Bau<u>forschung</u>

Axial zyklisch belastete Pfähle

T 1435

¹ Fraunhofer IRB Verlag

T 1435

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

T 1435: Axial zyklisch belastete Pfähle

11,24

LEHRSTUHL UND PRÜFAMT FÜR GRUNDBAU, BODENMECHANIK UND FELSMECHANIK TECHNISCHE UNIVERSITÄT MÜNCHEN O. PROF. DR.-ING. R. FLOSS

Im Auftrag des Instituts für Bautechnik, Berlin

Schlußbericht

zum Forschungsvorhaben

Az. IV/1-5-360/83

mit bewertender Beurteilung

Axial zyklisch belastete Pfähle

Oktober 1984

36 Seiten
23 Anlagen (40 Blatt)
1 Bildanlage (14 Bilder)

Inhalt

1 Aufgabenstellung und Zielsetzung 1. 1 2. Literatur 1 2.1 Einleitung 2.2 Das Verhalten von Ankern und Pfählen 2 unter Schwellbelastung 2.3 Das Verhalten von Ankern und Pfählen 8 unter Wechsellast 10 Versuche und Versuchsergebnisse 3. 10 3.1 Versuchsvorbereitungen 10 3.1.1 Versuchsboden 10 3.1.2 Einbau in der Grube 3.1.3 Vorbereitung der Meß- und Bewehrungsstähle 11 11 3.1.4 Herstellen der Verpreßpfähle 13 3.2 Durchführung und Ergebnisse der Versuche 13 3.2.1 Statische Versuche 3.2.2 Zyklische Versuche 16 20 3.3 Ausbau der Pfähle 22 Bewertende Beurteilung der Ergebnisse 4. 22 4.1 Vorbemerkung 4.2 Folgerungen aus den Untersuchungsergebnissen 23 23 4.2.1 Einbau des Bodens und der Pfähle 23 4.2.2 Statische Versuche 4.2.3 Versuche mit Wechselbelastung 27 29 4.2.4 Versuche mit Druckschwellbelastung 31 Zusammenfassung und Schlußfolgerungen 5. 31 5.1 Statische Belastungsversuche 32 5.2 Zyklische Belastungsversuche Empfehlungen für weitere Untersuchungen 35 6. 36 7. Schlußwort

23 Anlagen (40 Blatt)

1 Bilddokumentation (14 Bilder)

Seite

1. Aufgabenstellung und Zielsetzung

- 1 -

In der Praxis werden axial zyklisch belastete Pfähle bei Stützbauwerken in Tidegebieten, Dock-Sohlplatten, Klär-, Rückhalte- und Schwimmbecken sowie bei Schornsteinen, Türmen und Freileitungsmasten eingesetzt.

Über das Tragverhalten von axial zyklisch beanspruchten Pfählen ist aufgrund von Literaturangaben bekannt, daß die Tragfähigkeit, besonders in Sand, gegenüber statischer Beanspruchung stark reduziert sein kann.

Ziel und Zweck des Forschungsvorhabens war es, durch Großversuche von Verpreßpfählen, welche in der Versuchsgrube des Prüfamts in Sand hergestellt wurden, das Tragverhalten von axial zyklisch beanspruchten Pfählen gegenüber statisch beanspruchten Pfählen quantitativ zu erfassen.

Die Ausgangsbasis sind die Ergebnisse des folgenden Literaturstudiums.

2. Literatur

2.1 Einleitung

Bei Sichtung der Literatur über zyklische axiale Belastung von Ankern und Pfählen zeigt sich, daß auf diesem Gebiet bisher, insbesondere über Versuche mit Wechselbelastungen, nur wenig veröffentlicht wurde. Die Ergebnisse der für wichtig erachteten Arbeiten sollen hier kurz vorgestellt werden. Hierbei erfolgt eine Trennung in Schwell- und Wechselbelastungen und in Modell- und Feldversuche, wodurch einige Veröffentlichungen doppelt angeführt werden.

-2-

Lehrstuhl und Prüfamt für Grundbau, Bodenmechanik und Felsmechanik, Techn. Universität München

2.2 <u>Das Verhalten von Ankern und Pfählen unter</u> Schwellbelastung

2.2.1 Schwellbelastungsversuche an Modellen

- 1) CHAN (1976): The behaviour of piles subjected to repeated and static loads. (Thesis Sheffield University) Bodenart: Trockener, gleichförmiger Mittelsand Ø 19 mm, Länge 57 cm (Aluminium) Modell: Druckschwell und Zugschwell Belastung: Bei Druckschwell zwischen 0,5 bis 0,25 Q_a und 0 Ergebnis: schnelles Versagen. Bei Druckschwell zwischen 0,2 bis 0,1 Q und 0 nach anfänglicher Setzung zunächst stabiler Zustand, dann wieder stärkere Zunahme der Setzung ab 1000 bzw. 35.000 Zyklen. Bei Zugschwell zwischen 0,7 bis 0,5 Q_a und 0 schneller Bruchzustand. Bei Zugschwell zwischen 0,3 Q und 0 zunächst Stabilisierung, dann rasch ^gzunehmende Verschiebung ab 2.500 und Bruch. Mit sehr kleiner Lastamplitude zwischen 0,15 Q $_{
 m d}$ und 0 bis 200.000 Zyklen Beruhigung. 2) HANNA et al. (1978): The behaviour of dead anchors subjected to repeated and alternating loads. (Ground Engineering 1978) Trockener Fein-Mittelsand mit verschiedenen Bodenart: Vorbelastungswerten Modell: Stäbe (40 cm lang) mit kleiner Ankerplatte Belastung: Zugschwell Bei Zugschwell zwischen 0,25 bis 0,80 Q und 0 bzw. 0,1 Q anfänglich stärkere Verschiebung, dann $^{\rm g}$ Beruhigung Ergebnis: und wieder stärkere Verschiebung. 3) AL-MOSAWE (1979): Zitiert in Foundations in tension - ground anchors.
 - (Trans Tech Publications, Series on Rock and Soil Mechanics, Vol. 6 (1982)

Versuchsdurchführung wie vor mit vorgespannten und nicht vorgespannten Stäben.

-3-

Ergebnis: Vorspannung verlängert die Lebensdauer.

 Q_{q} = statische Grenzlast

Lehrstuhl und Prüfamt für Grundbau, Bodenmechanik und Felsmechanik, Techn. Universität München

4) HANNA (1982):	Foundations in tension - ground anchors. (Trans Tech Publications, Series on Rock and Soil Mechanics, Vol. 6 (1982)
Schlußfolgeru	ngen aus 1) bis 3)
 Zyklische Ankerbeweg Die Größe Lebensdaue Vorspannen hinsichtli In körnige des Kornau wiederum e Normalspan Bewegungen 	Belastung von Ankern verursacht sich addierende ungen. der Lastamplitude ist von Bedeutung und kann die r des Ankers bestimmen. eines Ankers verlängert seine Lebensdauer ch zyklischer Belastung. n Böden findet ein allmählicher Zusammenbruch fbaus nahe der Ankeroberfläche statt. Dies führt ine Änderung der Dichte und eine Reduzierung der nungen am Ankerschaft herbei – begleitet von des Ankers.
5) HENKE u.a. (1	978): Dauertragverhalten von vorgespannten Injektionsankern unter schwellender Beanspruchung. (IfBT IV/1-5-63/74)
Bodenart:	Sand (0/4 mm)
Modell:	Loβ (IM) Verpreβkörper 2,24 m - 2,57 m lang, Ø 44 - 68 mm. Stahl Ø 12.5 mm.
Belastung:	Schwellzug nach statischer Belastung; verschiedene Schwingweiten, wobei Oberlast
Ergebnis:	Ein kritischer Schwellbeiwert ζ (ähnlich dem K _s = Kriechbeiwert) wurde beim bindigen Boden bei 90% der Grenztragfähigkeit, bei nicht bindigem Boden bei 50% erreicht.
6) GUDEHUS/HETTL	ER (1980), HETTLER (1981): Bleibende Verschiebungen von Baukörpern in Sandboden unter monotonen und zyklischen Belastungen. (Baugrundtagung 1980 + Veröffentlichung Heft 90)
Bodenart: Modell: Belastung: Ergebnis:	Trockener Mittelsand Stahlstäbe Ø 27 mm, Länge 320 mm Schwellzug Tragfähigkeit erheblich geringer als bei statischer Belastung. Bei Zugschwell zwischen 0,62 bis 0,30 Qg und 0 schneller Bruch. Bei Zugschwell zwischen 0,08 Qg und 0 schrittweises Versagen. Bei Zugschwell zwischen 0,06 Qg und 0 innerhalb 2000 Zyklen Beruhigung.

- 3 -

-4-

7) VAN WEELE (1979): Pile bearing capacity under cyclic loading compared with that under static loading.
 (2. Int. Conf. on Beh. of Offshore Structures, London, August 1979)

Vertikal eingebaute Stahlplatte:

Tiefe x Breite x Dicke: 550 x 400 x 12 mm Standardpenetrometer mit 10 cm² Spitze

Quarzsand, wassergesättigt

und 100 cm² Mantelfläche

Bodenart: Modell:

Belastung: Ergebnis:

Druckschwellbelastung Druckschwell-Grenzlast bei 25 - 33% von q_s und 60 - 70% von τ_m

Empfehlung: Wenn die Setzung kleiner als 0,1 d_F nach 10.000 Zyklen sein soll, dann darf^F die Maximallast nicht größer als 0,1 Q_g sein.

8) HOLMQUIST, MATLOCK (1976): Resistance-displacement relationships for axially-loaded piles in soft clay. (8. OTC, Houston, 1976)

Bodenart: We Modell: Al Belastung: Dr Ergebnis: Ke

Weicher Ton, I_P = 60% Aluminiumrohr, 2,54 cm Ø, Länge 101,6 cm p: Druckschwellbelastung Kein gravierender Einfluß auf Tragfähigkeit (ähnlich BROMS/1970).

