Bauforschung

Begleitende Untersuchung zur Arbeit des Sachverständigenausschusses Brandverhalten von Baustoffen

T 1417

Prüfverfahren zur Rauchentwicklung bei Fussbodenbelägen

Fraunhofer IRB Verlag

T 1417

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

4,33

STAATLICHES MATERIALPRÜFUNGSAMT NORDRHEIN-WESTFALEN DORTMUND

1984

Begleitende Untersuchungen zur Arbeit des Sachverständigenausschusses Brandverhalten von Baustoffen

¥.

Prüfverfahren zur Rauchentwicklung bei Fußbodenbelägen

Dipl.-Ing. Klingelhöfer

Forschungsauftrag des Instituts für Bautechnik vom 21.12.1981 Gesch.-Z. IV/1 - 5 - 331/82

Bearbeitungs-Nr. im MPA 23 - 80.01 - 275

l'nhaltsverzeichnis

~			
50	1	+	Δ
ບປະ	1	t.	<u> </u>

1.	Aufgabenstellung	2
2.	Erprobungsarbeiten zur Versuchsanordnung	2
2.1	Gerätemäßige Voraussetzungen	2
2.2	Vorarbeiten	3
2.3	Versuchsanordnung	4
3.	Versuche an verschiedenen	6
	Fußbodenbelägen	
4.	Bewertung der Versuchsergebnisse	21
4.1	Bewertung der Stichprobenauswahl	21
4.2	Bewertung der maximalen Trübung	23
4.3	Bewertung des zeitlichen Integrals	26
	der Trübung	
4.4	Bewertung der flächen- spezifischen	30
	Rauchentwicklung	
5.	Zusammenfassung	32

Anhang 1 bis 114 : Einzelergebnisse von 114 untersuchten Materialien

1. Aufgabenstellung

Im Zuge der Überarbeitung der Prüfgrundsätze für schwerentflammbare Baustoffe (DIN 4102 - Baustoffklasse B 1) wurde ein Prüfverfahren für Fußbodenbeläge aufgenommen, mit dem die Frage der Flammenausbreitung untersucht wird. Durch die Klassifizierung von Belägen, bei denen nur geringe Flammenausbreitung stattfindet, als schwerentflammbarer Baustoff soll die Möglichkeit geschaffen werden, diese Beläge auch in Rettungswegen anstelle nichtbrennbarer Baustoffe einzusetzen. Der zuständige Sachverständigenausschuß (PA-III) war sich bei seinen Beratungen darüber im Klaren, daß für die Beurteilung, ob der Einsatz eines Belages im Rettungsweg vertretbar ist, auch die Frage der Rauchentwicklung, sowie die Entwicklung toxischer Gase beim Brand von Bedeutung sind. Die in einer Entwurfsfassung enthaltene Forderung, daß die Entwicklung von Rauch und toxischen Gasen keinen Anlaß zu Beanstandungen geben dürfe, mußte in der veröffentlichten Endfassung (Februar 1984) entfallen, da es nicht rechtzeitig gelungen war, ein reproduzierbares Verfahren zu definieren, mit dem die Entwicklung von Rauch und toxischen Gasen quantitativ beurteilt werden kann.

In der vorliegenden Arbeit werden ein Verfahren zur Messung der Rauchentwicklung bei Fußbodenbelägen und seine praktische Erprobung dargestellt, um dem o.a. Sachverständigenausschuß eine Unterlage für die Diskussion über das Verfahren bzw. über Beurteilungsgrenzwerte zu geben.

2. Erprobungsarbeiten zur Versuchsanordnung

2.1 Gerätemäßige Voraussetzungen

Für die Messung der Rauchentwicklung von Fußbodenbelägen werden sowohl eine Einrichtung zur Zersetzung des zu beurteilenden Materials benötigt als auch ein Meßgerät, mit dem der entstandene Rauch quantitativ bewertet werden kann.

Für die Zersetzung bot sich das Flammenausbreitungsprüfverfahren an, bei dem die Versuchsanordnung vorsieht, daß die entstandenen Brandgase über einen Abgaskanal abgeführt werden, der recht gute Möglichkeiten für den Einbau einer Rauch – Meßstrecke bietet.

Dieses Zersetzungsverfahren, das nach den. Diskussionen im PA-III ausgewählt wurde, bietet den Vorteil, daß es auf Modellüberlegungen beruht, die den Einsatz von Fußbodenbelägen in Rettungswegen betreffen. Es wird die Risikosituation simuliert, die entsteht, wenn bei Durchbrand einer Flurtür (keine Feuerwiderstandsdauer gefordert) der Fußboden mit strahlender Wärme von den aus dem Nutzraum in den Flur schlagenden Flammen beaufschlaat und durch Herabfallen kleiner brennender Teile entzündet wird. Für spätere Grenzwertbetrachtungen sei bereits hier darauf hingewiesen, daß bei dem hier zugrundegelegten Risikofall natürlich mit den Flammen auch Rauch aus dem Nutzraum in den Rettungsweg eintritt. Zu dem gewählten Zersetzungsmodell passen also keine sehr strenge Maßstäbe für die Rauchentwicklung der Fußbodenbeläge, sondern nur Kriterien, die Beläge mit besonders starker Rauchentwicklung abgrenzen. Bei der Entscheidung des PA-III für dieses Zersetzungsverfahren war neben dem Vorteil, daß durch den Verzicht auf einen zusätzlichen eigenständigen Versuch Prüfkosten gespart werden, die Möglichkeit ausschlaggebend, die Bewertung der Rauchentwicklung an die Abbrandrate anzukoppeln.

Als Meßgerät für die quantitative Bestimmung der Rauchdichte sollte die "Lichtmeßeinrichtung für Rauchdichtemessungen, Typ ME-82" der Firma Dr. Mauerer, 7442 Neuffen eingesetzt werden. Es handelt sich hierbei um eine Lichtmeßstrecke, die in Zusammenarbeit mit dem Arbeitsausschuß NMP 852 "Prüfverfahren für die Rauchdichte" des Normenausschusses Materialprüfung für den Einsatz bei verschiedenen Rauchentwicklungsprüfverfahren entwickelt worden ist. Der o.a. Normenausschuß hat inzwischen den Beschluß gefaßt, diese Lichtmeßstrecke zu normen. Sie besteht aus einem Lichtgeber mit einer Wolfram-Glühlampe (entsprechend Normlichtart A nach DIN 5033) und verstellbarer Blendenvorrichtung zur Einstellung der Strahlungsflußintensität sowie einem Meßlichtempfänger, der mit thermischer Kompensation ausgerüstet und der Funktion des menschlichen Auges angepaßt ist.

2.2 Vorarbeiten

Der Abzugschacht der Fußbodenprüfeinrichtung hat lichte Abmessungen von 380 mm x 110 mm. Um zu klären, ob die Lichtmeßstrecke quer oder parallel zur längeren Seite eingebaut werden sollte, wurden zunächst mit beiden Anordnungen Vorversuche durchgeführt. Dabei zeigte sich, daß die Ergebnisse bei Anordnung der Lichtmeßstrecke quer zur längeren Seite des Abzugschach-

tes relativ stark streuten – offensichtlich infolge zufälliger, unterschiedlicher Rauchverteilung in Richtung der längeren Seite. Die Versuchsstreuungen bei Anordnung der Lichtmeßstrecke parallel zur längeren Seite des Abzugschachtes wiesen eine wesentlich geringere Streuung auf. Ferner war festzustellen, daß die Ergebnisse deutlich höher lagen als bei den Versuchen mit Anordnung der Meßstrecke quer zur längeren Seite. Sie überschritten jedoch bei den Vorversuchen in keinem Fall den Wert von 80 %. Die für die weiteren Versuche gewählte Anordnung der Lichtmeßstrecke parallel zur längeren Seite besitzt somit gleichzeitig den Vorteil, daß sie Ergebnisse bringt, die näher an der Mitte des Meßbereiches der Meßstrecke liegen.

2.3 Versuchsanordnung

Nach Abschluß der Vorversuche wurde die Versuchsanordnung endgültig konzipiert und hergestellt. Lichtgeber und Meßlichtempfänger wurden auf einem U-förmigen Rahmen aus Vierkantrohr befestigt, der, um thermische Verformungen zu verhindern, außen um die Abzugshaube des Fußbodenprüfgerätes herum geführt war und über eine Abhängung an ihr aufgehängt wurde. Der Rahmen wurde so ausgeführt (ineinandergeschobene Vierkantrohre 40/40/1,5 bzw. 34/34/2), daß eine Verschiebung des Lichtgebers und Meßlichtempfängers in alle Richtungen bzw. ihre Justierung möglich waren. Einzelheiten sind dem folgenden Lichtbild Abb. 1 zu ersehen. Die Hauptanschlußmaße gehen aus der Zeichnung Abb. 2 hervor.

Abb. 1: An der Abzugshaube befestigte Lichtmeßstrecke

Abb 2

In die Abzugshaube und den Abzugschacht des Fußbodenprüfgerätes wurden im Bereich der Lichtachse 50 mm große Löcher geschnitten. An beiden Seiten wurde zwischen Abzugshaube und Abzugschacht ein Stahlrohr eingesetzt, um den Einfluß von evtl. außerhalb des Schachtes befindlichem Rauch auszuschließen. Um zu verhindern, daß Rauch aus dem Schacht über die Verbindungsrohre nach außen in den Prüfraum austritt, und ggf. den Lichtgeber bzw. den Meßlichtempfänger mit einem Belag beaufschlagt, wurden die Verbindungsrohre jeweils mit einem Anschluß für Spülluft versehen. Die eingeblasene Spülluft wurde mit je 50 I/h so gering gewählt, daß der Eintritt von Rauch in die Verbindungsrohre gerade noch verhindert wurde – jedoch keine sichtbare Beeinträchtigung des Rauchgasauftriebs im Schacht entstand.

Um konstante Abzugsbedingungen zu haben, wurde die Abzugsgeschwindigkeit der über dem Prüfgerät befindlichen Abzugshaube auf einen konstanten Wert eingestellt, so daß ständig ein Volumen von 1600 m³/h abgesaugt wurde – gemessen im Verbindungsrohr der Absaughaube zum Ventilator. Dieser Wert wurde in regelmäßigen Abständen kontrolliert.

3. Versuche an verschiedenen Fußbodenbelägen

Nach Fertigstellung der endgültigen Versuchsanordnung wurde die Messung der Rauchdichte bei nahezu allen im Zuge der routinemäßigen Materialprüfung (Neu- und Überwachungsprüfungen) anfallenden Untersuchungen vorgenommen. Zusätzlich wurden an den in DIN 4102 Teil 4 als schwerentflammbar klassifizierten Belägen (PVC-Beläge nach DIN 16 951 und Eichen-Parkett nach DIN 280 mit Versiegelung) Versuche durchgeführt.

Für jeden Belag sind in den Anlagen 1 bis 114 außer einer Kurzbeschreibung der Verlauf der Rauchdichte während der Versuchsdauer graphisch dargestellt und die visuelle Beurteilung nach bisher geübter Praxis angegeben. Als Zahlenwerte sind der gemessene Maximalwert, die Fläche unter der Kurve sowie die kritische Bestrahlungsstärke angegeben.

Eine Zusammenstellung dieser Ergebnisse enthalten die folgenden Zahlentafeln. Für die Materialien, bei denen mehrere Versuche durchgeführt wurden, sind auch die Streubreiten der gemessenen Maximalwerte und der Flächen unter den Rauchdichte – Zeit – Kurven, jeweils bezogen auf einen in Abschnitt 4 diskutierten Grenzwert angegeben. Ferner wurde die o.a. Fläche auf die jeweils verbrannte Länge bezogen.

