Untersuchung von Lastfallkombinationen für die Bemessung von Stahlbauten im Hinblick auf Vereinfachungen

T 1433

¹ Fraunhofer IRB Verlag

T 1433

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

T 1433: Untersuchung von Lastfallkombinationen für die Bemessung von Stahlbauten im Hinblick auf Vereinfachungen

Forschungsbericht

Untersuchung von Lastfallkombinationen für die Bemessung von Stahlbauten im Hinblick auf Vereinfachungen

> Untersuchung im Auftrag des Instituts für Bautechnik

Geschäftszeichen: IV 1-5-304/82

20.11.1984

Prof. Dr.-Ing. G. Sedlacek Dipl.-Ing. A. Hemmert-Halswick

Lehrstuhl für Stahlbau Rheinisch-Westfälische Technische Hochschule Aachen 1. Inhaltsverzeichnis

		Seite
1.	Inhaltsverzeichnis	1.1
2.	Einleitung	2.1
2.1	Vorgehensweise	2.1
2.2	Erläuterungen zum Forschungsantrag	2.2
2.2	.l Allgemeines	2.2
2.2	.2 Leistungsbeschreibung	2.4
3.	Umfrage	3.1
3.1	Problemstellung	3.1
3.2	Vorgehensweise	3.1
3.3	Ergebnisse	3.1
3.4	Resümee und Schlußfolgerung aus der Umfrage	3.4
4.	Zusammenstellung der Vorschriften bzwvor- schläge	4.1
4.1	Grundsätzliche Vorgehensweise	4.1
4.2	Zusammenstellung der z.Z. gültigen deutschen	4.2
	Vorschriften	
4.2	.l Belastung	4.2
4.2	.2 Bemessung	4.3
4.3	Zusammenstellung der neuen Vorschläge für die	4.3
	Belastungs- und Bemessungsvorschriften entspre-	
	chend "GruSiBau"	
4.4	"GruSiBau-modifiziert"	4.5
4.5	CEB	4.6
4.6	Gültige französische Bemessungsregeln	4.6
4.7	Gültige belgische Bemessungsregeln	4.8
4.8	Gültige niederländische Bemessungsregeln	4.9
4.9	Vergleich der absoluten Windlasten	4.10
4.1	0 Gültige Schweizer Bemessung	4.11
4.1	1 Entwurf SIA 160 von 1983	4.12

5.1 5. Vergleichsmöglichkeiten der Bemessungsergebnisse infolge der verschiedenen Bemessungsvorschriften 5.1 5.1 Vorgehensweise bei den Vergleichen 5.1 5.2 Spannungsverhältnisse bei Zweigelenkrahmen 5.1 5.2.1 Spannungsermittlung und Bemessung 5.1 5.2.2 Parametervariation 5.2 5.2.3 Maßgebende maximale Spannung 5.2.4 Darstellung der Spannungsverhältnisse 5.3 5.3 5.3 Gewichtsoptimierung 5.3 5.3.1 Ermittlung der Rahmengewichte 5.4 5.3.2 Darstellung der Gewichtsverhältnisse 5.5 5.3.3 Unterschiede zur Darstellung der Spannungsverhältnisse 5.4 Darstellung eines Lastminderungskoeffizienten 5.5 5.4.1 Definition des Lastrinderungskoeffizienten 5.5 5.4.2 Variablen 5.6 5.4.3 Interpretation des Verlaufs von $\frac{1}{n}$ 5.6 5.4.4 Vergleich mit den Rahmenspannungsdarstellungen 5.6 5.4.5 Herleitung des Lastminderungskoeffizienten 5.7 6. Vergleich GruSiBau / gültige Vorschriften 6.1 (LFH/HZ) 6.1 Gegenüberstellung mittels Rahmenspannungen 6.1 6.1.1 Bezugswert 6.2 6.2 6.1.2 Berechnungsweise 6.2 6.1.3 Bemessungskonzepte 6.1.4 Erläuterung der Kurven 6.2 6.1.5 Darstellung der Spannungsverhältnisse 6.3 6.1.6 Auswertung der Rahmenspannungsverhältnisse 6.6 6.2 Gegenüberstellung mittels Lastminderungskoeffi-6.7 zient GruSiBau/D 6.2.1 Darstellung des Lastminderungskoeffizienten 6.7 6.2.2 Vergleich mittels Darstellung des Lastmin-6.8 derungskoeffizienten / Rahmenspannungen

Seite

6.2.3 Auswertung aus der Darstellung des Lastminde-6.15 rungskoeffizienten 6.2.4 Darstellung des Lastminderungskoeffizienten 6.15 ohne Erhöhung der Fraktile 6.3 Analyse der Knicke bei den Darstellungen der 6.16 Rahmenspannungen infolge GruSiBau/D 6.16 6.3.1 Problem der Knicke 6.17 6.3.2 Vorgehensweise zur Erklärung 6.17 6.3.3 Bezeichnung der Lastkombinationen 6.18 6.3.4 Aufstellung der Spannungsverhältnisse 6.19 6.3.5 Gegenüberstellung der Diagramme mit allen Kombinationen und mit den maximalen 6.3.6 Auswertung aus der Darstellung aller Lastkombi-6.24 nationen 6.4 Untersuchung über die Auswirkungen der Berück-6.24 sichligung von verschiedenen Berechnungsweisen 6.4.1 Theorie II. Ordnung 6.24 6.24 6.4.2 Vorimperfektion 6.4.3 Windlasten abhebend / nicht abhebend 6.25 6.4.4 Windlasten bei GruSiBau 6.25 6.4.5 Darstellungsweise 6.25 6.4.6 Auswertung aus den Untersuchungen 6.4.1 bis 6.4.5 6.40 6.5 Auswirkungen der Dachneigung 6.40 Auswirkungen eines Einspannens der Stiele 6.48 6.6 7. Anwendung der GruSiBau-Regeln auf gebaute Sy-7.1 steme 7.1 Vorgehensweise 7.1 7.2 Herkunft der Systeme mit Bemessungsangaben 7.1 7.3 Angaben zu GruSiBau 7.1 7.4 7.2 Zusammenstellung der Daten 7.5 Beispiele 7.5

7.6 Folgerung

1.3

Seite

8.	"GruSiBau-modifiziert"	8.1
8.1	Veranlassung zu modifizierten GruSiBau-Regeln	8.1
8.2	Vorgehen bei der Bemessung	8.1
.8.3	Gegenüberstellungen	8.1
8.3.1	Vorgehensweise	8.1
8.3.2	Gegenüberstellung Rahmenspannungen <u>"GruSiBau-modifiziert"</u> gültige Regeln (LFH/HZ)	8.2
8.3.3	Gegenüberstellung Lastminderungskoeffizient	8.4
8.3.4	Gegenüberstellung Rahmenspannungen <u>"GruSiBau-modifiziert"</u> GruSiBau	8.14
8.3.5	Gegenüberstellung Lastminderungskoeffizient	8.17
8.4	Auswertung der Untersuchung	8.23
	"GruSiBau-modifiziert"	
9.	Vergleich CEB - GruSiBau	9.1
9.1	Vorgehensweise	9.1
9.2	Kombinationsregeln	9.1
9.3	Gegenüberstellung Rahmenspannungen	9.2
9.4	Gegenüberstellung Lastminderungskoeffizient	9.12
9.4.1	Vorgehensweise	9.12
9.4.2	Eine variable Last	9.13
9.4.3	Zwei oder mehrere variable Lasten	9.14
9.5	Auswertung GruSiBau/CEB	

10.	Internationaler Vergleich	10.1
10.1	Vorgehensweise	10.1
10.2	Rahmenspannungsdarstellungen	10.1
10.2.1	Erläuterung der Kurven	10.1
10,2.2	Auftragung der Spannungsverhältnisse	10.2
10.3	Gewichtsverhältnisse	10.4
10.4	Analyse der Unterschiede für jedes Land einzeln	10.6
10.4.1	Vergleich Deutschland/Frankreich	10.6
10.4.2	Variation von Faktoren und Belastung	10.7
10.4.3	Vergleich Deutschland/Belgien	10.14
10.4.4	Variation von Faktoren und Belastung	10.16
10.4.5	Vergleich Deutschland/Niederlande	10.22
10.4.6	Variation von Faktoren und Belastung	10.23
10.5	Darstellung der Spannungsverhältnisse bei	10.28
	nichtabhebender Windkraft	
10.6	Darstellung der Spannungsresultate aller Last-	10.31
	fälle	
10.7	Vergleich Deutschland/Schweiz	l0. 35
10.7.1	Vorgehensweise	10.35
10.7.2	Rahmenspannungsdarstellungen	10.35
11.	Vergleich GruSiBau/gültige Vorschriften an ver-	11.1
	schiedenen Systemen	
11.1	Vorgehensweise	11.1
11.2	Zweigelenkrahmen mit Pendelstützen	11.1
11.3	Lagerhalle mit einem eingespannten Stiel	11.3
	und angehängtem einhüftigen Rahmen	
11.4	Zweischiffige Halle	11.5
11.5	Zweischiffige Halle mit eingespannten Stielen	11.7
11.6	Hallenbinder	11.8
11.7	Rahmen für Bühnenbau	11.12
11.8	Weitgespannte Kranhalle	11.14

Seite

12.	Praktikabilität	12.1
12.1	Vorgehensweise	12.1
12.2	Zweigelenkrahmen ohne Kran	12.1
12.2.1	Bisherige Berechnung	12.1
12.2.2	GruSiBau	12.2
12.3	Zweigelenkrahmen mit Kran	12.3
• •	Decimen	ז מי ז
13.	Resumee	13.1
13.1	Allgemeine Erkenntnisse	13.1
13.2	Spezielle Folgerungen	13.1
13.3	Fraktilwerte	13.2
13.4	Beschränkungen der Anzahl der Kombinationen	13.2
13.5	Gegenüberstellung zur Leistungsbeschreibung	13.3
13.5.1	Geklärte Probleme	13.3
13.5.2	Offene Probleme	13.3
14.	Zusammenfassung	14.1
15.1	Kurzfassung	15.1
15.2	Summary	15.2
15.3	Version abrégée	15.3
-		

•

Seite

16	Nachtrag	16.1
16 1	Nevere Vorschläge	16.1
16 2	Nedere Vorschräge	16.1
16 2 1	Lastminderungskoerrizient	16.1
10.2.1	Normale Kombinationsreger	16 2
16.2.2	Vereinfachte Kombinationsregein	10.3
16.2.3	Auswertung Lastminderungskoeffizient	16.6
16.3	Rahmenspannungen	16.7
16.3.1	Normale Kombinationsregel	16.7
16.3.2	Vereinfachte Kombinationsregeln	16.7
16.3.3	Auswertung Rahmenspannungen	16.10
16.4	Untersuchung einer Stütze unter besonderer	16.20
	Beachtung der Theorie II. Ordnung	
16.4.1	Ziel der Untersuchung	16.20
16.4.2	Vorgehensweise	16.20
16.4.3	Berücksichtigte Lastkombinationen	16.21
16.4.4	Zahlenbeispiel	16.22
16.4.5	Diagramme	16.25
16.4.6	Auswertung Th.II.O.	16.34

17. Literatur

Anhänge

17.1

1

2. Einleitung

2.1 Vorgehensweise

Eine knappe Wiedergabe der Vorgehensweise in diesem Bericht gibt die Möglichkeit, sich in kurzer Zeit einen Überblick über die Untersuchung zu verschaffen.

Im zweiten Teil dieses Kapitels wird noch einmal der Forschungsantrag gebracht, um sich eine Vorstellung von der Intention machen zu können.

Zur Feststellung technischer Daten gebauter Stahlkonstruktionen wurde eine Umfrage bei Stahlbaufirmen gemacht (Kap. 3). Um die Bemessung der Bauten nachvollziehen zu können, werden die für die Bemessung wichtigen Angaben der gültigen Vorschriften zusammengestellt. Um die Vergleichbarkeit sicherzustellen, werden die Vorschriftenvorschläge bzw. die ausländischen Vorschriften unserer Nachbarstaaten ebenso auf ihre Angaben zur Bemessung analysiert (Kap. 4). Die Vorschriften bzw. -vorschläge werden verglichen mittels Parameterstudien an Zweigelenkrahmen und stichprobenartig an typischen Stahlbauten. Vergleichsmaßstäbe sind dabei die Spannungen an den Bemessungspunkten, die Rahmengewichte und die Ausnutzungsänderung eines Querschnitts infolge einer Vorschriftenänderung (Kap. 5). Die in GruSiBau gemachten Vorschläge werden in ihren spannungsmäßigen Auswirkungen mit den gültigen Vorschriften an idealisierten Systemen verglichen (Kap. 6). Die Erkenntnisse daraus werden an tatsächlich gebauten Systemen elastisch und unter Anwendung eines CAD-Traglastprogramms auch plastisch nachgeprüft (Kap. 7).

Die GruSiBau-Regeln weisen gegenüber den gültigen Regeln mehrere Veränderungen auf. Unter "GruSiBau-modifiziert" wird versucht, die Ausführungsvorschrift um die Bestimmung zu vermindern, daß auch bei der Schneelast ein neuer Fraktilwert zu gebrauchen ist (Kap. 8). Die vorgeschlagenen CEB-Regeln werden in Beziehung zu den GruSiBau-Regeln gebracht (Kap. 9). Danach wird ein internationaler Vergleich spannungs- und gewichtsmäßig mit den Vorschriften Frankreichs, Belgiens und den Niederlanden gemacht (Kap. 10). Stichpunktartig werden in Kap. 11 einige typische Stahlbauten mit den GruSiBau-Regeln nachgerechnet. Schließlich wird in Kap. 12 die Praktikabilität untersucht und in Kap. 13 ein Resümee gezogen. In Kap. 14 wird eine Zusammenfassung, in Kap. 15-eine Kurzfassung in deutscher, englischer und französischer Sprache gebracht.

In einem Nachtrag (Kap. 16) wird auf neuere Entwicklungen eingegangen. Sie werden mit Rahmenspannungen, Lastminderungskoeffzient und mit einem Theorie II. Ordnung – empfindlichen System verglichen. Die verwendete Literatur ist in Kap. 17 zu finden. Schließlich sind in den Anhängen einige Lastgegenüberstellungen und Herleitungen zu finden.

2.2 Erläuterungen zum Forschungsantrag

"Untersuchung von Lastfallkombinationen für die Bemessung von Stahlbauten im Hinblick auf Vereinfachungen"

Ergänzungsuntersuchungen zu den "Grundlagen zur Festlegung von Sicherheitsanforderungen für bauliche Anlagen".

2.2.1 <u>Allgemeines</u>

In den sicherheitstechnischen "Grundlagen" sind neben Verfahren zur Begründung von Nennlasten und γ -Faktoren auch Kombinationsregeln für mehrere gleichzeitig auf ein Bauwerk einwirkende Belastungen, zum Beispiel Eigengewicht, Verkehr, Wind, Schnee, Temperatur angegeben. Die Kombinationsregeln berücksichtigen die Unwahrscheinlichkeit, daß die einzelnen Lasten mit ihren jeweiligen Größtwerten zusammen auftreten.

Die Kombinationsregeln geben Abminderungsfaktoren für jeden Lastanteil an, die in ihrer Größe so gestaffelt sind, daß die Lasteinwirkung mit der größten Auswirkung am Bemessungsquerschnitt (d.h. diejenigen die den größten Anteil am Bauwerkswiderstand verzehrt) mit dem größten Faktor, die weiteren Lasten mit einem kleineren Faktor belegt sind.

Dadurch soll eine gleichmäßige Überlebenswahrscheinlichkeit angestrebt werden.

Die unmittelbare Anwendung der Kombinationsregel führt im allgemeinen Fall zu der Notwendigkeit, genau soviel Lastfallkombinationen zu untersuchen wie Lasten vorhanden sind, um die ungünstigste herauszufinden.

Für linear reagierende Bauwerke ist diese Arbeit praktisch noch durchführbar, da das Superpositionsgesetz gilt. Das Vorhaben ist aber wegen des großen Datenanfalls unübersichtlich und fehleranfällig.

Für nicht linear reagierende Bauwerke, bei denen wie im Stahlbau häufig Theorie II. Ordnung-Verfahren verwendet werden müssen, bedeutet das Verfahren zudem einen überproportionalen Aufwand, da Lastfälle nicht mehr superponiert werden können. Streng genommen müßte für jede Bemessungsstelle die maßgebende Lastkombination durch neue Bauwerksberechnungen gesucht werden.

Um diese Nachteile zu vermeiden und praktische Verfahren zu ermöglichen, sieht die "Grundlage" vor, daß die Anzahl der Kombinationen in den Anwendungsnormen in der Regel auf maximal zwei reduziert wird.

Diese Forderung kann nur erfüllt werden, wenn die vollständigen Kombinationsregeln in typischen Anwendungsgebieten angewandt und auf vereinfachte Regeln reduziert werden, die ebenfalls das angestrebte Sicherheitsniveau erfüllen.

Die bisher im Stahlbau gebräuchlichen Kombinationsregeln mit zum Beispiel Hauptlastfällen und Haupt- und Zusatzlastfällen, für die unterschiedliche globale Sicherheitsfaktoren gelten, war eine solche Vereinfachung. Unklar ist, wie mit der Neuformulierung der Lasten, Widerstände, Sicherheits- und Kombinationsfaktoren ähnliche vereinfachte Regeln aussehen für die Bemessung verschiedener Bauteile und Verbindungen unter Berücksichtigung unterschiedlichen Vorgehens bei linearen und nichtlinearen Bauwerks- oder Bauteilverhalten.

2.2.2 Leistungsbeschreibung

Gegenstand des Forschungsauftrages ist die Grundlagenuntersuchung von Stahlkonstruktionen unter quasistatischen Lasten, die in Lastfallkombinationen auftreten, anhand der vereinfachten Bemessungsregeln der "sicherheitstechnischen Grundlage" mit dem Ziel, einfache Bemessungsregeln mit Lasterhöhungsfaktoren für Regellastfälle 1 und 2 und passenden Werten für die Widerstandsseite vorzuschlagen.

Die Grundlagenuntersuchung soll als Vorbereitung für die Harmonisierung in Eurocode 3 und als Grundlage für die Neuformulierung von DIN 18 800/1 (mit γ -fachen Lasten) durchgeführt werden.

Die Untersuchungen sollen Bauwerke mit und ohne Stabilitätsnachweise einschließen. Die erforderlichen Vergleichsrechnungen werden anhand vorhandener Bauwerke, zu denen Konstruktionsunterlagen bei der Industrie, bei Prüfingenieuren und Prüfämtern angefordert werden, anhand des neuesten Normenstandes und in Anwendung der Kombinationsregeln der "sicherheitstechnischen Grundlagen" und der bisherigen Regelungen und eventueller weiterer Vorschläge durchjeführt.

Für die Berechnungen wird die Anwendung des im Rahmen eines CAD-Auftrages für quasistatische Lasten entwickelten Berech-

nungsverfahren für die Ermittlung der Traglast von Stabwerken (Träger, Rahmen, Trägerroste, Fachwerkskonstruktionen etc.) vorgesehen.

Möglichkeiten für weiterführende Untersuchungen im zweiten Schritt wäre die Nachmessung der nachgerechneten Bauwerke auf Toleranzen, Imperfektionen etc., um weitere Auskünfte für Streuung der Eingangswerte zu erhalten.

3. <u>Umfrage</u>

3.1 Problemstellung

In der Bundesrepublik Deutschland existiert keine zentrale Liste oder Aufstellung zu technischen Daten gebauter Stahlkonstruktionen.

3.2 Vorgehensweise

Um über die Mengenverteilungen der verschiedenen Konstruktionstypen und die dazugehörigen Abmessungen Zahlenangaben zu erhalten, wurden anhand des Fragebogens (s. nächste Seite) Umfragen durchgeführt. Für den Zeitraum von 1976 - 1980 wurden Angaben über die Anzahl von verschiedenen Systemen mit den dazugehörigen Abmessungen erbeten. Die Wahl der Systeme war teilweise an [2] orientiert.

Eine erste Umfrage richtete sich an Prüfingenieure für Stahlbau des Landes Nordrhein-Westfalen, wobei uns das Ministerium für Landes- und Stadtentwicklung des Landes Nordrhein-Westfalen behilflich war. Von den Prüfingenieuren kamen zu wenig verwertbare Antworten, da nach gewisser Zeit die Prüfunterlagen zu den Prüfämtern zurückgegeben werden und bei den Prüfingenieuren keine Unterlagen verbleiben. Schätzungen aus dem Gedächtnis wurden nicht abgegeben. Das Ergebnis dieser ersten Umfrage war nicht repräsentativ.

Daher wurde eine zweite Umfrage an Stahlbaufirmen gerichtet, deren Adressen der Mitgliederliste des DStV entnommen wurden.

3.3 Ergebnisse

Die Ergebnisse dieser zweiten Umfrage, die an Stahlbaufirmen gerichtet war, sind zufriedenstellend: Bei 144 angeschriebenen Firmen waren von 56 Antworten 39 verwertbar.

		l jekte	l n	l _{1m}	l _{2m} l _{min}	h m h _{min}	b _m b _{min} d	a _m
System	Darstellung	unzah Jauob	unzah 1rme	-1 max	-1 max	-h max	-b max	<u>,01</u>
Hallen- rahmen guer (ca. 25% mit Kran)		3545	36	[m] 18 6-30	- - -	5 3 - 29	6 4-15	7 0-18
Hallen- rahmen quer		509	28	21 8-30	16 8-30	7 3-12	6 4 - 10	7 1-15
Hallen- rahmen quer		351	24	15 7-32	15 7-32	6 3 - 25	7 5-20	6 0 - 15
sonstige Hallen- rahmen quer		62	3	20 10-24	16 10-19	8 4-12	- 6-8	-
ır		12	1	39 -	-	6 -	8 -	4 -
н		10	1	- 30-40	-	6	- 5-6	5
a		3	1	- 20-30	-	- 4-6	- 5-6	- 10-15
Hallen- rahmen quer mit gelen- kigem Anbau		10	1	- 10-20	- 5-8	- 4-5	5 -	- 3-10
II		. 8	1	- 15-23	- 4-15	- 3-10	- 5-7	- 5-10
Hallen- rahmen quer		60	1	20 -	-	8 -	6 -	
Raumfach- werk		750	1	- 14-200			-	-

Ergebnis der Antworten

System	Darstellung	Anzahl Bauobjekte	Anzahl Firmen	l _{1m} l _{min} -l _{max} [m]	12m 1min -1 _{max} [m]	h min -h _{max} [m]	b _m b _{min} -b _{max} [m]	α _m
Rahmen mit gelenkigen Zwischen- stützen	$\frac{1}{1} + \frac{1}{2} + \frac{1}$	119	22	14 7-32	16 8-36	6 3-12	6 5-10	7 2-
11		220	20	12 5-20	13 5-25	6 3 - 15	6 5 - 8	-
schotige		40	1	- 15-20	- 15-20	- 4-5	- 5-6	
Rahmen längs und quer (z.B. Aussteifung)		476	27	12 4-25	10 4-25	6 3-10	-	
Geschoßbau längs	±1,±1₂±	203	20	8 5-20	7 5-20	4 3-11	-	-
Industrie- bau		145	11	8 5-20	7 5-18	4 3-8	-	-
sonstige mehrge- schossige Rahmen		60	2	- 5-15	-	- 4-5	-	

Tabelle 3.1: Auswertung aus der Umfrage

3.4 Resümee und Schlußfolgerung aus der Umfrage

Es zeigt sich, daß der Zweigelenkrahmen im Stahlhochbau das am meisten gebaute System ist; an diesem System werden unsere Untersuchungen durchgeführt. Stichprobenartig werden auch andere Systeme untersucht, um die an Zweigelenkrahmen gewonrenen Erkenntnisse zu überprüfen.

4. Zusammenstellung der Vorschriften bzw. Vorschläge

4.1 Grundsätzliche Vorgehensweise

Für die nach Kap. 3 gewählten Systeme mit Zweigelenkrahmen werden nun Vergleichsuntersuchungen mit Belastungen nach bisherigen Vorschriften und Vorschlägen für neue Vorschriften durchgeführt, um die Auswirkungen der Vorschriftenänderungen auf die Bemessung zu erkennen.

Dies erfolgt in der Weise, daß zunächst nur die Änderung der Vorschriften auf der Einwirkungsseite (Belastung) erfaßt wird.

Um die Vergleichbarkeit zu gewährleisten, wird für alle betrachteten Belastungen eine Bemessung vorgenommen, bei der das Erreichen der Fließgrenze in der am ungünstigsten belasteten Faser des Rahmens als Grenzzustand gilt, d.h. die Definition der Widerstandsseite ist einheitlich für alle betrachteten Belastungen.

Um die Vergleiche auf breiter Basis durchzuführen, werden auch internationale Vorschriften bei den Vergleichsrechnungen berücksichtigt.

4.2 <u>Zusammenstellung der zur Zeit gültigen deutschen</u> Vorschriften

4.2.1 Belastung

Für die Belastung ist DIN 1055 maßgebend.

4.2.1.1 Wind

Die Windlasten sind in Blatt 4 der DIN 1055 angegeben. Sie sind gleich

$$W = c_f \cdot q \cdot A$$

wobei

c_f aerodynamischer Lastbeiwert q Staudruck A Bezugsfläche

ist.

Bei Zweigelenkrahmen sind die Beiwerte c_f wie folgt anzusetzen: 0.8 0.8 0.4 Bild 4.1: Beiwerte c_f für Deutschland

Staudruck q:	Höhe über Gelände	Staudruck q
	[m]	[kN/m ²]
	0 - 8	0,5
	8 - 20	0,8

4.2.1.2 <u>Schnee</u>

Bei den Schneelasten wird mit der entsprechend DIN 1055, Bl. 5 am häufigsten vorkommenden Last s = 0,75 $[kN/m^2]$ gearbeitet. Die dort festgelegten Werte entsprechen der 95 %-Fraktile.

4.2.2 Bemessung

Die Lastkombination erfolgt nach der stahlbautypischen Vorschrift in DIN 18800/1. Diese beinhaltet die Unterteilung in Haupt- und Zusatzlastfälle. Bei Zweigelenkrahmen ohne Kran treten die Lasten Eigengewicht G, Schneelast S und Windlast W auf. Zum Lastfall H gehören die Kombinationen G + S und G + W, zum Lastfall HZ G + S + W. Bei Zweigelenkrahmen mit Kran oder bei Geschoßbauten sind zusätzlich die Verkehrslasten P beim LFH und beim LFHZ zu berücksichtigen.

Die zulässigen Spannungen sind für den Spannungsnachweis an stabilitätsgefährdeten Bauteilen für LFH mit 14 [kN/cm²] und für LFHZ mit 16 [kN/cm²] anzusetzen. Es läßt sich also ein $\gamma_{\rm H} = \frac{\sigma_{\rm Fließ}}{\sigma_{\rm zul}} = \frac{24}{14} = 1,71$ für St 37 angeben für den LFH, für den LFHZ $\gamma_{\rm HZ} = \frac{\sigma_{\rm Fließ}}{\sigma_{\rm zul}} = \frac{24}{16} = 1,50.$

Für die Widerstandsseite wird eine Spannungsverteilung bis zur Fließgrenze zugrundegelegt unter Berücksichtigung der Regelungen in DIN 4114, Bl. 1, 10.1 und 10.2 für druckbeanspruchte Stützen. Bei unseren Zweigelenkrahmen wird der ω -Nachweis nach 10.2 nicht maßgebend.

4.3 <u>Zusammenstellung der neuen Vorschläge für die Be-</u> <u>lastungs- und Bemessungsvorschriften entsprechend</u> "GruSiBau"

Die Abkürzung "GruSiBau" leitet sich ab aus dem Titel "<u>Gru</u>ndlagen für die Festlegung von <u>Si</u>cherheitsanforderungen für <u>bau</u>liche Anlagen" [1]. Neben Anweisungen für den Entwurf, die Baudurchführung und die Kontrollen werden Kombinationsanweisungen für die Belastungen gegeben.

4.3.1 Belastung

4.3.1.1 Wind

Die Lasten der DIN 1055, Bl. 4 entsprechen annehmbar den Vorschlägen in GruSiBau, wobei der 99 -Fraktilwert für den Sicherheitsindex β = 4,7 vorgeschlagen wird.

4.3.1.2 <u>Schnee</u>

Für Schnee ist der 99 %-Fraktilwert zu benutzen, da der Variationskoeffizient > 0.1 ist. Nur dann ist auch γ_f = 1.3 gerechtfertigt. In Schneelastzone I unter 500 [m] ü. NN, II unter 400 [m], III unter 300 [m] ist danach s = 0.99 [kN/m²] anzusetzen.

4.3.2 Bemessung

Für den Grenzzustand der Tragfähigkeit bei linearem und überproportionalem Verhalten werden bei GruSiBau Kombinationsanweisungen angegeben:

$$S^{\star} = g_{s} (\gamma_{sys} \cdot \gamma_{f}^{G} \cdot G_{K}, \gamma_{sys} \cdot \gamma_{f}^{Q} \cdot Q_{K,1}, \gamma_{sys} \cdot \gamma_{f}^{Q} \cdot \dots + \gamma_{0,2} \cdot Q_{K,2}, \dots, \gamma_{sys} \cdot \gamma_{f}^{Q} \cdot \psi_{0,n} \cdot Q_{K,n}, \delta_{f})$$

mit den Vorschlägen für die Faktoren:

$$\gamma_{sys} = 1.1, \gamma_f^G = \gamma_f^Q = 1.3, \psi_{Wind} = \psi_{Schnee} = 0.7.$$

Bei günstig wirkender veränderlicher Einwirkung ist $\gamma_f^Q = 0$.

Für Zweigelenkrahmen lauten die zu untersuchenden Kombinationsregeln:

$$S^{\star} = Max \left\{ \begin{array}{l} \gamma_{F} \cdot (G + S) & + \delta_{f} \\ \gamma_{F} \cdot (G + S + 0.7 W) + \delta_{f} \\ \gamma_{F} \cdot (G + W + 0.7 S) + \delta_{f} \end{array} \right\} \leq R^{\star} = \frac{R}{\gamma_{M}}$$

mit $\gamma_{F} = \gamma_{f} \cdot \gamma_{sys} = 1.43$ und $\gamma_{M} = 1.0$.

 $\delta_{\rm f}$ ist ein additives Glied zur Berücksichtigung von Vorverformungen. Bei Zweigelenkrahmen wird von einer Schrägstellung von $\psi = \frac{1}{200}$ ausgegangen. S* ist der Bemessungswert der Einwirkungen. R* ist der Bemessungswert der Widerstände.

Der in GruSiBau genannte Teilsicherheitsbeiwert γ_{sys} = 1.10 bezieht sich auf ein im Mittel richtiges Berechnungsmodell, dessen Ergebnisse nach oben und unten streuen. Der Wert γ_{sys} berücksichtigt also keinen systematischen Modellfehler, der etwa dadurch entstehen könnte, daß im Grenzzustand der Tragfähigkeit ein durchplastiziertes System mit Schnittkraftumlagerung zu erwarten wäre, aber mit der Grenze der Elastizitätstheorie aus Einfachheitsgründen gerechnet wird.

4.3.3 <u>Abhebender Wind als günstig wirkende veränderliche</u> Einwirkung

Wind auf einen Rahmen setzt sich aus horizontalen und vertikalen Lasten zusammen, wobei die vertikalen Windlasten als abhebende Lasten günstige Schnittkräfte hervorrufen, während die horizontalen Windlasten und die ständigen Lasten ungünstige Schnittkräfte verursachen. Da nicht klar ist, ob sich die Festlegung $\gamma_f^Q = 0$ bei günstig wirkender veränderlicher Einwirkung auf Wind als ganzes oder auf die einzelnen Lastanteile bezieht, werden beide Fälle untersucht.

4.4 "GruSiBau - modifiziert"

Der Aufbau der Kombinationsregeln bleibt so wie bei GruSiBau erhalten, nur werden die Lasten wie bei den derzeitig gültigen Regeln angesetzt, also z.B. bei Schnee die 95 %-Fraktile. Für Schneelastzone I unter 200 [m] ü. NN wäre also 0,75 [kN/m²] anzusetzen. Damit gleiche Bemessungsergebnisse erzielt werden wie bei der Bemessung nach den derzeitig gültigen Normen, muß ein neuer Zahlenwert für $\gamma_{\rm F}$ gefunden werden.

4.5 <u>CEB (Mustervorschrift)</u>

Die vereinfachten Bemessungsregeln entsprechend der CEB/FIP-Mustervorschrift [4] lauten:

$$S_d = S (1,35 G + \gamma q \frac{\Sigma}{1} Q_{iK})$$

bei günstiger Einwirkung des Eigengewichts

$$s_d = s (1,00 G + \gamma_q \frac{\Sigma}{1} Q_{iK})$$

wobei für diesen Fall angenommen wird:

$$\gamma_{q} = 1,50 \text{ für } n = 1$$

$$\gamma_{q} = 1,35 \text{ für } n \ge 2$$

4.6 Gültige französische Bemessungsregeln

4.6.1 Belastung

Die Belastungswerte sind [6] entnommen.

4.6.1.1 <u>Wind</u>

Für Hallen mit Zweigelenkrahmen läßt sich die Belastung nach folgendem Schema aufstellen:

Staudruck für Region II:

$$q_{on} = 0.70 [kN/m^2]$$
 $q_{oe} = 1.225 [kN/m^2]$
 $\delta = f(H) = 1 - 0.3 \frac{1g H + 0.301}{2.301}$ (S.63)
 $q_H = 2.5 \frac{H + 18}{H + 60}$ (S.54)
 $q_w = q_0 \cdot \delta \cdot q_H$
(Die Seitenzahlen beziehen sich auf NV 65, 1980 [6]).

$\lambda_{b} = \frac{h}{b}$	(S. 89)
$\begin{array}{rcl} \gamma_{0} &= 0.85 \\ \gamma_{0} &= 0.85 + 0.15 \end{array} & \begin{array}{r} \lambda_{b} &= 0.25 \\ \hline 0.25 \\ \gamma_{0} &= 1 \end{array} & \begin{array}{r} f \ddot{u}r & 0.25 < \lambda_{b} \\ \hline f \ddot{u}r & 0.25 < \lambda_{b} \\ \hline f \ddot{u}r & 0.5 < \lambda_{b} \end{array}$	0.25 0.5
$c'_{e} = 0.5$ $c'_{e} = 0.265 + 0.235 \frac{(\gamma - 0.8)^{2}}{0.04}$ für 0.85 < γ $c'_{e} = 0.28$ für γ bei $\alpha = 0^{\circ}$	= 1 < 1 = 0.85
$q_{D} = (c_{e} - c_{i}) q_{w} = 0.5 q_{w}$ $q_{S} = (c_{es} - c_{i}) q_{w} = ((1.3 \gamma_{0} - 0.8) + 0.3)$	q _w
$q'_{S} = (c'_{e} - c_{i}) q_{w} = (c'_{e} + 0.3) q_{w}$	

4.6.1.2 <u>Schnee</u>

Für Schnee existieren ähnlich wie in Belgien normale und extreme Lasten: Surcharges normales $S_n = 0.55 [kN/m^2]$, Surcharges extémes $S_e = 0.90 [kN/m^2]$. Die Werte gelten für die Schneelastzone Region III, zu der die Gebiete gehören, die nahe der Grenze zur Bundesrepublik Deutschland liegen. Wenn in den Kombinationsregeln die reduzierten Werte erlaubt werden ($S_{\underline{rn}}$ oder $S_{\underline{re}}$), sind die angegebenen Schneelasten zu halbieren.

4.6.2 Bemessung

Die Lastenzusammensetzung erfolgt mit Kombinationsregeln, die [5] entnommen sind.

Kombination der Einwirkungen	bei ungünstiger Wirkung von G und T	bei günstiger Wirkung von G und T
bei Berücksichti- gung einer der drei Einwirkungen Q, S _n , W _n	$\frac{3}{2} Q + \frac{4}{3} (G + T)$ $\frac{3}{2} S_n + \frac{4}{3} (G + T)$ $\frac{3}{2} W_n + \frac{4}{3} (G + T)$	$\frac{3}{2} Q + G + T$ $\frac{3}{2} S_n + G + T$ $\frac{3}{2} W_n + G + T$
bei Berücksichti- gung zwei der drei Einwirkungen Q, S _n , W _n	$\frac{17}{12} (S_{rn} + W_n) + \frac{4}{3} (G + T)$ $\frac{17}{12} (W_n + Q) + \frac{4}{3} (G + T)$ $\frac{17}{12} (Q + S_n) + \frac{4}{3} (G + T)$	$\frac{17}{12} (S_{rn} + W_n) + G + T$ $\frac{17}{12} (W_n + Q) + G + T$ $\frac{17}{12} (Q + S_n) + G + T$
bei Berücksichti- gung der drei Einwirkungen Q, S _n , W _n	$\frac{4}{3}(Q + S_{rn} + W_{n} + G + T)$	$\frac{4}{3}$ (Q + S _{rn} + W _n) +G +
bei Berücksichti- gung der extremen klimatischen Lasten	$Q + S_{re} + W_e + G + T$ $Q + S_e + G + T$	$Q + S_{re} + W_e + G + T$ $Q + S_e + G + T$

4.7 Gültige belgische Bemessungsregeln

4.7.1 Belastung

4.7.1.1 Wind

Für Wind ist $w = (\gamma_e - \gamma_i) \rho \cdot q$ nach [7] anzusetzen. Dabei entspricht γ_e dem deutschen Formbeiwert c_f , nur ist auch für inneren Sog/Druck ein $\gamma_i = \pm 0.3$ anzusetzen, wenn der Prozentsatz der möglichen Öffnungen zwischen 6 und 33 % liegt. ρ ist ein Faktor zur Berücksichtigung des Abstandes der Haupttragsysteme. Er beträgt bei 7 [m] Binderabstand z.B. $0.87. q_{max_normal}$ ist = $0.45 [kN/m^2], q_{max}$ exceptionnel = $0.90 [kN/m^2]$ bis 10 [m] Höhe über Grund nach [8], Fig. 2.

4.7.1.2 Für Schnee ist s = 0.4 $[kN/m^2]$ nach [9] für Gebäude bis 200 [m] üNN anzusetzen, also deutlich weniger als die geringste deutsche Schneelast.

4.7.2 Bemessung

Bei der Kombination der Einwirkungen für Hallen ohne Kran sind folgende Lasten zu berücksichtigen: Eigengewicht F_g, Schnee S, Wind (normal) W_{nor}, Wind (außergewöhnlich) W_{exc}. Die Kombination der Einwirkungen sind nach folgendem Schema zu bilden:

Fall	I	Fall	II	Fall	III
Fg +	S	Fg +	Wnor	Fg +	Wexc

Zulässige Spannungen (Tafel 3 aus [9], R $[N/mm^2]$ für A37)

	е	≦	16 [mm]	157	177	235
16 [mm] <	е	≦	36 [mm]	150	163	226
36 [mm] <	е	≦	80 [mm]	143	162	216

Aus dem Verhältnis $\frac{\sigma_{Fließ}}{R}$ sind die γ -Faktoren abzuleiten.

4.8 Gültige niederländische Vorschriften

4.8.1 Belastung

4.8.1.1 Wind

Die Windlast wird wie in Deutschland gebildet aus dem Formbeiwert c, aus dem Staudruck q und der angegriffenen Fläche A. Ler Staudruck q ist von der Firsthöhe des Bauwerks abhängig.

4.10

Die Formbeiwerte c sind mit den deutschen c-Werten identisch.

4.8.1.2 <u>Schnee</u>

Es ist in den Vorschriften nicht ausdrücklich von Schnee die Rede: Auf Dächer von Hallen ist eine variable vertikale Last von 0.5 $[kN/m^2]$ anzusetzen.

4.8.2 Bemessung

Für alle Lastfälle ist ein $\gamma = 1.5$ anzunehmen.