9) Weitere Arbeiten aus dem offshore-engineering:

BEMBEN/CALAJAN/KUPFERMAN (1973): Offshore Technology Conf. 1973, Houston

BEMBEN/KUPFERMAN (1975): Offshore Technology Conf. 1975, Houston ANDREADIS/HARVEY/BURLEY (1978): Embedment anchors subjected to repeated loading, ASCE, Vol. 104, July 1978

POULOS (1981): Cyclic axial response of single pile, ASCE Vol. 107, Gt 1, Jan. 1981

2	2 2 Eoldyoy	cucho mit Schwellbelastung
۷. ۲	.z.z <u>reluve</u>	Suche mit Schwertberastung
1)	VAN-DER-VEEN	(1953): The bearing capacity of a pile (Proc. 3. ICSMFE Suisse 1953)
	Bodenart: Pfahl: Belastung: Ergebnis:	Unterschiedliche Schichten, Hafen Slotermeer (Beton) Nach jeder statischen Laststufe Schwelldruck (5 Zyklen) Belastung hat gleichen Effekt wie Zeitfaktor, 60% der Grenztragfähigkeit sollten nicht über- schritten werden.
2)	MARIUPOLSKII,	/TROFIMENKOV (1965): Screw piles used for mast and tower foundations. (Proc. 6. ICSMFE Montreal)
	Bodenart:	Weiche und feste Tone, feuchte und wassergesättigte Sande in geringer bis mittlerer Dichte
	Pfahl:	200 Schraubenpfähle Tellerdurchmesser 0,25 bis 1,0 m
	Belastung: Ergebnis:	Druckschwell und Zugschwell, statisch und Wechsellast Vorschlag eines Abminderungsfaktors für Bemessung: Sand, teilweise gesättigt: 0,7 gesättigt und trocken: 0,5 Ton, steif bis hart: 0,7 weich: 0,6 sehr weich: 0,5
3)	BROMS (1970):	Bearing capacity of cyclically loaded piles. (Report No. 44, Swedish Geotechn. Inst., 1972)
	Bodenart: Pfahl:	Normal konsolidierter Ton 13 Pfähle (A Hala – 7 Datas fastistail – 2 Hala Datas Dfähle)
	Belastung:	Stufenweise mit 25% bis 100% einer vermuteten kritischen Last. Unterlast 50% der Oberlast, maximal 35 Zyklen.
	Ergebnis:	Kritische Last für zyklische Beanspruchung etwa gleich der statischen Grenztragfähigkeit.
4)	FELLENIUS (19	75): ASCE Vol. 101
		Beschreibung und Auswertung des "Swedish cyclic test".

-6-

Lehrstuhl und Prüfamt für Grundbau, Bodenmechanik und Felsmechanik, Techn. Universität München

- 5 -

5)	BEGEMANN (*	1973): Alternating loading and pulling tests on Steel I - beam piles. (8. ICSMFE Moskau)
	Bodenart: Pfahl: Belastung:	Sand Doppel-T 30 5x Druckschwell, 5x Zugschwell abwechselnd in Laststufen
	Ergebnis:	Die Zugkraft lag bei 50% der statischen Grenzlast am "point of hesitation" (Zusatzverformung nach 4 Zyklen >0,2 mm).
		Die Mantelreibung sinkt nach einmaliger Überbelastung auf 33% ab.
6)	HENKE u.a.	(1978): Schwellverhalten von Injektionsankern in bindigen Böden. (FA 15.039 S 76 B)
	Bodenart:	Leicht bis mittelplastische Tone
	A value ou v	$I_{C} = 1,0 - 1,21$ und 1,30, Hangwasser
	Anker	Verpreßkörper: 3,5, 4,5 und 5,5 m, Stahl Ø 32 mm
	Belastung:	Nach Ermittlung der statischen Grenzlast
		Feld 1 Unterlast 50% von Oberlast, verschiedene
		Schwingweiten und Frequenzen
	Ergebnis:	Schwellastverformung in Abhängigkeit von
	5	Log. Zykluszahl betrachtet, Einführung eines
		bodenbedingter Bruch auftritt.
		Dies entspricht einem Wert von 0,7 Q _g .
7)	LACOUR, DEL	MAS, BUSTAMANTE (1978): "Essais de tirants d'anchrage scellés dans une argile plastique".
	Rodenart.	Ton $L_{p} = 50 - 60\%$
	Anker: Belastung:	Verpreßanker, Länge 12 m, Verpreßkörper 6 m Nach statischer Belastung Zugschwellbelastungen, Amplitude 100 kN, is 25 Zyklen auf Laststufen bis 1200 k
	Ergebnis:	Keine Beeinflussung des Tragverhaltens im Vergleich zum statischen Versuch.
8)	GARBRECHT,	SCHUPPENER (1980): Anmerkungen zum Einfluß von Schwell- lasten auf das Ergebnis von Pfahlprobebelastungen.
		Es wird darauf hingewiesen, daß Sand unter zyklischer Belastung eine Volumenverminderung erfährt, wodurch die aufgrund horizontaler Bodenverspannung wirkende Mantel- reibung abgebaut wird.

Lehrstuhl und Prüfamt für Grundbau, Bodenmechanik und Felsmechanik, Techn. Universität München

- 6 -

9) KRAFT, COX, VERNER (1981): Pile load tests: cyclic loads and varying load rates. (ASCE Vol. 107, Jan. 1981)

Bodenart: Ton, steif bis fest, hochplastisch
Pfahl: Stahlrohr Ø 356 mm, unten offen
Belastung: Druckschwellbelastung, verglichen mit letztem statischem Versuch am gleichen Pfahl
Ergebnis: Ahnlich BROMS, Tragfähigkeit unter zyklischer Belastung gleich der statischen, ab 0,8 Qg etwas zunehmende Verformungen.

10) Weitere Arbeiten aus dem Off-Shore-Bereich:

SANGREY (1977): Response of offshore piles to cyclic loading. (9th OTC, Houston, Texas)

GROSCH, McBRIDE-RATCLIFF, REESE (1980): Field Tests of small-scale pile segments in a soft clay deposit unter repeated axial loading. (12th OTC, Houston, Texas)

BEA, DOVER, AUDIBERT (1980): Dynamic response of laterally and axially loaded piles. (12th OTC, Houston, Texas)

-8-

2.3 Das Verhalten von Ankern und Pfählen unter Wechsellast 2.3.1 Wechsellast-Versuche an Modellen The behaviour of piles subjected to repeated and 1) CHAN (1976): static loads. (Thesis, Sheffield University) Trockener, gleichförmiger Mittelsand Bodenart: Ø 19 mm, Länge 57 cm (Åluminium) Modell: Druck 0,15 Q_a und Zug 0 - 0,30 Q_a Belastung: Ergebnis: Nach ca. 1000 Zyklen nehmen selbst bei kleiner Zugkomponente von 0,05 und 0,10 Q die Verformungen gravierend zu. Bei Zugkräften von 0,2 bzw. 0,3 Q Bruch nach 750 bzw. 150 Zyklen. 2) HANNA (1978): The behaviour of dead anchors subjected to repeated and alternating loads. (Ground Engineering 1978) Trockener Fein-Mittelsand Bodenart: Modell: Alustäbe mit kleiner Ankerplatte Wechsellasten, Versuche zwischen Druck von 0,15 - 0,4 Q_q Belastung: und Zug von $0,05 - 0,25 Q_q$ Ergebnis: Verformungsrate nimmt zunächst kurz ab, steigt dann aber wieder an. Bruch bei allen Versuchen zwischen ca. 70 und 800 Zyklen. 3) HOLMQUIST, MATLOCK (1976): Resistance-displacement relationships for axially-loaded piles in soft clay. (8. OTC, Houston) Weicher Ton, $I_p = 60\%$ Aluminiumrohr, 2,45 cm Ø, Länge 101,6 cm Bodenart: Modell: Belastung: Wechselbelastung Tragfähigkeit reduziert auf ca. 1/3 der statischen Werte. Ergebnis:

-9-

Lehrstuhl und Prüfamt für Grundbau, Bodenmechanik und Felsmechanik, Techn, Universität München

- 8 -

2.3.2 Feldversuche mit Wechselbelastung

1)	TROFIMENKOV, I	MARIUPOLSKII (1965): Screw piles used for mast and tower foundations. (Proc. 6. ICSMFE Montreal)		
	Bodenart: Pfahl:	Weiche und feste Tone, feuchte und wassergesättigte Sande in geringer bis mittlerer Dichte 200 Schraubenpfähle Tellerdurchmesser 0,25 bis 1,0 m, Länge bis 7 m		
	Belastung: Ergebnis:	<pre>Vielfache Wechsellasten Vorschlag eines Abminderungsfaktors für Bemessung Sand, teilgesättigt: 0,7 gesättigt und trocken: 0,3 Ton, steif bis hart: 0,7 mittel: 0,6 weich: 0,4 sehr weich: 0,3</pre>		
2)	SCHENCK (1964)): Trockendocks. (Bautechnik H. 9, 1964)		
	Bodenart: Pfähle: Belastung:	Sand 4 Frankipfähle Ø _s = 500 mm, Länge 14 m Wechsellast zwischen 1350 kN Druck und 900 kN Zug		
	Ergebnis:	Anfangs Zunahme der Hebungen und Abnahme der Setzung dann Hebungen und Setzungen konstant. Schenck-Kriterium: Bei 50% von Qg keine Gefährdung. Qg liegt vermutlich höher, wurde ^g nur geschätzt (damit Q<0,5 Qg).		

Lehrstuhl und Prüfamt für Grundbau, Bodenmechanik und Felsmechanik, Techn. Universität München

-10-

3. Versuche und Versuchsergebnisse

- 10 -

3.1 Versuchsvorbereitungen

3.1.1 Versuchsboden

Der Versuchsboden, ein Fein-Mittelsand, wurde aus einer Münchner Baugrube in Stadtmitte gewonnen. Es handelt sich geologisch um eine tertiäre Ablagerung der oberen Süßwassermolasse, wie sie im gesamten Alpenvorland und Münchner Stadtgebiet unter den quartären Kiesen als tertiärer Sand, sog. Flinzsand, angetroffen wird.

Die im Labor des Prüfamts an diesem Sand entsprechend den Normen ermittelten Korngrößenverteilungen und Bodenkenn-Anl.1 größen wurden auf Anlage 1 zusammengestellt.