				Rauchentwicklung							
Material	Verbrannte Länge	Krit. Bestrah- Iunasstärke	Visuelle Beurtei-	Maximum der Eintrübuna E	E max – E min	Integral I	1 max – 1 min	1			
Nr.	cm	W/cm ²	luna	0/0	0,4		0,1	L			
		,		Ŭ	010	%.min	0,0	%.min/cm			
1	37,0	0,56	stark	25,0		6,0		0,16			
1	41,0	0,48	stark	25,5	16,2	7,1	11	0,17			
1	33,0	0,64	stark	19,0		6,0		0,18			
2	30,0	0,70	stark	34,0		11,8		0,39			
2	25,0	0,81	stark	45,0	27,5	10,8	12	0,43			
2	32,0	0,66	stark	43,0		12,0		0,37			
3	22,0	0,87	stark	27,5		4,3		0,19			
3	43,0	0,46	stark	32,0	22,5	7,8	55	0,18 💙			
3	22,0	0,87	stark	23,0		2,3		0,10			
4	19,0	0,93	stark	30,2		5,4		0,28			
4	30,0	0,70	stark	48,0	44,5	9,1	37	0,30			
4	22,0	0,87	stark	41,2		6,5		0,30			
5	31,0	0,68	stark	12,0		1,2		0,04			
5	31,0	0,68	stark	13,0	2,5	1,9	8	0,06			
5	28,0	0,74	stark	12,0		1,1		0,04			
6	32,0	0,66	stark	21,5		1,5		0,05			
6	28,0	0,74	stark	20,0	15	1,3	3	0,05			
6	33,0	0,64	stark	15,5		1,2		0,04			

			Rauchentwicklung							
Material	Verbrannte Länge	Krit. Bestrah- lungsstärke	Visuelle Beurtei-	Maximum der Eintrübung E	Emax – Emin	Integral I	Imax – Imin	1		
Nr	cm	W/cm^2	luna		0,4		0,1	L		
	Gin		Tung	Ŭ	90	%.min	0	%.min/cm		
7	32,0	0,94	stark	3,0		0,8		0.03		
7	28,0	0,81	stark	7,0	10	0,9	1	0,03		
7	23,0	0,85	stark	6,5		0,8		0,03		
8	29,0	0,73	stark	3,1		0,9	and and a second se	0.03		
8	29,0	0,73	stark	18,0	37,2	2,7	18	0,09		
8	30,0	0,70	stark	5,5		0,9		0,03		
9	41,5	0,48	mäßig	1,0		0.5		0.01		
9	43,5	0,45	mäßig	0,8	1	0,5	0	0.01 ∞		
9	40,5	0,50	mäßig	1,2		0,5		0,01		
10	58,0	0,28	extr. stark	84,0		36,0		0.62		
10	61,0	0,25	extr. stark	90,5	16,2	34,2	20	0,56		
10	59,0	0,27	extr. stark	90,5		34,0		0,58		
11	59,0	0,27	sehr stark	63,0		18,6		0,32		
11	57,0	0,28	sehr stark	62,0	16,2	15,8	50	0,28		
11	50,0	0,36	sehr stark	69,5		3,6		0,27		
12	42,0	0,48	stark	16,0		2,5		0.06		
12	45,0	0,43	stark	20,5	22,5	5,0	25	0,11		
12	41,0	0,49	stark	11,5		2,5		0,06		

				Rauchent wick lung						
Material	Verbrannte	Krit. Bestrah-	Visuelle	Maximum der	Emax – Emin	Integral I	Imax – Imin	1		
Nin	Lange	lungsstarke	Beurtei-	EINTRUDUNG E	0,4		0,1	_ L		
INT.	CIII	VV/CIII*	Tung	Ō	9-0 0	%.min	010	%. min/cm		
13	24,0	0,83	sehr stark	25,5		7,5	9 - 19 maa 9 - 19 maa maa mada ahaa ahay aha aha ka maada ka maada ka maada ka maa aha ka maa aha ka maa ka ma	0,31		
13	18,0	0,94	sehr stark	28,0	28,8	8,3	8	0,46		
13	23,0	0,86	sehr stark	37,0		7,7		0,33		
14	44,0	0,43	stark	26,5		7,6		0,17		
14	43,0	0,46	stark	27,1	29,3	9,1	15	0,21		
14	47,0	0,39	stark	38,2		8,7		0,18		
15	45,0	0,43	stark	42,0	22,8	8,8	5	0,20		
15	40,0	0,50	stark	32,9		8,3		0,21 ,		
16	39,0	0,52	stark	8,5	7,5	2,2	13	0,06		
16	39,0	0,52	stark	11,5		3,5		0.09		
17	13,0	1,04	mäßig	2,0		1,3		0,1		
17	18,0	0,94	mäßig	1,5	2	1,0	3	0,06		
17	14,0	1,02	mäßig	1,2		1,0		0,07		
18	42,0	0,47	sehr stark	33,1		6,6		0.16		
18	34,0	0,62	sehr stark	14,9	45,5	4,3	23	0.13		
18	43,0	0,46	sehr stark	27,2		6,6		0,15		
19	5,0	1,1	mäßig	1,0		0,8		0,16		
19	5,0	1,1	mäßig	1,0	0	0,5	5	0,10		
19	5,0	1,1	mäßig	1,0		0,3		0,06		
	<u> </u>	+		1						

	1			Rauc	hentwicklu	ın g			
Material	Verbrannte	Krit. Bestrah-	Visuelle	Maximum der Fintrübung F	Emax – Emin	Integral I	Imax – Imin	1	
Nr.	cm	W/cm²	lung	entrubung e	0,4		0,1	L	
			_		9. 0	%.min	0_0	%.min/cm	
20	24,0	0,83	sehr stark	25,5		7,6		0,32	
20	18,0	0,94	sehr stark	28,0	28,8	9,6	20	0,53	
20	23,0	0,86	sehr stark	37,0		7,8		0,34	
21	5,0	1,1	stark	1,0		1,2		0,24	
21	13,0	1,03	stark	6,0	55	2,1	5,4	0,16	
21	30,0	0,70	stark	23,0		6,6		0,22	
22	7,0	1,1	mäßig	0		0		0	1
22	7,0	1,1	mäßig	0	4,8	0	16	0	10
22	7,0	1,1	mäßig	1,9		1,6		0,22	I
23	15,0	1,0	stark	11,0		1,3		0,09	
23	13,0	1,03	stark	8,0	18,2	1,7	12	0,13	
23	13,0	1,03	stark	15,3		2,5		0.19	
24	6,0	1,1	mäßig	1,2	1	1,0	5	0,17	
24	7,0	1,1	mäßig	0,8		0,5		0,07	
25	7,0	1,1	sehr stark	8,9		1,0		0,14	
25	7,0	1,1	sehr stark	14,3	13,5	2,5	15	0,36	
25	7,0	1,1	sehr stark	12,0		1,2		0,17	
								аналуунд налагын на талан талар на талар тала	
							¢		
1		1		i i	Provide a second se	1	1		

				Rauc	hentwicklu	ng		
Material	Verbrannte Länge	Krit. Bestrah- lunasstärke	Visuelle Beurtei-	Maximum der Eintrübung E	Emax – Emin	Integral I	Imax – Imin	1
Nr.	cm	W/cm²	lung	%	0,4 %	%.min	0,1 %	L % . min/cm
26 26 26	41,0 35,0 38,0	0,49 0,60 0,54	stark stark sehr stark	17,5 6,0 12,5	28,7	3,2 2,2 2,2	10	0,08 0,06 0,06
27 27 27	44,0 40,0 28,0	0,44 0,51 0,75	stark stark stark	1,2 0,5 3,3	7	1,0 1,0 1,7	7	~ 0,02 0,03 0,06
28 28 28	27,0 32,0 33,0	0,77 0,66 0,64	mäßig mäßig mäßig	7,3 9,7 8,6	6	2,4 2,5 1,7	7	0,09 0,08 0,05
29 29 29	47,0 40,0 41,0	0,39 0,51 0,49	sehr stark sehr stark sehr stark	35,4 26,0 20,8	36,5	6,4 5,1 4,7	17	0,14 0,13 0,11
30 30 30	40,0 40,0 44,0	0,51 0,51 0,44	stark stark stark	27,9 29,0 38,2	25,8	8,6 7,2 9,4	22	0,22 0,18 0,21
31 31 31	20,0 24,0 23,0	0,91 0,83 0,86	stark stark stark	30,6 32,0 33,1	6,3	5,0 4,2 4,3	8	0,25 0,18 0,18

			Rauchentwicklung						
Material	Verbrannte	Krit. Bestrah-	Visuelle	Maximum der Fintrübung F	Emax – Emin	Integral I	Imax – Imin	I	
Nr	Lange	W/cm ²	beurter-	Enicrubung E	0,4		0,1	_ L	
INT.	CIII	VV/C///	rung	ō	010	%.min	0	%. min/cm	
32	14,0	1,02	stark	23,2		3,2		0,23	
32	23,0	0,86	stark	24,7	42,8	4,2	15	0,18	
32	24,0	0,83	stark	40,3		4,7		0,20	
33	26,0	0,79	stark	13,2		2,4		. 0,09	
33	9,0	1,1	stark	12,0	4,5	1,2	5	0,13	
33	14,0	1,02	stark	15,0		2,9		0,21	
34	29,0	0,73	stark	15,0		3,3		0,11	
34	19,0	0,93	stark	21,0	37,5	1,1	22	0,06	
34	22,5	0,87	stark	30,0		2,5		0,11	
35	46,0	0,41	stark	8,8		2,1		0,05	
35	46,0	0,41	stark	5,2	9	4,1	20	0,09	
35	44,0	0,44	stark	7,0		2,5		0,06	
36	11,0	1,07	stark	9,7		1,5		0,14	
36	13,0	1,04	mäßig	3,2	16,3	0,9	6	0,07	
36	15,0	1,00	mäßig	5,1		1,2		0,03	
37	35,0	0,60	stark	42,0		4,8		0,14	
37	34,0	0,62	stark	41,2	57,5	5,1	9	0,15	
37	37,0	0,56	stark	19,0		4,2		0,11	

				Rauchentwick lung							
Material	Verbrannte Länge	Krit. Bestrah- lungsstärke	Visuelle Beurtei-	Maximum der Fintrübung F	Emax – Emin	Integral I	I max – I min	1			
Nr.	cm	W/cm²	luna	e e	0,4		0,1	L			
			, ang	Ŭ	<u>0</u> 0	%.min	0,0	%.min/cm			
38	42,0	0,48	mäßig	3,6		2,2		0,05			
38	42,5	0,47	mäßig	4,8	3	2,3	2	0,05			
38	43,0	0,46	mäßig	4,0		2,1		0,05			
39	40,0	0,51	sehr stark	54,0		12,5		~ 0,31			
39	31,0	0,68	sehr stark	55,0	15,5	8,7	44	0,28			
39	32,0	0,66	sehr stark	48,8		13,1		0,41			
40	40,0	0,51	mäßig	3,2		1,5		0,04			
40	40,0	0,51	mäßig	2,5	3	1,3	15	0,03			
40	40,0	0,51	mäßig	3,7		2,8		0,07			
41	42,0	0,48	mäßig	8,3		4,2		0,10			
41	45,0	0,43	mäßig	24,9	41,5	7,5	33	0,17			
41	44,0	0,44	mäßig	16,5		6,4		0,15			
42	31,0	0,68	mäßig	5,8		1,0		0,03			
42	31,0	0,68	mäßig	8,8	10	3,0	20	0,10			
42	33,0	0,64	mäßig	4,8		2,6		0,08			
43	5,0	1,1	mäßig	2,5		2,2		0,44			
43	5,0	1,1	mäßig	1,1	4	0,6	16	0,12			
43	5,0	1,1	mäßig	0,9		1,2		0,24			
•							i				
:		1			1						

