Bauforschung

Zur Qualitätssicherung mechanischer Eigenschaften von Baustahl

T 1987

¹ Fraunhofer IRB Verlag

T 1987

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG INSTITUT FÜR STAHLBAU

Abteilung Stahlbau: Prof. Dr.-Ing. J. Scheer

Bericht Nr. 6087/1

Zur Qualitätssicherung mechanischer Eigenschaften von Baustahl

1987

INSTITUT FÜR STAHLBAU DER TECHNISCHEN UNIVERSITÄT BRAUNSCHWEIG Beethovenstraße 51 · 3300 Braunschweig Dieser Bericht entstand am Institut für Stahlbau der Technischen Universität Braunschweig im Rahmen des Forschungsvorhabens "Sammlung von Daten über das Festigkeitsverhalten von Baustählen für den Stahlhochbau". Das Vorhaben wurde vom Institut für Bautechnik. Berlin, durch eine Sachmittelbeihilfe gefördert.

Die Autoren möchten sich auch an dieser Stelle für die Förderung bedanken.

Der Leiter der Abteilung Stahlbau:

Prof. Dr.-Ing. J. Scheer

Der Projektleiter:

Dr.-Ing. W. Maier

Der Sachbearbeiter:

Dr. Ing. M. Rohde

Die Berichte können bezogen werden vom Institut für Stahlbau der Technischen Universität Braunschweig, Beethovenstr. 51, 3300 Braunschweig.

On the determination of the mechanical behaviour of steels for general structural purposes

In future standards steel constructions will be calculated more realistically. In some cases the safety might be reduced. This can be accounted for, if the quality of the steels is sufficiently secured and its mechanical behaviour is described correctly. In this thesis the quality of the steels, which is used in the Federal Republic of Germany, is proved on a statistic basis. This thesis is essentially devided into five parts:

1 The interpretation of certificates on material tests About 3500 of these certificates are interpreted with the aim, to determine statistical statements.

2 An external examination

About 400 specimens are representatively taken from the steel processing industries in order to examine them statistically.

3 The development of a new test standard

A new test standard is developed to determine the mechanical properties. It also includes, because of the further development of the evidence methods, data which is not normed till today.

4 The blind-examination

The quality of the tests of testing laboratories is tested to examine the reliability of the data declared in the certificates. In case of positive results the new test standard could be tested in the same time.

5 The suggestion of a model for standardized stress-straincurves

A model for the calculation of the distribution of the stress for any strain is developed. With this the calculations are based on the statistical interpretation of the results of the foreign tests of the steel.

RESUME

"Description du comportement mécanique de l'acier de construction"

Selon les normes futures, les constructions métalliques seront soumises à une vérification plus réaliste. Dans certains cas, il sera possible de réduire les distances de sécurité. Cette réduction ne sera justifiée que si la qualité des aciers est suffisamment assurée et que si leur comportement mécanique est décrit avec justesse.

Au sein du projet de recherche présent, il s'agit de tester, sur une base statistique, la qualité des aciers qui sont utilisés, en ce moment, dans les entreprises de construction métallique de l'Allemagne Fédérale.

Le rapport se compose en gros de 5 parties :

1. d'une évaluation de certificats

Environ 3500 certificats d'essais des matériaux ont été évalués dans le but d'en tirer des conclusions en matière de statistique sur la répartition des valeurs caractéristiques des matériaux.

2. d'un essai de matériaux étrangers

Environ 400 échantillons sont prélevés dans des entreprises de construction métallique, puis testés pour déterminer les valeurs caractéristiques du matériau et finalement évalués sous l'angle statistique.

3. du développement d'une méthode d'essai

Une méthode d'essai est développée pour déterminer les valeurs caractéristiques du matériau. Du fait du développement continuel des modes de vérification, elle comprend aussi des valeurs qui ne sont toujours pas normées.

4. d'un essai clandestin

â

La qualité des essais exécutés par les laboratoires d'essai des matériaux est testée pour étudier la fiabilité des valeurs caractéristiques indiquées sur les certificats. En cas de résultat positif, la méthode d'essai développée a pu être, par là-même, controlée.

5. de la proposition d'un modèle de courbes de travail normées

Un modèle de calcul de la fonction de répartition des contraintes pour des dilatations quelconques a été développé. Pour cela, l'exploitation statistique des résultats de l'essai de matériaux étrangers est utilisée comme base du calcul.

INHALTSVERZEICHNIS

		Seite
INHALTS	SVERZE I CHN I S	I
LITERAT	TURVERZE I CHNIS	VI
BEZEICH	INUNGEN	XII
1	EINLEITUNG	1
2	AUSWERTUNG VON BESCHEINIGUNGEN ÜBER MATERIALPRÜFUNG	<u>EN</u> 4
2.1	ALLGEMEINES	4
2.2	QUALITATSSICHERUNG	4
2.3	GRUNDGESAMTHEIT	5
2.3.1	Definition der Grundgesamtheit	5
2.3.2	Unterteilung der Grundgesamtheit	6
2.4	AUFGENOMMENE BESCHEINIGUNGEN	9
2.4.1	Auswahl der Bescheinigungen	9
2.4.2	Bestandsaufnahme	9
2.5	BERECHNUNGSGRUNDLAGEN	11
2.5.1	Verteilungsfunktionen	11
2.5.2	Anpassungstest	14
2.5.3	Fraktilwerte	16
2.5.4	Bestimmung der Verteilungsparameter mit der	
	Maximum-Likelihood-Methode	16
2.5.5	Korrelation	17
2.5.6	Regression	18
2.6	VERTEILUNGEN	19
2.6.1	Grenzwerte für die chemische Zusammensetzung	
	und die Festigkeitkennwerte der Stähle	19
2.6.2	Abhängigkeit der Festigkeitskennwerte von der	
	Erzeugnisform	20

2.6.3	Unterteilung der Bescheinigungen	22
2.6.4	Auswertung der Festigkeitskennwerte	26
2.6.4.1	Allgemeines	26
2.6.4.2	Zu den Tabellen	29
2.6.4.3	Obere Streckgrenze R _{eH}	31
2.6.4.4	Zugfestigkeit R _m	35
2.6.4.5	Bruchdehnung A ₅	37
2.6.4.6	Kerbschlagarbeit A _k	37
2.6.5	Auswertung der Ergebnisse der chemischen Analyse	40
2.7	KORRELATION	44
2.8	REGRESSIONSRECHNUNG	46
2.8.1	Einflüsse auf die Festigkeitskennwerte	46
2.8.2	Berechnung der Regressionskoeffizienten	48
3	STICHPROBENENTNAHME FUR EINE FREMDPRÜFUNG	52
3.1	ALLGEMEINES	52
3.2	AUSWAHL DER STAHLBAUBETRIEBE	52
3.2.1	Zur statistischen Stichprobe	52
3.2.2	Systematische Einflüsse bei der Stichprobenentnahme	53
3.2.3	Schichtung	55
3.3	STI CHPROBENANWE I SUNG	55
3.4	ZUR QUALITATSSICHERUNG	57
3.4.1	Geforderte Qualitätssicherung	57
3.4.2	Zur Qualitätssicherung in den Betrieben	59
4	PRUFKORPERENTNAHME UND PRUFMODUS FUR ZUGVERSUCHE	62
4.1	PRUFKÖRPER	62
4.1.1	Allgemeines	62
4.1.2	Geometrie	62
4.1.3	Zugproben	62
4.1.4	Kerbschlagproben	64
4.2	PRUFMODUS FUR ZUGVERSUCHE	64

III

5	BLINDPRUFUNG	67
5.1	ALLGEMEINES	67
5.2	BLINDPRUFUNG UND VERGLEICH ZUM PRUFMODUS	68
5.3	MEHRFACHE PRÜFUNG VON PROBEN AUS EINER SCHMELZE	77
5.3.1	Allgemeines	77
5.3.2	Vergleich der Ergebnisse	78
5.4	VERGLEICH BLINDPRUFUNG - MEHRFACHPRUFUNG	81
6	AUSWERTUNG DER ERGEBNISSE DER FREMDPRUFUNG	84
6.1	ALLGEMEINES	84
6.2	BESTANDSAUFNAHME	84
6.3	VERWECHSELUNGEN UND AUSREISSER	85
6.4	ELASTISCHER BEREICH	87
6.5	FLIEBBEREICH	91
6.5.1	Definition der Streckgrenze	91
6.5.2	Auswertung der Ergebnisse für die Streckgrenze	92
6.5.3	Abhängigkeit der Streckgrenze von der Dehnge-	
	schwindigkeit	103
6.5.3.1	Allgemeines	103
6.5.3.2	Ist die Größe des Spannungsabfalls ∆σ von der Stahlsorte abhängig?	105
6.5.3.3	Kann die statische Streckgrenze mit einfach zu er-	
	mittelnden Kenngröβen mit ausreichender Genauig- keit bestimmt werden ?	106
6.5.3.4	Kann eine Beziehung zwischen unterer Streckgrenze	
	und der Dehngeschwindigkeit angegeben werden, die	
	es erlaubt, die statische Streckgrenze mit aus-	108
	reichender Genauigkeit zu bestimmen ?	
6.6	UBERGANG VOM FLIESSBEREICH IN DEN VERFESTIGUNGSBE-	
	REICH	109
6.7	VERFESTIGUNGSBEREICH	112
6.7.1	Allgemeines	112
6.7.2	Zugfestigkeit	113
6.7.3	Gleichmaß- und Bruchdehnung	115