3.1.2 Einbau in der Grube

An1.2

Der Boden wurde nach Verdichtungsversuchen im feuchten Zustand im tiefen Teil der Grube mit einem Wacker-Vibrationsstampfer ESV 65 Y in Lagen von 20 cm Dicke bis zu einer Gesamthöhe von ca. 6,7 m mit jeweils einem Übergang eingebaut (Anlage 2 sowie Bild 1 und Bild 2).

Die Einbauwassergehalte und Einbaudichten wurden an jeweils 6 bzw. 8 Punkten durch übereinanderliegende Doppelproben in den Einbauebenen +1,0 m, +1,9 m, +3,7 m und +6,2 m

-11-

Anl.3 überprüft. Die Ergebnisse sind auf Anlage 3 zusammen mit den jeweiligen Mittelwerten und den Mittelwerten der Lagerungsdichte zusammengestellt. Aus allen Versuchen ergeben sich daraus Mittelwerte von $\rho_d = 1,58 \text{ t/m}^3 \text{ und } w = 9,1\%$. Die mittlere Lagerungsdichte errechnet sich zu D = 0,42.

Außerdem wurden nach dem Einbau die Sondierwiderstände mit der leichten und schweren Rammsonde (LRS und SRS) als auch mit der Drucksonde bestimmt. Die Ergebnisse sind der Anlage 4 zu entnehmen.

3.1.3 Vorbereitung der Meß- und Bewehrungsstähle

- 11 -

Als Meß- und Bewehrungsstahl wurde ein Gewi-Stahl Ø 50 mm verwendet. An 5 Stählen wurden auf einer Länge von 4,5 m in gleichen Abständen von 1,1 m Dehnungsmeßstreifen appliziert und auf ihre Funktionsfähigkeit überprüft.

3.1.4 Herstellen der Verpreßpfähle

An1.4

Die Lage der Pfähle in der Grube wurde durch 60 cm lange Stahlrohrstücke Ø 119/127 genau fixiert. Diese Pohre wurden zur Reibungsabminderung außen mit einem Inertol-Anstrich versehen, auf voller Länge eingegraben und am Kopf an eine stabile Trägerkonstruktion angeschweißt. Die Rohre dienten zunächst als Bohrschablone, später als Pfahlkopfverstärkung. Sie wurden während der Versuchsdurchführung freigelegt.

Zur Aufstellung einer Bohrmaschine wurde die Versuchsgrube mit einer Plattform aus Trägern und Kanthölzern überbaut. Von der Plattform aus wurden die Bohrlöcher mit einer Doppeldrehbohrkopfmaschine (System Bauer – UBW 05-7t) mit Verrohrung 95/108 mm und Innenschnecke 90 mm Ø hergestellt. Nach dem Ziehen der Schnecke wurde der Meßund Bewehrungsstahl in die Verrohrung eingeführt, wobei 2 Abstandhalter über der 2. und 4. Meßstelle zur Zentrierung dienten. Anschließend wurde der Hohlraum mit einer Zementsuspension (W/Z = 0,4) aus Portlandzement 45 F verfüllt und bei geschlossenem System mit ca. 5 bar Druck bis Unterkante Kopfrohr stufenweise verpreßt. Dabei wurde gleichzeitig die Verrohrung gezogen (Bild 3-7).

Dieses relativ aufwendige Bohrverfahren entspricht nicht der üblichen Praxis, es wurde jedoch für notwendig gehalten, um möglichst einheitliche Querschnittsabmessungen zu gewährleisten.

Lehrstuhl und Prüfamt für Grundbau, Bodenmechanik und Felsmechanik, Techn. Universität München

3.2 Durchführung und Ergebnisse der Versuche

3.2.1 Statische Versuche

In der Zeit vom 26.7.1983 bis zum 9.8.1983 wurden an den beiden Pfählen 1 und 4 die Belastungsversuche zur Bestimmung der statischen Grenzlasten für die Druck- und Zugbelastung ermittelt. Diese Grenzwerte bilden die Basis für die Festlegung der Belastungsbreite für die am Pfahl 2, 3 und 5 vorgesehenen zyklischen Belastungen.

Der Pfahl 1 wurde zuerst auf Druck belastet. Die Vorlaststufe betrug ca. 16 kN und die Laststeigerung erfolgte jeweils um 45 kN bei Belastungszeiten von 60 Minuten je Laststufe. Nach dem Erreichen einer Setzung von 4 mm (202 kN) wurde in gleichen Laststufen bei jeweils 10 Minuten Wartezeit bis zur Vorlast entlastet. Nach einer Entlastungszeit von 820 Minuten erfolgte wiederum in Lastschritten von 45 kN bei einer Belastungszeit von 60 Minuten je Laststufe eine zweite Belastung bis zu einer Setzung von ca. 21 mm (337 kN). Die Entlastung erfolgte in den gleichen Lastschritten, jedoch nur mit einer Belastungszeit von 10 Minuten je Laststufe.

Nach dieser Druckbelastung wurde nach einer Wartezeit von 2 Tagen der Pfahl 1 auf Zug belastet. Die erste Entlastung erfolgte nach einer Hebung von 5 mm (67 kN). Die Belastungsschritte betrugen wie beim Druckversuch 45 kN. Die Belastung wurde nach dem Erreichen einer Hebung von 40 mm (242 kN) abgebrochen. Die Entlastung erfolgte wie beim Druckversuch in 45-kN-Schritten bei 10minütiger Wartezeit.

- 13 -

Der Pfahl 4 wurde analog zu Pfahl 1 untersucht, jedoch in umgekehrter Reihenfolge, d.h. dieser Pfahl wurde zuerst auf Zug bis zu einer Hebung von ca. 22 mm (292 kN) und anschließend nach einer zweitägigen Wartezeit auf Druck beansprucht.

- 14 -

Die Belastung der Pfähle erfolgte über eine servohydraulische Belastungseinrichtung (Steuerung über ein Proportionalventil in einem hydraulischen Regelkreis). Als Widerlager diente die fest arretierte Belastungsbrücke über der Versuchsgrube. Zur Kraftmessung diente ein 1600-kN-Zug-Druck-Präzisionsaufnehmer (Genauigkeitsklasse ±0,07%), für die Messung des Weges waren jeweils zwei induktive Wegaufnehmer mit einem Weg von ±20 mm (kalibrierte Meßgenauigkeit 0,1%) eingesetzt. Außerdem wurden die Meßwerte der am GEWI-Stahl in 5 Ebenen in Brückenschaltung angebrachten Dehnungsmeßstreifen erfaßt.

Die gesamte Versuchsabwicklung und Datenerfassung wurde programmgesteuert durch eine Rechenanlage abgewickelt. Die Daten wurden durch ein Meßwerterfassungs- und -verarbeitungssystem aufgenommen. Die Werte wurden ausgedruckt und für eine spätere Weiterverarbeitung auf Magnetbandkassette gespeichert. Die Last-Setzungs-Kurven wurden während des Versuches gezeichnet.

Anl.10 Auf Anlage 10 ist das Ablaufschema für die Regelung, Steuerung, Datenerfassung und Speicherung dargestellt. Die Bilder 8 bis 10 geben die örtliche Situation während der Versuchsdurchführung der statischen Versuche wieder.

-15-

Die Bewegungen des Geländes neben dem Pfahl wurden durch 5 mechanische Meßuhren bis zum Abstand von 1,2 m vom Pfahl in einem 0,35 m tiefen Graben beobachtet.

An1.5-8

und 4 wurden auf den Anlagen 5 bis 8 als
Last-Verschiebungs-Diagramme (jeweils Blatt 1)
Zeit-Verschiebungs-Diagramme (jeweils Blatt 2)
Last-Kriechmaß-Diagramme (jeweils Blatt 3)
DMS-Lastabtragungs-Diagramme (jeweils Blatt 4)
und
Verschiebungs-Diagramme des Geländes (jeweils Blatt 5)
dargestellt.

Die Ergebnisse der 4 statischen Versuche an den Pfählen 1

Den Last-Verschiebungs-Diagrammen wurden als Grenzlasten die Werte bei einem Kriechmaß von K_s = 1,0 mm zugrundegelegt. Es ergaben sich folgende Grenzlastwerte und zugehörige Verschiebungen bei einem Kriechmaß von K_s ≅ 1,0 mm entnommen:

Pfahl	Versuch	Grenzlast kN	Verschiebung mm
1	1/1 Druck	290	10,5
1	1/2 Zug	200	20,5
4	4/1 Zug	245	9,5
4	4/2 Druck	200	21,0

Als Bruchlasten wurden den Last-Verschiebungs-Diagrammen etwa folgende Werte entnommen:

Pfahl	Versuch	Bruchlast kN	Verschiebung mm
1	1/1 Druck	340	20
.1	1/2 Zug	220	30
4	4/1 Zug	300	25
4	4/2 Druck	250	40

-16-

Nach der 2. statischen Zug- bzw. Druckbelastung wurde Pfahl 1 nochmals statisch auf Druck und Pfahl 4 nochmals statisch auf Zug und auf Druck, jedoch mit kürzeren Belastungszeiten beansprucht. Auf Anlage 9 sind für die beiden Pfähle 1 und 4 die Gesamtweg-Last-Diagramme dargestellt.

3.2.2 Durchführung und Ergebnisse der zyklischen Versuche

In der Zeit vom 20.1. bis zum 7.9.1984 wurden die zyklischen Belastungsversuche an den Pfählen 2, 3 und 5 mit sinusförmiger Belastung durchgeführt.

