Bau<u>forschung</u>

T 1695

Beuluntersuchungen an Zylinderschalen Teil I

¹ Fraunhofer IRB Verlag

T 1695

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

T 1695: Beuluntersuchungen an Zylinderschalen

16.25 Teil I Teil I end im Rohmen. eines ander F. validers erarbeidet. B.e. 15.05.86.

Inhaltsverzeichnis

		Seite
1. Einleitung		4
2. Bemerkungen zum Be elastisch beulende	eulmechanismus bei plastisch- en Schalen	5
3. Den Einfluß der Fl auswertung	ließgrenze auf die Versuchs-	7
4. Beulversuche an pl Zylinderschalen	astisch-elastisch beulenden	14
5. Karlsruher Beulver	suche	17
6. Veröffentlichte Vo nachweis bei Zylin	orschläge für den Stabilitäts- nderschalen	22
7. Empfehlung für den plastisch-elastisc	n Stabilitätsnachweis im Then Beulbereich	29
8. Zusammenfassung		30
9. Bilder mit Versuch dargestellten Beme	sergebnissen und graphisch ssungsvorschlägen	32
10. Tabellarische Zusa ergebnisse	mmenstellung der Versuchs-	94
11. Literaturverzeichn	is	168

1. Einleitung

In einer umfassenden Darstellung zum Beulproblem bei Schalen sind in /42/ generelle Vorschläge zum Stabilitätsnachweis gemacht worden. Die seit Erscheinen dieser Veröffentlichung im Zusammenhang mit der Arbeit an verschiedenen Regelwerken (z.B. DAST-Richtlinie 013, ECCS-Recommendations R4.6, ÖNORM B 4650) stattgefundenen, z.T. kontroversen Diskussionen waren der Anlaß, sich in Karlsruhe erneut mit der Beulproblematik von Schalen zu befassen. An dieser Stelle soll auf die spezielle Frage nach dem Stabilitätsnachweis der relativ dickwandigen, im plastisch-elastischen Bereich beulenden Kreiszylinderschale, der man bisher in der Fachwelt wenig Aufmerksamkeit gewidmet hat, vertieft eingegangen werden.

Da die meisten der für die heute üblichen halbempirischen Formelausdrücke herangezogenen Versuchswerte im Rahmen von Forschungsaktivitäten des Flugzeugbaus ermittelt worden sind – hier aber zumeist rein elastische Verhältnisse vorliegen – fehlten für den im Behälterbau und bei Offshore-Konstruktionen zumeist relevanten kleineren Schlankheitsbereich systematische Untersuchungen.

Im Jahre 1970 ist in /47/ auf Grund weniger Versuchsergebnisse der Versuch unternommen worden, einen für diesen Beulbereich verwendbaren Formelausdruck zu entwickeln. Es wird dort für drei verschiedene Stahlqualitäten und für Aluminium der Beulwertabfall bei kleineren Radius-Wanddickenverhältnissen und die Gültigkeitsgrenzen des elastischen Beulbereichs genannt.

Im Zuge der oben bereits erwähnten Arbeiten an den ECCS-Recommendations und der DASt-Richtlinie haben Vandepitte-Rathé /50/ und Bornscheuer /7/ das Thema erneut aufgegriffen. Von Vandepitte-Rathe sind die bis zu diesem Zeitpunkt vorliegenden, allerdings immer noch relativ wenigen experimentellen Untersuchungen einer kritischen Wertung unterzogen und die bezogenen Beulspannungen in der für den plastisch-elastischen Beulbereich sinnvolleren λ -Abhängigkeit dargestellt worden. Von Bornscheuer wurden über die Stuttgarter Beulversuche an Zylinderschalen kleinerer Schlankheit berichtet, bei denen Versuchskörper vorgelegen hatten, die offensichtlich keine derartig übertriebene Herstellungsgenauigkeit wie bei den Versuchsreihen des Flugzeugbaus aufwiesen und die daher mit größerer Berechtigung auf auszuführende Baukonstruktionen übertragen werden dürfen.

In Ergänzung und Erweiterung dieser ersten Arbeiten, die sich speziell mit dem plastisch-elastischen Beulen beschäftigt haben, soll über 2 weitere Versuchsreihen zu diesem Schlankheitsbereich und über Untersuchungen zum Einfluß der bei den Auswertungen heranzuziehenden Fließgrenze berichtet werden.

2. Bemerkungen zum Beulmechanismus bei plastisch-elastisch beulenden Schalen

Bei Schalen mit kleineren Schlankheiten sind die in vielen Publikationen für rein elastische Verhältnisse dargestellten Abhängigkeiten von z.B. Beulwert und Radius-Wanddickenverhältnis nicht mehr gültig. Während des Beulvorgangs bildet sich zunächst ein an der größten Imperfektion (Vorbeule, Eigenspannung) sich orientierendes Beulmuster aus, das nach Größerwerden der Beulen im Augenblick des Durchschlags in ein anderes Beulmuster überspringt /47/.

Liegt bei einer Schale nun eine relativ kleine Schlankheit vor, so wird es im vor dem Durchschlag sich ausbildenden Beulmuster an einzelnen oder mehreren Stellen zu Fließerscheinungen kommen, die eine erhebliche Verminderung der Durchschlagslast bewirken – das Instabilwerden erfolgt dann erfreulicherweise nicht mehr schlagartig, wie bei der rein elastisch beulenden Schale, sondern langsam unter Sichtbarwerden des Beulmusters. Der Steifigkeitsverlust ergibt sich nicht nur durch das Randfaserfließen im Sinne der Theorie II. Ordnung, weil die Exzentrizitäten der Imperfektionen immer größer werden, sondern zusätzlich durch die in den plastischen Bereichen ständig flacher werdenden Tangentenmoduli.

Es ist nun die Frage, ob die Umordnung des Beulmusters im Augenblick des Durchschlags noch möglich ist. Mit seinen Fließerscheinungen im Bereich der nach innen gerichteten Beulen werden sich eventuell auch Fließgelenklinien an den Beulenkanten ausbilden. Für den Fall, daß keine oder nur eine partielle Umordnung möglich ist (affines Beulen) muß wohl mit einer weiteren Beullastverminderung gerechnet werden.

Wird die Schlankheit noch kleiner, so spielen die Imperfektionen kaum noch eine Rolle, das Versagen der Schale wird dann durch Erreichen der Fließgrenze im Bereich der Randstörspannungen eingeleitet und es ergibt sich in diesem Fall stets eine wulstartige Ringbeule (<u>Bilder 3 - 5</u>). Die Überschreitung der Membranspannung bei frei drehbarer, radial unverschieblicher Lagerung oder fester Einspannung kann je nach Randabstand 15 % (Meridianspannung) bzw. 25 % (Vergleichsspannung) betragen. Es wäre demnach nicht sinnvoll, bei $\sigma_{\rm u}/\sigma_{\rm F}$ für den kleinen Schlankheitsbereich ein Plateau zu berücksichtigen, wie dies in mehreren der nachfolgend erörterten Vorschläge empfohlen wird.

Da man bisher dem plastisch-elastischen Beulbereich bei Schalen nur wenig Aufmerksamkeit gewidmet hat, ist es offensichtlich bisher nicht bemerkt worden, daß einige Mechanismen des elastischen Beulens im kleineren Schlankheitsbereich nicht mehr gelten. In der kürzlich erschienenen Arbeit über das Beulen von Torusschalen /43/ ist bereits die Vermutung ausgesprochen worden, <u>daß für Schalen mit zu-</u> <u>sätzlicher Innendruckbelastung im kleineren Schlankheitsbereich</u> <u>keine Beullaststeigerung zu erwarten ist.</u> Es soll nun an dieser Stelle auf zwei weitere Mechanismen hingewiesen werden, die im hier erörterten Schlankheitsbereich vermutlich nicht mehr gelten.

- 6 -

Bei kürzeren Schalen ergeben sich infolge von Behinderungen bei der Beulenbildung durch die Schalenränder höhere Beullasten /42/. Die wenig systematischen Versuche von Miller /29/ an extrem kurzen Schalen kleinerer Schlankheit zeigen, daß diese <u>Tendenz</u> (<u>Bild 7</u>) für den plastisch-elastischen Beulbereich wohl nicht mehr gilt.

Bei der biegebeanspruchten Zylinderschale liegen die Beullasten wohl wegen der relativen Unwahrscheinlichkeit des Zusammentreffens von größter Imperfektion und maximaler Beanspruchung um etwa 10 – 20 % über denen des axialbelasteten Zylinders. <u>Bei kleineren</u> <u>Schlankheiten scheint diese Relation nicht mehr zu gelten.</u> In einer Arbeit von Stephens-Kulak-Montgomery /4/ wird über 5 Versuche unter Axialdruck und Biegung an gleichartig gefertigten Prüfkörpern berichtet, die diese Tendenz aufweisen.

Es wird angeregt, sich dieser drei Fragestellungen anzunehmen und durch ausreichende Fakten belegte Antworten zu geben. Vor allen Dingen aber ist bei der Verwendung von Regelwerken (z.B. der DASt-Richtlinie) Vorsicht geboten, da bei Außerachtlassung der hier aufgezeigten Gegebenheiten z.T. erhebliche Sicherheitsgefährdungen auftreten können.

3. Der Einfluß der Fließgrenze auf die Versuchsauswertung

Für den vorliegenden plastisch-elastischen Beulbereich kommt der Fließgrenze und ihrer Bestimmung naturgemäß eine große Bedeutung zu. Bei der heute üblichen, weiter unten noch ausführlich zu diskutierenden Darstellungsweise der bezogenen Tragspannungen treten mehr oder weniger große Verzerrungen bei falsch ermittelter oder interpretierter Fließgrenze auf – zu den Ursachen für die großen Versuchsstreuungen käme eine weitere hinzu.

Für die anstehende Frage nach der zutreffenden Fließgrenze gilt es, die drei Aspekte

- 7 -

- Zug- oder Druckfließgrenze
- welcher Kennwert der Spannungs-Dehnungslinie
- welche Dehnungsgeschwindigkeit

zu erörtern.

Bei den druckbeanspruchten und daher stabilitätsgefährdeten Schalen ist die Druck- oder Quetschfließgrenze wohl als sinnvoll anzusehen. Die Durchführung des Versuchs zur Bestimmung dieses Wertes ist jedoch wegen der Möglichkeit von Instabilitätserscheinungen beim Druckprüfstab oder der Dehnungsbehinderung infolge von möglichen Haltevorrichtungen problematisch. Es wäre daher wohl sinnvoll, eisen nen Bezug zwischen Druck- und Zugfließgrenze herzustellen und diesen in die Beuluntersuchung einzuführen. Wegen der unterschiedlichen Spannungs-Dehnungscharakteristik von Zug- und Druckversuch ist es schwierig, diesen Bezug herzustellen. Im Gegensatz zum Zugversuch, wo es stets eine ausgeprägte obere Fließgrenze und ein ebenes Fließplateau gibt, geht die Spannungs-Dehnungslinie beim Druckversuch aus dem elastischen Anstieg unmittelbar in ein geneigtes Fließplateau über - möglich wäre es, die obere Fließgrenze des Zugversuchs mit dem Schnittpunkt aus den Tangenten von elastischem und plastischem Bereich des Druckversuchs ins Verhältnis zu setzen und so einen Bezug herzustellen. Leider existiert bisher keine umfassende Untersuchung zu dieser Frage. Eines scheint jedoch aufgrund der wenigen zur Verfügung stehenden Versuche sicher zu sein, die Druckfließgrenze liegt im Mittel über der Zugfließgrenze (nach englischen Versuchen /49/ etwa um 5 %)

^σz,F ^{< σ}D,F

Einfacher wäre es, wenn man sich in der Fachwelt entschließen könnte, die statische Fließgrenze zu verwenden. In einer Arbeit von Schmidt-Clausnitzer /39/ wird auf Grund allerdings nur weniger Versuche gezeigt, daß die statische Fließgrenze des Zugversuchs mit der Projektion der verschieden hohen statischen Fließgrenzen des Druckversuchs auf die Tangente an den elastischen Anstieg in etwa übereinstimmt -

$$\sigma_{Z,Stat.} \simeq \sigma_{D,Stat.}^{p}$$

Die zweite Frage gilt dem Zugversuch an sich und seinen verschiedenen Kennwerten. Die Durchführung eines Zugversuchs auf einer dehnungsgesteuerten Prüfmaschine, wie sie seit einigen Jahren verwendet werden, erbringt eine vollkommen andere Spannungs-Dehnungscharakteristik als bei Verwendung einer kraftgesteuerten Maschine (<u>Bild 1</u>). Erst bei der dehnungsgesteuerten Prüfmaschine erhält man durch Abfangen der gespeicherten Energie eine obere und untere, und bei Haltezeiten auch statische Fließgrenze.

Die Frage ist nun, welcher dieser Werte als Bezugswert Verwendung finden sollte. Zunächst wird man annehmen, daß bei einer Überbeanspruchung der Schale vor Erreichen der unteren oder gar statischen die obere Fließgrenze Überschritten werden muß – diese also zu verwenden ist. Dünnwandige Schalenkonstruktionen sind nun aber stets geschweißte imperfektionsbehaftete Bauwerke mit mehr oder weniger großen Eigenspannungen. Im Bereich dieser Eigenspannungen ist es nun aber möglich, daß bereits bei Gebrauchslast die obere Fließspannung erreicht wird. Die Konstruktion hat dann bei erneuten Belastungen ein niedrigeres Sicherheitsniveau als vorausgesetzt. Würde man nun – wie von vielen Fachkollegen angeregt – die statische Fließgrenze verwenden, so ergäbe sich eine höhere bezogene Tragspannung für die Schale (siehe hierzu den Vergleich in Bild 8) – allerdings mit der Verpflichtung, die Gütesicherung der zugrundegelegten statischen Fließgrenze werksmäßig zu gewährleisten.

Die dritte Frage bezieht sich auf die Dehngeschwindigkeit während des Zugversuchs und ihren Einfluß auf die Kennwerte. In einer Forschungsarbeit von Koch /25/ ist ausführlich gezeigt worden, daß der Dehngeschwindigkeit eine sehr große Bedeutung beizumessen ist. Alle Kenndaten der Spannungs-Dehnungslinie – also auch die Fließgrenze

- 9 -

und das Verfestigungspotential – werden von ihr beeinflußt. Da die für die nachfolgend beschriebenen Versuchsreihen 1 und 2 in herkömmlicher Weise (DIN 50 145 – Dehnungsgeschwindigkeit $\dot{\varepsilon} \leq 9$ %o/ Min.) ermittelten Fließgrenzen zu relativ niedrigen Werten der bezogenen Tragspannungen bei größeren Streuungen geführt hatten, sind in einer zweiten Serie Zugversuche (Proben aus jedem Versuchskörper der Serie 1) mit verminderter Dehngeschwindigkeit gefahren worden. Bei den Randbedingungen für diese Versuche

- a. Dehngeschwindigkeit: $\dot{\epsilon} = 1$ %0/Min. ($\epsilon \le 5$ %0)
- b. Haltezeit : t = 10 Min. nach $\varepsilon = 5$ %o
- c. Dehngeschwindigkeit: $\dot{\epsilon}$ = 5 %o/Min. (ϵ > 5 %o)

ergeben sich die folgenden Relationen zwischen den Fließ- und Bruchspannungen der 1. und 2. Serie.

Versuch	$\frac{\sigma_{F,1}}{\sigma}$	$\frac{\sigma_{F,2}^{0}}{\sigma_{F,2}}$	$\sigma_{F,2}^{u}$	$\frac{\sigma_{F,2}^{\text{st}}}{\sigma_{F,2}}$	σ <mark>B,2</mark>	$\frac{\sigma_{F,2}^{0}}{\sigma_{F,2}}$	$\frac{\sigma_{F,2}^{u}}{\sigma}$	$\frac{\sigma_{F,2}^{st}}{\sigma_{F,2}}$
	[~] В,1	₿,2	°В,2	°Z,2	[°] B,1	°F,1	°F,1	°F,1
1	0,689	0,727	0,734	0,661	0,800	0,844	0,851	0,767
3	0,831	0,748	0,743	0,702	0,864	0,778	0,773	0,730
4	0,718	0,699	0,718	0,673	0,914	0,890	0,914	0,856
5	0,879	0,837	0,827	0,786	0,899	0,857	0,847	0,804
6	0,845	0,731	0,735	0,684	0,896	0,775	0,779	0,725
7	0,995	0,952	0,932	0,899	0,880	0,842	0,824	0,795
8	0,827	0,901	0,901	0,859	0,918	1,001	1,001	0,954
9	0,630	0,829	0,762	0,673	U,876	1,153	1,060	0,936
10	0,683	0,683	0,683	0,622	0,809	0,809	0,809	0,737
12	0,832	0,719	0,722	0,678	0,939	0,811	0,815	0,765
13	0,802	0,774	0,770	0,687	0,790	0,762	0,758	0,677
14	0,930	0,806	0,778	0,715	0,887	0,769	0,743	0,682
16	0,901	0,844	0,842	0,801	0,895	0,840	0,837	0,796
17	0,784	0,727	0,731	0,695	0,972	0,901	0,905	0,861

Versuch Nr.	σ <mark>F,1</mark> σ _. B,1	σ <mark>6,2</mark> σ _{8,2}	$\frac{\sigma_{F,2}^{u}}{\sigma_{B,2}}$	$\frac{\sigma_{F,2}^{st}}{\sigma_{Z,2}}$	^σ B,2 σ _{B,1}	$\frac{\sigma_{F,2}^{0}}{\sigma_{F,1}}$	$\frac{\sigma_{F,2}^{u}}{\sigma_{F,1}}$	$\frac{\sigma_{F,2}}{\sigma_{F,1}}$
18	0,747	0,710	0,720	0,691	1,104	1,049	1,063	1,020
20	0,942	0,890	0,871	0,851	0,861	0,814	0,796	0,778
21	0,731	0,718	0,711	0,701	0,934	0,917	0,908	0,896
22	0,816	0,854	0,754	0,711	0,952	0,997	0,880	0,830
23	0,760	0,803	0,789	0,733	0,909	0,960	0,943	0,876
24	0,759	0,705	0,687	0,675	0,920	0,854	0,833	0,818
25	0,859	0,764	0,698	0,625	Ŋ,923	0,821	0,750	0,672
26	0,907	0,757	0,733	0,649	0,943	0,787	0,762	0,674
27	0,839	0,803	0,739	0,642	0,931	0,891	0,821	0,713
28	0,895	0,757	0,720	0,633	0,946	0,800	0,761	0,670
29	0,654	0,627	0,627	0,598	0,680	0,653	0,653	0,622
30	0,683	0,616	0,616	0,586	0,946	0,853	0,853	0,811
Minimum:	0,630	0,616	0,616	0,622	0,680	0,653	0,653	0,622
Maximum:	0,995	0,952	0,932	0,899	1,104	1,153	1,063	1,020
Mittel:	0,805	0,769	0,752	0,701	0,900	0,863	0,844	0,787
Stabw.:	0,096	0,081	0,074	0,079	0,076	0,104	0,097	0,198

Indizes: 1,2 = Versuchsserie

 $F,B = Flie\beta$ -, Bruchgrenze

o,u,st = obere, untere, statische Fließgrenze

Als Ergebnisse erhält man aus diesen vergleichenden Versuchen:

 Die Mittelwerte des Verfestigungspotentials liegen deutlich über den Werten 0,667 bzw. 0,706, die man für St 37 bzw. St 52 erwartet. Aus der gegenüber Serie 1 um 15 % verminderten Standardabweichung kann abgelesen werden, daß sich durch die kleinere Prüfgeschwindigkeit die Werkstoffkennwerte homogener beschreiben lassen.

- Die Standardabweichung der oberen, unteren und statischen Fließgrenze ist, bezogen auf die Bruchspannung, etwa gleich
 es ist also hier nicht so, daß die statische Fließgrenze die geringsten Streuungen aufweist, damit also nicht der ausdruckkräftigste Wert ist.
- Bei Verminderung der Dehngeschwindigkeit von etwa 9 %o/Min. auf 1 %o/Min. steigt die obere Fließgrenze um etwa 14 %, die Bruchgrenze um 10 % und die statische Fließgrenze im Verhältnis zu σ_{F,1} um 21 %.

Für die Auswertung der nachfolgend beschriebenen neuen Karlsruher Beulversuche (Serie 1) ist wegen der heute üblicherweise werksmäßig noch nicht garantierten statischen Fließgrenze und wegen der Gleichbehandlung mit all den anderen herangezogenen Beulversuchen die <u>obere Fließgrenze verwendet worden</u>, die mit der kleineren Dehngeschwindigkeit ermittelt worden war.

kraftgesteuerte Prüfmaschine

Bild 1: Lastverformungslinien des Zylindermaterials aus Versuchen auf kraft- und weggesteuerter Prüfmaschine

4. Beulversuche an plastisch-elastisch beulenden Zylinderschalen

Die Entwicklung auf dem Gebiet der Numerik hat es zwar ermöglicht, bei Kenntnis der Imperfektionen, der Imperfektionsverteilung, der Randbedingungen und der Materialkennwerte eine zutreffende Vorhersage der Beullast machen zu können, die Unkenntnis der Einzeldaten (vor Montagebeginn) und vor allen Dingen die heute noch immensen Kosten lassen diese Möglichkeit jedoch für die Praxis als nicht realistisch erscheinen.

Es bleibt demnach vorerst nur die Möglichkeit der Korrektur der "idealen" Beulspannung durch experimentell gefundene Beulfaktoren. Hierzu benötigt man eine möglichst große Anzahl von Versuchswerten, die an Schalen ermittelt worden sind, deren Herstellungsgüte etwa der des ausgeführten Bauwerks entspricht.

