermeiden und um gleichzeitig dem realistischen Fall der Lockersedimentbedeckung $g_j \beta_j$ auf sedimentären Festgestein zu entsprechen.

Mit dem Ansatz eines konstanten Energieflusses E durch die Schichtgrenzflächen, ergibt sich folgender Verstärkungsfaktor bzw. Transmissionskoeffizient:

$$D'' = V_{Energie} = \frac{U_{i+1}}{U_i} = \frac{1}{3_{i+1}} \frac{g_i \cdot g_i}{g_{i+1}}$$
(1)

Mit Berücksichtigung des Energieverlusts durch Reflexionen, doch ohne des Einflusses multibler Reflexionen, erhält man für vertikal propagierende S-Wellen den Brechungs- bzw. Transmissionskoeffizienten:

$$D' = V_{Brech} = \frac{U_{i+1}}{U_i} = \frac{2 \cdot 3i \cdot \beta_i}{3i \cdot \beta_i + 3i + i}$$
(2)

Das Verhältnis der Verschiebungen im sedimentären Halbraum (u_s) zu denen im kristallinen Halbraum (u_k) , ergibt sich durch Multiplikation der Transmissionskoeffizienten der einzelnen Grenzflächen.

Für konstanten Energiefluß:

$$\frac{U_S}{U_R} = \frac{U_S}{U_i} \cdot \frac{U_i}{U_{i+1}} \cdot \frac{U_{n-1}}{U_k}$$
$$D'' = \frac{U_S}{U_k} = \sqrt{\frac{3_k \cdot \beta_k}{3_s \cdot \beta_s}}$$
(3)

Mit Energieverlußt durch Reflexionen und für eine Zwischenschicht konstanter Impedanz g_2 , β_2 :

$$\frac{U_s}{U_k} = \frac{U_s}{U_2} \cdot \frac{U_2}{U_k}$$

$$D' = \frac{U_s}{U_k} = \frac{2 \cdot g_2 \cdot \beta_2}{g_2 \cdot \beta_2 + g_s \cdot \beta_s} \cdot \frac{2 \cdot g_k \cdot \beta_k}{g_k \cdot \beta_k + g_2 \cdot \beta_2}$$
(4)

Für die Modelle 1 - 4 wurden folgende Parameter gewählt:

Modell l: H=lkm Modell 2: H=5km

Modell 3: H₁=1,5km H₂=1,5km

Modell 4: H=5km

Abb. 2: Modellparameter

Die Anwendung der analytischen Beziehungen (3) & (4) auf die einzelnen Modelle liefert die Transmissionskoeffizienten D´&D´´, wie sie in der Tabelle 1 dargestellt sind, zusammen mit den numerischen Resultaten aus der Reflektivitätsmethode, d.h. unter Einschluß multibler Reflexionen (\vec{v} & V_o).

Modell	1	2	3	4
D	1,67	1,67	1,74	1,83
D**	1,84	1,84	1,84	1,84
$\overline{\mathbf{v}}$	1,67	1,67	1,74	1,83
v _o	1,84	1,84	1,85	1,85

Tab.: 1 Transmissionskoeffizienten der Modelle 1 - 4, vergl. Abb. 3 - 6.

Hierbei bezeichnet \bar{V} den über die undulierende Übertragungsfunktion (Abb. 3-6) gemittelten Wert und V $_{\rm O}$ die obere Grenze der Übertragungsfunktion

- 3 -

Interpretation der Resultate

Die in den Abb. 3-6 dargestellten numerischen Resultate der Modellrechnung für die Modelle 1-4 nach der Reflektivitätsmethode zeigen, abgesehen von dem undulierenden Einfluß multipler Reflexionen, keine Abhängigkeit der Übertragungsfunktion von der Wellenfrequenz (ω).

Vergleicht man die über die undulierenden Übertragungsfunktionen gemittelten Werte \bar{V} der dargestellten (geplotteten) Kurven, so stimmen diese gut mit den berechneten Transmissionskoeffizienten der vereinfachten analytischen Rechnung (ohne Multipleneffekt) überein.

Die analytischen Ergebnisse unter der Annahme eines konstanten Energieflusses E (d.h. ohne Berücksichtigung des Energieverlusts der propagierenden Welle durch Reflexionen) bilden ziemlich genau die oberen Werte der undulierenden Übertragungsfunktionen ab (vgl. Abb. 3-6).

Der Einfluß sedimentären Festgesteins auf das an der Unterkante einer Sedimentbedeckung definierte Basisspektrum kann somit in guter Näherung durch das Verhältnis aus den Impedanzen der Deckschicht $(S_S \beta_S)$ und des unteren Halbraums (Kristallin) $S_k \beta_k$ bestimmt werden. Die Schichtdicke H_i hat keinen Einfluß auf den Verstärkungsfaktor, solange keine Absorption (Q=∞) angenommen wird.

Zusätzlich läßt sich aus der Modellrechnung ein Einfluß der Beschaffenheit der Zwischenschicht (Festgesteinspaket) entnehmen. Mit zunehmender Unterteilung (Schichtung) der Zwischenschicht nimmt der Brechungs- oder Transmissionskoeffizient D'zu und erreicht den Wert des Transmissionskoeffizienten D' für konstanten Energiefluß im Fall der Gradientenschicht (Modell 4), also des stetigen Übergangs der Impedanz von Unter- zu Oberkante der Zwischenschicht. Für die Modelle 1 & 2 , konstanter Impedanz, erhält man folglich eine zu geringe Überhöhung der Amplituden, wie dies in der Natur zu erwarten wäre.

In ähnlicher Weise lassen sich die Untersuchungsergebnisse von J.Lysmer et al., 1971 über den Einfluß des Grundgebirges auf die Bodenantwort interpretieren. Resultat:

Der Einfluß eines Zwischenschichtpakets sedimentären Festgesteins auf vertikal propagierende, ebene seismische S-Wellen, kann durch die Anhebung des Amplitudenniveaus im Zeit- bzw. Spektralbereich über eine Multiplikation mit dem Transmissionskoeffizienten für konstanten Energiefluß (Gl. 3)

$$D'' = \frac{1}{\frac{g_{\kappa} \cdot \beta_{\kappa}}{g_{s} \cdot \beta_{s}}}$$

konservativ berücksichtigt werden.

Abb. 4