Die Belastung erfolgte durch eine servo-hydraulische Zug-Druck-Belastungseinrichtung (Steuerung über ein Proportionalventil in einem hydraulischen Regelkreis). Als Widerlager diente die fest arretierte Belastungsbrücke über der Versuchsgrube. Das sinusförmige Steuersignal für die Lastvorgabe wurde mit einem Sinus-Generator erzeugt. Zur Kraftmessung wurde ein HBM-200-kN-Zug-Druck-Präzisionsaufnehmer (Genauigkeitsklasse +0,03%) eingesetzt. Für die Messung der Pfahlwege wurden jeweils zwei diametral angeordnete induktive Wegaufnehmer mit einem Nennweg von +50 mm (kalibrierte Meßgenauigkeit 0,1%) verwendet. Die Messung der Bodenbewegungen erfolgte in einem Abstand von 0,25 m und 1,25 m vom Pfahl in einer Tiefe von ca.0,4m durch je einen induktiven Wegaufnehmer und zusätzlich durch 5 mechanische Meßuhren in Abständen von 0,25, 0,50, 0,75, 1,00 und 1,25 m vom Pfahl. Außerdem wurden die Meßwerte der in 5 Ebenen am GEWI-Stahl angebrachten DMS-Brückenschaltungen erfaßt.

-17-

An1.9

Die gesamte Versuchsabwicklung und Datenerfassung wurde programmgesteuert durch eine Rechenanlage in Verbindung mit einem Meßwerterfassungs- und -verarbeitungssystem abgewickelt. Die Datenerfassung erfolgte für die ersten 20 Lastwechsel (Zyklen) quasi kontinuierlich (80 Werte je Zyklus) und ab Zyklus 21 durch jeweils 8 Werte je Lastwechsel. Die Werte wurden ausgedruckt und zusätzlich für spätere Weiterverarbeitung auf Magnetbandkassetten konserviert. Gleichzeitig wurden die Maximalwerte der Verformungen in Abhängigkeit von den Zyklen geplottet. Über zwei Sechskanal-Linienschreiber wurde der Verlauf der Last (Pfahl und DMS) und der Verschiebungen (Pfahl und Boden) in der Regel mindestens einmal täglich zusammen mit dem Ausdruck manuell abgerufen (Bild 11 und 12).

Anl.10 Auf Anlage 10 ist das Ablaufschema für die Regelung, Steuerung, Datenerfassung und Speicherung dargestellt. Jeder Versuch wurde mit 20 langsamen 20-Minuten-Zyklen begonnen und nach einer Ruhepause von mindestens 12 Stunden in Zyklen mit einer Dauer von 1 Minute fortgesetzt.

> Die Versuchsdurchführung war so programmiert, daß die Zyklen 1 bis 480 kontinuierlich erfaßt wurden. In der Folge wurden nur nach jeweils 8 Stunden, d.h. nach 460 Zyklen, 20 Zyklen erfaßt. Bei den Wechselbelastungsversuchen wurden nach dem Erreichen einer Pfahlkopfverschiebung von 3 mm im weiteren Versuchsverlauf jeweils nach 2 Stunden (d.h. nach 100 Zyklen) 20 Zyklen erfaßt und ab einer Verschiebung von 5 mm wurden die Meßwerte wieder wie am Anfang kontinuierlich aufgenommen. Nach dem Erreichen des gesetzten Endkriteriums (Pfahlkopfverschiebung 10 mm) wurde die gesteuerte Lastaufbringung gestoppt.

-18-

<u>Der Pfahl 3</u> wurde mit 3 Wechsellaststufen beansprucht, wobei für jede neue Laststufe wieder die Anfangsverschiebung (= Endverschiebung der vorhergehenden Laststufe) zu Null gesetzt wurde.

- 18 -

Der Versuch 3/1 (Lastamplitude zwischen 50 kN Druck und 40 kN Zug) wurde nach 12017 Lastzyklen bei einer Endver-Anl.11 schiebung zwischen +0,17 und -0,25 mm beendet (Anlage 11) und entlastet.

Der Versuch 3/2 (Lastamplitude zwischen 100 kN Druck und 80 kN Zug) wurde mit erhöhter Belastung fortgesetzt und nach 17040 Zyklen bei einer Endverschiebung zwischen

- Anl.12 +0,21 und -0,82 mm beendet (Anlage 12) und entlastet. Der Versuch 3/3 (Lastamplitude zwischen 150 kN Druck und 120 kN Zug) erfolgte nach einer weiteren Laststeigerung, wobei nach 24059 Zyklen bei einer Hebung von 10 mm das
- Anl.13 Kriterium für das Versuchsende erreicht wurde (Anlage 13, Blatt 1 und 2). Zu diesem Versuch ist anzumerken, daß etwa ab Lastwechsel 24030 wegen der großen Wege die Drucklast von 150 kN nicht mehr voll erreicht werden konnte.

<u>Der Pfahl 5</u> wurde mit einer Wechsellaststufe (Lastamplitude zwischen 100 kN Druck und 80 kN Zug) geprüft. Bei einer Anzahl von 60815 Zyklen wurde bei einer Hebung von 10 mm

Anl.14 das Kriterium für das Versuchsende erreicht (Anlage 14, Blatt 1 und 2). Etwa ab Zyklus 60756 konnte wegen der großen Wege trotz Steigerung des Druckes in der Hydraulikanlage des Regelkreises auf 350 bar die maximale Drucklast nicht mehr erreicht werden. Ab Zyklus 60783 wurde daher die Zyklusdauer von einer Minute auf zwei Minuten verlängert.

-19-

<u>Der Pfahl 2</u> wurde mit 2 Druck-Laststufen beansprucht, wobei die 2. Laststufe wiederum mit der Anfangsverschiebung 0 begonnen wurde.

- 19 -

Der Versuch 2/1 (Lastamplitude zwischen 30 kN Druck und 150 kN Druck) wurde nach ca. 100.000 Zyklen nach einer Endverschiebung zwischen -2,17 und -2,82 mm abgebrochen (Anlage 15) und auf 0 entlastet.

Der Versuch 2/2 wurde mit höherer Druckschwellast (Lastamplitude zwischen 30 kN Druck und 250 kN Druck) fortgesetzt und nach ca. 50.000 Zyklen, ebenfalls ohne das Bruchkriterium erreicht zu haben, nach einer Endverschie-Anl.16 bung zwischen -5,87 und-7,24 mm beendet (Anlage 16).

Anl. 11-16

An1.15

.

Die Ergebnisse der 6 zyklischen Versuche an den Pfählen 3, 5 und 2 wurden auf den Anlagen 11 bis 16 als Verschiebungs-Zyklus-Diagramme (jeweils Blatt 1) im halblogarithmischen Maßstab dargestellt, wobei bis zum 20. Zyklus die vollständigen Kurven und daran anschließend nur die Extremwerte der Pfahlkopfverschiebungen als Grenzlinien aufgetragen wurden. Von den Versuchen 3/3 und 5/1, bei denen das gesetzte 10-mm-Kriterium erreicht wurde, sind zusätzlich jeweils auf Blatt 2 die Endbereiche als vollständige Kurven in linearem Maßstab dargestellt.

Auf diesen Anlagen ist außerdem bei allen Versuchen die Pfahlkopfverschiebung beim 1. und 20. Zyklus aus dem langsamen Anfangsteil und beim letzten Zyklus (soweit das 10-mm-Kriterium nicht erreicht wurde) zusammen mit den Verschiebungsamplituden angegeben.

-20-

<u>Pfahl</u> Versuch	Durch- führungs- datum	Bela min kN	stung max kN	% der stat. Grenzlast ca.	Lastzyk1en Anzah1	Endverschiebung	Endverschiebungs- amplitude mm
3							
<u>3</u> /1	20.bis 29.1.84	+40	-50	17	12017	+0,19 bis -0,24	0,43
3/2	10.bis 23.7.84	+80	-100	35	17059	+0,21 bis -0,80	1,03
3/3	24.2.bis 16.3.84	+120	-150	50	24059	Bruchkriterium erreicht bei 10 mm Hebung	_
<u>5</u> 5/1	23.3.bis 5.5.84	+80	-100	35	60815	Bruchkriterium erreicht bei 10 mm Hebung	-
<u>2</u> 2/1	17.5.bis 27.7.84	-30	-150	50	100017	-2,17 bis -2,82	0,65
2/2	8. bis 7.9.84	-30	-250	85	50031	-5,87 bis -7,24	1,37

Nachfolgend sind die Versuchsdaten und -ergebnisse tabellarisch zusammengestellt.

+ Zuglast - Drucklast

3.3 Ausbau der Pfähle

Nach dem Abschluß der Versuche wurden die Pfähle bis auf Kote +3,0 m ausgegraben und dann herausgezogen.

In den Ebenen +6,2 m; +3,7 m und +1,9 m wurden an jeweils 11 bzw. 15 Punkten die Dichten mit Hilfe eines Ausstechzylinders bestimmt. Die ermittelten Wassergehalte und

Dichten sind auf Anlage 17 zusammengestellt. Aus allen Versuchen ergab sich ein Mittelwert von ρ_d = 1,60 t/m³.

An1.17

-21-

Ein Vergleich mit den vor der Versuchsdurchführung ermittelten Werten zeigt, daß in der untersten geprüften Schicht (Kote +1,9 m) die Dichten höher und in der obersten (Kote +6,2 m) niedriger als unmittelbar nach dem Einbau lagen. Die Mittelwerte vorher und nachher lagen jedoch etwa in der gleichen Größe.

Die freigelegten Pfähle wurden gereinigt und jeweils an Anl.18 10 Querschnitten vermessen. Die Aufmaße sind auf Anlage 18 zusammengestellt. Hieraus ergeben sich für die einzelnen Pfähle folgende maximalen, minimalen und mittleren Durchmesser und Längen:

Pfahl	max mm	Durchmess min mm	Länge unter UK Rohr m	
1	151	124	139	4,56
2	142	127	132	4,57
3	146	125	133	4,56
4	153	117	134	4,53
5	133	114	123	4,60

Die Pfahloberflächen waren allgemein rauh und leicht profiliert. Nur Pfahl 4 war in einer Tiefe zwischen 2,7 und 4,3 m über der Pfahlsohle etwas verdickt und sehr stark profiliert. Vereinzelt waren an den Pfählen Auswüchse bis zu maximal 30 mm Größe vorhanden. Die Bilder 13 und 14 zeigen die ausgegrabenen Pfähle.

- 21 -

-22-

4. Bewertende Beurteilung der Ergebnisse

4.1 Vorbemerkung

Der zur Verfügung stehenden Literatur ist zu entnehmen, daß bei Schwell- und Wechselbeanspruchung die Belastbarkeiten gegenüber einer statischen Beanspruchung stark reduziert sind, was besonders für Wechselbeanspruchung im Sand zutrifft.