Es galt nun alle veröffentlichten Versuchsergebnisse zu sammeln, bei denen die oben aufgeführten Anforderungen vorliegen. Leider sind fast nie alle erforderlichen Daten wie

- a) Materialkennwerte
- b) geometrische und strukturelle Imperfektionen und deren Verteilung
- c) Randbedingungen
- d) Art der Versuchskörperherstellung und Versuchsdurchführung

in den Veröffentlichungen aufgeführt. Zumeist wurden nur die Versuchskörperabmessungen und die an einem Versuchskörper ermittelten Materialkennwerte mitgeteilt. Erst in neueren Veröffentlichungen wird auch die Versuchskörperherstellung, die Versuchsdurchführung und in einzelnen Fällen auch die Messungen der Imperfektionen beschrieben. Es lassen sich so nur in den seltensten Fällen Erklärungen für extrem tief oder hoch liegende Versuchswerte angeben. Als besonders problematisch für den hier zu erörternden plastischelastischen Beulbereich sind die fast immer fehlenden Angaben zur Fließgrenze oder vergleichbaren Materialkennwerten (einschließlich des Verhaltens nach dem Fließbeginn) zu nennen. Daß in dieser Hinsicht ungemein große Streuungen – besonders im Hinblick auf das Verfestigungspotential – auftreten können, ist aus der Tatsache zu ersehen, daß die auf die jeweils angegebene Fließspannung bezogenen Tragspannungen zu einem großen Teil über und unter 1,0 liegen.

Indem man sich mit den aufgezeigten Gegebenheiten abfindet, bleibt einem nichts anderes übrig, als zunächst alle Versuchsergebnisse gleichwertig zu behandeln, um dann Abhängigkeiten herzustellen und möglicherweise aus Abhängigkeitstendenzen extrem herausfallende Versuchswerte auszuscheiden, in der Annahme, daß hier besonders grobe Fehler bei der Versuchsdurchführung vorgelegen hatten.

Die aus einzelnen Veröffentlichungen zusammengetragenen und ausgewerteten Versuchsergebnisse sind mit allen greifbaren Einzeldaten in den <u>Tabellen 4 - 22</u> des Anhangs aufgeführt. Zur Veranschaulichung der Lage der Einzeldaten und deren Streuung wurden die bezogenen Tragspannungen $\bar{\sigma}_{\rm u} = \sigma_{\rm u}/\sigma_{\rm F}$ in Abhängigkeit von Radius-Wanddickenverhältnis R/t in den <u>Bildern 16 - 33</u> getrennt nach Verfasser aufgetragen.

Um ferner den Einfluß der Fließgrenze zu veranschaulichen sind weiterhin die zu den Fließgrenzengruppen

$$\sigma_{F} < 240 \text{ N/mm}^{2}$$

$$240 = \sigma_{F} < 280 \text{ N/mm}^{2}$$

$$280 = \sigma_{F} \leq 340 \text{ N/mm}^{2}$$

$$\sigma_{F} > 340 \text{ N/mm}^{2}$$

gehörenden Beulwerte zusammenfassend und für jede Gruppe einzeln in den Bildern 9 - 12 wiedergegeben.

- 15 -

Für die Darstellung der Versuchswerte bieten sich u.a. die drei folgenden Abhängigkeiten an

- a) $\alpha = f(R/t)$ b) $\sigma_{\mu}/\sigma_{F} = f(R/t)$
- c) $\sigma_{\rm H}/\sigma_{\rm F}$ = f (λ)

Bei der bisher am häufigsten verwendeten Abhängigkeit (z.B. auch bei den Auswertungen in /37/) wird der Quotient aus Beulspannung $\sigma_{\rm u}$ und "klassischer" Beulspannung $\sigma_{\rm Ki}$ über dem Radius-Wandaickenverhältnis (die Länge spielt bei mittellangen Schalen keine Rolle) aufgetragen (<u>Bild 34</u>). Man erhält so die von Imperfektionen bzw. der Fließgrenze herrührende abfallende Tendenz bei größeren bzw. kleineren R/t-Verhältnissen. Der Nachteil bei dieser Darstellungweise liegt in der Schwierigkeit, die Tendenzen durch eine einfache Funktion beschreiben zu können. Aus diesem Grund wurden bisher stets mehrere Funktionen – eine für den elastischen und eine für jede Stahlqualität – im plastischen Bereich angegeben /42/.

Die Möglichkeit der Approximation durch nur einen Kurvenzug ergibt sich bei Verwendung der auf die Fließspannung bezogenen Tragspannung $\bar{\sigma}_{\rm u} = \sigma_{\rm u}/\sigma_{\rm F}$. Auf der Abszisse kann dabei entweder der Faktor R/t (<u>Bild 35</u>) oder die Schlankheit λ (<u>Bilder 36, 37</u>) aufgetragen werden. Die Schlankheit läßt sich u.a. definieren zu

$$\lambda_{1} = \sqrt{\sigma_{F}/\alpha \cdot \sigma_{Ki}} = \sqrt{\sigma_{F} R/\alpha \cdot 0.605 \cdot E \cdot t}$$
$$\lambda_{2} = \sqrt{\sigma_{F}/\sigma_{Ki}} = \sqrt{\sigma_{F} \cdot R/0.605 \cdot E \cdot t}$$

Dabei scheint es sinnvoller zu sein, den Faktor λ_2 zu verwenden, da hier der schon durch Approximation von Versuchsergebnissen ermittelte Beulwert α nicht auftaucht und daher keine doppelte Approximation bei der hier vorliegenden großen Versuchsstreuung nötig wird. Als wesentlicher Mangel bei diesen Darstellungsweisen ist allerdings der zusätzliche Streufaktor bezüglich der Fließgrenze zu nennen. Betrachtet man die in den <u>Bildern 34 - 37</u> aufgetragenen Versuchsergebnisse, so wird sofort deutlich, daß eine statistische Behandlung der Werte, wie dies bereits in nicht sehr befriedigender Weise in /42/ erfolgt ist, ausscheidet, da sich infolge der großen Streuung Wahrscheinlichkeitskurven ergeben würden, die zu vollkommen unwirtschaftlichen Bemessungswerten führen könnten.

Ein Aspekt bezüglich der Streuung darf natürlich nicht unerwähnt bleiben – der Aspekt der Modellgesetzmäßigkeiten. Es wäre natürlich ein Leichtes, Beulversuche mit besonderer Sorgfalt – wie z.B. für den Flugzeugbau üblich – durchzuführen. Ob jedoch die Resultate für die zu bemessenden Baukonstruktionen mit ihren um ein Vielfaches größeren Imperfektionen verwendet werden dürfen, erscheint in höchstem Maße fraglich. Es ist wohl anzunehmen, daß die vorliegenden großen Streuungen die Übertragbarkeit der Versuchsergebnisse auf Baukonstruktionen aller Art berücksichtigen.

Wegen der fehlenden Möglichkeit, Wahrscheinlichkeitskurven angeben zu können, bleibt demnach nichts anderes übrig, als untere Grenzkurven zu bestimmen – dabei erscheint es gerechtfertigt zu sein, in Anbetracht der bei einigen Verfassern z.T. fragwürdigen Versuchsdurchführung einzelne besonders tief liegende Werte unberücksichtigt zu lassen.

5. Karlsruher Beulversuche

Wegen der relativ kleinen Zahl von bisher veröffentlichten Beulversuchen zum plastisch-elastischen Bereich sind in der Karlsruher Versuchsanstalt in zwei neuen Versuchsreihen eine größere Anzahl von weiteren Versuchswerten ermittelt worden. In einer ersten Versuchsreihe (Serie 1) sollten die Beullasten von Schalen bestimmt werden, die möglichst perfekt gefertigt und mit besonderer Sorgfalt geprüft worden waren. Für eine zweite Versuchsreihe (Serie 2) war geplant, normale auf dem Markt erhältliche Stahlrohre kleinerer Schlankheiten zu untersuchen. Es sollte so angegeben werden können, wo eine obere und eine untere Grenze der Versuchsdaten liegt. Für die Versuchskörper der <u>Serie 1</u> ist ein besonders aufwendiges und teures Herstellungsverfahren – das Fließdrückverfahren – gewählt worden. Bei der Herstellung nach diesem Verfahren wird eine Kreisplatte in einer Fließdrückmaschine durch Fließumformen auf einen gehärteten zylindrischen Kern aufgedrückt und anschließend auf die gewünschte Länge abgedreht. Es entstehen Zylinder beliebiger Wanddicke von höchster Präzision.

An zwei derartigen Zylindern unterschiedlichen Durchmessers sind Vorverformungsmessungen durchgeführt worden. Dabei ergaben sich geometrische Imperfektionen von maximal $w_v/t = 0,16$ - nennenswerte Durchmesserschwankungen konnten nicht gemessen werden.

Durch den Herstellungsvorgang bedingt ergibt sich natürlich eine außerordentlich große Kaltverfestigung in der Zylinderwandung. Da es aber gerade das Ziel der Versuche war, für eine bestimmte Stahlqualität (St 37, St 52) Beulwerte zu erhalten, wurde es erforderlich, die Versuchsschalen bei 630° C spannungsarm zu glühen. Fließgrenzenbestimmungen (siehe Abschnitt 3) am Material vor dem Fließdrückvorgang, nach dem Fließdrückvorgang und nach dem Glühvorgang erbrachten, daß im Versuchszylinder nach dem Glühvorgang die Ausgangsstahlqualität (vor dem Fließdrückvorgang) vorgelegen hat.

Für die Versuchskörper der <u>Serie 2</u> sind Abschnitte von industriell gefertigten Stahlrohren verwendet worden. Dabei wurde keine besondere Auswahl - weder bezüglich der Rohre noch der fertigen Rohrabschnitte - getroffen.

Die Versuchsdurchführung erfolgte auf einer weggesteuerten Universalprüfmaschine. Bei der Serie 2 wurden dabei die Prüfkörper nach Zentrieren durch Einmessung unmittelbar zwischen die Pressenhäupter gebracht und bis zum Erreichen der Maximallast belastet. Für die Versuchsdurchführung an den Zylindern der Serie 1 erschien das Zentrieren durch Einmessen zu ungenau, es ist daher ein eigens angefertigter Meßzylinder verwendet worden, über dem der zu prüfende Versuchskörper anzuordnen war (Bild 2).

Die Zentrierung erfolgte bei dieser Serie zunächst durch Einmessen und dann durch mehrmaliges Korrigieren des Standortes auf Grund der bei kleiner Last gemessenen Dehnungsverteilung im Meßzylinder.

Nach Durchführung der Beulversuche sind aus jedem der geprüften Versuchszylinder der Serien 1 und 2 Materialproben entnommen (bei Serie 1 aus dem ungestörten Bereich; bei Serie 2 aus einem anschlie-Benden Rohrabschnitt) und auf ihre Fließgrenze untersucht worden (siehe auch Abschnitt 3).

Die im einzelnen bestimmten Prüfkörperabmessungen, die zuzuordnenden Fließgrenzen, die Beullasten, die bezogenen Spannungen und die Schlankheiten sind in den <u>Tabellen 1 - 3</u> zusammengestellt. In den <u>Bildern 14, 15, 34 - 39</u> wurden ferner die Versuchsergebnisse in den verschiedensten Abhängigkeiten aufgetragen - sie sind so mit den anderen bisher veröffentlichten Werten vergleichbar.

Die Beulenbildung wird beispielhaft für Zylinder mit verschiedenen Radius-Wanddickenverhältnissen aus den <u>Bildern 3 - 5</u> deutlich. Während bei R/t = 102 (Versuchskörper Nr. 7) noch das vom elastischen Beulen her bekannte Rautenmuster auftritt, der Beulvorgang aber nicht mehr so schlagartig erfolgt, ergibt sich bereits bei R/t = 60 eine axialsymmetrische Beule. Bei fast allen Prüfkörpern trat die Beulenbildung im Bereich des oberen oder unteren Schalenrandes auf.

Bei beiden Versuchsserien ergaben sich für die Ergebnisse trotz z.T. großen Aufwandes bei der Versuchskörperherstellung und Versuchsdurchführung wieder erhebliche Streuungen (Bilder 14 - 15). Bei der Serie 2 könnten hierfür eventuell Imperfektionen und mögliche Exzentrizitäten verantwortlich gemacht werden. Für die Ergebnisse der Serie 1 kann ein solcher Einwand jedoch nicht gelten. Es wäre daher zu vermuten, daß im plastisch-elastischen Beulbereich für die großen Streuungen nicht mehr so sehr die Imperfektionen, sondern neben den Ungleichmäßigkeiten in der Fließgrenze das mehr oder weniger ausgeprägte Verfestigungspotential des Stahls verantwortlich ist. Das Fließen, gegen das ja in der Regel bemessen wird, hat demnach unter Außerachtlassung der anderen genannten Aspekte bei allen Versuchskörpern zum gleichen Zeitpunkt eingesetzt und nur durch ein größeres oder kleineres Verfestigungspotential ergeben sich höhere oder niedrigere Beullasten. Gegen diese Argumentation läßt sich natürlich einwenden, daß dann bei sehr kleinen Schlankheiten oder R/t-Verhältnissen die bezogenen Spannungen gegen 1,0 gehen müßten, dies ist aber, wie aus Bild 15 zu ersehen ist, für die Versuche der Serie 2 nicht der Fall - für die Streuungen werden demnach - wie oben bereits vermutet - bei diesen Versuchen auch Exzentrizitäten eine Rolle gespielt haben.

- 20 -

Bild 3: Gebeulter Versuchskörper Nr. 7 - R/t = 102

<u>Bild 4:</u> Gebeulter Versuchskörper Nr. 23 - R/t = 60

Bild 5: Gebeulter Versuchskörper Nr. 29 - R/t = 34

6. Veröffentlichte Vorschläge für den Stabilitätsnachweis bei Zylinderschalen

Im Laufe der letzten Jahre sind die unterschiedlichsten Vorschläge für den Stabilitätsnachweis bei Schalen veröffentlicht worden. Zumeist erfolgten diese Vorschläge in Regelwerken für bestimmte Industriebereiche. Die Grundkonzeption bei allen diesen Vorschlägen ist die Verknüpfung von empirisch gefundenen Abhängigkeiten und Geometrieparametern, die sich zumeist als Lösungen der idealisierten Schalengleichungen ergeben.

Da in der Regel die Vorschläge den ganzen Schlankheitsbereich bzw. Radius-Wanddickenbereich, also auch den hier erörterten plastischelastischen Beulbereich, umfassen, soll nachfolgend auf die wichtigsten Vorschläge im einzelnen eingegangen und diese mit den vorliegenden Versuchsergebnissen verglichen werden. Dabei wird sowohl die integrierende Darstellungsweise $\overline{\sigma}_{u} = f(\lambda)$ als auch die bisher übliche, wegen der fehlenden Materialdifferenzierung in den aufgetragenen Versuchswerten weniger sinnvolle, nur von den geometrischen Größen R/t abhängige Darstellungsweise $\overline{\sigma}_{u} = f(R/t)$ verwendet.

Um den Vergleich mit den Versuchsergebnissen, die mit dem α -Faktor des Vorschlags der DASt-Richtlinie behaftet sind, zu ermöglichen, ist bei der integrierenden Darstellungsweise bei Verwendung des Abszissenparameters λ_1 jeweils in den λ_1 -Wert der α -Wert der DASt-Kurve eingesetzt worden – es ist so ein korrekter Vergleich möglich.

Vorschlag der DASt-Richtlinie 013 (1980) /13/:

Wie bei allen anderen Vorschlägen wird auch bei der DASt-Richtlinie keine geschlossene, für den ganzen Schlankheitsbereich gültige Formel angegeben. Zudem weist sie noch bei $\overline{\sigma}_{u} = 1,0$ bis $\overline{\lambda}_{s} = 0,2$ ein Plateau auf. Unter Zugrundelegung des Abminderungsfaktors

$$\alpha = \frac{0,7}{\sqrt{1+0,01 \cdot R/t}}$$

der auf einem experimentell nur unbefriedigend abgesicherten Vorschlag

(keine untere Grenzkurve oder Wahrscheinlichkeitskurve) von Pflüger /33/ beruht und der zur Angleichung der verschiedenen erforderlichen Sicherheitsfaktoren im elastischen Bereich (schlagartiges Versagen – daher v = 2,0) und plastischen Bereich (Fließversagen – daher v = 1,5) um den Quotienten 1,5/2,0 vermindert wird. Die Einführung dieses Teilsicherheitsfaktors, wie er auch in der ECCS-Richtlinie Verwendung findet, erscheint durchaus sinnvoll, wenn sowohl für den plastischen als auch den elastischen Bereich qualitativ gleichwertige Funktionen (untere Grenzkurven oder Wahrscheinlichkeitskurven) verwendet würden. Da dies hier jedoch nicht der Fall ist, stellt er lediglich im elastischen Bereich eine Tieferlegung der die Versuchsergebnisse beschreibenden Beulkurve dar – ist also in Wirklichkeit kein Teilsicherheitsfaktor, sondern beschreibt nur eine Korrektur der Beulkurve.

Es ist zugegebenermaßen nicht möglich, eine eindeutige untere Grenzkurve oder Wahrscheinlichkeitskurve anzugeben, da die veröffentlichten Versuchsergebnisse außerordentlich stark streuen und in den Publikationen zumeist Angaben über Imperfektionen und Materialqualität der einzelnen Schalen fehlen, so daß eine qualitative Beurteilung einzelner, besonders tief liegender Beulwerte fragwürdig erscheint. Hier ist auch der Grund zu suchen, warum in allen Vorschlägen für den Stabilitätsnachweis unterschiedliche Beulwertfunktionen enthalten sind – jeder Verfasser kommt offensichtlich zu einem anderen Ergebnis, welche Versuchsergebnisse vernachlässigt werden dürfen und welche nicht (siehe hierzu auch Saal /37/). Bei der DASt-Richtlinie erscheint die gewählte Funktion jedoch von zu vielen Beulwerten unterschritten zu werden, als daß sie als untere Grenzkurve gelten kann.

Für die Abhängigkeit von bezogener Beulspannung und Schlankheit wird vorgeschlagen:

$$\overline{\sigma}_{u} = 1 - 0,434(\overline{\lambda}_{s} - 0,2) \leq 1,0 \quad \text{für } \sigma_{e} > 0,4 \sigma_{F}$$
$$\overline{\sigma}_{u} = 1/\overline{\lambda}_{s}^{2} \quad \text{für } \sigma_{e} < 0,4 \sigma_{F}$$

Der Vergleich mit den Versuchsergebnissen (Bild 41 - 42) erbringt, daß die vorgeschlagenen Funktionen insbesondere für den plastischelastischen Bereich auf der unsicheren Seite liegende bezogene Tragspannungen liefern.

- 23 -

Vorschlag der ECCS-Recommendations R 4.6 (1981) /16/:

Bei diesem Vorschlag wird die Beulwertabhängigkeit durch die zwei Funktionen

$$\alpha = \frac{0,83}{\sqrt{1 + 0,01 \text{ R/t}}} \quad \text{für R/t} \le 212$$

$$\alpha = \frac{0,70}{\sqrt{0,1+0,01 \text{ R/t}}} \quad \text{für R/t} > 212$$

beschrieben. Es erscheint bei der vorerwähnten großen Versuchswertstreuung fragwürdig, ob die Einführung von zwei Funktionen notwendig war und ob nicht eine Genauigkeit vorgetäuscht ist, die nicht existiert.

Für die Abhängigkeit von bezogener Beulspannung und Schlankheit wird vorgeschlagen

$$\overline{\sigma_{u}} = 1 - 0,4123 \overline{\lambda}^{1},^{2} \qquad \text{für } \overline{\lambda} \leq \sqrt{2}$$

$$\overline{\sigma_{u}} = 0,75/\overline{\lambda}^{2} \qquad \text{für } \overline{\lambda} > \sqrt{2}$$

wobei der Faktor 0,75 den oben bereits angesprochenen Teilsicherheitsfaktor für den elastischen Beulbereich darstellt.

Der Vergleich mit den Versuchsergebnissen (Bild 44) ergibt, daß gegenüber der DASt-Richtlinie eine wesentlich bessere Beschreibung des unteren Tragspannungsniveaus vorliegt. Im plastisch-elastischen Bereich wäre eine weitere Absenkung notwendig.

Vorschlag des British Standard BS 5500 (1976) / 9 /:

Im BS 5500 wird der erstaunliche Vorschlag gemacht, die nicht formelmäßig beschriebene Funktion für Kugelschalen unter Außendruckbelastung auch für axial belastete Zylinderschalen gelten zu lassen. Diese Vorgehensweise scheint wegen der unterschiedlichen Beulmechanismen ziemlich willkürlich zu sein, wenn in beiden Fällen auch die Anfälligkeit gegen Imperfektionen und die daraus sich ergebende Beulwertstreuung vergleichbar ist. So ergibt sich auch aus dem Vergleich mit den Versuchsergebnissen (Bild 46), daß der BS-Vorschlag weit auf der sicheren Seite liegt und daß selbst unter Einbeziehung des ergänzenden Vorschlags von Kendrik Zweifel an der Wirtschaftlichkeit des Vorschlags angebracht sind.

Vorschlag des AWWA-Standard D100-67 (1967) /3/:

Bei diesem Vorschlag wird ein auf Plantema /35/ zurückgehender, die Schalenschlankheit beschreibender Faktor $n = E \cdot t/D \cdot \sigma_F$ verwendet. Der dem BS-Vorschlag vergleichbare geschlossene Kurvenzug wird durch die Funktion

 $\overline{\sigma}_u = 0,276 \cdot n - 0,019 n^2$ für R/t > 60 beschrieben - für n > 7,25 (R/t < 60) gilt $\overline{\sigma}_u = 1,0$.

Der Vergleich mit den Versuchsergebnissen (Bild 48) erbringt, daß lediglich im kleinen Schlankheitsbereich ($\lambda_1 < 60$) die vorgeschlagene Funktion zu unsichere Werte liefert.

