Bauforschung

Berechnung der Steifigkeiten und Spannungen von GFK-Normlaminaten

T 1438

¹ Fraunhofer IRB Verlag

T 1438

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

14,14

Prof. Dr.-Ing. E. Giencke 1 Berlin, den 1.12.1984

Abschlußbericht zum Forschungsvorhaben IV/1 - 5 - 301 / 81

Berechnung der Steifigkeiten und Spannungen von GFK-Normlaminaten

Zusammenfassung

GFK-Laminate werden in der Baupraxis normalerweise aus Matten-, Gewebeoder UD-Schichten aufgebaut, wobei eine Beschränkung auf bestimmte Glasgehalte aufgrund der Absprache mit der Industrie im Normenentwurf für Bauteile aus glasfaserverstärkten Reaktionsharzen vorgesehen ist. Diese Schichten werden entweder in der Kombination: Matte plus Gewebe oder Matte plus UD-Schichten, die unterschiedlich gerichtet sein können angeordnet (Bild 1). Anstelle der UD-Schichten werden manchmal auch Gewebe mit schwacher Kettverstärkung (18:1) gewählt.

Solche Laminate werden normalerweise berechnet, indem man von einer idealen Verteilung der Schichten ausgeht, die Steifigkeiten der einzelnen Schichten und daraus die Gesamtsteifigkeiten ermittelt und danach die mittleren Beanspruchungen der einzelnen Schichten und die Spannungen im Glas und im Harz bestimmt. Es werden die Fälle Dehnung und Biegung behandelt. Da einer solcher Nachweis für die Baupraxis zu umständlich ist, wird im Rahmen dieses Vorhabens ein vereinfachter Nachweis erarbeitet, wobei der regelmäßige Aufabu der Laminate berücksichtigt wird. Ferner sind die zu erwartenden Streubereiche aufgezeigt und die Beziehungen so aufgebaut, daß sie weitgehend an Versuchsergebnisse angepaßt werden können.

Der Bericht umfaßt 49 Seiten.

1. Einleitung

Untersucht werden die mit der Industrie abgesprochenen Typenlaminate /1/, die entweder abwechselnd aus Wirrfaser- (W) und Gewebeschichten (G) oder aus Wirrfaser- und längsgerichteten UD-Schichten (R) (Bild 1a, b) sowie neuerdings auch aus Wirrfaserschichten und zwei UD-Schichten mit einer dazwischen liegenden quergerichteten UD-Schicht (RQ), die auch durch eine Gewebeschicht mit schwacher Kettverstärkung (1 : 18) ersetzt werden kann (Bild 1c, d), bestehen. Zur Berechnung der Spannungen und Deformationen werden die Gesamtsteifigkeiten und Widerstände aus den Steifigkeiten der Einzelschichten ermittelt /2, 3/, wobei zwischen den Beanspruchungen einer Schicht und den Spannungen im Harz und im Glas zu unterscheiden ist.

Ziel der Untersuchungen ist es, möglichst einfache Beziehungen, die sich für die Anwendung in der Baupraxis eignen, abzuleiten. Dazu werden zunächst die Beziehungen für die Steifigkeiten der UD-, der Gewebe- und der Wirrfaserschichten angegeben und mit anderen theoretischen Ansätzen sowie mit Versuchsergebnissen verglichen /2, 4, 5/. Bei der Ermittlung der Laminatsteifigkeit wird der regelmäßige Aufbau als Zwei-Schichtlaminat mit abwechselnden Wirrfaser- und Gewebelagen (Bezeichnung MW) oder Wirrfaser- und UD-Lagen (Bezeichnung F) sowie schließlich auch als Vier-Schichtlaminat aus Wirrfaser- und längs- bzw. guergerichteten UD-Lagen berücksichtigt (Bild 1). Dafür wird eine verbesserte Kontinuumslösung angegeben und die Übereinstimmung mit der üblichen genaueren Schichtenrechnung gezeigt. Das Ergebnis der Berechnung wird für die Typenlaminate in Tabellen und Diagrammen zusammengestellt, wobei die Ergebnisse der elastischen Rechnung und der Netztheorie gegenüber gestellt werden. Außerdem wird bei den Wirrfaserschichten zwischen elastischem Verhalten und idealelastisch-plastischem Verhalten unterschieden.

- 2 -

2. Modelle und Steifigkeiten der einzelnen Schichten

Die einzelnen Schichten bestehen aus Glasfasern mit dem E-Modul E_G(~73 KN/mm²) und dem Volumenglasgehalt ¥ bzw. dem Gewichtsglasgehalt ¾ in einer Harzmatrix mit dem E-Modul E_H(~3,5 KN/mm²). Es sollen für die Berechnung möglichst einfache Modelle gewählt werden, um zu einfachen Beziehungen zu kommen, die das Wesentliche erfassen, da es wegen der Streuung in der Fertigung wenig Sinn hat, mit zu genauen Beziehungen zu rechnen. Aus diesem Grunde wird auch der geringfügige Einfluß der Querkontraktionszahl auf die Steifigkeiten weitgehend weggelassen. Wir beginnen mit der UD-Schicht, da hierfür der Tragmechanismus am einfachsten ist und die Beziehungen weitgehend für die anderen Schichten übernommen werden können. Es sind zwei Tragzustände zu untersuchen: Zustand I: Gebrauchtzustand, bei dem das Harz voll mitträgt Zustand II: Bruchzustand, bei dem das Harz praktisch ausgefallen

ist und der auch näherungsweise für Langzeitbelastung gilt. 2.1 Zustand I

2.1.1 UD-Schicht

Die UD-Schichten werden entweder in Faserrichtung oder quer dazu beansprucht. Bei der faserparallelen Beanspruchung sind die Kraftwege über das Glas und das Harz parallel geschaltet (Bild 2a), d.h. die Steifigkeiten, oder wenn man auf die Volumeneinheit bezieht, die Elastizitätsmoduli sind zu addieren,

$$E_{H} = (1 - \dot{q}) E_{H} + \dot{q} E_{G}, \qquad (2.1)$$

wobei der Harzanteil nur merklich eingeht, wenn der Glasgehalt arphi sehr klein ist.

Insbesondere bei Rohren, die durch Umfangwicklungen verstärkt werden, interssiert auch noch das Tragverhalten der UD-Schichten in Querrichtung. Das Tragverhalten wird am übersichtlichsten, wenn man von einer gleichmäßigen Quadratpackung ausgeht (Bild 2b). Dabei gibt es einen Kraftweg (1), bei dem Harz und Glas hintereinander geschaltet sind. Daneben liegt noch ein zweiter Kraftweg (2), der allein aus Harz besteht und mit dem ersten Kraftweg parallel geschaltet ist. Bei einem Einheitselement mit quadratischer Packung (Bild 2b) wird auf dem Kraftweg (1) mit der Breite $\sqrt[3]{q^4}$ die Kraft über einen Harzstreifen der Länge $4 - \sqrt[3]{q^4}$ und des Glases von der Länge $\sqrt[3]{q^4}$ übertragen, dabei beträgt die Dehnung des Streifens (1)

$$\xi = \left(\frac{1 - \sqrt{\varphi^2}}{E_H^2} + \frac{\sqrt{\varphi^2}}{E_G^2} \right) \sigma_4$$

und nach Umkehrung der Beziehung der zugehörige E-Modul

$$E_{1} = \frac{\sigma_{1}}{\epsilon} = \frac{E_{H}^{'}}{1 - \sqrt{\psi'}(1 + E_{H})/E_{G}} \sim \frac{E_{H}^{'}}{1 - \sqrt{\psi'}}$$

und weiterer Additionen des E-Moduls $E_{2} = E_{H}^{'}$ des Kraftweges (2)
schließlich der Quermodul

$$E_{\perp} = \overline{1} \overline{1} \overline{1} E_{1} + (1 - \overline{1} \overline{1} \overline{1}) E_{2} = \overline{1} \overline{1} \frac{1 - \overline{1} \overline{1} \overline{1} + 4}{1 - \overline{1} \overline{1} \overline{1}} . \quad (2.2)$$

weil durch die Glasfäden in Längsrichtung die Querdehnung im Harz verhindert ist, kann als Harzmodul der für Flächentragwerke übliche Wert

$$E'_{H} = E_{H} / 4 - v_{H}^{2}$$
(2.3)

eingesetzt werden, darin ist $v_{\mu} = 0,36$ die Querkontraktionszahl des Harzes. Der Vergleich mit Versuchsergebnissen /2, 4/ ist in Bild 3 vorgenommen und zeigt eine gute Übereinstimmung. 2.1.2 Gewebe

Bei der Ermittlung der Steifigkeiten des Gewebes können die für die UD-Schichten ermittelten Beziehungen übernommen werden, wenn man das Tragverhalten der Gewebe wie in Bild 2c in den Hauptkraftweg (1), bei dem die Fäden längs beansprucht werden, und in den Nebenkraftweg (2), bei dem die restlichen Fäden quer beansprucht werden, zerlegt. Im ersten Kraftweg sind die Glasfäden wieder mit dem Harz parallel geschaltet und im zweiten Kraftweg ähnlich wie bei der Querbeanspruchung im vorigen Abschnitt hintereinander geschaltet. Wenn die Glasanteile in beiden Richtungen gleich sind, wie es im Bauwesen normalerweise üblich ist, entfällt auf jede dieser Teilschichten wieder der Gesamtglasvolumenanteil Ψ und ergibt sich die Steifigkeit als arithmetisches Mittel aus den Elastizitätsmoduli (2.1) und (2.2) des vorigen Abschnittes

$$E = \frac{1}{2} (E_{H} + E_{L}) = \frac{1}{2} \left[(1 - \psi) E_{H} + \frac{1 - \sqrt{\psi} + \psi}{(1 - \sqrt{\psi}) (1 - \nu_{H}^{2})} E_{H} + \psi E_{G} \right].$$
(2.4)

Anstelle dieser Beziehung wird häufig eine einfachere, für eine Reihenschaltung angewandt

$$E = (1 - \Psi/2) E_{H} + \Psi E_{C}/2 . \qquad (2.4a)$$

Der Vergleich der beiden Beziehungen ist unter anderem in Bild 3 vorgenommen, wobei die Lösung (2.4 – ausgezogene Linie) höhere Werte als die Gleichung (2.4a – strichpunktierte Linie) ergibt.

2.1.3 Wirrfaserschichten

Bei einer Wirrfaserschicht kann man in erster Näherung davon ausgehen, daß die kurzen Glasfäden gleichmäßig auf alle Richtungen verteilt sind (Bild 2d). Für einen Glasfaden in der Richtung & gilt das Elastizitätsgesetz /7/

$$\sigma_s = E_g \epsilon_s$$

Wenn man die Spannungen und die Dehnungen durch die x,y-Komponenten ausdrückt

$$\sigma_x = \sigma_s \cos^2 \alpha + \varepsilon_s = \varepsilon_x \cos^2 \alpha + \varepsilon_y \sin^2 \alpha + \gamma_{xy} \sin \alpha \cos \alpha ,$$

ergibt sich schließlich für die x-Richtung, die in unserem Falle als Hauptbeanspruchungsrichtung anzusehen ist, die Beziehung

$$\sigma_{\chi} = \sigma_{s} \cos^{2} \alpha = E_{6} \ell_{s} \cos^{2} \alpha = E_{4} \ell_{\chi} \cos^{4} \alpha.$$

Für die Steifigkeit interessiert der Mittelwert, der sich nach Integration über den Winkelbereich von 0° bis 90° und Division durch diesen Winkelbereich ergibt

$$\frac{1}{12} \int \cos^4 \alpha \, d\alpha = \frac{1}{2\pi} \left\{ \frac{1}{12} \int \sin \alpha \cos^3 \alpha \right]_{0}^{1/2} + 3 \int \cos^3 \alpha \, d\alpha = \frac{3}{8}, \quad (2.5)$$

d.h., es kann für die Parallelbeanspruchung die Beziehung (2.1) übernommen werden, wenn man darin φ durch 0,375 ψ ersetzt. Dieser Wert stimmt mit dem üblicherweise angewandten von 0,4 ψ sehr gut überein. Ferner muß noch berücksichtigt werden, daß ein weiterer Teil durch Schub- und Querbeanspruchung ütertragen wird, wobei es wieder zu einer Hintereinanderschaltung von Harz und Glas mit einer wesentlich geringeren Steifigkeit kommt. Wenn man die Wirrfaserschicht als Gewebe auffaßt, ergibt sich in Analogie zu Gleichung (2.4) die Beziehung

$$E = \frac{1}{2} \left[(1 - 0, 75\psi + \frac{1 - \sqrt{0, 75\psi} + 0, 75\psi}{(1 - \sqrt{0, 75\psi})(1 - \frac{2}{H})} \right] = \frac{1}{H} + 0, 75\psi = \frac{1}{G} \left[(2.6) \right]$$

In der Praxis wird normalerweise die zu (2.4a) analoge Beziehung

$$E = (1 - 0, 4 \psi) E_{H} + 0, 4 \psi E_{G}$$
(2.6a)

angewandt. Sie stimmt im Bereich mittlerer ý-Werte mit der obigen nahezu überein, wie aus dem Vergleich zwischen der augezogenen Linie für Gleichung (2.6) und der strichpunktierten Linie für Gleiung (2.6a) in Bild 3 hervorgeht. Die Beziehung (2.6) erfaßt das vom Glasgehalt ψ abhängige Mittragen des Querverbundes, wie es sich auch bei der Auswertung der Versuche in /5/ ergeben hat, wo der Wert 0,4 durch einen allgemeineren k(ψ) ersetzt wird.

2.2 Zustand II

Wenn die Bruchlast erreicht ist, ist zu erwarten, daß große Teile der Harzmatrix insbesondere der querbeanspruchten Schichten gebrochen sind und nicht mehr voll mittragen. Die Rechnung ist auf der sicheren Seite, wenn man den Harzmodul in den querbeanspruchten Schichten zu Null setzt, was praktisch darauf hinausläuft, den Harzmodul völlig zu vernachlässigen, da der Einfluß des Harzes in den längsversteiften Schichten relativ klein ist. Auf diese Weise wird auch deutlich, wie groß der Lastanteil des Harzes bei Kurzzeitbelastung ist.

Wenn die Tragfähigkeit des Harzes erschöpft ist, fällt es zwar bei der Dehnsteifigkeit völlig heraus aber bei der Biegesteifigkeit sorgt es zumindest noch für den Abstand der Glasfasern, d.h. für die Erhaltung der Wanddicke h.

Ferner kann man diese Werte auch als unteren Grenzwert bei Langzeitbelastung übernehmen. Da im Langzeitfall bei quasi-stationärer Betrachtung der Harzmodul als Funktion der Zeit, die mit wachsender Zeit immer mehr abnimmt, angesehen werden kann:

$$E_{H}(t) = E_{H} / \frac{1}{2} (t) .$$
 (2.7)

3. Steifigkeiten der Laminate

Die Typenlaminate nach Bild 1 können in gleicher Weise behandelt werden, da sie symmetrisch aufgebaut sind und aus einer Anzahl gleicher Doppelschichten bestehen. Das sind im Falle der Typenlaminate nach Bild 1a und b Gewebe- oder UD-Schichten der Dicke t_1 mit dem Elastizitätsmodul E_1 und Wirrfaserschichten der Dicke t_2 mit dem Elastizitätsmodul E_2 . Bei dem Typenlaminat nach Bild 1c sind es Gewebeschichten der Dicke t_1 mit dem Elastizitätsmodul E_1 und UD-Sichten der Dicke t_2 mit dem Elastizitätsmodul E_2 . Dabei werden die Elastizitätsmodule E_1 und E_2 , wie im vorigen Abschnitt gezeigt, ermittelt. Zur Berechnung der Steifigkeiten des Laminates ^{am} sinnvollsten, zunächst die Steifigkeit $d = d_1 + d_2$ (3.1) für den Grundbaustein des

Laminates, nämlich der Doppelschicht mit der Dicke

$$t = t_1 + t_2$$
 (3.2)

und den Einzelsteifigkeiten

$$d_{i} = (Et)_{i}$$
 (3.3)

zu ermitteln und daraus dann anschliessend die Gesamtsteifigkeiten (Dehnsteifigkeit D, Biegesteifigkeit B) und die Spannungen zu berechnen.

Am einfachsten wird die Berechnung, wenn die Anzahl der Schichten so groß ist, daß ein homogener Aufbau vorausgesetzt werden kann. Dazu wird die Steifigkeit (3.1) der Doppelschicht auf ihre Dicke t (3.2) gleichmäßig verschmmiert (d/t) und dann der Querschnitt wie ein isotrpoer angesehen. Dafür ergibt sich unter Verwendung der Laminatdicke h die Dehnsteifigkeit

$$\overline{D} = dh/t \tag{3.4}$$

und die Biegesteifigkeit

$$\overline{B} = dh^3/12t = \overline{D}h^2/12.$$
 (3.5)

Wenn das Laminat durch die Normalkraft N und das Biegemoment M (pro Breiteneinheit) beansprucht wird, ergibt sich pro Schicht die Kraft (pro Breiteneinheit) mit dem mittleren Schichtabstand \overline{e}_i von der neutralen Faser

$$s_{i} = d_{i} \mathcal{E} = d_{i} \left(\frac{N}{D} + \frac{M}{B} \overline{e}_{i} \right)$$
(3.6)

die mittlere Spannung

$$\overline{\overline{\sigma}}_{\underline{i}} = \frac{S_{i}}{t_{i}} = E_{\underline{i}} \mathcal{E} = E_{\underline{i}} \left(\frac{N}{D} + \frac{M}{B} \overline{\overline{e}}_{i} \right)$$
(3.7)

und die mittlere Spannung im Harz und im Glas

$$\overline{\sigma}_{H} = E_{H} \mathcal{E}$$
, $\sigma_{g} = E_{G} \mathcal{E}$, (3.8)

Um zeigen zu können, ab welcher Schichtzahl mit den einfachen homogenen Werten gerechnet werden kann, sollen nun im folgenden die Steifigkeiten für die einzelnen Laminattypen berechnet werden. Wir beginnen dazu mit den ähnlich aufgebauten Typenlaminaten nach Bild 1a und b. Sie bestehen aus n-Schichten, die sich aus (n-1)/2 Gewebe- oder UD-Schichten (Index 1) und aus (n+1)/2 Wirrfaserschichten (Index 2) zusammensetzen. Die Schichtzahl n kann dabei die Werte

Typ A :
$$n = 3,7,11,15,...$$

Typ B : $n = 5,9,13,17,...$ (3.9)

annehmen. Im ersten Fall liegt in der Mitte eine Wirrfaserschicht (Bild 1a) und im zweiten eine Gewebe- oder UD-Schicht, zu der noch zwei Wirrfaserschichten (als Mittelstück) gerechnet werden müssen, woran sich dann die vorhin erwähnten Doppelschichten aus Schichten 1 und 2 anschließen. Das Typenlaminat ^C ist ähnlich dem Laminat ^B. Es besteht aus einem MIttelstück mit einer Wirrfaserschicht und zwei UD-Schichten und anschließenden Doppelschichten aus Gewebeschichten (Index 1) und UD-Schichten (Index 2), wozu ganz außen als Rißstopper noch Wirrfaserschichten (Index 3) kommen.