Da keine Veröffentlichungen über systematische, langzeitige Großversuche im Sand bekannt sind, wurden in der Versuchsgrube des Prüfamtes für Grundbau, Bodenmechanik und Felsmechanik der TU München zur besseren Einschätzung des Tragverhaltens bei Wechsel- und Druckschwell-Last gegenüber statischer Belastung statische und zyklische Probebelastungen durchgeführt. Insgesamt 5 Pfähle mit ca. 4,5 m Einbindelänge und 130 mm Durchmesser wurden hergestellt und durch 7 statische Druck- und Zugversuche, 4 Wechsellastversuche und 2 Druckschwellastversuche geprüft.

Sämtliche Einbau- und Versuchsdaten sowie Versuchsergebnisse wurden im Abschnitt 3 dieses Berichtes zusammengestellt.

-23-

- 22 -

4.2 Folgerungen aus den Untersuchungsergebnissen

- 23 -

4.2.1 Boden und Pfähle

Als Versuchsboden diente ein schwach kiesiger, schluffiger Fein- bis Mittelsand mit einem mittleren Ungleichförmigkeitsgrad von U = 6,5. Der Boden wurde in feuchtem Zustand mit einem Mittelwert der Lagerungsdichte von D = 0,42 lagenweise eingebaut. Aufgrund der durchgeführten Druck- und Rammsondierungen sowie Dichtebestimmungen kann der erfolgte Einbau als weitgehend homogen bezeichnet werden. Die Lagerungsdichte entspricht etwa der unteren Grenze einer mitteldichten Lagerung.

Die Pfähle weisen entsprechend dem Aufmaß nach dem Aufgraben weitgehend gleiche Abmessungen und Oberflächenbeschaffenheit auf, so daß die Versuchsergebnisse verschiedener Pfähle vergleichbar sind.

4.2.2 Statische Versuche

Die statischen Versuche an den Pfählen 1 und 4 wurden durchgeführt, um die Bezugswerte für die zyklischen Versuche zu erhalten. Als Nebenergebnis des eigentlichen Untersuchungszieles lassen die wiederholten statischen Versuche einen Vergleich zwischen der Tragfähigkeit der Pfähle bei Druck- und Zugbelastung zu.

-24-

Die statischen Versuche der Erstbeanspruchung (Druck und Zug) zeigen, daß mit zunehmender Belastung je Laststufe die Verschiebungen größer werden und daß der Bruch durch Versinken bzw. Herausziehen des Pfahles eintritt. Der Vergleich zwischen Druck- und Zugbelastung (Anlage 19) ergibt für die Zugbelastung mit zunehmender Belastung eine etwas größere Verschiebung als bei der Druckbelastung. Die Grenz- bzw. Bruchlasten liegen bei Druckbelastung um etwa 18% bzw. 13% höher als bei Zugbelastung. Dieser Unterschied dürfte überwiegend durch den Einfluß des

Bei der Zweitbeanspruchung nehmen sowohl bei Druck als auch bei Zug mit zunehmender Belastung die Verschiebungen gegenüber der Erstbeanspruchung erheblich zu. Die Differenzen zwischen Druck und Zug sind gering, so daß die Grenzlasten bei Druck und Zug nur gering differieren. Die Druck-Bruchlast liegt um ca. 13% höher als die Zug-Bruchlast. Gegenüber der Erstbeanspruchung sind die Werte der Zweitbeanspruchung um 20 bis 30% (Grenzlast) bzw. ca. 25% (Bruchlast) kleiner als bei der Erstbeanspruchung.

Bei der Drittbeanspruchung nehmen die Verschiebungen mit zunehmender Belastung nochmals gegenüber der Zweitbeanspruchung stark zu, und die Bruchlasten liegen nochmals um ca. 40% niedriger als bei der Zweitbeanspruchung.

Bei der Viertbeanspruchung wurde keine weitere Zunahme der Verschiebungen bzw. Abnahme der Bruchlast gegenüber der Anl.19 Drittbelastung festgestellt (Anlage 19).

Anl.19

ź

- 24 -

Pfahlfußes bedingt sein.

-25-

- 25 -

Bis zu einem Abstand von 1,0 m vom Pfahl wurden in ca. 0,4 m Tiefe unter der Sandoberfläche die Bodenbewegungen gemessen (siehe Anlage 6, 7 und 8 jeweils Blatt 5). Sie zeigen, daß selbst in 1,0 m Entfernung eindeutig noch Bodenverschiebungen zu messen sind. Die Verschiebungen nehmen mit zunehmendem Abstand vom Pfahl jedoch überproportional ab. Bei der Zweitbeanspruchung sind (bei größeren Pfahlverschiebungen als bei der Ersbeanspruchung) die Bodenverschiebungen wesentlich kleiner als bei der Erstbeanspruchung.

Aus den Messungen kann geschlossen werden, daß sowohl bei Druck- als auch bei Zugbelastung bis zum Erreichen der Bruchlast ein relativ großer Erdkegel aktiviert wird. Nach einem Bruchvorgang ist aufgrund der wesentlich kleineren Mitnahmeverschiebung auch nur eine kleinere Reibungskraftübertragung vorhanden.

Die mittleren Mantelreibungswerte der Erst- und Zweitbeanspruchung errechnen sich für die auf Seite 15 angegebenen Grenz- und Bruchlasten unter Zugrundelegung der mittleren Pfahloberflächen (Seite 21) und unter Abminderung der Grenz- und Bruchlastwerte für Druck um 10% (Einfluß der Pfahlsohle) zu folgenden Werten:

Pfahl	Versuch	Mantelreibung bei		
		Grenzlast kN/m²	Bruchlast kN/m²	
1	1/1 Druck	131	154	
1	1/2 Zug	100	110	
4	4/1 Zug	128	157	
4	4/2 Druck	94	118	

Diese Mantelreibungswerte sind keine Absolutgrößen, sondern boden- und insbesondere herstellungsspezifisch.

Lehrstuhl und Prüfamt für Grundbau, Bodenmechanik und Felsmechanik, Techn. Universität München

Die gemessenen Werte der in 5 Ebenen am Gewi-Stahl angebrachten DMS sind auf Anlage 5 bis 8, jeweils Blatt 4, zusammengestellt. Die obersten Werte zeigen bei den Zugversuchen an Pfahl 4 und 1 eine gute Übereinstimmung mit den über die Kraftmeßdose am Pfahlkopf registrierten Werte. Die geringen Differenzen sind durch die unterschiedlichen Meßsysteme bedingt.

Wird bei der Ermittlung der Mantelreibung beim Zugversuch (Erstbeanspruchung Pfahl 4) davon ausgegangen, daß infolge der Zugrisse im Beton die gesamte Last durch den Stahl abgetragen wird, und wird der nach dem Ausgraben des Pfahles ermittelte Umfang für die Ermittlung der Mantelreibungsfläche zugrundegelegt, so ergibt sich eine mit der Tiefe abnehmende Mantelreibung.

Auf der gleichen Annahme ergibt sich für die Mantelreibung der Zweitbeanspruchung Zug nach Druck (Pfahl 1) ebenfalls eine mit der Tiefe abnehmende Mantelreibung.

Bei den Druckversuchen muß bei der Auswertung die Verbundwirkung durch die Annahme eines E-Moduls bzw. eines Verbundfaktors berücksichtigt werden. Der E-Modul des Zementsteins läßt sich unter der Annahme, daß im Bereich oberhalb der 1. DMS-Ebene keine Mantelreibung vorhanden ist und der Verbund voll wirksam wird, aus der Differenz zwischen der am Pfahlkopf eingetragenen Last und der am Stahl durch DMS gemessenen Kraft überschlägig ermitteln.

-27-

Unter der Annahme eines lastabhängigen E-Moduls ergeben sich für die Mantelreibung der Erstbeanspruchung (Pfahl 1) vom Kopf zum Fuß abnehmende Werte.

- 27 -

Bei der Zweitbeanspruchung Druck nach Zug (Pfahl 4) ergibt sich dagegen bei der Bruchlast eine etwa gleichmäßige Verteilung der Mantelreibung über die gesamte Pfahllänge.

4.2.3 Versuche mit Wechselbeanspruchung

Anl.20 Auf Anlage 20 sind die Versuchsergebnisse der Wechselbelastungsversuche als Verschiebungs-Zyklus-Diagramme halblogarithmisch dargestellt. Hierbei wurden jedoch nur bei den beiden Versuchen 3/3 und 5/1, welche das als Bruchzustand definierte 10-mm-Kriterium erreichten, auch die oberen Maximalwerte der Verschiebungen dargestellt, während zur besseren Übersicht bei den übrigen Versuchen nur die Maximalwerte der unteren Verschiebungen aufgetragen wurden.

> Der Versuch 3/1 (s. Anlage 11), bei dem aufgrund der Literaturhinweise eine nur geringe Belastungsamplitude von ca. 17% der an Pfahl 1 und 4 ermittelten statischen Grenzlasten (Lastamplitude 90 kN) aufgebracht wurde, zeigt nach dem 20. langsamen Zyklus bei unveränderter Amplitude gegenüber dem 1. Zyklus eine minimale Setzung von 0,03 mm. Nach ca. 12.000 Zyklen wurde der Versuch abgebrochen, nachdem die Amplitude der Verschiebung sich nur unwesentlich um 0,04 mm vergrößert hatte und gegenüber dem 20. Zyklus nur eine äußerst geringe Hebungstendenz festzustellen war.

> > -28-

Beim Versuch 3/2 (siehe Anlage 12) wurde die Last am gleichen Pfahl 3 auf ca. 35% der statischen Grenzlasten (Lastamplitude 180 kN) erhöht. Nach dem 20. langsamen Anfangszyklus hatte sich die Verschiebungsamplitude gegenüber dem 1. Zyklus gering vergrößert (0,05 mm), wobei eine Setzungstendenz zu beobachten war. Dieser Versuch wurde nach ca. 17.000 Zyklen abgebrochen, nachdem nur eine Amplitudenzunahme von 0,11 mm auf 1,03 mm mit einer Setzungsdendenz festzustellen war.