Vorschlag der AISI-Specifications (1968) /1/:

Dieser Vorschlag, bei dem der gleiche Faktor wie im AWWA-Standard verwendet wird, betrifft nur den plastischen und plastisch-elastischen Beulbereich. Bis zu einer Schlankheit $\lambda \approx 0,8$ gilt

> $\overline{\sigma}_{u} = 0,665 + 0,0368 \cdot n$ für 50 < R/t < 195 $\sigma_{u} = 1,0$ für R/t < 50

Der Vergleich mit den Versuchsergebnissen (Bild 50) zeigt, daß der Vorschlag unbefriedigende Ergebnisse liefert.

Vorschlag der DNV-Rules (1977) /14/:

Der Vorschlag empfiehlt im wesentlichen die gleiche Vorgehensweise wie bei der DASt-Richtlinie und den ECCS-Recommendations. Die Beulwertabhängigkeit wird für den wesentlichsten Anwendungsbereich (R/t > 100; L/R > 0,5) durch die Funktion

$$\alpha = 0,35 - 0,0002 \cdot R/t$$

beschrieben. Für die Beulwerte der anderen Anwendungsbereiche sind Diagramme angegeben. Als Abhängigkeit der bezogenen Beulspannung von der Schlankheit wird die Funktion

$$\overline{\sigma}_{\rm U} = \psi / (\sqrt{1 + \lambda^4}) \gamma_{\rm m} \cdot \kappa$$

mit den Parametern $\lambda = \sqrt{\sigma_{\rm E}/\alpha \cdot \sigma_{\rm ki}}$

$$\begin{aligned}
r_{m} &= 1,15 \\
\psi &= 0,9 \\
\kappa &= 1,0 \neq \sqrt{\sigma_{F}/\sigma_{ki}} < 0,5 \\
\kappa &= 0,7 + 0,6 \sqrt{\sigma_{F}/\sigma_{ki}} \neq 0,5 \leq \sqrt{\sigma_{F}/\sigma_{ki}} \leq 1 \\
\kappa &= 1,3 \neq \sqrt{\sigma_{F}/\sigma_{ki}} > 1,0
\end{aligned}$$

vorgeschlagen.

Der Vergleich mit den Versuchsergebnissen (Bild 52) zeigt, daß die Funktion als sinnvolle untere Grenzkurve gelten kann – im kleinen Schlankheitsbereich ($\lambda < 0,40$) aber wohl unwirtschaftlich niedrige Werte liefert.

Vorschlag des American Petroleum Institute RP2A (1981) /2/:

Der API-Vorschlag soll nur für Schalen kleinerer Schlankheit (R/t </br>
150) gelten, so ist es auch verständlich, wenn die experimentell
beobachtete Abhängigkeit von Beulwert und Schlankheit außer acht
gelassen und mit dem konstanten Beulwert

 $\alpha = 0,3$

gerechnet wird. Die Abhängigkeit von bezogener Beulspannung und Schlankheit wird abschnittsweise beschrieben durch

> $\overline{\sigma}_{u} = 1,64 - 0,274 (R/t)^{1/4}$ für 30 < R/t ≤ 150 $\overline{\sigma}_{u} = 1,0$ für R/t < 30

Der Vergleich des Vorschlags mit den Versuchsergebnissen (Bild 54) zeigt, daß sowohl für den elastischen, als auch für den plastischelastischen Beulbereich gefährlich auf der unsicheren Seite liegende Tendenzen empfohlen werden.

Vorschlag der SIA-Norm 161 (1979) /46/:

In der Schweizer Norm wird die gleiche von Plantema /35/ vorgeschlagene Verknüpfung von Fließgrenze, Elastizitätsmodul und geometrischen Größen verwendet wie beim AWWA-Standard und den AISI-Specifications. Im elastischen Bereich gilt der nicht sehr sinnvolle, den tatsächlichen Gegebenheiten widersprechende konstante Beulwert

 $\alpha = 0,276$

Die bezogene Beulspannungsabhängigkeit wird offensichtlich im Rückgriff auf den Vorschlag von Plantema /35/ aus dem Jahre 1946 abschnittsweise für drei Bereiche angegeben

> $\overline{\sigma}_{u} = 0,167 \cdot n_{1}$ für R/t > 180 $\overline{\sigma}_{u} = 0,75 + 0,0156 \cdot n_{1}$ für 55 \leq R/t \leq 180 $\overline{\sigma}_{u} = 1,0$ für R/t < 55

Der Vergleich mit den Versuchsergebnissen (Bild 56) erbringt, daß besonders für den kleineren Schlankheitsbereich zu hohe, auf der unsicheren Seite liegende Werte vorgeschlagen werden.

Vorschlag des ASME-Code N284 (1980) /4/:

Im Vorschlag des ASME-Code, der nur für Zylinderschalen mit R/t
1000 gelten soll, ist nicht nur eine elastische und plastische Abminderung, sondern auch ein Faktor zur Berücksichtigung des Längeneinflusses enthalten. Als Beulwerte werden vorgeschlagen:

im elastischen Bereich

α	Ξ	0,207		für	R/t <u>></u>	600
α	=	1,52 - 0,473 · log(R/t)	oder		- ()	
α	=	300 · σ _Γ /Ε - 0,033		tür	K∕t <	600

im plastischen Bereich

$$k = \sigma_{F}/\sigma_{e} \qquad \qquad \text{für } \sigma_{e}/\sigma_{F} \ge 6,2$$

$$k = \frac{1,31}{(1 + 1,15 \cdot \sigma_{e}/\sigma_{F})} \qquad \qquad \text{für } 1,6 < \sigma_{e}/\sigma_{F} < 6,2$$

$$k = 0,45 \cdot \sigma_{F}/\sigma_{e} + 0,18 \qquad \qquad \text{für } 0,55 < \sigma_{e}/\sigma_{F} \le 1,6$$

$$k = 1,0 \qquad \qquad \text{für } \sigma_{e}/\sigma_{F} \le 0,55$$

Bei kürzeren Schalen ($1/\sqrt{R \cdot t} < 10,0$) können statt des α -Faktors die folgenden Größen verwendet werden:

$$\alpha' = 0,826(\frac{\sqrt{R \cdot t}}{1})^{0,6} \qquad \qquad \text{für } 1,73 \le 1/\sqrt{R \cdot t} < 10$$

$$\alpha' = 0,837 - 0,14 \cdot 1/\sqrt{R \cdot t} \qquad \text{für } 1,5 \le 1/\sqrt{R \cdot t} < 1,73$$

Als bezogene Beulspannung wird vorgeschlagen

$$\overline{\sigma}_{u} = \frac{k \cdot \alpha \cdot 0,605 \cdot E \cdot t}{R \cdot \sigma_{F}}$$

Der Vergleich dieses unnötigerweise so kompliziert aufgebauten Vorschlags – der von Miller /30/ bezüglich des Einflusses aus dem Stabknicken noch ergänzt worden ist – mit den Versuchsergebnissen (Bild 58) zeigt, daß für den mittleren und kleineren Schlankheitsbereich zu unsichere Kurvenzüge empfohlen werden.

Vorschlag der ÖNorm B 4650/4 (1977) /31/:

Der Vorschlag der ÖNorm gibt nur für den elastischen Beulbereich einen Formelausdruck an. Im plastisch-elastischen Bereich ($\sigma_e > 0,7 \cdot \sigma_F$) wird die Abhängigkeit in tabellarischer Form angegeben. Abweichend von allen anderen Vorschlägen empfiehlt die ÖNorm neben dem Beulwert für die mittellange Schale

$$\alpha = \frac{0,64}{\sqrt{1+0,01\cdot R/t}} \qquad \text{für } \frac{2,44}{\sqrt{\alpha \cdot R/t}} < \frac{1}{R} < \sqrt{R/t}$$

auch einen Beulwert für die lange Schale

$$\alpha = \frac{0,384}{\sqrt{1 + 0,01 \cdot R/t}} \qquad \text{für } \frac{1}{R} > R/t$$

Zwar kommen bei der langen Schale noch die Probleme der Lastexzentrizität infolge von örtlichen Radialverformungen w_V + w hinzu und damit möglicherweise eine Beullastverminderung, es wäre aber doch wohl richtiger, diesen experimentell bisher kaum untersuchten Einfluß durch einen zusätzlichen, von der Zylinderlänge, vor allem aber von der Schlankheit abhängigen Faktor zu beschreiben.

Der Vergleich mit den Versuchsergebnissen (Bild 60) ergibt, daß für den plastisch-elastischen Beulbereich weit auf der unsicheren Seite liegende Werte vorgeschlagen worden sind.

7. Empfehlungen für den Stabilitätsnachweis im plastisch-elastischen Beulbereich

Die im vorigen Kapitel erörterten Vorschläge für den Stabilitätsnachweis beschreiben in sehr unterschiedlicher, zumeist unzutreffender Weise die hier zusammengestellten und aufgetragenen Versuchsergebnisse. Besonders für den plastisch-elastischen Beulbereich mit seinen neu durchgeführten Beulversuchen zeigen mit zwei Ausnahmen (hier liegen die Vorschläge unwirtschaftlich tief) die Beulkurven ein mehr oder weniger zu hohes, auf der unsicheren Seite liegendes Niveau – eine Korrektur wäre hier empfehlenswert.

In Ergänzung der umfangreichen Vorschläge, die im Jahr 1981 in /42/ zum Stabilitätsnachweis bei Schalen veröffentlicht wurden, soll hier zum plastisch-elastischen Beulbereich vorgeschlagen werden (Bild 6a) an die elastische Beulkurve

$$\sigma_{\rm u}/\sigma_{\rm F} = 1/\lambda^2 \rightarrow \lambda = \sqrt{\sigma_{\rm F}/\alpha \cdot \sigma_{\rm ki}}$$

mit der seinerzeit empfohlenen Beulwertfunktion

$$\alpha = (R/t)^{-1/8} - 0,27$$

eine Tangente zu legen, die ihren Ordinatendurchgang bei $\sigma_u/\sigma_F = 1,0$ hat. Diese Tangente, die nur geringfügig von der ECCS-Funktion für diesen Bereich abweicht, kann durch die Funktion

$$\sigma_{\rm u}/\sigma_{\rm F} = 1,0 - 0,385 \cdot \lambda$$

beschrieben werden. Auch in der α -freien Darstellungsweise stellen die vorgeschlagenen Funktionen, wie aus Bild 6b zu ersehen ist, eine recht gute Approximation der Versuchspunkte dar.

Eine zugleich für den elastischen <u>und</u> plastischen Bereich gültige Formel anzugeben, soll hier unterbleiben, da dies mit befriedigender Genauigkeit und Wirtschaftlichkeit nur durch eine außerordentlich komplizierte, für den Praktiker unbrauchbare Funktion möglich ist. In einer demnächst in Stuttgart erscheinenden Dissertation von B.F. Bornscheuer wird zudem der Versuch unternommen, eine das Stabknicken, Platten- und Schalenbeulen beschreibende einheitliche Grundbeulkurve anzugeben, die möglicherweise eine kompliziertere Funktion rechtfertigen würde.

Natürlich werden die vorgeschlagenen Funktionen von einigen Versuchswerten unterschritten – dies erscheint jedoch im hier vorliegenden Umfang wegen der oben angeführten Gründe von möglicherweise fehlerhafter Versuchsdurchführung und Versuchsauswertung unerheblich zu sein und daher keine Sicherheitsverminderung zu beinhalten.

Es wird weiterhin empfohlen, bis zur Klärung der im Kapitel 2 erörterten Fragen die Beullasterhöhung bei

- zusätzlichem Innendruck,
- kleinerer Schalenlänge,
- Biegebeanspruchung

im plastisch-elastischen Beulbereich vorerst unberücksichtigt zu lassen, da sonst möglicherweise eine Sicherheitsgefährdung vorliegt.

8. Zusammenfassung

In der vorliegenden Arbeit wird auf die Stabilität von plastischelastisch beulenden Kreiszylinderschalen vertieft eingegangen. Es wird über zwei neue Versuchsreihen berichtet, bei denen Beulversuche an Schalen mit besonders kleiner Schlankheit und geringen Imperfektionen durchgeführt wurden. Um die Ursache für die auch im kleinen Schlankheitsbereich auftretenden großen Versuchsstreuungen angeben zu können, ist der Fließgrenzenbestimmung am Prüfkörpermaterial besondere Aufmerksamkeit gewidmet worden.

Es wird ferner gezeigt, daß die in den verschiedensten Regelwerken gemachten Vorschläge zum Stabilitätsnachweis durch Versuchsergebnisse im plastisch-elastischen Beulbereich zumeist nicht bestätigt werden und daß es sinnvoll erscheint, eine neue Approximation vorzunehmen. Für relativ gedrungene Schalen ergibt sich so ein einfacher Formelvorschlag.

Es ist weiterhin empfohlen worden, den Fragen der zusätzlichen Innendruckbelastung, der kurzen Schalen und der Biegebelastung im plastischelastischen Beulbereich verstärkt Beachtung zu schenken, da sich hier möglicherweise eine Sicherheitsgefährdung ergeben kann.

Die vorliegende Arbeit wurde zum Teil durch einen Forschungsauftrag des Instituts für Bautechnik, Berlin, finanziert - für diese Förderung sei Dank gesagt. Den Herren Dipl.-Ing. Knödel und cand.ing. Stahlberger dankt der Verfasser für die Mitarbeit bei der Versuchsauswertung und für vielfältige Anregungen herzlichst. Der Fa. Bohner und Köhle/Esslingen sei schließlich für die Hilfe bei der Versuchskörperherstellung gedankt.

Bilder mit Versuchsergebnissen

und Kurvenvorschlägen

.

.

VORSCHLAG FUER DEN STABILITAETSNACHWEIS

ω 5 ι

ı.

≙

Х

Х

ł

- 44 -

ŧ Ծ

÷

- 50 -

ł 5

x

រ ភូន រ

- 54 -

I

57 -

- 60 -

ı

BILD 34:BEULWERTE IN ABHAENGIKEIT VOM RADIUS-WANDDICKEN VERHAELTNIS

- 63 -

ZUSAMMENSTELLUNG ALLER VERSUCHSERGEBNISSE

99

- 60

Х

71 -

.

87 ŧ.

۵. ۲

TABELLARISCHE ZUSAMMENSTELLUNG

ALLER VERSUCHSERGEBNISSE

•

Erläuterungen zu den Tabellen

Radius (mm)
Wanddicke (mm)
Länge (mm)
Elastizitätsmodul (N/mm²)
Fließspannung _{°F} (N/mm²)
Beulspannung _{on} (N/mm²)
Beulwert α
Schlankheit $\lambda_1 = \sqrt{\sigma_F / \sigma_K i^{\alpha}}$
Schlankheit $\lambda_2 = \sqrt{\sigma_F} \sqrt{\sigma_K}$ i
Bezogene Tragspannung $\overline{\sigma}_{u} = \sigma_{u}/\sigma_{F}$

KENNZAHL	(원원) 문	т (нн)	L (28)	E-MODUL 10 ⁵	SIGF (N/MM ²)	SIGN (N/HH ²)
1	42.0	1.350	120.0	2.00	221.0	269.6
3	40.8	0.700	120.0	2.00	294.0	248.4
4	41.1	0.700	120.0	2.00	185.0	243.8
5	41.0	0.650	120.3	2.00	344.0	335.9
6	40.9	0.700	120.1	2.00	201.0	224.8
7	40.7	0.400	116.8	2.00	434.0	257.4
8	40.8	0,400	119.1	2.00	384.0	359.7
9	40.7	0.430	120.4	2.00	223.0	197.5
10	41.0	0.450	120.0	2.00	168.0	212.5
12	41.7	1.480	120.3	2.00	212.0	213.5
13	40.7	0.450	119.9	2.00	178.0	213.2
14	41.3	1.200	113.8	2.00	229.0	247,0
16	40.9	0.680	120.3	2.00	369.0	301.2
17	41.6	1.300	120.4	2.00	224.0	230.5
18	41.7	1.400	95.4	2.00	294.0	300.0
20	101.5	1.050	231.0	2.00	413.0	378.0
21	101.0	2.700	258.6	2.00	305.0	357.0
22	103.0	1.080	270.1	2.00	358.0	314.3
23	102.2	1.700	270.8	2.00	343.0	355.1
24	101.9	1.700	270.4	2.00	284.0	326.9
.25	101.2	1.180	269.5	2.00	220.0	212.6
26	101.0	1.100	269.7	2.00	224.0	236.5
27	101.4	1.700	269.9	2.00	240.0	228.3
28	101.6	1.700	270.4	2.00	227.0	217.1
29	103.0	3.000	260.1	2.00	192.0	235.4
30	102.9	2.800	260.7	2.00	183.0	201.7

TABELLE 1A: VERSUCHSERGEBNISSE DER KARLSRUHER VERSUCHE/SERIE 1 (Obere Fließgrenze)

KENNZAHL	R/T	L/R	SIGN (N/MH ²)	ALFHA	LAMD1	LAMD2	SIGU
1	31.	2.86	270.	0.069	0.30	0.24	1.22
3	58.	2.94	248.	0.120	0.50	0.38	0.84
4	-59.	2.92	244.	0.118	0.40	0.30	1.31
5	63.	2.93	336.	0.175	0.57	0.42	0.98
6	58.	2.94	225.	0.109	0.42	0.31	1.12
7	102.	2.92	257.	0.216	0.86	0.60	0.59
8	102.	2.92	360.	0.303	0.81	0.57	0.94
9	95.	2.96	198.	0.154	0.59	0.42	0.89
10	.91.	2.93	213.	0.160	0.50	0.36	1.26
12	28.	2.88	214.	0.050	0.28	0.22	1.01
13	90.	2.95	213.	0.159	0.51	0.36	1.20
14	34.	2.76	247.	0.070	0.33	0.26	1.08
16	60.	2.94	301.	0.150	0.58	0.43	0.82
17	32.	2.89	231.	0.061	0.31	0.24	1.03
18	30.	2.29	300.	0.074	0.34	0.27	1.02
20	97	2.28	378.	0.302	0.81	0.57	0.92
21	37.	2.56	357.	0.110	0.40	0.31	1.17
22	95.	2.62	314.	0.248	0.75	0.53	0.88
23	60.	2.65	355.	0.176	0.56	0.41	1.04
24	60.	2.65	327.	0.162	0.50	0.38	1.15
25	85.	2.65	213.	0.151	0.55	0.39	0.97
26	92.	2.57	237.	0.179	0.58	0.41	1.06
27	60.	2,66	228.	0.113	0.45	0.34	0.95
28	60.	2.65	217.	0.107	0.45	0.33	0.95
29	34.	2.53	235.	0.067	0.30	0.23	1.23
30	37.	2.53	202.	0.061	0.30	0.24	1.10

TABELLE 1B: AUSWERTUNG DER ERGEBNISSE DER KARLSRUHER VERSUCHE/SERIE 1 (Obere Fließgrenze)

KENNZAHL	B (번번)	T (MM)	L (MM)	E-MODUL 105	SIGF (n/mm ²)	SIGN (N/MM ²)
1	42.0	1.350	120.0	2.00	201.0	269.6
3	40.8	0.700	120.0	2.00	276.0	248.4
4	41.1	0.700	120.0	2.00	179.0	243.8
5.	41.0	0.650	120.3	2.00	323.0	335.9
. 6	40.9	0.700	120.1	2.00	179.0	224.8
7	40.7	0.400	118.8	2.00	410.0	257+4
8	40.8	0.400	119.1	2.00	366.0	359.7
9	40.7	0.430	120.4	2.00	181.0	197.5
10	41.0	0.450	120.0	2.00	153.0	212.5
12	41.7	1.480	120.3	2.00	200.0	213.5
13	40.7	0.450	119.9	2.00	158.0	213.2
14	41.3	1.200	113.8	2.00	203.0	247.0
16	40.9	0.680	120.3	2.00	350.0	301.2
17	41.6	1.300	120.4	2.00	214.0	230.5
18	41.7	1.400	95.4	2.00	286.0	300.0
20	101.5	1.050	231.0	2.00	395.0	378.0
21	101.0	2.700	258.6	2.00	298.0	357.0
22	103.0	1.080	270.1	2.00	298.0	314.3
23	102.2	1.700	270.8	2.00	313.0	355.1
24	101.9	1.700	270.4	2.00	272.0	326.9
25	101.2	1.180	269.5	2.00	180.0	212.6
26	101.0	1.100	269.7	2.00	192.0	235.5
27	101.4	1.700	269.9	2.00	192.0	228.3
28	101.6	1.700	270.4	2.00	190.0	217.1
29	103.0	3.000	250.1	2.00	183.0	235.4
30	102.9	2.800	260.7	2.00	174.0	201.7

TABELLE 2A: VERSUCHSERGEBNISSE DER KARLSRUHER VERSUCHE/SERIE 1 (Statische Fließgrenze)

KENNZAHL	.E/T	L/R	SIGN (N/HH ²)	ALPHA	LAND1	LAMD2	SIGU
1	31.	2.86	270.	0.069	0.29	0.23	1.34
3	58.	2.94	248.	0.120	0.49	0.36	0,90
4	59.	2.92	244.	0.118	0.40	0.29	1.36
5	63.	2.93	336.	0.175	0.55	0.41	1.04
6	58.	2.94	225.	0.109	0.39	0.29	1.26
7	102.	2.92	257.	0.216	0.84	0.59	0.53
8	102.	2.92	360.	0.303	0.79	0.56	0.98
9	95.	2.96	198.	0.154	0.53	.0.38	1.09
· 10	91.	2.93	213.	0.160	0.48	0.34	1.39
12	28.	2.88	214.	0.050	0.27	0.22	1.07
13	90.	2.95	213.	0.159	0.48	0.34	1.35
14	34.	2.76	247.	0.070	0.31	0.24	1.22
16	60.	2.94	301.	0.150	0.56	0.42	0.85
17	32.	2.89	231.	0.061	0.30	0.24	1.08
18	30.	2.29	300.	0.074	0.34	0.27	1.05
20	97.	2.28	378.	0.302	0.80	0.56	0.96
21	37.	2.56	357.	0.110	0.39	0.30	1.20
22	95.	2.62	314.	0.248	0.68	0.48	1.05
- 23	60.	2.65	355.	C.176	0.53	0.39	1.13
24	60.	2.65	327.	0.162	0.49	0.37	1.20
25	86#	2.66	213.	0.151	0.50	0.36	1.18
26	92.	2.67	237.	0.179	0.54	0.38	1.23
27	60.	2.66	228.	0.113	0.41	0.31	1.19
23	60.	2.56	217.	0.107	0.41	0.31	1.14
29	34.	2.53	235.	0.067	0.29	0.23	1.29
30	37.	2.53	202.	0.061	0.30	0.23	1.15