6.7.4	Beschreibung des Verfestigungsbereiches mit der	
	Ludwikgleichung	116
6.8	KERBSCHLAGARBEIT	119
6.9	ABHÄNGIGKEIT DER WERKSTOFFKENNWERTE VON DER ER-	
	ZEUGNISFORM	120
6.9	KORRELATION	121
7	VERGLEICH DER ERGEBNISSE AUS BESCHEINIGUNGEN UND	
	FREMDPRUFUNG	122
8	MODELL DER SPANNUNGS DEHNUNGS-KURVE VON BAUSTAHL	127
8.1	ALLGEMEINES	127
8.2	VERTEILUNGSFUNKTION DER SPANNUNG IN ABHÄNGIGKEIT	
	VON DER DEHNUNG	127
8.2.1	Allgemeines	127
8.2.2	Zuordnung	128
8.2.2.1	Allgemeines	128
8.2.2.2	Übergang vom elastischen Bereich in den Flieβ-	
	bereich	130
8.2.2.3	Übergang vom Flieβ- in den Verfestigungsbereich	130
8.2.2.4	Überschreitung der Gleichmaßdehnung	131
8.3	BESCHREIBUNG DER BEREICHE	131
8.3.1	Elastischer Bereich	131
8.3.2	Fließbereich	131
8.3.3	Verfestigungsbereich	132
8.4	VERTEILUNGSFUNKTION DER SPANNUNG BEI BEKANNTER	
	DEHNUNG	133
8.5	PARAMETER DER SPANNUNGS-DEHNUNGS-KURVE	134
8.6	DARSTELLUNG DER SPANNUNGS-DEHNUNGS-KURVE	135
8.7	ZUSAMMENFASSUNG	140
9	ZUSAMMENFASSUNG	141

<u>ANHANG</u>

A1	PRUFMODUS UND AUSWERTUNG DER ZUGVERSUCHE	144
A1.1	DEHNMEBGERAATE	144
A1.2	PRUFANLAGE	145
A1.2.1	Prüfeinrichtung	145
A1.2.2	Eichung	146
A1.3	AUSWERTUNG DER ZUGVERSUCHE	148
A1.3.1	Allgemeines	148
A1.3.2	Elastischer Bereich	149
A1.3.3	Untere Streckgrenze	150
A1.3.4	Statische Streckgrenze	152
A1.3.5	Entlastung	155
A1.3.6	Übergang Flieβbereich in den Verfestigungsbereich	156
A1.3.7	Verfestigungsbereich	159
A1.4	AUSWERTUNG EINES ZUGVERSUCHES	162

*

A2.1	ALLGEMEINES	167
A2.2	DATENBANK "BESCHEINIGUNGEN"	167
A2.3	DATENBANK "FREMDPRUFUNG"	168

LITERATUR

- Scheer, J., Maier, W., Paustian, O.: Planung und Auswertung von Versuchen an geschraubten Verbindungen, Teil 1, Herstellung, Basisvariable, Gütekontrolle von geschraubten Verbindungen sowie statistische Planung und Auswertung. Braunschweig, Bericht Nr. 6065 des Instituts für Stahlbau der Technischen Universität Braunschweig 1985
- Fisz, M.: Wahrscheinlichkeitsrechnung und mathematische Statistik. VEB Deutscher Verlag der Wissenschaften, 4. Auflage, Berlin 1966
- 3. Rasch, D.: Elementare Einführung in die mathematische Statistik. VEB Deutscher Verlag der Wissenschaften, Berlin 1968
- Sachs, L.: Angewandte Statistik. Springer Verlag, 5.
 Auflage, Berlin, Heidelberg, New York 1978
- 5. Schüeller, G.J.: Einführung in die Sicherheit und Zuverlässigkeit von Tragwerken. Verlag Wihelm Ernst & Sohn, Berlin, München 1981
- Verein Deutscher Eisenhüttenleute: Werkstoffkunde Stahl.
 Band 1 und 2. Verlag Stahleisen m.b.H., Düsseldorf 1985
- 7. Scheer, J., Maier, W., Bahr, G.: Basisversuche zur statischen Streckgrenze. Braunschweig, Bericht Nr. 6081 des Instituts für Stahlbau der Technischen Universität Braunschweig 1982
- Hall, E.O.: Yield point phenomena in metals and alloys.
 Australia, University of Newcastle
- 9. Dahl, W., Rees, H.: Die Spannungs- Dehnungs Kurve von Stahl, Verlag Stahleisen m.b.H., Düsseldorf 1976

10. Dahl,W., Belche, F.: Kennzeichnung des Stahls durch die statische Streckgrenze bei Verwendung im Hochbau. Aachen, Forschungsbericht des Instituts für Eisenhüttenkunde der Rheinisch Westfälischen Hochschule Aachen 1982

- 11. Van Rooyen, G.T.: Basic factors which infuence the lüders strain during dicontinous yielding. Materials Science and Engineering 7(1971) 37-48
- 12. Van Rooyen, G.T.: The stress and strain distribution in a propagating lüders front accompanying the yield point phenomenon in iron. Materials Science and Engineering 3(1968-69) 105-117
- Moser, M.: Grundsätzliches zur Streckgrenze. In der Festgabe zum achtzigsten Geburtstag von Carl von Bach, VDI-Verlag GmbH, Berlin 1927, 74-79
- 14. Scheer, J., Maier, W.: Zum Einfluß der statischen Streckgrenze auf die Knicklast mittelschlanker Stäbe. In der Festschrift Roik, Mitteilung Nr. 84-3 des Instituts für Konstruktiven Ingenieurbau, Ruhr Universität Bochum, September 1984, 298-315
- 15. Scheer, J., Maier, W., Rohde, M.: Basisversuche zur statischen Streckgrenze. Stahlbau 3(1987) 79 - 84
- 16. Regec, J.E., Huang, J.S., Chen, W.F.: Mechanical properties of C-Series connections. Bethlehem, Pennsylvania, Lehigh University, Fritz Engineering Laboratory Report No. 333.17, April 1972
- 17. Desai, S.: Tension testing procedures. Bethlehem, Pennsylvania, Lehigh University, Fritz Enineering Laboratory Report No. 237.44, February 1969

- 18. Alpsten, G.A.: Variations in Mechanical and Cross-sectional Properties of Steel. Lehigh University, Vol. Ib, Proceedings, International Conference on Planning and Design of tall buildings, August 1972, 21-26
- Reichel,U. : Sinnvolle Beschreibung der Spannungs-Dehnungs-Kurve. Vortrag zum 2. Aachener Stahlkollogium Werkstofftechnik 1986, Tagungsband, 3.1-1 - 3.1-4.
- 20. Vincze, I.: Mathematische Statistik mit industriellen Anwendungen. Bibliographisches Institut Mannheim, Wien, Zürich, Band 1 und 2, 2. Auflage, 1984
- 21. Mang, F.; Steidl, G.; Bucak, Ö.: Stahl im Altbau und Wohnungsbau. Abschlußbericht, Karlsruhe, Bericht der Versuchsanstalt für Stahl, Holz und Steine der Universität Karlsruhe, Teil 1, Karlsruhe, 1980
- 22. Barth, W.-D.; Mühler, W.: Niedersächsische Bauordnung. Textausgabe mit Anmerkungen, Architektenkammer Niedersachsen, Hindenburgstr. 26, Hannover, 1986
- Sedlacek, G.: Möglichkeiten und Grenzen für den Einsatz von hochfesten schweißbaren Baustählen im Stahlbau. Vortrag, 2. Aachener Stahlkolloquium, Werkstofftechnik, 1986
- 24. Rohde, W.: Überlegungen zur Anwendung statistischer Verfahren bei der Abnahmeprüfung von Stahl und Stahlerzeugnissen. Vortrag, Sitzung des FES- Arbeitsausschuβ DIN 17 010, Teil 2, 1981
- 25. Schrupp, K.; Rackwitz, R.: Einfluβ der Verteilung von Qualitätsangebot und Qualitätskontrolle auf die Bauwerkssicherheit. München, Bericht des Lehrstuhls für Massivbau der Technischen Universität München, 1984

26. Vrouwenvelder, A.: Statistische Gegevens ten behoeve von het Projekt Veiligheid van Bouwconstructies. Rapport No.Bi-84-4, Instituut TNO voor Bouwmaterialen en Bouwconstructies, Delft, 1984

<u>____</u>

- 27. Edlund, B.; Leopoldson, U.: Monte Carlo simulation of the strength of the steel structures. Part 1, Part 2, Chalmers Tekniska Högskola, Institutionen för Konstruktionsteknik, Stal- och Träbyggnad, Göteborg, 1971
- 28. Paustian, O.: Geschraubte Verbindungen Analyse des Tragverhaltens, statistische Versuchsplanung und -auswertung unter besonderer Berücksichtigung von Vorinformationen. Dissertation, TU Braunschweig, 1985
- 29. Evans, R. W.: Effect of prior cold reduction on ductility of annealed rimmed steel. Journal of The Iron and Steel Institute 11(1967) 1150 - 1155
- 30. Siebel, E.; Wellinger, K.: Über ein neues Verfahren zur Bestimmung der Dauerstandfestigkeit metallischer Werkstoffe. Die Abnahme; Sonderteil des Anzeigers für Maschinenwesen für die Abnahme von Werkstoffen und Betriebsbedarf 9(1939)
- 31. Tall, L.; Ketter, R. L.: On the yield properties of structural steel shapes. Bethlehem, Pennsylvania, Lehigh Universiy, Fritz Engineering Laboratory Report No. 220A.33, November 1958
- 32. Tall, L.; Alpsten, G. A.: On the scatter in yield strength and residual stresses in steel members. Symposium on concepts of safety of structures and methods of design, Final report, London, 1969, 151-163

- 33. Nagarajo Rao, N. R.; Lohrmann, M.; Tall, L.: Effect of strain rate on the yield stress of structural steels. American society for Testing and Materials. Authorirized reprint, March 1966
- 34. Galambos, T. V.; Ravindra, M. K.: Properties of steel for use in LFRD. Journal of Structural Devision, 104/St9(1978), 1459-1468
- 35. Hawranek, R.; Petersen, C.: Sicherheit gedrückter Stahlstulzen unter Berucksichtigung der statistischen Verteilung von E-Modul, Fließgrenze, Eigenspannungen, Querschnittsfläche und Vorkrümmung. München, Berichte zur Zuverlässigkeitstheorie der Bauwerke, Sonderforschungsbereich 96, Heft 8(1975)
- 36. Schneider, E.: Erfahrungen des Prüfers der Gütegemeinschaft Stahlhochbau. Stahlbauseminar in Lindau in: Wissenschaft und Praxis, Band 23, Fachhochschule Biberach/Riss, 1981
- 37. Basler, K.: Kommentar zur Norm SIA 161, Stahlbauten. Schweizerische Zentralstelle für Stahlbau, Zürich, 1979
- 38. Robiller, G.; Straβburger, C.: Zum Bauschinger-Effekt unlegierter Stähle, Materialprüfung 11(1969) 89-95
- 39. Schmidt, W.: Die Abhängigkeit der Poisson-Zahl von der Verformung bei verschiedenen Stählen. Sonderdruck aus "Archiv für das Eisenhüttenwesen" 35(1964) 241-246
- 40. Lenz, E.: Der Einfluβ des Mangangehaltes auf die Ausscheidung von Kohlenstoff und Stickstoff und die Auswirkung auf die mechanischen und technologischen Eigenschaften. Dissertation, RWTH Aachen 1973