4.9 Vergleich der absoluten Windlasten

In der Gegenüberstellung im Anhang 1 sind für Deutschland, Frankreich, Belgien, Niederlande und GruSiBau die Windlasten für die Stiele und den Riegel und die Gesamtlasten für den Riegel einschließlich der abhebenden Windlasten eingetragen. Die Unterschiede bei den Lastansätzen für Wind und Schnee und bei den Gewichtungen für die Lasten inform der Lastfaktoren sind für die unterschiedlichen Bemessungsniveaus, die sich bei den Vergleichen ergeben, verantwortlich. 4.10 Gültige Schweizer Bemessung

4.10. Schnee

Die Lasten sind der SIA 160 [23] zu entnehmen. Für Schnee ist dabei im grenznahen Streifen zur Bundesrepublik Deutschland $s = 40 + \left(\frac{H}{55}\right)^2$ für $H \leq 800$ m über Meer, mindestens aber $s = 90 \text{ kg/m}^2$.

4.10.2 Wind

Die Staudrücke sind folgendermaßen anzusetzen:

Weiterhin sind Außen- und Innendruckbeiwerte zu berücksichtig:n. Die Innendruckbeiwerte gelten für gleichmäßig verteilte Undichtheit, sie werden hier nicht berücksichtigt.

 c_{p_a} -Werte (Außendruck) für h:b: $\ell = 1:4:4$ c_{p_i} -Werte

Satteldächer 0 - 3⁰

-0,8 -0,3 -0,9 ±0,2

 c_{p_a} -Werte (Außendruck) für h:b: $\ell = 1:1:1$ c_{p_i} -Werte

Satteldächer 0 - 10⁰

4.10.3 Bemessung

Entsprechend der Schweizer Norm SIA 161 [20] sind für den Tragfähigkeitsnachweis folgende Kombinationen zu bilden:

 $F_{1}^{*} = \gamma (G + Q_{1})$ $F_{2}^{*} = \gamma (G + 0,9 Q_{1} + 0,7 (Q_{2} + Q_{3} + ... + Q_{n}))$

Die Symbole sind unter Rl O2 [20] erklärt. Für den Hallenbau ergeben sich folgende notwendige Kombinationen, wenn von vornherein nicht klar ist, welche Last von den variablen Lasten die maximalen Bemessungsergebnisse liefert:

> 1,6 (G + S) 1,6 (G + W) 1,6 (G + 0,9 S + 0,7 W) 1,6 (G + 0,9 W + 0,7 S)

Die Lasten sind der SIA 160 [23] entnommen.

4.11 Entwurf SIA 160 von 1983

Entsprechend dem Vorschlag der SIA 160, Entwurf 1983 [21] wird die Bemessung entsprechend folgendem Vorgehen durchgeführt.

4.11.1 Schnee

$q_a = \zeta \cdot q_{0,a}$ $q_{0,a} = (H - 800m) \cdot 0.005 \text{ KN/m}^3$
Dachformbeiwert ζ : $0 \leq \beta \leq 15^\circ$: $\zeta = 0.8$
4.11.2 <u>Wind</u>
Lokale Drücke $q_e = q \cdot C_{qe} \cdot C_H$ $q_i = q \cdot C_{qi} \cdot C_H$
$\frac{\text{Globale Kräfte}}{Q_n} = q \cdot C_n \cdot C_H \cdot C_R \cdot C_G \cdot A$ $Q_t = q \cdot C_t \cdot C_H \cdot C_R \cdot C_G \cdot A$ $Q_r = q \cdot C_r \cdot C_H \cdot C_R \cdot C_G \cdot A$
q _e ,q _i : Statisch und senkrecht auf Oberfläche wirkende äußere und innere Drücke
Q _n , Q _t , Q _r : Statisch und senkrecht oder tangential auf die Bezugsfläche wirkende Kräfte
q : Staudruck gemäß 4.6.3, SIA 160
C , C : Druckbeiwerte zur Berücksichtigung der Form und Durchlässigkeit des Bauwerks sowie Anströmrichzung aus 4.6.4
C _n , C _t , C _r : Globale Kraftbeiwerte
C _H : Höhenbeiwert aus 4.6.5, SIA 160
C _R : Reduktionsbeiwert aus 4.6.6 zur Berücksichtigung der Böigkeit
C _G : Dynamischer Vergrößerungsbeiwert aus 4.6.6
A : Bezugsfläche

<u>Staudruck g</u>

.

Ort	q_KN/m
Basel-Mulhouse	1200
Bern	1000
Zürich-Kloten	1000

 $\frac{\text{Wind als Begleitumstand}}{\frac{q_a}{q_p} = 0.5 \quad \text{allgemein}}$

4.11.3 Bemessung

Nachweisgleichung: $\frac{R}{\gamma_R} \ge \gamma_S \cdot S$ R : charakteristische Materialfestigkeit γ_R = 1.15 für Stahl S : Beanspruchung entsprechend SIA 160 γ_S = 1.10 (Lastmodellfaktor Regelfall) γ_S = 1.0 (Lastmodellfaktor Unfalleinwirkung, Anprall, Explosion, Erdbeben)

 $S = S(Q_p, G_p, Q_a)$ Q_p : Bemessungswert, Leitgefahr ,extrem

γ _p	:	Bemessungswert,	Leitgelanr , extrem
G	:	Bemessungswert,	ständige Lasten, extrem
2 [°] a	:	Bemessungswert,	veränderliche Einwirkung, Begleitumstand

Eigengewicht

- G_p = γ_{max} G_m, wenn Eigengewicht die Beanspruchung infolge Leitgefahr erhöht
- $G_p = \gamma_{min} G_m$, wenn Eigengewicht die Beanspruchung infolge Leitgefahr vermindert

		Ymax	Ymin
Tragwerke und Teile	davon	1.25	0.90
Sekundäre Bauteile	Bedachungen Beläge Trennwände	1.30 1.40 1.30	0.85 0.80 0.0
Feste Einrichtungen		1.40	0.0

5. <u>Vergleichsmöglichkeiten der Bemessungsergebnisse in-</u> folge der verschiedenen Bemessungsvorschriften

5.1 Vorgehensweise bei den Vergleichen

Es wird ein Bezugsmaßstab gewählt, auf den die Bemessungsergebnisse bezogen werden. Damit erhält man eine Beurteilungsgrundlage für die Auswirkung von Änderungen der Bemessungsregeln.

Mittel für die Gegenüberstellung der Bemessungsergebnisse infolge der verschiedenen Vorschriften bzw. Vorschriftenvorschläge sind:

- Berechnung der Schnittspannungen an Zweigelenkrahmen und Darstellung der Spannungsverhältnisse
- Darstellung der Gewichtverhältnisse bei optimierten Rahmen
- Darstellung eines inversen Laststeigerungskoeffizienten entsprechend den Vergleichsrechnungen des DASt zu den Empfehlungen der Europäischen Könvention für Stahlbau [3].

5.2 Spannungsverhältnisse bei Zweigelenkrahmen

5.2.1 Spannungsermittlung und Bemessung

An einem Zweigelenkrahmen wird das erforderliche Profil ermittelt, um den maximalen Spannungen an jeder beliebigen Querschnittsstelle Rechnung zu tragen, damit die Belastung infolge der Vorschrift, die die maximalen Spannungen liefert, aufgenommen werden kann. Wie schon in Kapitel 4.1 ausgeführt, wird bei den Parametervariationen an Hallenrahmen eine Bemessung vorgenommen, bei der das Erreichen der Fließgrenze in der am ungünstigsten belasteten Faser des Rahmens als Grenzzustand gilt, d.h. die Definition der Widerstandsseite ist einheitlich für alle betrachteten Belastungen. Es wird auch bei LF H/HZ mit γ -fachen Lasten gearbeitet.

5.2.2 Parametervariation

Unter Variation der möglichen Parameter Spannweite L, Höhe H, Dachhauteigengewicht g und Binderabstand A werden die maxima-

len Spannungen jeder Bemessungsvorschrift an den drei Querschnittsstellen Riegelmitte, Riegelanschnitt und Stielanschnitt miteinander verglichen. Diese drei Querschnittsstellen zu überprüfen reicht aus, da für den gesamten Rahmen konstante Profile angenommen werden.

Dies ist nur selten vorhanden, aber Ergänzungsuntersuchungen zeigen, daß sich bei Konstruktionen mit demselben Zweck nach einer Optimierung mit Vouten und Keilstützen vernachlässigbare Abweichungen ergeben.

5.2.3 Maßgebende maximale Spannung

Bei dem Vergleich der verschiedenen Bemessungsvorschriften ergeben sich die maximalen Spannungen an einem Querschnitt bei einer bestimmten Kombinationsregel: z.B. ist in Riegel-
mitte nach der zur Zeit gültigen Bemessungsvorschrift immer LFH von LFH/HZ maßgebend. Für den Riegel- und Stielanschnitt läßt sich dies nicht allgemeingültig sagen. Bei hohen, schmalen Rahmen ist LFHZ infolge Wind dort maßgebend. Bei niedrigen, breiten Rahmen ist am Riegel- und Stielanschnitt wie in Riegelmitte LFH maßgebend. Ebenso wird bei den anderen Bemessungsvorschriften jeweils diejenige Kombination als maßgebend betrachtet, welche an jeweils einer der drei Querschnittstellen die maximale Spannung ergibt.

5.2.4 Darstellung der Spannungsverhältnisse

Die Auftragung der Ergebnisse erfolgt nun derart, daß die maximalen Spannungen einer Bemessungsvorschrift auf die einer anderen bezogen werden, wozu jeweils die Spannung benutzt wird, die sich infolge der Kombination ergibt, die die maximale Spannung an der jeweiligen Querschnittsstelle bewirkt. M.a.W. die Ergebnisse werden dimensionslos so dargestellt, daß die maximale Spannung einer Bemessungsvorschrift durch die maximale Spannung einer anderen Bemessungsvorschrift dividiert wird. Dieses Verhältnis wird in den Rahmenspannungsdarstellungen mit $\frac{\sigma}{\sigma_{B}}$ bezeichnet $(\sigma_{B} \stackrel{c}{=} \sigma_{Bezug})$. Es entspricht dem Lastminderungskoeffizienten $\frac{1}{n}$ nach Sie $\frac{1}{n}$ nach Siebke in den Darstellungen entsprechend den Vergleichsrechnungen des DASt [3]. Im Verlauf der Kurven treten Knicke auf, die im Kapitel 6.3 "Analyse der Knicke" näher erläutert werden. Die Rahmenspannungsverhältnisse sind also kein Ausnutzungsgrad eines beliebigen Querschnittes, sondern ein Maßstab der Änderung des Bemessungsniveaus: Es können die Lasten und/oder die Widerstände entsprechend der Angabe $\frac{\sigma}{\sigma_{-}}$ ($\hat{=}$ $\frac{1}{\eta}$) geändert werden. Ist $\frac{\sigma}{\sigma_{-}}$ < 1, können die Lasten nach der neuen Vorschrift gestelgert werden; ist $\frac{\sigma}{\sigma}$ > 1, müssen die Lasten gesenkt werden. Ein Verhältnis der Spannungen ≠ 1.0 stellt also eine Änderung des Sicherheitsniveau dar.

5.3 Gewichtsoptimierung

5.3.1 Ermittlung der Rahmengewichte

Die Gewichte der Rahmen bei der Optimierung werden iterativ ermittelt. Dazu werden die Belastungen aus den verschiedenen Bemessungsvorschriften auf Zweigelenkrahmen mit abgestuften Profilen aufgebracht, die entsprechend den Belastungen unter Einhaltung der zulässigen Spannungen hinsichtlich des Gewichtes optimiert werden. Für die unteren Abschnitte der Stiele, für die Ecken und für den mittleren Abschnitt des Riegels wird zunächst das für jeden Abschnitt minimal mögliche Profil ermittelt. Das so ermittelte Profil wird nun

Bild 5.3: System für Optimierung

. 4

z.B. in der Ecke vergrößert und in der Riegelmitte verkleinert, wobei die Abmessungen dieser Abstufungen (x horizontal, y vertikal) so variiert werden, daß die zulässigen Spannungen mit 98 % ausgenutzt sind. Es werden mehrere Kombinationen mit verschiedenen Profiltypen für die Stiele, die Ecken und die Riegel durchgerechnet. Die Kombination mit den Profiltypen, die hierbei das minimale Gewicht ergibt, wird bei der Profilvariation weiterverfolgt. Wenn sich keine Verringerung des Gewichts mehr ergibt, wird die Variation abgebrochen.

5.3.2 Darstellung der Gewichtsverhältnisse

Bei den Gewichtsverhältnissen werden die Verhältnisse der Bindereigengewichte ohne die Dachhauteigengewichte aufgetragen. Zum Dachhauteigengewicht gehört, wenn vorhanden, das Pfetteneigengewicht. Die Gewichte infolge der Belastungen entsprechend GruSiBau oder der internationalen Vorschriften werden auf die Gewichte infolge der Bemessung mit LF H/HZ bezogen.

5.3.3 <u>Unterschiede zur Darstellung der Spannungsverhält-</u> nisse

Es werden die Verhältnisse der Gewichte von optimierten Rahmen dargestellt. Die Diagramme stellen eine Zusammenschau dar aus den Spannungsdiagrammen für die verschiedenen Querschnitte: Während das Verhältnis von $\frac{\sigma}{\sigma_B}$ für den Riegelanschnitt seine Größe stark ändert und däs für die Riegelmitte weitgehend konstant bleibt bei Änderung der Spannweite, ändert sich das Verhältnis der Gewichte nur mäßig. Die Gewichtsverhältnisse kann man auch als Mittelwerte auffassen zwischen den Spannungsverhältnissen für Riegelmitte und Riegelanschnitt, wobei die Unterschiede dann nicht so stark sind wie bei den Verhältnissen der Riegelanschnittspannungen. Für eine Parameterkombination wird also <u>eine</u> Darstellung erstellt und nicht wie bei den Spannungsverhältnissen mehrere.

5.4 Darstellung eines Lastminderungskoeffizienten

5.4.1 Definition des Lastminderungskoeffizienten

Der Lastminderungskoeffizient gibt an, um wieviel eine Last geändert werden kann, wenn die Bemessungsgröße einer neuen Vorschrift in Bezug zu derjenigen einer alten gesetzt wird. Es ist:

$$\frac{1}{\eta} = \frac{\frac{S_{vorh. neu}}{S_{zul. neu}}}{\frac{S_{vorh. alt}}{S_{zul. alt}}}$$

Da für die Widerstandsseite das Erreichen der Fließgrenze in der ungünstigsten Faser als Bemessungsgrenze (LF H: γ = 1.71, LF HZ: γ = 1.50) angenommen wird, läßt sich vereinfachend schreiben:

$$\frac{1}{\eta} = \frac{S_{vorh. neu}}{S_{vorh. alt}}$$

Dies geschieht in Analogie zu den Vergleichsrechnungen des DASt zu den Empfehlungen der Europäischen Konvention für Stahlbau (EKS) [3]. Dort ist allerdings $\eta = \frac{"Alt"}{"Neu"}$ benutzt.

5.4.2 Variablen

Hier werden die Ergebnisse nicht in Abhängigkeit von H, L, g und A dargestellt, sondern allgemeingültig in Abhängigkeit von $\alpha = \frac{Verkehrslast}{Eigengewicht + Verkehrslast}$ und

 $\beta = \frac{Zusatzlast}{Hauptlast + Zusatzlast} .$

Um also Ergebnisse miteinander vergleichen zu können, müssen die Anteile aus der Zusatzlast \dot{Z} und aus der Verkehrslast P jeweils für sich bekannt sein. Die Schneelast beim Vergleich der Rahmenspannungen entspricht hier der Verkehrslast P, d.h. wenn man bei den Rahmenspannungen das Dachhauteigengewicht g variiert, ändert sich hier das Verhältnis α .

5.4.3 Interpretation der Verlaufs von $\frac{1}{n}$

In den Diagrammen läßt sich ablesen, wie eine Last bei Anwendung der neuen Vorschrift gegenüber der alten geändert werden kann oder wie auf der Widerstandsseite die Widerstände geändert werden können.

Wenn hier $\frac{1}{n} = \frac{Neu}{Alt} = \frac{GruSiBau}{LF H/HZ}$ über l liegt, müssen die Lasten bzw. die Lastfaktoren der neuen Vorschriften entsprechend dem errechneten Verhältnis abgemindert werden, wenn man gleiche Bemessungsergebnisse erzielen möchte. Wenn $\frac{1}{n}$ unter l liegt, können die Lasten bzw. Lastfaktoren gesteigert werden.

5.4.4 Vergleich mit den Rahmenspannungsdarstellungen

Die Darstellungsweise nach Siebke entsprechend den Vergleichsrechnungen des DASt zu den Empfehlungen des EKS ist allgemeiner als die konkrete Berechnung mit den Rahmenspan-

nungen, aber die Eingangswerte inform der Auswirkungen infolge Hauptlast, Zusatzlast, Verkehrslast und Eigengewicht müssen bekannt sein, wenn man konkrete Konstruktionen untersuchen will. Um also die Darstellungen der Verhältnisse der Rahmenspannungen mit den Darstellungen nach Siebke vergleichen zu können, müssen die Schnittkräfte bzw. Spannungen, resultierend aus den einzelnen Lasten, für sich getrennt an den einzelnen Querschnitten berechnet werden. Es lassen sich also nicht Einflüsse aus Th. II. O. oder Vorimperfektion verfolgen, da sich diese nur bei Belastung durch alle Lasten am ganzen System auswirken. Damit man die Diagramme mit den Lastminderungskoeffizienten anwenden kann, genügt es nicht, die Lastgrößen in α und β in Beziehung zu setzen, da sie unterschiedlich gerichtet sind: Aus den ermittelten Schnittkräften bzw. Spannungen werden die Werte $\alpha = \frac{P}{G+P}$ und $\beta = \frac{Z}{H+Z}$ errechnet.

5.4.5 Herleitung des Lastminderungskoeffizienten

Unterschiedliche Parameter lassen unterschiedliche Kombinationen maßgebend werden. Beim Wechsel von einer zur anderen Regel ergeben sich wie bei den Rahmenspannungsdarstellungen Knicke, die daraus resultieren, daß die maximalen Bemessungsgrößen infolge einer anderen Kombination auftreten.

Daß unterschiedliche Kombinationen maßgebend werden, läßt sich auch an der Zahlenangabe erkennen, die den Kurven beigedruckt ist und die das maßgebliche $\frac{1}{\eta}$ (i = 1, 2, 3, 4) angibt.

$$\alpha = \frac{P}{G+P}$$
 $\beta = \frac{Z}{H+Z}$ $\delta = \frac{\gamma_{HZ}}{\gamma_{H}}$

	ß	≦ 1 - δ	β > 1 - δ			
	$\alpha > \frac{\beta}{1-\beta}$ $\equiv P > Z$	$\alpha \leq \frac{\beta}{1-\beta} = P \leq Z$	$\alpha > \frac{\beta}{1-\beta}$ $= P > Z$	$\alpha \leq \frac{\beta}{1-\beta} = P < Z$		
maßgebend	$\frac{1}{n_1}$	$\frac{1}{n_2}$	$\frac{1}{n_3}$	$\frac{1}{n_4}$		

Wenn in der neuen Kombinationsregel bei P ein anderer Fraktilwert einzusetzen ist, ist P mit dem Faktor Fra zu multiplizieren. Er ergibt sich z.B. bei GruSiBau für Schnee, wo die 99 %-Fraktile anzusetzen ist, zu

$$Fra = \frac{S (99 \ \text{\$-Fr.})}{S (95 \ \text{\$-Fr.})} = \frac{0.99 \ [kN/m^2]}{0.75 \ [kN/m^2]} = 1.32$$

Ausführlich werden die Lastminderungskoeffizienten $\frac{1}{n_i}$ in Anlage 2 hergeleitet.

$$\alpha = \frac{P}{G+P}$$

$$\beta = \frac{Z}{N+Z}$$

$$\delta = \frac{\gamma_{HZ}}{\gamma_{H}}$$
Fra = $\frac{S (99 \ \text{\%-Fraktile})}{S (95 \ \text{\%-Fraktile})}$

$\alpha \gtrsim \frac{\beta}{(1-\beta)}$ Fra	\equiv Fra · P \gtrless Z	β ≥ 1 - δ	i	<u>1</u> n
$\alpha > \frac{\beta}{(1-\beta)}$ Fra	≡ Fra • P > Z	β≦1-δ	1	$\frac{(1-\beta)[(1-\alpha)+\operatorname{Fra} \cdot \alpha]+\psi_{02} \cdot \beta}{\frac{\gamma_{H}}{\gamma}(1-\beta)}$
$\alpha \leq \frac{\beta}{(1-\beta)}$ Fra	= Fra • p ≦ Z	β≦ι-δ	2	$\frac{(1-\beta)[(1-\alpha)+\operatorname{Fra}\cdot\psi_{02}\cdot\alpha]+\beta}{\frac{\gamma_{HZ}}{\gamma}(1-\beta)}$
$\alpha > \frac{\beta}{(1-\beta)Fra}$	Ξ Fra • P > Z	β > 1 - δ	3	$\frac{(1-\beta)[(1-\alpha)+\operatorname{Fra}\cdot\alpha]+\psi_{0,2}\cdot\beta}{\frac{\gamma_{HZ}}{\gamma}}$
$\alpha \leq \frac{\beta}{(1-\beta)Fra}$	Ξ Fra · P > Z	β > 1 - δ	4	$\frac{(1-\beta)[(1-\alpha)+\alpha\cdot\operatorname{Fra}\cdot\psi_{02}]+\beta}{\frac{\gamma_{HZ}}{\gamma}}$

6. Vergleich GruSiBau / gültige Vorschriften (LFH/HZ)

Die Grundlagen der Vergleiche sind in Kapitel 5 dargestellt. Hier werden zunächst die Bemessungsergebnisse mittels der Rahmenspannungen verglichen, dann mittels der Darstellung des Lastminderungskoeffizienten. Dabei werden die Schnittkräfte nach der Theorie I. Ordnung ohne Vorimperfektion berechnet, wie es bei der Stahlbauindustrie gängige Praxis ist. In Kap. 6.3 werden die Knicke analysiert, in Kap. 6.4 wird untersucht, wie sich die Anwendung der Theorie II. Ordnung und das Ansetzen einer Vorimperfektion bei den Spannungen aus Biegung und Normalkraft bemerkbar macht. Das Ansetzen/ Nichtansetzen einer abhebenden Windlast wirkt sich bei der Bemessung ebenfalls stark aus. In Kap. 6.5 wird untersucht, wie sich eine Berücksichtigung der Dachneigung auswirkt, in Kap. 6.6 die Auswirkungen einer Einspannung der Stiele.

6.1 Gegenüberstellung mittels Rahmenspannungen

An Zweigelenkrahmen mit konstanten Profilen werden die Bemessungsergebnisse in Form von Schnittspannungen miteinander verglichen. Dabei ergeben sich Diagramme der folgenden Art, dargestellt in Bild 6.1:

Bild 6.1: Verhältnisse der Rahmenspannungen für Riegelmitte und Riegelanschnitt

6.1.1 Bezugswert

Die gültigen deutschen Vorschriften mit LFH/HZ, kurz als "D" bezeichnet, werden als Bezugswert zugrundegelegt. Dieser Wert ergibt sich also immer zu l. Denn hier interessieren ja nicht die absoluten Schnittgrößen, sondern nur die Verhältnisse der Schnittgrößen infolge verschiedener BEmessungsvorschriften zueinander. GruSiBau schwankt bei der Darstellung in Bild 6.1 zwischen 0,95 und 1,05 und wird gestrichelt dargestellt.

6.1.2 Berechnungsweise

Für die Berechnung nach beiden Bemessungsvorschriften wird in Kap. 6.1 und 6.2 die Theorie I. Ordnung ohne Vorimperfektion angewandt.

6.1.3 Bemessungskonzepte

Die Bemessungsregeln lauten noch einmal in Kürze:

Einwirkungsseite:

Widerstandsseite:

LFH/HZ (zur Zeit gültige Regeln): 1.71 (G + S) 1.71 (G + W)

1.50 (G + S + W)

S = 0.75 [kN/m²]

6.1.4 Erläuterung der Kurven

Die Wellen und Knicke bei der Darstellung der Verhältnisse in Abhängigkeit von der Spannweite sind so zu deuten: Mit zunehmender Spannweite ist in Bild 6.2 für Riegelanschnitt

Bild 6.2

bei 10 [m] beginnend bei einer Höhe von 8 [m] bei GruSiBau zunächst γ_F (G + W + 0.7 S*) maßgebend, bei den gültigen Regeln LFHZ; GruSiBau nimmt dabei ab bis ~ 12 [m] Spannweite. Dann wird bei GruSiBau γ_F (G + S* + 0.7 W) maßgebend, GruSiBau steigt von da ab an, bis bei D LFH maßgebend wird (~ bei 20 [m] Spannweite). Wenn auch bei GruSiBau γ_F (G + S*) maßgebend wird, bleibt das Spannungsverhältnis $\frac{\sigma}{\sigma_B}$ konstant. In der Analyse der Knicke wird im einzelnen dargestellt, welche Spannungen die einzelnen Kombinationen erzeugen und wann welche Kombinationsregel maßgebend ist. Die Verhältnisse für die Stielanschnitte werden nicht gesondert dargestellt, da sie denen für den Riegelanschnitt entsprechen (Abweichungen < 1 %).

6.1.5 Darstellung der Spannungsverhältnisse

In Abhängigkeit von den Parametern Höhe H, Spannweite L, Luchhauteigengewicht g und Binderabstand A werden die Spannungsverhältnisse $\frac{\sigma}{\sigma_{\rm B}} = \frac{\sigma_{\rm GruSiBau}}{\sigma_{\rm LFH/HZ}}$ dargestellt. Es wurden die Querschnitte Riegelmitte^{LFH/HZ} und Riegelanschnitt betrachtet und in Bild 6.3 und 6.4 dargestellt.

$g = 1.00 [KN/m^2]$	6 6 	G 1 .0 1 .	G G G G G G G G G G G G G G		
$g = 0.75 [KN/m^2]$		6 6 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 1.0 6 1.0 6 1.0 6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
$g = 0.50 [KN/m^2]$		β β 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 - - - 0 1.0 - - - 0 3 - - - 0 8 - - - - 1 - - - - 8 - - - - 9 - - - - 1 - - - - 8 - - - - 1 - - - - 8 - - - - 1 - - - - 9 - - - - 1 - - - - 1 - - - -		
$g = 0.25 [KN/m^2]$	6 9 1.0 9 1.10	G G <	6 1. 1 1.		
	H H E E	H (m) H	[≝] 8 ⊪ Ⅲ 2		
Bild 6.3: $\frac{\sigma}{\sigma_{B}} = \frac{\text{GruSiBau}}{\text{LF H/HZ}} \frac{\gamma_{F} = 1.43}{\gamma_{H} = 1.70} \frac{\text{s} = 0.99 \text{ kN/m}^{2}}{\gamma_{HZ} = 1.50 \text{ s} = 0.75 \text{ kN/m}^{2}}$ Riegelmitte					

6.4

6.1.6 Auswertung der Rahmenspannungsverhältnisse

6.1.6.1 Riegelmitte

Unabhängig von der Höhe des Rahmens sinken die Verhältnisse ^oGruSiBau ^oGruSiBau ^oD Schnee keinen Anteil an der Auflast hat, also nur Eigengewicht und Verkehrslast, die mit gleichen Faktoren in diesem Fall belegt wären, würde sich ein Verhältnis von

$$\frac{\sigma_{\rm GruSiBau}}{\sigma_{\rm D}} = \frac{1.43}{1.71} = 0.84$$

einstellen. Bei einem Eigengewicht von 0,3 $[kN/m^2]$, wie es im Hallenbau üblich ist, stellt sich ein Verhältnis von

$$\frac{\sigma_{\rm GruSiBau}}{\sigma_{\rm D}} \simeq 1,00$$

ein. GruSiBau würde hier also im Bemessungsergebnis keinen Unterschied zu den gültigen Regeln liefern.

6.1.6.2 Riegelanschnitt

Anders sieht es hier aus, da abhängig von der Parameterkombination unterschiedliche Kombinationsregeln maßgebend sind. Die Maßgeblichkeiten sind im Kapitel "Analyse der Knicke" näher erläutert. Insgesamt läßt sich sagen, daß GruSiBau und die gültigen Regeln mit ihren Bemessungsergebnissen nicht weit voneinander entfernt liegen.

Eine Gewichtsoptimierung für den Vergleich GruSiBau/gültige Regeln (LFH/HZ) (D) zeigt, daß die Verhältnisse der Rahmengewichte bei allen Parameterkombinationen nur wenige % (< 3 %) voneinander abweichen. Wegen der geringen Ausschläge sind die Verhältnisse hier nicht dargestellt.

Die Knicke resultieren aus der unterschiedlichen Maßgeblichkeit verschiedener Bemessungsregeln. Die Kurvenverläufe machen deutlich, wo durch die Umstellung der Bemessungsregeln auf GruSiBau Änderungen im Bemessungsergebnis eintreten würden. Liegt $\frac{1}{n}$ oder $\frac{\sigma}{\sigma_B}$ über 1, so muß die Widerstandsseite nach den neuen Regeln verstärkt oder die Einwirkungsseite verringert werden. Der Wert 1 (D) entspricht den Spannungen resultierend aus dem größeren der beiden Lastfälle LFH und LFHZ. Liegt $\frac{1}{n}$ oder $\frac{\sigma}{\sigma_B}$ unter 1, so erlauben die neuen Regeln eine Verringerung ^B der Widerstandsseite oder eine Erhöhung der Einwirkungsseite.

6.2 <u>Gegenüberstellung mittels des Lastminderungskoeffi</u>zienten $\frac{1}{\eta} = \frac{\text{GruSiBau}}{D}$

6.2.1 Darstellung des Lastminderungskoeffizienten $\frac{1}{n}$ analog $\frac{6.1}{1}$

Eine Einführung in die Handhabung des Lastminderungskoeffizienten ist in Kapitel 5.4 gegeben. Wie in 6.1 wird hier mit der 99%-Fraktile für Schnee gearbeitet, d.h. die Verkehrslast P, die den Schnee in diesem speziellen Fall darstellt, ist mit einem Faktor im Verhältnis der Vergößerung zu multiplizieren. Der Faktor beträgt hier

$$\frac{0,99 \ [kN/m^2]}{0,75 \ [kN/m^2]} = \frac{99 \ \text{\&-Fraktile}}{95 \ \text{\&-Fraktile}} = 1,32.$$
 Bei

GruSiBau wird also mit einer um 32% vergrößerten Schneelast = Verkehrslast gegenüber den gültigen Regeln gearbeitet. Entsprechend der Aufstellung der vier Lastminderungskoeffizienten $\frac{1}{n_i}$ ergeben sich in Abhängigkeit von β Diagramme der folgenden Art. Die Ziffern auf den Kurven geben dabei an, welches $\frac{1}{n_i}$ (i = 1, 2, 3, 4) entsprechend der Herleitung maßgebend ist. Dabei wird als Verkehrslast die 99 %-Fraktile der Schneelast angesetzt. Der Lastminderungskoeffizient $\frac{1}{\eta}$ wird als Funktion von $\alpha = \frac{P}{G+P}$ und $\beta = \frac{Z}{H+Z}$ in Bild 6.5 und 6.6 dargestellt. Die Herleitung von $\frac{1}{\eta}$ ist in Kap. 5.4 und in der Anlage A2 zu finden.

Um das Verstehen der Diagramme mit dem Lastminderungskoeffizienten zu erleichtern, wird im folgenden ein Vergleich zwischen den Rahmenspannungsdarstellungen und der Darstellung des Lastminderungskoeffizienten $\frac{1}{n}$ durchgeführt.

 $\alpha = \frac{P}{G+P}$ $\beta = \frac{Z}{H+Z}$ $P \stackrel{?}{=} S (99 \ \text{\ensuremath{\$}-Fraktile})$ $S = 0,99 \ [kN/m^2]$

Bild 6.6:
$$\frac{1}{\eta} = f(\beta)$$

6.2.2 <u>Vergleich mittels Darstellung des Lastmin-</u> derungskoeffizienten / Rahmenspannungen

6.2.2.1 Allgemeine Erläuterungen

Die eine Darstellung läßt sich in die andere überführen durch Umrechnung der Parameter. Es ergeben sich dabei dieselben Ordinatenwerte. Dazu ist es nötig, die Spannungen aus dem LFZ allein zu berechnen, um das Verhältnis $\beta = \frac{Z}{H+Z}$ berechnen zu können. Bei einem Zweigelenkrahmen haben die Schnittkräfte in Riegelmitte bei Ansatz der Windlasten auf das Dach entgegengesetzte Vorzeichen wie die aus dem LFHZ. Wenn dabei β negativ wird, heißt dies, daß nicht mehr LFHZ, sondern LFH maßgebend wird. β wird hier zur Ablesung vernünftiger Werte gleich Null gesetzt.

Im folgenden nun sind für bestimmte ausgewählte Parameterkombinationen die Werte α und β berechnet und die entsprechenden Grafiken der Darstellung des Lastminderungskoeffizienten $\frac{1}{\eta}$ und der Rahmenspannungsdarstellungen $\frac{\sigma}{\sigma_{p}}$ aufgelistet.

Abhängig von der Größe der Parameter α , β , γ , $\dot{\gamma}_{\rm H}$, $\gamma_{\rm HZ}$ und von der Größe des $\psi_{0,2}$ -Wertes ergibt sich der Lastminderungskoeffizient unterschiedlich. Die Knicke resultieren wie bei den Rahmenspannungsdarstellungen aus Änderungen der Maßgeblichkeit einer Kombinationsregel: Wenn P > Z d.h. $\alpha > \beta/(1-\beta)$ ist, dann gilt $\frac{1}{\eta_1}$ (siehe Herleitung in Kapitel 5.3 bzw. Anhang 2). In diesem Falle wird eine "1" in die Kurve gedruckt. In den Herleitungen von $\frac{1}{\eta_1}$ ist noch der Korrekturfaktor Fra für die erhöhte Fraktile für Schnee enthalten. Wenn P < Z d.h. $\alpha < \beta/(1-\beta)$, dann ist η_2 maßgebend. η_1 , η_2 gilt für $\beta \le 1 - \delta$, d.h. $\beta = \frac{Z}{G+P+Z} \le 1 - \frac{Y_{\rm HZ}}{\dot{\gamma}_{\rm H}} = 1 - \delta$. Für $\beta > 1 - \delta$ gilt folgendes: Wenn P > Z ist, gilt η_3 , wenn P < Z, dann η_4 .

Um die Lastminderungskoeffizientendarstellungen mit denen der Rahmenspannungen vergleichen zu können, sind in den folgenden Tabellen die Werte α und β für die verschiedenen Spannweiten, Höhen, Dachhauteigengewichte und Binderabstände umgerechnet. Mit einem Ansteigen von β geht eine Abnahme an Spannweite bei gleicher Höhe einher. Die Ziffern auf den Kurven $\frac{1}{n_i}$ geben an, welches $\frac{1}{n_i}$ (i = 1, 2, 3, 4) maßgebend ist. Es wird nach Theorie I.

gerechnet. Bei GruSiBau wird zunächst mit der 99 %-Fraktile für Schnee gearbeitet, d.h. Fra = 1,32; dann in 6.2.4 wird der Lastminderungskoeffizient mit Fra = 1,00 dargestellt, d.h. er ist allgemeingültig ablesbar.

koeffizient /	Rahm	ensp	annung	<u>en</u> <u>Grus</u> E	$\frac{iBau \ s \ = \ 0,99 \ [kN/m^2]}{s \ = \ 0,75 \ [kN/m^2]}$		
1.2 ^{1/} ⁿ ,				g = 0	,25 [kN/m ²]		
1.1 1.0 .9 C1 = .62 .65 .56 .71	+ +			$\alpha = \frac{P}{G+P}$ $\beta = \frac{Z}{H+Z}$			
$\gamma_{HZ} = 1.50$.'ε .'s Ψο2 s	1.0 70 99[]	β KN/m2]	Bild	$6.7: \frac{1}{\eta} = f(\beta) \\ \alpha = 0.62, 0.65 \\ 0.68, 0.71$		
Umrechnung der Span-	Н	L	α	β			
nungen in α - und β - Werte Riegelanschnitt $g = 0.25 [kN/m^2]$ $\frac{1}{n}$ und $\frac{\sigma}{\sigma}$ ergeben sich übereinstimmend, wenn für H, L und g bei $\frac{\sigma}{\sigma_B}$ die entsprechenden	6	10 15 20 25 10 15 20 25	0.71 0.68 0.65 0.62 0.71 0.68 0.65 0.62	0.154 0 0 0 0 0 0 0 0 0.429 0.148 0 0	$ \begin{array}{c} $		
Werte α und β bei $\frac{1}{\eta}$ angesetzt werden. α					H = 6[m] g =0.25(KN/m2) A =5.8(m) Risgel schnitt		
und βwerden aus den Spannungen für kon- krete Systeme er- rechnet	8	10 15 20 25	0.71 0.68 0.65 0.62	0.627 0.334 0.143 0.030	$ \begin{array}{c} $		
	Bil	d 6.	$8: \frac{\sigma}{\sigma_{B}}$; g = ().25 [kN/m ²]		

6.2.2.2 Gegenüberstellung der Darstellungen Lastminderungs-

6.12

Umrechnung der Spannungen infolge Lastfall HZ, Z, P, G+P in α - und β -Werte für den Riegelanschnitt

$$g = 0.50 [kN/m^2]$$

$\alpha = \frac{P}{G+P}$ $\alpha = \frac{P}{G+P}$ $\beta = \frac{2}{H+Z}$ Bild 6.1 Bild 6.1 Umrechnung der Span- nungen in α - und β - Werte Riegelanschnitt $q = 1.00 [kN/m^{2}]$ $\beta = 1.00 [kN/m^{2}]$ $q = 1.00 [kN/m^{2}]$	$g = 1.00 [kN/m^2]$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\beta: \frac{1}{2} = f(\beta)$			
Umrechnung der Span- nungen in α - und β - Werte H L α β Riegelanschnitt 4 10 0.41 0.097 g = 1.00 [kN/m ²] 20 0.39 0 6 10 0.41 0.308	α = 0.38, 0.41			
nungen in α - und β - Werte Riegelanschnitt $g = 1.00 \ [kN/m^2]$ $6 \ 10 \ 0.41 \ 0.097$ $15 \ 0.40 \ 0$ $20 \ 0.39 \ 0$ $25 \ 0.38 \ 0$ $15 \ 0.40 \ 0.094$ $10 \ 0.41 \ 0.308$ $15 \ 0.40 \ 0.094$ $20 \ 0.39 \ 0.004$ $15 \ 0.40 \ 0.094$ $20 \ 0.39 \ 0.004$ $15 \ 0.40 \ 0.094$ $20 \ 0.39 \ 0.004$ $10 \ 0.39 \ 0.004$				
Riegelanschnitt 4 10 0.41 0.097 $g = 1.00 [kN/m^2]$ 6 10 0.41 0.308 15 0.40 0 20 0.39 0 25 0.38 0 6 10 0.41 0.308 15 0.40 0.094 20 0.39 0 				
$g = 1.00 [kN/m2]$ $20 0.39 0$ $25 0.38 0$ $30 \frac{10}{25} 0.38 0$ $40 \frac{10}{25} 0.38 0$ $15 0.40 0.094$ $20 0.39 0.004$ $25 0.38 0$ $30 \frac{10}{25} 0.38 0$				
6 10 0.41 0.308 15 0.40 0.094 20 0.39 0.004 25 0.38 0				
6 10 0.41 0.308 15 0.40 0.094 20 0.39 0.004 25 0.38 0				
++8.	D 			
	18 - 1.00[KH/m2] A -5.0(m) - 6(m) g -1.00[KH/m2] A -5.0(m) - 990 Lanschnitt			
8 10 0.41 0.499 15 0.40 0.239 20 0.39 0.091 25 0.38 0				
H Ri Ri	- 8(m) g =1.00(KN/m2) A =5.0(m) agelanachnitt			

6.2.3 <u>Auswertung aus der Darstellung des Lastminderungs-</u> koeffizienten (P = Schnee)

Auch hier gilt das für die Rahmen gesagte in Kap. 6.1.6: Auswertung Rahmenspannungsverhältnisse. Darüber hinaus ist die Darstellung des Lastminderungskoeffizienten allgemeingültig. Für Verhältnisse $\beta = 0$ ($\beta = \frac{Z^2}{H+Z}$), wie sie im Hochbau vorkommen, schwanken die Verhältnisse zwischen 0,84 ($\alpha = 0$) ($\alpha = 0 \stackrel{\circ}{=} P = 0$) und 1,1 ($\alpha = 1$) ($\alpha = 1 \stackrel{\circ}{=} G = 0$). Dabei gilt diese Darstellung, wenn als Verkehrslast Schnee auftritt, der mit dem 99 %-Fraktilwert anzusetzen ist.