3.1 Typenlaminat A

Da diese Laminate aus (n-1)/2 Gewebe oder UD-Schichten (Index 1) und (n+1)/2 Wirrfaserschichten (Index 2) bestehen, gilt für die Laminatdicke h

$$\mathbf{h} = \frac{1}{2} \left[(n-1)t_1 + (n+1)t_2 \right] = \frac{1}{2} \left(n - \frac{t_1 - t_2}{t_1 + t_2} \right)$$
(3.10)

und analog für die Dehnsteifigkeit D

$$J = \frac{1}{2} \left[(n-1) \sigma d_1 + (n+1) \sigma d_2 \right] = \frac{\sigma}{2} \left[n - \frac{\sigma d_1 - \sigma}{\sigma d_1 + \sigma} \right].$$
(3.11)

Neben der Dehnsteifigkeit wird noch die Beziehung für die Biegesteifigkeit benötigt. Vorab wird die Schwerpunktslage der Doppelschicht 1+2 benötigt. Ihr Abstand e vom unteren Rand der Doppelschicht ergibt sich aus dem Vergleich der statischen Momente (Bild 1a)

$$2 \text{ ed} = \alpha_{1}t_{1} + \alpha_{2}(2t_{1} + t_{2})$$

$$e = \frac{t}{2} \left[1 - \frac{\alpha_{1}t_{2} - \alpha_{2}t_{1}}{(\alpha_{1} + \alpha_{2})t} \right]. \qquad (3.12)$$

ΖU

In die Biegesteifigkeit gehen die Biegesteifigkeiten der einzelnen Schichten

$$B_{0} = \left[(n-1) \alpha_{1} t_{1}^{2} + (n+1) \alpha_{2} t_{2}^{2} \right] / 24 , \qquad (3.13)$$

die normalerweise vernachlässigt werden können, ein. Dazu kommen noch die Steinerglieder der kombinierten Schicht 1 und 2 bezüglich ihres gemeinsamen Schwerpunktes /8/

$$B_{1} = \frac{n-i}{2} \frac{d_{1}d_{2}}{cl} \left(\frac{t}{2}\right)^{2}$$
(3.14)

und die Steinerglieder bezüglich der Mittellinie des Gesamtlaminates

$$B_{2} = 2\alpha \left[\left(e + \frac{t_{2}}{2} \right)^{2} + \left(e + \frac{t_{2}}{2} + t \right)^{2} + \dots + \left(e + \frac{t_{2}}{2} + \frac{n - 5}{4} t \right)^{2} \right].$$
(3.15)

Darin ist mit (3.12) der Abstand

$$\mathbf{e} + \frac{\mathbf{t}}{2} = \frac{\mathbf{t}}{2} \left(\mathbf{1} + \frac{\mathbf{d}}{\mathbf{a}^2} \right) \tag{3.16}$$

enthalten. Auflösung der quadratischen Terme in (3.15) und Zusammenfassung der Glieder (3.14) und (3.15) unter Verwendung der Beziehung (3.16) ergeben schließlich die Summe der Steinerglieder

$$B - B_{o} = 2 c \left(t^{2} \left[1^{2} + 2^{2} + \dots + \left(\frac{n-5}{4} \right)^{2} + \left(1 + \frac{d_{2}}{c} \right) \left(1 + 2 + \dots + \frac{n-5}{4} \right) \right] + \frac{n-4}{46} \left(\frac{d_{1}d_{2}}{c \left(\frac{2}{2} + 2 \left(1 + \frac{d_{2}}{c} \right)^{2} \right) \right].$$
(3.17)

Bei der geringst möglichen Schichtzahl von 5 müssen noch die Eigenbiegesteifigkeiten \mathcal{B}_{o} der Schichten nach (3.13) berücksichtigt werden. Bei höherer Schichtzahl ist ihr Beitrag zu vernachlässigen. Für die Ermittlung der Biegespannungen werden noch die Abstände der Randschichten von der neutralen Faser benötigt. Wenn man die mittleren Spannungen berechnen will, betragen die Abstände der Schicht 1

$$2\overline{e}_1 = h - 2t_2 - t_1 = (n - 3)\frac{t}{2}$$
 (3.18a)

und der Wirrfaserschicht

$$2\bar{e}_{2} = h - t_{2} = (n - 1)\frac{t}{2}$$
 (3.19a)

oder wenn man an den oberen Rand der jeweiligen Schicht geht, zur Ermittlung der Maximalspannung in der jeweiligen Schicht für den Schichttyp 1

$$2c_1 = h - 2t_2 = \frac{(n-1)}{2}t_2 - t_2$$
 (3.18b)

und für die Wirrfaserschicht

$$2e_2 = h. \tag{(3.19)}$$

(2 10)

Dieser Wert wird auch bei Zugrundlegung von "homogenen" Werten verwandt.

3.2 Typenlaminat B

Bei diesem Laminattyp ist n - 1 durch ⁴ teilbar und in der Mitte entsteht ein dreischichtiges Kernstück, mit einer Schicht 1 in der Mitte umgeben von 2 Wirrfaserschichten 2. In diesem Falle kann die Eigenbiegesteifigkeit B (3.3) der Einzelschichten sowie das Steinerglied \mathbf{B}_1 (3.14) der Doppelschicht voll und das wesentliche Steinerglied B₂ (3.15) bezüglich der Mittellinie des Laminates im Prinzip übernommen werden. Im letzten Falle ist nur zu berücksichtigen, daß der Abstand der Schichten von der Mittellinie jetzt nicht $\mathbf{e} + \mathbf{t}_z/2$, sondern

$$e + t_2 + \frac{t_1}{2} = t + e - \frac{t_1}{2} = t + \frac{t}{2} \frac{d}{d^2}$$
 (3.20)

beträgt.

Ferner ist zu berücksichtigen, daß die Zahl der Doppelschichten jetzt pro Laminathälfte um 1 zurückgeht, so daß für das Hauptsteinerglied in Analogie zu (3.15) jetzt die Beziehung

$$B_{2} = 2d \left[\left(e + t_{2} + \frac{t_{1}}{2} \right)^{2} + \left(e + t_{2} + \frac{t_{1}}{2} + t \right)^{2} + \dots + \left(e + t_{2} + \frac{t_{1}}{2} + \frac{w - 7}{4} t \right)^{2} \right] \quad (3.21)$$

gilt. Schließlich ist noch das Steinerglied auch der beiden Wirrfaserschichten im Kernstück mit dem Abstand t/2 von der Mittellinie

hinzuzufügen. Damit gilt jetzt für die Zusammenfassung aller Steinerglieder, wenn man noch aus $e+t_2+t_1/2$ ein herauszieht unddie Summation dann bis (n-3)/4 führt

$$B - B_{o} = 2\alpha t^{2} \left[1^{2} + 2^{2} + \dots + \left(\frac{n-3}{4} \right)^{2} + \frac{\alpha}{\alpha} \left(1 + 2 + \dots + \frac{n-3}{4} \right) \right]$$

$$+ \frac{n-4}{4t} \left(\frac{\alpha_{1} \alpha_{2}}{\alpha^{2}} + 2\left(1 + \frac{\alpha_{1}}{\alpha} \right)^{2} \right) + \frac{4}{4} \frac{\alpha_{2}}{\alpha} \right].$$
(3.22)

4. Vereinfachte Rechnung

Wunsch ist es bei der Laminatberechnung möglichst wie bei einem Querschnitt aus isotropem Material vorzugehen. Bei dem regelmäßigen Schichtaufbau der Typenlaminate kann man dazu die Steifigkeiten der Grundschicht (Doppel- oder Vierfachschicht) verschmieren und erhält dann die Beziehungen (3.4) und (3.5) für die Dehn- und Biegesteifigkeit. Zur Ermittlung der Widerstandsmomente führt man als Randfaserabstand in der Kontinuumsrechnung die halbe Laminatdicke e = h/2 ein. Ferner wird gezeigt, daß sich die Kontinuumswerte für die Biegesteifigkeit noch wesentlich verbessern lassen, wenn man die Lage des elastischen Schwerpunktes der Doppel- und Vierfachschichten berücksichtigt. Beim Verschmieren wird die Steifigkeit der Grundschichten gleichmäßig über die Dicke t verteilt. Wenn aber in der Schichtkombination die innen liegenden Schichten steifer sind, was normalerweise der Fall ist, liegt die neutrale Faser für die Schichtkombination nicht in der Mitte der Schichtkombination, sondern weiter nach innen, was sich in einfacher Weise durch eine Vorrechnung ermitteln läßt.

Das Kernstück in den Kontinuumssteifigkeiten \overline{D} und \overline{B} ist der "verschmierte" Elastizitätsmodul d/t der Grundschicht, aus der im wesentlichen das Laminat aufgebaut ist. Für die weitere Diskussion ist besonders interessant, wie dieser effektive Elastizitätsmodul vom Gesamtglasgehalt und vom Verhältnis der Glasgewichte pro Flächeneinheit abhängt und wie er sich schließlich beim Übergang vom Tragzustand I auf den Zustand II verändert und zwar für die verschiedenen Schichtkombinationen nach Bild 1.

Außerdem ist zu erwarten, daß bei geringer Schichtzahl die Kontinuumslösung fehlerhaft ist. Dazu werden einfache Korrekturglieder abgeleitet und anhand eines Vergleiches mit der genauen Bedienung für ein Doppelschichtlaminatwird nachgewiesen, daß sich die Fehler der Kontinuumsrechnung in den Dehn- und Biegesteifigkeiten sowie den Widerstandsgrößen für die Spannungsberechnung, insbesondere den Widerstandsmomenten, selbst für Laminate mit sehr geringer Schichtzahl völlig ausgleichen lassen.

Schließlich ist noch zu diskutieren, wie sich ein Fehler in der Laminatdicke auf die Steifigkeiten und Widerstandsgrößen auswirkt. Nach dieser allgemeinen Diskussion, die im wesentlichen mit dimensionslosen Größen durchgeführt wird, müssen noch die Werte einschließlich der Streubereiche für die Normlaminate in tabellarischer Form (Tabelle 2) zusammengestellt werden (Abschnitt 5).

4.1 Grundwerte der Laminate

Bei der Laminatberechnung kann man davon ausgehen, daß die Glasgewichte g_i pro Flächeneinheit der einzelnen Schichten sowie die Gesamtschichtzahl n und die Anzahl n_i von jedem Schichttyp i und schließlich der gewünschte Gewichtsglasanteil γ und damit der Volumenglasanteil q

$$f = \frac{1}{1 + \frac{1 - 4}{24}}$$
(4.1)

bekannt sind. Daraus lassen sich dann die Laminatdicke h, die Schichtdicken t_i mit den dazugehörigen Glasvolumenanteilen Ψ_i sowie die Laminatsteifigkeiten berechnen.

Das Glasgewicht g_i läßt sich durch das spezifische Glasgewicht $\gamma_{\rm G}$ = 25 kN/m³, den Glasgehalt $\gamma_{\rm i}$ und die Schichtdicke t_i ausdrücken:

$$\hat{\mathbf{g}}_{i} = Y_{0}(\varphi t)_{i}$$
(4.2)

Aus der Beziehung für den Gesamtglasgehalt

 $h q r_0 = \Sigma(ng)_k$

ergibt sich die Laminatdicke h zu

$$h = \frac{1}{4r_G} \sum_{k=1}^{\infty} (ng)_k . \tag{4.3}$$

Da in der Anzahl n_k schon die Schichtzahl eines Schichttypes^k erfaßt ist, läuft die Summation mit dem Index k nur noch über die Schichttypen, d.h. bei einem Zweischichtlaminat über die Schichten 1 und 2 und beim Vierschichtlaminat über die Schichten 1-4. Die Erfahrung hat gezeigt, daß die erreichten Glasgehalte in den einzelnen Schichten je nach Schichttyp und Fertigungsverfahren in einem relativ festen Verhältnis

$$F = 4_i / 4_0 = 4_i / 4_{UD}$$
(4.4)

zueinander stehen (Tabelle 1), wobei als Bezugsgröße φ_o sinnvollerweise der größtmögliche Glasgehalt, wie er sich in UD-Sichten erreichen läßt, gewählt wird. Damit folgt aus Gleichung (4.2) die Beziehung für die Schichtdicke

$$t_{1} = \frac{3}{4} \left(\frac{\varphi}{F} \right)_{L} \qquad (4.5)$$

Berücksichtigt man ferner, daß die Laminatdicke gleich der Summe aller Schichtdicken ist

$$h = \sum (nt)_{k},$$

läßt sich mit Hilfe der Gleichung (4.5) der Bezugsglasgehalt $arPsi_{a}$ ausdrücken

$$\Psi_{0} = \frac{1}{h} \sum \left(\frac{nq}{F_{KG}}\right)_{k} = \Psi \sum \left(\frac{nq}{F}\right)_{k} / \sum \left(nq\right)_{k}$$
(4.6)

und mit Hilfe des Verhältnisses F (4.4) schließlich der Glasgehalt q i der einzelnen Schichttypen

$$\Psi_{i} = F\Psi_{o} = \frac{F_{i}}{n} \sum_{i} \left(\frac{ng}{Fr_{c}}\right)_{k} = \Psi F_{i} \sum_{i} \left(\frac{ng}{F}\right)_{k} / \sum_{i} \left(ng\right)_{k}$$
(4.7)

und nach (4.5) die Schichtdicke t_i der einzelnen Schichten

$$t_{i} = \frac{hg_{i}}{F_{i}} \frac{1}{\sum \left(\frac{ng}{F}\right)_{k}} = \frac{g_{i}}{r_{c}} \frac{\sum (ng)_{k}}{\sum (\frac{ng}{F})_{k}}$$
(4.8)

sowie die Dicke t des Grundbausteins des Laminates

$$t = \overline{\Sigma} t_{k} = \frac{1}{9} \overline{\Sigma} \left(\frac{9}{F}\right)_{k} \frac{\overline{\Sigma} (ng)_{k}}{\overline{\Sigma} (ng/F)_{k}}$$
(4.9)

ausdrücken.

Aus den im Vorlaufenden hergeleiteten Beziehungen wird deutlich, daß nach Festlegung des Laminattypes in Bild 1, der Glasgewichte g_i sowie der Schichtzahlen n_i nur noch der Gesamtglasgehalt ψ oder ψ gewählt werden kann, alle anderen Größen liegen dann fest.

4.2 Kontinuumsrechnung

Die Ermittlung der Dehn- und Biegesteifigkeiten sowie der Widerstandsmomente läßt sich vereinfachen, wenn man die Steifigkeit der Grundschicht

$$\mathbf{cl} = \sum_{k} (\mathsf{Et})_{k} \tag{4.10}$$

auf ihre Dicke t verschmiert und mit dem zugehörigen Elastizitätsmodul

$$\overline{E} = \frac{a}{t} = \frac{\Sigma(Et)_k}{\Sigma t_k}$$
(4.11)

weiterrechnet. Damit ergibt sich die übliche Kontinuumssteifigkeit

$$\overline{\mathbf{D}} = \overline{\mathbf{E}} \mathbf{h} \,. \tag{4.12}$$

Wenn man beachtet, daß das Gesamtlaminat aus m Grundschichten und einer zusätzlichen Wirrfaserschicht mit der Steifigkeit

$$\alpha'_{2} = (Et)_{2} \tag{4.13}$$

aufgebaut ist, erhält man die genaue Dehnsteifigkeit des Laminates, indem man die Kontinuumssteifigkeit (4.12) um die Steifigkeit dieser Schicht wieder korrigiert

$$D = \overline{E}(h-t_2) + E_2 t_2 = \overline{E}h - (\overline{E} - E_2)t_2 = \overline{E}h(1-a).$$
(4.14)

Das Korrekturglied

$$\alpha = \frac{\overline{E} - \overline{E}_z}{\overline{E}} \frac{t_z}{h}$$
(4.15)

beträgt bei Zweischichtlaminaten mit einer Gewebe- oder UD-Sicht (Index 1) und einer Wirrfaserschicht (Index 2)

$$\alpha = \frac{(E_1 - E_2)t_1 t_2}{E_1 t_1 + E_2 t_2 h}$$
(4.15a)

und bei einem Vierschichtlaminat mit zwei längs angeordneten UD-Schichten (Index 1) und einer quer angeordneten UD-Schicht oder einer Gewebeschicht mit einem Verstärkungsverhältnis 1: 18 (Index 3) und schließlich einer Wirrfaserschicht (Index 2)

$$G = \frac{2(E_1 - E_2)t_1 + (E_3 - E_2)t_3}{2E_1t_1 + E_2t_2 + E_3t_3} \frac{t_2}{h}$$
(4.15b)

Dabei ist für die Wirrfaserschicht wieder der Index 2 gewählt worden, um die Indizes nicht immer umtauschen zu müssen und die ERgebnisse für die Doppel- und die Vierfachschicht einfacher vergleichen zu können. Die beiden Korrekturglieder sind ebensalls aus der Differenz zwischen (É-Moduli der Einzelschichten und der Wirrfaserschicht aufgebaut.

Das Kontinuumsglied D liefert den wesentlichen Anteil. Dazu kommt noch ein Korrekturglied (4.15), das mit wachsender Schichtzahl immer geringer wird, da die Schichtzahl nur im Nenner des Korrekturgliedes nämlich in der Laminatdicke h eingeht. Zur vollständigen Dimensionierung werden auch noch die Beziehungen für die Biegesteifigkeit B und die Widerstandsmomente W benötigt. Sie können auch zur Berechnung der Drillglieder analog übernommen werden. Bei der üblichen Kontinuumsrechnung wird das Laminat als ein homogenes mit dem Elastizitätsmodul Ē (4.11) idealisiert. Die zugehörige Biegesteifigkeit läßt sich aber noch verbessern, wenn man davon ausgeht, daß das symmetrisch aufgebaute Laminat aus der oberen und unteren Hälfte besteht (Bild 1 f) und berücksichtigt, daß die neutrale Faser in jeder Hälfte nicht im Abstande h/4 von der Laminatmitte liegt, sondern um e' weiter nach außen. Die Exentrizität e' ist gleich dem Abstand der neutralen Faser der jeweiligen Schichtkombination (Doppel- oder Vierfachschicht) von der Mitte dieser Schichtkombination und beschreibt, um wieviel der elastische Schwerpunkt bei unterschiedlich steifen Schichten von der Kernschichtmitte abweicht. Die Biegesteifigkeit setzt sich aus den beiden Eigenbiegesteifigkeiten der Laminathälften bezüglich der MItte der Laminathälften zusammen

$$2B_0 = 2\overline{E}\frac{h}{2}\left[\frac{1}{12}\left(\frac{h}{2}\right)^2 - e^{i^2}\right]$$

und muß noch bei Transformation in die neutrale Achse der jeweiligen Laminathälfte um das Steinerglied (proportional e^{i}) verringert werden. Dazu kommt noch das Steinerglied bezüglich der Mitte des Laminates

$$\overline{E}h\left(\frac{h}{4}+e^{\prime}\right)^{2}=\overline{D}\left(\frac{h}{4}+e^{\prime}\right)^{2}.$$

Zusammenfassung aller Glieder und Herausziehen des Kontinuumsmoduls ergibt schließlich die Beziehung für die Biegesteifigkeit

$$B = \frac{\overline{D}h^{2}(1+\frac{6e'}{h})}{12} = \overline{B}(1+\frac{6e'}{h}). \qquad (4.16)$$

Sie setzt sich im wesentlichen aus dem Wert \overline{B} der Kontinuumsrechnung zusammen und wird durch das Korrekturglied 6e'/h abgemindert da e' normalerweise negativ ist. Diese Korrektur nimmt mit zunehmender Laminatdicke h oder zunehmender Schichtzahl n immer mehr ab, da das Exentrizitätsmaß e' im Zähler der Korrektur für jeden Kernschichtyp ein fester von der Gesamtschichtzahl unabhängiger Wert ist. Die Exentrizität e' beträgt bei einem Zweischichtlaminat nach (3.12) und Bild 1e

$$e' = e - \frac{t}{2} = -\frac{\alpha_1 t_2 - \alpha_2 t_1}{2\alpha t} = -\frac{(E_4 - E_2)t_1}{E_4 t_1 + E_2 t_2}$$
(4.17a)

und bei einem Vierschichtlaminat

$$e' = -\frac{(2\alpha_1 + \alpha_3)t_2 - \alpha_2(2t_1 + t_3)}{2\alpha_1 t_2} = -\frac{2(E_1 - E_2)t_1 + (E_3 - E_2)t_3}{2E_1t_1 + E_2t_2 + E_3t_3} \frac{t_2}{2} \cdot$$
(4.17b)

Ein Vergleich mit dem Kurrekturglied a (4.15a und b) für die Dehnsteifigkeit zeigt, daß das Korrekturglied bei der Biegesteifigkeit den dreifachen Wert desjenigen für die Dehnsteifigkeit annimmt

$$\frac{6e'}{h} = -30, \tag{4.18}$$

d.h. wir kommen mit einem einzigen Korrekturwert für beide Steifigkeiten aus.

Für den Spannungsnachweis eines auf Normalkraft und Biegung beanspruchten Laminates

$$\sigma_{i} = E_{i} \left(\frac{N}{D} + \frac{M}{B} \epsilon_{i} \right)$$

werden noch die Randfaserabstände e $_i$ für die einzelnen Schichten benötigt. Für die Wirrfaserschicht (Index 2) beträgt der Abstand der Schichtmitte

$$e_2 = (h - t_2)/2$$
, (4.20a)

für die UD- oder Gewebeschicht (Index 1) beträgt der Randabstand

$$e_1 = \frac{1}{2}(h - 2t_2 - t_3)$$
 (4.20b)

und schließlich für die quer angeordnete UD-Schicht (Index 3) bei Vierschichtlaminaten

$$e_3 = \frac{1}{2} (h - 2t_2 - 2t_1 - t_3).$$
 (4.20c)

4.3 Diskussion der Ergebnisse

Bevor die Auswertung für die Typenlaminate vorgenommen wird, soll zunächst eine allgemeine Diskussion durchgeführt werden, und zwar für den effektiven Elastizitätsmodul E und für die Genauigkeit der verbesserten Kontinuumsrechnung. Im Bild 4 ist der effektive Elastizitätsmodul \overline{E} (4.11) für die Doppelschicht, bestehend aus einer Wirrfaserschicht (Index 2) und einer Gewebeschicht oder einer UD-Schicht (Index 1) über den Gesamtglasgehalt 🌾 der Doppelschicht aufgetragen. Bei Verwendung der UD-Schichten ist zu berücksichtigen, daß sie längsoder querangeordnet sein können, da sowohl der Elastizitätsmodul in Längsrichtung als auch in Querrichtung interessiert. Der Elastizitätsmodul ist dimensionslos gemacht, indem er auf den tragenden Modul, den Glasmodul E_G,bezogen ist. Für das Wanddickenverhältnis t_2/t_1 kommen im wesentlichen Werte in der Nähe von 1 in Betracht. Der Sonderfall $t_2/t_1 = 1$ ist im Bild 4 als durchgehende Kurve aufgetragen, die Ergebnisse für $t_2/t_1 = 0,75$ und $t_2/t_1 = 1,25$ sind jeweils nur angedeutet, um den Streubereich aufzuzeigen. Die effektiven Elastizitätsmoduli hängen nahezu linear vom Glasgehalt of ab. Das Schichtdickenverhältnis t₂/t₄ spielt nur bei Verwendung von UD-Schichten und zwar in Faserrichtung eine merkliche Rolle.

Um den Einfluß des Harzes aufzuzeigen sind als dünne Linien noch die Ergebnisse aufgetragen, wenn das Harz in den querbeanspruchten Schichten ausfällt, was bei höheren Belastungen und bei langandauernden Verformungen infolge des Kriechens zu erwarten ist. Schließlich sind noch als gestrichelte Linien die unteren Grenzwerte angegeben, wenn nämlich die tragende Wirkung des Harzes völlig vernachlässigt wird.