TABELLE 2B: AUSWERTUNG DER ERGEBNISSE DER KARLSRUHER VERSUCHE/SERIE 1 (Statische Fließgrenze)

•

KENNZAH	HL	명 (서서)	т (ММ)	L (선전)	E-HODUL 10 ⁵	SIGF (N/MM ²)	PBB (KN)
8/1 1		28.8	2.800	183.0	2.00	431.0	211.0
2		28,9	2.800	183.0	2.00	398.0	202.0
3		28.8	2.780	183.0	2.00	417.0	202.0
.4		22.5	3.630	144.0	2.00	404.0	171.0
5		22.2	3,670	144.0	2.00	402.0	153.0
6		22.5	3.650	144.0	2.00	402.0	162.0
8/2 1		28.8	2,870	183.0	2.00	381.0	198.0
2		28.8	2.870	183.0	2.00	440.0	211.0
3		28.8	2.930	183.0	2.00	413.0	213.0
4		22.0	4.100	144.0	2.00	267.0	149.0
· 5		22.0	4.070	144.0	2.00	284.0	156.0
5		21.9	4.070	144.0	2.00	276.0	155.0
5/0 1		30.5	2.600	191.0	2.00	416.0	228.0
2		30.4	2.800	192.0	2.00	431.0	226.0
3		30.5	2.600	191.0	2.00	421.0	226.0
4		23.9	3.600	155.0	2.00	263.0	146.0
5		23.9	3.700	154.0	2.00	251.0	160.0
6		23.9	3.700	154.0	2.00	274.0	157.0
5/1 1		30.4	2.700	191.0	2.00	429.0	218.0
2		30.4	2.700	191.0	2.00	427.0	199.0
3		30.4	2,600	191.0	2.00	367.0	203.0
4		23.9	3.700	155.0	2.00	268.0	159.0
5		23.9	3.600	155.0	2.00	268.0	158.0
6		23.9	3.600	155.0	2.00	263.0	153.0
5/2 1		30.5	2.700	191.0	2.00	437.0	210.0
2		30.5	2.600	192.0	2.00	423.0	225.0
3		30.5	2.500	191.0	2.00	442.0	225.0

TABELLE 3A: VERSUCHSERGEBNISSE DER KARLSRUHER VERSUCHE/SERIE 2

FORTSETZUNG ZU TABELLE 3A:

						······
KENNZAHL	В (ММ)	т (НН)	L (논M)	E-HODUL 10 ⁵	SIGF (N/MM ²)	EBE (KN)
4	23.8	3.700	154.0	2.00	265.0	143.0
5	23.8	3.700	1,54.0	2.00	248.0	147.0
6	23.8	3.700	154.0	2.00	263.0	148.0
5/3 1	30.6	2.500	191.0	2.00	437.0	221.0
2	30.6	2.500	192.0	2.00	417.0	218.0
3	30.5	2.600	191.0	2.00	412.0	218.0
4	23.5	4.000	155.0	2.00	279.0	172.0
5	23.5	4.000	155.0	2.00	262.0	161.0
6	23.5	4.000	155.0	2.00	280.0	166.0
652-1	27.1	2.550	176.0	2.00	343.0	149.0
2	27.3	2.510	176.0	2.00	361.0	148.0
3	27.2	2.510	176.0	2.00	368.0	152.0
4	22.0	3.990	145.0	2.00	438.0	215.0
5	22.1	3.930	145.0	2.00	428.0	211.0
6	22.1	3.930	145.0	2.00	417.0	238.0
425-1	28.7	2.800	182.0	2.00	390.0	193.0
2	28.7	2.750	182.0	2.00	419.0	194.0
3	28.7	2.780	182.0	2.00	395.0	194.0
. 4	22.2	3.750	144.0	2.00	306.0	145.0
5	22.3	3.660	144.0	2.00	302.0	145.0
6	22.3	3.680	144.0	2.00	300.0	148.0
721-1	26.8	3.150	168.0	2.00	387.0	218.0
2	26.9	3.020	170.0	2.00	357.0	207.0
4	22.0	3.990	146.0	2.00	433.0	191.0
5	22.0	4.210	146.0	2.00	410.0	220.0
722-1	27.1	3.070	171.0	2.00	424.0	249.0
2	27.1	3.180	169.0	2.00	425+0	232.0
3	22.3	4.040	146.0	2.00	444.0	243.0

FORTSETZUNG ZU TABELLE 3A:

KENNZAHL	R (원선)	T (出出)	[(원원)	E-MODUL 10 ⁵	SIGF (N/MM ²)	288 (KN)
4	22.3	4.030	146.0	2.00	417.0	244.0
482-1	29.2	2.550	183.0	2.00	389.0	162.0
2	29.3	2.600	183.0	2.00	349.0	163.0
3	29.3	2.530	183.0	2.00	371.0	163.0
7	25.0	4.130	162.0	2.00	310.0	203.0
8	25.1	4.130	162.0	2.00	334.0	206.0
9	25.1	4.050	162.0	2.00	321.0	186.0
481-1	29.2	2.630	183.0	.2.00	394.0	165.0
2	29.1	2.600	183.0	2.00	400.0	175.0
3	29.3	2.600	183.0	2.00	398.0	173.0
7	25.4	3.150	162.0	2.00	392.0	193.0
8	25.3	3.150	162.0	2.00	400.0	195.0
9	25.4	3.150	162.0	2.00	396.0	184.0

·

.

KENNZAHL	R/T	L/R	SIGN (N/MM ²)	ALPHA	LAMD1	LAMD2	SIGU
8/1 1	10.	6.35	416.	0.035	0.23	0.19	0.97
2	10.	6.33	397.	0.034	0.23	0.18	1.00
3	10.	6.35	402.	0.034	0.23	0.19	0.96
<u>4</u>	6.	6.40	333.	0.017	0.17	0.14	0.82
5	6.	6.49	299.	0.015	0.17	0.14	0.74
6	6.	6.40	314.	0.016	0.17	0.14	0.78
8/2 1	10.	6.35	381.	0.032	0.22	0.18	1.00
2	10.	6.35	406.	0.034	0.23	0.19	0.92
3	10.	6.35	402.	0.033	0.22	0.18	0.97
4	5.	6.55	263.	0.012	0.13	0.11	0.98
5	5.	6.55	277.	0.012	0.14	0.11	0.98
6	5.	6.58	277.	0.012	0.13	0.11	1.00
5/0 1	12.	6.26	458.	0.044	0.25	0.20	1.10
2	11.	6.32	423.	0.038	0.24	0.20	0.98
3	12.	6.26	454.	0.044	0.25	0.20	1.08
4	7.	6.49	270.	0.015	0.15	0.12	1.03
5	б.	б.44	288.	0.015	0.14	0.12	1.15
6°	5.	6.44	283.	0.015	0.15	0.12	1.03
5/1 1	11.	6.28	423.	0.039	0.25	0.20	0.99
2	11.	6.28	386.	0.036	0.24	0.20	0.90
3	12.	6.28	409.	0.039	0.23	0.19	1.11
4	6.	6.49	286.	0.015	0.15	0.12	1.07
5	7.	6.49	292.	0.016	0.15	0.12	1.09
6	7.	6.49	283.	0.016	0.15	0.12	1.08
5/2 1	11.	6.26	406.	0.038	0.25	0.20	0.93
2	12.	6.30	452.	0.044	0.25	0.20	1.07
3	12.	6.26	452.	G.044	0.25	0.21	1.02

TABELLE 3B: AUSWERTUNG DER ERGEBNISSE DER KARLSRUHER VERSUCHE/SERIE 2

FORTSETZUNG ZU TABELLE 3B:

KENNZAHL	B/T	L/R	SIGN (N/MM ²)	ALPHA	LAHDI	LAMD2	SIGU
4	6.	6.47	258.	0.014	0.14	0.12	0.98
5	б.	6.47	266.	0.014	0.14	0.11	1.07
6	б.	6.47	267.	0.014	0.14	0.12	1.02
5/3 1	12.	6.24	460.	0.047	0.26	0.21	1.05
2	12.	6.27	454.	0.046	0.25	0.21	1.09
3	12.	6.26	438.	0.042	0.25	0.20	1.06
4	6.	6.60	291.	0.014	0.14	0.12	1.04
5	6.	6.60	273.	0.013	0.14	0.11	1.04
6	б.	6.60	281.	0.014	0.14	0.12	1.00
652-1	11.	6.49	343.	0.030	0.21	0.17	1.00
2	11.	6,45	344.	0.031	0.22	0.18	C.95
3	11.	6.47	354.	0.032	0.22	0.18	0.96
4	6.	6.59	390.	0.018	0.17	0.14	0.89
5	6.	6,56	387.	0.018	0.17	0.14	0.90
6	б.	6.56	436.	0.020	0.17	0.14	1.05
425-1	10.	6.34	382.	0.032	0.22	0.18	0.98
2	10.	6.34	391.	0.034	0.23	0.19	0.93
3	10.	6.34	387.	0.033	0.22	0.18	0.98
4	б.	6.49	277.	0.014	0.15	0.12	0.91
5	6.	6.46	283.	C.014	0.15	0.12	0.94
6	6.	6.46	287.	0.014	0.15	0.12	0.96
721-1	9.	6.27	411.	C.029	0.20	0.16	1.06
2	9.	6.32	406.	0.030	0.20	0.16	1.14
4	6.	6.64	346.	0.016	0.17	0.14	C.8C
5	5.	6.64	378.	0.016	0.16	0.13	0.92
722-1	9.	5.31	476.	0.035	0.21	0.18	1.12
2	9.	6.24	428.	0.030	0.21	0.17	1.01
3	6.	6.55	429.	0.020	0.17	0.14	0.97
FORTSETZUNG ZU TABELLE 3B:

KENNZAHL	R/T	L/B	SIGN (N/MM ²)	ALPHA	LANDI	LAMD2	SIGU
4	6.	6.55	432.	0.020	0.17	0.14	1.04
482-1	11.	6.27	346.	0.033	0.24	0.19	0.89
2	11.	6.25	341.	0.032	0.22	0.18	0.98
,3	12.	6.25	350.	0.033	0.23	0.19	0.94
7	б.	6.48	313.	0.016	0.15	0.12	1.01
8	б.	6.45	316.	0.016	0.16	0.13	0.95
9	6.	6.45	291.	0.015	0.16	0.13	0.91
481-1	11.	6.27	342.	0.031	0.23	0.19 -	0.87
2	11.	6.29	368.	0.034	0.24	0.19	0.92
3.	11.	6.25	361.	0.034	0.24	0.19	0.91
7	8.	6.38	384.	0.026	0.20	0.16	0.98
8	8.	6.40	389.	0.026	0.20	0.16	0.97
9	8.	6.38	366.	0.024	0.20	0.16	0.92

					-	والمجرور والمراجع المتكر فتتحال فالمتكو والمتحول والمحمد ومحرواتها والبراجي
KENNZAHL	8 (보보)	т (ны)	L (28)	E-HODUL 10 ⁵	SIGF (N/HH ²)	SIGN (N/HH ²)
1me	100.0	0.100	48.8	1.20	140.0	21.9
2ше	100.0	0.197	49.0	1.20	140.0	60.8
3¤e	100.0	0.208	49.0	1.20	140.0	58.9
4 m e	100.0	0.100	98.0	120	140.0	18.0
5me	100.0	0.191	100.0	1.20	140.0	59.1
6 1 e	100.0	0.208	100.0	1.20	140.0	54.0
7me	100:0	0.113	199.0	1.20	140.0	24.2
8me	100.0	0.200	200.0	1.20	140.0	49.0
9ne	100.0	0.220	200.0	1.20	140.0	58.4
10me	200.0	0.054	53.0	1.20	140.0	5,5
11me	200.0	0.063	53.0	1.20	140.0	6.7
12me	200.0	0.104	52.5	1.20	140.0	14.2
13me	200.0	0.056	104.0	1.20	140.0	3.4
14me	200.0	0.065	102.0	1.20	140.0	4.7
15me	200.0	0.097	102.0	1.20	140.0	7.9
16me	200.0	0.048	204.0	1.20	140.0	2.7
17 m e	200.0	0.065	204.0	1.20	140.0	З.б
18me	200.0	0.091	204.0	1.20	140.0	6.5

TABELLE 4 A: VERSUCHSERGEBNISSE VON EALLERSTEDT-WAGNER (5)

KENNZAHL	R/T	L/R	SIGN (N/MM ²)	ALEHA	LAMD1	LAND2	SIGU
1 me	1000.	0.49	22.	0.302	3.02	1.39	0.16
2me	508.	0.49	61.	0.425	1.86	0.99	0.43
3me	481.	0.49	59.	0.390	1.79	0.96	0.42
4me	1000.	0.98	18.	0.248	3.02	1.39	0.13
5 n e	524.	1.00	59.	0.426	1.90	1.00	0.42
бле	481.	1.00	54.	0.358	1.79	0.96	0.39
7me	885.	1.99	24.	0.295	2.77	1.31	0.17
8пе	500.	2.00	49.	0.337	1.84	0.98	0.35
9 m e	455.	2.00	58.	0.366	1.72	0.94	0.42
10me	3704.	0.26	б.	0.281	7.93	2.67	0.04
11 m e	3175.	. 0.26	7.	0.294	7.07	2.47	0.05
12me	1923.	0.26	14.	0.376	4.88	1.93	0.10
13me	3571.	0.52	3.	0.169	7.72	2.62	0.02
. 14me	3077.	0.51	5.	0.200	6.91	2.44	0.03
15me	2062.	0.51	8.	0.224	5.14	1.99	0.06
16ле	4167.	1.02	3.	0.155	8.66	2.83	0.02
1 7me	3077.	1.02	4.	0.154	6.91	2.44	0.03
18¤e	2198.	1.02	б.	0.196	5.39	2.06	0.05

.

.

TABELLE 4B: AUSWERTUNG DER EEGEBNISSE VON BALLERSTEDT-WAGNER

KENNZAHL	R (H보)	т (мм)	L (MM)	E-MODUL 10 ⁵	SIGF (N/HM ²)	SIGN (N/MM ²)
als	23.9	0.052	135.0	2.17	398.0	110.0
a2s	23.9	0.052	1.35.0	2.17	398.0	125.0
a3s	23.9	0.052	135.0	2.17	398.0	132.0
b1me	,23.9	0.081	135.0	1.14	186.0	91.2
c1s	47.6	0.075	135.0	2.11	356.0	56.9
c2s	47.6	0.075	135.0	2.11	356.0	56,9
d1s	23.9	0.052	287.4	1.87	368.0	71.5
d2s	23.9	0.052	287.4	1.87	368.0	74.4
d3s	23.9	0.052	287.4	1.87	368.0	80.1
e1s	23.9	0.075	135.0	· 2.11	335+0	194.0
e2s	23.9	0.075	135.0	2.11	335.0	206.0
fls	47.6	0.052	. 33.5	2.17	398.0	37.9
als	23.9	0.100	135.0	2.04	248.0	148.0
g2s	23.9	0.100	135.0	2.04	248.0	181.0
a 3 s	23.9	0.100	135.0	2.04	248.0	180.0
q4s	23.9	0.100	135.0	2.04	248.0	195.0

TABELLE5 A:VERSUCHSERGEBNISSEVONBRIDGET-JEROME-VOSSELLER(8)

KENNZAHL	R/T	L/R	SIGN (N/MM ²)	ALPHA	LAMDI	LAMD2	SIGU
als	461.	5.65	110.	0.387	- 2.18	1.18	0.28
a2s	461.	5.65	125.	0.439	2.18	1.18	0.31
a3s	461.	5.65	132.	0.464	2.18	1.18	0.33
blme	294.	5.65	91.	0.389	1.50	0.89	0.49
c1s	636.	2.84	57.	0.283	2.62	1.33	0.16
c2s	636.	2.84	57.	0.283	2.62	1.33	0,16
ā1s	461.	12.03	72.	0.292	2.25	1.23	0.19
đ2s	461.	12.03	74.	0.303	2.25	1.23	0.20
d3s	461.	12.03	80.	0.327	2.25	1.23	0.22
e1s	319.	5.65	194.	0.485	1.56	0.92	0.58
e2s	319.	5.65	206.	0.515	1.56	0.92	0.61
f1s	919.	0.70	38.	0.265	3.56	1.67	0.10
a1s	239.	5.65	148.	0.287	1.12	0.69	0.60
q2s	239.	5.65	181.	0.351	1.12	0.69	0.73
q3s	239.	5.65	180.	0.349	1.12	0.69	0.73
a4s	239.	5.65	195.	0.378	1.12	0.69	0.79

TABELLE 5B: AUSWERTUNG DER ERGEBNISSE VON BRIDGET-JEROME-VOSSELLER

TABELLE 6A: VERSUCHSERGEBNISSE VON CLARK-HOLT (10)

KENNZAHL	요 (번번)	т (ММ)	L (MM)	E-MODUL 10 ⁵	SIGF (N/MM ²)	SIGN (N/MM ²)
a33-1	49.8	0.495	152.4	0.72	312.0	199.1
a33-2	49.9	0.495	101.5	0.72	312.0	232.3
a33-3	49.9	0.490	50.8	0.72	312.0	233.2
a34	49.8	0.320	101.6	0.72	312.0	181.0
a35	49.8	0.249	101.6	0.72	312.0	142.9
a36-1	49.7	0.203	152.4	0.72	312.0	128.6
a36-2	49.7	0.190	101.6	0.72	312.0	128.1
a36-3	49.7	0.203	50.8	0.72	312.0	131.9
a37	49.5	0.104	152.4	0.72	312.0	43.3
a38	49.5	0.084	88.9	0.72	312.0	22.9
a39	49.5	0.079	50.8	0.72	312.0	14.5
b17-1	32.2	1.660	48.3	0.72	281.0	333.0
b17-2	32.2	1.660	88.1	0.72	281.0	327.0
b17-3	32.2	1.660	144.8	0.72	281.0	328.0
b19	32.0	1.270	92.2	0.72	281.0	315.0
b20	31.9	1.050	53.1	0.72	281.0	315.0
b24	31.7	0.648	77.5	0.72	281.0	272.0
b29	32.0	1.090	73.2	0.72	281.0	314.0
b31	31.8	0.800	69.3	0.72	281.0	271.0
c1-1	19.6	4.370	152.4	0.72	525.0	685.0
c1-2	18.1	1.310	152.4	0.72	525.0	568.0
c1-3	17.8	0,732	152.4	0.72	525.0	546.0
c1-4	17.7	0.447	152.4	0.72	525.0	493. 0
c1-5	17.6	0.307	152.4	0.72	525.0	438.0
c1-6	17.6	0.235	152.4	0.72	525.0	403.0
c2-2	18.1	1.310	101.6	0.72	525.0	578.0
c2-3	17.8	0.732	101.6	0.72	525.0	554.0

FORTSETZUNG ZU TABELLE 6A:

.

.

c2-4	17.7	0.447	101.6	0.72	525.0	506.0
c2-5	17.6	0.307	101.6	0.72	525.0	470.0
c2-6	17.6	0.236	101.6	0.72	525.0	417.0

.

TABELLE 6B: AUSWERTUNG DER EBGEBNISSE VON-CLARK-HOLT

KENNZAHL	R/T	L/R	SIGN (N/MH ²)	ALPHA	LAMD1	LAMD2	SIGU
a33-1	101.	3.06	199.	0.460	1.21	0.85	0.64
a33-2	101.	2.04	232.	0.537	1.21	0.85	0.74
a33-3	102.	1.02	233.	0.545	1.22	0.85	0.75
a34	155.	2.04	181.	0.646	1.59	1.06	0.58
a35	200.	2.04	143.	0.656	1.88	1.20	0.46
a36-1	245.	3.07	129.	0.723	2.16	1.32	0.41
a36-2	262.	2.04	128.	0.770	2.26	1.37	0.41
a36-3	245.	,1.02	132.	0.741	2.16	1.32	0.42
a37	476.	3.08	43.	C.473	3.42	1.85	0.14
a38	590.	1.79	23.	0.310	3.98	2.06	0.07
a 39	627.	1.03	15.	0.209	4.16	2.12	0.05
b17-1	19.	1.50	333.	0.148	0.44	0.35	1.19
b17-2	19.	2.74	327.	0.145	0.44	0.35	1.16
b17-3	19.	4.50	328.	0.146	0.44	0.35	1.17
b19	25.	2.88	315.	0.182	0.51	0.40	1.12
b20	30.	1.66	315.	0.220	0.57	0.44	1.12
b24	49.	2.44	272.	0.306	0.74	0.56	0.97
b29	29.	2.29	314.	0.211	0.55	0.43	1.12
b31	40.	2.18	271.	0.247	0.66	0.51	0.95
c1-1	4.	7.75	685.	0.071	0.28	0.23	1.30
c1-2	14.	8.41	568.	0.180	0.50	0.41	1.08
c1-3	24.	8.55	546.	0.305	0.63	0.54	1.04
c1-4	40.	8.62	493.	0.448	0.90	0.69	0.94
c1-5	57.	8.54	438.	0.578	1.11	0.83	0.83
c1-6	74.	8.67	403.	0.689	1.30	0.95	0.77
c2-2	× 1 4•	5.61	578.	0.184	0.50	0.41	1.10
c2-3	24.	5.70	554.	0.310	0.68	0.54	1.06

Т

KENNZAHL	e/T	L/R	SIGN (N/MM ²)	ALFHA	LAHD1	LAMD2	SIGU
c2-4	40.	5.75	506.	0.459	0.90	0.69	0.96
c2-5	57.	5.76	470.	0.620	1.11	0.83	0.90
c 2-6	74.	5.78	417.	0.713	1.30	0.95	0.79

FORTSETZUNG ZU TABELLE 6B:

KENNZAHL	(MM) B	ד (אא)	L (원원)	E-HODUL 10 ⁵	SIGF (N/MM ²)	SIGN (N/MM ²)
32	152.7	0.710	762.0	0.70	152.0	69.0
F	204.0	1.570	610.0	0.68	244.0	152.0
N	203.5	0.693	610.0	0.73	238.0	74.5

.