6.2.4 <u>Darstellung des Lastminderungskoeffizienten ohne Er-</u> höhung der Fraktile

Hier wird eine beliebige Last als Verkehrslast angesetzt, z.B. die 95 %-Fraktile der Schneelast, so daß Fra $\hat{=}$ Fraktilfaktor = 1. Die Lasten, auch die Schneelast, werden hierbei also mit den gleichen Größen angesetzt wie bei den derzeitig gültigen Regeln. In den Bildern 6.15 und 6.16 ist $\frac{1}{\eta}$ als Funktion von α und von β aufgetragen.

 $\alpha = \frac{P}{G+P}$ $\beta = \frac{Z}{H+Z}$

Bild 6.15: $\frac{1}{\eta} = f(\alpha)$

Bild 6.16: $\frac{1}{\eta} = f(\beta)$ Lastminderungskoeffizient für allgemeine Belastung

Schnee ist in den beiden vorstehenden Diagrammen als 95 %-Fraktile mit s = 0.75 [kN/m²] angesetzt; d.h. die auftretenden Lasten sind bei beiden Bemessungsvorschriften gleich groß. Mit diesen Diagrammen können also auch die Auswirkungen der GruSiBau-Regeln an anderen Bauwerken abgelesen werden, wo keine Erhöhung der Fraktilwerte gefordert wird.

6.3 <u>Analyse der Knicke bei den Darstellungen der Rahmen-</u> <u>spannungen infolge LFH/HZ/GruSiBau</u> (analog anwendbar bei der Darstellung des Lastminderungskoeffizienten)

6.3.1 Problem der Knicke

Bei dem Vergleich der Spannungen infolge der gültigen Bemessungsregeln mit GruSiBau treten bei der Auftragung der Spannungsverhältnisse als Funktion der Spannweite L Knicke auf (siehe Bild 6.17 Riegelanschnitt). Dies resultiert daraus, daß bei unterschiedlichen Spannweiten unterschiedliche Kombinationen der Lasten maßgebend sind.

Bild 6.17: $\frac{\sigma}{\sigma_{\rm B}}$ für H = 8 m, g = 0.25 [kN/m²]

6.3.2 Vorgehensweise zur Erklärung

Bei Darstellung nicht nur der maßgebenden Lastfälle, wie das in den Diagrammen der Fall ist, sondern aller Spannungen infolge aller Belastungskombinationen bei Bezug auf eine Spannung eines bestimmten, nicht wechselnden Lastfalls wird deutlich, daß jeweils unterschiedliche Belastungskombinationen maßgebend sind. Hierbei werden also die Spannungen nicht mehr auf die maximale Kombination der Lastfälle H und HZ bezogen, sondern grundsätzlich auf LFH. Dadurch verlaufen die Kurven monoton.

6.3.3 Bezeichnung der Lastkombinationen

Die folgende Tabelle 6.1 gibt eine Übersicht über die verwendeten Symbole und Belastungsvorschriften.

Symbol	Belastungs- vorschrift	Υ	Kombinations- regel		Frakt	Sch ile	nnee s[kN/m ²]
-	LFH/HZ (DIN 18800.1/ 4114)	1.71	Ϋ́H	(G+S)	95	Qio	0.75
Z	11	1.50	Υ _{HZ}	(G+S+W)	95	00	0.75
G	GruSiBau	1.43	۲ _F	(G+S)	99	010	0.99
GS	GruSiBau	1.43	- ۳	(G+S+0.7 W	99	olo	0.99
GW	GruSíBau	1.43	Υ _F	(G+W+0.7 S	99	010	0.99

Tabelle 6.1: Kennzeichnung der Kombinationsregeln

6.3.4 Aufstellung der Spannungsverhältnisse

Der Lastfall H ist konstant zu l gesetzt. Auf ihn werden die anderen Kombinationen mit ihren entsprechenden Spannungen bezogen. Bei Anwendung der Belastungsregeln auf Zweigelenkrahmen mit den ausgewiesenen Parametern ergeben sich die aufgeführten Spannungsverhältnisse, d.h. die Spannungen, die sich bei den Belastungen Z, G, GS und GW ergeben, werden durch die Spannungen des Lastfalls H an der jeweiligen Querschnittsstelle dividiert.

Die Diagramme mit den Knicken ergeben sich aus denen mit den monotonen Kurvenverläufen bei Darstellung aller Lastfälle dadurch, daß man unter den Kombinationen einer Belastungsvorschrift diejenige auswählt, welche die maximale Spannung an der jeweiligen Querschnittsstelle ergibt. Diese werden dann auf die größere Kombination von LFH oder LFHZ bezogen. In Riegelmitte ist LFH von LFH/HZ maximal. Beim Riegel-/ Stielanschnitt sind die Kombinationen, worauf bezogen wird, unterschiedlich. Bei größeren Spannweiten ist LFH maßgebend, bei kleineren Spannweiten LFHZ.

In der linken Spalte entspricht $\sigma_{\rm B}^{}$ also LFH, in der rechten Spalte dem maßgebenden Lastfall von LFH zw. LFHZ.

6.3.5 <u>Gegenüberstellung der Diagramme mit allen Kombi-</u> nationen und mit den maximalen

Aus der folgenden Auflistung der Diagramme in Bild 6.18 ist ersichtlich, welche Kombinationsregel bei welcher Parameterkombination maßgebend ist.

Bild 6.18: Gegenüberstellung der Diagramme mit allen Lastkombinationen und mit den maximalen, $g = 0.25 [kN/m^2]$

Zwischen 10 und 11 [m] Spannweite ist GS für GruSiBau und Z für D maßgebend. Dann kommt ein Knick durch LFZ/HZ, weil LFH maßgebend wird. Beim Wechsel von GS zu G ist nur ein schwacher Knick feststellbar, weil sich GS und G spitzwinklig schneiden.

Für H = 6 und 8 [m] Höhe werden die Riegelmittenkurven nicht gesondert dargestellt, da sie der für H = 4 [m] entsprechen.

Für die Parameter H = 6 [m] und g = $0.25 [kN/m^2]$ lassen sich folgende Maßgeblichkeiten feststellen: Bis 15 [m] Spannweite ist LFHZ maßgebend, darüber LFH. Bei GruSiBau gibt es drei Kombinationsfälle: Bis ~ 10 [m] Spannweite ist GW maßgebend, von 10 [m] bis 20 [m] Spannweite GS und über 20 [m] Spannweite G.

66 Bild 6.19: $q = 0.50 [KN/m^2]$ 1.0 Ð _ - --- --- ---GruSiBau G 1.2 . 9 1.1 1.0 . 8 . 9-GSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGS .84 . 7 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z .74 - - GruSi Bau GWGHGWGH()WGWGWGWGWGWGWGWGWGWGWGWGWGW - D i0 + + + 15 + + + 20 + + + 25 H = 4(m) g =0.50(KN/m2) R = 5(m) Riegelmitte JF = 1.43 . 6 + 25 4 . e + 20 15 12 H = 4[m] g =0.50[KN/m2] A =5.0[m] Riegelmitte 4 60 n. 1.0 6 6 8 GruSiBau ı.2 . 9 دة رجع 1.1 GW Z . 8 i.0+ . 9 . 8 . 7 - GruSiBau . 7 ~ D 25 0 L 25 4 .6+ . 6 2,8 28 10 15 10 15 H = 4[m] g =0.50[KN/m2] A = 5[m] H = 4[m] g =0.50[KN/m2] R =5.0[m] Riegelanschnitt Riegelanschnitt yr = 1.43 6 6 6 8 1.5 1.0 ĩ _1.4 SiBau 35 1.34 Ğ5 . 9 1.2 GWQE 1.1. . 8 1.0 <u>____</u> . 9-. 8 -. 7 - GruSiBau . 7 - D +-25-0 L . 6 -. 6 1 20 112 15 10 15 20 H = S[m] = 9.50[KN/m2] R = S[m]Riegelanschnitt · $\gamma_{p} = 1.43$ H = 6[m] g =0.50[KN/m2] A =5.0[m] Riegelanschnitt 604 1.8-Z 6 es z 1.5 i.Ø 0 GruSiBau Ga z cs 1.4 1.3 GNOÈS . 9 1.2 ଝ ŝ 1.1 GS GS GS GH GH 2 GGHGG GH . 8 1.8-6 4 G G G Z Z Z Z 6 6 6 6 6 G G

.7

. e +

10

GW_{GWGW}GWGWGW

20

15 H = 8[m] g =0.50[KN/m2] A = 5[m]

Riegelanschnitt $\gamma_F = 1.43$

25 × L

.94

. 9

.7

.64

10

6.21

+ 25 P L

- - GruSiBau

28

- 13

H = 8[m] g =0.50[KN/m2] A =5.0[m] Riegelanschnitt

15

6.3.6 Auswertung aus der Darstellung aller Lastkombinationen

Es wird dargestellt, woraus die Knicke bei den Kurven $\frac{\sigma_{GruSiBau}}{\sigma_{D}}$ resultieren. Bei Bezug auf einen Lastfall, hier LFH, ver- D laufen die Kurven für jeden anderen Lastfall monoton. Bei unterschiedlichen Parameterkombinationen sind unterschiedliche Kombinationsregeln maßgebend. Da wo sich die Bemessungsergebnisse infolge verschiedener Kombinationsregeln eines Bemessungskonzeptes kreuzen (z.B. γ_{F} (G+S), γ_{F} (G+S+0.7 W), γ_{F} (G+W+0.7 S), entstehen Knicke. Bei den Rahmenspannungsdarstellungen wird auf das größere Bemessungsergebnis von LFH bzw. LFH2 bezogen. Deshalb tritt in der GruSiBau-Kurve auch da ein Knick auf, wo sich LFH und LFHZ schneiden.

6.4 <u>Untersuchung über die Auswirkungen der Berücksichti-</u> gung von verschiedenen Berechnungsweisen

6.4.1 Theorie II. Ordnung

In der DIN 4114 wird als Ersatz für den Stabilitätsnachweis der Nachweis nach Theorie II. Ordnung genannt, wenn nicht Biegedrillknicken maßgebend ist. Dabei sind folgende Faktoren anzusetzen: $v_{\rm Kr} = 1.71$ für LFH, $v_{\rm Kr} = 1.50$ für LFHZ. Die Vergrößerung der Spannungen infolge der Berechnung nach Theorie II. Ordnung liegt selbst bei hohen, schmalen Rahmen mit leichter Dacheindeckung (H = 8 [m], L = 10 [m], g = 0.25 [kN/m²]) weit unter 10 %. Es ist zu klären, welche Berechnungsart bei D welcher bei GruSiBau gegenüberzustellen wäre.

6.4.2 Vorimperfektion

Entsprechend den GruSiBau-Regeln (Kap. 6) ist eine Vorimperfektion ψ als additives Sicherheitselement δ_f zu berücksichtigen. In den Gegenüberstellungen ist $\psi = \frac{1}{200}$ angesetzt. 6.4.3 Windlasten abhebend / nicht abhebend

Bei den Windlasten ergeben sich Probleme beim Ansatz der abhebenden Anteile, wenn sie bei den Schnittgrößen am Gesamtbauwerk günstig wirken. In der Praxis wird dieser Anteil sowohl berücksichtigt als auch nicht berücksichtigt, wenn die Belastungen für das Gesamtbauwerk aufgestellt werden. Die Gruppe der Hallenbauer, die die abhebenden Windkräfte berücksichtigt, will die physikalischen Gegebenheiten ausnutzen und die Lasten so ansetzen, wie sie auftreten und wie sie in den Fachnormen vorgesehen sind; die Gruppe der Hallenbauer, die die abhebenden Windkräfte nicht berücksichtigt, will "sichere" Bauwerke bauen und deshalb günstige Lasten, die das Bauwerk schwächen würden, nicht ansetzen. Die Alternative Wind abhebend / nicht abhebend wirkt sich beträchtlich aus. Für Details ist der Lastfall Wind abhebend immer zu berücksichtigen, wenn z.B. Anschlüsse und Befestigungen zu bemessen sind.

6.4.4 Windlasten bei GruSiBau

Für die veränderlichen Lasten wird beim Tragfähigkeitsnachweis bei ungünstiger Wirkung auf das Gesamtsystem ein $\gamma_{fQ} = 1,3$ und bei günstiger Wirkung ein $\gamma_{fQ} = 0.0$ angesetzt. Es ist nun die Frage, ob der Wind als eine Last betrachtet wird oder die verschiedenen Anteile getrennt betrachtet werden können mit der Auswirkung, daß man die horizontal wirkenden ungünstigen Windlasten mit $\gamma_{fQ} = 1.3$ ansetzt und die vertikal abhebenden günstigen mit $\gamma_{fQ} = 0.0$, d.h. sie werden nicht angesetzt.

6.4.5 Darstellungsweise

In den folgenden Darstellungen (Bild 6.22 - 6.27) wird an Zweigelenkrahmen verglichen, wie sich eine Berechnung nach Theorie II. Ordnung, die Berücksichtigung einer Vorimper-

fektion und die Berechnung mit abhebenden / nicht abhebenden Windlasten bemerkbar macht. Es sind jeweils die Verhältnisse $\frac{GruSiBau}{\sigma_p}$ aufgetragen. In der Kopfspalte 'zw. -reihe ist angegeben, ob nach Theorie I. Ordnung oder Theorie II. Ordnung gerechnet wird, ob eine Vorimperfektion berücksichtigt wird und ob die Windlasten auf das Dach als abhebend / nicht abhebend angesetzt werden. Die Angabe über dem Bruchstrich bezieht sich auf GruSiBau, die Angabe darunter auf die gültigen Vorschriften (LFH/HZ). Die Vergleiche werden angestellt für die Parameter H = 4, 6, 8 [m], g = 0,25, 1,00 [kN/m²].

8

.Ι.Ο.+Vorimp.ψ=1 Th.Ι.Ο.				C
$\frac{\text{Th.I.O.}}{\text{Th.I.O.+Vorimp.}\psi = \frac{1}{200}}$	R	e		
Th. II. O. Th. II. O.	1.		L	
GruSiBau LF H/HZ	Wind abheb. Wind abheb.	Wind abheb. Wind nícht abheb.	Wind nícht <u>abheb.</u> Wind abheb.	Wind nicht abheb. Wind nicht abheb.

$\frac{\text{Th.I.0.+Vorimp.}\psi = \frac{1}{200}}{\text{Th.I.0.}}$			1.0 	1. 0 1. 0 1
<u>Th.I.O.</u> Th.I.O.+Vorimp.ψ=200	nearson	SZ _		
Th.II.0. Th.II.0.	0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	naisen 	matana	Me
GruSiBau LF H/HZ	Wind abheb. Wind abheb.	Wind abheb. Wind nicht abheb.	Wind nicht abheb. Wind abheb.	Wind nicht abheb. Wind nicht abheb.

$\frac{\text{Th.I.0.+Vorimp.}\psi=\frac{1}{200}}{\text{Th.I.0.}}$	1.0 	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1
Th.I.O. Th.I.O.+Vorimp.ψ=1 200	0		S	
Th.II.0. Th.II.0.	1.0 	1.		
GruSiBau LF H/HZ	Wind abheb. Wind abheb.	Wind abheb. Wind nicht abheb.	Wind nicht <u>abheb.</u> Wind abheb.	Wind nicht abheb. Wind nicht abheb.

6.4.6 <u>Auswertung aus der Untersuchung über Theorie</u> <u>II. Ordnung / Vorimperfektion / abhebende Wind-</u> lasten

Aus den gegenübergestellten Kurvenverläufen ergeben sich die im folgenden erläuterten Unterschiede.

6.4.6.1 Theorie II. Ordnung

Bei einer Berechnung nach Theorie II. Ordnung ändern sich die Bemessungsergebnisse bei sonst gleichen Lastannahmen und -faktoren fast vernachlässigbar klein. Die Spannungsänderungen am Riegel- bzw. Stielanschnitt betragen \sim 5 % bei hohen schmalen Rahmen.

6.4.6.2 Vorimperfektion

Selbst die relativ groß angesetzte Vorimperfektion $\psi = 1/200$ für die elastische Berechnung macht sich kaum bemerkbar: Bei hohen, schmalen Rahmen mit leichter, aber auch mit schwerer Dacheindeckung beträgt die Vergrößerung der Spannungen infolge einer Vorimperfektion 2 %, in allen anderen Fällen weniger.

6.4.6.3 Dachwindlasten abhebend / nicht abhebend

Bei schmalen Rahmen betragen die Unterschiede der Bemessungswerte 10 % und mehr. Die Auswirkungen sind also nicht vernachlässigbar und bedürfen einer Klärung dergestalt, wann nach welcher Theorie gerechnet wird.

6.5 Auswirkungen der Dachneigung

Bei Berücksichtigung der Dachneigung mit dem Winkel α ergeben sich die folgenden Diagramme. Es sind nur geringe Abweichungen inform eines flacheren Abfallens des "Berges" gegenüber den Diagrammen in Kap. 6.1.5 festzustellen. Die Gipfel der "Berge" werden nach rechts verschoben mit ansteigender Dachneigung α , aber die Maxima verändern ihre absolute Größe nicht.

6.6 Auswirkungen eines Einspannens der Stiele

Gegenüber Kap. 6.1 ist hier folgende Änderung vorgenommen: Anstatt einer gelenkigen Lagerung der Stiele liegt hier eine Einspannung vor. Dies hat zur Folge, daß die Einflüsse der einzelnen Lasten in einem anderen Verhältnis zueinander stehen. Die Spannungsverhältnisse am Stielfuß sehen so aus wie die für den Riegelanschnitt in Kap. 6.1.5 . Für den Riegelanschnitt sind die Kurven verschoben.

1/m ²]	55-& (m)	usi8nu 1 25 ∑ 1 _				
g = 1.00 [KN			0.61 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.1			
$g = 0.75 [KN/m^2]$	$\frac{\overline{\beta}}{100} = \frac{1}{100} = \frac$	G G G G G G G G G G G G	6 			
$g = 0.50 [KN/m^2]$		6 1.0 3 4 <				
$g = 0.25 [KN/m^2]$	G G G G G G G G G G G G G G	6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.8 - - - - - - 0 1.8 - - - - - - - 0 1.8 - - - 0 - - - 0 1.8 - - 0 - - - 0 1.8 - - 0 - - - 1.9 - 0 - - -			
	H = 4 (m)	H = 6 [m]	[m] 8 = H			
Bild	Bild 6.30: $\frac{\sigma}{\sigma_{e}} = \frac{\text{GruSiBau } \gamma_{F} = 1.43 \text{ s} = 0.99 \text{ kN/m}^{2}}{1.23 \text{ s} = 0.99 \text{ kN/m}^{2}}$					
${}^{\circ}B$ LF H/HZ γ_{H} = 1.70 γ_{HZ} = 1.50 s = 0.75 kN/m ⁻ Stiel eingespannt Riegelmitte						

$g = 1.00 [KN/m^2]$			9 0 1 9 0 1 9 0 1 0 1 9 0 0 1 0 9 0 0 1 0 1 0 1			
$g = 0.75 [KN/m^2]$	6 	$\begin{bmatrix} \overline{6} \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	<u>6</u> <u>6</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u>			
$g = 0.50 [KN/m^2]$		6. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	$\frac{1}{100} = \frac{1}{100} = \frac{1}$			
$g = 0.25 [KN/m^2]$		<u> </u>	² β ² · · · · · · · · · · · · · · · · · · ·			
	H = 4 [m]	H = 6 [m]	H = 8 [m]			
Bild	Bild 6.31: $\frac{\sigma}{r} = \frac{\text{GruSiBau}}{r} \gamma_{F} = 1.43 \text{ s} = 0.99 \text{ kN/m}^{2}$					
ہا کے اس	^o B LF H/HZ $\gamma_{\rm H} = 1.70 \ \gamma_{\rm HZ} = 1.50 \ \rm s = 0.75 \ \rm kN/m^2$					
Stiel eingespannt Riegelanschnitt						

7. Anwendung der GruSiBau-Regeln auf gebaute Systeme

7.1 Vorgehensweise

Im folgenden Kapitel sind Zweigelenkrahmen entsprechend den gültigen Bemessungsregeln und GruSiBau nachgerechnet und verglichen.

7.2 Herkunft der Systeme mit Bemessungsangaben

Die Systeme sind Statiken entnommen, die uns von Stahlbaufirmen zur Verfügung gestellt wurden. Die Bemessung wurde durchweg nach Theorie I. Ordnung mit LFH/HZ unter Benutzung von $\sigma_{zul H} = 14 \ [kN/cm^2]$ und $\sigma_{zul HZ} = 16 \ [kN/cm^2]$ vorgenommen.

7.3 Angaben zu GruSiBau

Bei GruSiBau wurde mit Theorie II. Ordnung unter Berücksichtigung einer Vorimperfektion von $\psi = 1/200$ gerechnet. Entsprechend sind auch die aufgeführten Diagramme ausgelegt.

	Bei- spiel	н	g	L	, A	a	G لا	en L ^D
	÷	Traufen- höhe	Dacheigen- gewicht/ Grundfläche				Stahlgewich des Rahmens	Stahlgewich auf einen Meter Halle länge bezoge
		[m]	[KN/m ²]	(m)	[m]	[°]	[kg]	[kg/m]
14.6 [m]	2	7.00	0.34	14.60	6.00	10	1560	261
	3	4.30	0.30	14.45	5.00	10	908	182
Γŝ	5	4.26	0:30	14.70	6.00	11	835	139
	-							
L=19.4[m]	1	5.50	0.55	19.60	5.00	4	2690	537
	4	4.40	0.30	18.80	5.00	11	1510	301
	6	5.90	0.38	19.40	7.00	3	1690	241
	7	4.82	0.33	19.75	6.00	5	1404	234
	8	5.62	0.37	19.33	5.00	2	1221	244

7.5 Beispiele

In der Spalte "abgelesen", jeweils rechts unten auf den folgenden acht Seiten, ist das Spannungsverhältnis entsprechend den Diagrammen aufgeführt, die wie die von Kapitel 6.1.5 bestimmt wurden, nur daß hier mit Vorimperfektion und Theorie II. Ordnung unter Anwendung der entsprechenden Parameter gearbeitet wurde. In der Spalte "berechnet" sind die wirklichen Systeme mit Vouten und Keilstützen berücksichtigt.

Es wird H = 7 [m] angesetzt, da eine Attika aufgesetzt ist.

7.6 Folgerung

Bei der Gegenüberstellung von in der Praxis ausgeführten Zweigelenkrahmen zeigt sich, daß die Vereinfachung gerechtfertigt war, die Zweigelenkrahmen ohne Dachneigung und aus gleichbleibenden Profilen bestehend anzunehmen. Die Abweichungen jeweils um einige % erklären sich durch die Dachneigung und aus der Verwendung anderer bzw. variabler Profile. Die in Kap. 6 aufgezeigten Tendenzen bleiben gültig.

Die plastische Berechnung wurde mit der Fließzonentheorie, aber ohne Berücksichtigung des Biegedrillknickens durchgeführt. Der letztere Einfluß wurde vernachlässigt, um die Parameterzahl (z.B. Festhaltungen in Verschiebe- und Verdrehrichtung) klein zu halten und weil das Ergebnis zeigt, daß die Anwendung der Plastizitätstheorie bei den elastisch optimierten Hallen praktisch keine Reserven mobilisieren kann. Das Werkstoffverhalten ist als ideal elastisch/ideal plastisch angesetzt.

Bei der plastischen Berechnung zeigt sich, daß die Tragreserven stark vom System abhängig sind. Bei Systemen mit konstanten Profilen tritt Versagen bei einer Steigerung der γ -fachen Lasten um 30 - 40 % ein. Bei Systemen mit Vouten und Keilstützen, die gut optimiert sind, betragen die Reserven nur wenige Prozent, d.h. Versagen tritt bei nur geringer Überschreitung der γ -fachen Lasten ein. 8. "GruSiBau - modifiziert"

8.1 Veranlassung zu modifizierten GruSiBau-Regeln

Ein Nachteil der GruSiBau-Regeln in der bisherigen Form liegt darin, daß andere Fraktilwerte als bisher bei den veränderlichen Lasten mit einem Variationskoeffizient > 0.1 zu gebrauchen wären.

8.2 Vorgehen bei der Bemessung

Bei "GruSiBau - modifiziert" bleibt für die Tragfähigkeit die Kombinationsregel γ_F (G + Q_1 + $\Sigma \quad \Psi_{0i} \quad Q_i$) gültig. Allerdings sollen die Lasten von LFH/HZ verwendet werden, so daß andere Faktoren γ_F verwendet werden müssen. Die Faktoren werden zwischen 1.5 und 1.7 variiert, um das Niveau festzustellen, bei welchem sich gleiche Bemessungsergebnisse wie bei D (LFH/HZ) ergeben. Das Bemessungskonzept lautet in Kürze (hier zu beachtende Kombinationsregeln):

 $\begin{array}{l} \gamma_{\rm F} & ({\rm G} \ + \ {\rm S} \) \\ \gamma_{\rm F} & ({\rm G} \ + \ {\rm S} \ + \ 0.7 \ {\rm W} \) \\ \gamma_{\rm F} & ({\rm G} \ + \ {\rm W} \ + \ 0.7 \ {\rm S} \) \end{array}$

mit $\gamma_{\rm F}$ > 1.43, da s = 0.75 [kN/m²] (95 %-Fraktile).

8.3 Gegenüberstellungen

8.3.1 Vorgehensweise

Nacheinander werden die "GruSiBau - modifiziert"-Vorschläge den gültigen Bemessungsregeln und dann den bisherigen GruSiBau-Vorschlägen gegenübergestellt. Dabei wird zunächst jeweils die Rahmenspannungsdarstellung und dann die Darstellung des Lastminderungskoeffizienten gebracht.

8.3.2 <u>Gegenüberstellung Rahmenspannungen</u> <u>"GruSiBau - modifiziert"</u> gültige Regeln (LFH/HZ)

Für die Riegelmitte ergeben sich konstante Verhältnisse für alle Spannweiten, Höhen und Dachhauteigengewichte.

Bild 8.1: Riegelmitte

Bild 8.2: Riegelanschnitt
8.3.3 <u>Gegenüberstellung Lastminderungskoeffizient</u> $\frac{1}{\eta} = \frac{"GruSiBau - modifiziert"}{gültige Regeln (LFH/HZ)}$

8.3.3.1 Vergleich mit Rahmenspannungen

Auf den folgenden vier Seiten sind zunächst die Darstellungen des Lastminderungskoeffizienten zusammen mit Rahmenspannungsdarstellungen aufgeführt. Für die Parameter Höhe H = 4, 6, 8 [m], Spannweite L = 10, 15, 20, 25 [m] und Dachhauteigengewicht g = 0.25, 0.50, 0.75 und $1 [kN/m^2]$ sind die α - und β -Werte ausgerechnet, für welche dann die Spannungsverhältnisse $\frac{\sigma}{\sigma_B}$ und die Lastminderungskoeffizienten $\frac{1}{\eta}$ übereinstimmen. Geringe Abweichungen treten dadurch auf, daß bei der Berechnung von α das Bindereigengewicht vernachlässigt ist.

"GruSiBau - modifiziert LFH/HZ	<u> </u>			$g = 0.75 [kN/m^2]$
1.2 ^{1.1/Eta}		- Gan	nma= 1.70 nma= 1.85	$\alpha = \frac{P}{G+P}$ $\beta = \frac{Z}{H+Z}$
1.8 3.9 3.9 3.9 4.5.5.7 GammaH = 1.71 Hipha = .50 GammaHZ = 1.50	.8.9 Ps:82 S	Gan Gan 1.8 78 75[hma= 1.50 hma= 1.55 hma= 1.50 Beta KN∕m2]	Bild 8.7: $\frac{1}{\eta} = f(\beta); \alpha = 0,50$ $\alpha = \frac{0,75}{0,75+0,75}$
Umrechnung der Span-	Н	L	в	
nungen in α- und β- Werte Riegelanschnitt	4	10 15 20	0.110 0 0	1.0
		25	0	.7
	6	10 15 20 25	0.340 0.107 0.004 0	1.0 1.0 3.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
	8	10 15 20 25	0.536 0.257 0.103 0.022	1.8 3.3 .3 .3 .3 .3 .3 .3 .3 .3
	Bil	.d 8	.8: <u>σ</u> ;	$g = 0.75 [kN/m^2]$

- -

8.3.3.2 <u>Darstellung des Lastminderungskoeffizienten für</u> <u>"GruSiBau - modifiziert"</u> LFH/HZ

Die Darstellungen auf den folgenden drei Seiten (Bild 8.11 bis 8.13) bringen $\frac{1}{\eta}$ als Funktion von α mit Variationen von β und $\frac{1}{\eta}$ als Funktion von β mit Variationen von α . Die Lastansätze sind wie bei den gültigen deutschen Regeln. Um gleiche Bemessungsergebnisse zu erzielen, muß $\frac{1}{\eta}$ bei 1 liegen. Liegt $\frac{1}{\eta}$ über 1, müssen die Lasten nach der neuen Vorschrift "GruSiBau - modifiziert" gesenkt werden; liegt $\frac{1}{\eta}$ unter 1, können die Lasten gesteigert werden.

الما المرادية العقادي الدالية المحادية العوار المهماتهم ومطارعهم وموضوع

. .

and the second second

Bild 8.12: $\frac{1}{\eta} = f(\alpha)$ <u>GruSiBau (modifiziert)</u> D (LF H/HZ) mehrere β pro Grafik

ein y pro Grafik

. .

.....

Bild 8.14:
$$\frac{1}{\eta} = f(\beta)$$

GruSiBau (modifiziert)
S (LF H/HZ)
mehrere α pro Grafik
ein γ pro Grafik

8.3.4 <u>Gegenüberstellung Rahmenspannungen</u> <u>GruSiBau (modifiziert)</u> GruSiBau

Bei GruSiBau wird entsprechend den Ausführungen in Kap. 4 $\gamma_{\rm F}$ = 1.43 und für Schnee eine Fraktile von 99 % verwendet, bei GruSiBau (modifiziert) wird $\gamma_{\rm F}$ zwischen 1.50 und 1.70 variiert, für Schnee wird die 95 %-Fraktile angesetzt.

Um den direkten Bezug von den modifizierten GruSiBau-Regeln zu den GruSiBau-Regeln zu ermöglichen, wird in der folgenden Darstellung (Bild 8.15 bis 8.16) nicht auf die Spannungen resultierend aus D (LFH/HZ) wie in Kap. 4 bezogen, sondern auf die Spannungen resultierend aus den GruSiBau-Regeln ($\gamma_{\rm T}$ = 1.43, s = 0.99 [kN/m²]).

Aufl:	istung	der	Regeln

-	GruSiBau:	$\gamma_{F} (G + Q_{1} + \sum_{i>1} \psi_{0i} \cdot Q_{i})$
	hier:	1.43 (G + S) 1.43 (G + S + 0.7 W) $s = 0.99 [kN/m^2]$ 1.43 (G + W + 0.7 S) $\hat{=} 99 $ %-Fraktile
	GruSiBau: (modifizier	$\gamma_{F} (G + Q_{1} + \Sigma \psi_{0i} \cdot Q_{i})$ $\Rightarrow \qquad i > 1$
	hier:	$\begin{array}{ll} \gamma_{\rm F} \ ({\rm G} + {\rm S}) \\ \gamma_{\rm F} \ ({\rm G} + {\rm S} + 0.7 {\rm W}) \\ \gamma_{\rm F} \ ({\rm G} + {\rm W} + 0.7 {\rm S}) \end{array} \qquad $
		$\gamma_F = 1.50, 1.55, 1.60, 1.65, 1.70$

$g = 1.00 [KN/m^2]$	3.1 1 1 1 3.1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gennael 1. 5 		2	$\begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} = \begin{bmatrix} z_{2} \\ z_{3} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} \begin{bmatrix} z_{2} \\ z_{1} \end{bmatrix} \begin{bmatrix} z_{2} \\ z_{2} \end{bmatrix} \begin{bmatrix} z_{2} \\ z_{3} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} \begin{bmatrix} z_{2} \\ z_{3} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} \begin{bmatrix} z_{2} \\ z_{3} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} \begin{bmatrix} z_{2} \\ z_{3} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{1} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{3} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{1} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{1} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{1} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{1} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} \begin{bmatrix} z_{2} $
$g = 0.75 [KN/m^2]$	C. 1 + search C	$= \frac{1}{10^{10} - 10^{10} - 10^{10} + 10^{10}$	1.0	(2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	2. 1 - t work ()	2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
$g = 0.50 [KN/m^2]$	C	$\sum_{i=0}^{n} \frac{1}{10^{n-1}} = \frac{1}{10^{$	1. 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	3. 2. (1) (2. (1) (2. (1) (2. (2) (2.	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	
$g = 0.25 [KN/m^2]$	0.1 1.1 2.1 3.1 4.1 3.1 4.1 5.1 4.1 5.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6		5. 1 e veneto		0, (Min 1994) 0, (Min 1994) 1, (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
	H = 4 [m]		H = 6 [m]		H = 8 (m)	
Bild	d 8.16: σ gelanschnitt B		GruSiBau GruSiBau	(modifizie) s = 0.99	s = 0.75 kN/m^2	kN/m ²

¢

8.3.5.1 Fraktilfaktor

In der Aufstellung von $\frac{1}{\eta}$ wird hier entsprechend Kap. 6 für den Fraktilfaktor, der mit Fra bezeichnet wird, Fra = $1,32 = \frac{0.99 [\text{kN/m}^2]}{0.75 [\text{kN/m}^2]}$ eingesetzt, da für Schnee, der bei Zweigelenkrahmen praktisch die Verkehrslast darstellt, die 99 %-Fraktile mit s = 0.99 [kN/m²] bei GruSiBau eingesetzt wird. Für "GruSiBau - modifiziert" wird s $\stackrel{<}{=}$ 0.75 [kN/m²] angesetzt, die in Deutschland am häufigsten anzutreffende Schneelast.

8.3.5.2 Maßgeblichkeit der Kombinationsregeln

"GruSiBau - modifiziert"	P> Z	P< Z	P< 2
GruSiBau	Fra.P>Z	Fra•P>Z	Fra•P <z< td=""></z<>
maßgeblich	1 n ₁	$\frac{1}{n_2}$	$\frac{1}{n_3}$

Es sind drei Fälle zu unterscheiden:

8.3.5.3 Auflistung der 3 Fälle

 $\frac{Fall l:}{P > Z}$

 $\frac{1}{\eta_1} = \frac{\gamma_F \mod (G + P + 0.7 \cdot Z)}{\gamma_F \operatorname{GruSiBau} (G + \operatorname{Fra} \cdot P + 0.7 \cdot Z)}$

$$\frac{\text{Fall 2:}}{P < Z}$$

$$\frac{1}{P_2} = \frac{\gamma_F \mod (G + Z + 0.7 P)}{\gamma_F \text{ GruSiBau} (G + Fra \cdot P + 0.7 Z)}$$
Fall 3:
$$\frac{1}{P_3} = \frac{\gamma_F \mod (G + Z + 0.7 P)}{\gamma_F \text{ GruSiBau} (G + Z + 0.7 P)}$$

Der Fall (P + Z) < P braucht nicht speziell behandelt zu werden: Er ist durch $\beta = 0$ abgedeckt. Die Herleitung ist in Anlage A3 gebracht.

.

Bild 8.18: $\frac{1}{\eta} = f(\alpha) =$ <u>GruSiBau (modifiziert)</u> <u>GruSiBau</u> mehrere β pro Grafik ein γ pro Grafik

Bild 8.20: $\frac{1}{\eta} = f(\beta) =$ <u>GruSiBau (modifiziert)</u> <u>GruSiBau</u> mehrere α pro Grafik ein γ pro Grafik

8.4 Auswertung aus der Untersuchung "GruSiBau - modifiziert"

Bei Annahme mittlerer Werte α und β ist als Vorschlag $\gamma_{\text{F"GruSiBau-modifiziert"}} = 1.6$ gerechtfertigt. Entsprechend den vorstehenden Diagrammen läßt sich ablesen, bei welcher Parameterkombination sich welche Abweichungen ergeben. Hierbei sind die Diagramme in Kap. 8.3.3.2 auch auf andere Konstruktionen als Zweigelenkrahmen allgemein anwendbar. Für gängige α und β läßt sich auch hier gute Übereinstimmung ablesen ($\alpha = 0 - 0.5$, $\beta = 0 - 0.5$). Die Abweichungen betragen nur wenige %.

teres a constituente que an encode and encode a constituent of the

9. Vergleich CEB-GruSiBau

9.1 Vorgehensweise

In diesem Kapitel werden die im CEB vorgeschlagenen Bemessungsregeln mit den GruSiBau-Regeln mittels der Rahmenspannungsdarstellungen und des Lastminderungskoeffizienten entsprechend Kap. 5 verglichen.

9.2 Kombinationsregeln

Allgemein lauten die vereinfachten Regeln für übliche Stockwerkrahmen:

CEB:	γg	• G + Y	αn Σ	Q _{ik}	Ŷġ	= 1,35	γq γq	=	1,50 1,35	für für	n=1 n≧ 2
GruSiBau:	Υ _F	(G+Q ₁ +	Σ ψ >1	' _i Q _i)	ŶF	= 1,43	Ψs Ψw	-	0,7 0,7	١	

Konkret lauten damit die zu untersuchenden Kombinationen:

CEB	Symbol	GruSiBau	Symbol
1,35 G + 1,50 S 1,35 G + 1,50 W 1,35 (G + S + W)	CS CW CB	l,43 (G + S) l,43 (G + W) l,43 (G + S + 0,7 W)/ l,43 (G + W + 0,7 S)	Gs Gw Sw/ Gw

9.3 Gegenüberstellung Rahmenspannungen

Es werden die jeweiligen Einwirkungen mittels der Rahmenspannungsvergleiche entsprechend Kap.5 analog dem nachfolgenden Schema verglichen, wobei auch hier berücksichtigt ist, ob die Windlast abhebend wirkt oder nicht, da dies gravierende Auswirkungen hat gerade da, wo nur Eigengewicht und Wind allein angreifen.