Х

- 41. Jänicke, W.; Thiel, G.: Kriechen von Stahl unter statischer Beanspruchung bei Raumtemperatur. Archiv für das Eisenhüttenwesen 3/4(1950) 105-118
- 42. Glos, P.; Maier, W.; Weigle, U.: Bestimmung des Festigkeitsverhaltens von Fichtenbrettschichtholz als Grundlage für ein probabilistisches Bemessungsverfahren, Teil 1, Versuchseinrichtung für Kurzzeit-Druckversuche. München, Berichte zur Zuverlässigkeitstheorie der Bauwerke, Sonderforschungsbereich 96, Heft 7(1973)
- 43. Glos, P.: Zur Bestimmung des Festigkeitsverhaltens von Brettschichtholz bei Druckbeanspruchung aus Werkstoff- und Einwirkungskenngrößen. München, Berichte zur Zuverlässigkeitstheorie der Bauwerke, Sonderforschungsbereich 96, Heft 35(1978)
- 44. Maier, W.; Rohde, M.: Zur Zuverlässigkeit von Lastdosierern. Bauingenieur 61(1986) 267-273

BEZEICHNUNGEN

Allgemein

W	Weg
F	Kraft
t	Zeit
w	Weg
Ŵ	Weggeschwindigkeit
E	Dehnung
É	Dehngeschwindigkeit
σ	Spannung

Abmessungen

ŝ

b	Probenbreite
1	Probenlänge
S ₀	Probenfläche zu Versuchsbeginn
t	Probendicke

Materialkennwerte (falls genormt, nach DIN 50 145)

λ _g	Gleichmaßdehnung
A _k	Kerbschlagarbeit
A _{lü}	Lüdersdehnung
A5	Bruchdehnung
Ev	Verfestigungsmodul
E ₁	E-Modul im elastischen Bereich
E ₂	E-Modul im Fließbereich
E3	E-Modul im Verfestigungsbereich
Fm	Höchstzugkraft
k _l ,n	Konstanten der Ludwikgleichung

R _{eH}	obere Streckgrenze
R _{eL,É}	untere Streckgrenze (von Dehngeschwindigkeit abhängig)
R _{eL} UA1	untere Streckgrenze vor Haltepause (É = 1/60 ‰/s)
R _{eL} UA2	untere Streckgrenze nach Haltepause (É = 1/60 ‰/s)
R _{eL} UB	untere Streckgrenze nach Entlastung (É = 5/60 ‰/s)
R _{eS}	statische Streckgrenze
R _m	Zugfestigkeit
R _{m,S}	statische Zugfestigkeit
Rp	Streckgrenze: obere StreckgrenzeR _{eH} ; falls keine
	obere Streckgrenze vorhanden: 0,2%-Dehngrenze R _{p0,2}
R _{p0,2}	0,2%-Dehngrenze
$\Delta \sigma$	Spannungsabfall von dynamischer Spannungs-Dehnungs-
	Kurve (Ė>O) auf statischen Wert (Ė=O)

Messystem

j

F _O	Vorlast
l _B (DA1)	aktuelle Meβbasis DA1
l _B (DD1)	aktuelle Meβbasis DD1
1 ₀ (DA1)	Meβbasislänge DA1 zu Versuchsbeginn
1 ₀ (DD1)	Meβbasislänge DD1 zu Versuchsbeginn
∆l(DD1)	Schneidenabstandsverlängerung
m	Anzahl der registrierten Messungen
WO	Weg der oberen Schneide DA1
wu	Weg der unteren Schneide DA1
\in (DA1)	Dehnung, gemessen mit DA1
\in (DD1)	Dehnung, gemessen mit DD1
∈ _w (DD1)	wahre Dehnung, gemessen mit DD1

XIII

statistische Auswertung

D,D _a	Testgröβen für Anpassungstest						
f	Dichtefunktion						
F	Verteilungsfunktion						
k	Normierungskonstanten						
L	Likelihood-Funktion						
P	Wahrscheinlichkeiten						
r	Schätzwert für Korrelationskoeffizient						
×0	Lageparameter (nur bei Lognormalverteilung)						
×p	Fraktilwert						
θ	Verteilungsparameter						
μ	Mittelwert						
σ	Standardabweichung						
	Korrelationskoeffizient						
r x ₀ x _p θ μ σ	Schätzwert für Korrelationskoeffizient Lageparameter (nur bei Lognormalverteilung) Fraktilwert Verteilungsparameter Mittelwert Standardabweichung Korrelationskoeffizient						

Abkürzungen

ų,

SFK	geordnete Stichprobenfunkt	ion nach Gl. 2.1					
NV	Normalverteilung	nach Gl. 2.2					
LNV	Lognormalverteilung	nach Gl. 2.3					
NVF	normalverteilte Grundgesamtheit mit normalverteilte						
	Filterfunktion nach Gl. 2.	6					

1 EINLEITUNG

Baustähle werden in der Bundesrepublik Deutschland im Gegensatz zu vielen anderen Baustoffen, wie z.B. der Beton, nicht bauaufsichtlich überwacht. Die Sicherung der Qualität der Baustähle erfolgt durch Kontrollen der Hersteller. Sie ist in Gütenormen festgelegt , z.B. für die Allgemeinen Baustähle in DIN 17 100. Hier sind für die mechanischen Kennwerte Grenzwerte festgelegt, die einzuhalten sind. Statistische Gesichtspunkte spielen bei den Festlegungen der Normen noch keine Rolle.

Der derzeitige Zustand der Sicherung der Werkstoffgüte kann für die derzeitigen Normen i. allg. als zufriedenstellend angesehen werden. Schäden wegen zu geringer Festigkeiten sind nicht bekannt, wenn man von Verwechselungen oder Fehlbehandlungen von Stahl bei der Verarbeitung absieht. Das liegt vor allem an den z. Zt. relativ hohen Sicherheiten, mit denen wir unsere Konstruktionen nachweisen.

Nach künftigen Normen dürfen Stahlkonstruktionen wirklichkeitsnäher nachgewiesen werden. Damit einher gehen kann eine Reduktion der Sicherheitsabstände, die dann verantwortet werden kann, wenn die Qualität der Stähle hinreichend gesichert ist und ihr mechanisches Verhalten zutreffend beschrieben wird.

Hier setzt die Untersuchung ein, die dieser Arbeit zugrunde liegt. Mit ihr soll auf statistischer Grundlage die Qualität der Stähle geprüft werden, die z.Zt. in Stahlbaubetrieben der Bundesrepublik Deutschland verwendet werden. Für die fortschrittlichen Nachweismethoden ist ein erweiterter Prüfmodus erforderlich. Mit den danach ermittelten Materialkennwerten kann das Verhalten von Stahl bis in den Verfestigungsbereich einheitlich beschrieben werden. Die Arbeit besteht im wesentlichen aus fünf Teilen:

1 Der Auswertung von Bescheinigungen

Auswertung von rd. 3500 Bescheinigungen über Werkstoffprüfungen mit dem Ziel, aus ihnen statistische Aussagen über die Verteilung von Materialkennwerten zu erhalten.

2 Einer Fremdprüfung

-

Entnahme von ca. 400 Proben in Stahlbaubetrieben und Prüfung zur Feststellung von Materialkennwerten mit statistischer Auswertung.

3 Der Entwicklung eines Prüfmodus

Entwicklung eines Prüfmodus zu Feststellung der Materialkennwerte der Proben aus der Fremdprüfung. Er erfaßt wegen der Weiterentwicklung der Nachweismethoden auch Werte, die heute noch nicht genormt sind.

4 <u>Einer Blindprüfung</u>

Prüfung der Qualität der Prüfungen von Materialprüf- und Versuchsanstalten zur Bestätigung der Zuverlässigkeit der in den Bescheinigungen angegebenen Materialkennwerte. Gleichzeitig konnte bei positivem Ergebnis der Prüfmodus überprüft werden.

5 Dem Vorschlag eines Modells für normierte Arbeitslinien

Modell zur Berechnung der Verteilungsfunktion der Spannung für beliebige Dehnungen. Hierbei wird die statistische Auswertung der Ergebnisse der Fremdprüfung der Berechnung zugrunde gelegt.

Eine Übersicht über den Ablauf der Untersuchungen ist im Bild 1.1 dargestellt.

Auswertung von Bescheinigungen Bescheinigungen von	Fremd – prüfung	Prüfmodus	Blindprüfung	Vorschlag eines Modells für nor – mierte Arbeitslinien
Stahibau - Deutscher betrieben Bundesbahn Stahidatenbank "Bescheinigungen"	Proben weit. Informationen Stahidatenbank "Fremdprtifung"	Zugversuch m. Prüfmodus	Blindprüfung der Malerialprüfanst.	
Uniersuchung der Er – gebnisse von Mehrfach – prüfungen von Proben aus einer Schmeize	Statist	ische Auswer	Berechnung der Verteilungs- funktion der Spannung für beilebige Dehnungen	

L

ω

2 AUSWERTUNG VON BESCHEINIGUNGEN ÜBER MATERIALPRÜFUNGEN

2.1 ALLGEMEINES

Stähle werden nach Ergebnissen von Qualitätsprüfungen beurteilt, die in Bescheinigungen über Materialprüfungen nach DIN 50 049 im weiteren kurz mit Bescheinigungen bezeichnet - festgehalten werden müssen. Sind Grenzwerte für die mechanischen und technologischen Eigenschaften für eine bestimmte Stahlsorte nicht eingehalten, müssen die Stähle zurückgewiesen werden. Für die meisten Allgemeinen Baustähle müssen Bescheinigungen der Lieferung beigefügt werden. Weitere Qualitätsprüfungen werden nur in Ausnahmefällen durchgeführt. So bieten die Bescheinigungen eine einfache und für bereits bestehende Bauwerke i .allg. die einzige Möglichkeit, Materialkennwerte zu erfassen und auszuwerten.