				Rauc	chentwicklu	n g		
Material	Verbrannte	Krit. Bestrah-	Visuelle	Maximum der Fintnübung F	Emax – Emin	Integral I	Imax – Imin	1
Nr	cm	W/cm ²	beurter-	Enitrubung E o	0,4		0,1	L
	CIII	W/C///	Tung	ō	0,0	%.min	0.0	% . min/cm
44	5,0	1,1	mäßig	1,2		1,0		0,20
44	5,0	1,1	mäßig	0,5	16	0,5	16	0,10
44	36,0	0,58	mäßig	6,9		2,1		0,35
45	5,0	1,1	sehr gering	0,6		0,5		. 0,10
45	15,0	1,0	sehr gering	3,0	10,3	1,1	8	0,07
45	16,0	0,98	sehr gering	4,7		1,3		0,08
46	5,0	1,1	sehr gering	0,8		0,8		0,16 '
46	5,0	1,1	sehr gering	0,8	0	0,8	0	0,16
46	5,0	1,1	sehr gering	0,8		0,8		0,16
47	13,0.	0,93	sehr gering	5,0		1,7		0,13
47	23,0	0,86	sehr gering	9,4	21,7	1,3	4	0,06
47	20,0	0,91	sehr gering	13,7		1,3		0,07
48	16,0	0,98	mäßig	8,5		1,0		0,06
48	5,0	1,1	mäßig	0,4	20,3	0,4	6	0,08
48	5,0	1,1	mäßig	0,4		0,4		0,08
49	5,0	1,1	sehr gering	1,0		1,0		0,20
49	5,0	1,1	sehr gering	1,1	4,5	1,0	12	0,20
49	5,0	1,1	sehr gering	2,8		2,2		0,44

				Rauchentwicklung							
Material	Verbrannte	Krit. Bestrah-	Visuelle	Maximum der	Emax – Emin	Integral I	Imax – Imin	1			
Nr	cm cm	W/cm²	luna	Emtrubung E	0,4		0,1	L			
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	iang	U	<u>0</u> 0	%.min	°.	%.min/cm			
50	5,0	1,1	sehr gering	0		0		0			
50	5,0	1,1	sehr gering	0	0	0	0	0			
50	5,0	1,1	sehr gering	0		0		0			
51	23,0	0,86	extrem stark	78,0		10,5		~ 0,46			
51	42,0	0,48	extrem stark	92,0	43,8	5,0	55	0,12			
51	43,0	0,46	extrem stark	95,5		6,6		0,15			
52	35,0	0,70	sehr stark	24,0		5,6		0,16			
52	31,0	0,78	sehr stark	13,5	26,3	3,8	18	0,12			
53	41,0	0,49	stark	24,4		10,5		0,26			
53	41,0	0,49	stark	35,0	26,5	10,8	3	0,26			
54	43,0	0,45	sehr stark	31,8		8,8		0,20			
54	46,0	0,41	sehr stark	51,1	48,3	9,9	11	0,22			
55	40,0	0,50	sehr stark	12,8		4,2		0,11			
55	27,0	0,77	sehr stark	10,2	6,5	4,8	6	0,18			
56	42,0	0,47	stark	34,5		6,3		0,15			
56	46,0	0,41	stark	40,0	13,8	6,8	5	0,15			
	A CARACTER A										

				Rauchentwicklung							
Material	Verbrannte	Krit. Bestrah-	Visuelle Bourtoi	Maximum der Eintrübung E	Emax – Emin	Integral I	Imax – Imin	1			
Nr.	cm	W/cm²	lung	S	0,4 %	%.min	0,1 %	L % . min/cm			
57 57	50,0 46,0	0,36 0,41	sehr stark sehr stark	46,0 31,0	37,5	7,9 8,4	5	0,16 0,18			
58 58	45,0 40,0	0,54 0,51	stark stark	13,9 18,4	11,3	6,2 5,8	4	0,14 ~ 0,15			
59 59	24,0 35,0	0,83 0,60	sehr stark sehr stark	41,0 38,8	5,5	7,5 10,0	25	0,31 0,29			
60 60	5,0 5,0	1,1 1,1	mäßig mäßig	0,5 0,4	0	0,2 0,1	1	0,04 3 0,02 1			
61 61	42,0 31,0	0,47	sehr stark . stark	21,4 7,0	36	4,5 3,0	15	0,11 0,10			
62	15,0	1,0	mäßig	1,1		1,0		0,07			
63	42,0	0,47	stark	50,3		8,6		0,20			
64	45,0	0,43	stark	37,7		6,4		0,14			
65	43,0	0,46	stark	23,0		6,1		0,14			
66	33,0	0,64	stark	15,3	-	4,1		0,12			

			Rauchent wick lung					
Material	Verbrannte Länge	Krit. Bestrah-	Visuelle Bourtoi	Maximum der Fintrübung F	Emax – Emin	Integral I	Imax – Imin	1
Nr.	cm	W/cm²	beurtei- lung	Senitrabung E	0,4 %	%.min	0,1 %	_ L % . min/cm
67	68,0	0,21	extrem stark	100,0		10,1		0,15
68	49,0	0,37	sehr stark	55,8		5,8		0,12
69	47,0	0,39	stark	51,5		8,8		0,19
70	42,0	0,47	sehr stark	35,6		9,1		0,22
71	59,0	0,27	sehr stark	41,0		14,1		0,24
72	33,0	0,64	sehr stark	61,5		9,9		0,30 ,
73	35,0	0,60	sehr stark	72,0		8,4		0,24
74	43,0	0,46	sehr stark	29,1		12,5		0,29
75	43,0	0,46	stark	26,0		6,5		0,15
76	8,0	1,1	mäßig	1,2		1,0		0,13
77	42,0	0,48	stark	30,8		5,7		0,14
78	8,0	1,1	mäßig	3,5		1,5		0,19
79	46,0	0,41	stark	25,2		7,2		0,16

			Rauchentwicklung					
Material Nr.	Verbrannte Länge cm	Krit. Bestrah- lungsstärke W/cm²	Visuelle Beurtei- lung	Maximum der Eintrübung E %	E max – E min 0,4 %	Integral I % . min	1 max - 1 min 0,1 %	I L % . min/cm
80	38,0	0,54	stark	21,4		6,5		0,17
81	40,0	0,50	stark	20,0		3,6		0,09
82	7,0	1,1	mäßig	3,0		0,8		0,11
83	46,0	0,41	stark	27,8		8,0		0,17
84	38,0	0,54	stark	21,5		4,0		0,11
85	21,0	0,89	mäßig	10,9		3,6		0,17
86	31,0	0,68	stark	29,4		4,6		0,15
87	49,0	0,37	sehr stark	58,1		9,4		0,19
88	37,0	0,56	stark	18,5		4,4		0,12
89	5,0	1,1	stark	9,0		1,2		0,24
90	51,0	0,34	sehr stark	40,4		4,3		0.08
91	6,0	1,1	mäßig	0,4		0,2		0,03
92	7,0	1,1	mäßig	0,6		0,5		0,07

Rauchentwicklung					
der Emax – Emin Integral I I max – I min I					
0,4 0,1 L					
% %.min % %.min/cm					
7,2 0,21					
1,5 0,07					
1,1 _ 0,22					
3,8 0,08					
1,0 0,14					
1,4 0,16	- 19				
8,3 0,18	l				
7,5 0,14					
3,3 0,16					
1,5 0,06					
11,2 0,18					
8,3 0,15					
5,2 0,09					
	der $E \mod x - E \min \\ 0.4 \\ \% \end{bmatrix}$ Integral I $I \mod x - I \min \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.22 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.00 \\ 0.08 \\ 0.014 \\ 0.16 \\ 0.$				

			Rauchentwicklung					
Material	Verbrannte	Krit. Bestrah-	Visuelle	Maximum der Eintrübung E	E max – E min	Integral I	Imax – Imin	1
Nr.	cm	W/cm²	luna	entrubung e	0,4		0,1	_ L
					0. 0	%.min	010	%.min/cm
106	46,0	0,41	stark	20,3		4,6		0,10
107	52,0	0,33	stark	41,5		9,5		0,18
108	32,0	0,66	sehr stark	88,0		8,5		- 0,27
109	39,0	0,53	sehr stark	97,5		9,2		0,24
110	26,0	0,79	sehr stark	38,4		2,5		0,10
111	23,0	0,86	sehr stark	73,8		3,5		0,15
112	22,0	0,87	sehr stark	56,1		5,8		0,26 ¹ N
112	23,0	0,85	sehr stark	41,1	15	5,1	7	0,22
112	24,0	0,83	sehr stark	43,0		5,2		0,22
113	41,0	0,49	stark	20,5		7,3		0,18
113	41,0	0,49	stark	21,5	5,3	6,8	12	0,17
113	40,0	0,62	stark	16,2		6,1		0,15
114	42,0	0,47	stark	29,9		4,2		0,10
114	44,0	0,44	stark	29,5	1	4,6	13	0,10
114	42,0	0,47	stark	29,6		3,3		0,08
								l

- 4. Bewertung der Versuchsergebnisse
- 4.1 Bewertung der Stichprobenauswahl

Zur Bewertung stehen die Ergebnisse aus insgesamt 230 Brandversuchen an. Dabei wurden 114 Materialien untersucht. Bei 52 Materialien wurden im Zuge von Neuprüfungen für die Prüfbescheiderteilung jeweils 3 Versuche durchgeführt. In dieser Gruppe sind auch die Versuche an Eichenholzparkett und an dem PVC-Belag nach DIN 16 951 eingeordnet. Bei 12 Materialien wurden im Zuge orientierender Prüfungen jeweils 2 Versuche durchgeführt. Bei 50 Materialien wurde jeweils nur 1 Versuch durchgeführt – entweder im Zuge von Überwachungsprüfungen oder im Zuge von Neuprüfungen, wenn bereits der 1. Versuch ein negatives Ergebnis hatte.

Die bei den Untersuchungen eingesetzten Materialien wurden keinem besonderen Auswahlverfahren unterzogen. Wie die Anlagen 1 bis 114 ausweisen, bestanden die untersuchten Beläge aus den verschiedensten Materialien. Sie wurden teilweise verklebt, teilweise unverklebt geprüft. Alle Bodenbelagsarten, für die in der Vergangenheit Schwerentflammbarkeitsprüfungen durchgeführt worden sind, wurden einbezogen.

Im Hinblick auf die Flammenausbreitung waren die untersuchten Materialien ebenfalls sehr unterschiedlich zu bewerten, wie die Häufigkeitsverteilung der gemessenen kritischen Bestrahlungsstärke (Abb. 3) ausweist. Es wird darauf hingewiesen, daß diese Häufigkeitsverteilung lediglich das Brandverhalten der in die Untersuchung einbezogenen Beläge charakterisiert – nicht jedoch das Verhalten einer anderen Gesamtheit (z.B. alle am Markt befindlichen Beläge). Entsprechende Rückschlüsse sind nicht zulässig, da in dieser Häufigkeitsverteilung verschiedene Grundgesamtheiten (Neuprüfung, Überwachung) verarbeitet wurden.

Insgesamt kann festgestellt werden, daß die in die Untersuchung einbezogenen Materialien weitgehend das gesamte Spektrum von Fußbodenbelägen abdecken, die zu Schwerentflammbarkeitsprüfungen anstehen. Dies gilt sowohl im Hinblick auf die Belagsart, das Material und die Verlegeart als auch im Hinblick auf das Brandverhalten.

•••

Abb.3 Häufigkeitsverteilung der krit. Bestrahlungsstärke

Gesamtzahl der untersuchten Materialien : 114

4.2 Bewertung der maximalen Trübung

Wie Abb. 4 ausweist, überschritt die Trübung bei 35 der untersuchten 114 Materialien nicht einmal den Wert 10 %. Der Wert 50 % wurde nur bei 14 Materialien überschritten, der Wert 40 % bei 20 Materialien.

Soll ein Grenzwert eingeführt werden, der nur Beläge mit großer Rauchentwicklung kennzeichnet, so wäre dieser etwa bei 40 % oder 50 % anzusiedeln. Es ist jedoch darauf hinzuweisen, daß bei den Belägen, bei denen der Wert 40 % überschritten wurde, 12 Beläge sind, die nur über relativ kurze Zeit starken Rauch entwickelt haben. Dies sind die Beläge Nr. 51, 63, 68, 69, 72, 73, 87, 90, 107, 108, 109 und 111. Es würden somit durch die Festlegung des Grenzwertes von 40 % für die maximale Rauchdichte mehr als die Hälfte der ausgeschlossenen Beläge im Hinblick auf die Zeitdauer starker Rauchentwicklung bzw. die Menge des erzeugten Rauchs als relativ unkritisch zu bezeichnen sein.