Vorhandene Einwirkungen	Symb CEB	oole GruSiBau	Wind	Bild
Eigengewicht G + Schnee S (W = O)	CS	Gs		9.1/9.2
Eigengewicht G + Wind W (S = O)	CW	Gw	abhebend	9.3/9.4
Eigengewicht G + Schnee S + Wind W	СВ	Gs, Gw, Sw	abhebend	9.5/9.6
Eigengewicht G + Wind W (S = O)	CW	Gw	nicht abhebend	9.7/9.8
Eigengewicht G + Schnee S + Wind W	СВ	Gs, Gw, Sw	nicht abhebend	9.9/9.10

$g = 1.00 [KN/m^2]$	ดินติม ปังหนังเป็นเดิมเดิมเดิมต่อเมืองเดิม ดีเหรือเกริม	 сисисисисисисисисисисисисиси. сисисисисисисиси. 	τ Φ	ζ.	.et 18+++++15+++++28+++++25-	H = 4(m] g = 1.006(KN/m2) F = 5(m) Riegelmitte CEB: Gamg= 1.35 Gamqi= i.50	פרפא מיניהנטינטינטינטינטינטינטינטינטינטינטינטינטינ	1.0 СИСИСИСИСИСИСИСИСИСИСИСИСИСИСИ		œ.	κ.	······································	H - G[m] g -1.90(KN/m2) A - 5(m) Riegelmitte CEB: Gamg- 1.35 Gamq]- 1.50	0.404.004.014.014.014.014.014.014.014.01	1.8 сисисисисисисисисисисисисисисиси	ē.	Ø,	2.	.et 18++++15++++20++++25	H - B(n) g -1.00(HN/m2) A - 5(m) Riegelmitte CEB; Gamg- I.35 Gamqi- I.50
$g = 0.75 [KN/m^2]$	ດິນດິນດີນຄູ່ມີແຕ່ດາດດິນເດີຍເດີຍເດີຍເດີຍເດີຍເດີຍເດີຍເດີຍເດີຍ	 сненсисисисисисисиси. иси иси иси 	2 0,	×.	.6	H = 4(m) g =0.75(kH/m2) H = 5(m) Riegelmitte CEB: Gamg= I.35 Gamqt= I.56	ດິສາດັນເດັນເດີນເດັ່ນເດັ່ນເດັ່ນເດິນເດັ່ນເດັ່ນເດັ່ນເດັ່ນເດັ່ນເດັ່ນເດັ່ນເດັ່	 сисисисисисисисисисисисисисисисиси 	م .	œ	N.	· · · · · · · · · · · · · · · · · · ·	H = 6(m) g =0.75(KH/M2) H = 5(m) Riegolmitte CEB: Gamg- 1.35 Gamqin 1.50	ດີສດີມາດີລາດີມາດີມາດີມາດີມາດີມາດີມາດີມາດີມາດີມາດີມ	1.8 сисисисисисисисисисисисисиси	¢;	œ,		.s	H B(m) g -0.75(KH/m2) A + 5(m) Riegelmitte CEBi Gemg- 1.35 Gamqi- 1.50
$g = 0.50 [KN/m^2]$	ნონონონონონონონონონონონონონო	 онсисненсисисисисисисисиси онсиснения 	e,	~	. 6 1 18 + + + + 15 + + + + 28 + + + + 25	H = 4[m] g =0.58[kH/m2] A = 5[m] Riegelmitte CEB: Gangr].35 Ganqim].50	ດແຮ້ນເຊິ່ມເປັນເຊິ່ມເປັນເຊັ່ນເປັນເຊັ່ນເຊັ່ນເຊັ່ນເຊັ່ນເຊັ່ນເຊັ່ນເຊັ່ນເຊັ	I. W CHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHC	σ.	8.		.6	H = 6(m) g =0.50(kH/m2) H = 5(m) Risgelmitte CEB: Geng= 1.33 Gennel- 1.50	້ານເວັດເດີນເດີນເດີນເດີນເດີນເວັດນີ້ແຫ່ວັນເດີນເວັດນີ້ແນດີນເດັນເ	и. В сисисисисисисисисисисисисиси	<i>6</i> .	æ.	~.	· · · · · · · · · · · · · · · · · · ·	H - B(m) g -0.50(kH/m2) A - 5(m) Riegelmitte (EB: Gemg-1.35 Gemqi-1.58
$g = 0.25 [KN/m^2]$	عني الم تان العالم	 Сисисисисисисисисисисисисиси) o		6	H + 4(m) g -0.25[KH/m2] A - 5(m] Pregelmitte CEB: Gang-1,35 Ganqi-1.50		1. 8 сисисисисисисисисисисисисиси	o.	8.	۴,	. 6 18 · · · · 15 · · · · 20 · · · · 25	H = 6(m) g .1.25(KI/m2) A = 5(m) Riegelmitte (_8: Gemg= 1.35 Gemq1= 1.50		1.0; сисисисисисисисисисисисисиси		ج.	č.	· · · · · · · · · · · · · · · · · · ·	H - 86m) g -0.25(KH/m2) A - 51m) Riegelmitte (EB: Geng- 1.35 Ganqi- 1.50
			H = 4 [m]						יי ב [^m] ייי	(m) o = 11							H = 8 [m]			
Bild	1 9.3 Gru	: Ri SiBa	ege au	Lmi ^Y M	tte 1	e Wi 1.0	ndla ^Y F	st =	ab) 1.4	neb 3	end	đ	S =	0						

$g = 1.00 [KN/m^2]$	а. с. с. с. с. с. с. с. с. с. с	1.8 Еменсисисисисисисисисисисисисиси 	1.0 - 64000.6464.660.60.60.60.60.60.60.60.60.60.60.60.60
$g = 0.75 [KN/m^2]$	1.0 G _G G _M	1.0 0.6 0.6 1.1 0.6 1.6 1.6 1.5	1.0 [] [] [] [] [] [] [] [] [] [] [] [] []
$g = 0.50 [KN/m^2]$	1.8 Сыстабила с по с п	1.8 649а6м646сносисисисисисисисисиси 649а6м646сносисисисисисисисисисисисисиси	1.89 Снедненскиоловие металовие силоноси силоноси силоноси
$g = 0.25 [KN/m^2]$	Э Стороди с с с с с с с с с с с с с с с с с с с	1.0	1.0 Сисиснененененененененененененененененене
	H = 4 [m]	H = 6 [m]	[m] = H
Bild	9.4: Riegelanschnitt	Windlast abhebend S	= 0
<u> </u>	GruSiBau Y _M = 1.0	$\gamma_{\rm F}$ = 1.43	
σв	CEB $\gamma_M = 1.0$	$\gamma_{\rm G} = 1.35 \gamma_{\rm Q1} = 1.50$	0

														•							
(KN/m	6101010	aged brokete				-33-	- 5[m] Gamq2- 1.35	નવેન ઉત્તરકારન	9¢8¢8¢8¢8					- 564] Gang2- 1.35	0 + () + () + () +	<u>ecasacaca</u>				£1	4 \$(m) Gema24 1.35
1.00	1923-14640	8080808080808				£2	JEN14242 H = - Gamg≈ 1.35		BOBOR(BOBOBO				8 <u>28</u>	(KH/m2) A Gang- 1,35	G*G*3+ G*G+G	CBCBCBCBCBCB				<u>87</u>	18(KN/m2) A Gamg- 1.35
- B	0-0-0-0-0-0-	104080808080				AL	i(m) g −í.00 ⊨imitta CERi	6+6+6+6+6	CBCBCBCBCBC					Štm] g −l.Ū eimitte CEB:	6+G+G+G+G+	CBCBCBCBCB				8 1	8Ca] g -1.0 jelmitte CEBr
		0.1	e	¢	¢.	<u>.</u>			0	6.	8	È.		ΙŘ		0.		÷	<u>`</u> .		I Č
/m ²]							'n							r							£
[KN	វាហ៊ុន ហ៊ុន ហ៊ុន	80.80 B(B				- <u>25</u>	- 5(m) Gamq2- 1.3	ele Quitele	BCBCBCBCB				52	- 5[m] Gama2- 1.3	de Gel Gel Gel Ge	CBCBCBCBCBCB				8	+ 5[m] Gamaz-1.
0.75	តែមិនសិនសិនសិ	(6(B(B(B(B(B))				92	Ktivaz] A . Nangn 1.35	JEGY GEGEGEG	າ ຍ ຸລູມຢູ່ອີນ				92	(KN/m2] A Gamy- 1.35	Gese sese	acadacaca				<u>07</u> 1	(KIL-#23 A Gemger 1.35
g =	da da da sistema	CBCBCBCBC				<u></u>) g -0.75(itte (EB) G	G1919191	ababababab				<u>9</u> 15	•) g =0.75 nitte CEBr ·	*6*6*6*6*	BICBCBCBC DCI					m) a -0.75 mrtt+ CEBr
		- GB	a,	œ	<u>``</u>	91-9- 9-	N - 41m Riegela	· -	6.1	¢.	6.	ć.	s	H - 5fe Riegale		5 -	م	¢.	¢.		н - 9f. Riegel
^m ²]																					
[KN/1	8 G8 G8 G8	ececiece				<u>5</u> 3	5[m] +mq2- 1.35	د (دد)، را ه	BCBCNLL				5 2	5{m] amq2~ 1.35	11 G 1 G 1 G 1	8080808					56m] 1.35
.50	55 G+ G+ G+ G+ G	perfection of the section of the sec				92	1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	ទីទ សិកហិត ហិត ហិត ហិ	08080808080				. 0?	4/m23 A = .	6+9+0+6+6+6	A PERCECE					1/42] fi - ng~ (.35 G
0 = 1	GEGEGEGEG	e po po po				- <u>8</u> -	g -0.501Kr 10 (EBr Gan	GrGannish	0.040.040.0				- 51	g -0.501kh te CEB: Gan	FGEGEGEG.	enenenene				<u> </u>	g -0.50(k/
	-0-10	1.0	 ه	Ŧ.	•	.el 18-	H = 4(m) Riegrimit		1.0 CBCE	ē.	-e	2	·e - 18-	(m) =		1.0 CBC	5.		2.	.e	11 - 81m] Riegetwi
n ²]																					
[KN/n	ري د ز و	aca.				7 4 52 •	32	1464	8080				- 52 -) 2+ 1.35	4.64.54	BC BC E				\$2	0 2- 1.35
.25	-6+6+6+6+6+	K betek BCBCB				. <u>50</u>) H - Stm 1.35 Grmq2	មនិន និន និន និន និន	AC PC PC PC				50	1,35 Gemy	1616165616	DECECETEC					2) A ∽ 51.∾ 3.35 6+∩q
0	1949 - 1 949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949	1090404141-					0.25(KH/m2 ER: Gamg-	17) XI 2643 Ku - Ku	ાં માં આ ગઢ તેથે તે						f. 46.46.47	BC PC PC BC BC					-8.251KN/m2 268: Gemg-
9		CPCPCPCF					- 4 [m] g - - ge 1 m f t t e C		Cababab Cababab					- 5 (m) g - egelmitte (-	o CBCBCBC	¢n	<u>e</u>	~	e 18	≈ 8(m) g. egelmitte (
	ٿيا م	-		 ?			±ά							Ξũ		:					τ ά
			= A [r							= 6 [n							= 8	2			
			ה ב	4						H							יי ד	4 4			
Bild	9.5:	Rj	Leg	el	mit	tte	e Wi	ndla	st a	abh	ebe	end	1				_		•		
	Gru:	SiB	au		Υ _M	=	1.0	Υ _F	= 1	. 43	3 t) = 	0	. 7	s =	0.99) k	N/n	n-		
Ъ	CI	ΞB			ΥM	=	1.0	Υ _G	= Υ	02	=	1.	35	S	= 0.	99]	cN/:	m²			

$g = 1.00 [KN/m^2]$	1.0 CBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCB 5SuSuSuGada 5SuSuSuGada 6. CBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCB 7	1.0 CEEBGeEEBS_SuSuSuSuSuSuSuSuSuSuSuSuSuSuSuSuSuSuS	1.0 Сисисисти Сисисти Сисисисти Сисисти Сисисисти Сисисти Сисисти Сисисти Сисисти С
$g = 0.75 [KN/m^2]$	1 0) Sustained a cardia cardia cardia cardia cardia cardia Sustained a cardia cardia cardia cardia cardia cardia Sustained a cardia	1.0 CECEBERCECRCECECECECECECECECECECECE .0 CECEBEREECECECECECECECECECECECECECECE .0 CECEBEREECECECECECECECECECECECECEE .0 CECEECECECECECECECECECECECECECEE .0 CECEECEECECECECECECECECECECECECEE .0 CECEECEECECECECECECECECECECECECEECEE .0 CECEECEECECECECECECECECECECECECECECEE .0 CECEECEECECECECECECECECECECECECECECECE	1.0 CBCBCBCBCBGBBBBBBCBCBCBCBCBCBCBCBCBCBCB
$g = 0.50 [KN/m^2]$	1.0) Second Contraction (1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	1.00 1.00 CECESSERVECTOR CECTOR CECTOR CECTOR CECTOR 5. 18 19 10 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10	1.0 CBCBCUCRCBCBGB68EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
$g = 0.25 [KN/m^2]$		1.0 CEREBERECECECECECECECECECECECE 1.0 CEREBERECECECECECECECECECECECE 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.0 CBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCB
	H = 4 [m]	H = 6 H	H = 8

Bild	9.6: Rieg	elanso	hnitt	Wi	ndlast	abhebend		
$\frac{\sigma}{\sigma_{\rm B}} =$	GruSiBau	Υ _M =	1.0	Υ _F	= 1.43	$\psi = 0.7$	s	$= 0.99 \text{ kN/m}^2$
	CEB	Υ _M =	1.0	Υ _G	= Y ₀₂	= 1.35 s		0.99 kN/m ²

$g = 1.00 [KN/m^2]$	1.0 Сисисисисисисисисисисисиси 6 сисисисисисисисисисисисиси .9 .0 10 .7 .6 10 .7 .6 .7 .6 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7	GuidenGuid BuidenG	1.8 сисистой и било со систе с по с п
$g = 0.75 [KN/m^2]$	6.46.0.60.0.60.0.60.0.60.0.60.0.60.0.60	GundunGundunGundunGundunGundunGundunGundunGundunGundunGundunGundunGundunGundunGundunGundunGundunGundunGundunGun 	1 0 GueuGuedueGuedueGuedueGuedueGuedueGue .9 .7 .6 .7 .6 .7 .6 .7 .6 .7 .6 .7 .6 .7 .6 .7 .5 .6 .7 .5 .6 .7 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
$g = 0.50 [KN/m^2]$	6. ностояновленостивности во сибеновление на сибеновление и сибеновление и сибеновление на сибено На сибеновление на сибенов	I в Gwourourourourourourourourourourourourou Gwourourourourourourourourourourou G Ib	GmCurGarGarGarGarGarGarGarGarGarGarGarGarGar
$g = 0.25 [KN/m^2]$	Gadescheineurenenenenenenenenenenen 1.0 CHENCHENENENENENENENENEN .	Сибивансиблибилбибибибибибибибибиби Сибивансиблибилбибибибибибибибибиби	GuüusGenGurGurGurGurGunGunGunGunGunGunGun 1.0 Сирсиссиснисиски силесилесилесинени -9 -9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
	H = 4 [m]	H = 6 [m]	H = 8 [m]
Bild $\frac{\sigma}{\sigma_{\rm B}}$	9.7: Riegelmitte Wir GruSiBau $\gamma_{M} = 1.0$ CEB $\gamma_{L} = 1.0$	ndlast nicht abhebend $\gamma_F = 1.43$ $\gamma_C = 1.35$ $\gamma_{C1} = 1.$	S = 0 50

٦

G				
$g = 1.00 [KN/m^2]$	1.0 Cuchenenenenenenenenenenen Chenenenenenenenenenenen .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	1.0 9.6 9.6 9.6 1.0 1.1 - 6 (а) 1.1 - 6 (а) 1.2 1.3 G angl - 1.50	1.0 GHEUGUGMEMERERENCIACINCIACINCIACIA .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	
$g = 0.75 [KN/m^2]$	1.8 Соссилисти Силана Силана Силана Силана С. С. С	1.0 Culture MCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCH	1.0 EHEHBULOULEHEMERERENCHCHCHCHCHCHCHCHCHCH 9 1.0 EHEHBULOULEHEMERERENCHCHCHCHCHCHCHCHCHCHCH 1.1 EHEH 0 -0.75[KHYma2] A - 5[m] 1.1 - 8[m] 0 -0.75[KHYma2] A - 5[m] 1.20 Ringelensch. CEB; Geng- 1.33 Gengl- 1.50	
$g = 0.50 [KN/m^2]$	 1.0 [[WG4 Guades Construction (1.56) . [] . []	1.0 [6]66/GuiGuiGuiGuiGuiGuiGuiGuiGuiGuiGuiGuiGuiG	1.00 сысыссысысысысысысысысысысыс .9 .0 .0 .10 .10 	
$g = 0.25 [KN/m^2]$	G G Cuouéménénénénénénénénénénénénénéné - 9 - 18 - 18 	1.0 Сискервисионемемененсионополоси .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	 אראראראראראראראראראראראראראראראראראראר	
	H = 4 [m]	H = 6 [m]	H = 8 [m]	
Bild 9.8: RiegeJanschnitt Windlast nicht abhebend S = O GruSiBau γ_{M} = 1.0 γ_{F} = 1.43				

 $\overline{\sigma_{B}} = \overline{CEB} \qquad \gamma_{M} = 1.0 \quad \gamma_{G} = 1.35 \quad \gamma_{Q1} = 1.50$

 $\frac{\sigma}{\sigma_{\rm B}} = \frac{{\rm GruSiBau}}{{\rm CEB}} \quad \frac{\gamma_{\rm M}}{\gamma_{\rm M}} = 1.0 \quad \gamma_{\rm F} = 1.43 \quad \psi = 0.7 \quad {\rm s} = 0.99 \ {\rm kN/m^2}}{\gamma_{\rm M}} = 1.0 \quad \gamma_{\rm G} = \gamma_{\rm Q2} = 1.35 \quad {\rm s} = 0.99 \ {\rm kN/m^2}}$

$g = 1.00 [KN/m^2]$	1.0 EeEBGarancecenence.sususususususususususususususususususu	H = 4(m) g =1.00(hN/m2) A = 5(m) Riegelensch. (EBi Gemg-1.35 Gemq2-1.35	I.e CBCBEEBBBBEREBEEBEEBEEBEEBEEBEEBEEBEEBEEBEE
$g = 0.75 [KN/m^2]$	1.e de Factus su s	11 - 4(m) g -0.75(KN/m2) A - 5(m) Riegelenech, CEB: Gamg- 1.35 Gamq2- 1.35	1.8 Ceccecececececececececececece . Ceccecececececececececece . Constant of the second of the seco
$g = 0.50 [KN/m^2]$	1.e. cebaĉes_s_s_s_susueseseseseseses .e. .a. .b. .b. .b. .b. .b. .b. .b. .b. .b	H = 4(m) g =0.50fkH'm2) R = 5(m) Riegelanich. (EB: Gamg= 1.35 ùamq2= 1.35	1.0 CBCECEREESESESESESESESESESESESESESESESES .0 CBCECEREESESESESESESESESESESESESESESESES .0 IS .0
$g = 0.25 [KN/m^2]$		11 - 4[m] g -0.25(XN/m2) A - 5[m] Riegelenech. CEB: Gemg- 1.35 Gemg2- 1.35	1.0 CBCBCBCBCBL_BG8006EBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBC
	H = 4 (m)		H = 6 [m] H = 8 [m]
Bild	9.10: Riegelanso	chnit	t Windlast nicht abhebend
	GruSiBau Y _M =	1.0	$\gamma_{\rm F} = 1.43 \ \psi = 0.7 \ {\rm s} = 0.99 \ {\rm kN/m^2}$
°В	CEB Y _M =	1.0	$\gamma_{G} = \gamma_{Q2} = 1.35 \ s = 0.99 \ kN/m^{2}$

9.4.1 Vorgehensweise

In diesem Kapitel werden mittels der Darstellung des Lastminderungskoeffizienten die GruSiBau-Regeln ($\gamma_F = 1.43$, s = 0.99 [kN/m²], 99 %-Fraktile) mit den vereinfachten CEB-Regeln verglichen. Der Lastminderungskoeffizient $\frac{1}{n}$ gibt an, wie sich abhängig von den Parametern die Bemessungsvorschriften zueinander verhalten: Wenn $\frac{1}{n}$ größer 1 ist, dann erlaubt CEB mit $\gamma_g = \gamma_{q2} = 1.35$, $\gamma_{q1} = 1.50$ eine günstigere Bemessung, wenn $\frac{1}{n}$ kleiner 1 ist, dann erlaubt GruSiBau kleinere Profile. In Anlage 4 sind die Formeln für $\frac{1}{n}$ hergeleitet. Für GruSiBau wird die 99 %-Fraktile für Schnee mit s = 0.99 [kN/m²] verwendet, für CEB ebenso. Das Vorhandensein von nur einer variablen Last bedeutet entweder $\beta = 0$ (1.35 G + 1.5 P) oder $\alpha = 0$ (1.35 G + 1.5 Z). Das Vorhandensein von zwei variablen Lasten bedeutet $\alpha \neq 0$ und $\beta \neq 0$.

9.4.2 Eine variable Last

Bild 9.7:
$$\frac{1}{\eta} = f(\alpha); \beta = 0$$

Bild 9.8: $\frac{1}{\eta} = f(\beta); \alpha = 0$

9.5 Auswertung GruSiBau/CEB

Die praktische Rechnung für Zweigelenkrahmen und die allgemeine mit dem Lastminderungskoeffizienten zeigt, daß für normale Parameterverhältnisse gute Übereinstimmung herscht, wobei allerdings betont werden muß, daß günstig wirkende variable Lasten nicht angesetzt werden, d.h. daß abhebender Wind in der Kombination nicht berücksichtigt wird. 10. Internationaler Vergleich D, F, B, NL, GruSiBau

10.1 Vorgehensweise

Die Bemessungsvorschriften der Niederlande (NL), Belgiens (B), Frankreichs (F) und GruSiBau werden mittels der Rahmenspannungsverhältnisse und der Gewichtsverhältnisse auf die gültigen deutschen Vorschriften (D) bezogen. Zunächst werden alle Verhältnisse in einer Grafik dargestellt, dann werden die Vorschriften von jedem Land für sich in Beziehung zu den deutschen Vorschriften gebracht. Dabei werden auch die Verhältnisse für die Variationen "Lasten deutsch/Faktoren ausländisch" und "Lasten ausländisch/Faktoren deutsch" gebracht, um zu verdeutlichen, welchen Einfluß die Faktoren und welchen die Lastansätze haben.

10.2 Rahmenspannungsdarstellungen

Wie zuvor werden Rahmen benutzt, die einen konstanten Querschnitt für Riegel und Stiel aufweisen. Die Darstellungen erfolgen für Riegelmitte und Riegelanschnitt; für den Stielanschnitt werden die Spannungsverhältnisse nicht dargestellt, da die Abweichungen gegenüber dem Riegelanschnitt < 1 % sind.

10.2.1 Erläuterung der Kurven

Als Abkürzungen für die Spannungen, die infolge der Vorschriften der einzelnen Staaten auftreten, werden verwendet:

- D $\hat{=}$ Bundesrepublik Deutschland
- $F \stackrel{\circ}{=} Frankreich$
- B = Belgien
- NL $\hat{=}$ Niederlande
Bei den Darstellungen der Riegelmitte und zum Teil (bei großen Spannweiten) des Riegelanschnittes liegen die Kurven von F und NL übereinander; deshalb sind dort die Symbole übereinandergedruckt.

10.2.2 Auftragung der Spannungsverhältnisse

In Bild 10.1 und 10.2 werden mittels der Rahmenspannungsdarstellungen die Bemessungsergebnisse für Riegelmitte und für Riegelanschnitt infolge der verschiedenen Bemessungsvorschriften miteinander verglichen.

Bild 10.1: Spannungsverhältnisse $\frac{\sigma}{\sigma_B} = \frac{F, B, NL, GruSiBau}{D}$ Riegelmitte g = 0.25, 0.50, 0.75, 1.00 kN/m²

Gegenüberstellung Rahmenspannungen D, F, B, Nl, GruSiBau

10.3 Gewichtsverhältnisse

In den folgenden Bildern 10. bis 10. werden die Verhältnisse der Rahmengewichte dargestellt. Der Weg zu den Darstellungen wurde in Kap. 5.3 aufgezeigt. Es werden die Gewichte der reinen Rahmenkonstruktionen verwendet; die Dachhauteigengewichte werden als äußerer Parameter für die Darstellungen angesetzt.

10.4 Analyse der Unterschiede für jedes Land einzeln

10.4.1 Vergleich Deutschland/Frankreich

10.4.1.1 Auswertung der Rahmenspannungsdarstellungen

10.4.1.1.1 Riegelmitte

In Riegelmitte unabhängig von Höhe und Spannweite stellen sich die Spannungen (F) bei ~ 70 % der Spannungen (D) ein. Dort ist für Frankreich die Kombinationsregel $\frac{3}{2}$ S_n + $\frac{4}{3}$ G maßgebend, für Deutschland 1.71 (G + S). Deshalb lassen sich für die Riegelmitten die Verhältnisse direkt aus den Lasten ableiten.

Beispiel

Binderabstand A = 5 [m], Dachhauteigengewicht g = 0,25/1 $[kN/m^2]$ Dachhauteigengewicht g = 0,25 $[kN/m^2]$

 $q_{F} = \frac{3}{2} \cdot 0,55 \cdot 5 + \frac{4}{3} (0,25 \cdot 5 + 0,307) = 6,20 [kN/m]$ $\uparrow \uparrow \uparrow \uparrow \uparrow$ $S_{n} \frac{\text{Binderab-}}{\text{stand A}} g \qquad \begin{array}{c} \text{Riegeleigen-} \\ \text{gewicht} \end{array}$

 $q_{D} = 1,71 ((0,75 + 0,25) \cdot 5 + 0,307) = 9,07 [kN/m]$

↑ ↑ ↑ S g Binderabstand A

 $\frac{q_F}{q_D} = \frac{6,20}{9,07} = 0,68 \stackrel{c}{=} \frac{\sigma}{\sigma_B} \text{ Riegelmitte}$ Dachhauteigengewicht g = 1,00 [kN/m²] $q_F = \frac{3}{2} \cdot 0,55 \cdot 5 + \frac{4}{3} (1 \cdot 5 + 0,422) = 11,35 [kN/m]$ $q_D = 1,71 ((0,75 + 1) \cdot 5 + 0,422) = 15,68 [kN/m]$ $\frac{q_F}{q_D} = \frac{11,35}{15,68} = 0,72 \stackrel{c}{=} \frac{\sigma}{\sigma_B} \text{ Riegelmitte}$

10.4.1.1.2 Riegelanschnitt

Am Riegelanschnitt ergeben sich andere Verhältnisse dadurch, daß bei geringen Spannweiten und großen Höhen die Lastfälle mit Wind maßgebend sind. Bei kleinen Verhältnissen $\frac{L}{H}$ beginnend, sinken die Spannungsverhältnisse bis $\frac{L}{H} = 2$ auf ein Minimum bei ~ 55 %. Von da ab steigen die Verhältnisse wieder an, bis $\frac{L}{H}$ = 2,5 erreicht ist, um dann mit dem Spannungsverhältnis konstant weiterzulaufen, welches sich auch in Riegelmitte ergibt, d.h. bei L/H > 2,5 sind die Lastfälle mit Eigengewicht und Schnee ohne Wind maßgebend. Am Riegelanschnitt sind also bei unterschiedlichen Spannweiten unterschiedliche Kombinationsregeln maßgebend. Bei H = 6 [m] z.B. läßt sich folgende Entwicklung beobachten: Bei 10 [m] Spannweite ist bei D LFHZ und bei F Sre + W + G maßgebend. Zwischen 12 [m] und 15 [m] Spannweite ist bei D noch LFHZ maßgebend, aber bei F schon $\frac{3}{2}$ S_n + $\frac{4}{3}$ G. Ab 16 [m] Spannweite sind dann bei beiden Staaten die Lastkombinationen mit Eigengewicht und Schnee ohne Wind maßgebend.

10.4.1.2 Gewichtsvergleiche D/F

Beim Vergleich der Rahmengewichte zwischen Deutschland und Frankreich ist ein affiner Verlauf zum Mittel der Spannungen von Riegelmitte und Riegelanschnitt festzustellen. Das Minimum liegt bei ~ 75 %, das gleichbleibende Niveau bei ~ 80 %.

- 10.4.2 Variation von Faktoren und Belastung
- 10.4.2.1 Rahmenspannungsdarstellung

Bedeutung der verwendeten Abkürzungen:

and the second second

$g = 1.00 [KN/m^2]$	GB 	GB GB 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} $
$g = 0.75 [KN/m^2]$	6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{\frac{2}{9}}{\frac{9}{9}}$	2 3 4 5 5 6 6 7 7 1 1 1 1 1 1 1 1
$g = 0.50 [KN/m^2]$	GB B B B B B B B B B B B B B		6 6 9 9 9 9 9 9 9 9 9 9 9 9 9
$g = 0.25 [KN/m^2]$	6 6 1 1 1 1 1 1 1 1 1 1 1 1 1		$\frac{6}{6}$
	H = 4 [m]	[ш] 9 = Н	H = 8 [m]

Bild 10.4: F, LdF, Lf Riegelmitte

.

Gegenüberstellung Rahmenspannungen D - F Lasten D/Faktoren F(LdF) Lasten F/Faktoren D(Lf)

Gegenüberstellung Rahmenspannungen D - F Lasten D/Faktoren F(LdF) Lasten F/Faktoren D(Lf)

10.11

10.4.2.2 Gewichtsverhältnisse

Wie in 10.4.2.1 werden hier die Verhältnisse F/D, LdF/D und Lf/D dargestellt, allerdings über die Verhältnisse der Rahmengewichte.

Dachhauteigengewicht g = 0.25 kN/m^2

10.4.2.3 <u>Auswertung der Variation</u> "Lasten deutsch/Faktoren französisch" "Lasten französisch/Faktoren deutsch"

10.4.2.3.1 Riegelmitte

Dort sind grundsätzlich die Lastfallkombinationen aus Eigengewicht und Schnee ohne Wind maßgeblich.

Wie sich die Spannungen in Feldmitte für die Parameter H = 4 und L = 10 m entwickeln, ist in der folgenden Tabelle unter Abhängigkeit von g dargestellt.

g	σ _D	σ _F	$\frac{\sigma_{\rm F}}{\sigma_{\rm D}}$	^o ldf	$\frac{\sigma_{LdF}}{\sigma_{D}}$	^o lf	$\frac{\sigma_{Lf}}{\sigma_{D}}$
0,25	16,97	11,59	0,68	14,40	0,85	13,69	0,81
0,50	20,96	14,71	0,70	17,51	0,84	17,66	0,84
0,75	19,03	13,60	0,71	15,73	0,83	16,52	0,87
1	17,15	12,42	0,72	14,06	0,82	15,19	0,89

H = 4 [m], L = 10 [m], Feldmitte

Die maßgebenden Bemessungsregeln mit Lasten:

																		-			
D	:	q	=	1,7	1	(G	+	S)				S	=	0,	75	[k]	N/n	n ² -]		
F	:	q	=	1,3	3	G	+	l,5	5 5	3 _n		s _n	=	0,	55	[k1	N/n	n ² -]		
LdF	:	q	=	1,3	3	G	÷	1,5	5	5		s	=	Ο,	75	[k]	N/N	n ² -]		
Lf	:	q	=	1,7	1	(G	+	s _r)			s _n	=	Ο,	55	[k]	N/n	1 ² -]		
$\frac{\sigma}{F}$	<u></u>	<u>l,</u> 1,	<u>33</u> 71	G G	+	<u>l,</u> 1,	5 71	• <u>0</u>	, <u>5</u> 0,	5 <u>5</u> 75	• =	Ο,	78	-	<u>0</u> , 1,	. <u>17(</u> 71	G G	+	1,	28	3
^o Ld o D	F	-	$\frac{1}{1}$	<u>33</u> 71	G G	+	1, 1,	5. 71	•),7 0,	<u>5</u> 75	=	Ο,	78	+	$\frac{0, \frac{1}{2}}{1, \frac{1}{2}}$	125 71	G	+	1,	283
σ Lf σ D		-	$\frac{1}{1}$	71 71	G G	+ +	<u>l,</u> 1,	71 71	•	<u>0,</u> 0,	<u>55</u> 75	=	1		-	$\frac{0,1}{1,1}$	3 <u>42</u> 71	G	+	1,	283

"Lf" wächst mit zunehmendem Dachhauteigengewicht, "LdF" sinkt ab. Im Dachhauteigengewichtbereich, der am häufigsten vorkommt (0,3 \leq g \leq 0,6 kN/m²), sind die Verhältnisse in etwa gleich; d.h., daß Lasten und Faktoren zu gleichen Teilen an den unterschiedlichen Niveaus der Verhältnisse beteiligt sind.

10.4.2.3.2 Riegelanschnitt

Am Riegelanschnitt stellen sich in großen Spannweitenbereichen Verhältnisse wie in Riegelmitte ein. In niedrigen Spannweitenbereichen läuft LdF nahezu parallel zu D, Lf dagegen parallel zu F, d.h. die Lasten lassen die großen Unterschiede zwischen den Bemessungsergebnissen im niedrigen Spannweitenbereich zustande kommen.

Die Verhältnisse der Rahmengewichte lassen sich als Mittel der Spannungsverhältnisse von Riegelmitte und Riegelanschnitt auffassen.

10.4.3 Vergleich Deutschland/Belgien

10.4.3.1 Auswertung der Rahmenspannungsdarstellungen

10.4.3.1.1 Riegelmitte

In Riegelmitte stellen sich abhängig vom Dachhauteigengewicht g unterschiedliche Spannungsverhältnisse ein: Bei g = 0,25 $[kN/m^2]$ liegt B bei 60 % von D, bei g = 1 $[kN/m^2]$ liegt B bei 70 %. Maßgebend für die Riegelmitte sind bei beiden Ländern die Lastfälle, die nur Eigengewicht und Schnee umfassen. Da die Schneelasten und die Faktoren beider Länder unterschiedlich sind, ändern sich die Verhältnisse, obwohl die gleichen Bemessungsregeln maßgeblich bleiben. Auch hier lassen sich die Verhältnisse direkt aus den Lasten ableiten.

<u>Beispiel</u>

.....

Dachhauteigengewicht g = 0,25 [kN/m²] $q_B = 1,53 ((0,25 + 0,4) 5 + 0,307) = 5,44 [kN/m²]$ $q_D = 1,71 ((0,25 + 0,75) 5 + 0,307) = 9,07 [kN/m²]$ $\frac{q_B}{q_D} = 0,60 \stackrel{\circ}{=} \frac{\sigma}{\sigma_B}$ Riegelmitte Dachhauteigengewicht g = 1 [kN/m²] $q_B = 1,53 ((1 + 0,4) 5 + 0,422) = 11,36 [kN/m²]$ $q_D = 1,71 ((1 + 0,75) 5 + 0,422) = 15,68 [kN/m²]$ $\frac{q_B}{q_D} = 0,72 \stackrel{\circ}{=} \frac{\sigma}{\sigma_B}$ Riegelmitte

10.4.3.1.2 Riegelanschnitt

Am Riegelanschnitt haben die Windlasten großen Einfluß. Es läßt sich ein Verlauf wie bei Frankreich feststellen, was daher rührt, daß die Lasten und Faktoren nahe beieinander liegen. Analog zu Frankreich ist hier bei niedriger Spannweite beginnend (z.B. H = 6 [m], L = 10 [m]) zunächst G + W_{extrem} maßgebend, dann bei 13 [m] Spannweite wird "Cas I" mit 1,53 (G + S) bei B maßgebend, bei D bleibt LFHZ maßgebend bis L = 17 [m]. Ab hier sind bei beiden Nationalitäten wie bei der Querschnittsstelle Riegelmitte die Lastfälle ohne Wind maßgebend, d.h. sie verlaufen parallel zueinander.

10.16

10.4.3.2 Gewichtsvergleiche D/B

Die Gewichte der Rahmen verhalten sich bei der Bemessung nach den jeweils in Deutschland und Belgien gültigen Regeln zueinander in etwa wie die Mittel aus den zugehörigen Spannungsverhältnissen in Riegelmitte und in Riegelanschnitt, d.h. wenn man das Mittel aus den Spannungsverhältnissen in Riegelmitte und in Riegelanschnitt bildet, dann verhält sich die so gebildete Größe affin zu den Gewichtsverhältnissen (Verschiebung ~ 10 % dieses Mittelwertes).

10.4.4 Variation von Faktoren und Belastung

10.4.4.1 Rahmenspannungsdarstellung

Bedeutung der verwendeten Abkürzungen

- D $\hat{=}$ Bundesrepublik Deutschland
- B $\hat{=}$ Belgien
- LdB $\hat{=}$ Lasten deutsch/Faktoren belgisch

In den Bildern 10.8 und 10.9 sind die Rahmenspannungsverhältnisse für die Höhe H = 4, 6, 8 [m] und für das Dachhauteigengewicht g = 0,25, 0,50, 0,75 und 1,00 $[kN/m^2]$ aufgetragen.

$g = 1.00 [KN/m^2]$			
$g = 0.75 [KN/m^2]$	$\frac{1}{6}$		
$g = 0.50 [KN/m^2]$	$\int_{1}^{\infty} \frac{1}{3}$		$\left\{ \begin{array}{c} \frac{6}{8} \\ \frac{1}{8} \\ \frac{1}{9} \\ \frac{1}{9$
$g = 0.25 [KN/m^2]$			
	E F II II II II II II	(<u></u> 9 1 . II	H = 8 (m)

Gegenüberstellung Rahmenspannungen D - B Lasten D/Faktoren B (LdB) Lasten B/Faktoren D (Lb)

•

$g = 1.00 [KN/m^2]$	6 9 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{cases} \frac{6}{53} \\ \frac{6}{53} \\ \frac{6}{5} \\ $	6 6 1 1 1 1 1 1 1 1 1 1 1 1 1
$g = 0.75 [KN/m^2]$	$\frac{6}{68}$	53 0 0 1.0 0 0 2.1 0 0 2.1 0 0 2.1 0 0 2.1 0 0 2.1 0 0 2.1 0 0 2.1 0 0 2.1 0 0 2.1 0 0 2.1 0 0 2.1 0 0 2.1 0 0 2.1 0 0 1.1 1.1 0 1.1 1.1 0	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$g = 0.50 [KN/m^2]$	$\int_{0}^{1} \int_{0}^{1} \frac{1}{10} \int$	$\frac{1}{2} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $\frac{1}{2} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $\frac{1}{2} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\frac{1}{6} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 $
$g = 0.25 [KN/m^2]$	6 1.0		
	E 7 II II E B. LdB. Lb	H = 6 [m]	(m) 8 = H

Gegenüberstellung Rahmenspannungen D - B Lasten D/Faktoren B (LdB) Lasten B/Faktoren D (Lb)

10.4.4.2 Gewichtsverhältnisse

Wie in 10.4.4.1 werden hier die Verhältnisse B/D, LdB/D und Lb/D dargestellt, allerdings über die Verhältnisse der Rahmengewichte.

Dachhauteigengewicht g = 0.25 kN/m^2

10.4.4.3 <u>Auswertung der Variation</u> "Lasten deutsch/Faktoren belgisch" "Lasten belgisch/Faktoren deutsch"

10.4.4.3.1 Riegelmitte

Dort sind wie bei den anderen Nationen die Lastfallkombinationen aus Eigengewicht und Schnee ohne Wind maßgeblich.

Die Vertauschung der Lasten und Faktoren zeigt, daß wesentlich stärker die Lastansätze als die Faktoren der beiden Länder dafür verantwortlich sind, daß die Unterschiede bei den Spannungen so stark ausfallen.

Im folgenden sind die Funktionen für die Verhältnisse in Riegelmitte aufgestellt. Es werden dabei die Lasten aus Eigengewicht und Schnee ins Verhältnis gesetzt.

 $\frac{\sigma_{\rm B}}{\sigma_{\rm D}} = \frac{1,53 \ (G + 0,4)}{1,71 \ (G + 0,75)} = 0,895 - \frac{0,536}{1,71 \ G + 1,28}$ $\frac{\sigma_{\rm LdB}}{\sigma_{\rm D}} = \frac{1,53 \ (G + 0,75)}{1,71 \ (G + 0,75)} = 0,895$ $\frac{\sigma_{\rm Lb}}{\sigma_{\rm D}} = \frac{1,71 \ (G + 0,4)}{1,71 \ (G + 0,75)} = 1 - \frac{0,599}{1,71 \ G + 1,28}$

10.21

	σ _B σ _D	$\frac{\sigma_{LdB}}{\sigma_{D}}$	σ _{Lb} σ _D
G = 0	0,476	0,895	0,532
G = ∞	0,895	0,895	l

Bild 10.11:
$$\frac{\sigma}{\sigma_{B}} = \frac{B, Lb}{D} = f(g)$$

10.4.4.3.2 Riegelanschnitt

Analog zu Frankreich zeigt sich: LdB liegt nahe bei D, Lb liegt nahe bei B. Am Riegelanschnitt bei einem kleinen Verhältnis L/H, z.B. L/H = 10/8 wird allerdings der hohe Windlastanteil an der Gesamtbelastung dieser Querschnittstelle deutlich.

10.4.5 Vergleich Deutschland/Niederlande

10.4.5.1 Auswertung der Rahmenspannungsdarstellungen

10.4.5.1.1 Riegelschnitte

In Riegelmitte unabhängig von Höhe und Spannweite stellen sich die Spannungen NL bei ~ 70 % der Spannungen D ein. Auch hier ergeben wie bei den vorhergehenden Gegenüberstellungen die Lastfälle, die Eigengewicht und Schnee (bzw. bei NL die variable vertikale Last) enthalten, die Bemessungsgrößen.