2.2 QUALITATSSICHERUNG

Die Fertigung der Stähle muß vom Hersteller nach eigenem Ermessen und in eigener Verantwortung überwacht werden.

Der Prüfumfang und die erforderlichen Prüfungen werden durch die Gütenormen festgelegt. Zusätzliche Prüfungen können auf Wunsch der Besteller durchgeführt werden.

Die Art von Bescheinigungen wird jedoch zwischen Hersteller und Besteller vereinbart.

Bescheinigungen werden in zwei Kategorien unterteilt,

in diejenigen, die vom herstellenden oder verarbeitenden Werk selbst ausgestellt werden, und

in diejenigen, die von Sachverständigen, die von der Fertigung im herstellenden oder verarbeitenden Werk unabhängig sind, unterschrieben werden (Abnahmeprüfzeugnisse).

Für die erste Gruppe ist ein sog. Werkszeugnis nach DIN 50 049 -

2.2 gebräuchlich, mit dem der Hersteller bestätigt, daβ das gelieferte Erzeugnis den Vereinbarungen bei der Bestellung entspricht. I. allg. werden hier nur die Ergebnisse einer Schmelzanalyse angegeben.

Bei den Abnahmeprüfzeugnissen müssen die Ergebnisse aus Prüfungen an der Lieferung selbst oder an in den Normen, amtlichen Vorschriften oder technischen Lieferbedingungen angegebenen Prüfeinheiten durchgeführt werden. Gebräuchlich sind Abnahmeprüfzeugnisse nach DIN 50 049 - 3.1A und (3.1B. Speziell für Abnahmeprüfzeugnisse 3.1B müssen die erforderlichen Prüfungen neben der Unterschrift eines Sachverständigen, die auch bei den Abnahmezeugnissen 3.1A notwendig ist, von einer von der Fertigung des herstellenden oder verarbeitenden Werks unabhängigen Prüfstelle durchgeführt werden.

Die erforderlichen Prüfungen sind für die Allgemeinen Baustähle in DIN 17 100 festgelegt. Für alle Stähle ist ein Zugversuch und zusätzlich bei Flachzeug aus Stählen der Güteklasse 3 der Kerbschlagbiegeversuch durchzuführen. Je Schmelze ist weiterhin eine Probe zur Analyse der chemischen Zusammensetzung zu entnehmen; eine Stückanalyse muß jedoch besonders vereinbart werden.

Für Stähle mit besonderen Anforderungen sind weitere Prüfungen erforderlich. Der Prüfumfang ist DIN 17 100 zu entnehmen.

2.3 GRUNDGESAMTHEIT

2.3.1 Definition der Grundgesamtheit

DIN 18 800 Teil 1 erlaubt im Stahlbau als Werkstoffe nur die Stahlsorten St37-2, USt37-2, RSt37-2, St37-3 und St52-3, die im weiteren kurz mit St37 und St52 bezeichnet werden. Andere Stähle dürfen nur in Ausnahmefällen bei bestimmten Voraussetzungen verwendet werden. Lediglich für die hochfesten schweißgeeigneten

Feinkornbaustähle StE460 und StE690 existieren Richtlinien. Sie spielen jedoch trotz höherer Festigkeit keine wesentliche Rolle. Die vorliegende Untersuchung beschränkt sich deshalb auf die Stahlsorten St37 und St52:

Die Grundgesamtheit wird als die Gesamtmenge aller in der Bundesrepublik Deutschland im Stahlbau eingesetzten gewalzten Baustähle definiert, die als St37 oder St52 eingebaut werden.

Zur Grundgesamtheit gehören also auch die Stähle, die nicht den Anforderungen der DIN 17 100 entsprechen, jedoch als St37 bzw. St52 eingebaut werden.

2.3.2 Unterteilung der Grundgesamtheit

Die Grundgesamtheit kann neben der Einteilung in die Stahlsorten St37 und St52 in verschiedene Teilmengen unterteilt werden, die im Bild 2.1 skizziert sind:

1 <u>Unterteilung in Stahlhersteller</u>

Jeder Stahlhersteller stellt eine unterschiedlich große Teilmenge an Allgemeinen Baustählen her. In der Grundgesamtheit können auch im Ausland hergestellte Stähle vorhanden sein, die in der Bundesrepublik Deutschland als St37 bzw. St52 verkauft werden.

Es kann auch unterschieden werden, ob die Stähle direkt vom Stahlhersteller oder über einen Zwischenhändler geliefert werden.

Eine Unterteilung nach Herstellern ist im Bild 2.1 nicht vorgenommen worden.

2 <u>Unterteilung in Stahlbaubetriebe</u>

Jeder Stahlbaubetrieb verarbeitet eine unterschiedlich große

б

Teilmenge von Stählen aus der Grundgesamtheit.

Die Grundgesamtheit kann weiterhin in die Standorte der Betriebe z.B. nach Bundesländern oder in Regionen wie z.B. Norddeutschland unterteilt werden.

Diese Unterteilung ist jedoch nicht im Bild 2.1 vorgenommen worden.

Die für Bauwerke der Deutschen Bundesbahn eingesetzten Stähle repräsentieren eine weitere Teilmenge. Da sie als Bauherr zur Errichtung ihrer Bauwerke Stahlbaubetriebe beauftragt, überschneidet diese Teilmenge diejenigen der Stahlbaubetriebe.

3 Erzeugnisform

Die Untersuchungen beschränken sich auf Flachstähle, Bleche und offene Walzprofile, jedoch nicht auf Rohre (rund, eckig) oder Gußstahlerzeugnisse.

4 Erzeugnisdicke

DIN 17 100 unterscheidet die Erzeugnisse nach der Erzeugnisdicke. Für die Mindestwerte der oberen Streckgrenze wird in folgende Erzeugnisdicken unterschieden:

0 bis einschlieβlich 16 mm, größer 16 bis einschließlich 40 mm, größer 40 bis einschließlich 63 mm, größer 63 bis einschließlich 80 mm, größer 80 bis einschließlich 100 mm und größer 100 mm.

5 <u>Bescheinigungen</u>

Nicht alle Stähle werden mit Bescheinigungen geliefert, so daβ die Grundgesamtheit in Teilmengen der Stähle mit und ohne Bescheinigungen aufgeteilt werden kann. 6 <u>Zeit</u>

-

Die Stähle können nach dem Herstelldatum unterteilt werden. Diese Unterteilung ist jedoch im Bild 2.1 nicht vorgenommen worden.

Bild 2.1. Unterteilung der Grundgesamtheit

2.4 AUFGENOMMENE BESCHEINIGUNGEN

2.4.1 Auswahl der Bescheinigungen

Es standen Bescheinigungen von insgesamt 3 Betrieben mit über 400 Mitarbeitern und von der Deutschen Bundesbahn zur Verfügung. Die Betriebe hatten ihren Sitz ausschließlich im Westen und Norden der Bundesrepulblik Deutschland. Davon wurden alle vorhandenen Bescheinigungen berücksichtigt, die eindeutig der Grundgesamtheit zugeordnet werden konnten. Von den von der Deutschen Bundesbahn zur Verfügung gestellten Bescheinigungen wurden alle Stähle berücksichtigt, die im Jahr 1969 und nach 1979 geprüft bzw. hergestellt wurden. Es ist nicht gesichert, daß alle Bescheinigungen der Deutschen Bundesbahn vorlagen, und daß somit nicht unbedingt die Gesamtmenge aller in diesem Zeitraum für sie verarbeiteten Stähle berücksichtigt worden ist.

2.4.2 Bestandsaufnahme

Insgesamt wurden von allen zur Verfügung stehenden Bescheinigungen 3583 in eine Datenbank, die im Anhang A2 beschrieben ist, aufgenommen.

Speziell bei der Deutschen Bundesbahn wird eine zweite Qualitätskontrolle vor dem Einbau der Stähle durchgeführt. Deshalb ist in der Tabelle 2.1 die Bestandsaufnahme getrennt für Betriebe und Deutsche Bundesbahn durchgeführt worden.

Nicht alle Bescheinigungen werden bei den nachfolgenden Untersuchungen berücksichtigt. Sind z.B. mehrere Bescheinigungen aus einer Schmelze vorhanden, wird jeweils nur eine pro Schmelze berücksichtigt.

Es wird hierbei davon ausgegangen, daβ von jeder Schmelze gleichviel Erzeugnisse hergestellt werden. Sind zufällig mehrere Ergebnisse pro Schmelze vorhanden, würden die betreffenden Schmelzen überbewertet, d.h. gewichtet werden.

In der Neufassung von DIN 17 100 vom Januar 1980 sind Grenzwerte gegenüber den älteren Fassungen vom Oktober 1957 und September 1966 geändert worden. Deshalb ist in den letzten zwei Spalten der Tabelle 2.1 die Bestandsaufnahme für Stähle, die nach 1979 geprüft wurden, durchgeführt worden.

Tabelle 2.1. In die Datenbank aufgenommene Bescheinigungen

Bescheini-	Stahl- sorte	gesamt	aufgenommen	nach 1979 geprüft			
JuJuJ		gesamt	für Auswertung berücksichtigt	gesamt	für Auswertung berücksichtigt		
Deutsche	St37	647	530	269	230		
Bundesbahn	St52	560	384	87	75		
Betriebe	St37	2231	1222	2231	1222		
	St52	118	55	118	55		
Zusammen	St37	2878	1746	2500	1452		
	St52	678	440	205	131		

Es konnten keine Bescheinigungen von Stählen aufgenommen werden, die von kleineren und mittleren sowie ausländischen Betrieben in der Bundesrepublik Deutschland verarbeitet werden.

2.5 BERECHNUNGSGRUNDLAGEN

2.5.1 Verteilungsfunktionen

I. allg. liegt eine ungeordnete Stichprobe vor, die zunächst in Form von Histogrammendargestellt wird, um aus ihr den Typ einer Verteilung zu schätzen (s. Bild 2.2). Als Rechengrundlage ist ein Histogramm jedoch nicht geeignet.