Betrachtet man den Vergleich der Maximalwerte der Rauchdichte mit der jeweiligen visuellen Beurteilung (Abb. 5), so ist festzustellen, daß durch einen Grenzwert von 40 % außer Versuchen mit "sehr starker" und "extrem starker" Rauchentwicklung 12 Versuche mit "starker" Rauchentwicklung (jeweils visuell beurteilt) negativ bewertet würden. Demgegenüber wurden 32 Versuch positiv bewertet, bei denen die visuelle Beurteilung "sehr stark" lautete.

Die Abb. 5 zeigt auch sehr deutlich die Notwendigkeit quantitativer, reproduzierbarer Messungen auf. Es überdecken sich nicht nur die jeweils benachbarten visuellen Beurteilungsbereiche sondern weitgehend sogar 3 Bereiche. Bei Versuchen mit Maximalwerten zwischen 6 und 18 % überdecken sich sogar alle 4 Bereiche der üblichen Beurteilung – d.h. die Rauchentwicklung bei den Versuchen mit diesen Maximalwerten wurde teilweise als "sehr gering", teilweise als "mäßig", "stark" oder "sehr stark" beurteilt. Eine Objektivierung der Beurteilung ist dringend erforderlich.

Wie die Tabellen in Abschnitt 3 und die Anlagen 1 bis 114 ausweisen, unterliegen die Maximalwerte der Rauchdichte verhältnismäßig großen Streuungen. Nimmt man als Maß hierfür die Streubreite der Ergebnisse der jeweils gleichen Materialien (größter Maximalwert – kleinster Maximalwert) und bezieht diese prozentual auf einen in Betracht kommenden Grenzwert (hier 40 %), so ergeben sich Streubreiten bis zu 57 % des Grenzwertes. Im Mittel betrug die

Abb.4: Häufigkeitsverteilung der gemessenen Trübung

Gesamtzahl der untersuchten Materialien: 114

· · ·

Streubreite ¢twa 20 % des Grenzwertes. Für ein Prüfverfahren, mit dem einzelne Beläge ausgeschlossen oder mit einem Warnvermerk versehen werden sollen, erscheinen Versuchsstreuungen dieser Größe zu hoch.

4.3 Bewertung des zeitlichen Integrals der Trübung

Für die Benutzbarkeit eines Rettungsweges ist neben der Art und Dichte des entwickelten Rauchs insbesondere seine Menge von Bedeutung. Bei gleicher Rauchentwicklungsgeschwindigkeit kann die Zeitdauer der Rauchentwicklung als Maß für die Menge des entwickelten Rauchs herangezogen werden. Die Rauchentwicklungsgeschwindigkeit dokumentiert sich in Versuchen mit kontinuierlicher Rauchabfuhr bei gleicher Art des Rauches und bei vorgegebenen Versuchsbedingungen (insbesondere Lüftungsverhältnissen) in der Rauchdichte des Abgasstromes. Es erscheint daher gerechtfertigt, das Produkt aus Rauchdichte im Abgasstrom und Zeitdauer als Maß für die Rauchmenge heranzuziehen – bei sich verändernden Rauchdichtemeßwerten das Rauchdichte-Zeit-Integral.

Für die durchgeführten 230 Versuche wurde dieses Integral durch Planimetrieren bestimmt. Die Ergebnisse sind in den Tabellen in Abschnitt 3 eingetragen. Die Häufigkeitsverteilung dieser Ergebnisse ist in Abb. 6 dargestellt.

Wie aus diesem Diagramm hervorgeht, haben 8 der untersuchten Materialien den Wert 10 % . min überschritten. 5 von diesen 8 Materialien haben jedoch nicht die geforderte kritische Bestrahlungsstärke von 0,45 W/cm² erreicht, so daß nur 3 Materialien bei einer Grenze von 10 % . min allein wegen der Rauchentwicklung negativ beurteilt werden. Einen Grenzwert von 8 % . min überschritten zwar 19 weitere also insgesamt 27 Materialien. Wegen Unterschreitung des Grenzwertes der kritischen Bestrahlungsstärke scheiden auch hier eine Reihe von Materialien aus dem Bereich der schwerentflammbaren Fußbodenbeläge aus. Es bleiben bei dieser Grenze insgesamt 13 Materialien, die allein wegen der Rauchentwicklung negativ beurteilt werden.

• • •

Abb.6: Häufigkeitsverteilung des Integrals der Trübung

Gesamtzahl der untersuchten Materialien: 114

27

Vergleicht man die gemessenen Integralwerte mit der visuellen Beurteilung (Abb. 7), so stellt man fest, daß sowohl bei einer Grenze von 8 % . min als auch bei einer Grenze von 10 % . min der überwiegende Teil der Versuche mit "starker" und der Versuche mit "sehr starker" Rauchentwicklung positiv bewertet wird.

Die Ausführungen über die Mangelhaftigkeit der visuellen Beurteilung werden auch durch ihren Vergleich mit den gemessenen Integralwerten untermauert. Es finden sich zum Beispiel in der Gruppe der Versuche mit einem Integral zwischen 2 %. min und 4 %. min Versuche aller visueller Beurteilungsstufen.

Die Tabellen in Abschnitt 3 und die Anlagen 1 bis 114 zeigen, daß die Intearalwerte bei den Materialien, an denen mehrere Versuche durchgeführt wurden, relativ stark streuen. Wird wie in Abschnitt 4.2 als Maß für die Wiederholbarkeit die Streubreite (größter Integralwert – kleinster Integralwert), prozentual bezogen auf einen potentiellen Grenzwert (in den Tabellen angesetzt 10 % . min), herangezogen, so findet man bei den Materialien Nr. 3 und 51 Streubreiten von 55 % des Grenzwertes. Auch das Mittel der Streubreite liegt mit 13.7 % des Grenzwertes sehr hoch. Eine Einzelbetrachtung der besonders hohen Streubreiten zeigt jedoch auf, daß bei allen Materialien mit Streubreiten von 20 % oder mehr auch die verbrannte Länge erheblichen Streuungen unterworfen war. Ausnahmslos war bei den Proben mit dem größten Integralwert auch die verbrannte Länge am größten. Es läßt sich daher feststellen, daß es sich bei diesen großen Streubreiten um Streuungen des Brandverhaltens der Materialien handelt und nicht um solche, die der Messung der Rauchentwicklung zuzuord nen sind. Läßt man diese großen Streubreiten aus der Mittelwertbildung heraus, so ergibt sich mit 8,5 % ein Wert, der durchaus im Bereich der Streubreiten anderer Prüfverfahren auf diesem Gebiet liegt.

Bei der vorstehenden Auswertung wurden die Streubreiten auf einen Wert von 10 % . min bezogen. Bei Bezug der Streubreiten auf 8 % . min ergeben sich um 20 % höhere Werte. Im übrigen bleibt die o.a. Bewertung unverändert.

Abb.7

4.4 Bewertung der flächenspezifischen Rauchentwicklung

Wie in Abschnitt 2.1 ausgeführt, bietet die Verwendung des Flammenausbreitungsprüfverfahrens zur Zersetzung den Vorteil, daß die Beurteilung der Rauchentwicklung an die Abbrandrate gekoppelt ist. Materialien, die wegen eines starken Abbrandes auch viel Rauch entwickeln, werden dabei entsprechend ungünstig bewertet. Selbstverständlich kann aus den so gewonnenen Ergebnissen auch ermittelt werden, wie groß die Rauchentwicklung pro verbrannter Flächeneinheit ist. Hierzu wäre lediglich die Fläche auszumessen und der Integralwert durch sie zu dividieren. Für die so gewonnenen Ergebnisse gelten natürlich die bereits in Abschnitt 4.3 gemachten Einschränkungen. Ferner ist die Einschränkung zu machen, daß der Quotient aus Integralwert und verbrannter Fläche zeitlich nicht konstant ist und somit nur einen Mittelwert darstellt. Angesichts dieser Vereinfachungen kann der o.a. Quotient nicht als quantitative Maßzahl für die spezifische d.h. flächenbezogene Rauchmenge angesehen werden, sondern lediglich als Vergleichszahl verschiedener Materialien. Hierzu wurde es bei der Aufstellung der Tabellen in Abschnitt 3 für ausreichend gehalten, anstelle der verbrannten Fläche die verbrannte Länge, die für die Bestimmung der kritischen Bestrahlungsstärke ohnehin ermittelt wird, einzusetzen. Die Häufigkeitsverteilung dieser Werte ist in Abb. 8 dargestellt. Wie daraus hervorgeht, liegt der Scheitelpunkt der Häufigkeitsverteilung etwa bei 0,15 % . min/cm. Der Wert 0,25 % . min/cm wird von 17 der untersuchten 114 Materialien überschritten. Eine Untersuchung der Einzelergebnisse läßt keine Zuordnung der gewonnenen Werte zu bestimmten Materialarten oder –aufbauten zu. Die Streubreiten liegen nicht günstiger als die der Maximalwerte oder der Integralwerte.

Die Verwendung dieser spezifischen Rauchentwicklung als Beurteilungsmaßstab für schwerentflammbare Fußbodenbeläge wird nicht für zweckmäßig gehalten.

Abb8: Häufigkeitsverteilung des Integrals der Trübung/verb. Länge Gesamtzahl der untersuchten Materialien : 114

5. Zusammenfassung

Für die Beurteilung der Rauchentwicklung bei schwerentflammbaren Fußbodenbelägen wurde eine Versuchsanordnung erprobt. Dabei wurde als Zersetzungsmodell der Brandversuch der B 1 – Prüfung gewählt, so daß für die Beurteilung der Rauchentwicklung kein eigener Versuch erforderlich ist. Bei dieser Versuchsanordnung ist die Beurteilung der Rauchentwicklung an die Abbrandrate gekoppelt; Materialien, die wegen eines starken Abbrandes auch viel Rauch entwickeln, werden entsprechend ungünstig bewertet. Für die Messung der Rauchdichte wurde eine Lichtmeßstrecke eingesetzt, die nach Beschluß des NA Materialprüfung NMP 852 in Kürze genormt werden soll und die serienmäßig lieferbar ist.

Mit der gewählten Versuchsanordnung wurden insgesamt 230 Versuche an 114 verschiedenen Fußbodenbelägen durchgeführt. Es wurde der zeitliche Verlauf der Rauchdichte im Abgaskanal aufgezeichnet. Die Auswertung zeigt, daß die Maximalwerte so stark streuen, daß eine abschließende Beurteilung auf ihrer Basis zu erheblichen Problemen führen würde. Ferner würde die ausschließliche Bewertung der Maximalwerte auch solche Materialien ungünstig darstellen, bei denen nur sehr kurzzeitig eine hohe Rauchdichte auftritt, ohne daß der Rauch seiner Menge nach als kritisch anzusehen wäre. Für die Bewertung der Rauchentwicklung sowohl nach Rauchdichte als auch nach Rauchmenge bietet sich das Flächenintegral unter der Rauchdichte – Zeit – Kurve an. Wie die Ergebnisse zeigen, liegen die Streuungen dieses Wertes bei Materialien, bei denen das Brandverhalten nicht zu sehr streut, in vertretbaren Grenzen. Untersuchungen zur Frage der Reproduzierbarkeit (Vergleich der Ergebnisse verschiedener Prüfstellen) sind noch erforderlich. Die Vorbereitungen hierzu laufen inzwischen an.

Als Grenzwert für das Integral der Rauchdichte über der Zeit werden Werte von 8 %. min oder 10 %. min vorgeschlagen, bei denen 13 bzw. 3 der untersuchten 114 Materialien allein wegen der Rauchentwicklung ausscheiden.