10.4.5.1.2 Riegelanschnitt

Am Riegelanschnitt ist eine Abhängigkeit der Spannungsverhältnisse von der Höhe, von der Spannweite und vom Dachhauteigengewicht zu erkennen. Bei größeren Höhen und geringeren Spannweiten hat der Wind am Riegelanschnitt einen großen Einfluß: Von einem Verhältnis ~ L/H = 2 ab kleiner werdend übersteigen die Spannungen am Riegelanschnitt aus den Vorschriften NL resultierend die gültigen deutschen Vorschriften.

10.4.5.2 Gewichtsvergleich D/NL

والمراجع المراجع المراجع والمحافظ المراجع متهورها والوراج والوار والمراجع والمراجع والمراجع والمراجع والمراجع

Wie bei den anderen Ländern verläuft die Gewichtskurve affin zu den Spannungskurven mit um ~ 10 % geringeren Unterschieden.

Während die niederländischen Spannungen mit zunehmender Spannweite auf nur 70 % der deutschen Spannungen heruntergehen, sinken die niederländischen Gewichte auf 80 % der Gewichte, die bei der Bemessung nach gültiger deutscher Norm erreicht werden. Die niederländischen Windlasten liegen über den deutschen, die niederländischen Schneelasten (es wird von variablen vertikalen Lasten gesprochen) unter den deutschen. Da $\gamma_{\rm NL}$ = 1,5 ist, bedeutet dies, daß da, wo bei D LFHZ maßgebend ist, NL über D liegt, da wo LFH maßgebend ist, liegt NL unter D.

10.4.6 Variation von Faktoren und Belastung

10.4.6.1 Rahmenspannungsdarstellungen

Bedeutung der verwendeten Abkürzungen

- D $\hat{=}$ Bundesrepublik Deutschland
- NL = Niederlande
- Lnl = Lasten niederländisch/Faktoren deutsch

$g = 1.00 [KN/m^2]$	Свраиние 10 10 10 10 10 110 10 110 10 111 10 111 10 111 10 111 10 111 10 111 10 111 10 111 10 111 10 111 10 111 10 111 10 111 10		
$g = 0.75 [KN/m^2]$	6 9 1.0 9 0 0 0 0 0 0 0 0 0 0 0 0 0		6 6 9 4.0 9 4.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
$g = 0.50 [KN/m^2]$	анти в мала стана и с		3 3 1 1 1 1 1 1 1 1
$g = 0.25 [KN/m^2]$	$\frac{G}{6}$		
	H = 4 { m}	(m) 9 = H	H = 8 [m]

Bild 10.12: NL, Ld, Lnl Riege

Riegelmitte

Gegenüberstellung Rahmenspannungen D - NL Lasten D/Faktoren NL (Ld) Lasten NL/Faktoren D (Lnl)

Gegenüberstellung Rahmenspannungen D - NL Lasten D/Faktoren NL (Ld) Lasten NL/Faktoren D (Lnl)

10.4.6.2 Gewichtsverhältnisse

Wie in 10.4.6.1 werden hier die Verhältnisse NL/D, Ld/D und Lnl/D dargestellt, allerdings über die Verhältnisse der Rahmengewichte.

Dachhauteigengewicht g = 0.25 kN/m^2

10.4.6.3 <u>Auswertung der Variation</u> "Lasten deutsch/Faktoren niederländisch" "Lasten niederländisch/Faktoren deutsch"

10.4.6.3.1 Keine echte Vertauschung

Hier kann nicht konsequent von einer Vertauschung der Lasten und Faktoren gesprochen werden, da $\gamma_{\rm NL}$ = 1,5 unabhängig vom Lastfall ist. Es ergeben sich trotzdem Unterschiede, da in der Riegelmitte überall und am Riegelanschnitt bei größeren Verhältnissen L/H die Lastfälle ohne Wind maßgebend sind.

10.4.6.3.2 Riegelmitte

Da in Riegelmitte die Lastkombinationen aus Eigengewicht und Schnee maßgebend sind, lassen sich aus den Vertikallasten direkt die Verhältnisse angeben, die sich beim Vergleich der Bemessungsergebnisse ergeben würden.

Die Verhältnisse der Vertikallasten in Abhängigkeit vom Eigengewicht lauten:

 $\frac{\sigma_{\rm NL}}{\sigma_{\rm D}} = \frac{1,5}{1,71} \frac{(G+0,5)}{(G+0,75)} = 0,877 - \frac{0,375}{1,71} \frac{G+1,283}{G+1,283}$ $\frac{\sigma_{\rm LD}}{\sigma_{\rm D}} = \frac{1,5}{1,71} \frac{(G+0,75)}{(G+0,75)} = 0,877$ $\frac{\sigma_{\rm LnL}}{\sigma_{\rm D}} = \frac{1,71}{1,71} \frac{(G+0,5)}{(G+0,75)} = 1 - \frac{0,428}{1,71} \frac{G+1,283}{G+1,283}$

10.4.6.3.3 Riegelanschnitt

والمراجع المحمد المرتجع بالتربي والترو مومورد المرامية

Wie bei F und B schon beobachtet liegt Ld weitgehend bei D, LnL verläuft nahezu identisch wie NL. Die Lasten sind im wesentlichen dafür verantwortlich, daß die Abweichungen zwischen D und NL groß sind.

10.5 <u>Darstellung der Spannungsverhältnisse bei nichtabhe-</u> bender Windkraft

Wie vorauszusehen zeigen sich in Riegelmitte keine Auswirkungen, da dort nur Lastfälle maßgebend sind, die Eigengewicht und Schnee ohne Wind beinhalten.

Am Riegelanschnitt bewirkt die Nichtberücksichtigung der abhebenden Windkraft eine Erhöhung der ausländischen gegenüber den deutschen Spannungen. Dies ist folgerichtig insofern, als der Windeinfluß in F, B und NL relativ größer ist als Eigengewicht und Schnee. Also schlägt die Wegnahme der abhebenden Windkraft stärker zu Buche als da, wo sie gar keinen so großen Einfluß hatte.

Bild 10.15:

$$\frac{\sigma}{\sigma_{B}} = \frac{F, B, NL, GruSiBau}{D}$$

Spannungsparameterstudie ohne abhebende Windlasten

 $\frac{\sigma}{\sigma_{\rm B}} = \frac{F, B, NL, GruSiBau}{D}$

ohne abhebende Windlasten

Riegelanschnitt

10.6 Darstellung der Spannungsresultate aller Lastfälle

Um zu verstehen, wie es zu den Knicken der Kurven bei der Gegenüberstellung der Riegelanschnittspannungen kommt, ist es sinnvoll, die Spannungen aller Lastkombinationen mit den entsprechenden Faktoren darzustellen. Alle Lastfälle werden auf LFH (gekennzeichnet mit Dl) bezogen, d.h. Dl nimmt immer den Wert 1 ein. In den Darstellungen der einzelnen Lastfälle gibt es nun keine Knicke mehr. In den Diagrammen der Gegenüberstellungen der Rahmenspannungen resultieren die Knicke daraus, daß die maßgebenden Kombinationsregeln wechseln. Bei niedrigen weitgespannten Konstruktionen sind Eigengewicht und Schnee maßgebend, bei schmalen hohen Rahmen hat Wind großen Einfluß. Der Wechsel von der einen zur anderen Kombination ist zwischen den nationalen Regelungen unterschiedlich infolge der unterschiedlichen Lasten und Faktoren.

Symbol	Lastfall	Nationalität
D1 D2	H: 1,71 (G + S) HZ: 1,50 (G + S + W)	. D
Fl	$\frac{3}{2}$ S _n + $\frac{4}{3}$ G	
F2	$\frac{17}{12}$ (S _{rn} + W _n) + $\frac{4}{3}$ G	F
F3	s _{re} + W _e + G	
B1 B2 B3	1,53 (G + S) 1,36 (G + W _{normal}) 1,0 (G + W _{extrem})	В
N1 N2 N3	1,5 (G + S) 1,5 (G + W) 1,5 (G + S + W)	. NL

Erläuterung der Symbole für die Darstellung aller Lastfälle

10.32

Bild 10.17: Vergleich $\frac{\text{maximaler}}{\text{alle}}$ Lastfälle für Frankreich

Bild 10.18: Vergleich $\frac{\text{maximaler}}{\text{alle}}$ Lastfälle für Belgien

Bild 10.19: Vergleich $\frac{\text{maximaler}}{\text{alle}}$ Lastfälle für die Niederlande

10.35

10.7 Vergleich Deutschland/Schweiz

10.7.1 Vorgehensweise

Bei diesem Vergleich wird die gültige deutsche Bemessung als Bezugsgröße zugrundegelegt. Auf sie bezogen werden die derzeit gültigen Schweizer Bemessungsregeln [23], die neuen Schweizer Vorschläge [21] und die GruSiBau-Regeln. Für die Schweiz werden dabei klimatische Größen benutzt, wie sie sich in Grenznähe zur Bundesrepublik Deutschland ergeben. Vorgenommen werden die Vergleiche an Zweigelenkrahmen, indem die Tragfähigkeitsnachweise geführt werden. Die Bemessungsergebnisse infolge der Nachweise werden auf das Bemessungsergebnis des gültigen deutschen Nachweises bezogen.

10.7.2 Rahmenspannungsdarstellungen

Die gültigen Schweizer Regeln werden in den Rahmenspannungsdarstellungen mit S, die Vorschläge entsprechend [21] mit E bezeichnet.

	$g = 0.25 [KN/m^2]$	$g = 0.50 [KN/m^2]$	$g = 0.75 [KN/m^2]$	$g = 1.00 [KN/m^2]$
H = 4 [m]	6 5955555555555555555555555555555555555	GB 9 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	6 6 5 5 5 5 5 5 5 5 5 0 1 1.9 5 5 5 5 5 5 5 5 0 1 9 6 6 5 5 5 5 0 1 9 6 6 5 5 5 5 0 1 7 - - - 0.05 0 0 0 7 - - - 0.05 0 0 0 7 - - - 0.05 0 0 0 8 - - - 0.05 0 0 0 9 - - - 0.05 0 0 0 1 - - - - 0 0 0 0	0 0 1.0 555555555555555555555555555550100 1.0 555555555555500000000000000 1.0 555550000000000000000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
[m] = H	G B S S S S S S S S S S S S S S S S S S S	6 6 5	6 6 555555555555555555555555555555555555	
[m] = H	6. 9. 5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	0 0 0 0 1 0 1 0 0 0	$\frac{6}{68}$ $\frac{5}{100}$ $\frac{5}{$	6 1.0. ESESESESESESESESESESESESESESESESES 2.1. EEEEEEEEEEEEEEEEE 5.555611 5.5566111 5.55661

Bild 10.20: Riegelmitte

 $\frac{\sigma}{\sigma_{\rm B}} = \frac{\text{SIA 160 (S), SIA 160-Entwurf (E), GruSiBau}}{D}$

10.36

$g = 1.00 [KN/m^2]$	6 9 5 5 5 5 5 5 5 5 111 1<	6 6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	6 5 5 5 6 5 5 5 1.0 5 5 5 0 5 5 5 1 5 5 5 1 5 5 5 1 5 5 5 1 5 5 5 1 5 5 5 1 5 5 5 1 5 5 5 1 5 5 5 1 5 5 5 1 5 5 5 1 5 5 5
$g = 0.75 [KN/m^2]$	6 1 1 1 1 1 1 1 1 1 1 1 1 1	G S S S G S S S S L S S S S L F F F F L F F F F F S S S S S S L F F F F F L G S S S S H G S S S S	$\begin{bmatrix} \frac{6}{7} & 5 & 5 & 5 & 5 & 5 \\ 1 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\ 1 & 1 & 1 & 1 & 1 & 5 & 5 & 5 & 5 & 5 &$
$g = 0.50 [KN/m^2]$	G S <td>$\begin{bmatrix} 6 & 5 \\ 5 & 5 \\ 5 & 5 \\ 6 & 5 \\ 6 & 6 \\ 6$</td> <td>6 5</td>	$\begin{bmatrix} 6 & 5 \\ 5 & 5 \\ 5 & 5 \\ 6 & 5 \\ 6 & 6 \\ 6 $	6 5
$g = 0.25 [KN/m^2]$	0 0 0 0 0 0 0 0 1.0 5 5 5 5 5 5 5 5 0 5 5 5 5 5 5 5 0 0 5 5 5 5 5 5 0 1 0 5 5 5 5 0 1 5 5 5 5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 5 <td>6 8 5 5 5 5 5 5 5 5 5 5 1 1.0 1<</td>	6 8 5 5 5 5 5 5 5 5 5 5 1 1.0 1<
	H = 4 (m)	H = 6 [m]	H = 8 [m]

Bild 10.21: Riegelanschnitt

 $\frac{\sigma}{\sigma_{\rm B}} = \frac{\text{SIA 160 (S), SIA 160-Entwurf (E), GruSiBau}}{D}$
11.1

11. Vergleich GruSiBau/gültige Vorschriften an unterschiedlichen Systemen

11.1 Vorgehensweise

Die GruSiBau-Regeln werden in diesem Abschnitt im Vergleich zu den gültigen Belastungs- und Bemessungsregeln auf verschiedene Systeme angewandt, die als stahlbautypisch gelten können. Die Systeme wurden nach LFH/HZ bemessen. Bei Anwendung der GruSiBau-Regeln auf die Systeme ergeben sich an den einzelnen Querschnitten Spannungen, die mit denen, die nach LFH/HZ berechnet werden, ins Verhältnis gesetzt werden. Die sich dabei ergebenden Verhältnisse werden mit den Rahmenspannungsdarstellungen der Zweigelenkrahmen verglichen. Die Systeme sind zum Teil [2] entnommen. Es soll herausgestellt werden, welche Auswirkungen die GruSiBau-Regeln auf die Bemessung haben und welche Änderungen sich hinsichtlich des Systems ergeben würden.

11.2 Zweigelenkrahmen mit Pendelstützen

11.2.1 System und Belastung

Dieser Rahmen überdacht bei einem Geschäftsgebäude die obere Ausstellungsetage. Er besteht aus einem Zweigelenkrahmen mit zwei Innenpendelstützen.

Bild 11.1: Rahmen mit Innenpendelstützen

Mit einem Dachhauteigengewicht von ~ l $[kN/m^2]$ gehört dieser Rahmen zu den schwereren Konstruktionen.

Bei LFH/HZ werden die Normlasten angesetzt und die Faktoren $Y_{\rm H} = 1,7$ und $Y_{\rm HZ} = 1,5$ verwendet. Es wird bei LFH/HZ nach Theorie I. Ordnung gerechnet. Wind abhebend wird hier nicht berücksichtigt. Bei GruSiBau wird für Schnee die 99 %-Fraktile mit s = 0,99 kN/m² angesetzt. Das Tragwerk wird nach Theorie II. Ordnung mit Vorimperfektionen ohne abhebende Windlasten berechnet.

11.2.2 Ergebnisse

Die Spannungsverhältnisse beim Vergleich der Bemessungsergebnisse infolge LFH/HZ und GruSiBau ergeben sich wie folgt:

Punkt	5	6	8	8
	Riegelmitte mittleres Feld	Riegelanschluß Pendelstütze	Riegelanschnitt Ecke	Stielan- schnitt Ecke
^O GruSiBau ^O LFH/HZ	0,95	0,98	1,08	1,08

11.2.3 Besonderheiten dieses Rahmens

An den Riegelquerschnitten, wo die Pendelstützen angeschlossen sind, ergeben sich andere Verhältnisse als bei Zweigelenkrahmen ohne Pendelstützen dadurch, daß bei Angriff einer Horizontallast (Wind) folgende Momentenverteilung auftritt:

Bild 11.2: Momente infolge Wind

D.h. nur in Achse B und D ergeben sich Vergrößerungen der Stützmomente. In A und C werden die Stützmomente aus Eigengewicht und Schnee infolge der Horizontalkraft verkleinert. Diese Betrachtung ist deshalb wichtig, weil bei LFH/HZ LFH und bei GruSiBau 1,43 (G + S + 0,7 W) an den Stützenquerschnitten maßgebend ist. Da die Gewichtungen von Schnee und Wind unterschiedlich sind, ergeben sich auch Unterschiede in den Spannungsverhältnissen.

11.2.4 Anwendung Rahmenspannungsdiagramme

Durch die Geometrie bedingt sind die Verhältnisse von Zweigelenkrahmen nur auf die Querschnittsstellen Rahmenmitte und Ecke des Rahmens anwendbar. Für die entsprechenden Parameter $H = 4 [m], L = 10 [m], g = 1 [kN/m^2]$ sind die Ergebnisse anwendbar, d.h. die Verhältnisse, wie sie für die Zweigelenkrahmen berechnet sind, ergeben sich auch so (mit geringen Abweichungen) für den hier berechneten Rahmen mit Pendelstützen.

11.3 <u>Lagerhalle mit einem eingespannten Stiel und ange-</u> hängtem einhüftigen Rahmen

11.3.1 System und Belastung

Bei diesem System handelt es sich um einen Rahmen mit angehängtem einhüftigem Rahmen der folgenden Bauart:

Bild 11.3: Lagerhalle

Abweichend zur Rahmenspannungsberechnung ist hier ein Stiel eingespannt und ein einhüftiger Rahmen gelenkig angehängt. Wind wird nur als Horizontalbelastung ohne abhebende Lasten berücksichtigt. Die Halle gehört mit ihren 8,5 [m] Binderabstand und g = l [kN/m^2] Dachhauteigengewicht nicht mehr zu den leichten, sondern vom Gewicht her zu den mittleren Konstruktionen.

Nacheinander untersucht werden die Punkte (2), (4), (5), (6) und (7).

11.3.2 Ergebnisse

Die maximalen Schnittkräfte ergeben sich in Punkt (2), (4) und (5) bei Wind von rechts, in Punkt (7) bei Wind von links.

Bei den gültigen Bemessungsregeln ist LFHZ als Kombinationsregel maßgebend, bei GruSiBau 1,43 (G + S + 0,7 W). Im Punkt 6 ist bei der gültigen Regel LFH maßgebend, bei GruSiBau 1,43 (G + S + 0,7 W) mit Wind von links. Die Spannungsverhältnisse ergeben sich in der folgenden Weise:

Pkt	2	4	5	6	\bigcirc
^G GruSiBau GLFH/HZ	1	0,95	1,01	0,99	1,03

11.3.3 Rahmenspannungsdiagramme

Für Zweigelenkrahmen ergeben sich die folgenden Werte $\frac{\sigma_{\text{GruSiBau}}}{\sigma_{\text{LFH/HZ}}} = 1,02$ (Riegelanschnitt) $\hat{=}$ (7), (5), (2) = 0,95 (Riegelmitte) $\hat{=}$ (6)

Die Verhältnisse liegen nahe beieinander, die sich bei Berechnung des vorstehenden Rahmens und nach den Rahmenspannungsdiagrammen ergeben.

11.4 Zweischiffige Halle

11.4.1 System und Belastung

Bei diesem System handelt es sich um eine zweischiffige Halle mit unten gelenkig gelagerten Stielen. Die beiden Längsschiffe haben ungleich große Spannweiten.

Bild 11.4: Zweischiffige Halle

Mit einem Dachhauteigengewicht von 0,4 $[kN/m^2]$ gehört die Halle noch zu den leichten Konstruktionen.

11.4.2 Ergebnisse mit abhebender Windlast

11.4.3 Berücksichtigung nur der horizontalen Windlasten

Wenn nun bei den Lastfällen mit Wind die abhebenden Lastanteile auf das Dach nicht berücksichtigt werden, ergeben sich folgende Änderungen: Auch bei den gültigen Bemessungsregeln wird LFHZ am Stielanschnitt des mittleren Stiels maßgebend. Am Riegelanschnitt bei der Mittelstütze des größeren Feldes (der Wind kommt von links), am Stielanschnitt der Mittelstütze und an der Rahmenecke des kleineren Feldes ist bei den gültigen Regeln LF H/HZ, bei GruSiBau γ_F (G + S + 0,7 W) maßgebend. Das Verhältnis $\frac{\sigma_{GruSiBau}}{\sigma_{LF} H/HZ}$ wird dadurch um \approx 7 % auf \approx 1,09 gesteigert.

11.4.4 Anwendung Rahmenspannungsdiagramme

Die Diagramme mit den Rahmenspannungsverhältnissen liefern gute Übereinstimmungen mit den konkreten Nachrechnungen des zweifeldrigen Rahmens.

11.5 Zweischiffige Halle mit eingespannten Stielen

11.5.1 System und Belastung

Es wird eine zweischiffige Halle mit eingespannten, relativ starken Stielen nachgerechnet, die aus zwei ungleich breiten Längsschiffen mit Kranen besteht.

Bild 11.5: Zweischiffige Halle mit eingespannten Stielen

An Lasten treten Eigengewicht, Schnee, Wind und die Verkehrslast aus Kran auf.

11.5.2 Ergebnisse

Die sich ergebenden Verhältnisse betragen ~ 1,08, nur an den Einspannstellen liegen die Verhältnisse $\frac{GruSiBau}{LFH/HZ}$ unter 1.

11.5.3 Auswertung

Bei den gültigen Regeln ist im Riegelbereich LFH maßgebend, an der Mittelstütze oben und unten und am windabgewandten Stiel unten dagegen LFHZ, weil dort der Wind Biegemomente mit gleichem Vorzeichen wie die Hauptlastfälle erzeugt und mit einem größeren Anteil an der Gesamtlast als 1 - $\frac{\gamma_{\rm HZ}}{\gamma_{\rm H}}$ = 12 % beteiligt ist. Bei GruSiBau ergibt sich wie bei den Rahmenspannungsdiagrammen bei sehr leichter Dacheindeckung, daß GruSiBau über LFH/HZ liegt.

11.6 <u>Hallenbinder</u>

11.6.1 System und Belastung

Das System besteht aus einem Hallenbinder, der sowohl mit als auch ohne Kran gerechnet wird. Das System hat eine relativ große Bauhöhe.

11.9

Bild 11.6: Hallenbinder mit Kran und Giebel

Als Lasten wirken Eigengewicht, Schnee, Wind und gegebenenfalls der Kran als Verkehrslast.

Mit einem Dachhauteigengewicht von 1,4 $[kN/m^2]$ ist die Konstruktion als schwer einzustufen. Der Wind wird auf das Dach als abhebend angesetzt. Der Schnee wird bei GruSiBau als 99 %-Fraktile mit s = 0,99 $[kN/m^2]$ angesetzt.

Die benutzten Faktoren sind $\gamma_{\rm H}$ = 1,71, $\gamma_{\rm HZ}$ = 1,50 und für GruSiBau $\gamma_{\rm F}$ = 1,43. Bei den gültigen Regeln wird mit Theorie I. Ordnung gerechnet, bei GruSiBau mit Theorie II. Ordnung mit Ansatz einer Vorverformung von ψ = 1/200.

11.6.2 <u>Ergebnisse</u>

Die Vergrößerung der maßgebenden Schnittkräfte am Riegelbzw. Stielanschnitt bei Berechnung nach Theorie II. Ordnung gegenüber einer Berechnung nach Theorie I. Ordnung beträgt bei den vorhandenen Parametern zwischen 3 und 4 %. Wie sich die Berücksichtigung von Kran, Vorimperfektion und Dachneigung bemerkbar macht, ist aus der folgenden Aufstellung ersichtlich.

System	Riegel ohne Kran	.mitte mit Kran	Riegelans ohne Kran	schnitt mit Kran
ohne Vorim. V	0,949	0,953	0,977	0,977
mit Vorim. ψ	0,936	0,939	0,991	0,990
ohne Vorim.y	0,933	0,932	0,962	0,961
mit Vorim. ψ	0,933	0,932	0,979	0,977

 $\sigma_{\texttt{GruSiBau}}$

^σlfh/hz

11.11

11.6.3 Auswertung der Ergebnisse

11.6.3.1 Vorimperfektion

Beim Giebel bewirkt eine Vorimperfektion eine Verkleinerung der GruSiBau-Schnittkräfte um reichlich 1 % an der Querschnittstelle Riegelmitte, während bei der Dachneigung $\alpha = 0^{\circ}$ keine Änderung der Schnitkraft infolge Vorimperfektion in der Riegelmitte zustande kommt.

11.6.3.2 Kran

Beim System mit Giebel bewirkt die Berücksichtigung des Krans eine geringfügige Vergrößerung der GruSiBau-Werte für die Riegelmitte. Am Riegelanschnitt und für alle Werte $\alpha = 0^{\circ}$ ist keine Änderung feststellbar.

11.6.3.3 Giebel

Der Giebel bewirkt eine Steigerung der Verhältnisse $\frac{\sigma GruSiBau}{\sigma}$ um ~ 1 %. Dabei sind die Änderungen am Riegelanschnitt größer als in der Riegelmitte.

11.6.3.4 Steifigkeitsverhältnisse

Bei den bisherigen Berechnungen waren Riegel und Stiel ungleich ausgebildet. Der Stiel bestand aus einem HEB 400, der Riegel aus einem HEA 400. Das Steifigkeitsverhältnis betrug dabei also $\frac{IRiegel}{IStiel} = \frac{45070}{57680} = 0,781$. In der folgenden Tafel werden die Verhältnisse für Riegelmitte und Riegelanschnitt bei einem System ohne Kran mit und ohne Imperfektion bei GruSiBau dargestellt.

11.12

System	Riegelmitte	Riegelanschnitt
$ \begin{array}{c} \hline \\ \text{ohne} \\ \text{Vorimp.} \end{array} \psi $	0,945	0,973
mit Vorimp. ψ	0,934	0,987
ohne Vorimp. ψ	0,932	0,959
mit Vorimp. ψ	0,932	0,976

 $\frac{\sigma_{\rm GruSiBau}}{\sigma_{\rm LFH/HZ}}$ bei $I_{\rm R} \stackrel{\circ}{=} I_{\rm St}$ (System ohne Kran)

Die Verhältnisse verringern sich um wenige %..

11.7 Rahmen für Bühnenbau

1

11.7.1 System und Belastung

Auf den dreigeschossigen zweistieligen Rahmen, der unten gelenkig gelagert ist, wirken sehr große Lasten. Es handelt sich um einen Rahmen, wie er im Bühnenbau vorkommt.

Bild 11.7: Rahmen für Bühnenbau

11.7.2 Ergebnisse

Alle sich ergebenden Verhältnisse $\frac{\sigma_{GruSiBau}}{\sigma_{LFH/HZ}}$ betragen ~ 0,93, was den Verhältnissen der Rahmenspannungen für sehr schwere Konstruktionen entspricht.

Bei der Berechnung der Schnittkräfte ergeben sich die maximalen Schnittkräfte an den Knoten mit drei Stäben (-+) infolge LFH am Stielanschnitt oberhalb eines Knotens, infolge LFHZ am Riegelanschnitt und am Stielanschnitt unterhalb eines Knotens. Am Knoten oben, wo zwei Stäbe angreifen, ist LFH maßgebend.

Bei GruSiBau, wo nur mit einem Faktor γ_F gearbeitet wird, liefert γ_F (G + Q + $\psi_S \cdot$ S + $\psi_W \cdot$ W) für alle Knoten die Bemessungsschnittgrößen.

11.7.3 Ausnutzung der Querschnitte

Im Bühnenbau allgemein sind nur selten die zulässigen Spannungen das Auswahlkriterium für Profile, da häufig weniger als die Hälfte des zulässigen Wertes erreicht wird. Vielmehr spielt eine Rolle, welche Profile gut eingebaut werden können, welche Bauhöhen für Decken angesetzt sind; die zulässigen Spannungen sind dabei nur eine notwendige Bedingung.

11.8 Weitgespannte Kranhalle

11.8.1 System und Belastung

Bei dem System handelt es sich um eine weitgespannte Kranhalle mit üblichem Höhen-Spannweitenverhältnis $(L/H \approx 2,5)$. Die Kranlasten erbringen bei ungünstigster Kranstellung (Einflußlinie) Beanspruchungen, die am Riegel und oberen Stiel gering sind, an der Einspannstelle des Stiels aber doch beträchtlich.

11.8.2 Ergebnisse

Theoretisch erforderlich sind die Kombinationensregeln, wie sie in Kap. 12.3.2. vollständig aufgeführt sind. Bei Betrachtung der nebenstehenden Momentenflächen infolge der einzelnen Lasten läßt sich die Zahl der Kombinationen entsprechend ihrem Einfluß allerdings eingrenzen. Hierbei ergibt sich

 γ_F (G + S^{*} + ψ_P P seit + ψ_p P lot + ψ_w W) als maßgebende Kombination für alle Querschnittstellen.

Stelle	$\frac{\sigma}{\sigma_{\rm B}} = \frac{\sigma_{\rm GruSiBau}}{\sigma_{\rm D}}$
Riegelmitte	1,01
Riegelanschnitt (Voutenbeginn)	0,99
Riegelanschnitt (Ecke)	1,01
Unterkante Kran	1,02
Stütze unten	0,87

12. Praktikabilität

12.1 Vorgehensweise

An verschiedenen Systemen wird untersucht, inwieweit sich der Aufwand beim Bemessen einer Konstruktion ändert. Dabei sind der Tragfähigkeits- und der Gebrauchsfähigkeitsnachweis beim neuen Konzept entsprechend GruSiBau dem alten Bemessungskonzept gegenüberzustellen.

12.2 Zweigelenkrahmen ohne Kran

12.2.1 Bisherige Berechnung

Nach dem bisherigen Konzept sind die Nachweise entsprechend LFH und LFHZ zu führen. Grundsätzlich läßt sich nicht sagen, welcher Lastfall die maßgebenden Schnittkräfte an jeder beliebigen Querschnittsstelle erbringen wird. Dies muß durch Berechnung mit den entsprechenden Kombinationen festgestellt werden. In der Riegelmitte ist LFH meistens entscheidend, am Riegelanschnitt LFH oder LFHZ.

Eine große Schwierigkeit stellt die Begründung der Wahl der zulässigen Spannungen dar. Es bereitet Schwierigkeiten festzustellen, ob für LFH mit einem $\gamma_{\rm H} = 1.7 \ (\sigma_{\rm zul} = 14 \ {\rm kN/cm}^2)$ und für LFHZ mit einem $\gamma_{\rm HZ} = 1.5 \ (\sigma_{\rm zul} = 16 \ {\rm kN/cm}^2)$ zu arbeiten ist, wie es in diesem Bericht gemacht wurde, oder ob $\gamma_{\rm H} = 1.5 \ (\sigma_{\rm zul} = 16 \ {\rm kN/cm}^2)$ und für $\gamma_{\rm HZ} = 1.33 \ (\sigma_{\rm zul} = 18 \ {\rm kN/cm}^2)$ zu wählen ist, wenn mit St 37 gearbeitet wird.

Beim Spannungsnachweis an stabilitätsgefährdeten Bauteilen wird in der Praxis grundsätzlich mit $\gamma_{\rm H}$ = 1.7 / $\gamma_{\rm HZ}$ = 1.5 für die Druckfaser gearbeitet.

12.2.2 <u>GruSiBau</u>

Entsprechend den Kombinationsregeln mit ihren γ - und ψ -Werten ist die Kombination zu finden, die die maximalen Schnittkräfte hervorruft. Bei Zweigelenkrahmen ohne Kran sind die Kombinationen zu bilden: $\gamma_{\rm F}$ (G + S)

und γ_{F}^{F} (G + S + ψ_{W} · W) und γ_{F}^{F} (G + W + ψ_{S}^{F} · S)

Zunächst bedeutet dies zwar, daß ein Lastfall mehr bei diesem System zu bearbeiten ist, aber das maximale Resultat ist nur einer zulässigen Spannung, der Fließgrenze gegenüberzustellen. Auch hat die Regelung den Vorteil, daß klar getrennt wird zwischen Einwirkungs- und Widerstandsseiten. Es ist erkennbar, wo welche Faktoren welche Auswirkungen haben: γ_{tr} ist der Teilsicherheitsbeiwert für die Einwirkungsseite, zusammengesetzt aus γ_{f} , γ_{sys} . γ_{sys} berücksichtigt die systematischen Unsicherheiten wie z.B. die Ungenauigkeiten des Rechenmodells. γ_m beschreibt die Eigenschaften der Widerstandsseite. Für Stahl wird $\gamma_m = 1,0$ angesetzt, so ist bei quasistatischen Beanspruchungen die 5 %-Fraktile der Fließgrenze als höchstzulässige Spannung erlaubt. Bei Systemen, bei denen die Berechnung nach Theorie II. Ordnung nahezu keine Auswirkungen hat (Änderungen < 3 %), können die Schnittkräfte infolge der einzelnen Belastungen entsprechend den Kombinationsanweisungen zusammengestellt werden, wobei sich herausstellt, für welche Querschnittsstelle welche Kombinationsregel die maßgebende ist. Falls Theorie II. Ordnung doch angewandt werden muß bei Verformungen, die die Schnittkräfte am Gesamtsystem über eine noch festzulegende Grenze hinaus verändern, ist es mit der Vorberechnung der Schnittkräfte infolge der Lasten einzeln möglich festzustellen, welche Kombinationsregel für die Berechnung nach Theorie II. Ordnung verwendet wird. Entsprechend den Diagrammen in Kap. 6 läßt sich sagen, wo welche Kombinationsregel maßgebend ist. In Riegelmitte ist dies $\gamma_{\rm F}$ (G + S), am Riegel- und Stielanschnitt in Abhängigkeit von den Parametern alle drei Kombinationen.

Klar läßt sich nur folgendes sagen: Bei niedrigen,breiten Konstruktionen ist γ_F (G + S) maßgebend, bei hohen, schmalen Konstruktionen γ_F (G + W + ψ_S · S). Dazwischen gibt es einen Bereich wo γ_F (G + S + 0.7 W) maßgebend ist. Um dort nicht alle Kombinationsregeln anwenden zu müssen, läßt sich folgendes Vorgehen empfehlen: Die Konstruktion wird mit γ_F (G + S) und mit γ_F (G + S + 0.7 W) belastet. Ist γ_F (G + S + 0.7 W) bis 20 % größer als γ_F (G + S), so ist γ_F (G + W + 0.7 S) kleiner als γ_F (G + S + 0.7 W). Ist aber γ_F (G + S + 0.7 W) größer als 1,2 x γ_F (G + S), so ist auch noch die Kombinationsregel γ_F (G + W + 0.7 S) auf die Konstruktion anzuwenden.

12.3 Zweigelenkrahmen mit Kran

12.3.1 Bisherige Bemessung

Entsprechend der Einflußlinie für die Kranbahn gibt es meist mehrere Lastsellungen, bei denen man von vornherein nicht sagen kann, welche die maximalen Schnittkräfte ergibt. Es sind also mehrere Belastungskombinationen durchzurechnen. Zum Lastfall H gehört hierbei die vertikale Kranlast, zum LF HZ auch der Horizontalstoß. Bei der Lastaufstellung der Kranlasten sind die Bestimmungen der din 4132/15018 zu beachten.

12.3.2 GruSiBau

الدوالة والهيمة الالدادية فتستحدث المرداني تستند فستسحب المامين

Folgende Kombinationen sind zu bilden beim Vorhandensein von Eigengewicht G, Schnee S, Wind W und Verkehr P (v = vertikal, h = horizontal):

 $\begin{array}{l} \gamma_{\rm F} & (\ {\rm G} \ + \ {\rm S}^{*} \ + \ \psi_{\rm Pv} \ {\rm P}_{\rm v}) \\ \gamma_{\rm F} & (\ {\rm G} \ + \ {\rm S}^{*} \ + \ \psi_{\rm Pv} \ {\rm P}_{\rm v} \ + \ \psi_{\rm Ph} \ {\rm P}_{\rm h} \ + \ \psi_{\rm W} \ {\rm W} \) \\ \gamma_{\rm F} & (\ {\rm G} \ + \ {\rm P}_{\rm v} \ + \ \psi_{\rm Ph} \ {\rm P}_{\rm h} \ + \ \psi_{\rm W} \ {\rm W} \ + \ \psi_{\rm S} \ {\rm S}^{*}) \\ \gamma_{\rm F} & (\ {\rm G} \ + \ {\rm P}_{\rm h} \ + \ \psi_{\rm W} \ {\rm W} \ + \ \psi_{\rm S} \ {\rm S}^{*} \ + \ \psi_{\rm Pv} \ {\rm P}_{\rm v}) \\ \gamma_{\rm F} & (\ {\rm G} \ + \ {\rm W} \ + \ \psi_{\rm S} \ {\rm S}^{*} \ + \ \psi_{\rm Pv} \ {\rm P}_{\rm v}) \end{array}$

Es sind also vier Kombinationen zu bilden, die dadurch in ihrer Zahl vermindert werden können, wenn man von vornherein abschätzt, welche Last welchen Einfluß bei den Schnittkräften hat, d.h. welche Last einen vernachlässigbaren Anteil an der Gesamtlast hat. Das Beispiel einer weitgespannten Kranhalle in Kap. 11.8 zeigt, wie solch eine Abschätzung stattfinden könnte: die vertikale Kranlast hat keinen großen Einfluß bei der Bemessung des Rahmens, die Schneelast hingegen einen großen. Da Theorie II.Ordnung in der Regel bei derartigen Systemen nur einen geringen Einfluß hat, lassen sich auch mit GruSiBau wie bisher schon üblich die Schnittkräfte infolge der einzelnen Lastfälle für sich berechnen und entsprechend den Kombinationsregeln zusammensetzen, damit die Beanspruchungsgröße der Widerstandsgröße gegenübergestellt werden kann. GruSiBau bietet hierbei die Möglichkeit, mit nur einem Lastfaktor zu arbeiten, nur die Kombiantionsfaktoren mindern die bei gleichzeitigem Auftreten hinzukommenden Lasten ab.

13. Resümee

13.1 Allgemeine Erkenntnisse

Die GruSiBau-Regeln schaffen Vereinfachungen gegenüber den gültigen Regeln. Sie machen den Bemessungsvorgang transparenter, als dies bei den gültigen deutschen Regeln der Fall ist. Bei klarer Trennung in Einwirkungs- und Widerstandsseite wird deutlich, wie stark welche Einflüsse in die Tragfähigkeits-/Gebrauchsfähigkeitsnachweise eingehen. GruSiBau ist als Bemessungskonzept geeignet, da die Lastfaktoren von den Materialwerten getrennt werden. Diese Aufteilung erlaubt ein gezieltes Eingreifen bei notwendigen Änderungen, falls sich herausstellt, daß einzelne Teilsicherheits- oder Kombinationsfaktoren nicht die tatsächlich auftretenden Verhältnisse repräsentieren.

13.2 Spezielle Folgerungen

Die Auswirkungen verschiedener Belastungs- bzw. Bemessungsvorschriften lassen sich mittels Parameterstudien an bestimmten Systemen kontrollieren. Bei verschiedenen Parameterkombinationen sind innerhalb einer Bemessungsvorschrift unterschiedliche Kombinationsregeln maßgebend. Welche Kombination maßgebend ist, hängt von der Größe der Teilsicherheits- bzw. Kombinationsfaktoren ab. Bei den derzeitigen Ansätzen ergeben sich beim Stahlhochbau weitgehend identische Bemessungsergebnisse wie bei den derzeitig gültigen Bemessungsregeln. Bei Konstruktionen mit vorherrschendem Eigengewichtsanteil ergeben sich weichere Konstruktionen als bisher, so daß die Gebrauchsfähigkeit mehr als bisher beachtet werden muß.

Beim Vorhandensein von nur vertikalen Lasten (Geschoßdecken) ist der Unterschied zwischen der bisherigen Bemessung und Gru-SiBau beträchtlich (Kap. 6.2.4), da keine Schnee- oder Windlasten zu berücksichtigen sind. Auch hier sind also Gebrauchsfähigkeitsnachweise im besonderen zu führen.