Ordnet man die n Ergebnisse x_i (i = 1,n) der Stichprobe der Größe nach mit min = x_1 , max = x_n und $x_1 < x_2 < \ldots < x_n$, so ist

		=	0	für	x	<	min				
F ()	x)	-	(m-1)/n	für	×m-1	٢	$x < x_m$.	m	-	2,n	(2.1)
		-	1	für	x	٤	max				

die Summenhäufigkeitskurve mit den Parametern $\theta_1 = \min = x_1, \theta_2 = \max = x_n \text{ und } \theta_3, \theta_4, \ldots, \theta_{n+2} = x_1, x_2, \ldots, x_n$ (linker oberer Teil von Bild 2.2). Aus ihr können z.B. durch Abzählen die Fraktilwerte ermittelt werden (s. Abschnitt 2.5.3). Als Rechengrundlage ist diese Funktion jedoch auch nicht geeignet. Hierfür sind mathematisch leicht handhabbare Verteilungsfunktionen sinnvoll.

Im Rahmen dieser Arbeit werden die drei im Bild 2.2 dargestellten Verteilungsfunktionen untersucht und ausgewertet, die im folgenden beschrieben werden.

Die Dichtefunktion der Normalverteilung ist

 $f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-(\mu - x)^2/(2\sigma^2)}$

4

(2.2)

mit den Parametern $\theta_1 = \mu$ und $\theta_2 = \sigma$.

Bild 2.2. Ermittlung der Verteilungsfunktionen aus einer Stichprobe

Die Dichtefunktion der Lognormalverteilung ist

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma(x-x_0)} e$$
(2.3)

mit den Parametern $\theta_1 = \mu$, $\theta_2 = \sigma$ und $\theta_3 = x_0$.

Die Herleitung der dritten Verteilungsfunktion ist im Bild 2.3 dargestellt.

-

Bild 2.3. Berücksichtigung von Filtern

In DIN 17 100 sind z.B. für die obere Streckgrenze Mindestwerte angegeben. Ist die Streckgrenze bei der Prüfung unterhalb des Mindestwertes, muß das Erzeugnis zurückgewiesen werden, d.h. die Gesamtheit wird gefiltert. In der Praxis ist der Übergang stetig, d.h. daß Ergebnisse unterhalb der geforderten Werte mit einer Wahrscheinlichkeit p_1 angenommen werden, obwohl sie abgelehnt werden müßten. Auch Ergebnisse oberhalb der geforderten Werte werden mit einer Wahrscheinlichkeit p_2 abgelehnt, obwohl sie angenommen werden können. Diese sog. Filterfunktion $F_F(x)$ ist im Idealfall eine Sprungfunktion

$$F_{\mathbf{F}}(\mathbf{x}) = (2.4)$$

$$1 \quad \text{für } \mathbf{x} \ge \mathbf{x}_0$$

Mit der Dichtefunktion $f_G(x)$ der ungefilterten Gesamtheit der Prüfergebnisse ergibt sich die Dichtefunktion der gefilterten Ergebnisse zu

$$f(x) = - f_{G}(x) F_{F}(x) .$$
(2.5)

k

Im weiteren wird als Filterfunktion die Verteilungsfunktion der Normalverteilung angenommen. Unter der Annahme, daβ die ungefilterte Grundgesamtheit der Prüfergebnisse normalverteilt ist, ergibt sich die Dichtefunktion der gefilterten Ergebnisse

$$f(x) = \frac{1}{k\sqrt{2\pi} \sigma_1} - \frac{(\mu_1 - x)^2}{(2 \sigma_1^2)} x \frac{1}{\sqrt{2\pi} \sigma_2} - \frac{(\mu_2 - x)^2}{(2 \sigma_2^2)} dx \quad (2.6)$$

mit den Parametern $\theta_1 = \mu_1, \ \theta_2 = \sigma_1, \ \theta_3 = \mu_2 \ \text{und} \ \theta_4 = \sigma_2.$

k ist ein Normierungsfaktor, der aus der Bedingung $\int_{-\infty}^{0} f(x) dx = 1$ berechnet wird. k ist gleich mit der Wahrscheinlichkeit, daß das Prüfstück nicht zurückgewiesen wird. θ_1 und θ_2 können als Verteilungsparameter der ungefilterten Grundgesamtheit, θ_3 als Zielwert des Filters und θ_4 als Güte des Filters gedeutet werden.

2.5.2 Anpassungstest

Die Güte der Anpassung an die Summenhäufigkeitskurve wird mit dem Kolmogoroff-Smirnoff-Test (K/S-Test) geprüft. Auf andere Testverfahren wird verzichtet, da sie i. allg. normalverteilte Grundgesamtheiten voraussetzen, während der K/S-Test verteilungsfrei ist /2,3,4/. Berechnet man aus der Summenhäufugkeitskurve nach Gl. 2.1 die Summenhäufigkeiten F_E der n Ergebnisse und bildet die Differenzen $F_E - F_B$ mit der zu testenden Anpassungsfunktion F_B , so ist der Prüfquotient

$$D = \sup |F_E - F_B| / n, \qquad (2.7)$$

bzw. für relative Häufigkeiten

 $D = \sup |F_E - F_B|$ (2.8)

die Testgröße mit $0 \le D \le 1$. Mathematisch streng setzt der K/S-Test unendlich viele Klassen k" voraus, ist aber für k" > 5 ausreichend genau /4/. Im Rahmen dieser Arbeit wird daher F_E aus den Histogrammen mit einer Unterteilung in mindestens 30 Klassen berechnet. Geprüft wird die Nullhypothese: "Die Stichprobe entstammt der bekannten Verteilung". Der kritische Wert bei einer Irrtumswahrscheinlichkeit von 5% ist

$$D_a = 1.36 / \sqrt{n}$$
 (2.9)

Ist $D_a < D$, wird die Nullhypothese abgelehnt.

Zwei unabhängige Stichproben werden mit dem gleichen Verfahren verglichen. Hierbei werden sie hinsichtlich der Frage verglichen, ob sie aus derselben Grundgesamtheit stammen (K/S/O-Test). Die Prüfgröße

$$D = \sup |F_{E1} - F_{E2}|$$
(2.10)

mit der Anzahl der Stichprobenelemente n_1 und n_2 zweier unabhängiger Stichproben wird der Testgröße

$$D_a = 1.36 \sqrt{(n_1 + n_2)/(n_1 n_2)}$$
(2.11)

gegenübergestellt /4/. Ist $D_a < D$, liegt hinsichtlich der Verteilungsfunktionen bei einer Irrtumswahrscheinlichkeit von 5% ein signifikanter Unterschied vor.
2.5.3 Fraktilwerte

Als Fraktilwert ist derjenige Wert x_p definiert, der mit einer Wahrscheinlichkeit p unterschritten wird:

$$\int_{-\infty}^{\mathbf{x}\mathbf{p}} f(\mathbf{x}) \, d\mathbf{x} = \mathbf{p} \,. \tag{2.12}$$

Im Fall der Summenhäufigkeitskurve nach Gl. 2.1 ist $x_p = x_j$ mit j = int(n·p).

2.5.4 Bestimmung der Verteilungsparameter mit der Maximum-Likelihood-Methode

Nicht immer können Schätzwerte für die Parameter der Verteilungsfunktion analytisch aus den Ergebnissen berechnet werden. In diesen Fällen werden mit der Likelihood-Schätzfunktion für die unbekannten Parameter Schätzwerte $\hat{\underline{\theta}}$ bestimmt. Ist

$$L(\underline{\theta}/x) = \bigcap f(\underline{\theta}/x_{i})$$
(2.13)

die Likelihood-Funktion der Parameter $\underline{\Theta}$, so ist

$$L(\hat{\theta}/x) = \bigcap f(\hat{\theta}/x_i)$$
 (2.14)

die Maximum-Likelihood-Funktion, wenn $L(\underline{\Theta}/x)$ an den Stellen $\underline{\hat{\Theta}}$ ein absolutes Maximum annimmt.

Die Bestimmung der Schätzwerte für die Parameter $\underline{\hat{\Theta}}$ erfolgt numerisch mit einem hierfür entwickelten Fortran-5-Programm, mit dem beliebige Dichte- und Verteilungsfunktionen multiplikativ verknüpft werden können. Die implementierten Funktionstypen sind in /28/ beschrieben. In Bild 2.4 ist beispielhaft die Likelihoodfunktion für $\Theta_1 = 0.313$, $4.40 \leq \Theta_2 \leq 4.50$ und $315 \leq \Theta_3 \leq 325$ für

die Lognormalverteilung in Form von Höhenschichtlinien dargestellt. Als Stichprobe wurden die Ergebnisse aus den Bescheinigungen der oberen Streckgrenze R_{eH} für den St52 mit den Erzeugnisdicken t = 0bis einschließlich 16mm bei einem Stichprobenumfang n = 255 gewählt. Die Parameter $\hat{\Theta}$ sind (0.313, 4.44, 320).

Bild 2.4. Exemplarische Darstellung der Likelihood-Funktion für die Parameter θ_2 und θ_3 der Lognormalverteilung einer Zufallsstichprobe

2.5.5 Korrelation

Als Maßzahl für die Straffheit eines linearen Zusammenhangs zwischen gleichwertigen Zufallsvariablen einer Stichprobe wird der Korrelationskoeffizient ρ mit -1 $\leq \rho \leq$ +1 gewählt.

Ein Schätzwert für zwischen zwei Parametern x_1 und x_2 einer Stichprobe mit n Elementen ist

$$r = \frac{\sum x_1 x_2 - (\sum x_1) (\sum x_2) / n}{\sqrt{(\sum x_1^2 - \sum (x_1)^2 / n) (\sum x_2^2 - (\sum x_2)^2 / n)}}.$$
 (2.15)

Zur Abschätzung der Vertrauensbereiche für ρ kann nach R.A. Fisher z.B. in /4/ über die z-Transformation r approximativ in eine normalverteilte Zufallsgröße überführt werden mit

$$\dot{z} = \tanh^{-1}r \tag{2.16}$$

und der Standardabweichung

$$s_{z} = 1 / \sqrt{n-3}$$
 (2.17)

Der 95 %- Vertrauensbereich für ρ ist

$$tanh(z-1.96s_{z}) \le \rho \le tanh(z+1.96s_{z}).$$
 (2.18)

Schließt der Vertrauensbereich $\rho = 0$ ein, kann nicht ausgeschlossen werden, daß die Ergebnisse x_1 und x_2 unkorreliert sind.