Die Verwendung der spezifischen, auf die verbrannte Fläche bezogenen Rauchentwicklung erscheint nicht zweckmäßig.

IMMAN

12.11.1984
Art des Materials : Getufteter Velours-Bodenbelag aus Polyamid mit Zweitrücken aus PP-Gewebe. Lose auf 10 mm dicke Calciumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	25,0	6,0	0,56
2	25,5	7,1	0,48
3	19,0	6,0	0,64
Mittel- wert	23,2	6,36	0,56

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung	
1	stark	
2	stark	
3	stark	

Art des Materials

: Getufteter Velours-Bodenbelag aus Polyamid mit Zweitrücken aus PP-Gewebe; Unterlage aus grobporigem Gummibelag; Verklebung miteinander durch Dispersionskleber, ebenfalls mit Dispersionskleber auf 6 mm dicke Asbestzementplatten geklebt

Probe Nr.	M a ximum der Ein- trübung %	Fläche unter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	34,0	11,8	0,70
2	45,0	10,8	0,81
3	43,0	12,0	0,66
Mittel- wert	40,7	11,5	0,72

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung	
1	stark	
2	stark	
3	stark	

÷

Art des Materials

Nadelfilz-Bodenbelag aus Polyamid mit Stahlfasern Rücken aus Synthesefasermischung und PP-Gewebe. Lose auf 10 mm dicke Calziumplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	27,5	4,3	0,87
2	32,0	7,8	0,46
3	23,0	2,3	0,87
Mittel- wert	27,5	4,8	0,60

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	stark
З	stark

* *

1

Art des Materials

Gewebter Velours-Bodenbelag aus Polyamid, Rücken aus PVC mit PES-Gewebeeinlage. Lose auf 10 mm dicke Calciumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	30,2	5,4	0,93
2	48,0	9,1	0,70
3	41,2	6,5	0,87
Mittel- wert	39,8	7,0	0,83

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung	
1	stark	
2	stark	
3	stark	

 Gewebter Velours-Bodenbelag aus Schurwolle,
 Rücken aus Baumwolle, Jute und Schurwolle mit Latexierung. Lose auf 10mm dicke Calciumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	12,0	1,2	0,68
2	13,0	1,9	0,68
3	12,0	1,1	0,74
Mittel- wert	12,3	1,4	0,70

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	stark
3	stark

6

:

,

Art des Materials

Gewebter Velours-Bodenbelag aus 80% Wolle und 20 % Polyamid, Rücken aus Baumwolle, Jute, Wolle und Polyamid mit Latexierung. Lose auf 10 mm dicke Calciumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	21,5	1,5	0,66
2	20.0	1,3	0,74
3	15,5	1,2	0,64
Mittel- wert	19,0	1,3	0,68

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	stark
З	stark

 Gewebter Velours-Bodenbelag aus 80% Wolle und
 20% Polyamid, Rücken aus Baumwolle, Jute und Polyamid mit Latexierung. Unterlagefilz aus Wolle und anderen Fasern. Lose auf 10 mm dicke
 Calciumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	3,0	0,9	0,94
2	7,0	0,8	0,81
3	6,5	0,9	0,85
Mittel- wert	5,5	0,9	0,87

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	stark
3	stark

 Gewebter Velours-Bodenbelag aus 80% Wolle und 20% Polyamid. Rücken aus PP, Jute, Wolle und Polyamid mit Latexierung, Unterlagefilz aus Wolle und anderen Fasern. Lose auf 10 mm dicke
 <u>Calciµmsi</u>likatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	3,1	0,9	0,73
2	18,0	2,7	0,73
3	5,5	0,9	0,70
Mittel- wert	8,9	1,5	0,72

Probe Nr.	visuelle Beurteilung der R a uch- entwicklung
1	stark
2	stark
3	stark

Art des Materials : Eichen-Parkett nach DIN 280 mit Versiegelung

Probe Nr.	Maximum der Ein- trübung %	Fläche u nte r d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	1,0	0,5	0,48
2	0,8	0,5	0,45
3	1,2	0,5	0,50
Mittel- wert	1,0	0,5	0,48

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	mäßig
2	mäßig
3	mäßig

.

,

Art des Materials

Nadelfilz auf PVC-Bodenbelag geklebt. Zusammen auf 6 mm dicke Asbestzementplatten geklebt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	84,0	36,0	0,28
2	90,5	34,2	0,25
3	90,5	34,0	0,27
Mittel- wert	88,3	34,7	0,27

	visuelle	
Probe	Beurteilung	
Nr.	der Rauch-	
	entwicklung	
4	extrem	
1	stark	
2	extrem	
2	stark	
	extrem	
3	stark	

:

,

Art des Materials

Nadelfilz-Bodenbelag aus Polyamid und Polypropylen. Lose auf 10 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % → min	kritische Bestrahlungs- stärke W/cm ²
1	63,0	18,6	0,27
2	62,0	15,8	0,28
3	69,5	13,6	0,36
Mittel- wert	64,8	16,0	0,30

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung	
1	sehr stark	
2	sehr stark	
3	sehr stark	

Art des Materials : Getufteter Bodenbelag, Schlinge aus Polyamid, Zweitrücken aus PP-Gewebe. Lose auf 6 mm dicke Asbestzementplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	16,0	2,5	0,48
2	20,5	5,0	0,43
3	11,5	2,5	0,49
Mittel- wert	16,0	3,3	0,47

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	stark
3	stark

: Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PP-Vlies mit Synthese-Latex-Vorstrich, Zweitrücken aus PP-Gewebe. Verklebt mit einer Unterlage aus Gummigranulat (Regenerat).

lur	Prüfung	auf	6	mm	dicke	Asbestzementplatten
iek I	ebt.					

Probe Nr.	M a ximum der Ein- trübung %	Fläche u nter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	25,5	7,5	0,83
2	28,0	8,3	0,94
3	37,0	7,7	0,86
Mittel- wert	30,2	7,8	0,88

Probe Nr.	visuelle Beurteilung der Rauch-	
	entwicklung	
1	sehr stark	
2	sehr stark	
3	sehr stark	

 Gewebter Velours-Bodenbelag, Pol aus Polyamid, Träger aus PES, Viskose, Baumwolle und PP mit
 Synthese-Latex-Beschichtung.

Zur Prüfung lose auf 6 mm dicke Asbestzementplatten geklebt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	26,5	7,6	0,43
2	27,1	9,1	0,46
3	38,2	8,7	0,39
Mittel- wert	30,6	8,5	0,43

Probe Nr.	visuelle Beurteilung der R a uch- entwicklung	
1	stark	
2	stark	
3	stark	

Art des Materials : Tufting-Velours-Bodenbelag, Pol aus Polyamid, Rücken aus Latex-Schaum.

Zur Prüfung auf 6 mm dicke Asbestzementplatten geklebt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	42,0	8,8	0,43
2	32,9	8,3	0,50
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	stark
3	

:

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Rücken aus Latex-Schaum.

Zur Prüfung auf 6 mm dicke Asbestzementplatten geklebt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	8,5	2,2	0,52
2	11,5	3,5	0,52
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	stark
3	

: Gewebter Velours-Bodenbelag, Pol aus 80% Schurwolle und 20% Polyamid, Rücken aus Jute, Baumwolle, Polyamid und Schurwolle.

Zur Prüfung lose auf 10 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	2,0	1,3	1,04
2	1,5	1,0	0,94
3	1,2	1,0	1,02
Mittel- wert	1,6	1,1	1,0

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	mäßig
2	mäßig
3	mäßig

•

Art des Materials

Gewebter Velours-Bodenbelag, Pol aus Polyamid, Träger aus Jute, PP und PA mit Synthese-Latex-Beschichtung.

Zur Prüfung lose auf 6 mm dicke Asbestzementplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	33,1	6,6	0,47
2	14,9	4,3	0,62
3	27,2	6,6	0,46
Mittel- wert	25,1	5,8	0,52

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	sehr stark
2	sehr stark
3	sehr stark

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PES-Vlies mit Synthese-Latex-Vorstrich, Zweitrücken ausPP-Gewebe.

Zur Prüfung lose auf 10 mm dickeCalciumsilikatplatten gelegt.

	والمترج والمتحد المتحد والمتحد والمتحد والمحد والمحد والمحد والمحد		
	Maximum	Fläche	kritische
	der Ein-	unter d.	Bestraniungs-
Probe	trübung	Kurve	stärke 🤉
Nr.	%	% ∙ min	W/cm ⁻
1	1,0	0,8	1,1
2	1,0	0,5	1,1
3	1,0	0,3	1,1
Mittel- wert	1,0	0,5	1,1

	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
1	mäßig
2	mäßig
3	mäßig

:

Art des Materials

Tufting-Velours- Bodenbelag, Pol aus Polyamid, Träger aus PP-Vlies mit Synthese-Latex-Vorstrich, Zweitrücken aus PP-Gewebe. Verklebt mit einer Unterlage aus Gummigranulat (Regenerat)

Zur Prüfung auf 6 mm dicke Asbestzementplatten geklebt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	25,5	7,6	0,83
2	28,0	9,6	0,94
3	37,0	7,8	0,86
Mittel- wert	30,2	8,3	0,88

Probe Nr.	visuelle Beurteilung der R a uch- entwicklung
1	sehr stark
2	sehr stark
3	sehr stark

:

į

Art des Materials

Getufteter Bodenbelag, Schlinge aus Polyamid, Zweitrücken aus PP-Gewebe. Lose auf 10mm dicke Calciumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	1,0	1,2	1,1
2	6,0	2,1	1,03
3	23,0	6,6	0,70
Mittel- wert	10,0	3,3	0,94

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	stark
з	stark

:

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PP-Bändchengewebe mit Synthese-Latex-Vorstrich, Zweitrücken aus PP-Gewebe.

Zur Prüfung lose auf 10 mm dicke Calciumsilikatplatten gelegt.

Probe	Maximum der Ein- trübung	Fläche unter d. Kurve	kritische Bestrahlungs- stärke
Nr.	%	% • min	W/cm ²
1	0	0	1,1
2	0	0	1,1
3	1,9	1,6	1,1
Mittel- wert	0,6	0,5	1,1

	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwickluna
1	mäßig
2	mäßig
3	mäßig

:

Art des Materials

Getufteter Bodenbelag, Schlinge aus Polyamid, Träger aus PP-Gittergewebe mit Synthese-Latex-Vorstrich. Zweitrücken aus PES-Gewebe.

Zur Prüfung lose auf 10 mm dicke Calciumsilikatplatten gelegt.

			1
	Maximum	Fläche	kritische
	der Ein-	unter d.	Bestrahlungs-
Probe	trübung	Kurve	stärke ₂
Nr.	%	% • min	W/cm ²
1	11,0	1,3	1,0
2	8,0	1,7	1,03
3	15,3	2,5	1,03
Mittel- wert	11,4	1,9	1,02

Probe Nr.	visuelle Beurteilung der Rauch-
1	stark
2	stark
3	stark

:

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PP-Bändchengewebe mit Synthese-Latex-Vorstrich. Zweitrücken aus PP-Gewebe.

Zur Prüfung lose auf 10 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	1,2	1,0	1,1
2	0,8	0,5	1,1
3			
Mittel- wert		— —	

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung	
1	mäßig	
2	mäßig	
3	~	

:

Art des Materials

Homogener PVC-Bodenbelag nach DIN 16 951. Zur Prüfung lose auf 10 mm dicke Calziumsilikatplatten gelegt.

	Maximum der Fin-	Fläche unter d.	kritische Bestrablungs-
Probe	trübung	Kurve	stärke
Nr.	%	% • min	W/cm ²
1	8,9	1,0	1,1
2	14,3	2,5	1,1
3	12,0	1,2	1,1
Mittel- wert	11,7	1,6	1,1

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung	
1	sehr stark	
2	sehr stark	
з	sehr stark	

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PP-Vlies mit Synthese-Latex-Vorstrich, Zweitrücken aus PP-Gittergewebe.