TABELLE7 A:VERSUCHSERGEBNISSEVONCLARK-ROLFF(11)

KENNZAHL	R/T	L/R	SIGN (N/MM ²)	ALPHA	LAMD1	LAMD2	SIGU
32	215.	4.99	69.	0.349	1.40	0.88	0.45
F	130.	2.99	152.	0.479	1.29	0.88	0.62
N	294.	3.00	75.	0.499	2.13	1.26	0.31

TABELLE 7B: AUSWERTUNG DER ERGEBNISSE VON CLARK-BOLFF

;

TABELLE 8A: VERSUCHSERGEBNISSE VON DONNELL (15)

KENNZAHL	R	T	L	E-HODUL	SIGE	SIGN
	(88)	(88)	(22)	10°	(N/MM ²)	(N/884)
1	72.0	0.073	152.4	2.16	393.0	40.0
2	72.0	0.071	152.4	2.16	393.0	34.1
3	47.6	0.074	152.4	2.16	393.0	48.9
4	47.6	0.071	152.4	2.16	393.0	64.4
5	23.9	0.072	152.4	2.16	393.0	116.0
6	23.9	0.069	152+4	2.16	393.0	164.0
7	72.0	0.055	152.4	2.16	393.0	13.4
8	72.0	0.054	152.4	2.16	393.0	15.0
9	47.6	0.055	152.4	2.16	393.0	35.7
10	47.6	0.054	152.4	2.16	393.0	43.7
11	23.9	0.052	152.4	2.16	393.0	76.1
12	23.9	0.052	152.4	2.16	393.0	91.2
13	72.0	0.067	304.8	2.16	393.0	26.5
14	47.5	0.070	304.8	2.15	393.0	59.2
15	23.9	0.070	304.8	2.16	393.0	94.8
16	72.0	0.051	304.8	2.16	393.0	15.7
17	47.6	0.051	304.8	2.16	393.0	28.5
18	23.9	0.071	609.6	2.16	393.0	99.4
19	23.9	0.051	762.0	2.16	393.0	53.3
me1	72.0	0.148	152.4	1.08	193.0	. 44.5
me2	47.5	0.151	152.4	1.08	193.0	49.4
me 3	47.6	0.150	152.4	1.08	193.0	47.2
me4	23.9	0.148	152.4	1.08	193.0	136.2
me5	72.0	0.076	152.4	1.08	193.0	15.5
mеб	23.9	0.075	152.4	1.08	193.0	55.7
me7	23.9	0.075	152.4	1.08	193.0	62.2
me S	72.0	0.054	152.4	1.08	193.0	8.1

FORTSETZUNG ZU TABELLE	8A:
------------------------	-----

me9	72.0	0.051	152.4	1.08	193.0	8.1
me10	47.6	0.054	152.4	1.08	193.0	13.2
me11	47.5	0.053	152.4	1.08	193.0	11.6
me12	72.3	0.151	304.8	1.08	193.0	40.4
me13	72.3	0.149	304.8	1.08	193.0	56.4
me14	72.3	0.149	304.8	1.08	193.0	53.7
me15	47.6	0.152	304.8	1.08	193.0	53.5
me16	23.9	0.149	304.8	1.08	193.0	159.3
me17	72.0	0.049	304.8	1.08	193.0	10.0
me18	47.6	0.053	304.8	1.08	193.0	14.4
me19	72.0	0.150	152.4	1.08	193.0	40.0
me 21	47.6	0.150	152.4	1.08	193.0	60.6
me22	23.9	0.152	152.4	1.08	193.0	165.4
mela	476	0.075	152.4	1.08	193.0	24.8
me2a	47.6	0.075	152.4	1.08	193.0	24.2
me3a	47.6	0.075	152.4	1.08	193.0	31.1
me4a	47.6	0.075	152.4	1.08	193.0	28.2
me5a	47.6	0.075	152.4	1.08	193.0	35.7
me6a	47.6	0.075	152.4	1.08	193.0	30.2
me7a	47.6	0.075	152.4	1.08	193.0	23.5
me8a	47.6	0.075	152.4	1.08	193.0	24•4

TABELLE 8B: AUSWERTUNG DER EBGEBNISSE VON DONNELL

KENNZAHL	E/T	L/R	SIGN (N/HH ²)	ALEHA	LAND1	LAMD2	SIGU
1	985.	2.12	40.	0.301	3.73	1.72	0.10
. 2	1020.	2.12	34.	0.266	3.83	1.75	0.09
3	642.	3.20	49.	0.240	2.74	1.39	0.12
4	674.	3.20	64.	0.332	2.84	1.42	0.16
5	331.	- 6.38	116.	0.294	1.72	1.00	0.30
. 6	346.	6.38	164.	0.434	1.77	1.02	0.42
7	1307.	2.12	13.	0.134	4.59	1.98	0.03
8	13,43.	2.12	15.	0.154	4.68	2.01	0.04
9	859.	3.20	36.	0.235	3.38	1.61	0.09
10	880.	3.20	44.	0.294	3.44	1.63	0.11
11	459.	6.38	76.	0.267	2.16	1.17	0.19
12	463.	6,38	91.	0.323	2.17	1.18	0.23
13	1073.	4.23	27.	0.218	3.97	1.80	0.07
14	684.	6.40	59.	0.310	2.87	1.43	0.15
15	343.	12.75	95.	0.249	1.76	1.02	0.24
16	1425.	4.23	16.	0.171	4.89	2.07	0.04
17	932.	6,40	29.	0.203	3.59	1.67	0.07
18	336.	25.51	99.	0.256	1.74	1.01	0.25
19	473.	31.88	53.	0.193	2.21	1.19	0.14
me1	486.	2.12	45.	0.331	2.23	1.20	0.23
me2	315.	3.20	49.	0.238	1.65	0.96	0.26
me 3	.317.	3.20	47.	0.229	1.65	0.97	0.24
me4	161.	6.38	136.	0.337	1.05	0.69	0.71
me5	951.	2.12	16.	0.226	3.61	1.68	0.08
me 6	319.	6.38	56.	0.272	1.66	0.97	0.29
me7	318.	6.38	62.	0.303	1.66	0.97	0.32
me8	1343.	2.12	8.	0.167	4.64	1.99	0.04

FORTSETZUNG ZU TABELLE 8B:

KENNZAHL	R/T	L/R	SIGN (N/MM ²)	ALEHA	LAMD1	LAMD2	SIGU
me9	1409.	2.12	8.	0.175	4.81	2.94	0.04
me10	880.	3.20	13.	C.178	3.41	1.61	0.07
me11	905.	3.20	12.	0.161	3.48	1.63	0.06
me12	479.	4.22	40.	0.296	2.20	1.19	0.21
me13	485.	4.22	56.	0.419	2.23	1.20	0.29
me14	485.	4.22	54.	0.399	2.23	1.20	0.28
me15	313.	6.40	54.	0.256	1.64	0.96	0.28
me16	160.	12.75	159.	0.391	1.05	0.69	0.83
me17	1469.	4.23	10.	0.225	4.96	2.08	0.05
me18	905.	6.40	14.	0.199	3.48	1.63	0.07
me19	480.	2.12	40.	0.294	2.21	1.19	0.21
me21	317.	3.20	61.	0.294	1.65	0.97	0.31
me22	157.	6.38	165.	896.0	1.03	0.68	0.86
me1a	636.	3.20	25.	0.241	2.70	1.37	0.13
me2a	636.	3.20	24.	0.235	2.70	1.37	0.13
me3a	636.	3.20	31.	0.302	2.70	1.37	0.16
me4a	636.	3.20	28.	0.274	2.70	1.37	0.15
me5a	636.	3.20	36.	0.347	2.70	1.37	0.18
meба	636.	3.20	30.	0.294	2.70	1.37	0.16
me7a	636.	3.20	24.	0.230	2.70	1.37	0.12
me8a	636.	3.20	24.	0.237	2.70	1.37	0.13

KENNZAHL	R (MM)	T (원서)	L (出計)	E-MODUL 10 ⁵	SIGF (N/MM ²)	SIGN (N/MM ²)
1	457.2	0.890	1828.8	0.72	315.0	31.0
2	457.2	0.890	1828.8	0.72	315.0	23.0
4	457.2	0.890	2743.2	0.72	315.0	20.0
7	457.2	0.890	1828.8	0.72	315.0	33.0
8	457.2	0.890	2743.2	0.72	315.0	25.0

TABELLE 9A: VERSUCHSERGEBNISSE VON HOLMES (20)

KENNZAHL	R/T	L/R	SIGN (N/MM ²)	ALEHA	LAMD1	LAMD2	SIGU
1	514.	4.00	31.	0.364	3.62	1.92	0.10
2	514.	4.00	23.	0.270	3.62	1.92	0.07
4	514.	6.00	20.	0.235	3.62	1.92	0.06
7	514.	4.00	33.	-0.387	3.62	1.92	0.10
8	514.	6,00	25.	0.293	3.62	1.92	0.08

TABELLE 9B: AUSWERTUNG DER ERGEBNISSE VON HOLMES

TABELLE 10A: VERSUCHSERGEBNISSE VON LINDENBERGER (26)

(·····	T	1	1	1	<u> </u>
KENNZAHL	요 (원원)	T (MM)	L (논원)	E-MODUL 10 ⁵	SIGF (N/HM ²)	SIGN (N/MM ²)
1	89.6	0.845	380.0	2.06	203.0	158.0
2	89.1	0.915	380.0	2.06	203.0	155.0
.3	89.4	0.839	380.0	2.06	182.0	158.0
5	89.2	0.902	380.0	2.06	193.0	157.0
6	89.2	0.841	380.0	2.06	174.0	139.0
21	89.2	1.157	380.0	2.06	170.0	170.0
22	89.0	1.192	380.0	2.06	212.0	175.0
23	89.2	1.170	380.0	2.06	151.0	184.0
24	89.3	, 1.163	- 380.0	2.06	161.0	157.0
25	89.3	1.170	380.0	2.06	198.0	175.0
26	89.1	1.194	380.0	2.06	206.0	202.0
84	84.5	1.505	0.035	2.06	199.0	135.0
41	89.7	0.910	380.0	2.06	417.0	318.0
42	90.2	0.900	380.0	2.06	438.0	195.0
43	90.1	0.890	380.0	2.06	341.0	251.0
44 (89.5	1.000	380.0	2.06	343.0	191.0
61	90.2	1.200	380.0	2.06	343.0	281.0
62	90.1	1.210	380.0	2.06	318.0	274.0
63	90.8	1.300	380.0	2.06	376.0	324.0
64	89.8	1.280	380.0	2.06	368.0	282.0

KENNZAHL	R/T	L/R	SIGN (N/MM ²)	ALPHA	LAMD1	LAMD2	SIGU
1	106.	4.24	158.	0.134	0.60	0.42	0.78
. 2	97.	4.26	155.	0.121	0.56	0.40	0.76
3	107.	4.25	158.	0.135	0.57	0.39	0.87
5	99.	4.26	157.	0.125	0.56	0.39	0.81
6	106.	4.26	139.	0.118	0.55	0.38	0.80
21	77.	4.26	170.	0,105	0.45	0.32	1.00
22	75.	4.27	175.	0.105	0.43	0.36	0.83
23	76.	4.26	184.	0.113	0.42	0.30	1.22
24	77.	4.25	157.	0.097	0.43	0.31	0.98
25	75.	4.26	175.	0.107	0.48	0.35	0.88
26	75.	4.26	202.	0.121	0.48	0.35	0.98
84	56.	4.50	135.	0.061	0.40	0.30	0.68
41	99.	4.24	318.	0.252	0.81	0.57	0.76
42	100.	4.21	195.	0.157	0.84	0.59	0.45
43	101.	4.22	251.	0.204	0.75	0.53	0.74
44	90.	4.25	191.	0.137	0.70	0.50	0.56
61	75.	4.21	281.	0.169	0.63	0.45	0.82
62	74.	4.22	274.	0.164	0.60	0.44	0.86
63	70.	4.19	324.	0.182	0.63	0.46	0.86
64	70.	4.23	282.	0.159	0.62	0.46	0.77

TABELLE 10B: AUSWERTUNG DER ERGEBNISSE VON LINDENBERGER

TABELLE 11 A: VERSUCHSERGEBNISSE VON LUNDQUIST (27)

KENNZAHL	8 (써써)	T (선원)	L (원원)	E-MODUL	SIGF (N/MM ²)	SIGN (N/MM ²)
1	190.5	0.550	190.5	0.73	256.0	60.0
2	190.5	0.540	190.5	0.73	256.0	65.0
3	190.5	0,530	190.5	0.73	256.0	66.0
4	190.5	0.530	190.5	0.73	256.0	60.0
5	190.5	0.530	190.5	0.73	256.0	54.0
6	190.5	0.420	190.5	0.73	256.0	40.0
7	190.5	0.410	190.5	0.73	256.0	42.0
8	190.5	0.410	190.5	0.73	256.0	47.0
9	190.5	0.410	190.5	0.73	256.0	52.0
10	190.5	0.300	95.3	0.73	256.0	39.0
11	190.5	0.300	381.0	0.73	256.0	32.0
12	190.5	0.300	285.7	0.73	256.0	33.0
13	190.5	0.300	476.2,	0.73	256.0	33.0
14	190.5	0.290	381.0	0.73	256.0	33.0
15	190.5	0.300	95.3	0.73	256.0	41.0
16	190.5	0.290	123.9	0.73	256.0	40.0
17	190.5	0.300	190.6	0.73	256.0	38.0
18	190.5	0.290	95+3	0.73	256.0	38.0
19	190.5	0.300	285.7	0.73	256.0	37.0
20	190.5	0.300	571.5	0.73	256.0	35.0
21	190.5	0.300	190.5	0.73	256.0	34.0
22	190.5	0.290	123.8	0.73	256.0	34.0
23	190.5	0.300	476.5	0.73	256.0	28.0
24	190.5	0.300	285.7	0.73	256.0	28.0
25	190.5	0.290	123.8	0.73	256.0	27.0
26	190.5	0.290	381.0	C.73	256.0	29.0
27	190.5	0.270	190.5	0.73	256.0	28.0

FORTSETZUNG ZU TABELLE 11 A:

28	190.5	0.290	190.5	0.73	256.0	24.0
29	190.5	0.280	95.3	0.73	256.0	24.0
30	190.5	0.280	285.7	0.73	256.0	22.0
31	381.0	0.580	571.5	0.73	256.0	31.0
32	381.0	0.580	381.0	0.73	256.0	30.0
33	381.0	0.560	381.0	0.73	256.0	28.0
34	381.0	0.560	571.5	0.73	256.0	28.0
35	381.0	0.530	190.5	0.73	256.0	31.0
36	381.0	0.510	190.5	0.73	256.0	25.0
37	381.0	0.500	190.5	0.73	256.0	31.0
38	381.0	0.420	381.0	0.73	256.0	17.0
39	381.0	0.410	381.0	0.73	256.0	16.0
40	381.0	0.300	95.3	0.73	256.0	15.0
41	381.0	0.310	190.5	0.73	256.0	9.0
42	381.0	0.270	190.5	0.73	256.0	8.8
43	381.0	0.270	381.0	0.73	256.0	7.3
44	381.0	0.270	381.0	0.73	256.0	7.3
45	381.0	0.270	247.6	0.73	256.0	7.3

TABELLE 11 B: AUSWERTUNG DER EEGEBNISSE VON LUNDQUIST

KENNZAHL	E/T	L/A	SIGN (N/MM ²)	ALPHA	LAND1	LAMD2	SIGU
1	346.	1.00	60.	0.471	2.46	1.42	0.23
· 2.	353.	1.00	65.	0.519	2.49	1.43	0.25
3	359.	1.00	66.	0.537	2.53	1.44	0.26
4	359.	1.00	60.	0.488	2.53	1.44	0.23
5	359.	1.00	54.	0.439	2.53	1.44	0.21
6	454.	1.00	40.	0.411	2.97	1.62	0.16
7	465.	1.00	42.	0.442	3.02	1.64	0.16
8	465.	1.00	47.	0.494	3.02	1.64	0.18
9	465.	1.00	52.	0.547	3.02	1.64	0.20
10	635.	0.50	39.	0.561	3.78	1.92	0.15
11	635.	2.00	32.	0.460	3.78	1.92	0.13
12	635.	1.50	33.	0.474	3.78	1.92	0.13
13	635.	2.50	33.	0.474	3.78	1.92	0.13
14	657.	2.00	33.	0.491	3.87	1.95	0.13
15	635.	0.50	41.	0.589	3.78	1.92	0.16
15	657.	0.65	40.	0.595	3.87	1.95	0.16
17	635.	1.00	38.	0.546	3.78	1.92	0.15
18	657.	0.50	38.	0.565	3.87	1.95	0.15
19	635.	1.50	37.	0.532	² 3.78	1.92	0.14
20	635.	3.00	35.	0.503	3.78	1.92	0.14
21	635.	1.00	34.	0.489	3.78	1.92	0.13
22	657.	0.65	34.	0.506	3.87	1.95	0.13
23	635.	2.50	28.	0.403	3.78	1.92	0.11
24	635.	1.50	28.	0.403	3.78	1.92	0.11
25	657.	0.65	27.	0.402	3.87	1.95	0.11
26	657.	2.00	29.	0.431	3.87	1.95	0.11
27	705.	1.00	28.	0.447	4.07	2.02	0.11

FORTSETZUNG ZU TABELLE 11B:

KENNZAHL	R/T	L/R	SIGN (N/MM ²)	ALEHA	LAMD1	LAHD2	SIGU
28	657.	1.00	24.	0.357	3.87	1.95	0.09
29	680.	0.50	24.	0.370	3.97	1.99	0.09
30	680.	1.50	22.	0.339	3.97	1.99	0.09
31	657.	1.50	31.	0.461	3.87	1.95	0.12
32	657.	1.00	30.	0.446	3.87	1.95	0.12
33	680.	1.00	28.	0.431	3.97	1.99	0.11
34	680.	1.50	28.	0.431	3.97	1.99	0.11
35	719.	0.50	31.	0.505	4.13	2.04	0.12
36	747.	0.50	25.	0.423	4.24	2,08	0.10
37	762.	0.50	31.	0.535	4.30	2.10	0.12
38	907.	1.00	17.	0.349	4.88	2.29	0.07
39	929.	1.00	16.	0.337	4•97	2.32	0.06
40	1270.	0.25	15.	0.431	6.24	2.71	0.06
41	1229.	0.50	9.	0.250	6.09	2.67	0.04
42	1411.	0.50	9.	0.281	6.74	2.86	0.03
43	1411.	1.00	7.	0.233	6.74	2.86	0.03
44	1411.	1.00	7.	0.233	6.74	2.86	0.03
45	1411.	0.65	7.	0.233	6.74	2.86	0.03

.