Im Bild 5 ist die Genauigkeit der Steifigkeits- und Widerstandsglieder nach der Kontinuumsrechnung für Doppelschichtlaminate nach Bild 1a und b in Abhängigkeit von der Gesamtschichtzahl n dargestellt. Dazu werden die Kontinuumswerte für die Steifigkeiten (3.4) und 3.5), die auch den Werten \overline{D} und \overline{B} nach (4.12) und (4.16) entsprechen, auf die exakt ermittelten Dehn- und Biegesteifigkeiten (3.11), (3.17) und (3.22) bezogen

$$\frac{\overline{D}}{\overline{D}} = \frac{\overline{B}}{\overline{B}}$$
(4.21)

Die Ergebnisse sind in Bild 5a für das Typenlaminat A (Bild 1a) und in Bild 5b für das Typenlaminat B in Abhängigkeit von der Schichtzahl n (\overline{D}/D – ausgezogene Linien, \overline{B}/B – gestrichelte Linien) aufgetragen. Als Parameter ist nicht der Glasgehalt sondern das Verhältnis der Steifigkeiten E_2/E_1 gewählt, da dieses für einen gewählten Laminattyp und ein gewähltes Wanddickenverhältnis t_2/t_1 nahezu konstant ist und dadurch die hier getroffenen Aussagen allgemeingültiger werden und auch auf andere Laminate übernommen werden können.

Für das Widerstandsmoment der Wirrfaserschichten (Index 2) gelten auch die Kurven für das Biegesteifigkeitsverhältnis B/B, so daß es genügt, nur das Verhältnis

$$\frac{W_1}{W_1} \sim \frac{B}{B}$$
(4.22)

für das Widerstandsmoment der innen liegenden Gewebe- oder UD-Schicht aufzutragen. (strichpunktierte Linien) Es zeigt sich, daß die Kurven für die Laminate A und B praktisch deckungsgleich sind, bis auf die Werte für die Minimalschichtzahl n = 5 in Bild 5a und n = 3 in Bild 5b. Ferner, daß die Abweichung in der Dehnsteifigkeit erwartungsgemäß geringer ist als diejenige der Biegesteifigkeit und daß das Verhältnis (4.22) der Widerstandsmomente ungefähr umgekehrt proportional dem Verhältnis (4.21) der Biegesteifigkeit ist. Bei kleinem Steifigkeitsverhältnis $E_2/E_1 = 0,3$, dh. bei großem Steifigkeitsunterschied ist der Fehler der üblichen Kontinuumsrechnung ausgeprägter als bei geringem Steifigkeitsunterschied ($E_2/E_1 = 0,6$). Bei gleicher Steifigkeit der beiden Schichten($E_2 = E_1$) werden die Ergebnisse der üblichen Kontinuumsrechnung exakt.

Um deutlich zu machen, wieweit die verbesserte Kontinuumsrechnung (4.14) und (4.16) die exakten Werte aufgrund des Korrekturgliedes a (4.15) und (4.18) wieder-

gibt, sind die Steifigkeitsverhältnisse (4.21) unter Verwendung der verbesserten Steifigkeiten (4.14) und (4.16)

$$\frac{\overline{D}}{D} = \frac{4}{4 - 6}, \quad \frac{\overline{B}}{\overline{B}} = \frac{4}{4 - 36}$$
(4.22a)

ebenfalls in Bild 5 als Punkte eingetragen. Es zeigt sich, daß die verbesserte Kontinuumsrechnung mit den genauen Ergebnissen völlig übereinstimmt, bis zu Schichtzahlen von n = 5 und selbst bei der minimalen Schichtzahl von n = 3 in der Biegesteifigkeit nur ein Unterschied von 5 % auftritt. Bei der üblichen Kontinuumsrechnung beträgt der Unterschied im Grenzfalle n = 3 immerhin 2,15. Hier wird besonders deutlich, wie wichtig es ist, die genauere Lage des elastischen Schwerpunktes der Laminate zu berücksichtigen. Eine Darstellung des Korrekturgliedes a erübrigt sich, da es durch den Unterschied zwischen den bezogenen Steifigkeitsverläufen (4.22a) und der 1 unmittelbar wiedergegeben ist. 4.3.1 Laminate des Types F .../300

Bei diesen Laminaten haben die inneren Wirrfaserschichten ein Glasgewicht von 300 g/m², die äußeren dagegen von g = 450 g/m². Ein solches Laminat wird am zweckmäßigsten wie ein kontinuierliches Laminat mit zwei zusätzlichen Aussenschichten behandelt, d. h. von den äußeren Wirrfaserschichten wird der Anteil g = 300 g/m² zu dem kontinuierlich aufgebauten Laminat zugeschlagen das restliche Glasgewicht g = 150 g/m² wird in den zusätzlichen Außenschichten des Types W (Index 4) erfaßt. Die Beziehungen für ein Zweischichtlaminat aus dem Abschnitt 4.1 und 4.2 können mit gewissen Zusätzen für die zusätzlichen Aussenschichten übernommen werden (Bild 6a).

Wenn man das Glasgewicht dieser Zusatzschicht mit $g_4 = 150 \text{ g/mm}^2$ und die Dicke mit t_4 bezeichnet, lauten die Beziehungen (4.3) für die Laminatdicke h und (4.7) für den Glasgehalt φ_i

$$h = \frac{i}{4y_{G}} \left(n_{1}g_{1} + n_{L}g_{2} + 2g_{4} \right), \quad \Psi_{1} = \frac{F_{1}}{hy_{G}} \left(\frac{n_{1}g_{1}}{F_{1}} + \frac{n_{1}g_{2}}{F_{2}} + \frac{2g_{4}}{F_{2}} \right). \quad (4.3a/7a)$$

Im Korrekturglied a (4.15a) muß h durch h – $2t_4$ ersetzt werden. Die Ausdrücke für die Steifigkeiten nach der verbesserten Kontinuumstheorie lauten jetzt

$$D = \vec{E}(h - 2t_4) \quad (1 - a) + 2E_4t_4 \quad (4.14a)$$
$$B = \vec{E}(h - 2t_4)^{-3} (1 - 3a)/12 + E_4t_4 (h - t_4)^2/2. \quad (4.16a)$$

4.4 Einfluß der Schwankungen des Harzgehaltes

Die Kontinuumsrechnung hat außerdem den großen Vorteil, daß sich Schwankungen im Harzgehalt und damit Schwankungen in der Laminatdicke h einfach diskutieren lassen. Wenn man davon ausgeht, daß sich die Schwankung im Harzgehalt gleichmäßig auf alle Schichten verteilt, bleibt mit dem Glasgewicht g_i (pro Flächeneinheit) der Schichten nach (4.2) auch das Produkt (¢t), der einzelnen Schichten und damit auch das Produkt h ϕ des Gesamtlaminates konstant. Aus diesem Grunde ändert sich die Dehnsteifigkeit D und die Tragfähigkeit gegenüber Normalkräften praktisch nicht, wohl aber die Biegesteifigkeit, da die Glasfasern mit zunehmender Laminatdicke einen größeren Abstand aufweisen. Wenn man berücksichtigt, daß das Korrekturglied a (4.15) unabhängig von Schwankungen im Harzgehalt ist, da es sich als Produkt von Verhältnissen aus den Elastizitätswerten und den Laminatdicken zusammensetzt, die sich bei Schwankungen im Harzgehalt praktisch nicht verändern und ferner auch die Dehnsteifigkeit ${\mathbb J}$ unverändert bleibt, hängt die Biegesteifigkeit nach (4.16) nur noch vom Quadrat der Höhe h ab. Bei kleinen Schwankungen ∆h wächst damit die Biegesteifigkeit um

$$\overline{B} = \frac{\overline{D}}{42} \left(h_0 + \Delta h \right)^2 \sim \frac{\overline{D}}{42} h_0^2 \left(4 + 2 \frac{\Delta h}{h_0} \right) = \overline{B}_0 \left(4 + 2 \frac{\Delta h}{h_0} \right), \qquad (4.23)$$

wobei h_0 die Ausgangslaminatdicke ist. Das Verhältnis

$$\frac{\Delta h}{h_0} = \frac{\Delta q}{q_{H_0}} = -\frac{\Delta q}{1-q_0}$$
(4.24)

ist auch zugleich das Verhältnis zwischen der Änderung des Harzgehaltes und dem Ursprungsharzgehalt, der in (4.24) durch den komplementären Glasgehalt 4 dargestellt ist. Bei den Widerstandsmomenten wird mit dem Randabstand e noch einmal ein Faktor h herausgenommen, so daß die Korrektur dafür

$$\overline{W} = \frac{2B}{h} = \overline{W}_0 \left(1 + \frac{\Lambda h}{h_0}\right)$$
(4.25)

beträgt.

4.5 Schnittkräfte im Bruchzustand

Die Ermittlung der maximalen Zugkräfte N und Biegemomente M je Breiteneinheit wird am einfachsten, wenn man beide Schnittkraftzustände getrennt behandelt und die Netztheorie an wendet oder mit anderen Worten den Zustand II mit ausgefallenem Harz ($E_{\rm H}$ = 0) unterstellt. Die erreichbaren Schnittkräfte hängen dann allein von den Glasspannungen ab, wofür in den UD-Schichten ein etwas höherer Wert angesetzt werden kann als in den Gewebe- und Wirrfaserschichten

$$\sigma_{\rm R} = 1,2 \, {\rm kN/mm}^2, \quad \sigma_{\rm G} = \sigma_{\rm W} = 1,0 \, {\rm kN/mm}^2.$$
 (4.26)

Der Gewebewert gilt für ein Verstärkungsverhältnis um 1:1, bei Geweben mit geringer Kettverstärkung (18:1) kann der Wert für σ_p genommen werden.

In der Netztheorie tragen nur die Glasfäden, sodaß sich der tragende Querschnitt A_i einer Schicht durch das Glasgewicht g_i und den Tragfaktor k_i darstellen läßt

$$A_{i} = k_{i} g_{i} / \gamma_{G} . \qquad (4.27)$$

Der k-Wert gibt den tragenden Glasanteil in jeder Richtung an und beträgt nach Gleichung (2.4) für ein Gewebe 1: α in Längs- und Querrichtung

$$k_{\parallel} = \frac{1}{1+\alpha} , \quad k_{\perp} = \frac{\alpha}{1+\alpha} .$$
 (4.28a)

Bei den UD-Schichten ist α = 0. Für die Wirrfaserschichten ist gemäß Gleichung (2.6a)

$$k = 0,4$$
 (4.28b)

in beiden Richtungen. Damit ergibt sich für die maximale Normalkraft

$$N = \sum (\sigma nA)_{i} = \sum (\sigma ngk)_{i} / \gamma_{G}$$
(4.29)

oder speziell für Zweischichtlaminate

$$N = [p(\sigma gk)_{1} + (p+1) (\sigma gk)_{2}]/\gamma_{G} . \qquad (4.29a)$$

Die Normalkräfte sind erwartungsgemäß unabhängig vom Glasgehaltψoderψ.

Auch bei ausgefallenem Harz bleiben die Querschnitte eben und nehmen die Dehnungen im Falle Biegung von der Laminatmitte aus nach außen hin linear zu:

$$\varepsilon(z) = \frac{\varepsilon(\overline{e}_{i})}{\overline{e}_{i}} z = \frac{\sigma_{i}}{\overline{Ee}_{i}} z.$$

Hierbei lassen sich die Dehnungen $c(\overline{e}_j)$ in den äußeren Schichten mit dem Abstand \overline{e}_j auch durch die dort herrschenden Spannungen o_i ausdrücken. Damit nehmen auch die Kräfte N_i in den einzelnen Schichten nach außen hin linear zu

$$N_{i} = \left(\frac{\sigma A}{e}\right)_{i} z \qquad (4.30)$$

und die Beziehung für das Gesamtmoment lautet

$$M = \sum_{i} N_{i} z_{i} = \sum_{i} \sigma_{i} A_{i} t \frac{(z_{i}/t)^{2}}{e_{i}/t} . \qquad (4.31)$$

Die darin auftretenden Summen der Quadrate der Abstände werden am zweckmäßigsten auf die Grundschicht t = $t_1 + t_2$ bezogen und lassen sich für alle Zweischichtlaminate durch die Anzahl p der Grundschichten ausdrücken

$$\sum (z_1/t)^2 = (p-1)p(p+1)/12, \quad \sum (z_2/t)^2 = p(p+1)(p+2)/12. \quad (4.32)$$

Wegen des linearen Verlaufes der Spannungen ist es außerdem möglich die Spannung $\sigma_2 = \sigma_1 \ e_2/e_1$ in der äußeren Wirrfaserschicht (und bei Vierschichtlaminaten auch die Spannung σ_3 in der Gewebeschicht) durch die Spannung σ_1 der äußeren "tragenden" Schicht zu ersetzen, sodaß sich das Moment für die am häufigsten vorkommenden Zweischichtlaminate mit der Beziehung (4.9) für t und (3.18a) für $e_1/t = (p-1)/2$ in der Form

$$M = \frac{\sigma_1 p(p+1)}{6\gamma_G^2 \psi} \frac{\sum (g/F)_i}{\sum (ng/F)_i} \sum (ng)_i (g_1 k_1 + g_2 k_2 \frac{p+2}{p-1})$$
(4.33)

darstellen läßt. Das Grenzmoment hängt, wie die Laminatdicke h , vom Kehrwert des Gesamtglasgehaltes φ ab. Er kommt über die Grundschichtdicke t, d. h. über eine geometrische Größe, herein, denn das Harz fällt wohl für die Kraftübertragung aus, stellt aber nach wie vor die Abstände der Schichten und damit die Laminatdicke h sicher. Außerdem wird hierdurch auch die Gleichung (4.25) für den Einfluß der Schwankungen im Glasgehalt φ oder im komplementären Harzgehalt (1- φ) bestätigt. Man hätte die Grenzschnittkräfte auch durch Umkehr der Spannungsbeziehung für den Sonderfall $E_{\rm H} = 0$ erhalten

$$N = \sigma_1 D / E_C$$
, $M = \sigma_1 B / \bar{e}_1 E_C$

Dann wird aber die φ -Abhängigkeit nicht so offenkundig wie in den Gleichungen (4.29) und (4.33).

In Gleichung (4.33) ist der Spannungswert σ_1 der äußeren tragenden Schicht herausgezogen, damit wird für die äußere Wirrfaserschicht angenommen, daß sie ohne weiteres größere D eh-

nungen als die nächst innere tragende Schicht aufnehmen kann. Durch Versuche ist nämlich bestätigt, daß die Wirrfaserschichten vor dem Bruch größere plastische Dehnungen erleiden können als die sich im wesentlichen linear verhaltenden Gewebe und UD-Schichten. Durch die Beziehungen (4.33) wird wegen der Annahme einer linearen Verteilung der Glasbruchspannungen über die Laminatdicke der Traganteil der Wirrfaserschichten, insbesondere der äußeren Schichten, und damit auch das Grenzmoment M etwas überschätzt. Man erhält einen unteren Grenzwert, wenn man für die Wirrfaserschichten ein ideal-elastischplastisches Verhalten unterstellt (Bild 6b). In der Beziehung (4.29) für die Normalkraft N ist das im Grunde schon unterstellt. Im Falle der Biegung wirkt sich das ideal-elastisch-plastische Verhalten der Wirrfaserschichten wegen des Übereinstimmens der Grenzspannungen für die Gewebe- und Wirrfaserschichten und wegen des geringfügigen Unterschiedes zwischen den Wirrfaserschichten und den längsgerichteten UD-Schichten nur in den äußeren Schichten aus, und zwar bei den Laminaten MW, sowie bei den Laminaten F mit geringer Schichtzah (n 💪 17), bei den Lamimaten F mit größerer Schichtzahl, ebenso noch in der zweiten Wirrfaserschicht von außen. Da nur wenige Schichten plastisch werden, erscheint es sinnvoll von den elastischen Werten (4.33) auszugehen und nur Korrekturen für das inelastische Verhalten der äußeren Schichten hinzuzufügen. Die Differenz zwischen der elastischen Spannung und der plastischen Spannung og = 1,0 kN/mm² beträgt

$$\Delta \sigma = (\sigma_1 \frac{\overline{e}_2}{\overline{e}_1} - \sigma_2) = \sigma_2 (\frac{\sigma_1 \overline{e}_2}{\sigma_2 \overline{e}_1} - 1) = \sigma_1 \frac{p}{p-1} - \sigma_2. \quad (4.34)$$

Dazu gehört die Momentenkorrektur für Zweischichtlaminate, wenn nur die äußeren Wirrfaserschichten ^betroffen sind

$$\Delta M = \frac{g_2 k_2 \Delta \sigma}{\gamma_G} \text{ pt}$$
(4.35a)

oder, wenn auch die nächst inneren mit einzubeziehen sind

$$\Delta M = \frac{g_2 k_2}{\gamma_G} \left[\Delta \sigma (2p-1) - \sigma_1 \frac{t}{\overline{e}_1} (p-1) \right] t . \qquad (4.35h)$$

Man kann auch den elastischen Anteil der äußeren Wirrfaserschichten aus der Summation herausnehmen und dann den plastischen Anteil wieder hinzufügen

$$M = \frac{pt}{6\gamma_{G}\Psi} \{\sigma_{1}[(p+1) \ g_{1}k_{1}+(p-2)g_{2}k_{2}]+6 \ \sigma_{2}g_{2}k_{2}\}$$
(4.36)

Ein unkontrolliertes Plastizieren der Wirrfaserschichten ist dabei nicht möglich, da die benachbarten Gewebe- und UD-Schichten elastisch bleiben und die Dehnungen begrenzen.

Der Vollständigkeit halber muß noch erwähnt werden, daß in den Beziehungen(4.29) für die Grenz-Normalkraft idealelastisch-plastisches Verhalten der Wirrfaserschichten unterstellt ist. Bei den MW-Laminaten wirkt sich das nicht aus, da $\sigma_1 = \sigma_2$ ist, wohl aber bei den F-Laminaten. Bei den F-Laminaten sind neben den Schnittkräften in Längsrichtung auch noch diejenigen in Querrichtung angegeben. Nach der Netztheorie fallen die querbeanspruchten UD-Schichten aus, d.h. in den Beziehungen (4.29) und (4.31) bzw. (4.33) ist $k_1 = 0$ zu setzen. Dadurch ist sichergestellt, daß nicht der gesamte Querschnitt durchplastiziert, wobei die guerbeanspruchten UD-Schichten infolge zu großer Dehnungen völlig zerstört würden, sondern plastische Verformungen nur in den äußeren Schichten auftreten. Eine andere Möglichkeit wäre es, von einer rein elastischen Lösung auszugehen und in der äußeren Wirrfaserschicht nur o2 zuzulassen. In diesem Falle muß man von Gleichung (4.33) ausgehen und darin σ_1/\bar{e}_1 durch σ_2/\bar{e}_2 ersetzen oder die Gleichung mit

$$\frac{e_2}{\overline{e}_1} = \frac{p}{p-1}$$

multiplizieren. Der Wert k_1 ist nach wie vor zu Null zu setzen.

Bei den Laminaten F.../300 muß wieder der Einfluß der steiferen äußeren Wirrfaserschichten hinzugefügt werden, indem wie in Bild 6a und im Abschnitt 4.3.1 außen noch je eine Schicht mit einem Glasgewicht von 150 g/m² hinzugefügt wird. Auf die zusätzliche Einzelschicht entfällt die Kraft

$$N_{4} = E_{2} t_{4} \sigma_{2} / E_{G'}$$
(4.37)

sodaß jetzt die Beziehung für die Schnittkräfte lautet

$$N = N_1 n_1 + N_2 n_2 + 2N_4, \quad \forall M = \psi \left[M_1 + M_2 + M_4 (h - t_4) \right]. \quad (4.38)$$

5. Auswertung

Die Auswertung wird für die mit der Industrie abgesprochenen Typenlaminate (Bild 1) durchgeführt und zwar für die Doppelschichtlaminate

Mischlaminate: MW 580/450/ und 900/450 und die Wickellaminate F 120/300, 240/300, 480/300, 600/300 und 720/300 sowie F 600/450, 720/450 und 960/450 und das Vierschichtlaminat F 600/500/600/450.

Die Ziffern geben dabei die Glasgewichte der Schichten an und zwar zunächst für die Gewebe- oder UD-Schicht und danach für die Wirrfaserschicht. In Tabelle 2 und Bild 6 sind die Grenzschnittkräfte nach der Netztheorie zusammengestellt, wobei für die äußeren Wirrfaserschichten ein ideal-elastisch-plastisches Verhalten zugrundegelegt ist. Es werden sowohl die Werte in Längs- als auch in Querrichtung angegeben. Bei der Netztheorie lassen sich die Ergebnisse in einer Tabelle komprimieren, da die Normalkräfte N und das Produkt Biegemomente M x Volumenglasgehalt arphi unabhängig vom Glasgehalt sind und nur noch von den Glasgewichten g, und der Anzahl n der Schichten abhängen. Die Normalkräfte in Querrichtung sind für alle F-Laminate .../300 und .../450 untereinander jeweils gleich; bei dem Produkt M ϕ ergeben sich wegen der unterschiedlichen Höhe der Laminate dagegen Unterschiede in den Ergebnissen. Um einen Eindruck zu geben, wieweit die Ansätze für das Tragverhalten der Wirrfaserschichten die Grenzschnittkräfte beeinflussen, sind bei den Mischlaminaten (MW) anstelle der Schnittkräfte in Querrichtung, die mit denen in Längsrichtung übereinstimmen, die Werte für elastische Wirrfaserschichten eingesetzt. Diese Werte stellen obere Grenzwerte dar. Die Unterschiede zu den Ergebnissen für idealelastisch-plastische Wirrfaserschichten sind insbesondere bei höheren Schichtzahlen so gering, daß man zur Rechenerleichterung auch die Korrekturen (4.35) weglassen kann. Außderdem ist in Tabelle 2 noch das Produkt Laminathöhe h x Volumengehalt 4, das ebenfalls unabhängig vom Glasgehalt q ist, eingetragen.