Zur Prüfung lose auf 6 mm dicke Asbestzementplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ⋅ min	kritische Bestrahlungs- stärke W/cm ²
1	17,5	3,24	0,49
2	6,0	2,16	0,60
3	12,5	2,16	0,54
Mittel- wert	12,0	2,5	0,54

	visuelle	
Probe	Beurteilung	
Nr.	der Rauch-	
	entwicklung	
1	stark	
2	stark	
3	sehr stark	

Art des Materials : Tufting- Velours-Bodenbelag, Pol aus Polyamid, Träger aus PP-Vlies mit Synthese-Latex-Beschichtung.

Zur Prüfung auf 6 mm dicke Asbestzementplatten geklebt.

	M a ximum der Ein-	Fläche unter d.	kritische Bestrahlungs-
Probe	trübung	Kurve	stärke
Nr.	%	% • min	W/cm ²
1	1,2	1,0	0,44
2	0,5	1,0	0,51
3	3,3	1,7	0,75
Mittel- wert	1,7	1,2	0,57

Probe Nr.	visuelle Beurteilung der Rauch-	
	entwicklung	
1	stark	
2	stark	
3	stark	

Art des Materials

: Nadelfilz-Bodenbelag aus Polyamid mit Stahlfasern, Rücken aus Synthesefasermischung mit Verstärkung aus PP-Bändchengewebe.

Zur Prüfung auf 6 mm dicke Asbestzementplatten geklebt.

Probe	Maximum der Ein- trübung %	Fläche unterd. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	7,3	2,4	0,77
2	9,7	2,5	0,66
3	8,8	1,7	0,64
Mittel- wert	8,6	2,2	0,69

Probe Nr.	visuelle Beurteilung der R a uch-	
1	maßig	
2	mäßig	
3	mäßig	

Art des Materials : Nadelfilz-Bodenbelag aus 45% PP, 30% PES und 25% PA, rückseitig mit Synthese-Latex gepflatscht. Zur Prüfung auf 6 mm dicke Asbestzementplatten geklebt.

	Maximum	Fläche	kritische Restrablungs
Probe	trübuna	Kurve	stärke
Nr.	%	% • min	W/cm ²
1	35,4	6,4	0,39
2	26,0	5,1	0,51
3	20,8	4,7	0,49
Mitte!- wert	27,4	5,4	0,46

Probe Nr.	visuelle Beurteilung der R a uch-	
	entwicklung	
1	sehr stark	
2	sehr stark	
з	sehr stark	

Art des Materials : Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PP-Vlies mit Synthese-Latex-Vorstrich, Zweitrücken aus PP-Gewebe.

> Zur Prüfung lose auf 10 mm dicke Calziumsilikatplatten gelegt.

	Maximum	Fläche	kritische
	der Ein-	unter d.	Bestrahlungs-
Probe	trübung	Kurve	stärke 🧠
Nr.	%	% ∙ min	W/cm ²
1	27,9	8,6	0,51
2	29,0	7,2	0,51
3	38,2	9,4	0,44
Mittel- wert	31,7	8,4	0,48

[visuelle
Probe	Beurteilung
Nr.	der R a uch-
	entwicklung
1	stark
2	stark
3	stark

ς ×.

Art des Materials : Linoleum mit eingebettetem Jutegeweberücken. Zur Prüfung lose auf 10 mm dicke Calziumsilikatplatten gelegt.

	Maximum	Fläche	kritische
	der Ein-	unter d.	Bestrahlungs-
Probe	trübung	Kurve	stärke _o
Nr.	%	% · min	W/cm ²
1	30,6	5,0	0,91
2	32,0	4,2	0,83
3	33,1	4,3	0,86
Mittel- wert	31,9	4,5	0,87

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	stark
3	stark

Art des Materials : Linoleum mit eingebettetem Jutegeweberücken.

Lose auf 10 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche u nter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	23,2	3,2	1,02
2	24,7	4,2	0,86
3	40,3	4,7	0,83
Mittel- wert	29,4	4,0	0,40

[visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
1	stark
2	stark
3	stark

- Art des Materials
- Linoleum mit eingebettetem Jutegeweberücken.
 Lose auf 10 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	13,2	2,4	0,79
2	12,0	1,2	1,1
3	15,0	2,9	1,02
Mittel- wert	13,4	2,5	0,97

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	stark
3	stark

: Linoleum, Rücken aus Korkment mit eingebettetem Jutegeweberücken. Lose auf 10 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	15,0	3,3	0,73
2	21,0	1,1	0,93
3	30,0	2,5	0,87
Mittel- wert	22,0	2,3	0,84

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	stark
3	stark

Art des Materials

 Tufting-Velours-Bodenbelag, Pol aus Polyamid,
 Träger aus 75 % PP / 25 % PA, Rücken aus Latex-Schaum. Zur Prüfung auf 6 mm dicke Asbestzementplatten geklebt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	8,8	2,1	0,41
2	5,2	4,1	0,41
3	7,0	2,5	0,44
Mittel- wert	7,0	2,9	0,42

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung	
1	stark	
2	stark	
3	stark	

.

Art des Materials

PVC-Bodenbelag mit transparenter Nutzschicht, : Unterschicht aus PVC mit eingelegtem Aluminiumgitter. Zur Prüfung lose auf 10 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	9,7	1,5	1,07
2	3,2	0,9	1,04
3	5,1	1,2	1,00
Mittel- wert	6,0	1,2	1,04

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	mäßig
3	mäßig
:

Art des Materials

Gewebter Velours-Bodenbelag, Pol aus Polyamid, Rücken aus Mischgewebe mit Synthese-Latex-Beschichtung. Zur Prüfung auf 6 mm dicke Asbestzementplatten geklebt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	42,0	4,8	0,60
2	41,2	5,1	0,62
3	19,0	4,2	0,56
Mittel- wert	34,7	4,7	0,59

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	stark
3	stark

- Art des Materials
- Getufteter Bodenbelag, Schlinge aus Polyamid,
 Träger aus PP-Vlies mit Synthese-Latex-Vorstrich,
 Zweitrücken aus PP-Gewebe. Zur Prüfung lose auf
 6 mm dicke Asbestzementplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	3,6	2,2	0,48
2	4,8	2.3	0,47
3	4,0	2,1	0,46
Mittel- wert	4,1	2,2	0,47

Probe Nr.	visuelle Beurteilung der R a uch-
1	entwicklung mäßig
2	mäßig
3	mäßig

Art des Materials

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	54,0	12,5	0,51
2	55,0	ô,7	0,58
3	48,8	13,1	0,65
Mittel- wert	52,6	1 1 ,4	0,52

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung	
1	senr stark	
2	sehr stark	
3	sehr stark	

Tufting-Velours-Bodenbelag, Pol aus Polyamid,
 Träger aus PP-Vlies mit Synthese-Latex-Vorstrich,
 Zweitrücken aus PP-Gewebe. Zur Prüfung lose auf
 6 mm dicke Asbestzementplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	3,2	1,5	0,51
2	2,5	1,3	0,51
3	3,7	2,8	0,51
Mittel- wert	3,1	1,9	0,51

	and the second secon
	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
1	mäßig
0	
2	mäßig
3	mäßig

Art des Materials

 Getufteter Bodenbelag, Schlinge aus Polyamid,
 Träger aus PP-Gewebe mit Synthese-Latex-Vorstrich, Zweitrücken aus PAN-Gewebe. Zur Prüfung lose auf 6 mm dicke Asbestzementplatten geklebt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	8,3	4,2	0,48
2	24,9	7,5	0,43
3	16,5	6,4	0,44
Mittel- wert	16,6	6,1	0,45

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	mäßig
2	mäßig
3	mäßig

- Art des Materials
- Tufting-Velours-Bodenbelag, Pol aus Polyamid,
 Träger aus PP-Vlies mit Synthese-Latex-Vorstrich, Zweitrücken aus PP-Gewebe. Zur Prüfung auf 6 mm dicke Asbestzementplatten geklebt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	5,8	1,0	0,68
2	8,8	3,0	0,68
3	4,8	2,6	0,64
Mittel- wert	6,5	2,2	0,67

Probe Nr.	visuelle Beurteilung der Rauch- entwickluna
1	mäßig
2	mäßig
3	mäßig

¢ 9

į

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PP mit Synthese-Latex-Beschichtung. Zur Prüfung lose auf 8 mm dicke Calziumsilikatplatten gelegt.

Prob e Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	2,5	2,2	1,1
2	1,1	0,6	1,1
3	0,9	1,2	1,1
Mittel- wert	1,5	1,3	1,1

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	mäßig
2	mäßig
3	mäßig

 Tufting-Velours-Bodenbelag, Pol aus Polyamid,
 Träger aus PP mit Synthese-Latex-Beschichtung.
 Zur Prüfung lose auf 8 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	1,2	1,0	1,1
2	0,5	0,5	1,1
3	6,9	2,1	0,58
Mittel- wert	2,9	1,2	0,93

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	mäßig
2	mäßig
3	mäßig

Art des Materials : Tufting-Velours-Bodenbelag, Pol aus Polyamid, ' Träger aus PP mit Synthese-Latex-Beschichtung. Zur Prüfung lose auf 8 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	0,6	0,5	1,1
2	3,0	1,1	1,0
3	4,7	1,3	0,98
Mittel- wert	2,8	1,0	1,03

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung	
1	sehr gering	
2	sehr gering	
3	sehr gering	

 Tufting-Velours-Bodenbelag, Pol aus Polyamid,
 Träger aus PES mit Synthese-Latex-Beschichtung.
 Zur Prüfung lose auf 8 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	0,8	0,8	1,1
2	0,8	0,8	1,1
3	0,8	0,8	1,1
Mittel- wert	0,8	0,8	1,1

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung	
1	sehr gering	
2	sehr gering	
3	sehr gering	

 Tufting-Velours-Bodenbelag, Pol aus Polyamid,
 Träger aus PES mit Synthese-Latex-Beschichtung.
 Zur Prüfung lose auf 8 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	5,0	1,7	0,93
2	9,4	1,3	0,86
3	13,7	1,3	0,91
Mittel- wert	9,4	1,4	0,90

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung	
1	sehr gering	
2	sehr gering	
3	sehr gering	

- Art des Materials
- Tufting-Velours-Bodenbelag, Pol aus Polyamid,
 Träger aus PES mit Synthese-Latex-Beschichtung.
 Zur Prüfung lose auf 8 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	8,5	1,0	0,98
2	0,4	0,4	1,1
3	0,4	0,4	1,1
Mittel- wert	3,1	0,6	1,06

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	mäßig
2	mäßig
3	mäßig

:

ş

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PP mit Synthese-Latex-Beschichtung. Zur Prüfung lose auf 8 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	1,0	1,0	1,1
2	1,1	1,0	1,1
3	2,8	2,2	1,1
Mittel- wert	1,6	1,4	1,1

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung	
1	sehr gering	
2	sehr gering	
3	sehr gering	

 Tufting-Velours-Bodenbelag, Pol aus Polyamid,
 Träger aus PP mit Synthese-Latex-Beschichtung.
 Zur Prüfung lose auf 8 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	0	0	1,1
2	0	0	1,1
3	0	0	1,1
Mittel- wert	0	0	1,1

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung	
1	sehr gering	
2	sehr gering	
З	sehr gering	

- Art des Materials
- PVC-Bodenbelag mit PVC-Schaumrücken.
 , Zur Prüfung lose auf 8 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	78,0	10,5	0,50
2	92,0	5,U	0,43
3	95,5	6,6	J,45
Mittel- wert	88,5	7,4	0,60

Probe Nr.	visuelle Beurtei der Rau entwick	e lung ich- luna
1	extrem	stark
2	extrem	stari
3	extrem	stari

Art des Materials ; Getufteter Velours-Bodenbelag aus Polyamid mit Latexschaum-Rücken. Zur Prüfung auf 6 mm dicke Asbestzementplatten geklebt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ⋅ min	kritische Bestrahlungs- stärke W/cm ²
1	24,0	5,6	0,70
2	13,5	3,8	0,78
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	sehr stark
2	sehr stark
З	

: Getufteter Velours-Bodenbelag aus Polyamid mit Latexschaum-Rücken. Zur Prüfung auf 6 mm dicke Asbestzementplatten geklebt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	24,4	10,5	0,49
2	35,0	10,8	0,49
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	stark
3	

: Getufteter Velours-Bogenbelag aus Polyamid mit , Latexschaum-Rücken. Lose auf 5 mm dicke Asbestzementplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	31,8	8,8	0,45
2	51,1	9,9	0,41
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	sehr stark
2	sehr stark
3	

- Art des Materials
- : Getufteter Velours-Bodenbelag aus Polyamid mit Latexschaum-Rücken. Zur Prüfung auf 6 mm dicke Asbestzementplatten geklebt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	12,8	4,2	0,50
2	10,2	4,8	0,77
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	sehr stark
2	sehr stark
3	

Getufteter Velours-Beodenbelag aus Polyamid
 mit Latex-Schaum-Rücken. Lose auf 6 mm dicke
 Asbestzementplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	34,5	6,3	0,47
2	40,0	6,8	0,41
3			-
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	stark
3	— —

•

y.