13.3 Fraktilwerte

A second and and a second second second

Der Festlegung der Fraktilwerte der Lasten muß noch Aufmerksamkeit gewidmet werden. Es wäre zu begrüßen, wenn die gleichen Fraktilwerte wie bisher benutzt werden könnten. Während in der DIN 1055, Bl.5 die 95%-Fraktile verwendet wird, müßte nach den GruSiBau-Empfehlungen die 99%-Fraktile verwendet werden. In Kapitel 8 unter "GruSiBau-modifiziert" wird untersucht, wie die Faktoren gewählt werden müßten, wenn man die 95%-Fraktile beim GruSiBau-Nachweis verwenden will. Wenn gleichzeitig mit den Lastaufstellungsnormen (Lastkombinationen) auch die Lasten in den Lastnormen selbst geändert würden, entstünde eine große Unsicherheit, welche Lasten wann anzuwenden sind. Es ist wünschenswert, die Fraktilen in DIN 1055 so zu belassen, wie sie sind, damit der bemessende Ingenieur Zahlenwerte für die Lasten geliefert bekommt und sich nicht mit Statistik beschäftigen muß.

13.4 Beschränkung der Anzahl der Kombinationen

In Kap.2 ist die Forderung erwähnt, die Anzahl der Kombinationen auch bei vielen Einwirkungen auf 2 zu begrenzen. Dazu kann folgender Weg beschritten werden: Lasten mit einem Einfluß kleiner als 5% Prozent an allen Querschnitten werden nicht berücksichtigt. Weiterhin gehen das Eigengewicht und die dominierende variable Last voll ein. Welche die dominierende Last ist, läßt sich herausfinden, indem Einfluß- und Zustandslinien am System infolge der einzelnen Lasten auf ihre Einflüsse hin ausgewertet werden. Hieraus läßt sich ersehen, an welcher Querschnittsstelle welche Last welchen Einfluß hat und als dominierende Last betrachtet werden muß.

13.5 Gegenüberstellung zur Leistungsbeschreibung

13.5.1 Geklärte Probleme

Die in GruSiBau vorgeschlagenen Bemessungsregeln werden auf Zweigelenkrahmen und auf andere Systeme angewandt mit dem Ziel, die maßgebende Belastungskombination herauszufinden und das Bemessungsniveau mit den derzeit gültigen Regeln zu vergleichen. Es lassen sich Grundsätze angeben, wie die Zahl der Belastungskombinationen niedrig gehalten werden kann; durch "scharfes Hinsehen" (überschlägliche Berechnung) lassen sich Belastungskombinationen als nicht relevant ausklammern. Für die allgemeine Anwendung hingegen sind genaue Vorschriften notwendig. Im Kap. 12 ist angegeben, wie eine Regelung aussehen könnte. Das nicht lineare Bauwerksverhalten ist in Kap.6 untersucht, wo die Auswirkungen der Anwendung Theorie II. Ordnung überprüft werden. Die Diagramme werden mittels eines Programms aus den berechneten Bemessungsdaten erstellt. Es werden verschiedene Bauwerkstypen entsprechend aufgestellter Statiken untersucht, um die Auswirkungen aus der Anwendung von GruSiBau im Gegensatz zur bisherigen Bemessung zu erkennen.

13.5.2 Offene Probleme

Verbindungen werden in diesem Bericht nicht untersucht. Die Untersuchung der Stabilität kommt nur insoweit zum Zuge, als Bauwerke nach der Th.II.O. untersucht werden. Die Traglastberechnung wird stichprobenartig nur auf einige Rahmen angewendet. 14.1

14. Zusammenfassung

14.1 Inhaltsverzeichnis

14.2 Forschungsauftrag

In der Bundesrepublik Deutschland werden die Sicherheitsnachweise im Stahlbau entsprechend den gültigen Regeln mit einem Bemessungskonzept geführt, welches mit zulässigen Spannungen arbeitet. Hierbei ist der Sicherheitsfaktor einerseits auf der Widerstandsseite als Quotient von Fließspannung und zulässiger Spannung enthalten; andererseits steckt auf der Einwirkungsseite in der Fraktile, die für die Last gewählt wird, auch eine Sicherheitsbetrachtung. Der Sicherheitsfaktor, der auf die Lasten angewandt wird, ist also auf der Materialseite zu finden.

Eine baustoffübergreifende Bemessung ist nicht mehr an zulässige Spannungen gebunden. Durch die Einführung von Teilsicherheitsbeiwerten jeweils für die Einwirkungs- und Widerstandsseite werden diese getrennt. Weiterhin werden Faktoren zur Berücksichtigung des Sicherheitsniveaus und der Systemungenauigkeiten eingeführt. Auf der Lastseite werden Kombinationsfaktoren eingeführt, um die Unwahrscheinlichkeit zu berücksichtigen, daß mehrere Lasten gleichzeitig in ihrer vollen Größe auftreten. Eine Analogie dazu findet sich bei der bisherigen Bemessung in der Aufteilung in Haupt- und Zusatzlastfälle, wo gegen unterschiedliche zulässige Spannungen abgesichert wird.

Die vorgeschlagenen Kombinationsregeln erfordern eine Untersuchung so vieler Lastkombinationen, wie Lasten vorhanden sind. Diesen Aufwand gilt es in der praktischen Anwendung zu vermeiden: Die Anzahl der Kombinationen in den Anwendungsnormen soll auf zwei begrenzt werden.

14.3 Umfrage

Um eine Übersicht über die Mengenverteilungen der verschiedenen Bauwerkstypen zu bekommen, wurden Fragebogen mit wichtigen Systemen zunächst an Prüfingenieure verschickt. Weil von dort zu wenig verwertbare Antworten kamen, wurden auch Stahlbaufirmen im DStV angeschrieben. Eindeutig am meisten gebaut wurden Hallen mit Zweigelenkrahmen als Haupttragsystem, davon 25% mit Kran. Deshalb wurde dieses System bei den Parameterstudien hauptsächlich benutzt, andere nur stichprobenweise.

14.4 Zusammenstellung der Vorschriften bzw. Vorschläge

In unterschiedliche Ländern sind unterschiedliche Ansätze für Lasten und Sicherheitsfaktoren gemacht. Auch in GruSiBau sind neue Ansätze gegenüber den bisherigen Regelungen zu finden. Um im internationalen Rahmen die Bemessungsgrößen vergleichen zu können, sind den Vorschriften die Lasten für grenznahe Gebiete entnommen mit dem Gedanken, daß dort eine Bemessung für ein Bauwerk mit gleicher Spannweite, Höhe und Dachhaut gleiche Bemessungsergebnisse liefern müßte. Da die Vergleiche hauptsächlich mit dem System Zweigelenkrahmen durchgeführt sind, werden hier die Werte für die Lasten Schnee und Wind und die Sicherheitsfaktoren angegeben, die zum Teil explizit aufgeführt sind, in anderen Ländern aber auch in zulässigen Spannungen stecken. In Frankreich werden Faktoren in Kombinationsregeln angegeben, in den Niederlanden ein globaler Sicherheitsfaktor, in Belgien zulässige Spannungen.

14.5 <u>Vergleichsmöglichkeiten der Bemessungsergebnisse</u> infolge der verschiedenen Bemessungsvorschriften

Die Bemessungsergebnisse werden auf drei Arten verglichen:

- Berechnung der Schnittspannungen an Zweigelenkrahmen und Darstellung der Spannungsverhältnisse
- Darstellung der Gewichtsverhältnisse bei optimierten Rahmen
- Darstellung eines Lastminderungskoeffizienten

Bei der ersten Vergleichsart - Darstellung der Spannungsverhältnisse - wird für eine Parameterkombination ein Rahmen bemessen; dafür ergeben sich Spannungen im Material. Auf diesen nach gültigen deutschen Regeln bemessenen Rahmen werden die Lasten entsprechend den zu vergleichenden Vorschriften aufgebracht; auch hierbei ergeben sich Spannungen, die nun auf die ursprünglichen Spannungen bezogen werden. Der Quotient, der sich dabei ergibt, wird nun in Abhängigkeit der äußeren Parameter aufgetragen. Hierbei werden in der Regel nur die Lastkombinationen benutzt, die die maximalen Schnittspannungen ergeben. Nur zu Erläuterungszwecken werden nicht nur die maximalen, sondern alle Lastkombinationen aufgetragen. Die Auftragung erfolgt für jede Bemessungsstelle getrennt.

Bei der zweiten Vergleichsart - Darstellung der Gewichtsverhältnisse - wird ein Zweigelenkrahmen entsprechend einer Belastungsvorschrift so optimiert, daß das Rahmengewicht minimal wird. Hierbei kann man nun keine Spannungen mehr vergleichen, da sie bei optimaler Ausnutzung an den Bemessungsstellen gleich den Grenzspannungen werden. Für eine Parameterkombination (Spannweite, Höhe, Dachhauteigengewicht, Dachneigung, Riegeleigengewicht) kann also nur ein Wert verglichen werden: das Gewicht.

Bei der dritten Vergleichsart - Darstellung eines Lastminderungskoeffizienten - werden die Ausnutzungsgrade einander gegenübergestellt. Die ins Verhältnis gesetzten Kombinationsregeln werden zurückgeführt auf Funktionen, die nur noch abhängig sind vom Verhältnis der Auswirkungen der einzelnen Lasten zueinander an der jeweiligen Querschnittsstelle. Aus der Größe dieses Verhältnisses läßt sich ablesen, ob bei Anwendung der neuen Vorschrift die Last abgemindert werden muß oder gesteigert werden kann, um die Tragfähigkeit sicherzustellen (die Sicherheit selbst wird natürlich ebenso gesteigert oder abgemindert).

14.3

14.6 Vergleich GruSiBau/gültige Vorschriften (LF H/HZ)

Mittals der Darstellungen der Spannungsverhältnisse und des Lastminderungskoeffizienten werden die Bemessungsergebnisse miteinander verglichen. Um auf maximal zwei Kombinationen beim konkreten Normvorschlag zu kommen, ist es notwendig zu wissen, wann welche Kombinationsregel mäßgebend ist. Zunächst werden hier nur die maximalen, d.h. maßgebenden Kombinationen miteinander verglichen. Um die Diagramme mit dem Lastminderungskoeffizienten größenordnungsmäßig auf vorhandene Systeme anzuwenden, werden die Parameter der Spannungsverhältnisdiagramme ausgewertet und die Eingangsgrößen für die Lastminderungsdiagramme errechnet: Es ergeben sich identische Ergebnisse. Im Verlauf der Kurven treten Knicke auf. Diese resultieren daraus, daß bei unterschiedlichen Parameterkombinationen unterschiedliche Kombinationsregeln maßgeblich sind.

Bei Bezug der Bemessungsergebnisse aller Kombinationen von zwei Bemessungsvorschriften auf das Bemessungsergebnis einer Regel ergeben sich monotone Kurvenverläufe ohne Knicke. Innerhalb von GruSiBau wird deutlich, daß bei solch relativ leichten Konstruktionen wie Stahlhallen die verschiedenen Kombinationen große Unterschiede in den Bemessungsergebnisse bei der Parametervariation liefern, so daß Sorgfalt darauf verwendet werden muß, welche Vereinfachungen vorzunehmen sind, um ein einfach anzuwendendes, trotzdem aber auch gleichmäßig sicheres Bemessungskonzept zu erhalten. Insgesamt läßt sich sagen, daß die Unterschiede der Bemessungsergebnisse zwischen den derzeit gültigen Regeln und den GruSiBau-Vorschlägen gering sind.

Mittels Spannungsvergleich werden die Auswirkungen verschiedener Berechnungsweisen untersucht: Anwendung der Theorie II. Ordnung, Berücksichtigung einer Vorimperfektion und Ansatz/ Nichtansatz der abhebenden Windlasten. Die Anwendung der Theorie II.Ordnung bringt eine geringfügige Vergrößerung der Schnittkräfte, allerdings weit unter 10%. Die Berücksichtigung einer Vorimperfektion bringt eine Vergrößerung der Schnittkräfte zu gebrauchen. Durch Erhöhung des Lastteilsicherheitsbeiwert wird versucht, diesen Nachteil aufzufangen, damit die bisherigen Lasten weiter verwendet werden können. Es lassen sich Faktoren angeben, die den Forderungen nach genügend Sicherheit und Wirtschaftlichkeit gerecht werden.

14.9 Vergleich CEB - GruSiBau

Die vereinfachten CEB-Regeln für übliche Stockwerkrahmen arbeiten mit unterschiedlichen Faktoren für ständige und variable Lasten, allerdings ohne Kombinationsfaktoren. Um in etwa gleiche Bemessungsergebnisse wie bei GruSiBau zu erzielen, müßten auch bei CEB die erhöhten Fraktilwerte für die variablen Lasten verwendet werden.

14.10 Internationaler Vergleich

Die Bemessungsergebnisse werden mittels Spannungen und Gewicht verglichen. Die Gewichtsverhältnisse stellen einen Vergleich über den ganzen Rahmen dar, die Spannungsverhältnisse einen Vergleich an bestimmten Querschnittsstellen. Es ergeben sich starke Abweichungen zwischen Deutschland und dem Ausland, was hauptsächlich daraus resultiert, daß in Deutschland die Schneelasten höher, die Windlasten geringer sind als im Ausland. Um dies im einzelnen zu zeigen, werden für jedes Land einzeln die Belastungen und Faktoren vertauscht, um sehen zu können, woraus die Unterschiede in den Bemessungsergebnissen resultieren.

14.11 <u>Vergleich GruSiBau/gültige Vorschriften an verschiedenen</u> Systemen

Die GruSiBau-Regeln werden stichprobenweise auf verschiedene Stahlbauten angewendet, die nach gültigen Regeln bemessen sind. Es ergeben sich Abweichungen zwischen den Bemessungsergebnissen, die sich aus den Parameterstudien in Kap.6 ableiten lassen. um rund 2%. Der Ansatz/Nichtansatz der abhebenden Windlasten bringt allerdings beträchtliche Abweichungen, so daß eindeutig geregelt werden muß, ob die abhebenden Windlasten bei Ansatz der Last Wind insgesamt bestehend aus den einzelnen Anteilen anzusetzen sind oder nicht. In den GruSiBau-Empfehlungen sind variable Lasten bei günstiger Wirkung (Verringerung der Gesamtschnittgrößen) nicht anzusetzen.

Mittels Spannungsvergleich werden die bisherigen Regelungen und GruSiBau auch verglichen, wenn eine Dachneigung vorliegt. Die Auswirkungen sind gering.

Ebenfalls werden die Auswirkungen eines Einspannens der Stiele untersucht. Es zeigt sich, daß die Darstellung der Verhältnisse am Stielfuß denen in der Rahmenecke ohne Stieleinspannung gleicht. In der Rahmenecke tritt bei Einspannung der Stiele eine Abminderung des Einflusses der Windlasten auf, was daran zu Erkennen ist, daß beim Steigern der Spannweite eher Lastfälle ohne Wind maßgebend werden.

14.7 Anwendung der GruSiBau-Regeln auf gebaute Systeme

Der Vergleich der derzeit güligen mit den GruSiBau-Bemessungsregeln ist in Kap.6 mit stark idealisierten Systemen durchgeführt. Anhand von Statiken für gebaute Hallenrahmen sind hier die Vergleiche durchgeführt. Die Verhältnisse der idealisierten Rahmen weichen um wenige % von denen der tatsächlich gebauten ab. Die Unterschiede der Bemessungsergebnisse zwischen den bisherigen Regelungen und GruSiBau machen bei einigen Statiken über 5% aus, weil die derzeitigen Regelungen beim leichten Hallenbau ein geringes Eigengewicht begünstigen.

14.8 "GruSiBau-modifiziert"

Bei GruSiBau sind für die variablen Lasten mit einem Variationskoeffizienten (= Standardabweichung/Mittelwert) größer als 0,1 erhöhte Fraktilwerte gegenüber den Festlegungen in der DIN 1055

14.5

14.12 Praktikabilität

Für gängige System sind sind die GruSiBau-Kombiantionsregeln ohne Mehraufwand anwendbar, wenn keine Theorie II. Ordnung angewendet werden muß. Ist dies jedoch notwendig, müssen die gesamten Kombinationsregeln auf das System angewendet werden, wobei aber Empfehlungen angegeben werden können, wie die Zahl der Kombinationen einzuschränken ist.

14.13 Resümee

Die Einführung eines Bemessungkonzeptes mit γ -fachen Lasten blingt Vorteile: Es ist klar ersichtlich, welcher Einfluß wie bewertet wird; das Konzept ist baustoffübergreifend.

15.1 Kurzfassung

Ziel der Untersuchung war es, die Anwendbarkeit der γ -Faktoren, Lastdefinitionen und der Kombinationsregeln, die in den "Grundlagen zur Festlegung von Sicherheitsanforderungen für bauliche Anlagen", (GruSiBau) [1], vorgeschlagen sind, an Stahlbauten zu überprüfen, die Bemessungsergebnisse mit den z. Zt. gültigen Sicherheiten, Lasten und Kombinationsregelungen (LF H und H+Z) nach DIN zu vergleichen und Vorschläge für die Vereinfachung zu machen. Das Ergebnis der Untersuchung ist:

- Bei bis zu drei Einwirkungen (G,S und W) bedeutet die Anwendung von GruSiBau keinen größeren Aufwand als mit LF H und H+Z.
- Bei mehr als drei Einwirkungen ist der theoretische Kombinationsaufwand größer, aber die praktisch notwendigen Kombinationen sind dann leicht zu durchschauen, wenn man im Bereich Theorie I. Ordnung bleibt. Die Folgerung daraus ist entweder
 - a) den γ_{sys} -Faktor für Beanspruchungsmodelle so zu kalibrieren (größerer γ_{sys} -Faktor), daß man die Mitnahme einer vierten oder mehr Einwirkungen vernachlässigen kann oder
 - b) die Rechnung linear (Th.I.O.) durchzuführen und großzügig Abgrenzungen zur Th.II.O. zu finden (dadurch müßte auch γ_{svs} angehoben werden).
- 3. Die Beispielrechnungen, insbesondere für den Hallenbau, zeigen, daß bei Vorhandensein von drei Einwirkungen das Bemessungsergebnis nach GruSiBau mit dem der jetzigen DIN-Regelungen mit zwei Lastfällen praktisch identisch ist (±8%). Von daher wären die GruSiBau-Regeln unter dem Gesichtspunkt der Sicherheit und Wirtschaftlichkeit akzeptabel. Bei weniger als drei Einwirkungen kann GruSiBau zu geringeren Dimensionierungen führen, womit Gebrauchsfähigkeitsforderungen maßgebend werden können. Um Rückschläge zu vermeiden, sollten Gebrauchsfähigkeitsnachweise Vorschrift werden. Bei mehr als drei Einwirkungen ist damit zu rechnen, daß die Konstruktionen zunehmend unnötige Sicherheitsreserven haben und unwirtschaftlich werden. Auch dies ist ein Argument, die Anzahl der zu kombinierenden Einwirkungen auf maximal drei zu reduzieren.

4. Die Bemessungsauswirkungen der GruSiBau-Regeln wurden auch mit denen ausländischer Vorschriften verglichen. Dabei zeigt sich, daß hier weniger die verschiedenen Kombinationsregeln die Verhältnisse der verschiedenen γ-Faktoren untereinander als vielmehr die Lastansätze zu Bemessungsunterschieden führen. Von daher müßte eine Harmonisierung der γ-Faktoren und Kombinationsregeln schon heute einfach möglich sein, da das unterschiedliche Sicherheitsniveau mehr durch die Lastdefinitionen als durch γ-Werte und Kombinationsanweisungen bestimmt wird. Die Aufgabe für die Zukunft wäre dann, Lasten zu harmonisieren.

15.2 Summary

Subject of the investigations was to examine the applicability of the γ -factors, load definitions and combination rules proposed in the "Grundlagen zur Festlegung von Sicherheitsanforderungen für bauliche Anlagen", (GruSiBau) [1] for the design of steel structures, to compare the design results with those coming out from the existing DIN-regulations (LF H and H+Z) and to make proposals for simplifications. The results of the investigations are as follows:

- The application of the combination rules (GruSiBau) doesn't require more expenditure of time and work than applying the DIN load cases (LF H/HZ), if you have not more than three actions.
- 2. If you have more than three actions theoretically the expenditure is bigger, but the practically necessary combinations are easy to find out, if you keep to the first-ordertheory. The conclusion from this is either
 - a) to calibrate the γ_{sys} -factor for loading models (bigger γ_{sys} -factor) so that you can neglect the consideration of a forth action or more or
 - b) to calculate with a linear geometrical model (first order theory) and to find more permissive limitations to the second-order-theory(by which γ_{svs} would be increased).

15.3

- 3. The test calculations, carried out for portal frames of halls, show that the design results of GruSiBau are identical (±8%) with that of the DIN-regulations with two load cases, if there are three actions. From this the GruSiBau-regulations are acceptable with respect to safety and economy. With less than three actions, GruSiBau can lead to minor profiles, whereby serviceability requirements can become relevant. To prevent setbacks, serviceability verifications should become a rule. With more than three actions the structures may increasingly have unnecessary safety reserves and prove uneconomical. This is also an argument to reduce the number of actions to be combined to maximal three.
- 4. The effects of the structural design carried out with GruSi-Bau-rules were also compared with those of foreign rules. Obviously the different combination rules - the relations between the different γ -factors - lead to differences less in structural design than the load-values do. Considering this a harmonization of the γ -factors and combination rules should be easily possible because the different safety level is influenced far more by the load definition. The task for the future will be to harmonize loads.

15.3 Version abrégée

Le but des recherches était à examiner au moyen des constructions en acier l'applicabilité des facteurs γ , des definitions des charges et des règles de combinaison qui sont proposées dans les "Grundlagen zur Festlegung von Sicherheitsanforderungen für bauliche Anlagen", (GruSiBau) 1 ,à comparer avec la sécurité, les charges et les règles de combinaison d'après les DIN-règles existantes (LF H et H+Z) et à faire des propositions pour la simplification. Les résultats des recherches sont:

 L'application des règles de combinaison (GruSiBau) ne comporte plus d'efforts qu'avec les cas de charge du DIN (LF H et H+Z), quand il y a seulement trois actions.

- 2. Quand il y a plus de trois actions les efforts théoriques sont plus grands, mais les combinaisons qui sont pratiquement nécessaires, sont faciles à comprendre, si on reste dans la domaine de la théorie de premier ordre. La conclusion en est a) soit de calibrier le facteur γ_{sys} pour des modèles de sollicitation (plus grand facteur) tellement, qu'on peut négliger la considération d'une quatrième action ou plus
 - b) soit de faire des calculs linéairement et de fixer des limitations largement (ainsi $\gamma_{\rm SVS}$ devrait être soulevé).
- 3. Les exemples des calculs faits, en particulier ceux pour la construction des halles, montrent que le résultat de projet est pratiquement égal à celui des règles présentes des deux cas de charge quand il y a trois actions (±8%). Ainsi les GruSiBaurègles seraient acceptables sous l'aspect de la sécurité et de l'economie. S'il y a moins de trois actions GruSiBau peut causer des constructions plus faibles, ainsi la limitations de service peut être déterminante. Pour éviter des échecs, des verifications de l'état de service devraient être prescrites. S'il y a plus de trois actions, on doit s'attendre aux constructions qui ont des réserves de sécurité inutiles et qui ne restent plus économiques. C'est aussi un argument à reduire le nombre des actions à combiner.
- 4. Les effets de projet étaient aussi comparés aux règles étrangères. Cela a montré que ce ne sont pas les règles de combinaison differentes - les relations differentes entre les γ-facteurs - mais plutôt le choix des valeurs des charges qui cause des différences de projet. De là une harmonisation des γ-facteurs et des règles de combinaison devrait être déjà possible aujourd'hui, parce que le niveau de sécurité est déterminé plus par la definition des charges. Le but pour la futur serait donc d'harmoniser les charges.

16. Nachtrag

16.1 Neuere Vorschläge

Bei Anwendung der GruSiBau-Regeln wird mit Teilsicherheitsbeiwerten γ_F und Kombinationsfaktoren ψ entsprechend Kapitel 4 gearbeitet. Neuere Vorschläge [19], die auch schon in den CEB-Empfehlungen [4] enthalten sind, gehen nun von gesplitteten Faktoren für Eigengewicht und variable Lasten aus. Es wird angesetzt:

Diese Faktoren werden im Kombinationsschema entsprechend Kapitel 4 verwendet.

Es existiert auch eine <u>vereinfachte</u> Kombinationsregel, für die die folgenden Werte verwendet werden:

 $\gamma_{_{\rm F}}$ wird angesetzt entsprechend der Anzahl der variablen Lasten.

16.2 Lastminderungskoeffizient

16.2.1 Normale Kombinationsregel

Entsprechend Kapitel 5 werden die Diagramme in Abhängigkeit von $\alpha = P/(G+P)$ und $\beta = Z/(H+Z)$ gezeichnet. Welche Änderungen sich durch die Anwendung der Kombinationsregeln mit $\gamma_c = 1.35$,

 $\gamma_Q = 1.50$, $\psi_{O2} = 0.70$ und $\gamma_M = 1.10$ bei gleichen Lastansätzen gegenüber der bisherigen Regelung im Sicherheitsniveau ergeben, ist aus den folgenden Diagrammen ersichtlich. Der Lastminderungskoeffizient $\frac{1}{\eta}$ gibt an, ob nach der neuen Regel mehr Last $(\frac{1}{\eta} < 1)$ oder nur weniger Last $(\frac{1}{\eta} > 1)$ (s.Kap.5) aufgebracht werden kann.

Bild 16.1: $\frac{1}{\eta} = f(\alpha)$

Bild 16.2: $\frac{1}{\eta} = f(\beta)$

16.2.2 Vereinfachte Kombinationsregeln

Der Vergleich gestaltet sich umfangreicher, da Fallunterscheidungen für die beiden Fälle

- eine variable Last oder

- zwei oder mehrere Lasten

notwendig sind.

16.2.2.1 Eine variable Last

Es wird mit $\gamma_G = 1.35$, $\gamma_{Q1} = 1.50$, $\psi_{O2} = 0$ und $\gamma_M = 1.1$ gearbeitet. Für den Fall Z = 0 ($\equiv \beta = 0$) wird Bild 16.3 maßgebend, für den Fall P = 0 ($\equiv \alpha = 0$) Bild 16.4.

16.2.2.2 Zwei oder mehrere variable Lasten

Es wird mit $\gamma_G = \gamma_{O1} = 1.35$, $\psi_{O2} = 1.0$ und $\gamma_M = 1.1$ gearbeitet.
Eine variable Last:

Bild 16.4: $\frac{1}{\eta} = f(\beta) \quad \alpha = 0$

Zwei oder mehrere variable Lasten:

Bild 16.5:
$$\frac{1}{\eta} = f(\alpha)$$

Bild 16.6:
$$\frac{1}{\eta} = f(\beta)$$

16.2.3 Auswertung Lastminderungskoeffizient

16.2.3.1 Normale Kombination

Für mittlere α - und β -Werte, wie sie in der Praxis bei normalen Konstruktionen vorkommen (s. Kap. 6.2.2.2.), ergeben sich nur geringe Abweichungen im Bemessungsergebnis.

16.2.3.2 Vereinfachte Kombination

Für eine variable Last ergeben sich ausschließlich Laststeigerungen $(1/\eta < 1)$, d.h. das Sicherheitsniveau ist in entsprechendem Maße herabgesetzt.

16.3 Rahmenspannungen

16.3.1 Normale Kombinationsregel

Analog zu den gegebenen Werten in Kap. 16.2.1 werden die Rahmenspannungsdiagramme, wie in Kap. 5 näher erläutert, gezeichnet. Die Parameter sind hierbei die Spannweite L, die Höhe H, das Dachhauteigengewicht g, die Dachneigung α und der Binderabstand A. Die letzteren beiden Parameter wurden in ihrer Wirkung in Kap. 6 untersucht, ihre Auswirkung kann dort verfolgt werden. An der Konstruktion greifen Eigengewicht G, Schnee S und Wind W an. Die Ergebnisse sind für die Riegelmitte in Bild 16.7 und für den Riegelanschnitt in Bild 16.8 dargestellt. Für den Stielanschnitt ergeben sich nahezu identische Ergebnisse wie für den Stielanschnitt.

16.3.2 Vereinfachte Kombinationsregeln

Auch hier müssen die einzelnen Fallunterscheidungen analog zu Kap. 16.2.2 untersucht werden. Um die Verhältnisse für die vereinfachten Kombinationsregeln darstellen zu können, werden folgende Fälle untersucht:

Vorhandene Einwirkungen		Syr D	mbole GruSiBau vereinf.	Wind	Bild
Eigengewicht (+ Schnee S (W = O)	G S	НS	VS		16.9 /16.10
Eigengewicht (+ Wind V (S = O)	G W	HW	VW	abhebend	16.11/16.12
Eigengewicht (+ Schnee 5 + Wind 5	G S W	HZ, HS, HW	SW	abhebend	16.13/16.14
Eigengewicht (+ Wind W (S = O)	G W	HW	VW	nicht abhebend	16.15/16.16
Eigengewicht (+ Schnee 5 + Wind W	G S W	HZ, HS, HW	SW	nicht abhebend	16.17/16.18

		and a second	
$g = 1.00 [KN/m^2]$	9. 9	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	
$g = 0.75 [KN/m^2]$	1.8 	9. 9. 9. 9. 9. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1. 6 1. 6 1. 7 1. 6 1. 7 1. 7 1
$g = 0.50 [KN/m^2]$	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
$g = 0.25 [KN/m^2]$	9.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0	1.0 1.0 2.0 2.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
	H = 4 [m]	(m) H = H	H = 8 [m]
Bild	16.7: $\frac{\sigma}{\sigma_{\rm B}} = \frac{{\rm GruSiBau}}{{\rm LF H/HZ}}$ Riegelmitte	$\gamma_{\rm M} = 1, 1 \gamma_{\rm G} = 1,35$ $\gamma_{\rm H} = 1,71 \gamma_{\rm HZ} = 1,50$	$\gamma_{Q} = 1,50 \psi_{02} = 0,7$ s = 0,75 kN/m ²

16.9

16.3.3 Auswertung Rahmenspannungen

16.3.3.1 Normale Kombination

Wie in Kap. 16.2.1 zeigt sich eine gute Übereinstimmung mit der bisherigen Regelung mit LF H/HZ.

16.3.3.2 Vereinfachte Kombination

Es macht sich stark bemerkbar, ob der Wind als abhebend angesetzt wird oder nicht: Deswegen sind beide Fälle untersucht. Wie in 16.2.2 zeigt sich, daß das Sicherheitsniveau stark herabgesetzt würde, wenn man die vereinfachten Kombinationsregeln ohne gesonderte Anweisungen zum Ansetzen der einzelnen Einwirkungen anwenden würde. Auch hier, wie schon in Kap. 6, zeigt sich, daß klar getrennt werden muß zwischen günstig und ungünstig wirkenden Lasten.

Die Vergleiche für die vereinfachten Kompbinationsregeln sind auf den Bildern 16.9 bis 16.18 auf den folgenden neun Seiten zu finden.

Bild	$g = 0.25 [KN/m^2]$	$g = 0.50 [KN/m^2]$	$g = 0.75 [KN/m^2]$	$g = 1.00 [KN/m^2]$
16.11.	С. В. Напоннание манимириятельнородие на 1.00 напоннание ма	1. 1	1 . 0	14 64) 0464144446464684444616494446666846469646461648686
₩ H Rie	6. 6.	нанала наказала наказала в.	нананалаланананананананананалалага в	нлнинининининининининининининини . 6.
ege l'I	7 3 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
	H = 4(m) g -0.25[KH/m2] A = 5(m] Riegelmitte Verein.: Gamm- 1.10 Gampi- 1.50	H = 4(m) g =0.50(kNvm2) A = 5(m) Riegelmitte Verein.i Gamm- 1.10 Gamqi- 1.50	H = 4(m) g =0.75(kH.m2) A = 5(m) Flegelmitte 'Arein.: Samm f.10 Samqi-1.50	H = 4[m] g =1.00(kt/vm2] A = 5[m] Riegelmitte Verein.i Gamme 1.10 Gamqi-1.50
s				
= 0	1.0 HK4104144144144144144144144144144144144144	т. А). 0	1. 0
۳ 19 H Min	e[1	нанана наканананананананананананана	нанала калаларананананананананананана 6°	налалнаналалаланананалалананананала в.
	нананана наканананананана 2*			
ast	.e 18	· · · · · · · · · · · · · · · · · · ·	e e e e e e e e e e e e e e e e e e e	. e 1 6 1 5
abh	H = 5(m) g =0.23(KNV/m2) A = 5(m) Riegelmitte Verein.: Gamma 1.10 Gammul- 1.30	H = 6[m] g =0.50(kN'm.2] A = 5[m] Regelmitte Verein.1 Gemm- 1.10 Gemmin 1.50	H = 6(m) g =0.75(kH/m2) R = 5(m) Riegelmitte Verein.: Gemme 1.10 Gemol- 1.50	H - 6(m) g -1.00(k!) m2] H - 5(m) Regelmitte Varen.: Gamm- 1.10 Gamq1- 1.50
leber				
nd	No the excitibilities are repetitively by the new polyholder to state (0, 1	$\mathcal{O}_{\mathcal{O}}$. Other the the transformation of the state of the transformation of the	т. д	1. 0. ####J1###\$\$\$!!!###??!!##!?!!##!?!!###??!!
H = 8 [m	6. B.	нанананананананананананананананана	нсилимлилилилилилилилилилилили. 9.	нананананананакаланананананананана. - 6
	нананананаларанананала 2.		<u>.</u>	
	.et <u>18</u>	.e <mark>l -18 · · · · · 15 · · · · · 28 · · · · · 25</mark>	······································	
	H - 8(m) g -8.25(Fil/m2) A - 5(m) Riegelmitte Verein.i Gemm- 1.18 Gemq1- 1.58	Н — 8(m) g — 0.50(кИ/m2) Я — 5(m) Riegelm tte Verein i Gammer 1,100 Gamq1— 1.50	H - 8(m) g -8.75(KN/m2) A - 5(m) Riegelmitte Verein.i Gamm- 1.18 Genq1- 1.58	H = 8(m) g =1.00(kN/m2) A = 5(m) Riegelmitte Varein.i Gamm- 1.10 Gamqi- 1.30

.11: Riegelmitte: S = 0 Windlast abhebend $\frac{\sigma}{\sigma_{B}} = \frac{\text{GruSiBau} \quad \gamma_{M} = 1.1 \quad \gamma_{G} = 1.35 \quad \gamma_{Q} = 1.50}{\text{LF H/HZ} \quad \gamma_{H} = 1.71}$

$[KN/m^2]$ $g = 1.00 [KN/m^2]$	ачланскандам ачланскандам 1.0 нименичениченичениченичениченичениченичени 1.0 гистов 1.0 гистов 1	авинималын авинималын Асминимини Асминиминиминиминиминиминими Асминиминиминиминими Асминиминими - 5(m) - 5(m) - 5(m) - 5(m) - 1.00 Салар- 1.50	ининининининининининининининининининин
$0.50 [KN/m^2]$ g = 0.75	изнаницияния менанизиров и (ИНИНИНИНИНИНИНИНИНИНИНИНИНИНИНИНИНИНИН	иничини вили вили вили вили и польки и по
$g = 0.25 [KN/m^2] g =$	итилицииниялицииличиницииниелени М.Ч.Ч.Ч.Ч.Ч.Ч.Ч.Ч.Ч.Ч.Ч.Ч.Ч.Ч.Ч.Ч.Ч.Ч.Ч	инне вымальны ицтелия цителия и пали по вы по	ининалиалияниянияниянияниянияниянияниянияниянияни
	H = 4 [m]	<u> </u>	= H H

Bild 16.12: Riegelanschnitt:
$$S = O$$
 Windlast abhebend

$$\frac{\sigma}{\sigma_B} = \frac{\text{GruSiBau} \quad \gamma_M = 1.1 \quad \gamma_G = 1.35 \quad \gamma_Q = 1.50}{\text{LF H/HZ} \quad \gamma_H = 1.71}$$

Bild 16.13: Riegelmitte Windlast abhebend

$$\frac{\sigma}{\sigma_{\rm B}} = \frac{\rm GruSiBau}{\rm LF~H/HZ} \quad \frac{\gamma_{\rm M} = 1.1 \ \gamma_{\rm G} = \gamma_{\rm Q} = 1.35 \ \psi = 1.0}{\rm LF~H/HZ} \quad \gamma_{\rm H} = 1.71 \ \gamma_{\rm HZ} = 1.50$$

Bild 16.14: Riegelanschnitt Windlast abhebend $\frac{\sigma_{\sigma}}{\sigma_{B}} = \frac{\text{GruSiBau}}{\text{LF H/HZ}} \gamma_{H} = 1.1 \gamma_{G} = \gamma_{Q} = 1.35 \quad \psi = 1.0$

	$g = 0.25 [KN/m^2]$	$g = 0.50 [kn/m^2]$	$g = 0.75 [KN/m^2]$	$g = 1.00 [KN/m^2]$
H = 4 [m]	6 - 1.0 Ниноннынинининининининининини.	1.0 нилинимилиличиличичимилинилинилинилин 	1.0 Нимания.емиеление.емиена.емиена.еми 	1.0 1.4 1.4 1.4 1.4 2. 2. 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
[m] = H	1.0 маннанияланияланияланияланы ицилимилимилимилимилимилимилимили 	1.0 Наявилявавалисиляванна вы вана в на в на в на в на в на в	1.0 нимамаменскими и мала в полити и мал	1.0
H = 8 (m)	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.9 1.9 ининичинальванаанаанаанаанаанаанаанаана 	1.8 наленеваллевана чала вели ва акан .9 чичичичичичичичичичичичичичи 	1.0 навытеневани чентиваны нависициятени

Bild 16.15: Riegelmitte: S = O Windlast nicht abhebend $\frac{\sigma}{\sigma_{B}} = \frac{\text{GruSiBau}}{\text{LF H/HZ}} \frac{\gamma_{M} = 1.1 \quad \gamma_{G} = 1.35 \quad \gamma_{Q} = 1.50}{\text{LF H/HZ}}$

	$g = 0.25 [KN/m^2]$	$g = 0.50 [KN/m^2]$	$g = 0.75 [KN/m^2]$	$g = 1.00 [KN/m^2]$
H = 4 [m]	Ов Иничникали и правлени и правлени 1.0 Иничникали и правлени и правлени и правлени 9 Иничники и и и и и и и и и и и и и и и и и и	1.0 навъннателнананананавидалананана 1.0 навъннателнананананавидалана 1.1 навъннателнананананананана 1.1 навъннателнанананананананана 1.1 навъннателнанананананананананананананананана 1.1 навъспр. Улимател 1.10 заладетел 1.50 1.4 навъспр. Улимател 1.10 заладетел 1.50	1) 1) 1) 1) 1	1.0 Наяниванывансьницененываниванивын -9 Инии ини ини ини ини ини ини ини ини
H = 6	1.0 неенилияниянияниениениениениениениениениениениениениен	1.0 нипалитичитичитичи по	1.0 Навилаванына пиясына ваа пили палани 	а. с.
H = 8 [m]	1.0 паранстанана папацана папана на папана на	1.0 11/11/11/16/44444/44/44/44/44/44/44/44/44/44/44/44	1.0 Нараннаявлявая верьніцная анала аліменнен Мили чили мили лили лили мили лили мили м	1.0 наявицияния на па па па па па на

Bild 16.16: Riegelanschnitt: S = 0 Windlast nicht abhebend $\frac{\sigma}{\sigma_{B}} = \frac{\text{GruSiBau}}{\text{LF H/HZ}} \frac{\gamma_{M} = 1.1 \quad \gamma_{G} = 1.35 \quad \gamma_{Q} = 1.50}{\text{LF H/HZ}}$

,

	$g = 0.25 [KN/m^2]$	$g = 0.50 [KN/m^2]$	$g = 0.75 [KN/m^2]$	$g = 1.00 [KN/m^2]$
H = 4 [m]	0 1.0 Histististististististististististististi	1.0 IIISIISIISIISIISIISIISIISIISIISIISIISII	1.0 HAHSINGINGUSHSHISHSHISHSHISHSHISHSHISHS 9 SUSURSHISHSHISHSHISHSHISHSHISHSHISHSHISH	1. 0 Нализиянскизисянскизисянсянся 9 Suisus наукализисянсянсянсянсянсянся 9 Suisus наукализисянсянсянсянсянся 9 Suisus наукализисянсянся на
(m) 9 = H	4.0 HSHRSHRSHRSHRSHRSHRSHRSHRSHRSHRSHRSHRSHR	1.8 Insurstreshtististististististististististististist	(.0 ныкызнананананананананананананана акаманамакызнанананананананананана 	6.1 8464431121424121421121421121421121421421421421
(m) = H		1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1.1	1.0 HSHSHSHSHSHSHSHSHSHSHSHSHSHSHSHSHSHS 	0.1 211211211211211211211211211211211211211

 $\frac{\sigma}{\sigma_{\rm B}} = \frac{\rm G}{\rm LI}$

Bild 16.17: Riegelmitte: Windlast nicht abhebend

$$\frac{\gamma_{M} = 1.1 \quad \gamma_{G} = \gamma_{Q} = 1.35 \quad \psi = 1.0}{F \text{ H/HZ}}$$

$$\frac{\gamma_{H} = 1.71 \quad \gamma_{HZ} = 1.50}{F \text{ H/HZ}}$$

.