TABELLE 12A: VERSUCHSERGEBNISSE VON MILLER (28)

KENNZAHL	B (HH)	т (мм)	ר (אה) ר	E-MODUL 10 ⁵	SIGF (N/MM ²)	SIGN (N/MM ²)
A 1. 1	90.7	0.381	30.5	1.97	198.0	94.5
A 1.1 1	90.7	0.381	26.6	1.97	198.0	82.6
B 1.2 1	90.7	0.386	26.5	2.07	242.0	122.0
A 2. 1	90.7	0.381	15.2	1.97	198.0	103.9
A 3. 1	90.7	0.384	7.6	1.97	198.0	113.0
A 4. 1	90.7	0.384	7.6	1.97	198.0	115.1
A 4.1 1	90.7	0.384	7.6	1.97	198.0	125.4
A 5. 1	90.7	0.378	5.3	1.97	198.0	116.6
A 6. 1	90.7	0.381	5.3	1.97	198.0	119.9
A 7. 19	90.7	0.384	3.8	1.97	198.0	125.9
B 7.2 19	90.7	0.391	3.7	2.07	242.0	152.4
A 8. 19	90.7	0.384	3.8	1.97	198.0	121.4
A 9. 19	90.7	0.381	2.6	1.97	198.0	117.5
B 9.2 19	90.7	0.396	2.6	2.07	242.0	149.7
A10. 19	90.7	0.381	2.6	1.97	198.0	134.8
B11. 19	90.7	0.389	1.9	2.07	242.0	170.7
A12. 19	90.7	0.389	1.3	1.97	198.0	112.0
C13.2 19	90.9	0.742	23.9	2.31	245.0	163.9
D13.3 19	90.9	0.744	23.8	2.50	286.0	189.5
F13.5 19	90.9	0.787	22.4	2.35	545.0	314.0
C14. 19	90.9	0.744	8.2	2.31	245.0	167.0
C14.1 19	90.9	0.744	8 • 2	2.31	245.0	190.5
D14.2 19	90.9.	0.752	8.2	2.50	286.0	203.4
F14.5 19	90.9	0.787	7.9	2.35	545.0	323.6
C15. 19	90.9	0.747	5.5	2.31	245.0	181.4
C16. 19	90.9	0.739	5.5	2.31	245.0	185.7
C17. 19	90.9	0.739	4 • 1	2.31	245.0	178.9

FORTSETZUNG ZU TABELLE 12 A:

C18.	190.9	0.721	2.8	2.31	245.0	192.4
F18.5	190.9	0.790	2.7	2.35	545.0	344.3
E19.	190.8	0.513	30.6	2.04	456.0	133.6
E19.2	190.8	0.513	30.6	2.04	456.0	195.5
E20.	190.8	0.513	5.1	2.04	456.0	263.6
E21.	190.8	0.513	3.8	2.04	456.0	233.9
E22.	190.3	0.513	3.8	2.04	456.0	245.6
E23.	190.8	0.511	2.6	2.04	456.0	271.2
E24.	190.8	0.511	2.6	2.04	456.0	277.4
E25.	190.8	0.508	2.6	2.04	456.0	285.7
E26.	190.8	0.513	1.9	2.04	456.0	284.3
E27.	190.8	0.513	1.9	2.04	456.0	280.1
E28.	190.8	0.516	1.9	2.04	456.0	271.2
E29.	190.8	0.511	1.9	2.04	456.0	278.8

•

TABELLE	12 B:	AUSWERTUNG	DER	EEGEENISSE	VON	MILLEB

	20. 10.			, , , , , , , , , , , , , , , , , , ,		<u>د ا</u>	*
KENNZAHL	R/T	L/R	SIGN (N/MM ²)	ALEHA	LAMD1	LAMD2	SIGU
A 1.	501.	0.16	94.	0.397	1.71	0.91	0.48
A 1.1	501.	0.14	83.	0.347	1.71	0.91	0.42
B 1.2	494.	0.14	122.	C.481	1.82	0.98	0.50
Ā 2.	501.	0.08	104.	0.436	1.71	0.91	0.52
Ā 3.	497.	0.04	113.	0.471	1.70	0.91	0.57
A 4.	497.	0.04	115.	0.480	1.70	0.91	0.58
A 4.1	497.	0.04	125.	0.523	1.70	0.91	0.63
A 5.	504.	0.03	117.	0.494	1.72	0.92	0.59
A 6.	501.	0.03	120.	0.504	1.71	0.91	0.61
A 7.	497.	0.02	126.	0.525	1.70	0.91	0.64
B 7.2	488.	0.02	152.	0.594	1.81	0.97	0.63
A 8.	497.	0.02	121.	0.506	1.70	0.91	0.61
A 9.	501.	0.01	118.	0.493	1.71	0.91	0.59
B 9.2	482.	0.01	150.	0.576	1.79	0.96	0.62
A10.	501.	0.01	135.	0.566	1.71	0.91	0.68
B11.	490.	0.01	171.	0.668	1.81	0.97	0.71
A12.	490.	0.01	112.	0.461	1.68	0.90	0.57
C13.2	257.	0.13	164.	0.302	1.10	0.67	0.67
D13.3	257.	0.12	190.	0.321	1.14	0.70	0.66
F13.5	243.	0.12	314.	0.536	1.57	0.96	0.58
C14.	257.	0.04	167.	0.307	1.10	0.67	0.68
C14.1	257.	0.04	191.	0.350	1.10	0.67	0.78
D14.2	254.	0.04	203.	0.341	1.14	0.69	0.71
E14.5	243.	0.04	324.	0.552	1.57	0.96	0.59
C15.	256.	0.03	181.	0.332	1.10	0.67	0.74
C16.	258.	0.53	186.	0.343	1.17	0.67	0.76
C17.	258.	0.02	179.	0,330	1.11	0.67	0.73

FORTSETZUNG ZU TABELLE 128:

KENNZAHL	R/T	L/R	SIGN (N/MM ²)	ALEHA	LAND1	LAMD2	SIGU
C18.	265.	0.01	192.	0.365	1.13	0.58	0.79
F18.5	242.	0.01	344.	0.585	1.56	0.96	0.63
E19.	372.	0.16	134.	0.403	2.07	1.17	0.29
E19.2	372.	0.16	196.	0.589	2.07	1.17	0.43
E20.	372.	0.03	264.	0.794	2.07	1.17	0.58
E21.	372.	0.02	234.	0.705	2.07	1.17	0.51
E22.	372.	0.02	246.	0.740	2.07	1.17	0.54
E23.	373.	0.01	271.	0.820	2.07	1.17	0.59
E24.	3.73.	0.01	277.	9.839	2.07	1.17	0.61
E25.	376.	0.01	286.	0.869	2.08	1.18	0+63
E26.	372.	0.01	284.	0.857	2.07	1.17	0.62
E27.	372.	0.01	280.	0.844	2.07	1.17	0.61
E28.	370.	0.01	271.	0.813	2.06	1.17	0.59
E29.	373.	0.01	279.	0.843	2.07	1.17	0.61

KENNZAHL	в (нн)	т (мм)	L (원원)	E-MODUL 10 ⁵	SIGF (N/HM ²)	SIGN (N/MM ²)
al	28.1	5.500	C.O	1.85	214.0	324.0
a2	26.2	1.520	C.O	1.85	214.0	293.0
a3	26.0	1.140	0.0	1.85	214.0	326.0
a4	25.8	0.760	0.0	1.85	214.0	254.0
b1	41.3	0.380	0.0	2.22	742.0	604.0
h2	.41.3	0.380	. 0.0	2.22	742.0	672.0
h3	41.3	0.380	. 0.0	2.22	742.0	672.0
h4	63.5	0.380	0.0	2.22	742.0	467.0
h5	63.5	0.380	0.0	2.22	742.0	434.0
h 6	101.6	0.380	0.0	2.22	742.0	260.0
h7	101.6	0.380	0.0	2.22	742.0	301.0
h8	185.7	0.380	0.0	2.22	742.0	151.0
h9	185.7	0.380	c.o	2.22	742.0	104.0

TABELLE 13A: VERSUCHSERGEBNISSE VON ROBERTSON (33)

.

KENNZAHL	R/T	L/R	SIGN (N/HH ²)	ALFHA	LAMD1	LAMD2	SIGU
al	5.	0.0	324.	0.015	0.12	0.10	1.51
a2	17.	0.0	293.	0.045	0.23	0.18	1.37
a3	23.	0.0	326.	0.066	0.26	0.21	.1.52
a4	34.	0.0	254.	0.077	0.33	0.25	1.19
h1	109.	0.0	604.	0.489	1.11	0.77	0.81
h 2	109.	0.0	672.	0.544	1.11	0.77	0.91
h3	109.	0.0	672.	0.544	1.11	0.77	0.91
h4	167.	0.0	467.	0.581	1.47	0.96	0.63
h5	167.	0.0	434.	0.540	1.47	0.96	0.58
h6	267.	0.0	260.	0.518	2.01	1.22	0.35
h7	267.	0.0	. 301.	0.599	2.01	1.22	0.41
h 8	489.	0.0	151.	0.549	3.06	1.64	0.20
b 9	489.	0.0	104.	0.378	3.06	1.64	0.14

TABELLE 13B: AUSWERTUNG DER ERGEBNISSE VON ROBERTSON

				•		
KENNZAHL	(88) B	т (ММ)	L (22)	E-MODUL 105	SIGF (N/MH ²)	SIGN (N/HM ²)
B1	49.0	2.000	200.0	2.06	353.0	331.0
B2	49.1	1.150	87.0	2.06	353.0	278.0
B3	48.7	0.500	87.0	2.06	353.0	244.0
B4	48.5	0.530	90.0	2.06	353.0	361.0
B 5	49.8	0.500	87.0	2.06	353.0	301.0
B6	48.5	0.300	90.0	2.05	353.0	281.0
B7	350.0	3.000	800.0	2.06	235.0	271.0
B8	350.0	2.000	800.0	2.06	235.0	199.0
B9	350.0	2.500	3000.0	2.06	235.0 -	207.0
B 9	350.0	2.500	3000.0	2.06	235.0	207.0
B 9	350.0	2.500	3000.0	2.06	235.0	207.0
39	350.0	2.500	3000.0	2.06	235.0	207.0
B9	350.0	2.500	3000.0	2.06	235.0	207.0
B9	350.0	2.500	3000.0	2.06	235.0	207.0
B9	350.0	2.500	3000.0	2.05	235.0	207.0

TABELLE 14 A: VERSUCHSERGEBNISSE VON STEINHARDT - SCHULZ (44)

KENNZAHL	R/T	L/R	SIGN (N/MM ²)	ALEHA	LAMD1	LAMD2	SIGU
B1	25.	4.08	331.	0.065	0.33	0.26	0.94
B 2	43.	1.77	278.	0.095	0.45	0.35	0.79
B3	97.	1.79	244.	0.191	0.74	0.53	0.69
В4	92.	1.86	361.	0.265	0.72	0.51	1.02
B5	100.	1.75	. 301.	0.241	0.75	0.53	0.85
B6	162.	1.86	281.	0.365	1.03	0.68	. 0.80
B7	117.	2.29	271.	0.254	0.68	0.47	1.15
B8	. 175.	2.29	199.	0.279	0.88	0.57	0.85
B9	140.	8.57	207.	0.233	0.76	0.51	0.88
В9	140.	8,57	207.	0.233	0.76	0.51	88.0
59	140.	8.57	207.	0.233	0.76	0.51	0.88
B 9	140.	8.57	207.	0.233	0.75	0.51	0.88
B9	140.	8.57	207.	0.233	0.76	0.51	0.88
B9	140.	8.57	207.	0.233	0.76	0.51	0.88
B9	140.	8.57	207.	0.233	0.76	0.51	0.88

TABELLE 14 B: AUSWERTUNG DER ERGEBNISSE VON STEINHARDT - SCHULZ

TABELLE 15A: VERSUCHSERGEBNISSE VON SHERBOURNE - KOROL (43)

KENNZAHL	8 (MM)	Т (ММ)	[(변전)	E-MODUL 105	SIGF (N/MM ²)	SIGN (N/MM ²)
m1	60.3	0.510	277.0	1.06	410.5	174.0
m 2	. 60.3	0.510	277.0	1.06	410.5	200.0
m 3	60.3	0.230	277.0	1.06	410.5	136.0
m4	60.3	0.230	277.0	1.06	410.5	102.0
m5	60.3	0.127	277.0	1.06	410.5	42.2
m6	60.3	0.127	277.0	1.06	410.5	77.8
m7	60.3	0.102	277.0	1.06	410.5	31.6
m7a	60.3	0.102	277.0	1.06	410.5	50.7
a8	137.2	1.020	610.0	0.70	140.8	125.1
a9t6	137.2	1.020	610.0	0.71	307.1	125.7
a10	137.2	0.810	610.0	0.70	140.8	97.9
a11t6	137.2	0.810	610.0	0.71	307.1	150.7
a12t6	137.2	0.510	610.0	0.71	307.1	78.6
a13t6	137.2	0.510	610.0	0.71	307.1	115.3
a14gz	31.7	0.165	102.0	0.69	262.2	91.6
a15qz	31.7	0.165	102.0	0.69	262.2	131.4
a16fo	60.3	0.051	241.0	0.69	276.2	102.0
a17fo	60.3	0.051	241.0	0.69	276.2	160.0
a18t6	137.2	1.020	610.0	0.71	307.1	183.4
a19gz	31.7	0.178	102.0	0.69	262.2	154.2
a20gz	31.7	0.165	102.0	0.69	262.2	65.0
a21gz	31.7	0.150	102.0	<u>0</u> .69	262.2	138.7
a22	137.2	0.510	610.0	0.70	140.8	68.0

TABELLE 15B: AUSWERTUNG DER ERGEBNISSE VON SHEBBOURNE - KOROL

KENNZAHL	R/I	L/R	SIGN (N/MH ²)	ALEHA	LAMD1	LAMD2	SIGU
m1	118.	4.59	174.	0.321	1.26	0.87	0.42
m2	118.	4.59	200.	0.369	1.26	0.87	0.49
m3	262.	4.59	136.	0.556	2.14	1.30	0.33
m4 :	262.	4.59	102.	0.417	2.14	1.30	0.25
m 5	475.	4.59	42.	0.312	3.23	1.74	0.10
m6	475.	4.59	78.	0.576	3.23	1.74	0.19
m7	591.	4.59	32.	0.291	3.77	1.95	0.08
m7a	591.	4.59	51	0.467	3.77	1.95	0.12
a 8	135.	4.45	125.	0.395	0.99	0.67	0.89
a9t6	135.	4.45	126.	0.395	1.45	0.98	0.41
a10	169.	4.45	98.	0.389	1.15	0.75	0.70
a11t6	169.	4.45	151.	0.597	1.69	1.10	C•49
a12t6	269.	4.45	79.	0.494	2.30	1.39	0.26
a13t6	269.	4.45	115.	0.725	2.30	1.39	0.38
a14gz	192.	3.22	92.	0.422	1.72	1.10	0.35
a15gz	192.	3.22	131.	0.605	1.72	1.10	0.50
al6fo	1182.	4.00	102.	2.889	6.33	2.80	0.37
a17fo	1182.	4.00	.160 .	4.532	6.33	2.80	0.58
a18t6	135.	4.45	183.	0.577	1.45	0.98	0.60
al9gz	178.	3.22	154.	0.658	1.63	1.06	0.59
a20gz	192.	3.22	65.	0.299	1.72	1.10	0.25
a21gz	211.	3.22	139.	0.702	1.83	1.15	0.53
a 2 2	269.	4.45	68.	C.430	1.56	0.94	0.48

TABELLE 16A: VERSUCHSERGEBNISSE VCN WILSON - NEWMARK (48)

KENNZAHL	(ਸ਼ਸ਼) B	т (ММ)	L (원원)	E-MODUL 10 ⁵	SIGF (N/HM ²)	SIGN (N/HH ²)
a1	46.6	0.568	190.0	2.03	248.0	216.0
a2	46.6	0.951	189.0	2.03	248.0	263.0
a3	47.2	1.644	178.0	2.03	248.0	265.0
a4	46.3	0.597	191.0	2.03	248.0	276.0
a5	46.8	1.098	190.0	2.03	248.0	254.0
a6	46.9	1.657	177.0	2.03	248.0	281.0
a7 -	46.7	0.607	88.9	2.03	248.0	276.0
a 8	46.7	0.588	38.6	2.03	248.0	280.0
b1	47.7	1.200	120.0	1.94	210.0	270.0
b2	47.3	1.010	120.0	1.94	210.0	260.0
b3	47.5	1.130	121.0	1.94	210.0	231.0
b 4	47.2	1.100	121.0	1.94	210.0	239.0
d 1	49.4	0.503	44.4	2.06	323.0	341.0
đ 2	49.4	0.505	\$5.2	2.06	323.0	369.0
d 3	49.4	0.503	146.0	2.06	323.0	320.0
đ 4	49.4	0.545	197.0	2.06	323.0	331.0
ð 5	49.4	0.493	505.0	2.05	323.0	349.0
11	49.5	0.744	190.0	2.06	323.0	0.EBE
12	49.3	0.371	192.0	2.06	323.0	279.0
13	49.5	0.733	192.0	2.06	323.0	363.0
14	49.3	0.362	191.0	2.05	323.0	301.0
51	49.3	0.338	- 38 - 9	2.06	323.0	381.0
52	49.4	0.366	141.0	2.06	323.0	314.0
53	49.4	0.361	242.0	2.06	323.0	248.0
54	49.4	0.348	484.0	2.06	323.0	372.0
55	49.4	0.343	39.4	2.06	323.0	354.0
56	49.4	0.350	141.0	2.06	323.0	363.0

FORTSETZUNG ZU TABELLE 16A:

57	49.4	0.355	242.0	2.06	323.0	349.0
58	49.4	0.355	484.0	2.06	323.0	273.0
61	173.4	0.363	241.0	1.92	296.0	101.0
62	173.6	0.843	243.0	1.92	296.0	216.0
63	173.5	0.526	241.0	1.92	296.0	159.0
64	173.4	0.399	241.0	1.92	296.0	152.0
65	173.3	0.227	242.0	1.92	296.0	55.2
66	173+4	0.340	233.0	1.92	296.0	114.0
67	173.5	0.510	240.0	1.92	296.0	150.0
68	173.6	0.738	241.0	1.92	296.0	209.0
e1	1019.0	6.100	1828.8	2.01	245.3	167.1
e2	1019.0	5.920	1828.8	1.97	248.8	163.0
e 3	1019.0	6.170	1928.8	2.05	260.8	180.5
e4	1019.0	6.100	1828.8	2.00	248.9	189.3
71	127.4	0.767	762.0	1.98	176.2	71.7
72	127.4	0.758	762.0	2.08	186.5	102.0
73	254.4	0.773	762.0	2.08	186.5	62.5
74	381.4	0.736	762.0	2.00	204.5	61.8
75	381.4	0.848	762.0	2.00	223.1	70.1
76	508.4	0.762	762.0	2.06	170.3	39.4
77	508.4	0.777	762.0	2.06	170.3	39.6
78	635.4	0.769	. 762.0	2.00	199.0	30.6
79	635.4	0.750	762.0	2.07	175.7	29.5
711	762.4	0.785	762.0	2.00	218.4	28.7
712	762.4	0.770	762.0	2.00	315.5	26.7
81	431.8	3.110	10668.0	2.03	225.2	137.9
82	431+8	2.860	10668.0	1.94	223.4	153.1
83	431.8	3.040	6096.0	1.98	311.4	160.0

.

FORTSETZUNG ZU TABELLE 16A:

.

.

.

84	431.8	3.040	6096.0	2.06	262.8	160.7
85	431.8	2.880	1828.8	2.08	275.5	185.5
86	431.8	2.980	1828.8	2.01	282.8	189.6

٦

7

.

.
KENNZAHL	R/T	L/R	SIGN (N/HH ²)	ALEHA	LAND1	LAND2	SIGU
a1	82.	4.08	216.	6.144	0.57	0.41	0.87
a2	49.	4.06	263.	0.105	0.42	0.31	1.05
аЗ	29.	3.77	265.	0.062	0.31	0.24	1.07
a4.	78.	4.13	276.	0.174	0.55	0.40	1.11
a5	43.	4.06	254.	6.088	0.38	0.29	1.02
аб	28.	3.77	281.	0.065	0.30	0.24	1.13
a7	77.	1.90	276.	0.173	0.54	0.39	1.11
a 8	79.	0.83	280.	0.181	0.55	0.40	1.13
b1	40.	2.52	270.	0.091	0.35	0.27	1.29
b2	47.	2 . 54	260.	0.104	0.38	0.29	1.24
b3	42.	2.55	231.	0.083	0.36	0.27	1.10
b4	43.	2.56	239.	0.087	0.36	0.28	1.14
d 1	98.	0.90	341.	0.269	0.72	0.50	1.06
d 2	98.	1.93	369.	0.290	0.71	0.50	1.14
6.D	98.	2.96	320.	0.252	0.72	0.50	0.99
d 4	91.	3.99	331.	0.241	0.68	0.48	1.02
đ 5	100.	10.22	349.	0.281	0.72	0.51	1.08
11	67.	3.84	383.	0.204	0.56	0.42	1.19
12	133.	3.89	279.	0.297	0.87	0.59	0.86
13	68.	3.88	363.	0.197	0.57	0.42	1.12
14	136.	3.87	301.	0.329	0.88	0.59	0.93
51	145.	0.79	381.	0.446	0.92	0.61	1.18
52	135.	2.85	314.	0.340	0.88	0.59	0.97
53	137.	4.90	248.	0.272	0.88	0.60	0.77
54	142.	9.80	372.	0.424	0.90	0.61	1.15
55	144.	0.30	354.	0.409	0.91	0.61	1.10
56	141.	2.85	363.	C.411	0.90	0,60	1.12

TABELLE 16 B: AUSWERTUNG DER EEGEENISSE VON WILSON - NEWMARK

FORTSETZUNG ZU TABELLE 16B:

KENNZAHL	R/T	L/R	SIGN (N/MM ²)	ALPHA	LAMD1	LAMD2	SIGU
57	139.	4.90	349.	0.390	0.89	0.60	1.08
58	139.	9.80	273.	0.305	0.89	0.60	0.85
61	478.	1.39	101.	0.415	2.04	1.10	0.34
62	206.	1.40	216.	0.383	1.15	0.72	0.73
63	330.	1.39	159.	0.451	1.58	0.92	0.54
64	435.	1.39	152.	0.569	1.91	1.05	0.51
65	763.	1.40	55.	0.363	2.86	1.39	0.19
66	510.	1.34	114.	0.501	2.14	1.14	0.39
67	340.	1.38	150.	0.439	1.61	0.93	0.51
68	235.	1.39	209.	0.423	1.25	0.77	0.71
e1	167.	1.79	167.	0.230	0.89	0.58	0.68
e 2	172.	1.79	163.	0.235	0.92	0.60	0.66
e 3	165.	1.79	181.	0.241	0.90	0.59	0.69
e4	167.	1.79	189.	0.261	0.90	0,59	0.76
71	165.	5.98	72.	0.099	0.75	0.49	0.41
72	168.	5.98	102.	0.136	0.75	0.50	0.55
73	329.	3.00	63.	0.164	1.20	0.70	0.34
74	518.	2.00	62.	0.265	1.76	0.94	0.30
75	450.	2.00	70.	0.261	1.67	0.91	0.31
76	667.	1.50	39.	0.211	1.90	0.95	0.23
77	654.	1.50	40.	0.208	1.87	0.95	0.23
78	825.	1.20	31.	0.209	2.43	1.17	0.15
79	847.	1.20	30.	0.200	2.29	1.09	0.17
711	971.	1.00	29.	0.230	2.86	1.32	0.13
712	990.	1.00	27.	0.218	3.49	1.61	0.08
81	139.	24.71	138.	0.156	0.75	0.51	0.61
82	151.	24.71	153.	0.195	0.81	0.54	0.69
83	142.	14.12	160.	0.190	0.91	0.61	0.51

FORTSETZUNG ZU TABELLE 16B:

KENNZAHL	R/T	L/R	SIGN (N/HH ²)	ALPHA	LAMD1	LAMD2	SIGU
84	142.	14.12	161.	0.184	0.82	0.55	0.61
85	150.	4.24	186.	0.221	0.86	0.57	0.67
86	145.	4.24	190.	0.226	0.87	0.58	0.67