Nur in Ausnahmefällen ergeben sich Korrelationskoeffizienten $|\rho|$ = 1, die einen exakten linearen Zusammenhang kennzeichnen. Der Grund liegt in nichtlinearen Zusammenhängen zwischen x₁ und x₂ und darin, daß weitere Einflüsse vorhanden sind. Der Nachweis mehrerer Einflüsse kann über partielle Korrelationskoeffizienten erfolgen. Da jedoch die Einflüsse auch hier linear eingehen und bekannt sein müssen, wird auf eine Berechnung verzichtet.

2.5.6 Regression

Verschiedene Einflüsse x_j (j = 1,2,..,m) auf die Festigkeitskennwerte werden mit einem multiplen Regressionsansatz abgeschätzt mit

$$f(\underline{x}) = \hat{a}_1 f_1(\underline{x}) + \hat{a}_2 f_2(\underline{x}) + \dots + \hat{a}_1 f_1(\underline{x}) . \qquad (2.19)$$

Die Parameter a_i (i = 1, 2, ..., l) werden mit der Fehlerquadratmethode ermittelt. Die Voraussetzungen und die Herleitung sind in /4,5,6/ beschrieben. Die Berechnung der Restvarianz erfolgt entsprechend Gl. A1.2 und A1.3.

2.6 VERTEILUNGEN

2.6.1 Grenzwerte für die chemische Zusammensetzung und die Festigkeitskennwerte der Stähle

In DIN 17 100 sind Grenzwerte angegeben, um wichtige Eigenschaften der Stähle zu gewährleisten. So werden für die Elemente Kohlenstoff, Phosphor, Schwefel, Stickstoff sowie Silizium und Mangan, die als Legierungselemente im Stahl enthalten sind, Höchstwerte festgelegt. Die Höchstwerte sind in Tabelle 2.2 für die Schmelzanalyse zusammengestellt, wobei beim Kohlenstoffgehalt auf eine Differenzierung nach Erzeugnisdicken verzichtet wurde.

Andere Elemente werden in der DIN 17 100 nicht geregelt, wie z.B. Kupfer, Nickel, Chrom, Molybdän und Vanadium, obwohl sie die Schweißeignung beeinflussen können /6/.

Stahlsorte	C /%s/	Mn /%/	Si /%/	P /%/	S /%/	N /%/
St 37-2	0.20		· -	0.050	0.050	0.009
USt 37-2	0.20	_	-	0.050	0.050	0.007
RSt 37-2	0.20	-	-	0.050	0.050	0.009
St 37-3	0.17	-	-	0.040	0.040	-
St 52-3	0.22	1.60	0.55	0.040	0.040	-

Tabelle 2.2. Höchstwerte der Schmelzanalysen nach DIN 17 100

Die Grenzwerte für die Festigkeitseigenschaften nach DIN 17 100 sind in Tabelle 2.3 für die Stahlsorten St37 und St52 zusammengestellt.

		t/mm/	St37		-	St52
R _m /N/	mm ² /		340 - 470	n. du f	490	- 630
		0-≤16	235			355
R _{eH}	(min.)	<16-≤40	225			345
/N/mm ² /		<40-≤63	215			335
		< 3−≤40	260	- läi	ngs -	220
λ-			240	- que	ər -	200
ີ /%。/	(min.)	<40-<63	250	- 1äi	ngs –	210
			230	- que	ər -	190
A _k /J/	(min.)	_	27			27

Tabelle 2.3. Grenzwerte der Festigkeitseigenschaften nach DIN 17 100

2.6.2 Abhängigkeit der Festigkeitskennwerte von der Erzeugnisform

In DIN 17 100 und DIN 18 800 wird nicht nach der Erzeugnisform unterschieden. Da aber z.B. durch verschiedene Formgebungsverfahren Unterschiede auftreten können, wird nach Gl. 2.10 und 2.11 getestet, ob signifikante Unterschiede zwischen den Festigkeitskennwerten von Blechen, Flachstählen und Walzprofilen bestehen. In Tabelle 2.4 sind die 5, 50 und 95%-Faktilen angegeben. Für diese Untersuchung wurden die in der Datenbank eingegebenen Werte nach Erzeugnisdicken unterschieden, jedoch nicht nach Prüfdatum und nach Herkunft (Deutsche Bundesbahn bzw. Betriebe). Auf eine Auswertung für Erzeugnisdicken t > 40 mm wurde verzichtet, weil nicht genügend Werte vorlagen.

Bei den umrahmten Werten konnte ein signifikanter Unterschied der

21

Ergebnisse jeweils im Vergleich zu denen der anderen beiden Erzeugnisformen nicht ausgeschlossen werden.

Tabelle	2.4.	Abhängigkeit	der	Festigkeitskennwerte	von	der
		Erzeugnisform				

						St37							
			0 -	.≤16 m	m		<16 -	≤40 m	m		0 -	100	mm
Material- kennwert	Erzeug- nisform	An- zahl	.Fr 5%	aktil 50%	.e 95%	An- zahl	Fr 5%	aktil 50%	e 95%	An- zahl	Fr 5%	aktil 50%	le 95%
R _{eH} /N/mm ² /	Bleche Flachst. Profile	521 <u>44</u> 517	255 254 250	295 297 285	350 325 322	164 3 451	238 _ 233	273 252	306 	702 47 987	249 253 235	288 297 267	343 335 315
R _m /N/mm ² /	Bleche Flachst. Profile	521 44 517	387 384 382	420 417 416	462 459 454	164 3 450	378 	414	453 - 450	702 47 986	381 384 385	419 420 418	460 468 453
A ₅ /%./	Bleche Flachst. Profile	521 44 517	280 240 283	360 360 360	410 410 410	164 3 451	280 300	350 350	390 - 400	702 47 987	280 290 290	360 360 <u>3</u> 50	400 410 410
						St52 -							
			0 -	≤16 m	m	<	16 -	≤4.0 m	M		0 -	100	m m
Material- kennwert	Erzeug- nisform	An- zahl	Fr 5%	aktil 50%	e 95%	An- zahl	Fr 5%	aktil 50%	e 95%	An- zahl	Fr 5%	aktil 50%	e 95%
R _{eH} /N/mm ² /	Bleche Flachst. Profile	116 54 85	363 357 374	409 401 404	450 450 448	81 2 94	355 353	392 389	436 - 428	203 56 181	362 357 355	400 400 396	441 450 443
R _m /N/mm ² /	Bleche Flachst. Profile	116 54 84	522 540 540	570 588 571	610 620 607	81 2 94	530 540	- 578 	623 - 608	203 56 180	530 540 542	572 587 572	621 620 610
A ₅ /%./	Bleche Flachst. Profile	116 54 85	230 260 250	250 300 300	300 340 340	81 2 94	220 240	250	310 - 330	203 56 181	220 260 250	250 300 300	300 340 330

Die obere Streckgrenze R_{eH} ist beim St37 bei den Walzprofilen im Vergleich zu denjenigen der Bleche und Flachstähle signifikant kleiner. Da nach DIN 17 100 bei Walzprofilen der Entnahmeort im Flansch liegen muß, kann die Abhängigkeit auf nicht homogene Verteilungen der Legierungselemete, z.B. durch Seigerungszonen im Übergangsbereich Steg/Flansch und unterschiedliche Abkühlge-

-

- 24

schwindigkeiten im Steg, Flansch und Übergangsbereich zurückgeführt werden. /18,26,27/. Diese Abhängigkeit konnte beim St52 nicht nachgewiesen werden, weil durch eine besondere Beruhigung beim St52 (Güteklasse 3 ist vorgeschrieben) Seigerungszonen praktisch nicht auftreten.

Eine Untersuchung kann jedoch anhand der Bescheinigungen nicht durchgeführt werden, da Festigkeitskennwerte nur für die Flansche angegeben werden.

Die Bruchdehnung A_5 ist für den St52 bei Blechen im Vergleich zu denjenigen der Flachstähle und Walzprofile signifikant kleiner. Es ist bekannt, daß sie quer zur Walzrichtung niedriger ist /z.B. in 6/. Da Angaben in den Bescheinigungen größtenteils fehlen, wird angenommen, daß die Zugproben bei Blechen quer zur Walzrichtung entnommen werden.

Eine Untersuchung der Abhängigkeit von A_5 von der Walzrichtung wurde nicht durchgeführt.

Für die weiteren Untersuchungen wird nicht nach der Erzeugnisform unterschieden.

2.6.3 Unterteilung der Bescheinigungen

Eine statistische Auswertung der Bescheinigungen ist nur sinnvoll, wenn hinsichtlich eventueller Abhängigkeiten vorher Rechenschaft abgelegt wird.

Deshalb werden die Festigkeitskennwerte getrennt für die Erzeugnisdicken $0 \le 16 \text{ mm}$, $16 \le 40 \text{ mm}$ und $40 \le 163 \text{ mm}$ entsprechend der Einteilung für die obere Streckgrenze in DIN 17 100 untersucht. Da für größere Erzeugnisdicken t>63 mm nicht genügend Bescheinigungen vorlagen, wird auf eine Untersuchung verzichtet.

Eine Abhängigkeit vom Zeitpunkt der Erzeugung wird berücksichtigt. Es wird angenommen, daß sich die Materialkennwerte nach Einführung der überarbeiteten DIN 17 100 im Januar 1980 signifikant verändert haben können. Die Untersuchungen beschränken sich deshalb auf die Stähle, die nach 1979 geprüft wurden.

Um eine Abhängigkeit vom Zeitpunkt der Erzeugung zu untersuchen, werden die in der Datenbank aufgenommenen Bescheinigungen der Deutschen Bundesbahn aus dem Jahr 1969 ausgewertet.