Beim Versuch 3/3 (siehe Anlage 13, Blatt 1) wurde die Last am gleichen Pfahl 3 weiter auf ca. 50% der statischen Grenzlast (Lastamplitude 270 kN) gesteigert. Nach den ersten 20 langsamen Zyklen betrug die Amplitudenzunahme zum 1. Zyklus 0,10 mm. Im weiteren Versuchsablauf nahm die Amplitude der Verschiebungen bei einem langsamen Eindringen des Pfahls in den Boden zu. Etwa ab Zyklus 23.900 vergrößerte sich die Verschiebungsamplitude mit zunehmender Zykluszahl sowohl mit Zunahme der Setzung und der Hebung sehr stark (siehe Anlage 13, Blatt 2). Beim 24.059. Zyklus wurde die als Bruchkriterium gesetzte Verschiebung (Hebung von 10 mm) erreicht. Damit ist nach einer anfänglich langsamen Zunahme der Verschiebung der Bruchzustand relativ schnell, nämlich innerhalb von ca. 150 Zyklen, eingetreten.

Nach dem Versuch 3/3, dessen Ergebnis nur im Zusammenhang mit den vorhergehenden Versuchen 3/2 und 3/1 betrachtet werden darf, wurde für den nächsten Versuch am Pfahl 5 wieder eine geringere Lastamplitude gewählt. Sie entsprach mit ca. 35% der statischen Grenzlasten den Werten des Versuches 3/2 (Anlage 14, Blatt 1).

-29-

Die Zunahme der Verschiebungsamplitude zwischen dem 1. und 20. langsamen Anfangszyklus betrug 0,07 mm. Im weiteren Verlauf blieb die Verschiebungsamplitude etwa bis zum 10.000. Zyklus gleich groß und nahm dann bei allgemeiner Setzungstendenz langsam zu. Etwa ab Zyklus 60.000 vergrößerte sich die Verschiebungsamplitude laufend bei gleichzeitig eintretender langsamer Hebungstendenz. Beim Zyklus 60815 wurde mit 10 mm Hebung das gesetzte Bruchkriterium erreicht.

Die Messungen der Verschiebungen an der Oberfläche des den Pfahl umgebenden Bodens zeigen einen zyklischen, den Pfahlverschiebungen mit Verzögerung folgenden Ablauf. Die Verzögerung beträgt bei einer Zyklusdauer von 1 Minute in einem Abstand von 0,20 m vom Pfahl ca. 1 bis 2 Sekunden und in einem Abstand von 1,25 m ca. 5 bis 7 Sekunden.

Die Messung der DMS zeigt, daß die am Pfahlkopf am Gewi-Stahl einwirkende Last praktisch ohne Verzögerung über die gesamte Stahllänge verteilt wird.

4.2.4 Versuche mit Druckschwellbelastung

Die Druckschwellbelastungsversuche wurden durchgeführt, um einen Hinweis auf das Pfahlverhalten im Vergleich zu den Wechselbelastungen zu erhalten.

Anl.21 Auf Anlage 21 sind die beiden Versuchsergebnisse am Pfahl 2 als Verschiebungs-Zyklus-Diagramme halblogarithmisch dargestellt.

- 29 -

-30-

Beim Versuch 2/1 wurde als Maximallast ca. 50% der statischen Druck-Grenzlast entsprechend 150 kN und als Minimallast 30 kN, d.h. eine Lastamplitude von 120 kN, aufgebracht. Während der ersten 20 langsamen Zyklen verringerte sich die Verschiebungsamplitude minimal um 0,02 mm, d.h. von 0,64 mm auf 0,62 mm. Der Versuch wurde nach ca. 100.000 einminütigen Lastwechseln, d.h. nach ca. 70 Tagen mit einer praktisch unveränderten Verschiebungsamplitude von 0,65 mm abgebrochen. Der Pfahl zeigte eine deutliche Setzungstendenz, wobei innerhalb der ersten 20 Tage eine langsame Beruhigung bis auf eine Verschiebungsrate von 0,01 mm/Tag eintrat. Von diesem Zeitpunkt an blieb diese Rate aber praktisch bis zum Versuchsende konstant.

Beim Versuch 2/2 wurde die Maximallast zu ca. 85% der statischen Druck-Grenzlast, d.h. zu 250 kN und die Minimallast zu 30 kN entsprechend einer Lastamplitude von 220 kN gesteigert. Während der ersten 20 langsamen Zyklen vergrößerte sich die Verschiebungsamplitude von 1,21 mm auf 1,24 mm um 0,03 mm ebenfalls nur minimal, und nach insgesamt ca. 50.000 Zyklen hatte sich die Verschiebungsamplitude bis auf 1,37 mm, d.h. um insgesamt 0,16 mm vergrößert. Während des Versuchsablaufes zeigte sich eine deutliche Setzungstendenz, wobei die Setzungsrate während der ersten 25 Tage bis auf 0,06 mm/Tag abnahm. Nach diesem Zeitpunkt trat jedoch bis zum Versuchsende nach weiteren 10 Tagen bis zu ca. 50.000 Zyklen keine weitere Abnahme der Setzungsrate auf, d.h. der Pfahl drang während der Versuchszeit zwar nur langsam, aber doch ständig weiter in den Boden ein.

-31-

Ahnlich wie bei den Wechselbelastungen war noch bis zum letzten Meßpunkt in einem Abstand von 1,25 m vom Pfahl an der Bodenoberfläche mit verzögertem Ablauf die Pfahlbewegung zu erkennen.

Auch wurde bei diesen Versuchen die Last praktisch ohne Verzögerung über den gesamten Gewi-Stahl verteilt.

5. Zusammenfassung und Schlußfolgerungen

Die Versuche wurden an 5 Pfählen mit mittleren Durchmessern zwischen 123 und 139 mm und einer Einbindelänge zwischen 4,53 und 4,60 m in einem feuchten, mitteldicht gelagerten Fein- bis Mittelsand durchgeführt.

5.1 Statische Belastungsversuche

Den statischen Erstbeanspruchungsversuchen kann entnommen werden, daß die Grenzlasten der Mantelreibung bei Zugund Druckbelastung etwa in gleicher Größenordnung liegen. Bei erneuter Beanspruchung nehmen jedoch bei Zug- und bei Druckbelastung die Bruchlasten bis zur Drittbeanspruchung stark ab, danach tritt keine bemerkenswerte weitere Abnahme mehr auf (Anlage 19).

Die Belastungsrichtung (Druck oder Zug) hat nach den Versuchsergebnissen keinen entscheidenden Einfluß auf die Verschiebungen und die Grenz- bzw. Bruchlasten der Mantelreibung, wenn für die Lastabtragung bei Druckbelastung an der Pfahlsohle 10% der Grenz- bzw. Bruchlast in Abzug gebracht werden. Von wesentlichem Einfluß auf die Ver-
- 32 -

schiebung und Tragfähigkeit ist jedoch die Anzahl der Beanspruchungen, wenn jeweils Verschiebungen von mehr als dem 0,1fachen Durchmesser bzw. mehr als 20 mm in der Vorausbeanspruchung aufgetreten sind.

Werden die Untersuchungsergebnisse auf die früher vielfach bei statischen Probebelastungen praktizierte Durchführung angewendet, d.h. an einem Pfahl zuerst eine Druckbelastung bis zur Bruchlast und anschließend zur Ermittlung des Mantelreibungsanteiles eine Zugbelastung durchzuführen, so kann festgestellt werden, daß dieser Versuchsablauf für die Mantelreibung im Sandboden zu niedrige, auf der sicheren Seite liegende Werte liefert. Nicht übersehen werden darf bei diesem Vorgehen allerdings eine zu hohe Einschätzung des Spitzendruckanteiles. Auf den Einbau eines Sohldruckkissens bei Probebelastungen an einem Einzelpfahl sollte daher nicht mehr verzichtet werden.

5.2 Zyklische Belastungsversuche

Die Ergebnisse aller zyklischen Versuche sind auf Anl.22 Anlage 22 als Verschiebungs-Zyklus-Diagramme in halblogarithmischem Maßstab dargestellt. Hierbei wurden nur bei den beiden Versuchen, welche das gesetzte 10-mm-Bruchkriterium erreichten, auch die oberen Werte der Verschiebungen bei Minimallast dargestellt, während bei den übrigen Versuchen zur besseren Übersicht nur die Werte der unteren Verschiebungen bei Maximallast aufgetragen wurden.

-33-

Den Ergebnissen kann zusammenfassend entnommen werden, daß bei Wechselbelastung das Versagen des Pfahles infolge Mantelreibung sowohl von der Lastamplitude als auch insbesondere von der Anzahl der Zyklen abhängig war, d.h. je größer die Anzahl der Zyklen, desto geringer die Bruchlast. Der Bruchzustand trag im Vergleich zur gesamten Versuchsdauer in relativ kurzer Zeit auf und lief umso schneller ab, je größer die Lastamplitude war.

Bei Druckschwellbelastung traten im Gegensatz zur Wechselbelastung selbst bei hohen Lasten und einer großen Anzahl von Zyklen nur relativ kleine Verschiebungen auf. Die Setzungsrate nahm bis ca. 30.000 Zyklen ab, d.h. es trat eine Beruhigung ein und blieb dann bis zum Versuchsende bei 100.000 bzw. 50.000 Zyklen konstant. Die Pfähle drangen hierbei langsam in den Boden ein, wobei die Größe der Restsetzungsrate von der Größe der Last abhing.

Die Lastabtragung erfolgte praktisch ohne Verzögerung über den gesamten Gewi-Stahl, und die Pfahlbewegungen konnten noch in einem Abstand von 1,25 m vom Pfahl an der Geländeoberfläche, allerdings mit zeitlich verzögertem Ablauf, beobachtet werden.

Anl.23 Auf Anlage 23 wurden alle Versuchsergebnisse in einem zykl.Q/stat.Q_{gr}-Zyklus-Diagramm dargestellt. Werden anhand der Anlage 22 für die Versuche, bei denen das Bruchkriterium im Versuch nicht erreicht wurde, die vermutlichen Bruchlasten geschätzt, so zeichnet sich für den Versuch 3/1 kein Bruch ab, bei Versuch 2/1 dürfte er erst nach weit über 1.000.000 Zyklen eintreten, aber bei Versuch 2/2 schon etwa bei 300.000 Zyklen.