Als erreichbare Glasgehalte F (4,4) sind die Mittelwerte in Tabelle 1 eingesetzt. In Tabelle 3 ist außerdem noch eine Variation dieser F-Werte für die MW-Laminate unter Zugrundelegung der Grenzwerte nach Tabelle 1 vorgenommen, und zwar für den Fall linear elastisch-plastischen Verhaltens der Wirrfaserschichten. Die Variation der Ergebnisse ist so gering, daß es völlig genügt, mit den Mittelwerten in Tabelle 1 zu rechnen.

Neben den Grenzschnittkräften werden für die Berechnung noch die "homogenen Ersatzmoduli"

$$E_{\tau} = D/h, E_{p} = 12B/h^{3}$$
 (5.1)

benötigt. Dabei wird volles Mittragen des Harzes und elastisches Verhalten aller Schichten angenommen. In diesem Falle lassen sich die Ergebnisse nicht wie bei den Grenzschnittkräften komprimieren, sondern es muß bei den einzelnen Laminaten noch eine Variation des Gewichtsglasgehaltes ψ bzw. des Volumengehaltes 🖗 für das Gesamtlaminat vorgenommen werden. In Tabelle 4 sind für alle Laminate die ψ -Werte von 0,2 bis 0,7 in Schritten von 0,1 variiert. Die Zugmoduli \mathbf{E}_{Z} variieren nur sehr wenig mit der Schichtzahl n. Die Biegemoduli E_B gleichen sich mit wachsender Schichtzahl immer mehr an die Zugmoduli an. Um einen Eindruck von der Größe der Korrekturen a (4.15) zu geben, sind in Tabelle 4 noch die Werte ah/t für die Längsrichtung angegeben. Der Faktor $h/t \sim p + 1/2$ ist herausgenommen, um die weitere Abhängigkeit von der Schichtzahl n aufzuzeigen. Man erkennt, daß die Werte nur in einem geingen Maß vom Gesamtglasgehalt 🗸 und der Schichtzahlt n abhängen. Bei langanhaltender Belastung fallen die Harzmoduli und damit auch die Laminatmoduli infolge des Kriechens ab, und zwar im ungünstigsten Falle bis $E_{_{H}} = 0$. In Tabelle 4 sind dann noch die Verhältnisse der E-Moduli für volltragendes Harz und für ausgefallenes Harz, die auch zugleich die A₁-Werte für die Kriechabminderung sind

$$A_{1Z} = E_{Z}/E_{Z}(E_{H} = 0)$$
 , $A_{1B} = E_{B}/E_{B}(E_{H} = 0)$ (5.2)

angegeben. Die absoluten Glasgewichte beeinflussen die A-Werte bei den Mischlaminaten (MW) praktisch nicht und bei den Wickellaminaten (F) nur sehr wenig. Sie hängen aber bei beiden Laminattypen stark vom relativen Glasgehalt Ψ ab und unterscheiden sich bei den F - Laminaten auch in den beiden Richtungen, d. h. parallel zur UD-Schicht und senkrecht zur UD-Schicht, sehr stark, sodaß es hier nicht möglich ist mit einem Standardwert für alle Glasgehalte auszukommen.

Über die Ergebnisse dieses Vorhabens ist auf der diesjährigen AVK-Tagung in Freudenstadt berichtet /9/.

	Handauflege- verfahren	- Mittel-	Wickelver- fahren	Pressver- verfahren		
Matte, Wirrfaser	0,35 - 0,45	0,45	0,4 - 0,5	0,45 - 0,6		
Gewebe	0,75 - 0,80	0,77	0,75- 0,8	0,95 1,0		

Tabelle 1: Verhältnis F der Glasvolumenanteile

6. Literatur

/1/	Normenentwurf für Bauteile aus glas-
	faserverstärkten Reaktionsharzen.
/2/ A. Puck:	Zur Beanspruchung und Verformung von GFK-
	Mehrschichtverbundbauelementen.
	Kunststoffe 57 (1967) S. 284/93, 573/83, 965/73
/3/ H. Schneider:	Ermittlung der elastischen Eigenschaften und
	des mechanischen Verhaltens von Verbundwerkstoffen
	mit Hilfe eines programmierbaren Taschenrechners.
/// II Disintinum	ZFW 4 (1980) S. 107/11
/4/ H. Brintrup:	Beitrag zum Zeitabhangigen Verfohlungsverhaltens
	and zur Risblidding Orthocroper glastaserver-
	starkter ungesattigter Polyesternarze unter
	1975
/5/ G. Menges.	Bemessungsfibel für tragende Kunststoffteile.
U. Thebina.	Forschungsbericht B I 5 - 800178 - 22 des IKV, 1983.
W. Enderle:	
/6/ E. Giencke;	Berechnung des Kriechverhaltens bei zweiachsiger
G. Meder:	Beanspruchung aus Meßwerten bei einachsiger
	Beanspruchung. Werkstoffprüfung
/7/ E. Giencke:	Zur Festigkeitsberechnung von Tragflügeln
	kleiner Streckung mit Hilfe der Plattentheorie.
	ZFW 9 (1961) S. 65/80
/8/ E. Giencke:	Zur optimalen Auslegung von Fahrbahnplatten
	Stahlbau 19 (1960) S. 179/185
/9/E. Giencke: Über di	e Berechnung regelmäßig aufgebauter Laminate
am Beis	piel der GFK-Typenlaminate.
Tagungsl	neft der 19. Jahrestagung der AVK, Freudenstadt,
Oktober	1984, S. 23-1/10

N	p	Ц.:	LAENG	S M.r	QUER	Net	HU	LAENG N	S MV	QUER H	Mur
1.1	1		KN/MM	KN F 120	KNZMM Z300	КŅ	MM	KNZMH	区 1日日 1日日 1日日 1日日 1日日 1日日 1日日 1日日 1日日 1日	<117111 7300	KN
5 7 11 13 15 17 21 22 27 29 31 33	2345678901123456 101123456	.576 .744 .912 1.080 1.248 1.416 1.584 1.752 1.920 2.088 2.256 2.424 2.592 2.760 2.928	.298 .401 .504 .607 .710 .814 .917 1.020 1.123 1.226 1.330 1.433 1.536 1.639 1.742	.015 .022 .028 .035 .043 .052 .061 .052 .061 .092 .104 .116 .129 .142 .157	.182 .228 .274 .319 .365 .410 .456 .502 .547 .593 .633 .633 .684 .730 .775 .821	.015 .020 .025 .030 .036 .042 .049 .056 .069 .069 .069 .077 .084 .092 .100 .109	.672 .883 1.104 1.320 1.536 1.752 1.968 2.184 2.400 2.616 2.832 3.048 3.264 3.480 3.696	.413 .574 .805 1.056 1.217 1.378 1.538 1.609 1.860 2.021 2.342 2.342 2.503 2.664	019 097 153 220 300 393 496 611 738 877 1.029 1.193 1.269 1.557 1.758	.182 .228 .274 .319 .365 .410 .456 .502 .547 .593 .638 .638 .684 .730 .775 .821	.017 .050 .073 .098 .127 .159 .203 .242 .284 .330 .378 .430 .486 .544 .606
57 91 135 19 12 20 20 20 33 33	234557890123455 1112455	.864 1.176 1.483 1.800 2.112 2.424 2.736 3.048 3.360 3.672 3.984 4.296 4.508 4.920 5.232	.643 .919 1.195 1.471 1.747 2.023 2.299 2.575 2.851 3.127 3.403 3.679 3.955 4.231 4.507	F 480 .106 .201 .327 .482 .667 .881 1.123 1.395 1.696 2.026 2.386 2.776 3.644 4.123	7300 .182 .228 .274 .319 .365 .410 .456 .502 .547 .593 .638 .684 .730 .775 .821	.043 .070 .102 .139 .181 .227 .290 .346 .407 .473 .543 .618 .698 .782 .872	.960 1.320 1.680 2.040 2.760 3.120 3.840 4.200 4.560 4.920 5.640 6.000	.758 1.092 1.426 1.759 2.093 2.426 3.094 3.427 3.761 4.094 4.428 4.762 5.095 5.429	F 600 .139 .269 .440 .653 .906 1.201 1.534 1.908 2.323 2.780 3.277 3.815 4.395 5.015 5.677	/300 .182 .228 .274 .319 .365 .410 .456 .502 .547 .593 .638 .638 .638 .730 .775 .821	.049 .080 .117 .160 .208 .261 .334 .399 .469 .545 .526 .713 .895 .902
5791135791 11357912227913 333	2345678901123456 11123456	$\begin{array}{c} 1.056\\ 1.464\\ 1.872\\ 2.280\\ 2.688\\ 3.096\\ 3.504\\ 3.912\\ 4.320\\ 4.728\\ 5.136\\ 5.544\\ 5.952\\ 5.360\\ 5.768\end{array}$.874 1.265 1.556 2.047 2.438 3.221 3.612 4.003 4.394 4.786 5.177 5.568 5.959 6.350	F 720 .178 .347 .572 .850 1.183 1.571 2.010 2.503 3.051 3.653 4.310 5.020 5.786 5.605 7.479	/300 .182 .228 .274 .319 .365 .410 .456 .502 .547 .593 .638 .684 .730 .775 .821	.055 .090 .132 .181 .235 .296 .378 .452 .532 .618 .710 .808 .912 1.023 1.140					

<u>Tabelle 2.1</u>: Laminatdicken Hý, Tragschnittkräfte N, Mý für die Typenlaminate F 120 - 720/300

			LAEN	35	QUER			LAENO	3S	QUER	
Ν	ρ		N KNZMM	Γ ΚΝ Γ Εογ	N KNZMM	M Ψ KN	H Y MM	N KNZMM	М 9 КN F 721	N KNZMM 1/450	KIY
57 9 113 15 17 19 22 27 23 33	2345678901123456 101123456	$\begin{array}{c} 1.020\\ 1.440\\ 1.860\\ 2.280\\ 2.700\\ 3.120\\ 3.540\\ 3.960\\ 4.380\\ 4.800\\ 5.220\\ 5.640\\ 6.060\\ 6.480\\ 6.900\end{array}$.781 1.138 1.494 1.850 2.207 2.563 2.920 3.276 3.632 3.989 4.345 4.702 5.058 5.414 5.771	. 165 .327 .540 .805 1.123 1.492 1.908 2.375 2.895 3.466 4.088 4.763 5.489 6.267 7.097	.205 .274 .342 .410 .479 .547 .616 .684 .752 .821 .889 .958 1.026 1.094 1.163	.053 .095 .147 .208 .279 .359 .473 .573 .683 .802 .931 1.069 1.217 1.374 1.541	1.116 1.584 2.052 2.988 3.456 3.924 4.392 4.860 5.328 5.796 5.264 6.732 7.200 7.668	.896 1.310 1.724 2.138 2.552 2.965 3.380 3.794 4.208 4.622 5.036 5.450 5.864 6.278 6.592	.209 .415 .688 1.027 1.434 1.907 2.441 3.043 3.710 4.444 5.245 6.113 7.047 8.048 9.115	.205 .274 .342 .410 .479 .547 .616 .684 .752 .821 .889 .958 1.026 1.094 1.163	.059 .106 .232 .311 .400 .527 .639 .751 .894 1.037 1.191 1.355 1.531 1.717
57 91 135 191 225 291 33	2345678901123456 11123456	$\begin{array}{c} 1.308\\ 1.872\\ 2.436\\ 3.000\\ 3.564\\ 4.128\\ 4.692\\ 5.256\\ 5.820\\ 6.384\\ 6.948\\ 7.512\\ 8.076\\ 8.640\\ 9.204 \end{array}$	$\begin{array}{c} 1.127\\ 1.656\\ 2.185\\ 2.714\\ 3.244\\ 3.773\\ 4.302\\ 4.831\\ 5.360\\ 5.890\\ 5.890\\ 5.419\\ 6.948\\ 7.477\\ 8.006\\ 8.536\end{array}$	F 960 .311 .623 1.036 1.552 2.170 2.890 3.706 4.623 5.643 6.764 7.987 9.312 10.739 12.269 13.900	1/450 .205 .274 .342 .410 .479 .547 .616 .684 .752 .821 .889 .958 1.026 1.094 1.163	.071 .128 .197 .279 .374 .482 .636 .770 .917 1.077 1.250 1.436 1.634 1.845 2.069	$\begin{array}{c} 1.900\\ 2.760\\ 3.620\\ 4.480\\ 5.340\\ 6.200\\ 7.060\\ 7.920\\ 8.780\\ 9.640\\ 10.500\\ 11.360\\ 12.220\\ 13.080\\ 13.940\end{array}$	F 60075 1.357 2.002 2.646 3.290 3.935 4,579 5.224 5.868 6.512 7.157 7.801 8.446 9.090 9.734 10.379	500/600/ .438 .980 1.707 2.621 3.724 5.015 6.494 8.162 10.019 12.064 14.298 16,720 19.332 22.131 25.120	<pre>/450 .605 .874 1.142 1.410 1.679 1.947 2.216 2.484 2.752 3.021 3.289 3.558 3.826 4.094 4.363</pre>	.224 .463 .779 1.172 1.641 2.187 2.811 3.511 4.288 5.142 6.073 7.080 8.165 9.327 10.565
7 9 11 13 15 17 19 13 17 19 22 27 29 33	2345678901123456 11123456	1.004 1.416 1.828 2.240 2.652 3.064 3.476 3.888 4.300 4.712 5.124 5.536 5.948 5.360 6.772	.437 .622 .806 .990 1.175 1.359 1.544 1.728 1.912 2.097 2.281 2.466 2.650 2.834 3.019	MW580 .099 .187 .301 .440 .604 .793 1.008 1.249 1.514 1.805 2.122 2.463 2.830 3.222 3.640	0/450 .437 .622 .806 .990 1.175 1.359 1.544 1.728 1.912 2.097 2.281 2.466 2.650 2.834 3.019	.099 .187 .301 .440 .604 .793 1.008 1.249 1.514 1.805 2.122 2.463 2.830 3.222 3.640	1.260 1.800 2.340 2.880 3.420 3.960 4.500 5.040 5.580 6.120 6.660 7.200 7.740 8.280 8.820	.565 .814 1.062 1.310 1.559 1.807 2.056 2.304 2.552 2.801 3.298 3.546 3.794 4.043	MW900 .162 .312 .506 .745 1.029 1.358 1.731 2.149 2.612 3.119 3.671 4.268 4.910 5.596 6.327	0/450 .565 .814 1.062 1.310 1.559 1.807 2.056 2.304 2.552 2.801 3.049 3.298 3.546 3.794 4.043	.162 .312 .506 .745 1.029 1.358 1.731 2.149 2.612 3.119 3.671 4.258 4.910 5.596 6.327

Tabelle 2.2: Laminatdicken Hq, Tragschnittkräfte N, Mq für die

Typenlaminate

F 600 - 960/450, F 600/500/600/450 und MW 580-900/450

F	R = 1			ЕG	E	SIGM	IAR SI	GMAN	SIGMAG	
F	G = .7	7	- KV	17MM2	KN/MM2	N/1	ime n	/11112	N/MM2	
F	W = . Z	5	73	.000	0.000	1200.0	00 1000	.000 10	000.000	
	F 60	0/450	F 72	0/450	F 96	0/450	MW 58	0/450	MW 90	0/450
N	NTN	0 MIN	NTN	C MTN	ИТИ	CMIN	NTN	фМТN	MIM	ØMTN
	KN/MM	' KN	KN/MM	, KN	KNZMM	' KN	KN/MM	KN KN	KNZMM	' KN
5	.781	.165	.896	.209	1.127	.311	.437	.099	.565	.162
7	1.138	.327	1.310	.415	1.656	.623	.622	.187	.814	.312
9	1.494	.540	1.724	.683	2.185	1.036	.806	.301	1.062	.506
11	1.850	.805	2.138	1.027	2.714	1.552	.990	.440	1.310	.745
13	2.207	1.123	2.552	1.434	3.244	2.170	1.175	.604	1.559	1.029
15	2,563	1.492	2.966	1.907	3.773	2.890	1.359	,793	1.807	1.358
17	2.920	1.908	3.380	2.441	4.302	3.706	1.544	1.008	2.056	1.731
19	3.276	2.375	3.794	3.043	4.831	4.623	1.728	1.249	2.304	2.149
21	3.632	2.895	4.208	3.710	5.360	5.643	1.912	1.514	2.552	2.612
23	3,989	3.466	4.622	4.444	5.890	6.764	2.097	1,805	2.801	3.119
25	4.345	4.088	5.036	5.245	6.419	7.987	2.281	2.122	3.049	3.671
27	4.702	4,763	5.450	6.113	6.948	9.312	2.466	2.463	3.298	4.268

F	R = 1			ΕĢ	ΕH	SIGN	1AR SI	GMAN	SIGMÀG	
F	G = .7	75	KN	1/MM2	KN/MM2	N/N	1M2 N	17MM2	N/MM2	
F	W = .5	50	73	.000	0.000	1200.0	000 1000	.000 1	000.000	• •
	F 60	0/450	F 72	20/450	F 96	30/450	MW 58	80/450	MW 90	0/450
N	NTN	9 MTN	NTN	4 MTN	NTN	G MTN	NTN	φHŤŇ	NTN	\$ MTN
	KNZMM	' KN	KN/MM	' KN	- KNZMM	· ' KN	KNZMM	' KN	— KNZMM	' KN
5	.781	.167	.896	.211	1.127	.315	.437	.100	.565	.164
7	1.138	.329	1.310	.418	1.656	,628	,622	.189	.814	.315
9	1.494	.543	1.724	.691	2.185	1.043	.806	.303	1.052	.510
11	1.850	.809	2.138	1.032	2.714	1.560	.990	.442	1.310	.750
13	2.207	1.127	2.552	1.439	3.244	2.179	1.175	.607	1.559	1.034
15	2.563	1.497	2.966	1.913	3.773	2,900	1.359	.797	1.807	1.364
17	2.920	1.913	3.380	2.449	4.302	3.717	1.544	1.012	2.056	1,738
19	3,276	2.382	3.794	3.051	4.831	4.636	1.728	1.253	2.304	2.156
21	3.632	2.902	4.208	3.719	5.360	5,657	1.912	1.519	2.552	2.620
23	3.989	3.473	4.622	4.454	5.890	6.779	2.097	1.810	2.801	3.128
25	4,345	4.097	5.036	5.256	6.419	8.004	2.281	2.127	3.049	3.681
27	4.702	4 772	5 450	6.124	6.948	9.330	2.466	2.469	3.298	4.278

Tabelle 3; Einfluß der Variation der erreichbaren Glasgehalte F in den Gewebeschichten (F_G) und in den Wirrfaserschichten (F_W) auf die maximalen Schnittkräfte N, M (Harz ausgefallen) für Zweischichtlaminate in Abhängigkeit von der Schichtzahl n.