	$g = 0.25 [KN/m^2]$	$g = 0.50 [KN/m^2]$	$g = 0.75 [KN/m^2]$	$g = 1.00 [KN/m^2]$
H = 4 [m]	2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.0 8,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4	1.8 92949444491919191919191919191919191919494949494949 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1	
H = 6 [m]	1.0° ЫКЫАЧКЫКЫКЫКЫКЫКЫКЫКЫКЫКЫКЫК 1.0° ЫКЫАЧКЫКЫКЫКЫКЫКЫКЫКЫКЫКЫКЫК 1.0°	۲	1.00 ปรียุรีย์รัยรีย์รัยรีย์รีย์รีย์รีย์รีย์รียราราราราร ปรียราราราราร 	1.00 ปีเรียนี้เป็นรู้มีรื่านี้มีมีปีเรียนี้เป็นที่มีเรียน ปีเรียนรู้เป็น
Н = Н	ער פון איז	с. 1 - 2, голо 1, 1 - 2, голо 1, голо	וווווווווווווווווווווווווווווווווווו	1.9 (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.

Bild 16.18: Riegelanschnitt: Windlast nicht abhebend $\frac{\sigma}{\sigma_{B}} = \frac{\text{GruSiBau}}{\text{LF H/HZ}} \begin{array}{c} \gamma_{M} = 1.1 \quad \gamma_{G} = \gamma_{Q} = 1.35 \quad \psi = 1.0 \\ \gamma_{H} = 1.71 \quad \gamma_{HZ} = 1.50 \end{array}$

-

16.4 <u>Untersuchung einer Stütze unter besonderer Beachtung</u> der Theorie II. Ordnung

16.4.1 Ziel der Untersuchung

Es soll herausgestellt werden, wie sich eine Umstellung der Bemessung von der bisherigen Regelung mit den Lastfällen H und HZ auf die Kombinationsregeln entsprechend GruSiBau [1] und Eurocode [19] mit den verschiedenen Kombinationen von Eigengewicht, Leit- und Begleitgefahr auf der Lastseite bemerkbar macht, wenn man die Schnittkräfte auf den verschiedenen möglichen Wegen ermittelt:

- Theorie I. Ordnung,
- Theorie II. Ordnung,
- ω Nachweis entsprechend DIN 4114,
- K Nachweis entsprechend Eurocode 3.

16.4.2 Vorgehensweise

Als System wird eine eingespannte Stütze gewählt, an deren Kopf die vertikalen Kräfte G, P, und die Horizontalkräfte P, und Z

angreifen. G, P_v und P_h gehören dabei zu den Hauptlasten entsprechend der bisherigen Regelung, Z stellt die Zusatzlast dar. Die Lasten P_v und P_h werden als vektorielle Aufspaltung einer Last F betrachtet, die eine Verkehrslast mit variablem Charakter darstellt. Die Verhältnisse der Kräfte zueinander werden durch die Koeffizienten $\alpha = P_v/(G+P_v)$, Hzg = $P_h/(G+P_v)$ und Zzg = $Z/(G+P_v)$ beschrieben, wobei die absolute Größe der Kräfte G, P_v , P_h und Z zueinander

ins Verhältnis gesetzt werden. Es wird angenommen, daß die Stütze nur um die starke Achse stabilitätsgefährdet ist. Als Variable aufgetragen werden entweder die Schlankheit λ , die Verhältnisse α , Hzg oder Zzg. Die Nichtvariablen werden pro Grafik konstant gehalten. Bei der Ermittlung der Tragfähigkeit für eine Parameterkombination (λ , α , Hzg, Zzg, Profilnummer, Stahlsorte = const.) werden die Lasten, die entsprechend α , Hzg und Zzg in ihrem Verhältnis zueinander nicht variiert werden, insgesamt so iteriert, daß die Auslastung entsprechend dem jeweiligen Nachweis optimal ist. Das in der Tabelle angegebene ß (= Z/ (H+Z) in der Wirkung an der Einspannstelle entsprechend Kap.5) bezieht sich immer auf die Größen entsprechend Theorie I. Ordnung. Bei der graphischen Darstellung werden die sich ergebenden Lasten auf die kleinere und damit maßgebende Belastung infolge der gültigen Bemessung mit LF H/HZ bezogen. Die kleinere Last innerhalb eines Bemessungskonzeptes kann vom System nur aufgenommen werden; dort steht also als Verhältnis eine 1.0.

Um die Kontinuität zu Kap. 5 zu wahren, wird hier das Verhältnis ρ (Rho) = $Q_{H/HZ} / Q_{GruSiBau}$ berechnet, welches in seiner Aussage dem Verhältnis σ/σ_B oder $1/\eta$ entspricht: D.h., wenn $\rho < 1$ ist, dann kann nach den GruSiBau-Kombinationsregeln mehr Last auf das System aufgebracht werden als nach den bisherigen Regeln. Der Unterschied zu Kap. 5 liegt darin, daß bei σ/σ_B und $1/\eta$ von den gleichen Lasten ausgegangen wird und die unterschiedlichen Spannungen verglichen werden; hier sind die Quotienten Svorh/Szul immer gleich 1.0.

16.4.3 Berücksichtigte Lastkombinationen

Es werden vier verschiedene Lastkombinationen aufgebracht:

- LF H (γ_{H} = 1.71) - LF HZ (γ_{HZ} = 1.50) - GruSiBau 1: $\gamma_{G} \cdot G + \gamma_{\Omega} \cdot (P + \psi_{O2} \cdot Z) \leq \frac{R}{\gamma_{M}}$ - GruSiBau 2: $\gamma_{G} \cdot G + \gamma_{Q} \cdot (Z + \psi_{O2} \cdot P) \leq \frac{R}{\gamma_{M}}$

Die Vergleiche werden jeweils durchgeführt auf der Basis der Berechnung nach

Theorie I. Ordnung,
Theorie II. Ordnung,
ω - Nachweis (DIN 4114),
κ - Nachweis (Nachweis 5.3.17, Biegeknicken EC3).

.

16.4.4 Zahlenbeispiel

Gewählte Parameter: HEB300Benötigte Daten
$$I_y = 25170 \text{ cm}^4$$
 $\lambda = 100$ für HEB300: $W_y = 1680 \text{ cm}^3$ $\alpha = 0.4$ $S_y = 934 \text{ cm}^3$ Hzq = 0.0A = 149 \text{ cm}^2Zzq = 0.1 $i_y = 13 \text{ cm}^3$

Stützenlänge: $\ell = s_k/2 = \lambda \cdot i_y/2 = 100 \cdot 13/2 = 6.5 m$

LF H (
$$\omega$$
 - Nachweis): $Q = G+P = 1078$ kN
 $\omega = 1.90$
 $\sigma_{\omega H} = 1.90 \cdot \frac{1078 \cdot 10}{149} = 137.5 \approx \frac{235}{1.71}$ N/mm²

LF HZ (allgemeiner
$$\Omega = 344.8 \text{ kN}$$

Spannungsnachweis): $Z = 34.48 \text{ kN}$
 $\sigma_{\text{HZ}} = \frac{344.8 \cdot 10}{149} + \frac{34.48 \cdot 10^3}{1\,680} = 156.5 \cong$
 $= 23.14 + 133.40 \cong \frac{235}{1.50} \text{ N/mm}^2$
 β (s. Kap. 5) = $S_Z/(S_{H+Z}) =$
 $= 133.40/(23.14+133.4) = 0.85$

LF HZ (
$$\omega$$
 - Nachweis):Q = 329.4 kN
Z = 32.94 kN
 $\sigma_{\omega HZ} = 1.90 \frac{329.4 \cdot 10}{149} + 0.9 \frac{32.94 \cdot 10^3}{1680}$
= 156.6 $\approx \frac{235}{1.50}$ N/mm²

$$\frac{\text{LF HZ (Th.II.O.):}}{\text{C} = 307.3 \text{ kN}}$$

$$z = 30.73 \text{ kN}$$

$$\varepsilon = 6.5 \cdot \sqrt{\frac{307.3 \cdot 1.50}{2.1 \cdot 10^{6} \cdot 25170 \cdot 10^{-8}}} = 0.6070$$

$$M^{\text{II}} = \gamma_{\text{HZ}} \cdot P \cdot \ell \cdot \frac{\tan \varepsilon}{\varepsilon} = 1.50 \cdot 30.73 \cdot 6.5 \cdot 1.144 =$$

$$= 342.8 \text{ kNm}$$

$$\sigma^{\text{II}} = \frac{1.50 \cdot 307.3 \cdot 10}{149} + \frac{342.8 \cdot 10^{3}}{1.680} = 235 \text{ N/mm}^{2}$$

<u>GruSiBau l</u>	Ω =	426.3 kN $\alpha = 0.4 \rightarrow G = 255.8$ kN
(Th.I.O.):	Z =	42.63 kN $P = 1/0.5$ kN
	N =	$1.35 \cdot 255.8 + 1.50 \cdot 170.5 = 601.1 \text{ kN}$ (Nor-
	M =	1.50.0.7.42.63.6.5 = malkraft)
	=	290.9 kNm
	σ =	$\frac{601.1\cdot10}{149} + \frac{290.9\cdot10^3}{1680} = 213.5 = \frac{235}{1.1} \text{N/mm}^2$
GruSiBau l	Q =	374.9 kN $\alpha = 0.4 \rightarrow G = 224.9$ kN
(Th.II.O.):	Z =	P = 150.0 kN
	N =	$1.35 \cdot 224.9 + 1.50 \cdot 150 = 528.6 \text{ kN}$
	ε =	$6.5 \cdot \sqrt{\frac{528.6}{2.1 \cdot 25170}} = 0.6500$
	M ^{II}	= $37.49.6.5 \cdot \frac{\tan \varepsilon}{2}$ = 285.0
	м =	l.5·0.7·285.0 = 299.3 kNm
	σ =	$\frac{528.6 \cdot 10}{149} + \frac{299.3 \cdot 10^3}{1.680} = 213.6 = \frac{235}{1.1} \text{ N/mm}^2$
<u>GruSiBau l</u> <u>(k-Nachweis, Biege-</u>	Q = Z =	393.4 kN $\alpha = 0.4 \rightarrow G = 236.1 kN$ 39.34 kNP = 157.4 kN
knicken EC 3):	N =	1.35·236.1 + 1.50·157.4 = 554.8 kN
	M =	1.5.0.7.39.34.6.5 = 268.5 kNm
	N _{pl} M _{pl}	$= \frac{235 \cdot 149 \cdot 10^{-1}}{1.1} = 3 \ 183 \ \text{kN}$ $= \frac{235 \cdot 2 \cdot 934 \cdot 10^{-1}}{1.1} = 399.1 \ \text{kNm}$
	M _{uy}	= $1.1 \cdot M_{pl}$ = 439 kNm, da $\frac{N}{N_{pl}}$ > 0.1
	$\overline{\lambda}$ =	$\frac{\lambda}{\rho_{\rm pl}}$ $\lambda_{\rm pl} = \pi \sqrt{\frac{\rm E}{\sigma_{\rm F}}} = 93.9$
	$\overline{\lambda} =$	$\frac{100}{93.9}$ = 1.065, Knicklinie b $\rightarrow \kappa$ = 0.5564
	$\frac{N}{\kappa \cdot N}$	$\frac{554.8}{0.5564.3183} = 0.3133$
	0.33	$133 + \frac{1}{1 - 0.3133 \cdot (0.5564 \cdot 1.065)^2} \cdot \frac{268.5}{439.0} = 1.0$

<u>GruSiBau 2</u>	Q	=	322.1 kN	α =	0.4	→ G	= 1	93.3	kN
(Th.I.O.):	Ζ	=	32.21 kN			Р	= 1	28.8	κN
	Ν	=	1.35.193.3 + 1	.50.0	.7.	128.8	8 =	396.2	kN
	М	=	1.50.32.2.6.5	= 314	.01	kNm			
	σ	H	$\frac{396.2 \cdot 10}{149} + \frac{314}{1}$	<u>.0·10</u> 680	3 =	213	.5 N	/ mm ²	
<u>GruSiBau 2</u>	Q	=	293.8 kN	α =	0.4	→ G	= 1	76.3	kN
(Th.II.O.):	Ζ	=	29.38 kN			P	= 1	17.5	kN
	N	=	1.35.176.3 + 1	.50.0	. 7 • 3	117.	5 =	361.4	l kN
	М	=	1.5.29.38.6.5	= 286	.46	kNm			
	ε	=	$6.5 \sqrt{\frac{361.4}{2.1\cdot 25170}}$	= 0,	537	5			
	M	II	= 286.46 $\frac{\tan \varepsilon}{\varepsilon}$	= 31	7.7	kNm			
	σ	H	$\frac{361.4\cdot10}{149}$ + $\frac{317}{1}$	<u>.7.10</u> 680	3 — =	213	.3 N	/ mm²	
GruSiBau 2	Q	=	322.2 kN	α =	0.4	→ G	= 1	93.3	kN
(K-Nachweis, Biege-	Ζ	=	32.22 kN			Ρ	= 1	28.9	kN
knicken EC3):	N	=	1.35.193.9 + 1	.50.0	.7•:	128.9	9 =	397.1	_ kN
	М	=	1.50.32.22.6.5	= 31	4.1	kNm			
	$\frac{N}{\kappa}$	V N	$\frac{397.1}{1} = \frac{397.1}{0.5564.318}$	$\frac{1}{3} = 0$.224	42			
	0.	. 22	42 + 1 - 0.224	1 2 · (0.	5564	4.1.(265)	$\frac{314}{2} \cdot \frac{314}{439}$.1
								= 1	0

.

`

e

16.4.5 Diagramme

16.4.5.1 <u>Vergleich GruSiBau/LF H/HZ mit unterschiedlichen</u> Berechnungsweisen

In den nachfolgenden vier Tabellen und Grafiken in Bild 16.19 und 16.20 sind GruSiBau und die gültigen Regeln entsprechend den vorhergehenden Ausführungen (aufnehmbare Last) verglichen, Theorie I. Ordnung (Bild 16.19 links), Theorie II. Ordnung (Bild 16.19 rechts), Omega-Nachweis (Bild 16.20 links) und Kappa-Nachweis (Bild 16.20 rechts). Es stellt sich heraus, daß die benutzte Berechnungsweise kaum einen Einfluß auf die Verhältnisse hat. Dabei ist die Schlankheit λ als Variable gewählt. Beim Kappa-Nachweis ist ein Buckel festzustellen, der daraus resultiert, daß bei $N/N_{pl} > 0.1 M_{uv} = 1.1 \cdot M_{pl}$ ist. Der Übergang findet bei unterschiedlichen Normalkräften statt. In den nachfolgenden vier Tabellen und Grafiken in Bild 16.21 und 16.22 sind jeweils Vergleiche angestellt mit α , Hzg und Zzq als Variable. Es zeigt sich, daß sie sich einordnen lassen in die vorstehenden Diagramme des Lastminderungskoeffizienten $1/\eta$ in Abhängigkeit von α und $\beta.$

16.4.5.2 <u>Vergleich verschiedener Berechnungsweisen innerhalb</u> einer Berechnungsvorschrift

In Bild 16.23 links sind innerhalb der gültigen Berechnungsweise Theorie I. Ordnung und Theorie II. Ordnung verglichen. In Bild 16.23 rechts sind innerhalb von GruSiBau Theorie I. Ordnung und Theorie II. Ordnung verglichen. Bei beiden Darstellungen ist zu sehen, daß mit ansteigender Schlankheit λ die Ergebnisse stärker auseinanderklaffen. In Bild 16.24 ist Hzq = $P_h/(G+P_v)$ die Variable. Schlagartig beim Ansteigen driften Theorie I. Ordnung und Theorie II. Ordnung auseinander, um bei weiter ansteigendem Hzq wieder zusammenzulaufen. In Bild 16.25 und 16.26 sind Th.II.O. und Omega-/Kappa-Verfahren einandergegenübergestellt. In Bild 16.25 ist λ die Variable, in Bild 16.26 Hzq.

Vergleich der gültigen Bemessungsregeln mit den GruSiBau-Regeln am Beispiel einer eingespannten Stütze in St37

Vergleich GrusiBau / LF H/HZ nach der Theorie I. Ordnung

Profil: HEB300 Ĥlpha = 0.400 Hzq = 0.000 Zzq = 0.100 GammaH = 1.71 GammaG = 1.35 GammaQ = 1.50 GammaHZ = 1.50 GammaM = 1.10 Psi02 = 0.70 0 in [kH]

Vergleich der gültigen Bemessungsregeln wit den GruSiBau-Regeln am Beispiel einer eingespannten Stütze in St37

Vergleich GruSiBau / LF H/HZ nach der Theorie II. Ordnung

Profil: HEB300 Alpha = 0.400 Hzq = 0.600 Zzq = 0.100 GammaH = 1.71 GammaG = 1.35 GammaQ = 1.50 GammaN = 1.10 Psi02 = 0.70 Q in [kN]

	2	2	296	34	444	946	345	942	938	334	929	124	919	14
	bet	à	3.1	3.1	1.6	1.6	3.1	9.1	3.1		1.6	9.1	1.6	1.6
	IS I	4+	6.9		8.	ເ <u>ດ</u>		2	4	4	4.	9.6	0.0	5.2
	Grt	0=0	1065	661	472	364	294	244	206	180	158	146	126	110
	-	0	92	50	32	24	20	18	18	20	21	22	25	27
-	ne	à	6.8	0.8 8	0.8	0.8	9 .9	0.8	9.6	0.8	0.8	<u>ө</u> .	<u>θ.</u> θ	θ.
	si.	î÷	.5	<u>،</u>		~	~ .	~ .	4.1	9.	2.2	5.1	9.6	4.6
	Grt	0=0	1203	807	590	463	374	311	264	22	198	175	15	13.
		0	00											00
	77	RI	1.6		_							-		1.6
	L.	а. + Б	3.3	2.2	5.7	. 2	e.	5.0	. 2	ະ. ເ	9.0	9.1	e	5.3
	-	Q=(1073	689	49	381	302	25	216	186	16	14	120	Ξ
		0	525	34	17	86	50	25	96	160	980	020	963	56
		ā	6	6	0	0.	6.0	9.1	8.1	0.0	9.6	0.0	9.6	0. 0
		۵. +	ю. Э											5.1
	-	0=(2046									-		2046
			4	ø	œ	2	ñ	2	5	0	-	2	<u>م</u>	ő
		Bet	0.54	0.70	0.78	0.82	0.85	6.87	0.89	0.90	0.91	0.92	0.93	0.93
		zq Bet	10 0.54	0.70	0.78	0.82	0.85	6.87	0.89	0.90	0.91	0.92	6.93	10 0.93
		Zzq Bet	3 0.10 0.54	0.70	0.78	0.82	0.85	6.87	0.89	0.90	0.91	0.92	6.93	8 6.10 8.93
		Hzq Zzq Bet	9.68 6.16 6.54	6.79	0.78	0.82	0.83	0.87	0.89	0.90	0.91	0.92	6.93	0.00 0.10 0.93
		p Hzq Zzq Bet	40 0.00 0.10 0.54	6.76	1 1 0.78	0.82	0.85	0.87	0.89	0.90	0.91	0.92	6.93	40 0.00 0.10 0.93
		Alp Hzq Zzq Bet	0.40 0.68 0.19 0.54	6.70	1 1 1 0.78	0.82	0.85	0.87	0.89	0.90	0.91	0.92	6.93	0.40 0.00 0.10 0.93
		am Alp Hzq Zzq Bet	20 0.40 0.00 0.10 0.54	40 0.70	60 1 1 1 0.78	80 0.82	00 0.85	20 0.87	40 0.89	60 0.90	80 8.91	60 0.92	20 0.93	40 0.40 0.00 0.10 0.93

Vergleich der gültigen Bemessungsregeln mit den GruSiBau-Regeln em Beispiel einer eingespannten Stütze in St37

H/HZ nach dem Omega-Nachweis (DIN 4114) Vergleich GruSiBau / LF

0.100 Q IN CKN3 8 Zzq Hzq = 0.600 GammaQ = 1.50 Psi02 = 0.70 Alpha = 0.400 GammaG = 1.35 GammaM = 1.10 HEB300 = 1.71 = 1.50 Profil: 1 GammaH GammaHZ

					LF H		LFH	Z	GrusiB	au 1	Grusil	łau 2
Lam	Alp	hzq	Zzq	Bet	Q=C+P	ƙho	Q=G+P	Rho	0=G+P	Rho	d+0=0	Rho
20	0.40	0.00	0.10	1 0.54	9 6.1761	9.570	1124.1	1.009	1245.6	0.962	1122.9	1.601
40				0.70	1798.3 6	9.464	725.9		841.1	0.863	704.6	1.030
69	_		-	0.78	1576.3 6	9.336	529.0	_	623.6	0.848	507.5	1.042
80				0.82	1323.8 6	3.309	409.4		486.4	0.842	391 3	1.046
100				0.85	1078-0 2	3.306	329.4		391.7	0.841	314.4	1.048
120		-		0.87	841.9 1	320	269.6		319.2	0.845	258.2	1.044
140				6.89	618.7 6	357	220.6		258.9	0.852	21 . 6	1.038
160				0.30	473.5 6	9.390	184.8		214.8	0.860	1:9.0	1.032
180				0.91	374.16	9.421	157.5		181.5	0.868	153.4	1.027
200	-			0.92	303.1 8	0.450	136.2		155.7	0.875	133.3	1.022
220				6.93	250.4 0	0.476	119.2		135.3	0.880	117.1	1.018
240	0.40	0.00	0.10	6.93	210.4 6	0.500	105.2	1.000	118.7	0.886	103.8	1.014

(DIN 41.14)

Vergleich der gültigen Bemessungsregeln mit den GruSiBau-Regeln am Beispiel einer eingespannten Stütze in St37

3,1984) Vergleich GruSiBau / LF H/HZ nach dem Kappa-Nachweis (Eurocode

0.100 CKMJ Ħ <u>م</u> 2 z q 0 = 0.000 = 1.50 = 0.70 Hzq Ganmaû Psi62 Alpha = 0.400 GammaG = 1.35 GammaM = 1.10 Profil: HEB300 GammaH = 1.71 GammaHZ = 1.50 N Rho

GrusiBau 0=G+P

-Rho

GruSiBau

ΖH

Ľ

Ξ

۲. ا

0=6+P

Rho

0=C+P

Rho

0=G+P

Bet

Hzq

Alp

Lan

Vergleich der gültigen Bewessungsregeln mit den GruSiBsu-Regeln am Beispiel einer eingespannten Stütze in St37

Vergleich GruSißau / LF H/HZ nach der Theorie II. Ordnung

Profil: HEB300 Lambda = 100 Hzq = 0.000 Zzq ⁻ 0.000 GammaH = 1.71 GammaG = 1.35 GammaQ = 1.50 GammaHZ = 1.50 GammaM = 1.10 Psi02 = 0.70 Q i (KN)

					LF H		LF J	ΖH	GruSiE	au 1	Grusi	tau 2
لي س	Яlр	Hzq	Zzq	Bet	0=6+P	Rho	Q=6+P	Rho	0=6+P	Rho	Q=G+P	Rho
160	9.99	6.69	0.00	0.00	2046.7	1.000	2332.2	6.878	2355.2	0.869	2356.2	0.869
	9.10 0.20				*****				2331.3 2305.5	0.878 0.683	2465.6 2465.6	0.849 0.830
	0.30								2281.5	0.897	2524.3	0.811
	0.40								2257.5	0.907	2585.7	0.792
	0.50								2233.5	0.916	2652.4	0.772
	0.60								2209.5	0.926	2719.1	0.753
	0.70								2187.2	0.936	2791.2	0.733
	0.80				-				2164.1	0.946	2865.9	0.714
	0,90								2142.7	0.955	2945.9	0.695
100	1.00	0.00	9.99	0.00	2046.7	1.000	2332.2	0.878	2121.4	0.965	3028.7	0.676

Vergleich der gültigen Bewessungsregeln mit den GruSiBau-Regeln am Beispiel einer eingespannten Stütze in St37

Vergleich Grusißau / LF H/HZ nach der Theorie II. Ordnung

Profil: HEB300 Lambda = 100 Hig = 0.000 Zzq = 0.100 GammaH = 1.71 GammaG = 1.35 GammaD = 1.50 GammaHZ = 1.50 GammaM = 1.10 Psi02 = 0.70 0 in [kH]

					-										
						ΓL	I		1	ZH		GrusiB	l us	Grusil	8au 2
۲ ۲	Alp	Hzq	221	σ	Bæt	0=C+P	α.	04	0=C+	٩	Rho	0=G+₽	Rho	0=C+P	Rho
100	0.00	0.00	6	10	0.85	2047.2	ø.	150	307.	н е	999	379.1	0.811	288.7	1.064
	0.10	-	-		-	-	-		-			378.1	0.813	289.9	1.060
_	0.20											377.1	0.815	291.4	1.055
	0.30											375.9	0.817	292.7	1.050
	0.40					-						374.7	0.820	294.1	1.045
	0.50											373.5	0.823	295.4	1.040
	0.60											372.8	0.824	296.9	1.035
	0.70											371.6	0.827	298.2	1.630
	0.80				 .				_			376.4	0.830	299.8	1.025
	0.90											369.6	0.831	301.2	1.020
160	1.60	0.00	0	10	0.85	2047.2	8	150	307.	е е	000.	368.4	0.834	302.5	1.016

0.1

Th.II.O., Variable: a, Zzg =

Vergleich der gültigen Bewessungsregeln mit den GruSiBau-Regeln **am Beispiel eine**r eingespannten Stütze in St37

Vergleich GrußiBau / LF H/HZ nach der Theorie II. Ordnung

Zzq = 0.100 0 in Ekhj Alpha = 0.400 GammaR = 1.50 Psi02 = 0.70 Lambda = 100 GammaG = 1.35 GammaM = 1.10 Profil: HEB300 GammaH = 1.71 GammaHZ = 1.50

	_				
		LF H	LF HZ	GrusiBau l	
9 00		0=6+P Rho	0=G+P Rho	Q=G+P Rho	
0.	5 5	047.2 0.150 732 0 0 354	307.3 1.000	374.7 0.820 210 4 6 250	

Variable: Hzg

Vergleich der gültigen Remessungsregeln mit den GruSiBau-Regeln am Beispiel einer eingespannten Stütze in St37

Vergleich Grußißau / LF H/HZ nach der Theorie II. Ordnung

Hzq = 0.0000 in [kN] Alpha = 0.400 GammaQ = 1.50 Psi02 = 0.70 Lambda = 100 GammaG = 1.35 GammaM = 1.10 Profil: HEB300 GammaH = 1.71 GammaHZ = 1.50

		,		_				_				
3au 2	Rho	0.792	0.970	1.004	1.023	1.035	1.045	1.051	1.057	1.061	1.064	1.067
Grusil	0≈G+P	2585.7	860.2	575.0	435.1	350.9	294.1	253.3	222.4	198.4	179.0	163.1
au 1	Rho	9.907	0.884	0.855	0.839	0.828	0.820	0.814	0.809	0.805	0.802	0.799
Grusit	0=G+P	2257.5	944.0	674.8	530.8	438.9	374.7	327.2	290.6	261.3	237.6	217.7
2	Rho	0.878	1.000						-			1.000
LF H	0=C+P	2332.2	834.1	577.1	445.2	363.3	307.3	266.2	235.0	210.4	190.5	174.0
_	Rho	1.000	0.408	0.282	0.218	0.177	0.150	0.130	0.115	0.103	0.693	0.085
LF H	0=G+P	2046.7								_		2047.0
	Bet	0.00	0.54	0.70	0.78	0.92	0.85	0.87	0.69	0.90	0.91	0.92
	bzZ	0.00	0.02	0.04	0.06	0.08	0.10	0.12	0.14	0.16	0.18	0.20
	Hzq	0.00										0.00
	qlp	0.40								_		0.40

Vergleich der gültigen Bemessungsregeln mit den GruSiBau-Regeln am Beispiel einer eingespannten Stütze in St37 Vergleich Th.1.0.7Th.11.0 innerhalb LF H/HZ (gültige Yorschrift D)

Profil: HEB306 Alpha = 0.400 Hzq = 0.000 Zzq = 0.100 GammaH = 1.71 GammaG = 1.35 GammaG = 1.50 GammaHZ = 1.50 GammaM = 1.10 Psi02 = 0.70 0 in [kN]

					LF Н Th. I.O.	LF H2 Th.1.0		LF H Th.II.0.	- ÷	LF HZ h.11.(,
ل هر	q I A	Hzq	Zzq	Bet	Q=G+P Rho	0=G+P	Rho	0=6+P Rho	0=(а с+р	sho
20	0.40	0.00	0.10	0.54	2047.5 0.529	1083.21	. 000	2047.5 0.52	201 63	3.31.	.009
40				0.70	6.345	705.5		2046.1 0.34	15 68:	3.7 1.	032
60				0.78	0.256	523.0	_	2046.7 0.25	56 490	3.71.	.059
80				0.82	0.203	415.6		2647.0 0.26	33 38:	1.0 1.	160.
100				0.85	0.168	344.8		2046.0 0.16	58 30	7.3 1.	.122
120				0.87	0.144	294.5		2047.4 0.14	14 25	4.91.	.156
140				6.89	0.126	257.1		2046.6 0.12	26 21(6.2 1.	. 189
160				0.96	0.111	228.1		2046.0 0.11	11 18(6.51.	. 223
180				16.91	6.100	205.0		2047.6 0.16	90 16	3.01.	. 258
200	_			0.92	0.691	186.1		2047.0 0.05	91 14	4.01.	. 293
220				0.93	0.083	170.4		2046.5 0.08	33 121	8.3 1.	. 328
240	6.40	6.66	0.10	6.93	2046.1 0.077	157.21	000.1	2046.1 0.07	22 11:	5.3 1.	. 363

Vergleich der gültigen Bemessungsregeln mit den GruSiBau-Regeln am Beispiel einer eingespannten Stütze in St37

Vergleich Th.I.O./Th.II.O innerhalb GruSiBau 1/2

Profil: HEB300 Alphs = 0.400 Hzq = 0.000 Zzq = 0.100 GammaH = 1.71 GammaG = 1.35 GammaQ = 1.50 GammaHZ = 1.50 GammaM = 1.10 Psi02 = 0.70 0 in (kN]

GrusiBau 1 GrusiBau 2 Th.11.0. Th.11.0.	0=6+P Rho 0=6+P Rho	1203.5 0.893 1065.9 1.008	804.2 0.844 661.1 1.027	593.1 0.836 472.8 1.048	462.7 0.844 364.4 1.071	374.7 0.860 294.0 1.096	311.7 0.879 244.7 1.126	264.3 0.903 208.5 1.144	227.6 0.928 180.5 1.170	198.7 0.954 158.5 1.196	175.1 0.981 140.6 1.221	155.6 1.009 126.0 1.247	1 1 2 2 4 1 0 2 9 1 1 2 7 1 2 7
GruSiBau 2 Th.1.0.	à=G+P Rho	1074.6 1.000	678.8	495.5	390.4	322.3	274.0	238.6	211.1	189.5	171.7	157.1	1 144 B 1 000
GruŝiBau 1 Th.1.0.	Q≈G+P Rho	1214.6 0.885	830.6 0.817	630.8 0.786	508.8 0.767	426.4 0.756	366.7 0.747	321.8 0.741	286.8 0.736	258.5 0.733	235.3 0.730	216.1 0.727	199 E 0 725
-	Alp Hzq Zzq B∉t	0.46 6.66 6.16 6.54	0.70	0.78	0.82	0.85	6.87	6.89	0.50	6.91	6.92	6.93	0.40 0.00 0.10 0.43
	ε	0	9	8	80	90	50	40	89	80	90	80	40

Variable: λ

Bild 16.23: Vergleich Th.I.O./Th.II.O. innerh. LF H/HZ

Variable: λ

Vergleich der gültigen Bemessungsregeln mit den Gruß Bau-Regeln am Beispiel einer eingespannten Stütze in St37

â Vergleich Th.1.0./Th.11.0 innerhalb LF H/HZ (gültige Verschrift

Zzq = 0.000 Q in CKNJ Alpha = 0.400 Gamaû = 1.50 Fsi02 = 0.70 Lambda = 100 GammaG = 1.35 GammaM = 1.10 Profil: HEB300 GammaH = 1.71 GammaHZ = 1.50

	ę	878	40	973	331	904	985	126	969	952	945	939
HZ 1.0.	12	9.9	1.1			1.6	0.0	60	60	60	60	0.0
LF Th.1	Q=G+P	2332.2	834.1	577.1	445.2	363.3	307.3	266.2	235.0	210.4	190.5	174.0
	Rho	1.000	1.299	1.223	1.175	1.145	1.123	1.107	1.094	1.085	1.076	1.070
LF H Th. 11	d+5=0	2046.7	732.1	596.1	330.6	318.6	269.4	233.5	206.2	184.5	167.2	152.7
۰ 0	Rho	0.878										0.873
LF + Th. I.	0=G+P	2332.2	1083.2	705.5	523.0	415.6	344.8	294.5	251	22(.1	205.0	186.1
		0					-				-	0
	Rho	1.00							-			1.00
LF H Th.1.0.	0=G+P Rho	2046.7 1.00	950.6	619.1	459.0	364.7	302.5	258.5	225.6	200.2	179.9	163.3 1.00
LF H Th.1.0.	Bet G=G+P Rho	0.00 2046.7 1.00	950.6	619.1	459.0	364.7	302.5	258.5	225.6	200.2	179.9	0.00 163.3 1.00
LF H Th.1.0.	Zzg Bet G=G+P Rho	0.00 0.00 2046.7 1.00	950.6	619.1	459.0	364.7	302.5	258.5	225.6	200.2	179.9	0.00 0.00 163.3 1.00
LF H Th. 1.0.	Hzg Zzg Bet G=G+P Rho	0.00 0.00 0.00 2046.7 1.00	0.02 950.6	0.04 619.1	0.06 459.0	0.08 364.7	0.10 302.5	0.12 258.5	0.14 225.6	0.16 200.2	0.18 179.9	0.20 0.00 0.00 163.3 1.00
LF H Th. 1.0.	Alp Hzq Zzq Bet Q=G+P Rho	0.40 0.00 0.00 0.00 2046.7 1.00	0.02 950.6	0.04 619.1	0.06 459.0	0.09 364.7	0.10 302.5	0.12 258.5	0.14 225.6	0.16 200.2	0.18 179.9	0.40 0.20 0.00 0.00 163.3 1.00

Vergleich Th.1.0./Th.11.0 innerhalb GruSiBau 1/2

Alpha = 0.400 Zzq = 0.000 GammaQ = 1.50 Psi02 = 0.70 Q in [kN] Lambda = 100 GammaG = 1.35 GammaM = 1.10 Profil: HEB300 GammaH = 1.71 GammaHZ = 1.50 GrusiBau 2 Th.11.0. G=G+P Rho

GrusiBau 1 Th.II.O.

GrusiBau 2 Th.1.0.