Die für die Deutsche Bundesbahn verarbeiteten Stähle werden von ihr zusätzlich geprüft. Deshalb kann nicht ausgeschlossen werden, daß sich die Verteilungsfunktionen der Materialkennwerte dieser Stähle signifikant von denjenigen aus den Betrieben unterscheiden. Im Bild 2.5 sind beispielhaft die Verteilungsfunktionen der Stichprobenfunktion nach Gl. 2.1 für die obere Streckgrenze, die Zugfestigkeit und die Bruchdehnung für nach 1979 geprüfte Stähle aus St37 dargestellt.

Es ist auffällig, daß der Anteil der Erzeugnisse mit Dicken 16<t \leq 40 mm bei der Deutschen Bundesbahn mit ca. 65% im Verhältnis zu allen Erzeugnissen wesentlich größer ist als bei den Betrieben (ca. 20%). Da ein Einfluß der Erzeugnisdicke auf R_{eH} vorhanden ist (s. Abschnitt 2.6.4), unterscheiden sich die Verteilungsfunktionen bei der Auswertung ohne Berücksichtigung der Erzeugnisdicke t stark (Bild 2.5, unten links).

Allgemein kann festgestellt werden, daß die Verteilungsfunktionen von $R_{\rm eH}$ der Deutschen Bundesbahn oberhalb derjenigen der Betriebe liegen, d.h. die charakteristischen Werte (z.B. in Form der Fraktilwerte) sind bei Stählen der Deutschen Bundesbahn niedriger.

Der K/S/O-Test nach Gl. 2.10 und 2.11 ergab für den Vergleich der beiden Verteilungsfunktionen in den meisten Fällen, daß die Verteilungen nicht aus einer Grundgesamtheit stammen.

Eine Trennung der Bescheinigungen der Deutschen Bundesbahn und der Betriebe ist somit notwendig.

D hergestellte Deutsche Bundesbahn; Stähle aus B St37 Betriebe

Bild N . ທ Vergleich der Stichprobenfunktionen für nach 1979

24

L

Die nachfolgenden Auswertungen werden mit folgenden Nebenbedingungen durchgeführt:

- Auswertung getrennt für St37 und St52
- Auswertung getrennt für Erzeugnisdicken 0<t≤16 mm, 16<t≤40 mm und 40<t≤63 mm und zusätzlich 0<t≤63 mm
- je Schmelze eine Bescheinigung
- keine Unterscheidung nach der Erzeugnisform

Ausgewertet werden:

- 1. Bescheinigungen ohne Berücksichtigung des Prüfdatums und der Herkunft
- 2. Bescheinigungen aus den Betrieben, wobei die Stähle nach 1979 geprüft wurden
- 3. Bescheinigungen der Deutschen Bundesbahn, wobei die Stähle nach 1979 geprüft wurden
- 4. Bescheinigungen der Deutschen Bundesbahn, wobei die Stähle im Jahr 1969 geprüft wurden

2.6.4 Auswertung der Festigkeitskennwerte

2.6.4.1 Allgemeines

- 22

Ein Überblick über die Festigkeitskennwerte wird in diesem allgemeinen Teil vorerst mit der Auswertung der Bescheinigungen ohne Berücksichtigung des Prüfdatums und der Herkunft gegeben. Zahlenmäßige Ergebnisse – z.B. Parameter der Verteilungsfunktionen – werden an dieser Stelle noch nicht aufgeführt.

Im Bild 2.6 sind die Histogramme für die obere Streckgrenze R_{eH} , die Zugfestigkeit R_m , die Bruchdehnung A₅ und die Kerbschlagarbeit A_k getrennt für die Stähle St37 und St52 angegeben. Die unterschiedlichen Stichprobenumfänge sind darauf zurückzuführen, daß die Ergebnisse in den Bescheinigungen nicht angegeben oder nicht lesbar waren.

Die Histogramme lassen bei R_{eH} vermuten, daß Erzeugnisse durch eine Gütekontrolle zurückgewiesen wurden, weil die Histogramme anscheinend links abgeschnitten sind. Da die Mindestwerte für R_{eH} für verschiedene Erzeugnisdicken unterschiedlich sind, ist es sinnvoll, die Filter nach Gl. 2.4 – 2.6 getrennt für die verschiedenen Erzeugnisdicken zu bestimmen.

Bei R_m und A_5 kann dagegen nicht festgestellt werden, ob Erzeugnisse durch die Gütekontrolle zurückgewiesen wurden, obwohl durch Rückweisung infolge zu niedriger oberer Streckgrenzen ein Einfluß vorhanden sein muß. Dieser Einfluß ist gering, weil die Korrelation zwischen R_{eH} und R_m klein ist, d.h. aus einer kleinen oberen Streckgrenze muß nicht unbedingt eine kleine Zugfestigkeit folgen. Auf die Korrelation wird im Abschnitt 2.7 eingegangen.

Die Bruchdehnung ist beim St52 im Vergleich zum St37 kleiner, d.h. mit zunehmender Festigkeit nimmt die Bruchdehnung ab.

Bild h [%] h [%] h [%] h [%] 2.6. St 37 St 37 St 37 St 37 20 16 16 16 n=1737 n =1736 n=1737 n=459 12 12 15 12 sichtigung Histogramme 10 8 8 8 4 L 5 7 ReH; 0 0 für 240 280 320 360 400 R_{eH}[N/mm²] 374 408 442 476 510 R_m [N/mm²] von 210 270 330 390 450 120 180 240 300 0 60 A5[%] $A_k[J]$ Ъ die Rm; Prüfdatum, h [%] h [%] h [%] h [%] St 52 St 52 St 52 St 52 Festigkeitskennwerte Q 16 16 24 20 n=438 n=439 n=440 n=56 A5; 12 12 15 18 ρ. Ak Herkunft 8 8 10 12 5 6 4 0+ 0 01 0 405 435 465 495 R_{eH}[N/mm²] 525 555 585 615 645 R_m [N/mm²] 210 270 330 390 450 60 120 180 240 300 375 und A_k[J] A₅[‰] ohne Berück-Erzeugnisd a b С

. .a

dicke;

ρ

27

Die Werte von A_k , die weit über dem Mindestwert von 27 J liegen, zeigen, daß die Allgemeinen Baustähle die geforderte Zähigkeit bei vorgeschriebenen Prüftemperaturen bis zu -20 °C weit überschreiten.

In der Literatur wird speziell für R_{eH} eine ausgeprägte Abhängigkeit von der Erzeugnisdicke tangegeben /6,8,9,24/. Auf die metallurgischen Hintergründe wird im Abschnitt 2.8 eingegangen.

Im Bild 2.7 sind exemplarisch die Einzelwerte für R_{eH} über der Erzeugnisdicke taufgetragen, wobei nicht nach Herstelldatum, Herkunft und Erzeugnisdicke unterschieden wurde. Im rechten Teil des Bildes sind die 5, 50 und 95%-Fraktilen entsprechend den Festlegungen von DIN 17 100 getrennt für 0<t \leq 16, 16<t \leq 40 und 40<t \leq 63 mm aufgetragen. Die gestrichelten Linien sind die Fraktilwerte für 0<t \leq 63 mm. Man erkennt eine deutliche Abhängigkeit von R_{eH} von der Erzeugnisdicke.

Die entsprechenden Histogramme für R_{eH} , R_m und A_5 sind dazu im Bild 2.8 aufgetragen. Da für A_k wenig Meßwerte vorlagen und die

Bild 2.7. Einfluβ der Erzeugnisdicke t auf R_{eH}; a Einzelwerte; b 5, 50 und 95%-Fraktile

Ergebnisse weit über den zulässigen Werten liegen, wurde auf eine Darstellung von A_k für verschiedene Erzeugnisdicken verzichtet. Auch hier ist die Tendenz, daß R_{eH} mit der Erzeugnisdicke abnimmt, deutlich zu erkennen.

Im Bild 2.8 ist für $0 \le 16$ mm ein Filter aus den Histogrammen praktisch nicht zu erkennen, da R_{eH} i. allg. viel größer als der zulässige Wert ist. Für $16 \le 40$ mm wird dagegen ein stark ausgeprägter Filter deutlich, d.h. der Mittelwert von R_{eH} aller geprüften Erzeugnisse liegt bei gleicher Streuung wie für $0 \le 16$ mm niedriger, bzw. sehr viele Erzeugnisse haben Streckgrenzen unterhalb der Mindestwerte und mußten deshalb zurückgewiesen werden. Für Erzeugnisdicken t>40 mm kann keine Aussage gemacht werden, da nicht genügend Bescheinigungen in der Datenbank vorlagen.

Für R_m und A_5 kann keine Abhängigkeit von der Erzeugnisdicke festgestellt werden.

2.6.4.2 Zu den Tabellen

12

Die nachfolgenden Auswertungen werden in Tabellenform angegeben. Die Parameter der Verteilungsfunktionen werden nach Abschnitt 2.5.1 berechnet. Sie werden zur Vereinfachung mit θ_1 bis θ_4 bezeichnet:

Stichprobenfunktion (SFK) nach Gl. 2.1 Θ_1 = kleinster Wert, Θ_2 = größter Wert

Normalverteilung (NV) nach Gl. 2.2 $\theta_1 = Mittelwert \mu$, $\theta_2 = Standardabweichung \sigma$

Lognormalverteilung (LNV) nach Gl. 2.3 θ_1 = Mittelwert μ , θ_2 = Standardabweichung σ , θ_3 = Lageparameter x_0

2.8. der datum und Herkunft Histogramme Erzeugnisdicke für ReH ; ohne Rm und A5 Berücksichtigung 'n Abhängigkeit von Prüfvon

Bild

NormalverteilteGrundgesamtheitmitnormalverteilterFilterfunktion (NVF) nach Gl. 2.6 θ_1 = Mittelwert μ_1 , θ_2 = Standardabweichung σ_1 (Gesamtheit) θ_3 = Mittelwert μ_2 , θ_4 = Standardabweichung σ_2 (Filter)k = Normierungskonstante

Die Verteilungsfunktionen werden mit Hilfe des K/S-Tests nach Abschnitt 2.5.2 mit der Stichprobenfunktion verglichen. In den Tabellen ist die Testgröße D nach Gl. 2.7 angegeben. Der kritische Wert D_a nach Gl. 2.8 wird nicht mit angegeben, weil er ausschließlich vom Stichprobenumfang abhängt und leicht zu berechnen ist. Allgemein ist die Anpassung umso besser, je kleiner D ist.