TABELLE 17A: VERSUCHSERGEBNISSE VON KATO (24)

KENNZAHL	명 (위위)	I (원원)	L (2日)	E-MODUL 10 ⁵	SIGF (N/MM ²)	SIGN (N/MH ²)
ct1	28.1	0.670	120.0	2.10	258.0	258.0
ct2	28.5	0.680	120.0	2.10	263.0	263.0
ct3	28.5	0.970	120.0	2.10	263.0	263.0
ct4	28.8	1.280	120.0	2.10	250.0	290.0
ct5	28.8	1.270	120.0	2.10	266.0	291.0
ct6	29.1	1.580	120.0	2.10	245.0	299.0
ct7	29.4	1.900	120.0	2.10	252.0	339.0
cf1	157.5	6.300	1000.0	2.10	312.0	312.0
cf2	157.5	8.100	1000.0	2.10	341.0	356.0
cf3	157.5	10.200	1000.0	2.10	342.0	417.0
cf4	157.5	12.200	1000.0	2.10	308.0	431.0
cf5	157.5	14.300	1000.0	2.10	296.0	461.0
cf6	157.5	15.900	1000.0	2.10	306.0	498.0
stka1	159.2	6.000	1000.0	2.10	335.0	370.0
stka2	159.2	6.900	1000.0	2.10	310.0	360.0
stka3	159.2	7.900	1000.0	2.10	325.0	395.0
stka4	159.2	8.000	1000.0	2.10	330.0	330.0
stkb1	15.9•2	3.000	1000.0	2.10	465.0	405.0
stkb2	159.2	4.100	1000.0	2.10	445.0	470.0
stkb3	159.2	5.000	1000.0	2.10	445.0	476.0
stkb4	159.2	6.800	1000.0	2.10	435.0	505.0
stkb5	159.2	9.000	1000.0	2.10	420.0	500.0
stkc1	159.2	3.000	1000.0	2.10	495.0	390.0
stkc2	159.2	4.100	1000.0	2.10	525.0	500.0
stkc3	159.2	5.000	1000.0	2.10	525.0	550.0
stkc4	159.2	8.800	1000.0	2.10	585.0	585.0

TABELLE	17B:	AUSWERTUNG	DER	EEGEENISSE	VON	KATO
---------	------	------------	-----	------------	-----	------

KENNZAHL	E/T	L/R	SIGN (N/HH ²)	ALPHA	LAHD1	LAHD2	SIGU
ct1	42.	4.26	258.	0.085	0.38	0.29	1.00
ct2	42.	4.21	263.	0.087	0.38	0.29	1.00
ct3	29.	4.21	263.	0.061	0.31	0.25	1.00
ct4	23.	4.17	290.	0.051	0.25	0.21	1.16
ct5	23.	4.17	291.	0.052	0.27	0.22	1.09
ct6	18.	4.12	299.	0.043	0.23	0.19	1.22
ct7	15.	4.08	339.	0.041	0.22	0.18	1.35
cf1	25.	6.35	312.	0.061	0.31	0.25	1.00
cf2	19.	6.35	356.	0.054	0.29	0.23	1.04
cf3	15.	6.35	417.	0.051	0.25	0.20	1.22
cf4	13.	6.35	431.	0.044	0.22	0.18	1.40
cf5	11.	6.35	461.	0.040	0.20	0.16	1.56
cf6	10.	6.35	498.	0.039	0.19	0.15	1.63
stka1	27.	6.28	370.	0.077	0.34	0.26	1.10
stka2	23.	6.28	360.	0.065	0.30	0.24	1.16
stka3	20.	6.28	395.	0.063	0.28	0.23	1.22
stka4	20.	6.28	330.	0.052	0.28	0.23	1.00
stkb1	53.	6.28	405.	0.169	0.59.	0.44	0.87
stkb2	39.	6.28	470.	0.144	0.48	0.37	1.05
stkb3	32.	6.28	476.	0.119	0.43	0.33	1.07
stkb4	23.	6.28	505.	0.093	0.36	0.28	1.16
stkb5	18.	6.28	500.	0.070	0.30	0.24	1.19
stkc1	53.	6.28	390.	0.163	0.60	0.45	0.79
stkc2	39.	6.28	500.	0.153	0.52	0.40	0.95
stkc3	32.	6.28	550.	0.138	0.45	0.36	1.05
stkc4	13.	6.28	585.	0.083	0.36	0.29	1.00

TABELLE 18A: VERSUCHSERGEBNISSE VON KAPPUS [22]

KENNZAHL	8 (88)	T (MM)	L (원원)	E-MODUL 10 ⁵	SIGF (N/MM ²)	PBR (KN)
11a	44.2	1.520	0.0	2.00	570.0	263.0
115	44.3	1.490	0.0	2.00	570.0	270.0
11c	45.8	1.560	C.O	2.00	- 570.0	309.0
12a	66.6	1.510	0.0	2.00	570.0	382.0
125	66.6	1.500	0.0	2.00	570.0	376.0
1 2c	67.3	1.490	0.0	2.00	570.0	368.0
13a	89.1	1.590	0.0	2.00	570.0	501.0
1 3b	89.1	1.470	0.0	2.00	570.0	459.0
13c	89.3	1.570	0.0	2.00	570.0	532.0
14a	112.0	1.560	0.0	2.00	570.0	597.0
146	112.0	1.470	0.0	2.00	570.0	527.0
15a	134.0	1.530	0.0	2.00	570.0	686.0
15b	134.0	1.610	0.0	2.00	570.0	701.0
15c	134.0	1.560	0.0	2.00	570.0	692.0
16a	164.0	1.540	0.0	2.00	570.0	838.0
16b	164.0	1.520	0.0	2.00	570.0	739.0
17a	201.0	1.510	0.0	2.00	570.0	710.0
175	201.0	1.520	0.0	2.00	570.0	757.0

· .

KENNZAHL	R/T	L/R	SIGN (N/HM ²)	ALEHA	LAMD1	LAMD2	SIGU
11a	29.	0.0	623.	0.150	0.47	0.37	1.09
11b	30.	-0.0	651.	0.160	0.48	0.37	1.14
11c	29.	0.0	688.	0.167	0.47	0.37	1.21
1.2a	44.	0.0	605.	0.220	0.60	0 • 46	1.06
1 2b.	44.	0.0	599.	0.220	0.60	0.46	1.05
1 2 c	45.	0.0	584.	0.218	0.61	0.46	1.02
13a	56.	0.0	563.	0.261	0.69	0.51	0.99
135	61.	0.0	558.	0.279	0.72	0.53	0.98
13c	57.	0.0	604.	0.284	0.69	0.52	1.06
14a	72.	0.0	544.	0.323	0.80	0.58	0.95
145	75.	0.0	509.	0.321	0.82	0.60	0.89
15a	88.	0.0	533.	0.385	0.90	0.64	0.93
15b	83.	0.0	517.	0.356	0.87	0.63	0.91
15c	86.	0.0	527.	0.374	0.89	0.64	0.92
16a	106.	0.0	528.	0.465	1.01	0.71	0.93
16b	108.	0.0	472.	0.421	1.02	0.71	0.83
17a	133.	0.0	372.	0.410	1.17	0.79	0.65
17b	132.	0.0	394.	0.431	1.16	0.79	0.69

TABELLE 18B: AUSWERTUNG DER EBGEBNISSE VON KAPPUS

TABELLE 19A: VERSUCHSERGEBNISSE VON BORNSCHEUER [7]

KENNZAHL	(87) B	T (MM)	L (분원)	E-MODUL 105	SIGF (N/HH ²)	PBB (KN)
1.1	127.0	2.020	700.0	1.96	227.0	339.0
1.2	127.0	2.020	588.0	1.96	227.0	343.0
1.3	127.0	2.020	350.0	1.96	227.0	346.0
2.2	127.0	1.970	601.0	2.18	276.0	411.0
3.1	127.0	1.980	680.0	2.10	258.0	347.0
3.3	127.0	1.980	429.0	2.10	258.0	429.0
4.1	127.0	0.950	600.0	1.99	206.0	127.0
4.2	127.0	0.950	400.0	1.99	205.0	111.0
5.2	127.0	0.950	578.0	1.92	226.0	133.0
6.1	127.0	0.950	690.0	1.95	230.0	111.0
5.2	127.0	0.950	606.0	1,95	230.0	120.0
6.3	127.0	0.950	529.0	1.95	230.0	125.0
6.4	127.0	0.950	423.0	1.95	230.0	125.0
6.5	127.0	0.950	320.0	1.95	230.0	125.0
7.1	127.0	0.950	690.0	1.94	224.0	111.0
7.2	127.0	0.950	666.0	1.94	224.0	126.0
8.1	127.0	0.960	680.0	1.92	221.0	97.2
8.2	127.0	0.960	598.0	1.92	221.0	122.0
8.4	127.0	0.960	326.0	1.92	221.0	126.0
9.2	127.0	0.950	591.0	1.93	225.0	128.0
9.4	127.0	0.950	320.0	1.93	225.0	133.0
10.1	128.0	1.950	394.0	1.94	238.0	358.0
10.6	128.0	1.850	150.0	1.94	238.0	333.0
11.1	128.0	1.950	415.0	1.94	238.0	364.0
11.6	128.0	1.900	150.0	1.94	238.0	348.0
12.1	128.0	1.950	413.0	2.03	248.0	354.0
6.6	127.0	0,950	190.0	1.95	230.0	105.0

FORTSETZUNG ZU TABELLE 19A:

KENNZAHL	B (원원)	T (MM)	L (원원)	E-MODUL 10 ⁵	SIGF (N/MH ²)	PBR (KN)
8.5	127.0	0.960	201.0	1.92	221.0	123.0
9.5	127.0	0.950	200.0	1.93	225.0	114.0
9.6	127.0	0.950	100.0	1.93	225.0	123.0
10.2	128.0	1.950	301.0	1.94	238.0	344.0
10.3	128.0	1.950	180.0]	1.94	238.0	322.0
10.4	128.0	1.950	100.0	1.94	238.0	320.0

TABELLE 19B: AUSWERTUNG DER ERGEBNISSE VON BORNSCHEUER

KENNZAHL	,B/T	L/R -	SIGN (N/HH ²)	ALEHA	LAMD1	LAMD2	SIGU
. 1 • 1	63.	5.51	210.	0.112	0.47	0.35	0.93
1.2	63.	4.63	213.	0.113	0.47	0.35	0.94
1.3	63.	2.76	215.	0.114	0.47	0.35	0.95
2.2	64.	4.73	261.	0.128	0.50	0.37	0.95
3.1	64.	5.35	220.	0.111	0.49	0.36	0.85
3.3	64.	3.38	272.	0.137	0.49	0.36	1.05
4-1	134.	4.72	168.	0.186	0.71	0.48	0.81
4.2	134.	3.15	146.	0.163	0.71	0.48	0.71
5•2	134.	4.55	175.	0.202	0.75	0.51	0.78
6.1	134.	5.43	146.	0.166	0.75	0.51	0.64
6.2	134.	4.77	158.	0.179	0.75	0.51	0.69
6.3	134.	4.17	165.	0.187	0.75	0.51	0.72
6.4	134.	3.33	165.	0.187	0.75	0.51	0.72
6.5	134.	2.52	165.	0.187	0.75	0.51	0.72
7.1	134.	5.43	146.	0.167	0.75	0.51	0.65
7.2	134.	5.24	166.	0.189	0.75	0.51	0.74
8.1	132.	5.35	127.	0.145	0.74	0.50	0.57
8.2	132.	4.71	159.	0.181	0.74	0.50	0.72
8.4	132.	2.57	164.	0.187	0.74	0.50	0.74
9.2	134.	4.65	169.	0.193	0.75	0.51	0.75
9.4	134.	2.52	175.	0.201	0.75	0.51	0.78
10.1	66.	3.08	228.	0.128	0.49	0.36	0.96
10.6	69.	1.17	224.	0.132	0.51	0.37	C•94
11.1	65.	3.24	232.	0.130	0.49	0.36	0.98
11.6	67.	1.17	228.	0.131	0.50	0.37	0.96
12.1	66.	3.23	226.	0.121	0.49	0.36	0.91
5.6	134.	1.42	139.	0.157	0.75	0.51	0.60

FORTSETZUNG ZU TABELLE 193:

KENNZAHL	B/T	L/R	SIGN (N/HH ²)	ALFHA	LAMD1	LAMD2	SIGU
8.5	132.	1.58	161.	0.183	0.74	0.50	0.73
9.5	134.	1.57	150.	0.172	0.75	0.51	0.67
9.6	134.	0.79	162.	0.186	0,75	0.51	0.72
10.2	66.	2.35	219.	0.123	0.49	0.36	0.92
10.3	66.	1.41	205.	0.115	0.49	0.36	0.86
10.4	66.	0.78	204.	0.114	0.49	0.36	0.86

TAE	BELL	E 20) A :

VERSUCHSERGEBNISSE VON SEIDE-WEINGARTEN (41)

KENNZAHL	8 (원원)	T (MM)	L (원원)	E-MODUL 10 ⁵	SIGF (N/MM ²)	PBR (KN)
1	203.0	0.254	406.0	2.09	240.0	25.2
2	203.0	0.254	406.0	2.09	240.0	22.6
3	203.0	0.254	203.0	2.09	240.0	28.4
.14	203.0	0.254	203.0	2.09	240.0	22.5
5	203.0	0.508	405.0	2.09	240.0	123.0
6	203.0	0.508	406.0	2.09	240.0	101.0
7	203.0	0.508	203.0	2.09	240.0	90.7
8	203.0	0.508	203.0	2.09	240.0	117.0
9	76.2	0.203	152.0	2.23	240.0	18.8
10	76.2	0.254	152.0	2.37	240.0	26.2
11	76.2	0.254	381.0	2.09	240.0	23.8
12	76.2	0.254	76.2	2.09	240.0	25.6
13	75.9	0.305	304.0	2.25	240.0	32.7
14	75.9	0.305	152.0	2.25	240.0	33.7

KENNZAHL	R/T	L/R	SIGN (N/MM ²)	ALFHA	LANDI	LAMD2	SIGU
1	799.	2.00	81.	0.511	2.55	1.23	0.34
2	799.	2.00	70.	0.441	2.55	1.23	0.29
3	799.	1.00	88.	0.554	2.55	1.23	0.37
4	799.	1.00	69.	0.439	2.55	1.23	0.29
5	400.	2.00	190.	0.600	1.56	0.87	0.79
6	400.	2.00	156.	0.493	1.56	0.87	0.65
7	400.	1.00	140.	0.442	.1.56	0.87	0.58
8	400.	1.00	181.	0.571	1.56	0.87	0.75
9	375.	1.99	193.	0.538	1.44	0.82	0.81
10	300.	1.99	215.	0.451	1.20	0.71	0.90
11	300.	5.00	196.	0.464	1.28	0.75	0.82
12	300.	1.00	211.	0.499	1.28	0.75	0.88
13	249.	4.01	225.	0.411	1.08	0.66	0.94
_14	249.	2.00	232.	0-424	1.08	0.66	0.97

TABELLE 20B: AUSWERTUNG DER ERGEBNISSE VON SEIDE WEINGARTEN

T	A	В	Ε	L	L	Ξ	2	1
-	••	~		-	-		<u> </u>	

A: VERSUCHSERGEBNISSE VON THYSSEN-ESSLINGER (49)

KENNZAHL	면 (위퍼)	Т (НМ)	L (분원)	E-MODUL 10 ⁵	SIGF (N/MM ²)	PBR (KN)
1	48.5	1.000	100.0	2.00	303.0	98.1
2	48.5	1.000	100.0	2.00	303.0	95.0
3	48.5	1.800	100.0	2.00	303.0	183.0
;4	48.5	1.800	100.0	2.00	303.0	174.0
5	48.5	1.000	100.0	2.00	303.0	98.1
6	48.5	1.000	100.0	2.00	303.0	94.4
7	48.5	1.800	100.0	2.00	303.0	178.0
8	'4'8 . 5	1.800	100.0	2.00	303.0	180.0
9	48.5	1.800	100.0	2.00	303.0	175.0
10	48.5	1.000	100.0	2.00	303.0	91.1
11	48.5	1.800	100.0	2.00	303.0	161.0
12	48.5	1.800	100.0	2.00	303.0	177.0
13	48.5	1.800	100.0	2.00	303.0	180.0
14	48.5	1.000	100.0	2.00	303.0 /	86.8
15	48.5	1.000	100.0	2.00	303.0	86.5
28	52.5	1.000	100.0	2.00	388.0	111.0
29	52.5	1.000	100.0	2.00	388.0	117.0
30	52.5	1.000	100.0	2.00	388.0	114.0
31 `	52.5	1.000	100.0	2.00	388.0	128.0
. 32	52.5	1.800	100.0	2.00	388.0	229.0
33	52.5	1.800	100.0	2.00	388.0	211.0
34	52.5	1.000	100.0	2.00	388.0	135.0
35	52.5	1.800	100.0	2.00	388.0	248.0
36	52.5	1.800	100.0	2.00	388.0	203.0
37	52.5	1.800	100.0	2.00	388.0	208.0
4C	52.5	1.000	100.0	2.00	303.0	101.0
41	52.5	1.000	100.0	2.00	303.0	101.0

,

FORTSETZUNG ZU TABELLE 21A:

KENNZAHL	B	T	L	E-MODUL	SIGF	FBR
	(MM)	(พิพ)	(27)	105	(N/HH ²)	(KN)
42	52.5	1.000	1,00.0	2.00	303.0	99.6
43	52,5	1.000	100.0	2.00	303.0	95.9
44	52.5	1.000	100.0	2.00	303.0	80.1
4,5	52.5	1.000	100.0	2.00	303.0	98.9
46	52.5	1.800	100.0	2.00	303.0	190.0
47	52.5	1.800	100.0	2.00	303.0	195.0
.48	52.5	1.800	100.0	2.00	303.0	182.0
49	52.5	1.800	100.0	2.00	303.0	195.0
50	52.5	1.800	100.0	2.00	303.0	188.0
51	52.5	1.800	100.0	2.00	303.0	196.0
52	52.5	1.000	100.0	2.00	303.0	113.0
53	52.5	1.000	100.0	2.00	364.0	142.0
54	52.5	1000	100.0	2.00	364.0	94.6
55	52.5	1.800	100.0	2.00	364.0	177.0
56	52.5	1.800	100.0	2.00	364.0	194.0
57	52.5	1.000	100.0	2.00	303.0	111.0
58	52.5	1.800	100.0	2.00	303.0	198.0

TABELLE 219: AUSWERTUNG DER EHGEBNISSE VON THYSSEN-ESSL	, INGEH
---	---------

KENNZAHL	R/I	L/R	SIGN (N/MM ²)	ALFHA	LAMD1	LAMD2	SIGU
1	49.	2.06	322.	0.129	0.46	0.35	1.06
2	49.	2.06	312.	0.125	0.46	0.35	1.03
· 3	27.	2.06	334.	0.074	0.33	0.25	1.10
.4	27.	.2.06	317.	0.071	0.33	0.26	1.05
5	49.	2.06	322.	0.129	0.46	0.35	1.06
6	49.	2.06	310.	0.124	0.46	0.35	1.02
7	27.	2.06	325.	0.072	0.33	0.25	1.07
8	27.	2.06	328.	0.073	0.33	0.25	1.08
9	27.	2.06	319.	0.071	0.33	0.26	1.05
10	49.	2.06	299.	0.120	0.46	0.35	0.99
11	27.	2.06	294.	0.065	0.33	0.26	0.97
12	27.	2.06	323.	0.072	0.33	0.26	1.06
13	27.	2.06	328.	0.073	0.33	0.26	1.08
14	49.	2.06	285.	0.114	0.46	0.35	0.94
15	49.	2.06	284.	0.114	0.46	0.35	0.94
28	53.	1.90	336.	0.146	0.54	0.41	0.87
29	53.	1.90	355.	0.154	0.54	0.41	0.91
30	53,	1.90	346.	0.150	0.54	0.41	0.89
31	53.	1.90	388.	0.168	0.54	0.41	1.00
32	29.	1.90	386.	0.093	0.39	0.31	0.99
33	29.	1.90	355.	0.086	0.39	0.31	0.92
34	53.	1.90	409.	0.178	0.54	0.41	1.05
35	29.	1.90	418.	0.101	0.39	0.31	1.08
36	29.	1.90	342.	0.082	0.39	0.31	0.88
37	29.	1.90	350.	0.064	0.39	0.31	0.90
40	53.	1.90	306.	0.133	0.48	0.36	1.01
41	53.	1.90	306.	0.133	0.48	0.35	1.01

FORISEIZUNG ZU TABELLE 21B:

-

•

KENNZAHL	R/T	L/R	SIGN	ALPHA	LAMD1	LAMD2	SIGU
			(8/00-)				
42	53.	1.90	302.	0.131	0.48	0.35	1.00
43	53.	1.90	291.	0.126	0.48	0.36	0.96
44	53.	1.90	243.	0.105	0.48	0.36	0.80
45	53.	1.90	300.	0.130	0.48	0.36	0.99
46	29.	1.90	320.	0.077	0.34	0.27	1.06
47	29.	1.90	330.	0.080	0.34	0.27	1.09
48	29.	1.90	307.	0.074	0.34	0.27	1.01
49	29.	1.90	328.	0.079	0.34	0.27	1.08
50	29.	1.90	317.	0.076	0.34	0.27	1.04
51	29.	1.90	330.	0.080	0.34	0.27	1.09
52	53.	1.90	343.	0.149	0.48	0.36	1.13
53	53.	1.90	430.	0.187	0.53	0.40	1.18
54	53.	1.90	287.	0.124	0.53	0.40	0.79
55	29.	1.90	298.	0.072	0.38	0.30	0.82
56	29.	1.90	327.	0.079	0.38	0.30	0,90
57	53.	1.90	336.	0.146	0.48	0.36	1.11
58	- 29.	1.90	333.	0.080	0.34	0.27	1.10