_ 30 _

Fortsetzung Tabelle 3

i I N 57911 11517 191	FR = 1 FG = .7 FW = .3 F 60 NTN KN/MM .781 1.138 1.494 1.850 2.207 2.563 2.920 3.276	5 5 0/450 YMTN .162 .322 .534 .797 1.113 1.481 1.895 2.361	KN 73 F 72 NTN KN/MM .896 1.310 1.724 2.138 2.552 2.966 3.380 3.380 3.294	EG 000 0/450 0/450 0/450 0/450 0/450 0.204 .408 .679 1.016 1.421 1.892 2.425 3.024 2.628	EH KN/MM2 0.000 F 96 NTN KN/MM 1.127 1.656 2.185 2.714 3.244 3.773 4.302 4.831 5.260	SIGM N/M 1200.0 07450 9MTN .304 .612 1.022 1.535 2.150 2.867 3.679 4.593 5.09	IAR SI IM2 N MW 58 N KN/MM .437 .622 .806 .990 1.175 1.359 1.544 1.728 1.912	GMAW /NM2 .000 10 0/450 M .097 .184 .297 .435 .599 .788 1.002 1.242 1.507	SIGMAG N/MM2 00.000 MW 90 N KN/MM .565 .814 1.062 1.310 1.559 1.807 2.056 2.304 2.552	0/450
23 25 27	3.989 4.345 4.702	3.449 4.070 4.743	4.200 4.622 5.036 5.450	4.422 5.220 6.086	5.830 6.419 6.948	6.727 7.947 9.269	2.097 2.281 2.466	1.797 2.113 2.453	2.801 3.049 3.298	3.104 3.655 4.250
FF F N 57911351791 225227	FR = 1 FG = .8 FW = .5 NTN KN/MM .781 1.138 1.494 1.850 2.207 2.563 2.920 3.276 3.632 3.989 4.345 4.702	0 0/450 YMTN .167 .329 .543 .809 1.127 1.497 1.913 2.382 2.902 3.473 4.097 4.772	KN 73 F 72 NTN 896 1.310 1.724 2.138 2.552 2.966 3.380 3.794 4.208 4.622 5.036 5.450	EG 1/MM2 000 0/450 0/450 0/450 0/450 0/450 0/450 1.032 1.032 1.439 1.913 2.449 3.051 3.719 4.454 5.256 6.124	EH KN/MM2 0.000 F 96 NTN KN/MM 1.127 1.656 2.185 2.714 3.244 3.773 4.302 4.831 5.360 5.890 6.419 6.948	SIGM N/M 1200.0 9MTN 9MTN .315 .628 1.043 1.560 2.179 2.900 3.717 4.636 5.657 6.779 8.004 9.330	IAR SI 1M2 N 100 1000 MW 58 NTN KN/MM .437 .622 .806 .990 1.175 1.359 1.175 1.359 1.544 1.728 1.912 2.097 2.281 2.466	GMAW /MM2 .000 .10 0/450 @MTN .099 .188 .302 .441 .605 .795 1.010 1.251 1.517 1.808 2.124 2.466	SIGMAG N/MM2 000.000 MW 90 NTN KN/MM 1.062 1.310 1.559 1.807 2.056 2.304 2.552 2.801 3.049 3.298	00/450
FF FF N 5791 1135791 2222222222	FR = 1 FG = .8 FW = .3 FW = .3	0 5 √450 ↓MTN .152 .322 .534 .797 1.113 1.481 1.895 2.351 2.879 3.449 4.070 4.743	KN 73 F 72 NTN KN/MM 1.310 1.724 2.138 2.552 2.966 3.380 3.794 4.208 4.622 5.036 5.450	EG 1/MM2 0/450 0/450 0/450 0/450 0/450 1.016 1.016 1.421 1.892 2.425 3.024 3.689 4.422 5.220 6.086	EH KN/MM2 0.000 F 96 NTN KN/MM 1.127 1.656 2.185 2.714 3.244 3.773 4.302 4.831 5.360 5.890 6.419 6.948	SIGM N/M 1200.0 0/450 9MTN .304 .612 1.022 1.535 2.150 2.867 3.679 4.593 5.609 6.727 7.947 9.269	IAR SI 1M2 N 100 1000 MW 58 NTN KN/MM .437 .622 .806 .990 1.175 1.359 1.544 1.728 1.912 2.097 2.281 2.466	GMAW /MM2 .000 10 0/450 %MTN .096 .183 .296 .434 .598 .786 1.000 1.240 1.505 1.795 2.110 2.451	SIGMAG N/MM2 00.000 MW 90 NTN KN/MM .565 .814 1.062 1.310 1.559 1.807 2.056 2.304 2.552 2.801 3.049 3.298	00/450

Tabé	LAENGS EZ EB _KN/MM2	EH=0 A1Z A1B	QUER EZ EB KN/MM2	EH=0 A1Z A1B	LAENGS N P EZ EB KN/MM2	EH=0 QUEF A1Z A1B EZ KN	R EH=0 EB A1Z	A1B
e 7 3	F 120/300 7.65 6.69 7.77 6.91 7.84 7.08	PS1 = .2 1.95 2.31 1.92 2.21 1.89 2.14	PHI = .111 6.54 6.59 2 6.48 6.54 2 6.45 6.50 2	.55 2.38 .61 2.45	F 120/300 5 2 15.73 12.87 7 3 16.08 13.51	PSI = .5 PHI 1.34 1.48 13.14 1.32 1.44 13.03	= .333 12.63 1.71 12.62 1.75	1.52
4. 11 5 13 6 15 7	7.89 7.21 7.93 7.32 7.96 7.40	1.88 2.09 1.87 2.05 1.86 2.02	6.42 6.47 2 6.40 6.44 2 6.38 6.43 2	.68 2.54 .70 2.57 .72 2.60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.31 1.41 12.95 1.31 1.39 12.89 1.30 1.37 12.85 1.30 1.37 12.85	12.60 1.77 12.60 1.79 12.59 1.81	1.62 1.65 1.67
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.86 2.00 1.85 1.98 1.85 1.96	6.37 6.41 2 6.36 6.40 2 6.36 6.39 2 6.35 6.39 2	.73 2.62 .74 2.63 .75 2.65 .75 2.65	17 8 16.72 15.16 19 9 16.77 15.34 21 10 16.82 15.49	1.30 1.35 12.79 1.29 1.34 12.76 1.29 1.34 12.75	12.58 1.83 12.58 1.83 12.58 1.83 12.58 1.84	1.71 1.73 1.74
12112 12112 12112 13 14 173 RM	8.04 7.66 8.05 7.69 8.06 7.72	1.84 1.93 1.84 1.93 1.84 1.92	6.34 6.37 2 6.34 6.37 2 6.33 6.36 2	.76 2.68 .77 2.69 .77 2.70	25 12 16.89 15.61 25 12 16.89 15.72 27 13 16.92 15.82 29 14 16.94 15.91	1.29 1.33 12.73 1.29 1.33 12.72 1.29 1.32 12.71 1.29 1.32 12.71	12.57 1.84 12.57 1.85 12.57 1.85 12.57 1.85	1.75 1.76 1.77
/mm	8.06 7.74 F 120/300	1.84 1.92 PSI = .3	6.33 6.36 2 PHI = .176	.78 2.70	31 15 16.96 15.98 F 120/300	1.29 1.32 12.69 PST = 6 PHT	12.57 1.86	1.78
5791 oduli Lang Clasg	9.99 8.47 10.18 8.82 10.30 9.09 10.38 9.29	1.61 1.84 1.58 1.77 1.57 1.73 1.57 1.73	8.28 8.32 2 8.19 8.24 2 8.13 8.18 2 9.09 8.14 2	.03 1.89 .07 1.94 .10 1.98	5 2 19.31 15.63 7 3 19.75 16.45 9 4 20.03 17.08	1.28 1.40 18.46 1.26 1.36 18.30 1.25 1.34 18.18	15.56 1.86 16.03 1.91 16.31 1.94	1.46 1.56 ι 1.63 ω
ehalt	10.44 9.46 10.49 9.59 10.53 9.70	$1.55 1.67 \\ 1.54 1.65 \\ 1.54 1.63$	8.06 8.11 2 8.04 8.08 2 8.02 8.06 2	.13 2.01 .14 2.03 .15 2.05	13 6 20.22 17.58 13 6 20.37 17.98 15 7 20.47 18.30 17 8 20 56 18	1.25 1.32 18.09 1.24 1.30 18.03 1.24 1.29 17.97 1.24 1.29 17.97	16.51 1.96 16.65 1.97 16.75 1.98	1.68 N 1.72 i 1.75
. 5 kN €	10.55 9.80 10.58 9.87 10.60 9.94	1.54 1.62 1.53 1.61 1.53 1.60	8.01 8.04 2 8.00 8.03 2 7.99 8.02 2	.17 2.09 .18 2.10 .18 2.11	19 9 20.63 18.78 21 10 20.68 18.97 23 11 20.73 19 14	1.24 1.29 17.93 1.24 1.28 17.89 1.24 1.27 17.86	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.78 1.80 1.82
n 1 25 12 27 13 7 1 am: 7 1 am	10.62 10.00 10.63 10.05 10.64 10.10	1.53 1.60 1.53 1.59 1.53 1.58	7.98 8.01 2 7.97 8.00 2 7.96 7.99 2	.19 2.12 .19 2.12 .20 2.13	25 12 20.77 19.28 27 13 20.81 19.40 29 14 20.84 19.51	1.23 1.27 17.82 1.23 1.27 17.82 1.23 1.26 17.80 1.23 1.26 17.78	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.84 1.86 1.87 °
0 in 31 15	10.65 10.14 F 120/300	1.53 1.58 PSI = .4	7.96 7.98 2 PHI = .25	.20 2.14	31 15 20.86 19.61	1.23 1.26 17.77	17.13 2.02	1.89
ິ 6 5 2 ອີ 7 3 ສູ້ 9 4	12.66 10.51 12.93 11.00 13.10 11.37	1.44 1.61 1 1.42 1.56 1 1.41 1.52 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.80 1.65 .84 1.70 .86 1.74	1	۰. ۲		
120/3 15 7	13.21 11.66 13.30 11.90 13.36 12.09	1.40 1.50 1 1.39 1.48 1 1.39 1.47 1	0.14 10.12 1 0.10 10.08 1 0.07 10.06 1	.88 1.76 .89 1.79 .90 1.81		* *		4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13.41 12.24 13.45 12.37 13.49 12.49	1.39 1.45 1 1.38 1.45 1 1.38 1.44 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.91 1.82 .92 1.83 .93 1.85	•			
0 23 11 0 25 12 13 14 17 13	13.51 12.58 13.54 12.67 13.56 12.74	1.38 1.43 1 1.38 1.43 1.38 1.42	0.00 9.99 1 9.99 9.98 1 9.98 9.98 1	.93 1.85 .93 1.86 .94 1.87	·	•		
tt 29 14 tt 31 15	13.58 12.80 13.59 12.86	1.38 1.42 1.37 1.41	9.97 9.97 1 9.97 9.96 1	.94 1.88 .94 1.88	е. По ма страната			~
0								

Tabe	NP	LAENGS EZ EB KN/MM2	EH=0 A1Z A1B	QUER EZ EB KN/MM2	EH=0 A1Z A1B	LAENGS N P EZ EB KN/MM2	EH=0 A1Z	A1B	QUER EZ EB	EH=0 A1Z	A1B
<u>elle 4.1</u> : Elastizitätsi für Kurz- und Variation des	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F 120/300 7.65 6.69 7.77 6.91 7.84 7.08 7.89 7.21 7.93 7.32 7.96 7.40 7.98 7.47 8.00 7.53 8.02 7.58 8.02 7.58 8.03 7.62 8.04 7.66 8.05 7.69 8.06 7.72 8.06 7.74	PSI = .2 1.95 2.31 1.92 2.21 1.89 2.14 1.88 2.09 1.87 2.05 1.86 2.02 1.86 2.00 1.85 1.98 1.85 1.96 1.84 1.95 1.84 1.93 1.84 1.92 1.84 1.92	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1 2.55 2.38 2.61 2.45 2.65 2.50 2.68 2.54 2.70 2.57 2.72 2.60 2.73 2.62 2.74 2.63 2.75 2.65 2.76 2.66 2.76 2.66 2.77 2.70 2.77 2.70 2.77 2.70	$\begin{array}{r} F & 120/300\\ 5 & 2 & 15.73 & 12.87\\ 7 & 3 & 16.08 & 13.51\\ 9 & 4 & 16.30 & 14.01\\ 11 & 5 & 16.46 & 14.39\\ 13 & 6 & 16.57 & 14.70\\ 15 & 7 & 16.65 & 14.96\\ 17 & 8 & 16.72 & 15.16\\ 19 & 9 & 16.77 & 15.34\\ 21 & 10 & 16.82 & 15.49\\ 23 & 11 & 16.86 & 15.61\\ 25 & 12 & 16.89 & 15.72\\ 27 & 13 & 16.92 & 15.82\\ 29 & 14 & 16.94 & 15.91\\ 31 & 15 & 16.96 & 15.98\\ \end{array}$	PSI = 1.34 1.32 1.31 1.30 1.30 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29	5 1.48 1.44 1.41 1.39 1.37 1.36 1.34 1.33 1.33 1.33 1.32 1.32 1.32 1.32 1.32	KN/MM2 PHI = .33 13.14 12.63 13.03 12.62 12.95 12.60 12.89 12.60 12.85 12.59 12.81 12.59 12.79 12.58 12.76 12.58 12.75 12.58 12.73 12.57 12.71 12.57 12.70 12.57 12.69 12.57	3 1.71 1.75 1.77 1.79 1.81 1.82 1.83 1.83 1.84 1.85 1.85 1.85 1.85 1.85	1.52 1.57 1.62 1.65 1.67 1.69 1.71 1.73 1.74 1.75 1.76 1.77 1.78 1.78
moduli der Typenlamin; d Langzeitbelastung Glasgehaltes ∳ von O	5 2 7 3 9 4 11 5 13 6 15 7 17 8 19 9 21 10 23 11 25 12 27 13 29 14 31 15	$\begin{array}{c} + 120/300\\ 9.99 & 8.47\\ 10.18 & 8.82\\ 10.30 & 9.09\\ 10.38 & 9.29\\ 10.44 & 9.46\\ 10.49 & 9.59\\ 10.53 & 9.70\\ 10.55 & 9.80\\ 10.58 & 9.87\\ 10.60 & 9.94\\ 10.62 & 10.00\\ 10.63 & 10.05\\ 10.64 & 10.10\\ 10.65 & 10.14\\ \end{array}$	PSI = .3 $1.61 1.84$ $1.58 1.77$ $1.57 1.73$ $1.56 1.69$ $1.55 1.67$ $1.54 1.65$ $1.54 1.63$ $1.54 1.62$ $1.53 1.60$ $1.53 1.60$ $1.53 1.60$ $1.53 1.59$ $1.53 1.58$ $1.53 1.58$	PHI ≠ .17 8.28 8.32 8.19 8.24 8.13 8.18 8.09 8.14 8.06 8.11 8.04 8.08 8.02 8.06 8.01 8.04 8.00 8.03 7.99 8.02 7.98 8.01 7.97 8.00 7.96 7.99 7.96 7.98	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PSI 1.28 1.26 1.25 1.25 1.25 1.24 1.24 1.24 1.24 1.24 1.23 1.23 1.23 1.23 1.23 1.23	.6 1.40 1.36 1.34 1.32 1.29 1.29 1.29 1.27 1.27 1.27 1.26 1.26 1.26	PHI = .42 18.46 15.56 18.30 16.03 18.18 16.31 18.09 16.51 18.03 16.65 17.97 16.75 17.93 16.84 17.89 16.90 17.86 16.96 17.84 17.01 17.82 17.04 17.80 17.08 17.78 17.11 17.77 17.13	3 1.86 1.91 1.94 1.96 1.97 1.98 1.99 2.00 2.00 2.01 2.01 2.02 2.02 2.02	1.46 1.56 1.63 1.68 1.72 1.75 1.78 1.80 1.82 1.84 1.86 1.87 1.88 1.89
ate F 120/300 ,2 bis 0,7 in Schritter	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F $120/300$ 12.66 10.51 12.93 11.00 13.10 11.37 13.21 11.66 13.30 11.90 13.36 12.09 13.41 12.24 13.45 12.37 13.49 12.49 13.51 12.58 13.54 12.67 13.56 12.74 13.58 12.80 13.59 12.86	PSI = .4 1.44 1.61 1.42 1.56 1.41 1.52 1.40 1.50 1.39 1.48 1.39 1.47 1.39 1.45 1.38 1.45 1.38 1.43 1.38 1.43 1.38 1.42 1.38 1.42 1.37 1.41	PHI = .25 10.38 10.30 10.27 10.22 10.19 10.16 10.14 10.12 10.10 10.08 10.07 10.06 10.05 10.04 10.03 10.02 10.02 10.01 10.00 9.99 9.99 9.98 9.98 9.98 9.97 9.97 9.97 9.96	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•			

.

- 32

ı

•

.

;

0,

= 73 kN/mm², $E_{\rm H}$ = 3,5 kN/mm²

and a

5	D D D N P	LAENGS EZ EB	EH=0 A1Z A1B		EH=0 A1Z A1B	LAENGS N P EZ EB	EH=0 A1Z A1B	QUER EZ EB	EH=0 A1Z A1B
$E_{\rm G} = 73 \rm kN/mr$	2345678901 5791357911235791 11357911235791 112222231 145	$\begin{array}{c} F & 240/300 \\ 8.17 & 6.69 \\ 8.34 & 7.05 \\ 8.45 & 7.31 \\ 8.51 & 7.51 \\ 8.56 & 7.67 \\ 8.60 & 7.79 \\ 8.63 & 7.90 \\ 8.65 & 7.98 \\ 8.67 & 8.05 \\ 8.69 & 8.11 \\ 8.70 & 8.16 \\ 8.71 & 8.21 \\ 8.72 & 8.25 \\ 8.73 & 8.28 \end{array}$	PSI = .2 1.81 2.30 1.77 2.13 1.75 2.03 1.73 1.97 1.72 1.92 1.72 1.89 1.71 1.86 1.71 1.84 1.70 1.82 1.70 1.81 1.70 1.80 1.70 1.79 1.69 1.78 1.69 1.77	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1 2.85 2.52 2.97 2.65 3.05 2.75 3.11 2.83 3.15 2.89 3.18 2.94 3.21 2.98 3.23 3.02 3.25 3.05 3.27 3.07 3.28 3.10 3.29 3.12 3.30 3.14 3.31 3.15	$\begin{array}{r} \text{KN/MM2} \\ \text{F} 240/300 \\ 5 2 17.29 12.80 \\ 7 3 17.79 13.88 \\ 9 4 18.10 14.68 \\ 11 5 18.31 15.28 \\ 13 6 18.45 15.75 \\ 15 7 18.57 16.12 \\ 17 8 18.65 16.43 \\ 19 9 18.72 16.68 \\ 21 10 18.78 16.89 \\ 23 11 18.83 17.08 \\ 25 12 18.87 17.23 \\ 27 13 18.91 17.37 \\ 29 14 18.94 17.49 \\ 31 15 18.96 17.60 \\ \end{array}$	PSI = .5 1.27 1.47 1.26 1.40 1.25 1.36 1.24 1.33 1.24 1.31 1.24 1.30 1.23 1.29 1.23 1.29 1.23 1.28 1.23 1.28 1.23 1.27 1.23 1.27 1.23 1.27 1.23 1.26 1.22 1.26	KN/MM2 PHI = .33: 12.55 12.03 12.32 11.94 12.18 11.87 12.08 11.83 12.01 11.79 11.95 11.77 11.91 11.74 11.87 11.73 11.85 11.71 11.82 11.70 11.80 11.69 11.78 11.68 11.77 11.67 11.75 11.65	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
loquii der Typeniamina l Langzeitbelastung s Glasgehaltes∮von O, n ² , E _H = 3,5 kN/mm ²	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F 240/300 10.83 8.46 11.10 9.03 11.26 9.45 11.37 9.77 11.45 10.02 11.51 10.22 11.56 10.38 11.60 10.52 11.63 10.63 11.65 10.73 11.65 10.73 11.67 10.81 11.69 10.88 11.71 10.95 11.72 11.00	PSI = .3 1.51 1.83 1.48 1.72 1.47 1.65 1.46 1.61 1.45 1.58 1.45 1.56 1.44 1.53 1.44 1.53 1.44 1.52 1.44 1.51 1.43 1.50 1.43 1.49 1.43 1.48	PHI = .17 7.87 7.97 7.74 7.83 7.65 7.74 7.60 7.68 7.55 7.63 7.52 7.59 7.50 7.56 7.48 7.54 7.46 7.52 7.45 7.50 7.44 7.49 7.43 7.48 7.42 7.47 7.41 7.46	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} F & 240/300\\ 5 & 2 & 21.28 & 15.53\\ 7 & 3 & 21.92 & 16.90\\ 9 & 4 & 22.31 & 17.92\\ 11 & 5 & 22.57 & 18.69\\ 13 & 6 & 22.76 & 19.29\\ 15 & 7 & 22.90 & 19.77\\ 17 & 8 & 23.02 & 20.16\\ 19 & 9 & 23.11 & 20.48\\ 21 & 10 & 23.18 & 20.75\\ 23 & 11 & 23.24 & 20.99\\ 25 & 12 & 23.29 & 21.19\\ 27 & 13 & 23.34 & 21.36\\ 29 & 14 & 23.38 & 21.52\\ 31 & 15 & 23.41 & 21.66\\ \end{array}$	PSI = .6 1.22 1.38 1.21 1.33 1.20 1.29 1.19 1.27 1.19 1.25 1.19 1.24 1.18 1.23 1.18 1.22 1.18 1.22 1.18 1.21 1.18 1.21 1.18 1.21 1.18 1.20 1.18 1.20	PHI = .42 17.53 14.91 17.15 15.20 16.90 15.35 16.73 15.45 16.61 15.51 16.51 15.56 16.44 15.59 16.38 15.62 16.33 15.64 16.29 15.65 16.25 15.67 16.22 15.68 16.20 15.69 16.17 15.70	8 2.06 1.53 2.13 1.66 2.13 1.66 2.18 1.76 2.21 1.83 2.23 1.89 2.25 1.94 2.27 1.98 2.27 1.98 2.28 2.01 2.29 2.04 2.30 2.08 2.30 2.08 2.31 2.10 2.32 2.12 2.32 2.13
te F 240/300 2 bis 0,7 in Schritten (5 23 5 7 3 9 4 11 5 13 6 13 6 13 6 13 6 13 6 13 15 17 8 21 10 23 11 25 12 27 13 29 14 31 15	F 240/300 2 13.84 10.48 3 14.22 11.29 14.45 11.89 5 14.61 12.34 5 14.61 12.34 5 14.72 12.69 7 14.81 12.97 8 14.87 13.20 9 14.93 13.39 14.97 13.55 15.01 13.69 7 15.04 13.81 8 15.06 13.91 15.09 14.00 15.11 14.08	PSI = .4 1.36 1.60 1.34 1.52 1.33 1.47 1.32 1.44 1.32 1.41 1.31 1.40 1.31 1.38 1.31 1.37 1.31 1.36 1.30 1.35 1.30 1.35 1.30 1.34	PHI = ,25 9,85 9,82 9,67 9,67 9,56 9,57 9,48 9,50 9,42 9,44 9,38 9,40 9,35 9,37 9,32 9,34 9,30 9,32 9,28 9,30 9,27 9,28 9,25 9,27 9,24 9,26 9,23 9,25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} F & 240/300 \\ 5 & 2 & 0.00 & 0.00 \\ 7 & 3 & 26.76 & 20.47 \\ 9 & 4 & 27.24 & 21.74 \\ 11 & 5 & 27.57 & 22.70 \\ 13 & 6 & 27.80 & 23.44 \\ 15 & 7 & 27.98 & 24.04 \\ 17 & 8 & 28.11 & 24.53 \\ 19 & 9 & 28.22 & 24.93 \\ 21 & 10 & 28.32 & 25.28 \\ 23 & 11 & 28.39 & 25.57 \\ 25 & 12 & 28.46 & 25.82 \\ 27 & 13 & 28.51 & 26.04 \\ 29 & 14 & 28.56 & 26.23 \\ 31 & 15 & 28.60 & 26.40 \\ \end{array}$	PSI = .7 0.00 0.00 1.17 1.28 1.16 1.25 1.16 1.23 1.15 1.21 1.15 1.20 1.15 1.19 1.15 1.19 1.15 1.19 1.15 1.17 1.15 1.17 1.14 1.17 1.14 1.17 1.14 1.17	PHI = .53 7.31 9.08 96.97 45.46 60.16 37.33 50.21 35.26 45.54 34.33 42.81 33.81 41.02 33.49 39.74 33.27 38.79 33.10 38.06 32.98 37.47 32.89 36.99 32.81 36.58 32.75 36.25 32.70	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
				•			·		` ; ,