GrusiBau 1 Th.1.0. 0=G+P Rho

Rho

0=G+P

Rho

0=C+P

Bet

bzZ

Lan Alp Hzq

0.40 0.00 0.00 2046.7 1.000 2332.2 0.878 2946.7 1.000 2336.1 1.229 2396.1 1.229 2396.1 1.229 2396.1 1.229 2396.1 1.229 3996.1 1.229 3996.1 1.229 3996.1 1.229 3996.6 1.175 3996.6 1.175 3996.6 1.175 3996.6 1.175 3996.6 1.175 3996.6 1.175 3996.6 1.175 3996.6 1.175 3996.6 1.175 3996.6 1.175 3996.6 1.175 3996.6 1.175 2285.5 2295.1 2295.5 2295.1 2295.5 2295.5 2295.1 2295.5 2295.1 2295.5 2295.1 12999 2096 11127 2295.5 2295.5 2295.5 2295.5 2295.5 2295.5 2295.5 2295.5 2295.5 2295.5 2295.5 2295.5 2295.5 2295.5 2295.5 2295.5 2295.5 2295.5 2295.6 2295.6 2295.6 2295.6 2295.6 2295.6 2295.6 2295.6 2295.6 2100.7 2100.7 2100.7 21	332.2 0.878 100 0.40 0.02 2257.5 1.00 2585.7 0.873 2257.5 1.01 334.1 1.140 0.02 0.02 1013.8 1303.9 0.774 803.1 1.21 455.2 1.013 0.04 0.02 1013.8 1303.9 0.774 547.3 1.21 455.2 1.031 0.04 653.3 653.3 654.7 0.749 547.3 1.12 455.2 1.031 0.05 1.066 1.653.3 654.7 0.749 547.3 1.12 663.3 1.066 1.653.3 1.664 1.653.3 654.7 0.774 547.3 1.12 665.2 0.971 0.066 316.4 382.0 524.4 0.729 339.5 1.11 665.2 0.971 0.12 216.4 2529.3 374.8 0.724 286.3 1.14 665.2 0.950 0.14 2559.9 374.8 0.727 247.1 1.06 665.2 0.950 0.14 255.5 0.714 177.7 1.06 616 0.15 1.87.4 256.5 0.714 175.9 1.06 918.4 0.939 1.909	Rho / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.10 / 1.10 / 1.10 / 1.10 / 1.10 / 1.11.0 / 1.110 / 1.110 / 1.110 /	
0.40 0.00 0.00 2046.7 1. 0.064 0.06 950.6 950.6 0.064 14 455.1 0.18 362.5 0.18 362.5 0.18 362.5 0.19 362.5 0.12 2255.5 0.13 225.5 0.14 2255.5 0.15 2255.5 0.16 179.9 179.9 179.9 179.1 179.9 179.1 170.1 170.1 11.0 171.1 11.0	N		1 7
0.40 0.00 0.00 0.01 0.00 0.00 0.02 0.10 0.10 0.12 0.12 0.12 0.13 0.12 0.12	000 2332.2 0.873 2046.7 1.000 23 705.5 732.1 1.239 8 705.5 732.1 1.239 8 715.6 390.6 1.123 3 318.6 1.123 3 344.8 269.4 1.123 254.5 265.4 1.123 254.5 265.4 1.123 254.5 233.5 1.097 251.1 186.6 1.123 255.1 1096.2 1.094 255.0 167.2 1.076 205.0 167.2 1.076 186.1 0.879 152.7	F H Gamma = 1.71 F H Gamma = 1.71 F HZ Gamma = 1.50 F H Gamma = 1.50 F HZ Gamma = 1.50	
₩ 1 I	0.00 2046.7 1.000 2332.2 0.878 2046.7 1.000 23 950.6 1083.2 732.1 1.239 8 950.6 1083.2 732.1 1.239 8 459.1 705.5 530.6 1.123 8 364.7 313.6 1.175 318.6 1.175 362.5 344.8 258.5 264.4 1.123 302.5 344.8 265.1 1.123 318.6 258.5 244.5 264.5 264.4 1.123 258.5 224.5 225.1 1.994 264.7 2605.2 225.1 1.84.5 1.093 265.2 279.3 1.799 266.2 1.123 318.6 279.4 1.123 264.5 264.5 264.4 279.1 184.5 1.094 205.0 179.9 167.2 1.076 1676 179.9 165.3 1.676 1.076	Th.I.O. LF H Gamma 1.71 Th.I.O. LF H Gamma 1.50 Th.I.O. LF HZ Gamma 1.50 Th.II.O. LF HZ Gamma 1.50	

Vergleich Th.I.O./Th.II.O. innerh. GruSiBau

Bild 16 24: Vergleich Th.I.O./Th.II.O. innerh. LF H/HZ

Variable: Hzg

Alpha = 0.40 Zzq = 0.00 HEB300

Lambda = 100

Variable: Hzq

Lambda = 100 Alpha = 0.40 Zzq = 0.00 HEB300

St37

St37

Vergleich der gültigen Bemessungsregeln mit den GruSiBau-Regeln am Beispiel einer eingespannten Stütze in St37 Vergleich Th.II.0./Omega-Machweis innerhalb LF H/HZ (gültige Vorschrift D)

Profil: HEB300 Alpha = 0.400 Hzq = 0.000 Zzq = 0.100 GammaH = 1.71 GammaG = 1.35 GammaQ = 1.50 GammaHZ = 1.50 GammaM = 1.10 Psi02 = 0.70 Q in [kH]

			_										
Z TE	Rho	0,955	0.942	0.933	0.931	0.933	0.945	0.980	1.003	1.035	1.057	1.077	1 036
Q me	0=C+P	1124.1	725.9	529.0	409.4	329.4	269.6	220.6	184.8	157.5	136.2	119.2	01 0
rđ	Rho	0.544	0.380	0.313	0.288	0.285	0.303	0.350	0.394	0.436	0.475	0.512	0 540
LF H Omeg	0≖C+P	1971.9	1798.3	1576.3	1323.8	1078.0	841.9	618.7	473.5	374.1	303.1	250.4	210 4
ار ۵۰.	Rho	1.666					-						1 000
LF + Th. 11	d+5=0	1073.3	683.7	493.7	381.0	307.3	254.9	216.2	186.5	163.0	144.0	128.3	115
·0.	Rho	0.524	0.334	0.241	0.186	0.150	0.124	0.106	0.031	0.080	0.070	0.063	0 056
LF H Th. 11	Q=G+P	2047.5	2046.1	2046.7	2047.0	2046.0	2047.4	2046.6	2046.0	2047.6	2047.0	2046.5	2046 1
	Bet	0.54	0.70	0.78	0.82	0.85	0.87	0.89	0.90	0.91	0.92	0.93	0.02
	2zq	0.10											0.10
	Hzq	0.00											0.00
	Ч1 р	0.40											0.40
	a n	20	40	69	80	100	120	140	160	180	200	220	040

Vergleich der gültigen Remessungsregeln mit den GruSißau-Regeln am Beispiel einer eingespannten Stütze in St37

Vergleich Th.II.0./Kappa-Nachweis innerhalb GruSiBau 1/2

Profil: HEB300 Alpha = 0.400 Hzq = 0.000 Zzq = 0.100 GammaH = 1.71 GammaG = 1.35 GammaQ = 1.50 GammaHZ = 1.50 GammaH = 1.10 Psi02 = 0.70 Q in [kH]

					GruŝiBau 1 Th. II. O.	GrusiBau 2 Th.11.0.	GruSiBau 1 Kappa	GruSiBau 2 Kappa
Lan	Чłр	Hzq	Zzq	Bet	0=G+P Rho	Q=G+P Rho	0=G+P Rho	0=G+P Rho
20	0.40	0.00	9.10	0.54	1203.5 0.886	1065.9 1.000	1307.6 0.815	1187.4 0.898
40				0.70	804.2 0.822	661.1	870.1 0.760	737.7 0.896
60				0.78	593.1 0.797	472.8	636.1 0.743	525.4 0.900
80				0.82	462.7 0.788	364.4	490.7 0.743	402.3 0.906
100				0.85	374.7 0.785	294.0	393.3 0.748	321.9 0.913
120				0.87	311.7 0.785	244.7	323.5 0.756	248.0 0.986
140				0.99	264.3 0.789	208.5	271.5 0.768	209.7 0.994
160				0.90	227.6 0.793	180.5	218.8 0.825	180.6 1.000
180				0.91	198.7 0.798	158.5	189.6 0.836	157.6 1.005
200		-	_	0.92	175.1 0.803	140.6	166.1 0.847	139.1 1.011
220				0.93	155.6 0.810	126.0	147.0 0.857	124.0 1.016
240	0.40	0.00	0.10	6.93	139.4 9.815	113.7 1.000	131.1 0.867	111.3 1.021

Vergleich der gültigen Bemessungsregeln mit den GrußiBau-Regeln am Beispiel einer eingespannten Stütze in St37

Vergleich Th.11.0./Owega-Hachweis innerhalb LF H/HZ (gültige Vorschrift D)

Zzq = 0.000 Q in [kN] Alpha = 0.400 Gamma0 = 1.50 Psi02 = 0.70 Lambda = 100 GammaG = 1.35 GammaM = 1.10 Profil: HEB300 GammaH = 1.71 GammaHZ = 1.50

	tho	665	921	862	639	826	818	813	603	502	. 805	804	-
LF HZ Omega	0=C+P	1229.3 1.	794.5 0.	587.3 0.	465.6 0.	385.6 0.	329.4 0.	287.1 0.	254.8 0.	228.6 0.	207.6 0.	190.0 0	
LF H Owega	0=6+P Rho	1078.0 1.899	697.4 1.050	515.0 0.983	408.5 0.956	338.4 0.941	288.7 0.933	251.9 0.927	223.3 0.924	200.7 0.919	182.1 0.918	166.8 0.916	
LF HZ Th.11.0.	Q=G+P Rho	2332.2 0.878	834.1 0.878	577.1 0.877	445.2 0.877	363.3 0.877	307.3 0.877	266.2 0.877	235.0 0.877	210.4 0.877	190.5 0.878	174.0 0.878	
г н .11.0.	P Rho	.7 1.600			.6	v.	4	ۍ ۲	. 2		∾.	2.7 1.000	
74	0=0	2046	732	596	390	318	269	8,3	266	18	167	5	
	hlp Hzq Zzq B∉t 0,≕G+	0.40 0.00 0.00 0.00 2046	0.02 . 732	0.04 506	0.06 390	0.08 318	0.10 269	0.12 0.12 2.3	0.14 20	0.16 1 184	0.18 167	0.40 0.20 0.00 0.00 15	-

so.

Variable: Hzq

Variable: Hzq

0.0

Vergleich der gültigen Bemessungsregeln mit den GruSiBau-Regeln am Beispiel einer eingespannten Stütze in St37

Vergleich Th.II.O./Kappa~Machweis innerhalb GruSiBau 1/2

Zzq = 0.000 G in [kH] = 6.406 = 1.56 = 0.76 Alpha : Gammaû : Psi62 : Lambda = 100 GammaG = 1.35 GammaM = 1.10 Profil: HEB300 GammaH = 1.71 GammaHZ = 1.50 Profil: | GammaH

N

GruSiBau Kappa

Grusibau 1

2

GrusiBau Th. II. 0.

GrusiBau 1 Th. II. Ú.

Kappa

Rho

0=6+P

Rho

Q=6+P

Rho

Rho

0=6+P

Bet

Zzq

Hzq

l an 160

1.797 1.009 0.967 360.4 0.942

1255.9 737.4

0.873 0.787

1926.0 2585.7 0=G+P

2257.5 1.000

0.00

0.00

0.00 0.02

0.40 д I р

0.04

286.0 247.1 217.7 194.5

175.9

0.00

0.00

1.0

Rho

339.5

547.3 418.3

803.1

542.4 432.5

16.4.6 Auswertung Th.II.O.

16.4.6.1 Vergleich GruSiBau / LF H/HZ

Von einer Berechnungsart bzw. Belastungsvorschrift ist jeweils nur die maßgebende dargestellt, z.B. auf Bild 16.19 links von der gültigen Regelung nur LF HZ, von GruSiBau nur G2, d.h. GruSiBau 2 (γ_G G + γ_Q (Z + ψ_{O2} P)) (siehe auch 16.4.3). Der Vergleich ergibt auf der Basis jeder Berechnungsart, daß die Last, die auf das System mit wachsender Schlankheit aufgebracht werden kann, bei niedriger Schlankheit in etwa gleich, bei grö-Berer Schlankheit (λ = 100) für GruSiBau rund 5% niedriger lieqt, wenn gleichzeitig $\alpha = 0.4$, Hag = 0 und Zzg = 0.1 ist. Über λ = 100 streben die Kurven wieder zusammen, wenn man als Vergleichsberechnungsart Th.II.O., den w- oder den K-Nachweis wählt. Bei Th.I.O. bleibt dieser Wert auch bei noch weiter wachsender Schlankheit ($\lambda > 100$) niedriger (Bilder 16.19/16.20) Mit $\alpha = P_{y}/(G + P_{y})$ als Variable (Bild 16.21) wird deutlich, daß auch dieser Parameter eine Rolle spielt. Bild 16.22 verdeutlicht den Einfluß von Hzq und Zzq: Die Kurven $\rho_{GruSiBau}$ und $\rho_{\text{T.F}~\text{H}/\text{HZ}}$ kreuzen sich.

16.4.6.2 Vergleich verschiedener Berechnungsarten

Erwartungsgemäß steigt mit wachsender Schlankheit die Differenz zwischen den aufnehmbaren Lasten, wenn man nach Th.I.O. und nach Th.II.O. innerhalb der gültigen Regeln (Bild 16.23 links) oder innerhalb GruSiBau (Bild 16.23 rechts) rechnet. Bei wachsendem Hzg nähern sich die Kurven dagegen an; d.h. ein größerer Horizontalanteil der Last läßt den Einfluß der Th.II.O. kleiner werden. Beim Vergleich w-Nachweis/Th.II.O. ist eine gute Übereinstimmung der Berechnungsarten zu erkennen; bei großen Schlankheiten liegt Th.II.O. über ω (Bild 16.25 links). Beim Vergleich κ-Nachweis/Th.II.O. wird eine sehr gute Übereinstimmung erzielt. Bei Schlankheiten λ < 100 ist N/N_{pl} > 0.1, d.h. M_{uy} ist gleich 1.1. M_{p1} . Daher kommt der Knick in der Darstellung von ρ_{κ} (Bild 16.25 rechts). Mit Hzg als Variable (Bild 16.26) erkennt man, daß beim Nichtvorhandensein von Horizontalkräften den Nachweisen entsprechend große Unterschiede im Bemessungsergebnis festzustellen sind.

17. Literatur

- [1] Grundlagen zur Festlegung von Sicherheitsanforderungen für bauliche Anlagen, Beuth-Verlag, 1981
- [2] Nather/Kreutz: Vergleichende Untersuchung des Entwurfs DIN 18800, Teil2 mit der zur Zeit gültigen Vorschrift DIN 4114, Mitteilungen aus dem Lehrstuhl für Stahlbau, TU München
- [3] Vergleichsrechnungen des DASt zu den Empfehlungen der Europäischen Konvention für Stahlbau (EKS) (DOK.ECCS-EG77-2E, März 1978)
- [4] CEB/FIP-Mustervorschrift für Tragwerke aus Stahlbeton und Spannbeton, Euro-Internationales Beton-Komitee 1978
- [5] Règles de calcul des constructions en acier, Additif 80, Centre Technique Industriel De La Construction Métallique n⁰ 1 - mars1981
- [6] Règles d'efinissant les effets de las neige et du vent sur les constructions et annexes, Collection Uti, Docu. ment technique unifié, Règles N.V., juin 1980
- [7] NBN 460.03-1960, Action du vent sur les constructions, bâtiments, Institut belge de Normalistion (IBN)
- [8] NBN 460.01-1960, Action du vent sur les constructions, instructions générales pour le calcul
- [9] NBN B51-OO1, 5e éd.avril 1977, charpentes en acier
- [10] NEN 3850/3851, Technical principles for the design and calculation of building structures, TGB

- [10] NEN 3850, Technical principles for the design and calculation of building structures, TGB 1972 - General part and loads, unofficial translation, Netherlands Standards Institution
- [11] DIN 18800, Teil 1, Stahlbauten, Bemessung und Konstruktion, März 1981
- [12] DIN 1055, Bl.4, Lastannahmen für Bauten, Verkehrslasten -Windlasten, 1969
- [13] DIN 1055, Teil 5, Lastannahmen für Bauten, Verkehrslasten -Schneelasten, Ausgabe Juni 1975
- [14] Pottharst, R.: Zur Wahl eines einheitlichen Sicherheitskonzeptes für den konstruktiven Ingenieurbau, Mitteilungen aus dem Institut für Massivbau der TH Darmstadt, Heft 22, Verlag von Wilhelm Ernst & Sohn, Berlin, Düsseldorf, München 1977
- [15] Hosser, D.: Tragfähigkeit und Zuverlässigkeit von Stahlbetondruckgliedern, Mitteilungen aus dem Institut für Massivbau der TH Darmstadt, Heft 28, Verlag von Wilhelm Ernst & Sohn, Berlin, Düsseldorf, München 1978
- [16] Pousset, A. u. Sedlacek,G.: Zur Frage der Regelung des Sicherheitsnachweises, 3. Internationales EKS-Symposium 1981
- [17] Petersen, Chr.: Der wahrscheinlichkeitstheoretische Aspekt der Bauwerkssicherheit im Stahlbau, DASt, Berichte aus Forschung und Entwicklung, Beiträge zum Tragverhalten und zur Sicherheit von Stahlkonstruktionen 4/1977
- [18] Schobbe,W.: Konzept zur Definition und Kombination von Lasten im Rahmen der deutschen Sicherheitsrichtlinie, Heft 31, Verlag von Wilhelm Ernst & Sohn, Berlin, Düsseldorf, München 1982

- [19] Eurocode Nr.3: Gemeinsame einheitliche Regeln für Stahl bauten, Kommission der Europäischen Gemeinschaften, Industrielle Verfahren, Hoch- und Tiefbau, Bericht EUR 8849
- [20] SIA 161, Norm Ausgabe 1979: Stahlbauten
- [21] SIA 160 E, Norm Ausgabe 19.. (Entwurf 15.11.1983): Lasten und Einwirkungen für Tragwerke, 2. Gesamtentwurf
- [22] Entwurfshilfen für Hallenrahmen aus IPE-Profilen, Merkblatt 440 der Beratungsstelle für Stahlverwendung, Düsseldorf 1972
- [23] SIA 160, Norm Ausgabe 1970: Norm für die Belastungsannahmen, die Inbetriebnahme und die Überwachung der Bauten
- [24] DIN 4114, Blatt 1, Juli 1952xx, Blatt 2, Februar 1953, Stabilitätsfälle, (Knickung, Kippung, Beulung) Stahlbau Berechnungsgrundlagen, Richtlinien

Anlage 1

Gegenüberstellung der anzusetzenden absoluten Windlasten mit Auflistung der maßgebenden Bemessungsregeln in [kN/m²], d.h. pro 1 [m] Breite

H = 4 [m]		D		F				В			NL		GruSiBau			
L	Last	LFH 1,71 (G+S)	LFHZ 1,5 (G+S+W)	$\frac{\frac{3}{2}S_{n}}{\frac{4}{3}G}$	$\frac{17}{12}(S_n + W_n) + \frac{4}{3}G$	S _{re} + W _e +G	1,53 (G+S)	1,36 (G+W _n)	(G+W _{ex})	1,50 (G+S)	1,50 (G+W)	1,50 (G+S+W)	1,43 (G+S)	1,43 (G+S+0,7W)	1,43 (G+W+0,7S)	
			0,60		0,38	0,46		0,57	0,86		0,85	0,85		0,40	0,57	
		-	0,30		0,51	0,63	-	0,42	0,62		0,43	0,43		0,20	0,29	
10		-	0,30	-	0,54	0,67		0,42	0,62	-	0,43	0,43		0,20	0,29	
		2,09	1,54	1,46	0,51	0,29	1,34	0,23	-0,14	1,46	0,29	1,04	2,09	1,89	1,38	A 1
)[-	0,60	-	0,38	0,46	-	0,55	0,83		0,85	0,85		0,40	0,57	• •
15		-	0,30	_	0,44	0,54	-	0,40	0,60	-	0,43	0,43	-	0,20	0,29	
1.5		-	0,30		0,46	0,57	-	0,40	0,60		0,43	0,43	~~	0,20	0,29	
		2,09	1,54	1,46	0,58	0,38	1,34	0,24	-0,12	1,46	0,29	1,04	2,09	1,89	1,38	
, ĵ	- Î	-	0,60	-	0,38	0,46		0,54	0,81		0,85	0,85	-	0,40	0,57	-
20		-	0,30		0,44	0,54		0,39	0,59	-	0,43	0,43		0,20	0,29	
20			0,30		0,45	0,56		0,39	0,59	-	0,43	0,43		0,20	0,29	
		2,23	1,66	1,57	0,70	0,47	1,46	0,36	-0,02	1,59	0,41	1,16	2,21	2,01	1,50	-
		_	0,60		0,38	0,46		0,53	0,80		0,85	0,85	-	0,40	0,57	
25		-	0,30	-	0,44	0,54		0,39	0,58		0,43	0,43		0,20	0,29	
23		-	0,30	-	0,45	0,56	-	0,39	0,58	-	0,43	0,43	-	0,20	0,29	
	Ħ	2,43	1,83	1,72	0,85	0,58	1,64	0,53	0,11	1,76	0,58	1,33	2,38	2,18	1,67	_

Anlage 1

1

i

1

i.

Gegenüberstellung der anzusetzenden absoluten Windlasten mit Auflistung der maßgebenden Bemessungsregeln in $[kN/m^2]$, d.h. pro 1 [m] Breite

H = 6 [m]		D			F			В			NL			GruSiBau		
L	Last	LFH 1,71 (G+S)	LFHZ 1,5 (G+S+W)	$\frac{3}{2}S_{n}^{+}$ $\frac{4}{3}G$	$\frac{17}{12}(S_{n} + W_{n}) + \frac{4}{3}G$	S _{re} + W _e +G	1,53 (G+S)	1,36 (G+W _n)	(G+W _{ex})	1,50 (G+S)	1,50 (G+W)	1,50 (G+S+₩)	1,43 (G+S)	1,43 (G+S+0,7W)	1,43 (G+W+0,75S)	
10			0,60 0,30 0,30		0,39 0,63 0,62	0,48 0,77 0,77		0,57 0,42 0,42	0,86 0,62 0,62		0,85 0,43 0,43	0,85 0,43 0,43		0,40 0,20 0,20	0,57 0,29 0,29	A 1
15		2,09	1,54 0,60 0,30 0,30	1,46	0,40 0,39 0,53 0,56 0,49	0,16 0,48 0,65 0,69	1,34 - - -	0,23 0,55 0,40 0,40	-0,14 0,83 0,60 0,60 -0,12	1,46 - - - 1,46	0,29 0,85 0,43 0,43	1,04 0,85 0,43 0,43	2,09	1,89 0,40 0,20 0,20	1,38 0,57 0,29 0,29 1,38	• 2
20		2,16	0,60 0,30 0,30 1,59		0,39 0,47 0,50 0,61	0,48 0,58 0,62 0,39		0,54 0,39 0,39 0,30	0,81 0,59 0,59 -0,07		0,85 0,43 0,43 0,34	0,85 0,43 0,43 1,09	2,15	0,40 0,20 0,20 1,95	0,57 0,29 0,29 1,44	-
25		2,43	0,60 0,30 0,30 1,83	- - 1,72	0,39 0,45 0,47 0,84	0,48 0,56 0,58 0,57	- - 1,64	0,53 0,39 0,39 0,53	0,80 0,58 0,58 0,11	- - 1,76	0,85 0,43 0,43 0,58	0,85 0,43 0,43 1,33	- - 2,38	0,40 0,20 0,20 2,18	0,57 0,29 0,29 1,67	-
Anlage 1

Gegenüberstellung der anzusetzenden absoluten Windlasten mit Auflistung der maßgebenden Bemessungsregeln in $[kN/m^2]$, d.h. pro 1 [m] Breite

H = 8 [m]		D		Я		В			NL			GruSiBau				
L	Last	LFH 1,71 (G+S)	LFHZ 1,5 (G+S+W)	$\frac{\frac{3}{2}S_{n}}{\frac{4}{3}G}$	$\frac{17}{12}(S_n^+ W_n^-) + \frac{4}{3}G$	S _{re} + W _e +G	1,53 (G+S)	1,36 (G+W _n)	(G+W _{ex})	1,50 (G+S)	1,50 (G+W)	1,50 (G+S+₩)	1,43 (G+S)	1,43 (G+S+0,7W)	1,43 (G+W+0,755	5)
10			0,60 0,30 0,30	_	0,40 0,64 0,64	0,49 0,79 0,79	-	0,57 0,42 0,42	0,86 0,62 0,62	-	0,88 0,44 0,44	0,88 0,44 0,44	-	0,40 0,20 0,20	0,57 0,29 0,29	A 1
15		2,09	1,54 0,60 0,30	1,46 - -	0,38 0,40 0,64	0,13 0,49 0,79	1,34 - -	0,23 0,55 0,40	-0,14 0,83 0,60		0,27 0,88 0,44	0,88 0,44		0,40	0,57 0,29	- w
		- 2,09	0,30	1,46	0,64	0,79 0,13	- 1,34	0,40 0,24	0,60	- 1,46	0,44	0,44	- 2,09 -	0,20 1,89	0,29	_
20		-	0,30 0,30		0,40 0,54 0,58	0,49 0,67 0,71		0,39 0,39	0,59	-	0,80 0,44 0,44	0,44	-	0,20 0,20	0,29	
25		2,16	1,59 0,60 0,30	1,51	0,53 0,40 0,49	0,29 0,49 0,61	1,40	0,30 0,53 0,39	-0,07 0,80 0,58	-	0,33 0,88 0,44	1,08 0,88 0,44	-	0,40	0,57	_
		2,33	0,30 1,74	- 1,64	0,53 0,71	0,65 0,45	1,55	0,39	0,58	- 1,67	0,44 0,48	0,44	2,29	0,20 2,09	0,29	

Anlage 2 Aufstellung von $\frac{1}{n_1}$ für die Gegenüberstellung GruSiBau/LFH/HZ $\frac{1}{\eta}$ bestimmend im Bereich $\alpha > \frac{\beta}{(1-\beta)Fra} \equiv Fra^{*} P > Z$ $\beta \leq 1 - \delta \qquad \alpha = \frac{P}{G+P}$ $\beta = \frac{Z}{H+Z}$ $\delta = \frac{v_{HZ}}{v_{HZ}}$ $\frac{1}{n_1} = \frac{\frac{\gamma \cdot G + \gamma (Fra \cdot P + \psi_{02} \cdot Z)}{H \cdot \nu_H}}{\frac{G + P}{G + P}}$ $Fra = \frac{S(99 \ \text{\$-Fr.})}{S(95 \ \text{\$-Fr.})}$ $=\frac{\gamma (G+P)(1-\alpha)+\gamma Fra P+\gamma \psi_{02} \cdot Z}{\frac{P \cdot v_{H}}{2}}$ $= \frac{(G+P)(1-\alpha) + Fra \cdot P + \psi_{02} \cdot Z}{\frac{P \cdot v_H}{\alpha}} \cdot \frac{1}{\gamma}$ $= \frac{\frac{1}{\alpha \cdot \gamma}}{\frac{1}{\gamma}} \cdot \frac{1}{\frac{1}{P+G}} \cdot \frac{1}{\frac{1}{P+G}}$ $= \frac{\frac{1}{\gamma}}{\frac{1}{\gamma}} \cdot \frac{\frac{1}{P+G}}{\frac{1}{\gamma}} \cdot \frac{\frac{1}{P+G}}{\frac{1}{P+G}} \cdot \frac{1}{\frac{1}{P+G}}$ $= \frac{(1-\beta)[(1-\alpha)+\operatorname{Fra}\alpha]+\psi_{02}\cdot\beta}{\frac{1}{\gamma}} \cdot (1-\beta)$

^{*)} Fra ist ein Faktor zur Berücksichtigung erhöhter Fraktilwerte der Verkehrsbelastung.

A 2.2

Aufstellung von $\frac{1}{\eta_2}$ für die Gegenüberstellung GruSiBau/LFH/HZ $\frac{1}{n_2}$ bestimmend im Bereich $\alpha \leq \frac{\beta}{(1-\beta)Fra} \equiv Fra \cdot P \leq Z$ $\beta \leq 1 - \delta$ $\alpha = \frac{P}{G+P}$ $\beta = \frac{Z}{H+Z}$ $\delta = \frac{v_{HZ}}{v_{H}}$ $\frac{1}{n_2} = \frac{\frac{\gamma \cdot G + \gamma (Fra \cdot \psi_{02} \cdot P + Z)}{H \cdot v_H}}{\frac{G + P}{H}}$ $Fra = \frac{S(99 \ \%-Fr.)}{S(95 \ \%-Fr.)}$ = (s.n₁) $= \frac{(1-\alpha) + \operatorname{Fra} \psi_{02} \cdot \alpha + \frac{Z}{G+P}}{\frac{\nu_{H}}{\gamma}}$ $= \frac{(1-\beta)[(1-\alpha)+\operatorname{Fra}\psi_{02}\cdot\alpha]+\beta}{\frac{\nu_{H}}{\gamma}(1-\beta)}$

Aufstellung von $\frac{1}{n_3}$, $\frac{1}{n_4}$ für die Gegenüberstellung GruSiBau/LFH/HZ $\frac{1}{\eta_{2}}$ bestimmend im Bereich $\alpha > \frac{\beta}{(1-\beta)Fra} \equiv Fra \cdot P > Z$ $\beta > 1 - \delta$ $\alpha = \frac{P}{G+P}$ $\beta = \frac{Z}{H+Z}$ $\delta = \frac{v_{HZ}}{v_{HZ}}$ $\frac{1}{n_3} = \frac{\frac{\gamma \cdot G + \gamma (Fra \cdot P + \psi_{02} \cdot Z)}{\nu_{HZ} \cdot (H + Z)}}{\frac{G + P + Z}{H + Z}}$ $Fra = \frac{S(99 \ \%-Fr.)}{S(95 \ \%-Fr.)}$ $= \frac{\gamma \cdot G + \gamma (Fra \cdot P + \psi_{02} \cdot Z)}{\nu_{HZ} (G + P + \frac{\beta(G + P)}{1 - \beta})}$ $\frac{Z}{G+P} = \frac{\beta (H+Z)}{H} = \frac{\beta}{1-\beta}$ $= \frac{\gamma \cdot G + \gamma (Fra \cdot P + \psi_{02} \cdot Z)}{v_{HZ} (G + P) (1 + \frac{\beta}{1 - \beta})}$ $= \frac{\gamma (1-\alpha) (G+P) + \gamma \alpha \operatorname{Fra}(P+G) + \gamma \psi_{02} \cdot z}{v_{HZ} (G+P \frac{1}{1-\beta})}$ $= \frac{(1-\alpha)+\alpha \cdot \operatorname{Fra}+\psi_{02}}{\frac{\nabla_{H2}}{\gamma}} \frac{\frac{1}{1-\beta}}{\frac{1}{1-\beta}}$ $= \frac{(1-\beta)[(1-\alpha)+\alpha \cdot \text{Fra}] + \psi_{02} \cdot \beta}{\frac{\nu_{HZ}}{\gamma}}$ $\frac{1}{n_4} = \frac{(1-\beta)[(1-\alpha)+\alpha \cdot \operatorname{Fra} \cdot \psi_{02}] + \beta}{\frac{\nu_{HZ}}{}}$ $\alpha < \frac{\beta}{(1-\beta)Fra}$ $\beta > 1 - \delta$

Anlage 3

Lastminderungskoeffizienten $\frac{1}{\eta}$ für $\frac{GruSiBau}{GruSiBau-modifiziert}$ Die Herleitung erfolgt derart, daß $\frac{1}{\eta}$ nur noch eine Funktion von α , β , γ , ψ , Fra ist, aber nicht mehr von G, P, Z.

$$\frac{1}{\eta_{1}} = \frac{\gamma_{F} \mod (G + P + \psi_{02} \cdot Z)}{\gamma_{F} (G + Fra P + \psi_{02} \cdot Z)} \qquad Z = \frac{\beta}{1 - \beta} (G + P) \qquad \alpha = \frac{p}{G + P}$$

$$= \frac{\gamma_{F} \mod (G + P + \psi_{02} \frac{\beta}{1 - \beta} (G + P))}{\gamma_{F} (G + Fra P + \psi_{02} \frac{\beta}{1 - \beta} (G + P))} \qquad G = \frac{1}{\alpha} P - P$$

$$= \frac{\gamma_{F} \mod (\frac{1}{\alpha} P - P + P + \psi_{02} \frac{\beta}{1 - \beta} (\frac{1}{\alpha} P - P + P))}{\gamma_{F} (\frac{1}{\alpha} P - P + Fra P + \psi_{02} \frac{\beta}{1 - \beta} (\frac{1}{\alpha} P - P + P))}$$

$$= \frac{\gamma_{F} \mod (\frac{1}{\alpha} P - P + Fra P + \psi_{02} \frac{\beta}{1 - \beta} \frac{1}{\alpha} P)}{\gamma_{F} (\frac{1}{\alpha} P - P + Fra P + \psi_{02} \frac{\beta}{1 - \beta} \frac{1}{\alpha} P)}$$

$$= \frac{\gamma_{F} \mod (\frac{1}{\alpha} + \frac{\psi_{02} \beta}{\alpha(1 - \beta)})}{\gamma_{F} (\frac{1}{\alpha} - 1 + Fra + \frac{\psi_{02} \beta}{\alpha(1 - \beta)})}$$

Gültigkeitsbereich:

Fra · P > Z Fra · α (G+P > $\frac{\beta(G+P)}{1-\beta}$ Fra · $\alpha > \frac{\beta}{1-\beta}$ $\alpha > \frac{\beta}{1-\beta}$

.

$$\frac{1}{n_2} = \frac{\gamma_F \mod (G+\psi_{02} P+Z)}{\gamma_F (G+Fra P+\psi_{02} Z)} \qquad Z = \frac{\beta}{1-\beta} (G+P) \qquad \alpha = \frac{P}{G+P}$$

$$\beta = \frac{\frac{2}{G+P}}{\beta}$$

$$= \frac{\gamma_F \mod (G+\psi_{02} P+\frac{\beta}{1-\beta}(G+P))}{\gamma_F (G+Fra P+\psi_{02} \frac{\beta}{1-\beta}(G+P))} \qquad G = \frac{1}{\alpha} P - P$$

$$= \frac{\gamma_F \mod (\frac{1}{\alpha} P-P+\psi_{02} \cdot P+\frac{\beta}{1-\beta} (\frac{1}{\alpha} P-P+P))}{\gamma_F (\frac{1}{\alpha} P-P+Fra \cdot P+\psi_{02} \frac{\beta}{1-\beta} (\frac{1}{\alpha} P-P+P))} \qquad Geltungsbereich:$$

$$= \frac{\gamma_F \mod (\frac{1}{\alpha} -1+\psi_{02} + \frac{\beta}{\alpha(1-\beta)})}{\gamma_F (\frac{1}{\alpha} -1+Fra + \frac{\psi_{02} \cdot \beta}{\alpha(1-\beta)})} \qquad Fra \cdot \alpha > \frac{\beta}{1-\beta}$$

$$\alpha < \frac{\beta}{1-\beta}$$

$$\frac{1}{\eta_{3}} = \frac{\gamma_{F} \mod (G + \psi_{02} \cdot P + Z)}{\gamma_{F} (G + \psi_{02} \cdot Fra \cdot P + Z)} \qquad Z = \frac{\beta}{1 - \beta} (G + P) \qquad \alpha = \frac{p}{G + P}$$

$$\beta = \frac{\frac{2}{H + Z}}{\beta}$$

$$= \frac{\gamma_{F} \mod (G + \psi_{02} \cdot P + \frac{\beta}{1 - \beta} (G + P))}{\gamma_{F} (G + \psi_{02} \cdot Fra \cdot P + \frac{\beta}{1 - \beta} (G + P))} \qquad G = \frac{1}{\alpha} P - P$$

$$= \frac{\gamma_{F} \mod (\frac{1}{\alpha} P - P + \psi_{02} \cdot P + \frac{\beta}{(1 - \beta)} (\frac{1}{\alpha} P - P + P))}{\gamma_{F} (\frac{1}{\alpha} P - P + \psi_{02} \cdot Fra \cdot P + \frac{\beta}{1 - \beta} (\frac{1}{\alpha} P - P + P))} \qquad Geltungsbereich:$$

$$= \frac{\gamma_{F} \mod (\frac{1}{\alpha} - 1 + \psi_{02} + \frac{\beta}{\alpha(1 - \beta)})}{\gamma_{F} (\frac{1}{\alpha} - 1 + \psi_{02} \cdot Fra + \frac{\beta}{\alpha(1 - \beta)})} \qquad Geltungsbereich:$$

$$\alpha < \frac{\beta}{1 + \beta}$$

1

الشبا المالية المالية

Anlage 4						
Aufstellung von $\frac{1}{\eta} = \frac{GruSiB}{CEB}$	au					
Maßgebende Regeln:						
<u>GruSiBau:</u> 1,43 (G + S) *						
1,43 (G + S + 0,7 W)	$ (1) _{GruSiBau} \equiv \alpha \geq -$	β (l-β)Fra	≞ Fra	·P	≧	2
1,43 (G + W + 0,7 S)	$(2)_{GruSiBau} \equiv \alpha < -$	β (l-β)Fra	≘ Fra	·P	<	Z
* wird abgedeckt durch 1,43 (G + S + 0,7 W) mit $\beta = 0$						
CEB:						
1,35 G + 1,50 S	(1) CEB = $\alpha \cdot 0, 111$	≧	$\frac{\beta}{1-\beta}$			
1,35 G + 1,50 W	$(2)_{CEB} \equiv \alpha$	< 0,111	$\frac{\beta}{1-\beta}$			
1,35 (G + S + W)	$(3)_{CEB} \equiv \alpha \cdot 0, 111$	<	<u>β</u> 1-β			

.

 $\& \alpha \ge 0, 111 \frac{\beta}{1-\beta}$

i	GruSiBau	CEB	l n _i
1	1	1	$\frac{1}{n_{1}} = \frac{1,43[(1-\alpha) + Fra \ \alpha + 0,7 \ \frac{\beta}{1-\beta}]}{1,35(1-\alpha) + 1,50 \ \cdot \ \alpha}$
2	2	1	$\frac{1}{n_2} = \frac{1,43[(1-\alpha) + Fra \cdot 0, 7 \cdot \alpha + \frac{\beta}{1-\beta}]}{1,35(1-\alpha) + 1,50 \cdot \alpha}$
3	$\widehat{1}$	2	$\frac{1}{n_3} = \frac{1,43[(1-\alpha) + Fra \cdot \alpha + 0,7 \frac{\beta}{1-\beta}]}{1,35(1-\alpha) + 1,50 \cdot \frac{\beta}{1-\beta}}$
4	2	2	$\frac{1}{n_4} = \frac{1,43[(1-\alpha) + Fra \cdot 0,7 \alpha + \frac{\beta}{1-\beta}]}{1,35(1-\alpha) + 1,50 \frac{\beta}{1-\beta}}$
5	1	3	$\frac{1}{n_{5}} = \frac{1,43\left[(1-\alpha) + \text{Fra} \cdot \alpha + 0,7 \frac{\beta}{1-\beta}\right]}{1,35(1-\alpha) + 1,35(\alpha + \frac{\beta}{1-\beta})}$
6	2	3	$\frac{1}{n_{6}} = \frac{1,43[(1-\alpha) + Fra \cdot 0, 7 \cdot \alpha + \frac{\beta}{1-\beta}]}{1,35(1-\alpha) + 1,35(\alpha + \frac{\beta}{1-\beta})}$

Aufstellung
$$\frac{1}{n_{i}} = \frac{GruSiBau}{CEB}$$
 $\alpha = \frac{P}{G+P}$ $1 - \alpha = \frac{G}{G+P}$
 $\beta = \frac{Z}{H+Z}$ $1 - \beta = \frac{H}{H+Z}$
 $\frac{Z}{G+P} = \frac{\beta(H+Z)}{H} = \frac{\beta}{1-\beta}$

$$\frac{1}{\eta_{1}} = \frac{\gamma(G + Fra \cdot P + \psi_{02} \cdot Z)}{\gamma_{g} \cdot G + \gamma_{q1} \cdot P}$$

$$= \frac{\gamma((1 - \alpha) (G + P) + Fra \cdot \alpha(G + P) + \psi_{02} \cdot Z)}{\gamma_{g} (1 - \alpha) (G + P) + \gamma_{q1} \cdot \alpha(G + P)}$$

$$= \frac{\gamma((1 - \alpha) + Fra \cdot \alpha + \psi_{02} \cdot \frac{\beta}{1 - \beta})}{\gamma_{g} (1 - \alpha) + \gamma_{q1} \cdot \alpha}$$

A 4.2

$$\frac{1}{n_2} = \frac{\gamma(G + Fra \cdot \psi_{02} \cdot P + Z)}{\gamma_g \cdot G + \gamma_{q1} \cdot P}$$
$$= \frac{\gamma((1 - \alpha)(G + P) + Fra \cdot \psi_{02} \cdot \alpha(G + P) + Z)}{\frac{\gamma}{g}(1 - \alpha)(G + P) + \gamma_{q1} \cdot \alpha(G + P)}$$
$$= \frac{\gamma((1 - \alpha) + Fra \cdot \psi_{02} \cdot \alpha + \frac{\beta}{1 - \beta})}{\gamma_g (1 - \alpha) + \gamma_{q1} \cdot \alpha}$$

$$\frac{1}{n_{3}} = \frac{\gamma (G + Fra \cdot P + \psi_{02} \cdot Z)}{\gamma_{g} \cdot G + \gamma_{q1} \cdot Z}$$

$$= \frac{\gamma ((1 - \alpha) (G + P) + Fra \cdot \alpha (G + P) + \psi_{02} \cdot Z)}{\gamma_{g} (1 - \alpha) (G + P) + \gamma_{q1} \cdot Z}$$

$$= \frac{\gamma ((1 - \alpha) + Fra \cdot \alpha + \psi_{02} - \frac{\beta}{1 - \beta})}{\gamma_{q} (1 - \alpha) + \gamma_{q1} - \frac{\beta}{1 - \beta}}$$

$$\frac{1}{\eta_{4}} = \frac{\gamma (G + Fra \cdot \psi_{02} \cdot P + Z)}{\gamma_{g} \cdot G + \gamma_{q1} \cdot Z}$$

$$= \frac{\gamma ((1 - \alpha) (G + P) + Fra \cdot \psi \cdot \alpha (G + P) + Z)}{\gamma_{g} (1 - \alpha) (G + P) + \gamma_{q1} \cdot Z}$$

$$= \frac{\gamma ((1 - \alpha) + Fra \cdot \psi \cdot \alpha + \frac{\beta}{1 - \beta})}{\gamma_{g} (1 - \alpha) + \gamma_{q1} \frac{\beta}{1 - \beta}}$$

$$\frac{1}{\eta_{5}} = \frac{\gamma(G + Fra \cdot P + \psi_{02} \cdot Z)}{\gamma_{g} \cdot G + \gamma_{q2} \cdot (P + Z)}$$
$$= \frac{\gamma((1 - \alpha)(G + P) + Fra \cdot \alpha(G + P) + \psi_{02} \cdot Z)}{\gamma_{g}(1 - \alpha)(G + P) + \gamma_{q2}(\alpha(G + P) + Z)}$$
$$= \frac{\gamma((1 - \alpha) + Fra \cdot \alpha + \psi_{02} \cdot \frac{\beta}{1 - \beta})}{\gamma_{g}(1 - \alpha) + \gamma_{q2}(\alpha + \frac{\beta}{1 - \beta})}$$

$$\frac{1}{n_{6}} = \frac{\gamma(G+Fra \cdot \psi_{02} \cdot P+Z)}{\gamma_{g} \cdot G+ \gamma_{q2} (P+Z)}$$

$$= \frac{\gamma((1-\alpha)(G+P)+Fra \cdot \psi_{02} \cdot \alpha(G+P)+Z)}{\gamma_{g} (1-\alpha)(G+P)+ \gamma_{q2} (\alpha(G+P)+Z)}$$

$$= \frac{\gamma((1-\alpha)+Fra \cdot \psi_{02} \cdot \alpha + \frac{\beta}{1-\beta})}{\gamma_{g} (1-\alpha)+ \gamma_{q2} (\alpha + \frac{\beta}{1-\beta})}$$