-34-

- 33 -

Die gewählte Darstellung zeigt, daß bei zyklischer Belastung eines Pfahles sowohl die Größe der Belastung als auch die Anzahl der Zyklen den Bruchzustand für den Mantelreibungsanteil entscheidend bestimmen. Während bei Wechselbeanspruchung nur etwa 20% der statischen Grenzlast eine praktisch unbegrenzte Anzahl von Lastwechseln zuläßt, dürfte bei einer Druckschwellbelastung dieser Wert etwa bei 50% der statischen Grenzlast liegen, wobei der Bruch durch langsames Eindringen des Pfahles in den Boden zu erwarten ist. Eine Wechselbeanspruchung mit einer Belastung von 50% der Grenzlast führt dagegen bereits nach 24.000 Zyklen zu einem schnellen Bruch. Über die Abhängigkeit zwischen der statischen Grenzlast und der Bruchlast bei Wechselbeanspruchung mit geringen Zyklen kann aufgrund der durchgeführten Versuche nichts ausgesagt werden, da aus diesem Lastbereich keine Versuchsergebnisse vorliegen.

- 34 -

Die wenigen durchgeführten Versuche lassen Tendenzen erkennen, jedoch können noch keine allgemeinen Schlußfolgerungen gezogen werden. Dennoch werden für die weitere Normungsarbeit für Pfähle in kohäsionslosem Sand folgende Empfehlungen zur Diskussion gestellt:

- Bei Wechselbelastung mit großer Lastwechselzahl darf die Grenzwechsellast nicht höher als 20% der statischen Grenzlasten angenommen werden.
- Bei Wechselbelastung mit einer Lastwechselzahl unter 10.000 darf die Wechselgrenzlast nicht höher als 40% der statischen Grenzlasten angenommen werden.

-35-

- 3. Bei Druckschwellbelastung mit sehr großer Lastwechselzahl darf die Schwellgrenzlast nicht höher als 50% der statischen Grenzlast angenommen werden.
- Bei Druckschwellbelastung unter 100.000 Lastwechseln darf die Schwellgrenzlast nicht höher als bei 80% der statischen Grenzlast angenommen werden.

Belastungsart				zyk1.Q _{gr} /stat.Q _{gr}
Wechselbelastung Lastwechselzahl Lastwechselzahl	größer kleiner	als als	10.000 10.000	0,2 0,4
Schwellbelastung Lastwechselzahl Lastwechselzahl	größer kleiner	als als	100.000 100.000	0,5 0,8

Die Empfehlungen gelten für die Mantelreibung von Pfählen mit größeren Durchmessern oder für Pfähle, die überwiegend auf Mantelreibung tragen und in feuchtem Sand mit wenigstens mitteldichter Lagerung stehen.

Die erforderlichen Sicherheiten könnten entsprechend DIN 1054 angesetzt werden, d.h. für Lastfall 1 zu n=2,0.

6. Empfehlungen für weitere Untersuchungen

Durch weitere Versuche kann eine verbesserte und erweiterte Aussage zu den zyklischen Grenzbelastungswerten erfolgen. Ergänzende Versuche sollten unter vergleichbaren Bodenund Dichtebedingungen für folgende Belastungen durchgeführt werden:

Lehrstuhl und Prüfamt für Grundbau, Bodenmechanik und Felsmechanik, Techn. Universität München

Druckschwellast mit einer Belastung von zykl.Q/stat.Q_{gr} = 1,0 Wechsellast mit einer Belastung von zykl.Q/stat.Q_{gr} = 0,75

Wechsellast mit einem geringen Anteil an Zug, wie es in der Pfahlpraxis häufig vorkommt.

Für Zugschwellbelastungen können bereits ausgeführte Versuche an Ankern herangezogen werden.

Schwarz

Dipl.-Ing. Schwarz

forel

Dipl.-Ing. Koreck

23 Anlagen (40 Blatt)
1 Bilddokumentation (14 Bilder)

Lehrstuhl und Prüfamt für Grundbau, Bodenmechanik und Felsmechanik, Techn. Universität München

••

Anlagen zum Forschungsbericht "Axial zyklisch belastete Pfähle" Az. IV/1-5-360/83

Anlage 1: Körnungskurven 2: Versuchsgrube 3: Bodenkennwerte vor der Versuchsdurchführung 4: Sondierergebnisse vor der Versuchsdurchführung Anlage 5: Pfahl 1 - Druckversuch vom 26./27.7.1983 Blatt 1: Last-Setzungs-Diagramm 2: Zeit-Setzungs-Diagramm 3: Last-Kriechmaß-Diagramm 4: DMS-Lastabtragungs-Diagramm Pfahl 1 - Zugversuch vom 29.7.1983 Anlage 6: Blatt 1: Last-Hebungs-Diagramm 2: Zeit-Hebungs-Diagramm 3: Last-Kriechmaß-Diagramm 4: DMS-Lastabtragungs-Diagramm 5: Hebung der Geländeoberfläche Anlage 7: Pfahl 4 - Zugversuch vom 4./5.8.1983 Blatt 1: Last-Hebungs-Diagramm 2: Zeit-Hebungs-Diagramm 3: Last-Kriechmaß-Diagramm 4: DMS-Lastabtragungs-Diagramm 5: Hebung der Geländeoberfläche Pfahl 4 - Druckversuch vom 8./9.8.1983 Anlage 8: Blatt 1: Last-Setzungs-Diagramm 2: Zeit-Setzungs-Diagramm 3: Last-Kriechmaß-Diagramm 4: DMS-Lastabtragungs-Diagramm 5: Setzung der Geländeoberfläche 9: Last-Weg-Diagramme der Versuche an Pfahl 1 und 4 Anlage Ablaufschema für die Regelung der statischen und 10: zyklischen Versuche 11: Last-log.Zyklus-Diagramm Versuch 3/1 н н 0 Versuch 3/2 12: Blatt 1: Last-log.Zyklus-Diagramm Versuch 3/3 13: 2: Endbereich Last-Zyklus-Diagramm Versuch 3/3 Blatt 1: Last-log.Zyklus-Diagramm Versuch 5/1 14: 2: Endbereich Last-Zyklus-Diagramm Versuch 5/1 15: Last-log.Zyklus-Diagramm Versuch 2/1 u – 0 11 11 16: Versuch 2/2 Bodenkennwerte nach der Versuchsdurchführung 17: Aufmaße der ausgegrabenen Pfähle 18: Last-Verschiebungs-Diagramme Pfahl 1 und 4 19: 20: Ergebnisse der Wechselbelastungsversuche Ergebnisse der Druckschwellastversuche 21: 22: Zusammenstellung aller zyklischen Versuche Zykl.Q/stat.Q_{gr}-Zyklus-Diagramm 23:

U_{Mittel} = 6,5

München, den 28. 1. 1983

Lehrstuhl und Protamt für Grundbau und Bodenmechanik der Tuchn. Universität München

Anlage 3 zum Forschungsvorhaben IV 1-5-360/83

BELASTETE PFÄHLE AXIAL ZYKLISCH

Zusammenstellung der Bodenkennwerte

vor der Versuchsdurchführung

Höhe über Sohle													
	+ 1,0 m			+ 1,9 m				+ 3,7 m		+6,2 m			
	9	W	8d	9	w	9d	8	W	পিব	9	W	9d	
	t/m ³	%	t/m ³	t/m³	%	t/m³	t/m³	%	t/m ³	t/m ³	%	t/m ³	
	1,76	10,5	1,59	1,72	9,4	1,58	1,76	10,2	1,59	1,69	8,5	1,56	
	1,73	9,8	1,57	1,72	9,4	1,57	1,67	8,8	1,54	1,74	8,2	1,61	
	1,70	8,1	1,57	1,60	8,9	1,47	1,72	10,7	1,55	1,73	7,6	1,61	
	1,70	8,1	1,57	1,69	9,4	1,54	1,70	10,2	1,54	1,74	8,4	1,61	
	1,68	8,6	1,55	1,68	9,6	1,53	1,76	11,4	1,58	1,71	4,7	1,63	
	1,72	8,7	1,58	1,77	9,9	1,61	1,73	9,0	. 1,59	1,66	3,4	1,60	
	1,78	8,2	1,64	1,71	9,0	1,57	1,66	9,1	1,53	1,73	8,4	1,59	
	1,77	9,3	1,62	1,71	9,5	1,56	1,73	9,7	1,57	1,73	8,4	1,60	
	1,77	11,6	1,58	1,73	9,5	1,58	1,72	10,0	1,56	1,73	8,9	1,59	
	1,71	9,4	1,57	1,72	10,0	1,56	1,72	10,1	1,56	1,62	2,6	1,58	
	1,78	12,0	1,59	1,66	9,6	1,52	1,69	9,6	1,54	1,81	8,9	1,66	
	1,68	8,6	1,54	1,75	10,1	1,59	1,66	9,8	1,52	1,84	7,5	1,71	
	1,71	11,4	1,54										
	1,72	9,5	1,57										
	1,76	11,5	1,58							-			
	1,69	9,1	1,55										
82X.	1,78	12,0	1,64	1,77	10,1	1,61	1,76	11,4	1,59	.1,84	8,9	. 1,71	
øin.	1,68	8,1	1,54	1,66	8,9	1,47	1,66	8,8	1,52	1,62	2,6	1,56	
Mittel	1,73	9,7	1,58	1,71	9,5	1,56	1,71	9,9	1,56	1,73	7,1	1,61	
0			0,425			0,375			0,375			0,500	
									,				

1,72 t/m³ ŧ Mittel gesamt

9,1 \$ Mittel gesamt

¥

Mittel gesamt

D Mittel gesamt 0,42

1,58 t/m³

MÜNCHEN, den 28. 1. 1983

Karel

AXIAL ZYKLISCH BELASTETE PFÄHLE Sondierungen vor der Versuchsdurchführung

Rammsondierungen

Drucksondierungen

LEGENDE

Pfahl

- Leichte Rammsondierung LRS 5 👳 +6,5 m
- O Schwere Rammsondierung SRS 10 👳 + 6,6 m
- Drucksondierung DS <u>5</u>+6,7 m

Lageplan Versuchsgrube

MŰNCHEN, den 28. 1. 1983

Kural

»r. 84

Anlago 5, blatt2 zu Forschungsvornaben 191 - 5 - 300/03

Anlage 5 zus Forschungsvorhaben IV 1 - 5 - 360/83 Blatt 3

MŰNCHEN, den 22.10.1984

korr. 2,84

. .