1 $_{\omega}^{\omega}$

I

4

Tape	N P	LAENGS EZ EB	EH=0 A1Z A1B	QUER EZ EB	EH=0 A1Z A1	3 N	Ρ	LAENGS EZ EB	EH=0 A1Z	A1B	QUER EZ EB	EH=0 A1Z	A1B
<u>tte 4.3</u> : EldSELZIEdESM für Kurz- und Variation des E _G = 73 kN/mm	5 2 7 3 9 4 11 5 13 6 15 7 15 7 19 9 21 10 23 11 225 12 27 13 29 14 31 15	F 480/300 8.87 6.88 9.06 7.41 9.18 7.78 9.25 8.04 9.31 8.23 9.34 8.39 9.37 8.51 9.40 8.61 9.42 8.70 9.43 8.77 9.45 8.83 9.46 8.88 9.47 8.92 9.48 8.97	PSI = .2 1.67 2.18 1.63 1.98 1.62 1.88 1.61 1.81 1.60 1.77 1.59 1.74 1.59 1.72 1.58 1.68 1.58 1.68 1.58 1.66 1.58 1.65 1.57 1.65 1.57 1.64	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 7 9 11 13 15 17 19 21 23 23 25 7 27 1 29 4 31	2 3 4 5 6 7 8 9 10 112 13 4 15 14 15	F 480/300 19.37 13.37 19.96 14.96 20.31 16.05 20.53 16.84 20.69 17.44 20.81 17.91 20.90 18.28 20.98 18.59 21.03 18.84 21.08 19.05 21.13 19.24 21.16 19.40 21.19 19.54 21.22 19.66	PSI = 1.21 1.20 1.19 1.19 1.18 1.18 1.18 1.18 1.18 1.18	5 1.41 11 1.33 11 1.29 11 1.27 10 1.25 10 1.24 10 1.22 10 1.22 10 1.22 10 1.21 10 1.21 10 1.20 10 1.20 10 1.20 10	PHI = .33 .54 11.19 .23 11.00 .03 10.87).91 10.79).82 10.72).75 10.67).70 10.63).66 10.60).62 10.57).60 10.55).57 10.53).55 10.51).53 10.50).52 10.49	3 2.25 2.38 2.47 2.53 2.57 2.61 2.66 2.68 2.70 2.71 2.73 2.73	1.73 1.89 2.01 2.10 2.18 2.29 2.34 2.37 2.41 2.44 2.49 2.51
Langzeitbelastung Glasgehaltes ψ von 0,2 ² , E _H = 3,5 kN/mm ²	5 2 7 3 9 4 11 5 13 6 13 6 15 7 19 9 21 10 23 11 25 12 27 13 29 14 31 15	F 480/300 11.94 8.77 12.25 9.61 12.44 10.19 12.56 10.61 12.64 10.93 12.70 11.17 12.75 11.37 12.79 11.53 12.82 11.67 12.85 11.78 12.87 11.88 12.89 11.96 12.91 12.03 12.92 12.10	PSI = .3 $1.41 1.75$ $1.39 1.62$ $1.38 1.55$ $1.37 1.51$ $1.37 1.48$ $1.36 1.46$ $1.36 1.44$ $1.36 1.42$ $1.35 1.41$ $1.35 1.41$ $1.35 1.40$ $1.35 1.40$ $1.35 1.39$	PHI = .17 7.30 7.48 7.14 7.29 7.04 7.18 6.98 7.10 6.93 7.04 6.90 7.00 6.87 6.96 6.85 6.93 6.83 6.91 6.82 6.89 6.81 6.87 6.80 6.86 6.79 6.85 6.78 6.84	6 2.69 2.19 2.86 2.31 2.97 2.51 3.05 2.6 3.16 2.71 3.20 2.83 3.23 2.83 3.26 2.93 3.30 3.01 3.31 3.04 3.33 3.06 3.34 3.05	5 7 9 9 11 13 15 17 9 21 23 25 25 27 3 29 3 31	234 56 78 90 10 112 134 15	F 480/300 23.92 16.22 24.68 18.25 25.12 19.66 25.41 20.67 25.62 21.44 25.77 22.03 25.88 22.51 25.98 22.90 26.05 23.23 26.11 23.51 26.17 23.74 26.21 23.95 26.25 24.13 26.29 24.28	PSI 1.17 1.15 1.15 1.14 1.14 1.14 1.14 1.13 1.13 1.13 1.13 1.13	$\begin{array}{c} \bullet & .6 \\ 1.33 & 15 \\ 1.26 & 19 \\ 1.23 & 14 \\ 1.21 & 14 \\ 1.19 & 14 \\ 1.18 & 14 \\ 1.18 & 14 \\ 1.17 & 14 \\ 1.16 & 14 \\ 1.16 & 14 \\ 1.16 & 14 \\ 1.15 & 14 \\ 1.15 & 14 \end{array}$	PHI = .42 5.82 13.96 5.29 14.00 4.97 13.99 4.77 13.97 4.62 13.95 4.51 13.94 4.43 13.92 4.36 13.91 4.31 13.90 4.26 13.89 4.22 13.89 4.19 13.88 4.16 13.87 4.14 13.87	8 2.40 2.52 2.60 2.66 2.71 2.74 2.77 2.79 2.81 2.82 2.84 2.85 2.86 2.87	1.68 1.87 2.01 2.20 2.27 2.33 2.38 2.43 2.47 2.50 2.53 2.56 2.58
bis 0,7 in Schritten	5 2 7 3 9 4 11 5 13 6 15 7 17 8 19 9 21 10 23 11 25 12 27 13 29 14 31 15	F 480/300 15.41 10.91 15.86 12.11 16.12 12.93 16.29 13.52 16.41 13.97 16.50 14.32 16.57 14.60 16.62 14.83 16.67 15.02 16.70 15.18 16.73 15.32 16.76 15.44 16.78 15.54 16.80 15.64	PSI = .4 1.29 1.54 1.27 1.44 1.26 1.39 1.26 1.36 1.25 1.33 1.25 1.32 1.25 1.31 1.25 1.30 1.24 1.29 1.24 1.29 1.24 1.28 1.24 1.27 1.24 1.27	PHI = .25 9.07 9.15 8.84 8.93 8.70 8.79 8.61 8.69 8.55 8.62 8.50 8.57 8.46 8.53 8.43 8.49 8.41 8.46 8.39 8.44 8.37 8.42 8.36 8.40 8.34 8.39 8.33 8.37	2.36 1.8 2.50 2.0 2.59 2.1 2.66 2.2 2.71 2.3 2.75 2.4 2.75 2.4 2.81 2.5 2.83 2.5 2.86 2.6 2.88 2.6 2.88 2.6 2.89 2.6 2.90 2.6	3 5 11 3 13 13 3 15 17 5 17 23 3 23 27 3 27 31 5 29 31	2 3 4 5 6 7 8 9 10 11 12 13 14 15	F 480/300 29.23 19.58 30.17 22.11 30.72 23.87 31.08 25.13 31.33 26.09 31.52 26.84 31.67 27.44 31.78 27.93 31.88 28.34 31.95 28.68 32.02 28.98 32.08 29.23 32.12 29.46 32.17 29.65	PSI 1.13 1.12 1.12 1.11 1.11 1.11 1.11 1.10 1.10	.7 1.28 32 1.22 28 1.19 26 1.17 24 1.16 24 1.15 24 1.14 23 1.13 23 1.13 23 1.12 23 1.12 23 1.12 23	PHI = .53 2.14 20.39 3.18 21.21 5.48 21.50 5.53 21.64 4.91 21.72 4.47 21.77 4.15 21.80 3.90 21.83 3.71 21.85 3.54 21.86 3.41 21.87 3.30 21.88 3.20 21.89 3.12 21.90	8 3.87 3.70 3.66 3.66 3.67 3.68 3.69 3.70 3.70 3.70 3.71 3.72 3.72 3.73 3.73	1.95 2.25 2.46 2.61 2.73 2.83 2.91 2.98 3.04 3.09 3.13 3.17 3.21 3.24
O									•				

.

,

1

1 3 4

ł

• ~ •

Нд

Ta

abel.	NP	LAENGS EZ EB KN/MM2	EH=0 A1Z A1B	QUER EZ EB KN/MM2	EH=0 A1Z	A1B	LAENGS N P EZ EB KN/MM2	EH=0 A1Z	QUER A1B EZ EB KN/MM2	EH=0 A1Z A1B
<u>le 4.4</u> : Elastizitätsmo für Kurz- und Variation des $E_{\rm G} = 73 \text{ kN/mm}^2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F 600/300 9.11 7.02 9.31 7.60 9.42 7.98 9.49 8.26 9.54 8.46 9.58 8.62 9.61 8.74 9.63 8.84 9.65 8.93 9.66 9.00 9.68 9.06 9.69 9.11 9.70 9.16 9.71 9.20	PSI = .2 1.63 2.11 1.60 1.92 1.58 1.82 1.57 1.76 1.56 1.72 1.56 1.69 1.56 1.67 1.55 1.66 1.55 1.64 1.55 1.63 1.55 1.62 1.54 1.62 1.54 1.61 1.54 1.60	PHI = .1 5.78 5.94 5.68 5.82 5.62 5.74 5.58 5.68 5.55 5.64 5.52 5.59 5.51 5.57 5.50 5.56 5.49 5.54 5.49 5.54 5.48 5.53 5.47 5.51 5.47 5.51	$ \begin{array}{c} 11 \\ 3.75 \\ 4.05 \\ 4.25 \\ 4.40 \\ 4.50 \\ 4.59 \\ 4.65 \\ 4.71 \\ 4.75 \\ 4.75 \\ 4.79 \\ 4.83 \\ 4.85 \\ 4.88 \\ 4.90 \\ \end{array} $	2.96 3.26 3.49 3.67 3.82 3.94 4.05 4.13 4.21 4.28 4.34 4.39 4.44 4.48	$\begin{array}{r} F & 600/300 \\ 5 & 2 & 20.10 & 13.78 \\ 7 & 3 & 20.69 & 15.51 \\ 9 & 4 & 21.03 & 16.68 \\ 11 & 5 & 21.26 & 17.50 \\ 13 & 6 & 21.41 & 18.12 \\ 15 & 7 & 21.53 & 18.60 \\ 17 & 8 & 21.61 & 18.98 \\ 19 & 9 & 21.68 & 19.29 \\ 21 & 10 & 21.74 & 19.54 \\ 23 & 11 & 21.79 & 19.76 \\ 25 & 12 & 21.83 & 19.94 \\ 27 & 13 & 21.86 & 20.10 \\ 29 & 14 & 21.89 & 20.24 \\ 31 & 15 & 21.91 & 20.37 \end{array}$	PSI = 1.20 1.18 1.17 1.17 1.17 1.17 1.17 1.16 1.16 1.16	$\begin{array}{ccccc} & \text{FHI} &=& .33\\ 1.38 & 11.15 & 10.88\\ 1.31 & 10.82 & 10.66\\ 1.27 & 10.62 & 10.52\\ 1.24 & 10.50 & 10.42\\ 1.23 & 10.41 & 10.35\\ 1.22 & 10.34 & 10.30\\ 1.21 & 10.29 & 10.25\\ 1.20 & 10.25 & 10.22\\ 1.20 & 10.21 & 10.19\\ 1.21 & 10.19 & 10.16\\ 1.19 & 10.19 & 10.16\\ 1.19 & 10.14 & 10.13\\ 1.19 & 10.13 & 10.11\\ 1.18 & 10.11 & 10.10\\ \end{array}$	33 2.41 1.81 2.57 1.99 2.68 2.13 2.76 2.24 2.81 2.34 2.85 2.41 2.89 2.47 2.92 2.53 2.95 2.57 2.98 2.65 3.00 2.68 3.01 2.71 3.02 2.74
duli der Typenlaminate Langzeitbelastung Glasgehaltes ψ von 0,2 , E _H = 3,5 kN/mm ²	5 2 7 3 9 4 11 5 13 6 15 7 17 8 19 9 21 10 23 11 25 12 27 13 29 14 31 15	F 600/300 12.33 8.99 12.64 9.91 12.82 10.52 12.94 10.96 13.02 11.29 13.08 11.54 13.13 11.74 13.17 11.90 13.20 12.04 13.22 12.15 13.24 12.25 13.26 12.33 13.27 12.41 13.29 12.47	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	PHI = .1 7.10 7.30 6.93 7.10 6.83 6.98 6.77 6.90 6.73 6.84 6.69 6.80 6.67 6.76 6.65 6.73 6.62 6.63 6.61 6.68 6.60 6.69 6.59 6.65 6.58 6.64	76 2.90 3.11 3.26 3.36 3.44 3.49 3.54 3.54 3.54 3.58 3.61 3.64 3.66 3.66 3.66 3.66 3.68 3.70 4.3.72	2.29 2.51 2.67 2.81 2.92 3.01 3.08 3.15 3.20 3.30 3.33 3.37 3.40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PSI = 1.15 1.14 1.13 1.13 1.13 1.13 1.13 1.12 1.12 1.12	.6 PHI = .4 1.31 15.17 13.60 1.24 14.62 13.55 1.21 14.31 13.50 1.21 14.31 13.46 1.19 14.10 13.46 1.18 13.96 13.42 1.17 13.85 13.39 1.16 13.77 13.37 1.16 13.70 13.35 1.15 13.65 13.33 1.15 13.65 13.32 1.15 13.57 13.30 1.15 13.57 13.30 1.14 13.53 13.29 1.14 13.48 13.27	28 2.55 1.76 2.71 1.97 2.81 2.13 2.88 2.25 2.93 2.36 2.98 2.44 3.01 2.51 3.04 2.57 3.06 2.62 3.08 2.66 3.10 2.70 3.11 2.74 3.12 2.77 3.14 2.80
) F 600/300 bis 0,7 in Schritten 0,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F 600/300 15.96 11.22 16.41 12.53 16.67 13.40 16.83 14.02 16.95 14.48 17.03 14.84 17.10 15.12 17.15 15.36 17.19 15.55 17.23 15.71 17.26 15.85 17.28 15.97 17.31 16.07 17.33 16.17	PSI = .4 1.27 1.50 1.25 1.41 1.24 1.36 1.24 1.33 1.23 1.31 1.23 1.30 1.23 1.29 1.23 1.29 1.23 1.29 1.23 1.27 1.23 1.27 1.23 1.27 1.23 1.26 1.22 1.26 1.22 1.25	PHI = .2 8.79 8.90 8.55 8.66 8.41 8.52 8.32 8.42 8.25 8.34 8.21 8.25 8.17 8.25 8.14 8.21 8.12 8.16 8.10 8.16 8.08 8.14 8.07 8.12 8.06 8.11 8.04 8.05	25 2.53 2.71 2.83 2.91 2.98 3.02 3.06 3.09 3.12 3.14 3.16 3.18 3.19 3.21	1.97 2.16 2.30 2.42 2.51 2.59 2.65 2.71 2.76 2.80 2.84 2.87 2.90 2.92	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	PSI = 1.12 1.11 1.10 1.10 1.10 1.10 1.10 1.09 1.09	.7 PHI = .5 1.26 27.48 19.27 1.20 24.91 19.82 1.17 23.71 20.02 1.15 23.00 20.10 1.14 22.53 20.15 1.13 22.20 20.17 1.13 21.95 20.19 1.12 21.76 20.20 1.12 21.61 20.21 1.12 21.48 20.21 1.12 21.48 20.22 1.11 21.29 20.22 1.11 21.21 20.22 1.11 21.21 20.22 1.11 21.14 20.22	38 3.68 1.98 3.67 2.29 3.70 2.51 3.74 2.68 3.77 2.81 3.80 2.92 3.82 3.02 3.84 3.09 3.86 3.16 3.87 3.22 3.88 3.27 3.90 3.32 3.90 3.36 3.91 3.39
د										•

ι 35

1

LAENGS	EH=0 QUER	EH=0	LAENGS	EH=0 OUE	R EH≃0
	A1Z A1B EZ EB	A1Z A1B	N P EZ EB	A1Z A1B EZ	EB A1Z A1B
F 720/300	PST = .2 PHT =	111	KN/MM2 E 720/300	KN	/MM2
5 2 9.31 7.17	1.60 2.05 5.68 5.8	5 4.05 3.11 -	5 2 20.69 14.21	1.18 1.36 10.82	= .333 10.62 2.57 1.88
		2 4.41 3.46	7 3 21.28 16.04	1.17 1.28 10.48	10.38 2.77 2.09
$\frac{11}{11}$ 5 9.68 8.45	1.55 1.72 5.48 5.5	4 4.65 3.73		1.17 1.25 10.29	10.23 2.89 2.26
··· 13 6 9.73 8.65	1.54 1.68 5.45 5.5	4 4.96 4.13	13 6 21.97 18.71	1.16 1.21 10.08	10.05 3.05 2.49
	1.54 1.66 5.44 5.5 1 52 1 54 5 42 5 4	1 5.06 4.27	15 7 22.08 19.19	1.16 1.20 10.01	9.99 3.10 2.58
	1.53 1.62 5.41 5.4	7 5.20 4.50	19 9 22.23 19.87	1.16 1.19 9.96	9.95 3.15 2.66
$a \times t 21 10 9.83 9.12$	1.53 1.61 5.40 5.4	6 5.26 4.60	21 10 22.29 20.13	1.15 1.19 9.89	9.88 3.21 2.77
\sim	1.53 1.60 5.39 5.4	5 5.30 4.68	25 12 22.33 20.34	1.15 1.18 9.86	9.86 3.23 2.82
× ⁵ i cf 27 13 9.86 9.30	1.52 1.59 5.38 5.4	3 5.38 4.81	27 13 22.40 20.68	1.15 1.18 9.82	9.82 3.27 2.90
$-\frac{10}{10}$ $+\frac{11}{10}$ $+\frac{29}{14}$ $+\frac{9.87}{9.88}$ $+\frac{9.34}{9.88}$	1.52 1.58 5.38 5.4 1 52 1 58 5 37 5 4	2 5.41 4.86	29 14 22,43 20.82	1.15 1.17 9.80	9.80 3.29 2.93
$E_{\rm a} = \frac{1}{2} $	PSI = .3 PHI = .	176	F 720/300	PCT - C DUT	- 400
· · · · · · · · · · · · · · · · · · ·	1.37 1.66 6.93 7.1	4 3.11 2.39	5 2 25.62 17.29	1.14 1.28 14.62	13.28 2.71 1.83
	1.35 1.54 5.75, 5.8	4 3.37 2.65 2 3.54 2.85 =	7 3 26.37 19.63	1.13 1.22 14.08	13.19 2.89 2.07
	1.33 1.45 6.61 6.7	4 3.66 3.00	11 5 27.06 22.26	1.12 1.19 13.77	13.04 3.01 2.25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.33 1.42 6.56 6.6 1 32 1 40 6 53 6.6	8 3.75 3.13	13 6 27.25 23.06	1.12 1.16 13.43	12.99 3.16 2.51
	1.32 1.39 6.51 6.6	0 3.88 3.33	17 8 27.50 24.16	1.12 1.15 13.25	12.95 3.21 2.60
	1.32 1.38 6.49 6.5	8 3.93 3.41	19 9 27.59 24.55	1.12 1.14 13.18	12.90 3.29 2.75
$\chi = 0$ g g 23 11 13.51 12.46	1.32 1.37 6.46 6.5	4 4.00 3.53	23 11 27.71 25.15	1.11 1.14 13.13	12.88 3.31 2.81
$\exists q = \mu 25 12 13.53 12.56$	1.32 1.36 6.45 6.5	2 4.03 3.58	25 12 27.76 25.39	1.11 1.13 13.05	12.84 3.36 2.91
[™]	1.32 1.35 6.43 6.4	9 4.07 3.67	29 14 27.84 25.59	1.11 1.13 13.02	12.83 3.37 2.95
੍ਰਾ ਸ਼ੂ 31 15 13.57 12.77	1.32 1.35 6.43 6.4	18 4.09 3.71	31 15 27.87 25.92	1.11 1.13 12.98	12.81 3.40 3.02
\sim ct F 720/300	PSI = .4 PHI = .4	25	F 720/300	PSI = .7 PHI	= .538
H 7 3 16.85 12.93	1.24 1.38 8.31 8.4	4 2.92 2.27	7 3 32.27 23.82	1.11 1.23 24.91	18.55 3.67 2.04
9 4 17.10 13.83	1.23 1.34 8.17 8.2	9 3.06 2.44	9 4 32.80 25.75	1.10 1.15 21.95	19.03 3.82 2.60
\bigcirc 13 6 17.37 14.93	1.22 1.29 8.02 8.1	3,16 2.58 2 3.24 2.69	11 5 33,14 27,10	1.09 1.14 21.38	19.07 3.88 2.78
\sim \sim 15 7 17.45 15.28	1.22 1.28 7.97 8.0	6 3.30 2.78	15 7 33.55 28.87	1.09 1.12 20.71	19.10 3.98 3.05
= 0 17 6 17.52 15.57 = 0 19 9 17.57 15.80	1.22 1.26 7.91 7.9	2 3,34 2,85	17 8 33.68 29.48	1.09 1.12 20.51	19.10 4.01 3.16
v 21 10 17.61 15.99	1.22 1.26 7.89 7.9	6 3.41 2.98	21 10 33.87 30.39	1.09 1.11 20.21	19.10 4.06 3.32
	1.22 1.25 7.87 7.9	3 3.44 3.03	23 11 33.94 30.73	1.09 1.11 20.11	19.10 4.08 3.38
	1.21 1.24 7.84 7.9	0 3.48 3.11	27 13 34.05 31.28	1.08 1.10 19.94	19.09 4.11 3.49
	1.21 1.24 7.83 7.8	8 3.50 3.14 7 3.51 3.18	29 14 34.10 31.50	1.08 1:10 19.88	19.09 4.13 3.54
ת 			0, 10 0, 11 0, 00	-1100 -1110 1200C	10.00 4.14 3.58
0					