TABELLE 22A: VERSUCHSERGEBNISSE VON KANEMITSU-NOJIMA [21]

KENNZAHL	R	T	·L	E-MODUL	SIGF	SIGN
	(22)	(<u>א</u> א)	(22)	105	(N/MM ²)	(N/HH ²)
1	162.0	0.053	222.0	2.31	240.0	5.5
2	162.0	0.053	128.0	2.31	240.0	7.2
3	162.0	0.053	223.0	2.31	240.0	7.4
4	162.0	0.053	76.9	2.31	240.0	8.5
5	162.0	0.053	76.9	2 • 31	240.0	9.0
6	162.0	0.053	52.3	2.31	240.0	11.0
7	162.0	0.053	26•7	2.31	240.0	20.0
8.	162.0	0.053	13.8	2.31	240.0	31.0
9	162.0	0.053	9.4	2.31	240.0	35.0
10	162.0	0.053	€.2	2.31	240.0	44.0
11	162.0	0.053	5.3	2.31	240.0	45.0
12	162.0	0.056	38.1	2.31	240.0	14.0
13	162.0	0.061	40.2	2+31	240.0	13.0
14	162.0	0.063	128.0	2.31	240.0	5.5
15	162.0	0.063	178.0	2.31	240.0	5.5
16	162.0	0.063	178.0	2.31	240+0	5.5
17	162.0	0.079	228.0	2.20	240.0	15.0
18	162.0	0.079	77.7	2.20	240.0	17.0
19	162.0	0.079	76.1	2.20	240.0	18.0
20	162.0	0.079	39.7	2.20	240.0	25.0
21	162.0	0.079	23.5	2.20	240.0	34.0
22	162.0	0.079	24.3	2.20	240.0	38.0
23	162.0	0.079	5.7	2.20	240.0	68.0
24	162.0	0.079	5.7	2.20	240.0	77.0
25	162.0	0.081	228.0	2.20	240.0	9.5
25	162.0	0.081	228.0	2.20	240.0	14.0
27	162.0	0.081	13.8	2.20	240.0	52.0

FORTSETZUNG ZU TABELLE 22A:

28	162.0	0.084	39.7	2.20	240.0	22.0
29	162.0	0.086	129.0	2.20	240.0	13.0
30	162.0	0.086	228.0	2.20	240.0	13.0
31	162.0	0.086	13.0	2.20	240.0	48.0
32	162.0	0.087	25.1	2.20	240.0	32.0
33	162.0	0.089	170.0	2.20	240.0	12.0
34	162.0	0.089	170.0	2.20	240.0	12.0
35	162.0	0.089	170.0	2.20	240.0	12.0
36	162.0	0.089	25.1	2.20	240.0	30.0
37	162.0	0.099	51.0	2.20	240.0	27.0
38	162.0	0.101	129.0	2.20	240.0	18.0
39	162.0	0.101	5.7	2.20	240.0	87.0
40	162.0	0.101	14.6	2.20	240.0	88.0
41	162.0	0.104	128.0	2.20	240.0	17.0
42	162.0	0.104	76.9	2.20	240.0	19.0
43	162.0	0.104	51.0	2.20	240.0	26.0
44	162.0	0.104	51.0	2.20	240.0	27.0
45	162.0	0.107	130.0	2.20	240.0	.17.0
45	162.0	0.107	129.0	2.20	240.0	27.0
47	162.0	0.107	39 .7	2.20	240.0	35.0
48	162.0	0.107	24.3	2.20	240.0	52.0
49	162.0	0.107	14.6	2.20	240.0	77.0
50	152.0	0.130	227.0	2.17	240.0	29.0
51	162.0	0.130	39.7	2.17	240.0	50.0
52	162.0	0.132	130.0	2.17	240.0	24.0
53	152.0	0.132	74.5	2.17	240.0	32.0
54	162.0	0.132	7.4	2.17	240.0	104.0
56	162.0	0.135	98.8	2.17	240.0	32.0

FORTSETZUNG ZU TABELLE 22A:

-57	162.0	0.135	26.2	2.17	240.0	65.0
58	162.0	0.135	14.6	2.17	240.0	73.0
59	162.0	0.135	13.8	2.17	240.0	96.0
60	162.0	0.140	179.0	2.17	240.0	24.0
61	162.0	0.140	179.0	2.17	240.0	24.0
62.	162.0	0.140	229.0	2.17	240.0	24.0
63	162.0	0.140	229.0	2.17	- 240.0	27.0
64	162.0	0.140	51.0	2.17	240.0	39.0
65	162.0	0.145	229.0	2.17	240.0	26.0
66	162.0	0.147	38.9	2.11	240.0	60.0
67	162.0	0.147	23.5	2.11	240.0	80.0
68	162.0	0.150	127.4	2.11	240.0	47.0
69	162.0	0.150	127.4	2.11	240.0	52.0
70	162.0	0.150	52.6	2.11	240.0	55.0
71	162.0	0.150	52.6	2.11	240.0	59.0
72	162.0	0.150	15.5	2.11	240.0	111.0
73	162.0	0.154	75.3	2.11	240.0	39.0
74	162.0	0.154	73.7	2.11	240.0	40.0
75	162.0	0.154	5.5	2.11	240.0	168.0
76	162.0	0.160	6.5	2.11	240.0	165.0
77	162.0	0.210	25.9	2.00	240.0	123.0
78	162.0	0.216	223.0	2.00	240.0	54.0
79	162.0	0.216	177.0	2.00	240.0	56.0
80	162.0	0.216	74.5	2.00	240.0	58.0
81	162.0	0.216	128.7	2.00	240.0	64.0
82	152.0	0.216	222.0	2.00	240.0	70.0
83	162.0	0.216	222.0	2.00	240.0	76.0
84	162.0	0.228	127.0	2.00	240.0	57.0

FORTSETZUNG ZU TABELLE 22A:

85	162.0	0.228	50.2	2.00	240.0	98.0
86	162.0	0.231	41.3	2.00	240.0	118.0
87	152.0	0.231	13.0	2.00	240.0	176.0
88	162.0	0.231	15.4	2.00	240.0	200.0
89	162.0	0.231	5.8	2.00	240.0	200.0

TABELLE 22B: AUSWERTUNG DER EEGEENISSE VON KANEMITSU-NOJIMA

KENNZAHL	R/I	L/R	SIGN (N/MM ²)	ALEHA	LAMD1	LAMD2	SIGU
1	3057.	1.37	6.	0.120	6.49	6.49	0.02
2.	3057.	0.79	7.	0.157	6.49	6.49	0.03
3	3057.	1.38	7.	0.162	6.49	6.49	0.03
4	3057.	0.47	9•	0.186	6.49	6.49	0.04
5	3057.	0.47	9.	0.197	6.49	6.49	0.04
6	3057.	0.32	11.	0.241	6.49	6.49	0.05
7	3057.	0.16	20.	0.437	6.49	6.49	0.08
8 👾	3057.	0.09	31.•	0.678	6.49	6.49	0.13
9	3057.	0.06	35.	0.765	6.49	6.49	0.15
10	3057.	0.04	44.	0.962	6.49	6.49	0.18
11	3057.	0.03	46.	1.006	6.49	6.49	0.19
12	2893.	0.24	14.	0.290	6.23	6.23	0.06
13	2656.	0.25	13.	0.247	5.85	5.85	0.05
14	2571.	0.79	б.	0.101	5.71	5.71	0.02
15	2571.	1.10	б.	0.101	5.71	5.71	0.02
16	2571.	1.10	б.	0.101	5.71	5.71	0.02
17	2051.	1.41	15.	0.231	4,95	4.95	0.06
18	2051.	0.48	17.	0.262	4.95	4.95	0.07
19	2051.	0.47	18.	0.277	4.95	4.95	0.07
20	2051.	0.25	25.	0.385	4.95	4.95	0.10
21	2051.	0.15	. 34 .	0.524	4.95	4.95	0.14
22	2051.	0.15	38.	0.585	4.95	4.95	0.16
23	2051.	0.04	68.	1.048	. 4.95	4.95	0.28
24	2051.	0.04	77.	1.186	4.95	4.95	0.32
25	2000.	1.41	10.	0.143	4.86	4.85	0.04
26	2000.	7.41	14.	0.210	4.86	4.86	0.06
27	2000.	0.09	52.	0.781	4.86	4.86	0.22

FORTSETZUNG ZU TABELLE 223:

A	Y	ył	r				ſ
KENNZAHL	B/T	L/R	SIGN (N/MM ²)	ALPHA	LAMD1	LAMD2	SIGU
28	1929.	0.25	22.	0.319	4.73	4.73	0.09
29	1884.	0.80	13.	0-184	4.65	4.65	0.05
30	1884.	1,41	13.	0.184	4.65	4.65	0.05
31	1884.	0.08	48.	0.679	4.65	4.65	0.20
32	1862.	0.15	32.	0.448	4.61	4.61	0.13
33	1820.	1.05	. 12.	0.164	4.53	4.53	0.05
34	1820.	1.05	12.	0.164	4.53	4.53	0.05
35	1820.	1.05	12.	0.164	4.53	4.53	0.05
36	1820.	0.15	30.	0.410	4.53	4.53	0.13
37	1636.	0.31	27.	0.332	4.19	4.19	0.11
38	1604.	0.80	18.	0.217	4.13	4.13	0.07
39	1604.	0.04	87.	1.048	4.13	4.13	0,36
40	1604.	0.09	88.	1.060	4.13	4.13	0.37
41	1558.	0.79	17.	0.199	4.04	4.04	0.07
42	1558.	0.47	19.	0.222	4.04	4.04	0.08
43	1558.	0.31	25.	0.304	4.04	4.04	0.11
. 44	1558.	0.31	27.	0.316	4.04	4.04	0.11
45	1514.	0.80	17.	0.193	3.96	3.96	0.07
46	1514.	0.80	27.	0.307	3.96	3.96	0.11
47	1514.	0.25	36.	0.410	3.96	3.96	0.15
48	1514.	0.15	52.	0.592	3.96	3.96	0.22
49	1514.	0.09	77.	0.876	3.96	3.96	0.32
50	1246.	1.40	29.	0.275	3.46	3.46	0.12
51	1246.	0.25	50.	C.475	3.46	3.46	0.21
52	1227.	0.80	24.	0.224	3.42	3.42	0.10
53	1227.	0.46	32.	0.299	3.42	3.42	0.13
54	1227.	0.05	104.	0.972	3.42	3.42	0.43
56	1200.	0.61	32.	0.292	3.36	3.36	0.13

FORTSETZUNG ZU TABELLE 22B:

KENNZAHL	R/I	L/R	SIGN (N/MM ²)	ALFHA	LAMD1	LAMD2	SIGU
. 57	1200.	0.15	65.	0.594	3.36	3.36	0.27
58	1200.	0.09	73.	0.667	3.36	3.36	0.30
59	1200.	0.09	96.	0.877	3.36	3.36	0.40
60	1157.	1.10	24.	0.212	3.27	3.27	0.10
61	1157.	1.10	24.	0.212	3.27	3.27	0.10
62	1157.	1.41	24.	0.212	3.27	3.27	0.10
63	1157.	1.41	27.	0.238	3.27	3.27	0.11
64	1157.	0.31	39.	0.344	3.27	3.27	0.16
65	1117.	1.41	26.	0.221	3.19	3.19	0.11
66	1102.	0.24	60.	0.518	3.20	3.20	0.25
67	1102.	0.15	80.	0.691	3.20	3,20	0.33
68	1080.	0.79	47.	0.398	3.16	3.16	0.20
69	1080.	0.79	52.	0.440	3.16	3.16	0.22
70	1080.	0.32	55.	0.465	3.16	3.16	0.23
71	1080.	0.32	59.	0.499	3.16	3.16	0.25
72	1080.	0.10	111.	0.939	3.16	3.16	0:46
73	1052.	0.46	39.	0.321	3.10	3.10	0.16
74	1052.	0.45	40.	0.330	3.10	3.10	0.17
75	1052.	0.04	168.	1.384	3.10	3.10	0.70
76	1012.	0.04	165.	1.309	3.01	3.01	0.69
77	771.	0.16	123.	0.784	2.54	2.54	0.51
78	750.	1.38	54.	0.335	2.49	2.49	0.22
79	750.	1.09	56.	0.347	2.49	2.49	0.23
80	750.	0.46	58.	0.360	2.49	2.49	0.24
81	750.	0.79	64.	0.397	2.49	2.49	0.27
82	750.	1.37	70.	0.434	2.49	2.49	0.29
83	750.	1.37	76.	0.471	2.49	2.49	0.32
84	711.	0.78	57.	C.335	2.39	2.39	0.24

KENNZAHL	R/T	L/R	SIGN (N/MH ²)	ALEHA	LAMD1	LAHD2	SIGU
85	711.	0.31	98.	0.575	2.39	2.39	0.41
86	701.	0.25	118.	0.684	2.37	2.37	0.49
87	701.	0.08	176.	1.020	2.37	2.37	0.73
88	701.	0.10	200.	1.159	2.37	2.37	0.83
89	701.	0.04	200.	1.159	2.37	2.37	0.83

FORTSETZUNG ZU TABELLE 223:

.

.

,

.

- [1] American Iron and Steel Institute (AISI): Specifications for the Design of Light-Gauge Cold-Formed Steel Structural Members. Light-Gauge Cold-Formed Steel Design Manual, 1968.
- [2] American Petroleum Institute (API): Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms. API RP 2A, 11th ed., 1980.
- [3] American Water Works Association (AWWA): AWWA Standard for Steel Tanks - Standpipes, Reservoirs and Elevated Tanks For Water Storage, AWWA D 100-67, 1967.
- [4] American Society of Mechanical Engineers (ASME): ASME Boiler and Pressure Vessel Code. Case N284, Section III, Division I, Class MC, 1980.
- [5] Ballerstedt, V.W., Wagner, H.: Versuche über die Festigkeit dünner unversteifter Zylinder unter Schub- und Längskräften. Luftfahrtforschung, Vol. 13, Nr. 9, 1936.
- [6] Bornscheuer, F.W.: Beulsicherheitsnachweis für Schalen (DASt-Richtlinie 013). Die Bautechnik 58, 1981.
- [7] Bornscheuer, F.W.: Plastisches Beulen von Kreiszylinderschalen unter Axialbelastung. Der Stahlbau, Heft 9, 1981.
- [8] Bridget, F.J., Jerome, C.C., Vosseller, A.B.: Some New Experiments on Buckling of Thin-Wall Constructions. Trans. Am. Soc. of Mech. Eng., Vol. 56, No. 8, 1934.
- [9] British Standards BS 5500. Specifications for Unfired Fusion Welded Pressure Vessels. 1976.
- [10] Clark, J.W., Holt, M.: Discussions on the Effect of Imperfections on Buckling of Thin Cylinders and Columns under Axial Compression. Journ. of Applied Mechanics 17, 1950.

- [11] Clark, J.W., Rolf, R.L.: Design of Aluminium Tubular Members. ASCE, Journ. of the Struct. Div., Vol. 90, No. ST6, Proceed. Paper 4184, 1964.
- [12] Dahl, W., Belche, P.: Kennzeichnung des Stahls durch die statische Streckgrenze bei Verwendung im Hochbau. BMFT-Forschungsbericht S044, 1982.
- [13] Deutscher Ausschuß für Stahlbau (DASt): Richtlinie 013 -Beulsicherheitsnachweise für Schalen. Stahlbau-Verlag, Köln, 1980.
- [14] Det Norske Veritas (DNV): Rules for the Design, Construction and Inspection of Offshore Structures. 1977.
- [15] Donnell, L.H.: New Theory for the Buckling of Thin Cylinders under Axial Compression and Bending. Trans. ASME, Vol. 56, No. 11, 1934.
- [16] European Convention for Constructional Steelwork (ECCS): European Recommendations for Steel Construction. Section 4.6, Buckling of Shells, 1981.
- [17] Esslinger, M., Geier, G.: Bemerkungen zur DASt-Richtlinie 013. Der Stahlbau, 1982.
- [18] Herzog, M.: Die Traglast unversteifter, dünnwandiger Stahlrohre mit Imperfektionen und Eigenspannungen nach Versuchen. Der Stahlbau, Heft 8, 1978.
- [19] Herzog, M.: Die Tragfähigkeit unversteifter und versteifter Kreiszylinderschalen aus Baustahl. Der Stahlbau, Heft 2, 1981.
- [20] Holmes, M.: Compression Tests on Thin-Walled Cylinders. Aero. Quarterly, Vol. 12, No. 2, 1951.

- [21] Kanemitsu, S., Nojima, N.M.: Axial Compression Tests of Thin Circular Cylinders. Thesis, Cal. Inst. of Tech., Pasadena, 1939.
- [22] Kappus, R.: Druck-, Biege- und Torsionsversuche mit Holmrohren aus Stahl AERO 70. Jahrbuch der Deutschen Luftfahrtforschung, 1939.
- [23] Kato, B., Akiyama, H., Suzuki, H.: Plastic Local Buckling of Structural Tubes Subjected to Axial Compression. Transact. Architectural Inst. of Japan, No. 204, 1973.
- [24] Kato, B.: Local Buckling of Steel Circular Tubes in Plastic Region. Proceed. of the Int. Coll. on Stability of Structures under Static and Dynamic Loads, 1977.
- [25] Koch, K.-F.: Zur Bestimmung der Fließspannungen für die Auswertung von Versuchen an Stahlbauteilen. Materialprüfung 18, 1976.
- [26] Lindenberger, H.: Bericht über Druckversuche an Kreiszylindern. Fortschritte im Stahlbrückenbau. Stahlbau-Verlag, Köln, 1958.
- [27] Lundquist, E.E.: Strength Tests of Thin-Walled Duraluminum Cylinders in Compression. NACA Rep. No. 473, 1933.
- [28] Marshall, P.W.: Design Guide for Structural Steel Pipes. Column Research Council Proceed., 1971.
- [29] Miller, C.: Buckling Stresses for Axially Compressed Cylinders. Journ. of the Struct. Div., ASCE, Vol. 103, ST3, 1977.
- [30] Miller, C.: Buckling Design Methods for Steel Structures.2nd Int. Symposium Integrity of Offshore Structures, 1981.
- [31] ÖNORM B4650, Teil 4: Stahlbau Beulung von Kreiszylinderschalen. 1977.

- [32] Ostapenko, A.: Local Buckling of Welded Tubular Columns. Int. Colloquium on Stability of Structures under Static and Dynamic Loads, 1977.
- [33] Pflüger, A.: Zur praktischen Berechnung der axialgedrückten Kreiszylinderschale. Der Stahlbau, Heft 6, 1963.
- [34] Pietzko, G., Janzon, W.: Zur Frage der Hochbeullast plastisch beulender Zylinder. Schalenbeultagung/M. Esslinger, Braunschweig, 1975.
- [35] Plantema, F.J.: Collapsing Stress of Circular Cylinders and Round Tubes. Nat. Luchtraat Lab. Rep., Amsterdam, 1946.
- [36] Robertson, A.: The Strength of Tubular Struts. Proceed. of the Royal Soc. of London, Vol 121, Series A, London, 1928.
- [37] Saal, H.: Buckling of Circular Cylindrical Shells under Combined Axial Compression and Internal Pressure. ECCS, Stability of Steel Structures, Preliminary Report, Liège, 1977.
- [38] Scheer, J., Maier, W., Bahr, G.: Basisversuche zur statischen Fließgrenze. Bericht Nr. 6081 des Instituts für Stahlbau, Technische Universität Braunschweig, 1982.
- [39] Schmidt, H., Clausnitzer, W.: Plastisches Beulverhalten axial gedrückter Trapezhohlstreifen. Der Stahlbau, Heft 1, 1984.
- [40] Schulz, U.: Zur Beulstabilität anisotroper Zylinderschalen aus glasfaserverstärktem Kunststoff (GFK). Der Bauingenieur, Heft 5, 1972.
- [41] Schulz, U.: Probleme bei der Anwendung von duroplastischen Kunststoffen im konstruktiven Ingenieurbau. Berichte der Versuchsanstalt für Stahl, Holz und Steine, Universität Karlsruhe, 3. Folge, Heft 9

- [42] Schulz, U.: Der Stabilitätsnachweis bei Schalen. Berichte der Versuchsanstalt für Stahl, Holz und Steine, Universität Karlsruhe, 4. Folge, Heft 2, 1981.
- [43] Schulz, U.: Das Stabilitätsverhalten von torusförmigen Schalen. Der Stahlbau, Heft 11, 1983.
- [44] Seide, P., Weingarten, V., Morgan, E.: Elastic Stability of Thin-Walled Cylindrical and Conical Shells under Axial Compression. AIAA Journ., Vol. 3, 1965.
- [45] Sherbourne, A.N., Korol, R.M.: Buckling of Cylindrical Shells under Axial Compression. Proceed. ASCE, Vol. 93, No. 5, 1967.
- [46] SIA Nr. 161, Schweizerische Norm für Stahlbauten. 1979.
- [47] Steinhardt, O., Schulz, U.: Zum Beulverhalten von Kreiszylinderschalen. Schweizerische Bauzeitung 89, 1971.
- [48] Stephens, M., Kulak, G., Montgomery, C.: Local Buckling of Thin-Walled Tubular Steel Members. Struct. Eng. Report No. 103, University of Alberta, 1982.
- [49] Transport and Road Research Laboratory (TRRL): Supplementary Report No. 254 - Recommended Standard Practices for Structural Testing of Steel Models. Crowthorne, Berkshire, 1977.
- [50] Vandepitte, D., Rathé, J.: Buckling of Circular Cylindrical Shells under Axial Load in the Elastic-Plastic Region. Der Stahlbau, Heft 12, 1980.
- [51] Wilson, W.M., Newmarck, N.M.: The Strength of Thin Cylindrical Shells as Columns. Univ. of Illinois Eng. Exp. Bulletin Nr. 255, 1933.