Art des Materials

Getufteter Velours-Bogenbelag aus Polyamid mit Latexschaum-Rücken. Lose auf 5 mm dicke Aspestzementplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	4ô,0	7,9	0,30
2	31,0	ô,4	0,41
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	sehr stark
2	sehr stark
З	

Art des Materials

 Getufteter Bodenbelag, Schlinge aus Polyamid, Träger aus Gittergewebe (75 % PP, 25 % PA) mit Synthese-Latex.Vorstrich, Zweitrücken aus Jute-Gewebe. Zur Prüfung lose auf 6 mm dicke Asbestzementplatten gelegt.

Probe	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	13,9	6,2	0,54
2	18,4	5,8	0,51
З			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch-
	entwicklung
1	stark
2	sta rk
3	

Art des Materials : Homogener Bodenbelag aus Synthesekautschuk. Zur Prüfung lose auf 10 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	41,0	7,5	0,83
2	38,8	10,0	0,60
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung	
1	sehr stark	
2	sehr stark	
3		

- Art des Materials
- Tufting-Velours-Bodenbelag, Pol aus Polyamid,
 Träger aus PES mit Synthese-Latex-Beschichtung.
 Zur Prüfung lose auf 8 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % + min	kritische Bestrahlungs- stärke W/cm ²
1	0,5	0,2	1,1
2	0,4	0,1	1,1
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch-	
1	mäßig	
2	mäßig	
3		

:

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Rücken aus Latexschaum. Zur Prüfung auf 6 mm dicke Asbestzementplatten geklebt.

	Maximum der Ein-	Fläche unter d.	kritische Bestrahlungs-
Probe	trübung	Kurve	stärke _o
Nr.	%	% ∙ min	W/cm ²
1	21,4	4,5	0,47
2	7,0	3,0	0,68
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	sehr stark
2	stark
3	

Tufting-Velours-Bodenbelag, Pol aus Polyamid,
 Träger aus PP-Vlies mit Synthese-Latex-Vorstrich,
 Zweitrücken aus PP-Gewebe. Zur Prüfung auf 6 mm
 dicke Asbestzementplatte geklebt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	1,1	1,0	1,0
2			
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	mäßig
2	
3	

:

Art des Materials

Tufting- Velours-Bodenbelag, Pol aus Polyamid, Rücken aus Latexschaum. Zur Prüfung lose auf 6 mm dicke Asbestzementplatte gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	50.3	8.6	0,47
2			
3			
Mittel- wert			

	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
-	
	stark
2	
٤	
3	

:

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Rücken aus Latexschaum. Zur Prüfung lose auf 6 mm dicke Asbestzement-

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	37,7	6,4	0,43
2			
3			
Mittel- wert			

	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
1	stark
2	
3	

Art des Materials

: Gewebter Velours-Bodenbelag, Pol aus Polyamid, Rücken aus PP Jute und PA mit Synthese-Latex-Appretur. Zur Prüfung lose auf 6 mm dicke Asbestzementplatte gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche u nter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	23,0	6,1	0,46
2			
3			
Mittel- wert			

	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
1	stark
2	
з	

Art des Materials

: Tufting-Velours-Beodenbelag, Pol aus Polyamid, Träger aus PP-Vlies mit Synthese-Latex-Vorstrich, Zweitrücken aus PP-Gewebe.

Zur Prüfung lose auf 6 mm dicke Asbestzementplatte gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	15,3	4,1	0,64
2			
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch-
	entwicklung
1	stark
2	
3	

:

×

Art des Materials

Kork-Gummi-Bodenbelag. Zur Prüfung lose auf 10 mm dicke Calziumsilikatplatte gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	100,0	10,1	0,21
2			
3			
Mittel- wert		99 (99 (99 (99 (99 (99 (99 (99 (99 (99	

Probe Nr.	visuelle Beurteilung der R a uch- entwicklung
1	extrem stark
2	
3	

Art des Materials

 Tufting-Velours-Bodenbelag, Pol aus 70 % PAN und 30 % modifiziertem PAN, Träger aus Bändchengewebe, Rücken aus Latex-Schaum. Zur Prüfung auf 6 mm dicke Asbestzementplatte geklebt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	55,8	5,8	0,37
2			
3			
Mittel- wert			

	visuelle	
Probe	Beurteilung	
Nr.	der Rauch-	
	entwicklung	
1	sehr stark	
2		
з		

Art des Materials

 Tufting-Velours-Bodenbelag, Pol aus Polyamid, Rücken aus Latexschaum. Zur Prüfung lose auf 6 mm dicke Asbestzementplatte gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	51,5	8,8	0,39
2			
3			
Mittel- wert			

	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	lentwicklung
1	stark
~	
4	
3	

Art des Materials : Tufting-Velours-Bodenbelag, Pol aus Polyamid Rücken aus Latexschaum. Zur Prüfung lose auf 6 mm dicke Asbestzement-

Zeit in min

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	35,6	9,1	0,47
2			~~~
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	sehr sta rk
2	
3	

:

Art des Materials

Nadelfilz-Bodenbelag aus 45 % PP, 30 % PES und 25 % PA, rückseitig gepflatscht mit Synthese-Latex. Zur Prüfung lose auf 10 mm dicke Calziumsilikatplatte gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	41,0	14,1	0,27
2		-	
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	sehr stark
2	
3	

Nr.: 72

•

Art des Materials

PVC-Bodenbelag mit Unterschicht aus PVC-Schaum mit Glasgittergewebeeinlage Zur Prüfung lose auf 10 mm dicke Calziumsilikatplatte gelegt.

	Maximum	Fläche	kritische
	der Ein-	unter d.	Bestrahlungs-
Probe	trübung	Kurve	stärke ₂
Nr.	%	% · min	W/cm ⁻
1	61,5	9,9	0,64
2			
3			
Mittel- wert			

	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
1	sehr stark
2	
3	
:

Art des Materials

PVC-Bodenbelag mit Unterschicht aus PVC-Schaum mit Glasgittergewebeeinlage. Zur Prüfung lose auf 10 mm dicke Calziumsilikatplatte gelegt.

	Maximum	Fläche	kritische
	der Ein-	unter d.	Bestrahlungs-
Probe	trübung	Kurve	stärke 🕤
Nr.	%	% • min	W/cm ²
1	72,0	8,4	0,60
2			
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der R a uch- entwickluna
1	sehr stark
2	
3	

:

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PP-Vlies mit Synthese-Latex-Vorstrich, Zweitrücken aus PP-Gewebe.

	Maximum	Fläche	kritische
	der Ein-	unter d.	Bestrahlungs-
Probe	trübung	Kurve	stärke 🤿
Nr.	%	% ∙ min	W/cm ²
1	29,1	12,5	0,46
2			
3			
Mittel- wert			

Probe	visuelle Beurteilung
Nr.	der Rauch-
	entwicklung
. 1	sehr stark
2	
З	

:

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PP-Vlies mit Synthese-Latex-Vorstrich, Zweitrücken aus PP-Gewebe.

Probe	Maximum der Ein- trübung	Fläche unter d. Kurve	kritische Bestrahlungs- stärke ₂
Nr.	%	% · min	W/cm ⁻
1	26,0	6,5	0,46
2			
3			
Mittel- wert			

	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
1	stark
2	
3	

:

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PP-Vlies mit Synthese-Latex-Vorstrich, Zweitrücken aus PP-Gewebe.

	Maximum der Ein-	Fläche unter d .	kritische Bestrahlungs-
Probe	trübung	Kurve	stärke
Nr.	%	% ∙ min	W/cm ²
1	1,2	1,0	1,1
2			
3			
Mittel- wert			

	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwickluna
1	mäßig
2	
3	

:

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PP-Bändchengewebe, Rücken aus Latex-Schaum.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	30,8	5,7	0,48
2			
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der R a uch-
	entwicklung
1	stark
2	
3	

•

Art des Materials

Getufteter Bodenbelag, Schlinge aus Polyamid, Träger aus PP-Bändchengewebe mit Synthese-Latex-Vorstrich, Zweitrücken aus PP-Gewebe.

	Maximum	Fläche	kritische
	der Ein-	unter d.	Bestrahlungs-
Probe	trübung	Kurve	stärke o
Nr.	%	% • min	W/cm ²
1	3,5	1,5	1,1
2			
3			
Mittel-		and the second	
wert			

	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
1	mäßig
2	
з	

Art des Materials

: Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PP-Bändchengewebe mit Synthese-Latex-Vorstrich, Rücken aus PP-Beschichtung.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	25,2	7,2	0,41
2			
3			
Mittel- wert			

and the second designed of the second designe	
	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
1	stark
2	
3	

:

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PES-Vlies mit Synthese-Latex-Vorstrich, Zweitrücken aus PAN-Gewebe.

	Maximum	Fläche	kritische
	der Ein-	unter d.	Bestrahlungs-
Probe	trübung	Kurve	stärke 🤉
Nr.	%	% • min	W/cm ²
1	21,4	6,5	0,54
2			
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	
3	

Art des Materials •

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PP-Vlies mit Synthese-Latex-Vor-strich, Zweitrücken aus PAN-Gewebe.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	20,0	3,6	0,50
2			
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	
3	

:

Art des Materials

Getufteter Bodenbelag, Schlinge aus Polyamid, Träger aus PES-Vlies mit Synthese-Latex-Vorstrich, Zweitrücken aus PP-Gewebe.

	Maximum	Fläche	kritische
	der Ein-	unter d.	Bestrahlungs-
Probe	trübung	Kurve	stärke _o
Nr.	%	% • min	W/cm ²
1	3,0	0,8	1,1
2			
3			
Mittel- wert			

and the second se	
	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
1	mäßig
2	3
٤	
_	
3	

Art des Materials

:. Getufteter Bodenbelag, Schlinge aus Polyamid, Träger aus PP-Bändchengewebe mit Synthese-Latex-Vorstrich, Zweitrücken aus PP-Gewebe.

Zur Prüfung lose auf 6 mm dicke Asbestzementplatte gelegt.

Probe Nr.	M ax imum der Ein- trübung %	Fläche unter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	27,8	8,0	0,41
2			
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch-
1	stark
2	
3	

Art des Materials

: Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PP-Vlies mit Synthese-Latex-Vorstrich, Zweitrücken aus PAN-Gewebe.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ⊷ min	kritische Bestrahlungs- stärke W/cm ²
1	21,5	4,0	0,54
2			1.00 Mar.
3			
Mittel- wert			

	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
1	stark
2	
3	

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PES-Vlies mit Synthese-Latex-Vorstrich, Zweitrücken aus PP-Gewebe.