ł ω 6 ł

1. s

				LAEN	GS	EH=0		QUER		EH=0				LAF	NGS	FH=0			,	EH-0	
		N N	Р	ΕZ	EB	A1Z	A1B	ΕZ	EB	A1Z	A1B	N	I P	EZ	EB	A1Z	A1B	E7	FB	A17	A1B
		ם		KNZ	MM2		_	KNZ	MM2						/MM2			- KNZ	MM2	1 · · · 4_	1110
		U U U U U	2	F 60	0/450	PSI *	· .2	PHI	= .11	1	0.07			F 6	00/450	PSI	5	PHI	= .33	3	
			2	8.98	7 93	1.65	2.07	5.85	6.00 E 99	3.59	2.94	5	2	19.71	14.22	1.21	1.37	11.36	11.09	2.32	1.81
		lo g	4	9.18	8.19	1.62	1.78	5.75	5.03	3.75	3.22	/	3	20.10	15.21	1.20	1.29	11.15	10.99	2.41	2.00
		L 11	5	9.22	8.41	1.61	1.74	5.72	5.79	3.92	3.52	5 11	ι 4 ς	20.31	17.30	1,19	1.20	11.03	10.92	2.47 2 En	2.12
		. 13	6	9.25	8.57	1.61	1.71	5.71	5.76	3.97	3.62	13	i õ	20.53	18.46	1.19	1.23	10.91	10.84	2.53	2.27
		15	/	9.28	8.68	1.60	1.69	5.69	5.74	4.00	3.69	15	5 7	20.60	18.81	1.19	1.22	10.87	10.81	2.55	2.32
EJ <	н	时 19	o q	9.29	8.77	1.60	1.67	5.69	5./3	4.03	3.75	17		20.65	19.07	1.18	1.21	10.84	10.79	2.56	2.35
Gar	ur r	a 21	10	9.32	8.90	1.60	1.65	5.67	5.71	4.07	3,83	21	, 9 10	20.69	19.28	1.18	1.21	10.82	10.78	2.57	2.39
н Г .	5	ν 23	11	9.33	8.94	1.59	1.65	5.67	5.70	4.09	3,87	23	11	20.75	19.59	1.18	1.20	10.79	10.75	2.59	2.43
7	ίΩ,	р. 25 N 27	12	9.33	8.98	1.59	1.64	5.66	5.69	4.10	3.90	25	12	20.78	19,70	1.18	1.20	10.77	10.74	2.60	2.45
ω <u>Γ</u> Ο	2	1 29	14	9.34	9.04	1.59	1.64	5,66	5.63	4.11	3,92	27		20.79	19.80	1.18	1.20	10.76	10.73	2.60	2.47
с Х N	1	ລະ 31	15	9.35	9.07	1.59	1.63	5.66	5.68	4.13	3.96	31	15	20.81	19.96	1.18	1.20	10.75	10.73	2.61	2.48
de ∕π	un	ct S		F 60	0/450	PSI =	• .3	PHI	= .17	6				F 6	00/450	PST	× .6	PHT	= 42	R	2175
ພິ່	ρ	mo 5	2	12.12	9.23	1.40	1.67	7.21	7.38	2.78	2.28	5	2	24.36	17.31	1.16	1.29	15.52	13.99	2.47	1.78
ុ ចួ	E	ď (3	12.33	10.28	1.39	1.54	7.10	7.23	2.90	2.49	7	3	24.85	19.86	1.15	1.23	15.17	14.21	2.55	2.01
ы	n	Ë 11	5	12.51	11.21	1.37	1.45	7.04	7.08	3.02	2.72	11	ι 4 5	25.12	22.14	1.15	1.18	14.97	14.28	2.60	2.16
H g	ZÊ	[–] 13	6	12.56	11.46	1.37	1.44	6.98	7.05	3.05	2.79	13	6	25.41	22.75	1.14	1.18	14.77	14.32	2.66	2.33
d n	е г	L 15	7	12.59	11.65	1.37	1.43	6,96	7.02	3.08	2.84	15	7	25.50	23.19	1.14	1.17	14.71	14.33	2.68	2.39
ω La La	Ĥ	H 17	8 Q	12.64	11.90	1.37	1.41	6.93	6.98	3.107	2.92	. 19	N A	25.50	23.53	1.14	1.15	14.65	14.33	2.69	2.43
Un t	õ	21	10	12.66	11.99	1.37	1.40	6.92	6.96	3.13	2.95	21	10	25.66	24.01	1.14	1.16	14.59	14.33	2.71	2.50
ж й	a	70 23	11	12.67	12.06	1.36	1.40	6.91	6.95	3.14	2.97	23	11	25.69	24.19	1.14	1.16	14.57	14.33	2.72	2.52
	с†	D 25	12	12.69	12.12	1.36	1.40	6.91 6.91	6.94 6.94	3.15	2.99	25	12	25.72	24.34	1.14	1.15	14.54	14.33	2.73	2.54
nur Vo	un	a 29	14	12.70	12.22	1.36	1.39	6.90	6.93	3.16	3.03	29	14	25.77	24.58	1.14	1.15	14.51	14.33	2.74	2.58
-~ n	9	품. 31	15	12.71	12.26	1.36	1.39	6.89	6.92	3.17	3.04	31	15	25.78	24.67	1.14	1.15	14.50	14.33	2.74	2.59
0,		na	_	F 60	0/450	PSI =	4	PHI	= .25					F 6	00/450	PSI ·	7	PHI	= .53	В	
\sim		- - - 5	2	15.67	11.55	1.28	1.48	8,94	9.03	2.44	1.97	5	2	29.78	20.94	1.13	1.24	29.65	20.89	3.75	2.11
g		<u> </u>	- 3	16.12	13.86	1.26	1.30	8.70	8.77	2.59	2.15	· · /	3 1 4	30.39	24.12	1.12	1.19	27.48	22.43	3.68	2.53
μ. υ		11	5	16.22	14.38	1.26	1.32	8.65	8.70	2.63	2.35	11	5	30.93	26.98	1.11	1.15	25.90	23.21	3.66	2.92
0		6 13	ę	16.29	14.74	1.26	1.31	8.61	8.66	2.66	2.42	13	6	31.08	27.74	1.11	1.14	25.53	23.34	3,66	3.02
, 7		$^{\circ}$ 15	8	16.34	14.99	1.25	1.30	8.58	8.63	2.68	2.45	15	0	31.19	28.30	1.11	1.14	25,26	23.43	3.66	3.11
. سې		ு 19 ஏ	ğ	16.41	15.35	1.25	1.28	8,55	8.58	2.71	2.53	19	9	31.33	29.05	1.11	1.13	24.91	23.52	3.67	3.17
n		Ó 21	10	16.43	15.48	1.25	1.28	8.53	8.56	2.72	2.56	21	10	31.39	29.33	1.11	1.13	24.79	23.55	3.67	3.27
SC		23	12	16.45	15.58	1.25	1.28	8.52	8.55	2.73	2.58	23	11	31.43	29.55	1.11	1.12	24.69	23.57	3.67	3.30
h		27	13	16.48	15.74	1.25	1.27	8.51	8.53	2.75	2.61	25	13	31.40	29.74	1.11	1.12	24.53	23.59	3.67	3.33
		29	14	16.50	15.81	1.25	1.27	8.50	8.52	2.75	2.63	29	14	31.52	30.03	1.11	1.12	24.47	23.61	3.68	3.38
t,		31	10	10.51	12.00	1.25	1.27	8.49	8.51	2.76	2.64	31	15	31.54	30.15	1.11	1.12	24.42	23.62	3.68	3.40
en																•					
0																					•
								•						;							

I

37 ł

· . ·

KIN/ IIIIII нд ~

.en 0,1

$\begin{array}{cccccc} & LAENGS & & LAENGS & & \\ & LAENGS & N & P & EZ & EB & & \\ & & KN/MM2 & F & 720/450 & \\ & & & F & 720/450 & \\ & & & F & 720/450 & \\ & & & F & 7338.37 & \\ & & & & S60 & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	QUER $EH=0$ A1BEZEBA1ZA1BKN/MM2=.5PHI=.3331.3411.0310.832.471.891.2710.8210.702.572.111.2410.7010.622.642.241.2210.6210.572.682.341.2110.5710.532.712.411.2010.5310.502.732.471.2010.5110.472.752.511.2010.4810.462.772.551.1910.4610.442.782.581.1910.4410.422.802.621.1910.4210.412.802.641.1810.4210.402.812.66
	1.56 1.60 5.55 5.58 4.50 4.30 PSI =.3PHI =.176 1.38 1.63 7.04 7.23 2.97 2.38 1.37 1.51 6.93 7.06 3.11 2.63 1.36 1.46 6.87 6.98 3.20 2.78 1.36 1.43 6.83 6.92 3.26 2.89 1.35 1.41 6.81 6.88 3.30 2.98 1.35 1.40 6.79 6.85 3.33 3.04 1.35 1.39 6.76 6.81 3.37 3.13 1.35 1.38 6.75 6.80 3.39 3.17 1.35 1.38 6.75 6.79 3.40 3.20 1.35 1.37 6.74 6.78 3.41 3.22 1.35 1.37 6.73 6.76 3.43 3.26 1.34 1.37 6.73 6.76 3.44 3.28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.18 10.41 10.39 2.81 2.67 = .6 PHI = .428 1.27 14.97 13.68 2.60 1.86 1.21 14.62 13.81 2.71 2.11 1.18 14.43 13.84 2.77 2.27 1.17 14.31 13.85 2.81 2.39 $& \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
bis 0, 7 in Schritten 0, 7 is 16.41 16.92 16.12 11.92 22 16.12 11.92 7 3 16.41 13.45 7 3 16.41 13.45 9 4 16.57 14.28 11 5 16.67 14.81 13 6 16.73 15.17 15 7 16.78 15.43 19 9 16.82 15.63 19 9 16.85 15.78 21 10 16.87 15.91 23 11 16.89 16.02 25 12 16.91 16.10 27 13 16.92 16.18 29 14 16.94 16.24 31 15 16.95 16.30	PSI =.4PHI =.251.261.458.708.822.592.051.251.368.558.642.712.271.251.328.468.542.782.401.241.308.418.472.832.501.241.298.378.432.862.571.241.288.348.392.892.631.241.278.328.372.912.671.241.268.298.332.942.741.241.268.288.322.952.761.241.268.278.302.962.791.241.268.278.292.952.761.241.268.278.292.962.801.241.268.278.292.962.801.241.258.268.292.972.821.231.258.258.282.982.84	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7 PHI = .538 1.22 26.48 19.92 3.66 2.16 1.17 24.91 21.04 3.67 2.56 1.15 24.15 21.43 3.69 2.80 1.14 23.71 21.61 3.70 2.96 1.13 23.41 21.71 3.72 3.08 1.12 23.20 21.77 3.73 3.17 1.12 23.04 21.81 3.74 3.24 1.12 22.92 21.84 3.74 3.29 1.11 22.82 21.86 3.75 3.34 1.11 22.75 21.87 3.76 3.38 1.11 22.68 21.88 3.76 3.41 1.11 22.68 21.88 3.76 3.41 1.11 22.58 21.90 3.77 3.46 1.11 22.58 21.90 3.77 3.48

C I

								•		
Tabe	. N P	LAENGS EZ EB KN/MM2	EH≈0 A1Z A1B	OUER EZ EB KN/MM2	EH=0 A1Z A1B	LAENGS N P EZ EB KN/MM2	EH≈0 A1Z A1B	QUER EZ EB KN/MM2	EH=0 A1Z	A1B
<u>lle 4.0</u> : Elastizitatsn für Kurz- und Variation des E _C = 73 kN/mr	5 2 7 3 9 4 2 11 5 13 6 11 5 12 12 12 12 12 12 22 110 22 110 22 110 22 12 22 12 22 12 22 13 22 14 31 15	F 960/450 9.49 7.65 9.61 8.32 9.67 8.69 9.71 8.91 9.74 9.07 9.76 9.18 9.78 9.26 9.79 9.33 9.80 9.39 9.81 9.43 9.81 9.43 9.81 9.43 9.81 9.43 9.81 9.43 9.82 9.50 9.82 9.53 9.83 9.55	PSI = .2 1.57 1.90 1.56 1.75 1.55 1.68 1.54 1.64 1.54 1.62 1.54 1.61 1.53 1.59 1.53 1.58 1.53 1.58 1.53 1.57 1.53 1.57 1.53 1.56 1.53 1.56	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & F & 960/450 \\ 5 & 2 & 21.24 & 15.65 \\ 7 & 3 & 21.61 & 17.71 \\ 9 & 4 & 21.81 & 18.81 \\ 11 & 5 & 21.94 & 19.50 \\ 13 & 6 & 22.02 & 19.97 \\ 15 & 7 & 22.08 & 20.31 \\ 17 & 8 & 22.13 & 20.57 \\ 19 & 9 & 22.17 & 20.78 \\ 21 & 10 & 22.20 & 20.94 \\ 23 & 11 & 22.22 & 21.08 \\ 25 & 12 & 22.24 & 21.19 \\ 27 & 13 & 22.26 & 21.29 \\ 29 & 14 & 22.28 & 21.37 \\ 31 & 15 & 22.29 & 21.44 \\ \end{array}$	PSI = .5 1.17 1.30 1 1.17 1.24 1 1.16 1.21 1 1.16 1.20 1 1.16 1.19 1 1.16 1.18 1 1.16 1.18 1.16 1.18 1.16 1.17 1.16 1.17 1.16 1.17 1.16 1.17 1.15 1.17	PHI = .33 0.51 10.39 0.29 10.24 0.17 10.14 0.10 10.08 0.05 10.03 0.01 10.00 9.98 9.97 9.96 9.95 9.94 9.94 9.93 9.92 9.92 9.91 9.91 9.90 9.90 9.89 9.89 9.89	3 2.75 2.89 2.98 2.98 2.98 2.98 2.98 2.98 2.3.03 2 3.07 2 3.10 2 3.13 2 3.15 2 3.15 2 3.16 2 3.17 2 3.18 2 3.19 2 3.19 2 3.12 3.12 3.15 2 3.12 3.15 2 3.16 2 3.17 2 3.16 2 3.17 2 3.16 2 3.17 2 3.18 2 3.19 3.19 3.10 3.12 3.20 3.21 3.20 3	.05 .31 .48 .60 .69 .76 .82 .86 .90 .93 .93 .96 .98 .00
noduli der Typeniaminae 1 Langzeitbelastung 3 Glasgehaltes¢von O,2 n ² , E _H = 3,5 kN/mm ²	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F 960/450 12.93 9.99 13.13 11.07 13.23 11.65 13.30 12.02 13.34 12.26 13.38 12.44 13.40 12.58 13.42 12.69 13.44 12.78 13.45 12.85 13.45 12.85 13.46 12.91 13.47 12.96 13.48 13.00	PSI = .3 $1.35 1.56$ $1.34 1.46$ $1.33 1.42$ $1.33 1.40$ $1.33 1.38$ $1.32 1.36$ $1.32 1.36$ $1.32 1.35$ $1.32 1.35$ $1.32 1.35$ $1.32 1.35$ $1.32 1.35$ $1.32 1.34$ $1.32 1.34$ $1.32 1.34$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PSI = .6 1.13 1.23 1 1.12 1.18 1 1.12 1.16 1 1.12 1.15 1 1.12 1.15 1 1.12 1.14 1 1.12 1.14 1 1.12 1.14 1 1.12 1.13 1 1.12 1.13 1 1.11 1.13 1 1.11 1.12 1	PHI = .42 4.11 13.16 3.77 13.18 3.58 13.16 3.46 13.13 3.38 13.12 3.32 13.10 3.28 13.09 3.25 13.07 3.22 13.06 3.19 13.06 3.19 13.05 3.16 13.04 3.14 13.04 3.13 13.03	8 2.88 3.01 2.88 2.88 2.88 2.88 2.88 2.01 2.23 3.15 2.24 3.24 2.25 2.24 3.25 2.25 3.27 3.28 3.29 3.30 3.31 3.3	2.02 31 2.50 2.64 2.74 2.87 2.92 2.97 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.0
2 bis 0,7 in Schritten	5 2 9 4 7 2 9 4 7 2 11 5 7 13 6 13 6 13 6 14 7 2 14 7 2 15 7 21 10 23 12 24 12 25 12 29 14 31 15	F 960/450 2 16.82 12.63 3 17.10 14.17 4 17.25 15.00 5 17.34 15.52 6 17.41 15.87 7 17.45 16.13 3 17.49 16.32 9 17.52 16.47 0 17.54 16.60 1 17.56 16.70 2 17.57 16.78 3 17.59 16.86 4 17.60 16.92 5 17.61 16.97	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	PHI = .29 8.32 8.47 8.17 8.28 8.09 8.18 8.04 8.11 8.00 8.06 7.97 8.03 7.95 8.00 7.94 7.98 7.93 7.97 7.92 7.95 7.91 7.94 7.90 7.93 7.89 7.92 7.89 7.92	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	PSI = .7 1.10 1.19 2 1.09 1.13 2 1.09 1.13 2 1.09 1.12 2 1.09 1.11 2 1.09 1.11 2 1.09 1.10 2 1.09 1.09 2	PHI = .53 $23.04 18.70$ $21.95 19.34$ $21.41 19.56$ $21.09 19.65$ $20.71 19.73$ $20.60 19.74$ $20.51 19.76$ $20.37 19.77$ $20.32 19.77$ $20.28 19.77$ $20.25 19.78$ $20.21 19.78$	8 3.74 3.82 3.82 3.92 3.95 3.95 3.95 3.99 4.01 4.02 4.03 4.04 4.05 4.05 4.06	2.29 2.70 2.96 3.27 3.45 3.45 3.57 3.65 3.69 3.72
0, 1										•

ω 9

I

• . .