Anlage 6 zum Forschungsvorhaben IV 1 - 5 - 360/83 Blatt 3

MÜNCHEN, den 22.10.1984

korr. 84

									An 81:	laga 6 att 5	zun Fo	rschung	svorhabe	n IV 1	- 5 -
															· · · · · · ·
1	0	1	À											i i Harita	
			15	20	bei 2	2								·	· · · · · · · · · · · · · · · · · · ·
	2		7.5 kh	12.5 47	17,5kh						Bod	enhe	bung	1 :	
				22	39					•	DFa	LL 1		•••••	•
			14 min	53 mi	56 mn					· · · · · · · · · · · · ·	<u>ria</u>				· · · · · · · · · · · · · · · · · · ·
2	5		11-2	-						: 	Zug	verst	ıch		
				t	1				· · ·		(2.E	Beansj	pruchi	лд)	
	7		Щ.							: 	•				
u u u				+											• · ·
500	5	-			1 		····	· · · · ·						: 	· · · · · · · · · · · · · · · · · · ·
Hebu		↓ ↓								· · · · ·		• • •			· · · · ·
	5	; /		N 1 1 1						· · · · · · · · · · · · · · · · · · ·			· · · · · · · ·	· · · · ·	- - - -
		ļ.,	1							-					• • • • • • • • • • • • •
	,	1	l	N				····· ···				·····			:
	*	1	<u>+</u> 											· · · · · ·	· ·
		ł 	1								: 				· · · · · ·
	3											· · · · · · · · · · · · · · · · · · ·			
				<u> </u>								·····		• •	· · · · · ·
2	2			++;						· · · ·				 	· · · · · · · · · · · · · · · · · · ·
		∔ •		1											
· · · · · · · · · · · · · · · · · · ·						Last 247	5	· · · · · · · · · · · · · · · · · · ·							:
+0.0		ļ				202.54	V						-		
	0,35m		r	7 51		157,5KA 112,5KN					· · · · · · · · · · · · · · · · · · ·	-			
**************************************	211512		<u> </u>	r, 3 r	20		40	e E	50		30		00 [cn	► 7]	
	se Se	0						Absta	and v	on Ro	hrau	Benka	ante	• •	
	Hach	6,5 c	<i>m</i>									MŰN	CHEN	, den	22.10
	Prat						•							1/1	/
							· · · · · · · · · · · · · · · · · · ·	<i></i>					/	-~	\sim

Anlage 7 zum Forschungsvorhaben IV 1 - 5 - 360/83 Blatt 3

MÜNCHEN, den 22.10.1984

t korr. 1.84

Last korr. 8.2.84

. . .

Anlage 8 zum Forschungsvorhaben IV 1 - 5- 360/83 Blatt 3

korr. 84

Last korr. 8.2.84			9 zen Ferschungenerfahm If 1 - 5 - 360,83
	<u>Pfahl 1</u>		Pfahl 4
2. Sean: spruchung	L.Bean spruc	1- hung 3. Bean -	
	3.Beanspruchung	spruchung 10-	
	Druch [kN] 67,5 112,5 157,5 202,5 247,5 292,5 337,5		67.5 112.5 157.5 202.5 247.5 292.5 337.5
337,5 292,5 247,5 202,5 157,5 112,5 67,5 Zug [4N]		37,5 292,5 247,5 202,5 157,5 112,5 67,5 Zug [kN]	
10	1. Beanspruch	una to	
		, , , , , , , , , , , , , , , , , , ,	4. Banspruchung
20- 12- 12- 12- 12- 12- 12- 12- 12- 12- 12		Set zi	
			MŰNCHEN, den 22.10.1984
	Last - Weg - Diagram	1 me	Kuel

Anlage 14 zum Forschungsvorhaben IV 1-5-360/83 BlaH 2

LASTWECHSEL - VERFORMUNGS - DIAGRAMM 5/1

Pfahl 5 Versuch 1

> Wechselbelastung : Druck 100 kN

> > Zug 80 kN

Ende des Versuchs

.

Anlage 17 zum Forschungsvorhahen IV 1-5-360/83

AXIAL ZYKLISCH BELASTETE PFÄHLE

Zusammenstellung der Bodenkennwerte nach der Versuchsdurchführung

· · · · · · · · · · · · · · · · · · ·	1			Höhe ü	iber Sal				
		+ 10							
			+ 3, / m			+ 0, 2 m			
	<u> </u>	N N	5d	Y +/2	0/	50 t/m3	× ×		5d +/-3
	<i>L / 11 3</i>	~/0	<i>i/m</i> 3	<i>(/m³)</i>	10	1/110			1/m3
	1,81	8,9	1,66	1,66	7,5	1,55	1,64	5,2	1,56
	1,72	9,1	1,57	1,76	9,6	1,60	1,75	6,3	1,65
	1,75	9,1	1,61	1,67	7,5	1,56	1,60	6,4	1,51
	1,72	8,6	1,58	1,71	7,5	1,59	1,66	5,7	1,58
	1,82	9,0	1,67	1,68	7,8	1,56	1,70	6,6	1,59
	1,79	8,6	1,65	1,66	7,3	1,55	1,65	6,4	1,55
	1,81	8,1	1,68	1,72	7,8	1,60	1,64	5,5	1,55
	1,76	8,8	1,62	1,67	7,3	1,56	1,65	6,3	1,55
	1,81	8,7	1,67	1,69	7,7	1,57	1,70	9,1	1,64
	1,91	9,0	1,75	1,65	7,9	1,53	1,73	5,7	1,64
	1,82	8,3	1,68	1,78	8,3	1,64	1,61	5,3	1,53
	1,75	8,9	1,61						
	1,85	9,2	1,69						
	1,89	9,4	1,73						
	1,76	8,7	1,62						
max.	1,91	9,4	1,75	1,78	9,6	1,64	1,79	9,1	1,65
min.	1,72	8,1	1,57	1,65	7,3	1,53	1,60	5,2	1,51
Mittel	1,80	8,8	1,65	1,70	7,8	1,57	1,67	6,2	1,58

• Mittel gesamt 1,73 t/m³

♥ Mixtel gesamt 7,8 \$

•

 e_d Mittel gesamt 1,61 t/m³

MÜNCHEN, den 22.10.1984

Lehrstuhl und Prüfamt für Grundbau, Bodenmechanik und Felsmechanik, Techn. Universität München

Anlage 18 zun Fornehung vorbanien im 1.5. 260/23

Ergebnisse der Pfahlvermessung

Meßstelle	mittlere Durchmesser in mm								
(bezogen auf UK Kopfrohr) in т	Pfahl 1	Pfahl 2	Pfahl 3	Pfahl 4	Pfahl 5				
- 0,01	124	127	129	117	124				
- 0,55	139	12 8	137	145	114				
- 1,10	1 38	131	146	153	133				
- 1,65	133	128	128	145	123				
- 2,20	131	139	120	125	125				
- 2,75	143	1 42	135	1 31	124				
- 3,30	150	133	143	134	115				
- 3,85	1 41	130	125	133	127				
- 4,40	151	130	129	122	121				
Sohle	150	1 41	126	117	118				
Pfahllänge in m	4,56	4,57	4,56	4,53	4,60				
mittl. Pfahldurchmesser	139	1 32	133	134	123				

MÜNCHEN, den 22.10.1984 Korec

Lehrstuhl und Prüfamt für Grundbau, Bodenmechanik und Felsmechanik, Techn. Universität München

; • •

¢

Bilddokumentation zum Forschungsbericht "Axial zyklisch belastete Pfähle" Az. IV/1-5-360/83

Bild 1: Versuchsgrube in der Halle des Prüfamtes

2: Einbau des Bodens mit Vibrationsstampfer

3: Bohrmaschine System Bauer beim Bohren

4: Doppel-Drehbohrkopf mit Verrohrung Ø 108 mm

5: Doppel-Drehbohrkopf mit Schnecke Ø 90 mm

6: Einbau des Bewehrungs- und Meßstahles

7: Verpreßeinrichtung mit Mischer, Pumpe und Druckschreiber

8: Versuchsaufbau mit Belastungsbrücke und Hydraulikaggregat

9: Meßwerterfassung bei den statischen Versuchen

10: Steuer-, Regel- und Auswerteeinheiten bei den statischen Versuchen

11: Meßwerterfassung am Pfahl bei den zyklischen Versuchen

12: Steuer-, Regel- und Auswerteeinheiten bei den zyklischen Versuchen

13 und 14: Ausgegrabene Pfähle

Lehrstuhl und Prüfamt für Grundbau, Bodenmechanik und Felsmechanik, Techn, Universität München

Bild 1: Versuchsgrube in der Halle des Prüfamts

572

Bild 2: Einbau des Bodens mit Vibrationsstampfer

Bild 3: Bohrmaschine System Bauer

Bild 4: Doppeldrehbohrkopf mit Verrohrung Ø 108 mm Bild 5: Doppeldrehbohrkopf mit Schale ∮ 90 mm

Bild 6: Einbau des Bewehrungs- und Meßstahles

Bild 7: Verpreßeinrichtung mit Mischer, Pumpe und Druckschreiber

Bild 8: Versuchsaufbau mit Belastungsbrücke und Hydraulikaggregat (Statischer Versuch, Pfahl 4)

Bild 9

Bild 10: Meßwerterfassung, Steuer-, Regelund Auswerteeinheiten bei den statischen Versuchen

<u>Bild 11</u>

Bild 12: Meßwerterfassung, Steuer-, Regelund Auswerteeinheiten bei den zyklischen Versuchen

Bild 14

<u>Bild 13</u>

ausgegrabene Pfähle