Probe Nr.	M a ximum der Ein- trübung %	Fläche unter d . Kurve % ⊷ min	kritische Bestrahlungs- stärke W/cm ²
1	10,9	3,6	0,89
2			
3			
Mittel- wert			

Contraction of the local division of the loc	
	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
1	mäßig
2	
З	

÷

Art des Materials

Gewebter Velours-Bodenbelag, Pol aus Polyamid mit Stahlfasern, Rücken aus Mischgewebe mit Synthese-Latex-Beschichtung.

Zur Prüfung auf 6 mm dicke Asbestzementplatte geklebt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	29,4	4,6	0,68
2			
3			
Mittel- wert			

	والمستجمعا السنب سيتخذ ويتجار والمتحقي والمتحقيق والمتحقيق والمتحقيق والمتحقي والمتكري
	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
ן	stark
2	
٤.	
3	

Art des Materials

: Gewebter Velours-Bodenbelag, Pol aus Polyamid, Rücken aus Mischgewebe mit Synthese-Latex-Beschichtung. Zur Prüfung lose auf 10 mm dicke Calziumsilikatplatten gelegt.

	M axim um der Ein-	Fläche unter d.	kritische Bestrahlungs-
Probe	trübung	Kurve	stärke
Nr.	%	% • min	W/cm ²
1	58,1	9,4	0,37
2			
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der R a uch- entwicklung
1	sehr stark
2	
3	

Art des Materials

 Gewebter Velours-Bodenbelag, Pol aus Polyamid mit Metallfasern. Rücken aus Mischgewebe mit Appretur aus einem PE-Copolymerisat.

Zur Prüfung lose auf 6 mm dicke Asbestzementplatte gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	18,5	4,4	0,56
2			
3			
Mittel- wert			

Construction of the second science of the se	
	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
-	
1	stark
2	
6	
2	
3	

•

Art des Materials

PVC-Bodenbelag mit Hydrocord, Rücken aus Asbestfasern mit eingearbeiteten PVC-Stückchen.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	9,0	1,2	1,1
2			
3			
Mittel- wert			

	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
1	stark
2	
3	

•

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus 75 % PP / 25 % PA, Rücken aus Latex-Schaum. Zur Prüfung lose auf 10 mm dicke Calziumsilikatplatte gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ⋅ min	kritische Bestrahlungs- stärke W/cm ²
1	40,4	4,3	0,34
2			
3			
Mittel- wert		. <u> </u>	

	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
1	sehr stark
2	
3	

Art des Materials

: Tufting- Velours-Bodenbelag, Pol aus Polyamid, Träger aus PES-Vlies mit Synthese-Latex-Vorstrich. Zweitrücken aus Jutegewebe.

	M a ximum der Ein-	Fläche unter d .	kritische Bestrahlungs-
Probe	trübung	Kurve	stärke _o
Nr.	%	% • min	W/cm ²
1	0,4	0,2	1,1
2			
3			
Mittel- wert			

[visuelle
Probe	Beurteilung
Nr.	der Rauch-
and and state in the state of the	entwicklung
1	mäßig
2	
3	

:

Art des Materials

Gewebter Velours-Bodenbelag, Pol aus Polyamid, Rücken aus Glasfasergewebe mit Synthese-Latex-Beschichtung.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	0,6	0,5	1,1
2			
3			→ ±
Mittel- wert			

and the second se	
	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
_	
1	maBig
0	
2	
3	

•

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PP-Gittergewebe mit Synthese-Latex-Vorstrich, Zweitrücken aus PP-Gewebe. Eur Prüfung lose auf 10 mm dicke Calziumsilikat-

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	21,1	7,2	0,52
2			
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der R auch- entwicklung
1	stark
2	
3	

:

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PES-Vlies mit Synthese-Latex-Vorstrich, Zweitrücken aus PES-Gewebe. Zur Prüfung lose auf 10 mm dicke Calziumsilikatplatte gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ⊷ min	kritische Bestrahlungs- stärke W/cm ²
1	3,4	1,5	0,82
2			
3			
Mittel- wert			

	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
1	mäßig
2	
3	

Art des Materials

: Tufting- Velours-Bodenbelag, Pol aus Polyamid, Träger aus PES-Gewebe mit Synthese-Latex-Vorstrich, Zweitrücken aus PES-Gewebe. Zur Prüfung lose auf 10 mm dicke Calziumsilikatplatte gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	1,4	1,1	1,1
2			
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch-
1	mäßig
2	
3	

Art des Materials

 Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PP-Gittergewebe mit Synthese-Latex-Vorstrich, Zweitrücken aus PES-Gewebe. Zur Prüfung lose auf 10 mm dicke Calziumsilikatplatte gelagt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	26,1	3,8	0,43
2			
3			
Mittel- wert			

and the second	
	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
-1	
	stark
2	
٤	an an
_	
3	

Art des Materials

: Tufting. Bodenbelag, Schlinge aus Polyamid, Träger aus PES-Vlies mit Synthese-Latex-Vorstrich, Zweitrücken aus PES-Gewebe.Zur Prüfung lose auf 10 mm dicke Calziumsilikatplatte gelegt.

	M a ximum der Fin-	Fläche unter d.	kritische Bestrahlungs-
Probe	trübung	Kurve	stärke
Nr.	%	% · min	W/cm ²
1	1,5	1,0	1,1
2			
3			
Mittel- wert			

	visuelle
Probe	Beurteilung
Nr.	der Rauch
	entwicklung
1	mäßig
2	
3	

Art des Materials

: Tufting -Velours-Beodenbelag, Pol aus Polyamid, Träger aus Synthese-Vlies. Rücken aus Synthese-Latex-Glattstrich. Zur Prüfung lose auf 10 mm dicke Calziumsilikatplatte gelegt.

Probe	Maximum der Ein- trübuna	Fläche unter d. Kurve	kritische Bestrahlungs- stärke
Nr.	%	% • min	W/cm ²
1	7,0	1,4	1,1
2			
3			
Mittel- wert			

	visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
1	_
	stark
<u> </u>	
2	
3	

:

Art des Materials

Tufting-Bodenbelag, Schlinge aus Polyamid, Träger aus PP-Gittergewebe mit Synthese-Latex Vorstrich, Zweitrücken aus Jutegewebe.

Zur Prüfung auf 10 mm dicke Calziumsilikatplatte

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	25,1	8,3	0,43
2			~ -
3		`	
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	
З	

,

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus 4 2 PP-Gittergewebe mit Synthese-Latex-Vorstrich, Zweitrücken aus Synthese-Latex-Schaum.

Zur Prüfung auf 6 mm dicke Asbestzementplatte geklebt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	29,0	7,5	0,30
2			
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	
3	

mpa 2260

Art des Materials : Tufting-Velours-Bodenbelag, Pol aus Polyamid, Träger aus PP-Bändchengewebe mit Latex-Glattschaum. Zur Prüfung auf 6 mm dicke Asbestzementplatte geklebt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	19,0	3,3	0,89
2			ar an
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	mäßig
2	
3	

mpa 2260

:

Art des Materials

Tufting-Velours- Bodenbelag, Pol aus Polyamid, Träger aus PES-Bändchengewebe mit PA/PP-Vliesauflage, Rücken aus Synthese-Latex-Beschichtung. Zur Prüfung lose auf 10 mm dicke Calziumsilikat-

platte gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	2,1	1,5	0,81
2			
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	mäßig
2	
3	

mpa 2260

Art des Materials

: Linoleum mit eingebettetem Jutegeweberücken.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ⊷ min	kritische Bestrahlungs- stärke W/cm ²
1	47,0	11,2	0,25
2			
3		Pe - 44	
Mittel- wert			

Probe Nr.	visuelle Beurteilung der R a uch- entwicklung
1	sehr stark
2	
3	

Art des Materials

: Linoleum mit eingebettetem Jutegeweberücken.

Zur Prüfung lose auf 6 mm dicke Asbestzementplatte gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ⋅ min	kritische Bestrahlungs- stärke W/cm ²
1	29,0	8,3	0,30
2			
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	sehr stark
2	
3	

Art des Materials

 Linoleum mit eingebettetem Jutegeweberücken.
Zur Prüfung lose auf 6 mm dicke Asbestzemntplatte gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % • min	kritische Bestrahlungs- stärke W/cm ²
1	31,1	5,2	0,28
2			
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	sehr stark
2	
3	

Art des Materials

: Linoleum mit eingebettetem Jutegeweberücken.

Zur Prüfung auf 6 mm dicke Asbesetzementplatte geklebt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	20,3	4,6	0,41
2			
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der R a uch- entwicklung
1	stark
2	
3	

Art des Materials

: Linoleum mit Unterschicht aus Korkment mit eingebettetem Jutegewebe.

Zur Prüfung lose auf 6 mm dicke Asbestzementplatte gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	41,5	9,5	0,33
2			
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der R a uch- entwicklung
1	stark
2	
3	

Art des Materials

: PVC-Bodenbelag mit PVC-Schaumrücken.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	88,0	8,5	0,66
2			
3			
Mittel- wert		99999999999999999999999999999999999999	

Probe Nr.	visuelle Beurteilung der R a uch- entwicklung
1	sehr stark
2	
3	
Art des Materials

 PVC-Bodenbelag mit PVC-Schaumrücken.
Zur Prüfung lose auf 8 mm dicke Calziumsilikatplatte gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ⊷ min	kritische Bestrahlungs- stärke W/cm ²
1	97,5	9,2	0,53
2			
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	sehr stark
2	
З	

mpa 2260

Art des Materials

: PVC-Bodenbelag mit Rücken aus Papier. Zur Prüfung lose auf 8 mm dicke Calziumsilikatplatte gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ⊷ min	kritische Bestrahlungs- stärke W/cm ²
1	38,4	2,5	0,79
2			
3			
Mittel- wert			ana ing ang ang ang ang ang ang ang ang ang a

[visuelle
Probe	Beurteilung
Nr.	der Rauch-
	entwicklung
1	sehr stark
2	
3	

mpa 2260

Versuchsmaterial Nr.: 111

Art des Materials

 PVC-Bodenbelag mit Rücken aus Papier.
Zur Prüfung lose auf 8 mm dicke Calziumsilikatplatte gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d₊ Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	73,8	3,5	0,86
2			
3			
Mittel- wert			

Probe Nr.	visuelle Beurteilung der R a uch- entwicklung
1	sehr stark
2	
3	

Art des Materials

 Bodenbelag aus thermofixiertem PVC-Schlingengewirr.
Zur Prüfung lose auf 8 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	56,1	5,8	0,87
2	41,1	5,1	0,85
3	43,0	5,2	0,83
Mittel- wert	46,7	5,4	0,85

Probe Nr.	visuelle Beurteilung der R a uch- entwicklung	
1	sehr stark	
2	sehr stark	
3	sehr stark	

Versuchsmaterial Nr.: 113

Art des Materials

: Gewebter Velours-Bodenbelag, Pol aus Polyamid, Träger aus PES-Gewebe, Rücken aus PVC mit PES-Gewebeeinlage.

Zur Prüfung lose auf 8 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d. Kurve % ∙ min	kritische Bestrahlungs- stärke W/cm ²
1	20,5	7,3	0,49
2	21,5	6,8	0,49
3	16,2	6,1	0,62
Mittel- wert	19,4	6,7	0,53

Probe Nr.	visuelle Beurteilung der R a uch- entwicklung
1	stark
2	stark
3	stark

mpa 2260

•

Art des Materials

Tufting-Velours-Bodenbelag, Pol aus Polyamid Träger aus Synthetik-Vlies mit Synthese-Latex-Vorstrich, synthetischer Zweitrücken.

Zur Prüfung lose auf 8 mm dicke Calziumsilikatplatten gelegt.

Probe Nr.	Maximum der Ein- trübung %	Fläche unter d . Kurve % ⋅ min	kritische Bestrahlungs- stärke W/cm ²
1	29,9	4,2	0,47
2	29,5	4,6	0,44
3	29,6	3,3	0,47
Mittel- wert	29,7	4,0	0,46

Probe Nr.	visuelle Beurteilung der Rauch- entwicklung
1	stark
2	stark
3	stark