<u>Tabelle 4.9</u> : Elastizitätsmoduli der Typenlaminate F 600/500/600 für Kurz- und Langzeitbelastung Variation des Glasgehaltes 🕆 von 0,2 bis 0,7 in Sch	N P 9 13 17 12 23 4 56 7 89 10 122 23 37 11 23 4 56 7 89 10 122 23 37 11 23 4 56 7 89 10 122 23 37 11 123 4 56 7 89 10 122 23 37 11 123 4 56 7 89 0 11 12 23 4 56 7 89 0 11 12 23 4 56 7 89 0 11 12 12 12 13 12	LAENGS EZ EB KN/MM2 F 600/500/60 8.64 7.54 8.70 7.93 8.72 8.14 8.74 8.27 8.75 8.36 8.76 8.42 8.77 8.47 8.77 8.51 8.78 8.54 8.78 8.56 8.78 8.58 8.79 8.60 8.79 8.62 8.79 8.63 F 600/500/60 11.61 9.83 11.70 10.47 11.74 10.81 11.77 11.02 11.79 11.16 11.80 11.26 11.81 11.33 11.82 11.39 11.83 11.44 11.83 11.48 11.84 11.52 11.84 11.54 11.84 11.55 15.01 12.45 15.21 14.36 15.22 14.36 15.31 14.70 15.32 14.77 15.32 14.77 15.32 14.77	EH=0 A1Z A1B 0/450 PSI 1.74 1.97 1.73 1.87 1.72 1.82 1.72 1.80 1.72 1.78 1.71 1.77 1.71 1.76 1.71 1.75 1.71 1.75 1.71 1.75 1.71 1.75 1.71 1.75 1.71 1.75 1.71 1.75 1.71 1.74 1.71 1.74 1.71 1.74 1.71 1.73 0/450 PSI 1.45 1.46 1.55 1.46 1.55 1.46 1.55 1.46 1.55 1.46 1.55 1.46 1.55 1.46 1.55 1.46 1.55 1.46 1.55 1.46 1.55 1.46 1.51 1.45 1.47 1.45 1.47 1.33 1.38 1.33 1.35 1.33 1.35 1.33 1.35 1.33 1.35	OUER EZ EB KN/MM2 = 2 PHI 6.68 6.30 6.68 6.41 6.67 6.47 6.67 6.53 6.67 6.55 6.66 6.56 6.66 6.59 6.66 6.59 6.66 6.59 6.66 6.59 6.66 6.59 6.66 6.59 6.66 6.60 6.66 6.60 6.66 6.61 = .3 PHI 8.50 7.87 8.49 8.06 8.48 8.15 8.47 8.25 8.47 8.28 8.47 8.22 8.47 8.33 8.46 8.34 8.47 8.32 8.47 8.33 8.46 8.34 8.46 8.35 8.46 8.37 8.46 8.37 8.47 8.28 8.47 8.28 8.47 8.47 8.47 8.47 8.47 8.47 8.47 8.4	EH=0 A1Z A1B = .111 2.59 2.72 2.60 2.69 2.61 2.67 2.61 2.67 2.61 2.67 2.61 2.66 2.62 2.65 2.62 2.65 2.62 2.65 2.62 2.65 2.62 2.64 2.62 2.64 2.09 2.12 2.09 2.12 2.09 2.11 2.09 2.11 2.10 2.11	LAENGS N P EZ EB KN/MM2 F 600/500/600 9 2 18.98 15.50 13 3 19.14 16.75 17 4 19.23 17.41 21 5 19.28 17.81 25 6 19.32 18.08 29 7 19.34 18.28 33 8 19.36 18.43 37 9 19.38 18.54 41 10 19.39 18.64 45 11 19.40 18.72 49 12 19.41 18.78 53 13 19.41 18.83 57 14 19.42 18.88 61 15 19.42 18.92 F 600/500/600 9 2 23.79 19.17 13 3 23.98 20.81 17 4 24.08 21.67 21 5 24.14 22.20 25 6 24.19 22.55 29 7 24.22 22.81 33 8 24.24 23.01 37 9 24.26 23.16 41 10 24.27 23.28 45 11 24.28 23.38 49 12 24.29 23.47 53 13 24.30 23.54 57 14 24.31 23.60 61 15 24.32 23.65 F 600/500/600 9 2 30.15 23.93 13 3 30.31 26.07 17 4 30.40 27.18 21 5 30.45 27.86 25 6 30.49 28.32 29 7 30.51 28.65 33 8 30.53 28.90 37 9 30.55 29.09 41 10 30.56 29.25	EH=0 A1Z A1Z A1Z A1Z A1Z A1Z A1Z A1Z	OUER A1B EZ EB KN/MM2 PSI = .5 PHI .35 13.45 12.02 .32 13.41 12.43 .30 13.38 12.65 .29 13.37 12.77 .28 13.36 12.86 .28 13.35 12.93 .28 13.35 12.93 .28 13.35 12.97 .27 13.34 13.04 .27 13.34 13.04 .27 13.34 13.06 .27 13.34 13.08 .27 13.33 13.10 .27 17.12 15.65 .26 17.08 15.96 .25 17.05 16.15 .25 17.05 16.15 .25 17.03 16.28 .24 17.01 16.37 .24 17.00 16.44 .24 16.99 16.54 .24 16.99 16.54 .24 16.99 16.54 .24 16.97 16.65 .23 16.97 16.65 .24 22.88 21.65 .24 22.88 21.65 .24 22.88 21.65 .24 22.77 21.95 .24 22.77 21.95 .24 22.77 21.95 .24 22.77 21.95	EH=0 A1Z A1B 333 1.74 1.73 1.74 1.74 1.75 1.74 1.75 1.75 1.75 1.75
500/600/450 in Schritten 0,	23 29 33 8 37 9 41 10 45 11 49 12 53 13 57 14 61 15	15.27 14.36 15.28 14.50 15.30 14.61 15.31 14.70 15.32 14.77 15.33 14.82 15.33 14.87 15.34 14.91 15.34 14.95 15.35 14.98	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 10.64 & 10.31 \\ 10.64 & 10.35 \\ 10.64 & 10.38 \\ 10.63 & 10.41 \\ 10.63 & 10.43 \\ 10.63 & 10.44 \\ 10.63 & 10.46 \\ 10.63 & 10.47 \\ 10.63 & 10.48 \\ 10.63 & 10.49 \end{array}$	1.86 1.87 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86	25 6 30.49 28.32 29 7 30.51 28.65 33 8 30.53 28.90 37 9 30.55 29.09 41 10 30.56 29.25 45 11 30.57 29.38 49 12 30.58 29.49 53 13 30.59 29.58 57 14 30.60 29.65 61 15 30.60 29.72	1.23 1 1.23 1 1.23 1 1.23 1 1.23 1 1.23 1 1.23 1 1.23 1 1.23 1 1.23 1 1.23 1 1.23 1 1.23 1 1.23 1 1.23 1	.25 22.88 21.65 .24 22.83 21.78 .24 22.80 21.88 .24 22.77 21.95 .24 22.75 22.02 .24 22.73 22.07 .23 22.72 22.11 .23 22.71 22.14 .23 22.70 22.17 .23 22.69 22.20	1.85 1.82 1.85 1.82 1.85 1.82 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.84 1.83 1.84 1.83 1.84 1.83

•

.

73 kN/mm 2 , $E_{\rm H}$ =

е С

3,5 kN/mm^2

EG П 73 kN/mm², E_{H} U [] $3,5 \text{ kN/mm}^2$ 0,1

Tabel	n F	LAENGS P EZ E KN/MM2	EH=0 EB A1Z	OUEF A1B EZ KN/	EB /MM2	EH=0 A1Z	A1B	N P.	LAENGS EZ EB KN/MM2	EH=0 A1Z	QUE A1B EZ	R EB ZMM2	EH=0 A1Z	A1B
<u>lle 4.16</u> : Elastizitätsmo für Kurz- und Variation des	5 2 7 3 11 5 13 6 15 7 19 5 21 10 23 11 25 12 27 13 29 14 31 15	MW580/4 7.40 6. 7.43 6. 7.43 7. 7.44 7. 7.45 7. 7.45 7. 7.46 7. 7.47 7. 7.47 7. 7.48 7. <tr td=""> <tr td=""></tr></tr>	450PSI772.09982.09982.09102.08232.08292.07312.07332.07352.07362.07382.07392.07	<pre>= .2 PHI 2.30 7.40 2.22 7.43 2.18 7.44 2.16 7.45 2.15 7.46 2.13 7.47 2.13 7.47 2.13 7.47 2.11 7.48 2.11 7.48 2.11 7.48 2.10 7.48 2.10 7.48 2.10 7.48</pre>	= .111 6.77 6.98 7.10 7.17 7.23 7.26 7.29 7.31 7.33 7.35 7.36 7.37 7.38 7.39	2.09 2.09 2.08 2.08 2.08 2.08 2.08 2.08 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07	2.30 2.22 2.18 2.15 2.13 2.13 2.13 2.13 2.11 2.11 2.11 2.10 2.10 2.10	5 2 7 3 9 4 11 5 13 6 15 7 17 8 19 9 21 10 23 11 25 12 27 13 29 14 31 15	MW580/450 15.29 13.18 15.38 13.90 15.43 14.29 15.47 14.53 15.49 14.70 15.51 14.82 15.52 14.92 15.53 14.99 15.54 15.05 15.54 15.05 15.55 15.14 15.55 15.18 15.56 15.21 15.56 15.23	PSI = 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.4	.5 PHI 1.50 15.29 1.48 15.38 1.47 15.43 1.46 15.47 1.45 15.51 1.45 15.52 1.45 15.53 1.45 15.53 1.45 15.54 1.45 15.54 1.44 15.55 1.44 15.56 1.44 15.56		$\begin{array}{c} 1.44\\ 1.44\\ 1.44\\ 1.44\\ 1.44\\ 1.44\\ 1.44\\ 1.44\\ 1.44\\ 1.44\\ 1.44\\ 1.44\\ 1.44\\ 1.44\\ 1.44\\ 1.44\\ 1.44\\ 1.44\\ 1.43\end{array}$	1.50 1.48 1.47 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.44 1.44
oduli der Typenlaminat Langzeitbelastung Glasgehaltes¢von O,2	5 2 7 3 9 2 11 5 13 6 15 7 19 9 21 10 23 12 27 10 29 12 31 19 31 19	MW580/4 9.62 8. 9.67 8. 9.70 9. 9.71 9. 9.72 9. 9.73 9. 9.74 9. 9.74 9. 9.75 9. 9.75 9. 2 9.75 9. 3 9.76 9. 4 9.76 9. 5 9.76 9.	450 PSI .60 1.72 .95 1.71 .14 1.71 .26 1.71 .34 1.70 .40 1.70 .45 1.70 .48 1.70 .51 1.70 .54 1.70 .55 1.70 .56 1.70 .57 1.70 .59 1.70 .60 1.70	= .3 PHI 1.84 9.62 1.79 9.67 1.77 9.70 1.76 9.71 1.75 9.72 1.74 9.73 1.73 9.74 1.73 9.74 1.73 9.74 1.73 9.75 1.72 9.75 1.72 9.76 1.72 9.76 1.72 9.76 1.72 9.76	= .176 8.60 8.95 9.14 9.26 9.34 9.40 9.45 9.48 9.51 9.54 9.55 9.57 9.59 9.60	1.72 1.71 1.71 1.70 1.70 1.70 1.70 1.70 1.70	1.84 1.79 1.77 1.76 1.75 1.74 1.73 1.73 1.73 1.72 1.72 1.72 1.72	5 2 7 3 9 4 11 5 13 6 15 7 17 8 19 9 21 10 23 11 25 12 27 13 29 14 31 15	MW580/450 19.15 16.19 19.27 17.19 19.34 17.73 19.38 18.08 19.41 18.31 19.43 18.48 19.45 18.61 19.46 18.71 19.46 18.71 19.47 18.79 19.48 18.86 19.48 18.92 19.49 18.97 19.50 19.01	PSI = 1.41 1.40 1.40 1.40 1.40 1.40 1.40 1.40	.6 PHI 1.43 19.15 1.42 19.27 1.41 19.34 1.41 19.38 1.41 19.41 1.41 19.43 1.41 19.43 1.41 19.43 1.41 19.43 1.41 19.43 1.41 19.43 1.41 19.43 1.41 19.43 1.40 19.48 1.40 19.48 1.40 19.48 1.40 19.49 1.40 19.50 1.40 19.50	= .42 16.19 17.19 17.73 18.08 18.31 18.48 18.61 18.71 18.79 18.86 18.92 18.92 18.97 19.01	3 1.41 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	1.43 1.42 1.41 1.41 1.41 1.41 1.41 1.40 1.40 1.40
e MW 580/450 bis 0,7 in Schritten (5 7 9 11 13 15 17 21 11 23 1 25 1 25 1 25 1 29 1 31 1	MW580/- 2 12.20 10 3 12.28 11 4 12.31 11 5 12.34 11 5 12.35 11 7 12.37 11 8 12.38 11 9 12.38 12 1 12.39 12 1 12.39 12 1 12.39 12 1 12.40 12 3 12.40 12 4 12.40 12 5 12.41 12	450 PSI .71 1.54 .22 1.53 .49 1.53 .67 1.53 .79 1.53 .95 1.53 .00 1.53 .04 1.53 .11 1.53 .13 1.53 .15 1.53 .17 1.53	= .4 PHI 1.62 12.20 1.59 12.28 1.57 12.31 1.56 12.35 1.55 12.37 1.55 12.38 1.55 12.38 1.55 12.38 1.55 12.38 1.55 12.39 1.54 12.39 1.54 12.40 1.54 12.40 1.54 12.41	25 10.71 11.22 11.49 11.67 11.79 11.88 11.95 12.00 12.04 12.08 12.11 12.13 12.15 12.17	1.54 1.533 1.533 1.5533	1.62 1.59 1.57 1.56 1.55 1.55 1.55 1.55 1.55 1.54 1.54 1.54	5 2 7 3 9 4 11 5 13 6 15 7 17 8 19 9 21 10 23 11 25 12 27 13 29 14 31 15	MW580/450 24.69 20.18 24.81 21.68 24.87 22.47 24.91 22.97 24.94 23.30 24.96 23.55 24.98 23.73 24.99 23.88 25.00 24.00 25.01 24.09 25.01 24.09 25.01 24.17 25.02 24.24 25.02 24.30 25.03 24.35	PSI = 1.44 1.44 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43	.7 PHI 1.42 24.69 1.42 24.81 1.43 24.87 1.43 24.91 1.43 24.94 1.43 24.96 1.43 24.96 1.43 24.96 1.43 25.00 1.43 25.01 1.43 25.02 1.43 25.03	= .53 20.18 21.68 22.47 22.97 23.30 23.55 23.73 23.88 24.00 24.09 24.17 24.24 24.30 24.35	$\begin{array}{c} 3\\ 1.44\\ 1.44\\ 1.43\\ 1.43\\ 1.43\\ 1.43\\ 1.43\\ 1.43\\ 1.43\\ 1.43\\ 1.43\\ 1.43\\ 1.43\\ 1.43\\ 1.43\\ 1.43\\ 1.43\\ 1.43\end{array}$	$1.42 \\ 1.43 \\ $

3

- 41

1

•

		Tab	N	p	LAEN E 7	IGS	EH=0	Δ1 P	QUER	FD	EH=0	01P	i i k	N	Р	LAENGS F7	S FR	EH=0	A1R	QUER	ED	EH=0	A1D
		0el	14	I	KN/	MM2	n12	U I N		MM2		nib			•	KNZMM	12	DGT	нт <u>р</u>	KN/N	1M2	HIZ	HIB
		10	5	2	7.51	6.88	2.06	= .2 2.26	7.51	= .11 6.88	2.06	2.26	; 1	5	2 1	5.64 13	450	PS1 = 1.43	= .5 1.49	15.64	= .333 3.57	3 1.43	1.49
		4.	7 9	3 4	7.54	7.10	2.06 2.05	2.18	7.54	7.10	2.06 2.05	2.18		9	3 1 4 1	5.73 14 5.78 14	1.28 1.67	1.43	1.46	15.73 [·] 15.78 1	14.28	1.43	1.46
			11 13	5 6	7.56	7.29	2.05	2.13	7.56	7.29	2.05	2.13	1	11 13	5 1 6 1	5.81 14 5.83 15	4.90 5.07	1.43	1.45	15.81	4.90	1.43	1.45
E G	fü	E	15	7	7.58	7.38	2.05	2.10	7,58	7.38	2.05	2.10	; r	15 17	7 1	5.84 15	.19	1.43	1.44	15.84 1	5.19	1.43	1.44
гта II а	. г . ж	ast	19	9	7.58	7.40	2.05	2.09	7.58	7.43	2.03	2.09		19 21 1	91	5.86 15	5.35	1.43	1.44	15.85	5.28	1.43	1.44
73	ur:	ίz	23 1	11	7.58	7.44	2.04	2.08	7.58	7.44	2.04	2.08	-	23 1	1 1	5.87 15	5.40	1.43	1.44	15.87 1	5.40	1.43 1.43	1.44
n KN d	1	Lta:	25 1	13	7.59	7.47	2.04	2.07	7.59	7.47	2.04	2.07	i	27 1	3 1	5.88 15	.49 .52	1.43	1.43 1.43	15.88 1 15.88 1	5.49 5.52	1.43	1.43
es /mn	und	tsm	29 1 31 1	4 5	7.59 7.59	7.49 7.50	2.04 2.04	2.07 2.07	7.59 7.59	7.49 7.50	2.04 2.04	2.07 2.07		29 1 31 1	4 I 5 1	5.89 15 5.89 15	••55 •58	1.43	1.43 1.43	15.89 1	5.55	1.43	1.43
⊳ CL2	Ē	lodi	Ę	2	MW90	0/450	PSI	3	PHI	= .17	6	1 00		Ē	2 1	MW900/	(450	PSI :	= .6	PHI -	428	3	
EH EH	pug	1 1 1	7	3	9.85	9.14	1.69	1.77	9.85	8.79 9.14	1.69	1.82	1	7	3 1	9.71 17	7.71	1.39	1.42	19.60	17.71	1.40	1.42
e ha	ν Γ Ω	de	11	5	9.89	9.44	1.69	1.75	9.87	9.33	1.69	1.75	1	11	5 1	9.80 18	3.56	1.39	1.41	19.77	8.24	1.39	1.41
3 te	, the	r	13	ь 7	9.90	9.53	1.69	1.72	9.90 9.91	9.53 9.58	1.69 1.69	1.72		13	7 1	9.83 18	3.79	1.39	1.40	19.83 19.85	8.79	1.39	1.40 1.40
ט וט א א	а Ц	ЧАJ	17 19	8 9	9.91 9.92	9.63 9.66	1.68 1.68	1.71	9.91 9.92	9.63 9.66	1.68' 1.68	1.71		17 19	8 1 9 1	9.86 19	9.07 9.17	1.39 1.39	1.40 1.40	19.86 1 19.87 1	19.07 19.17	1.39	1.40 1.40
r ⇒ N/n	sti	enl	21 1 23 1	0 1	9.92 9.92	9.69 9.72	1.68 1.68	1.71	9.92 9.92	9.69 9.72	1.68	1.71		21 1 23 1	10 1 11 1	9.88 19 9.89 19	9.24 9.31	1.39	1.40 1.39	19.88 1 19.89 1	19.24 19.31	1.39	1.40
m²	ng	.am	25 1 27 1	2 3	9.93 9.93	9.74 9.75	1.68	1.70	9.93 9.93	9.74	1.68	1.70		25 1 27 1	12 1 13 1	9.89 19	9.36 9.41	1.39	1.39	19.89 1 19.90 1	19.36 19.41	1.39	1.39
Ç)	ina	29 1 31 1	4	9.93	9.77	1.68	1.70	9.93	9.77	1.68	1.70		29 1 31 1	14 1 15 1	9.90 19 9.91 19).44).48	1.39	1.39	19.90 1	9.44	1.39	1.39
N)	t C	ог , г	· · ·	 	0/450	PSI	= .4	PHI	= .25	1.00		-1 4,	~		MW900/	450	PSI -	= .7	PHI =	= . 538	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.00
8 T 0		ΜM	5	2 3	12.46	10.98	1.52	1.60	12.46	10.98	1.52	1.60		5 7	2 2 3 2	5.12 20 5.22 22).91 2.32	1.42	1.42 1.42	25.12 2	20.91	1.42	1.42
C	>	06	11	4 5	12.57	11.77	1.52	1.56	12.57	11.77 11.94	1.52	1.56	ĩ	9 11	4 2 5 2	5.27 23 5.31 23	3.06 3.52	1.42	1.42	25.27 2	23.06	1.42	1.42
<u>`</u>	נ	,/0(13 15	6 7	12.61	12.06	1.52	1.54 1.54	12.61	12.06	1.52	1.54	:	13 15	62 72	5.33 23 5.35 24	8.83 4.05	1.41	1.41	25.33 2	23.83	1.41	1.41
n	-	450	17 19	8 9	12.62	12.21	1.51	1.53	12.62	12.21	1.51	1.53		17 19	82	5.36 24	1.22	1.41	1.41	25.36 2	24.22	1.41	1.41
U C I) י ד		21 23	10 11	12.64	12.30	1.51	1.53	12.64	12.30	1.51	1.53		21 1	$\begin{bmatrix} 0 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix}$	5.38 24	1.46	1.41	1.41	25.38 2	24.46	1.41	1.41
1T L	•		25	12	12.64	12.37	1.51	1.53	12.64	12.37	1.51	1.53		25 1	22	5.39 24	1.62	1,41	1.41	25.39 2	24.55	1.41	1.41
t e	-		29 31	14	12.65	12.41	1.51	1.52	12.65	12.33	1.51	1.52	ł	29 1	4 2	5.40 24	1.74	1.41	1.41	25.39 2	24.69	1.41	1.41
n O)		01		12:00	16.90	1.01	1+74	12,03	12.43	1.51	1.52	1	51 1	52	J+40 Z4	1.73	1.41	1.41	25.40 2	4.79	1.41	1.41
-	ı.																						•
									•														

i

I

42

- 43 -

Bild 1: Aufbau der Laminate

- a) Doppelschichtlaminat A (n = 5,9,13)
- b) Doppelschichtlaminat B (n = 3, 7, 11)
- c) Vierschichtlaminat (n = 9,17,25)
- d) Vierschichtlaminat (n = 13,21,29)
- e) Doppel und Vierfachschichten mit Lage des elastischen Schwerpunkts e'
- f) zur Kontinuumsrechnung

Erläuterung:

- W Wirrfaserschichten
- G Gewebeschichten (1:1)
- R längsbeanspruchte UD-Schichten
- R querbeanspruchte UD-Schichten oder Gewebe (1:18)

Bild 4: Effektiver Elastizitätsmodul E der Doppelschichten aus Wirrfaser- und Gewebe- oder UD-Schichten in Abhängigkeit vom Glasgehalt t₂/t₁= 1 : ________trägt voll fällt aus, -.- in den querbeanspruchten Schichten

 $t_2/t_1 = 0,75, 1,25 : -$

Bild 5b: Typenlaminat B nach Bild 1b

- 48 -

- 49 -