In den letzten 3 Spalten werden die 5, 50 und 95%-Fraktilen angegeben (s. Abschnitt 2.5.3). Die Fraktilen der Stichprobenfunktion werden hierbei durch Abzählen der geordneten Stichprobe ermittelt.

2.6.4.3 Obere Streckgrenze R_{eH}

ų,

-

Die Auswertung der Ergebnisse der oberen Streckgrenze ist in Tabelle 2.5 zusammengestellt.

Es kann festgestellt werden, daß die 5%-Fraktilen der Stichprobenfunktion die Mindestwerte nach DIN 17 100 erfüllen. Die 5%-Fraktile liegt für 0<t \leq 16 mm im Vergleich zu 16<t \leq 40 mm bis zu 20 N/mm² höher.

Der Parameter μ_2 der Filterfunktionen (Θ_3 in der Tabelle) liegt oberhalb der Mindestwerte nach DIN 17 100, wobei σ_2 (Θ_4 in der Tabelle) mit Standardabweichungen unter 10 N/mm² sehr gut ist, d.h. die Filterfunktionen sind praktisch Sprungfunktionen nach Gl. 2.4, und Stähle, deren obere Streckgrenze unterhalb der Filter liegt, werden praktisch immer zurückgewiesen.

Bei der Auswertung der Deutschen Bundesbahn aus dem Jahr 1969 trifft die Deutung für diese Dichtefunktion für den St37 nicht

zu, weil der Mittelwert der Gesamtheit (Θ_1) kleiner als der Filter (Θ_3) ist. Die Normierungskonstante k wird klein, d.h. ein großer Anteil der geprüften Stähle wurde der Rechnung zufolge zurückgewiesen. Durch die Berechnung nach der Maximum-Likelihood-Methode können diese Ergebnisse auftreten, wenn eine andere Form der Funktion rechnerisch "wahrscheinlicher" ist.

Wird die Normalverteilung als Maßstab herangezogen, kann festgestellt werden, daß sowohl die Standardabweichung als auch die Mittelwerte mit größer werdender Erzeugnisdicke abnehmen.

Der Vergleich Deutsche Bundesbahn - Betriebe ist bereits im Abschnitt 2.6.4.1 gemacht worden. Die zahlenmäßige Auswertung bestätigt die Feststellung, daß sich die Ergebnisse signifikant unterscheiden und daß die Fraktilen bei der Deutschen Bundesbahn etwas unterhalb derjenigen der Betriebe liegen.

Der Vergleich der Ergebnisse der Deutschen Bundesbahn für nach 1979 und für 1969 geprüfte Stähle zeigt nur geringe Unterschiede. Die nach 1979 geprüften Stähle haben etwas höhere Fraktilwerte (bis ca. 10 N/mm²) als die 1969 geprüften.

Im allgemeinen paßt sich die Normalverteilung mit Filter nach Gl. 2.6 der Stichprobenfunktion am besten an. Die Normalverteilung nach Gl. 2.1 hat durch die nicht berücksichtigten Filter den Nachteil, daß speziell kleine Fraktilwerte (z.B. 1 oder 5%-Fraktile) zu klein geschätzt werden können. Der Normalverteilung ist deshalb die Lognormalverteilung vorzuziehen.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	······	Τ.	1 .	1	T	.			T # /2	T	F	
1734 063 SFX 216 391 0.050 226 220 275 333 1081 016 SFX 231 32.2 0.050 226 227 333 1081 016 SFX 232.3 34 195.0 0.062 240 227 333 1081 016 SFX 233.3 224.9 0.042 226 223 231 617 16-40 SFX 225.9 9.20.6 0.042 223 2257 233 257 299 333 617 16-40 SFX 225.9 9.20.6 0.042 231 2257 299 36 40-63 SFX 225.9 9.20.6 0.061 231 2257 286 1210 063 SFX 226 255 39.1 17.7 0.061 231 257 286 973 016 SFX 226 255 39.1 17.7 <		An- zahi n	t /mm/	Fkt. Typ	θ	Parame O ₂	eter θ ₃	θ₄	K/S- Test- gr.	5%	Fraktil 50%	95 1
Solution 1081 0-16 5Fk 231.8 394.9 0.29 199.0 0.022 253.280 333.3 Solution Sfk 225.3 335.3 7.249.0 9.2 0.032 253.280 333.3 617 16-40 NV 225.3 335.3 0.058 233.257 289.332 617 16-40 NV 24.04 0.59.3 230.4 3.0 0.058 233.257 280.325 36 40-63 SFK 226.9 17.7 0.066 231.257 286.332 1210 063 SFK 226.3 394.7 0.066 232.257 286.333 1210 063 SFK 226.3 394.7 150.6 0.066 244.286.333 335.6 973 016 NV 227.2 244.53 327.7 245.5 39.0 0.041.255 239.3 344 973 016 KV 225.2 394.4 0.025.7 15.6 0.025		1734	0-63	SFK NV LNV NVF	218 279.9 4.38 271.4 k =	394 29.2 0.34 35.4 0.88	195.0 230.0	4.2	0.050 0.026 0.018	236 232 240 237	277 280 275 277	330 328 338 332
1 1	nngen	1081	0-16	SFK NV LNV NVF	232 291.8 4.49 281.7 k =	394 26.9 0.29 33.7 0.83	199.0 249.0	9.2	0.042 0.024 0.032	253 248 254 253	290 292 288 289	340 336 343 332
36 40-63 SFK 218 256 99 17.7 0.061 216 256 286 1210 0-63 SFK 228 237 232 237 286 334 1210 0-63 SFK 226 394 0.20 150.8 0.046 243 289 333 1210 0-63 SFK 232 237 15.6 0.046 243 289 333 1210 0-63 SFK 232 394 0.046 243 286 332 1210 0-16 WY 292.9 247 196.8 0.046 248 286 333 1210 0-16 WY 292.6 21.9 224.7 196.8 0.041 255 290 344 117 40-63 SFK 226 21.2 237.7 230 0.046 240 223 236 237 231 256 237 237 231 <	alle Bescheinig	617	16-40	SFK NV LNV NVF	225 259.9 4.04 244.8 k =	335 20.6 0.34 29.5 0.69	199.5 230.4	3.0	0.058 0.049 0.026	233 226 232 233	257 260 257 257	297 294 299 288
1210 063 SFR NV NV 226.8 289 394 27.7 28.9 28.0 0.046 24.3 249 28.6 286 24.3 333 289 333 333 1210 063 SFR NV 226.8 394 24.53 0.20 150.6 0.046 24.3 289 333 1210 063 SFR NV 228.5 39.0 254.7 156 0.046 24.4 286 333 1210 016 MV 232.7 394 0.046 24.4 291 341 1210 016 MV 245.3 227.4 0.046 24.4 293 344 126 220 16-40 NV 245.3 21.8 0.031 193.8 0.046 240 269 317 17 40-63 MV 256.1 21.2 237.3 0.4 0.016 226 230 226 336 17 40-63 MV 218.2 21.9 230 2.61 229 230 2.61 <		36	40-63	SFK NV LNV	218 256.9 4.04	299 17.7 0.21	177.5		0.061	218 231 232	256 257 255	280 283 288
973 0-16 SFK 232 394 0.046 253 291 341 973 0-16 NV 292.9 27.4 0.046 253 291 341 973 0-16 NV 285.8 32.7 245.6 7.3 0.046 255 293 342 110 NVF 285.8 32.7 245.6 7.3 0.046 235 272 309 110 16-40 SFK 226 335 0.025 237 273 309 117 40-63 SFK 238 299 0.0051 239 261 226 117 40-63 SFK 218 329 0.011 238 265 300 117 40-63 SFK 218 329 0.016 233 262 300 117 40-63 SFK 218 329 0.016 19.2 0.0051 233 262 304 <td< td=""><td></td><td>1210</td><td>0-63</td><td>SFK NV LNV NVF</td><td>226 288.8 4.90 265.5 k =</td><td>394 27.7 0.20 39.0 0.60</td><td>150.8 254.7</td><td>15.6</td><td>0.046 0.042 0.028</td><td>249 243 248 249</td><td>286 289 285 286</td><td>338 334 338 339</td></td<>		1210	0-63	SFK NV LNV NVF	226 288.8 4.90 265.5 k =	394 27.7 0.20 39.0 0.60	150.8 254.7	15.6	0.046 0.042 0.028	249 243 248 249	286 289 285 286	338 334 338 339
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	iebe, nach ufte Stähle	973	0-16	SFK NV LNV NVF	232 292.9 4.53 285.8 k =	394 27.4 .287 32.7 0.88	196.8 245.6	7.3	0.046 0.041 0.034	253 248 255 252	291 293 290 291	341 338 346 342
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	nur Betr 1979 gepri	220	16-40	SFK NV LNV NVF	226 272.6 4.35 251.6 k =	335 21.8 0.30 21.2 0.89	193.8 237.3	0.4	0.025 0.046 0.011	235 237 240 238	272 273 269 272	309 309 317 310
230 0-63 SFK NV NVF 218 265.1 329 21.2 0.065 230 233 262 265 300 265 300 306 265 230 306 265 266 306 235 306 265 300 265 61 0-16 SFK NV NVF 238.1 16.9 4.93 0.164 0.050 0.031 242 0.039 242 248 282 324 329 248 282 321 325 257 291 291 233 258 258 287 291 293 258 287 293 233 258 288 288 233 258 288 288		17	40-63	SFK NV LNV	238 260.6 4.09	299 15.5 0.24	198.8		0.095	239 240	258 261 259	286 288
61 0-16 SFK NV LHV 238. 283.1 329 283.1 0.16 16.9 0.050 247 242 283.3 247 283.3 237 237.4 0.22 0.050 0.053 242 248 282 282 313 321 151 16-40 SFK NV HV 225.3 312 255.0 0.16.9 0.032 233 258 287 281 321 259 281 231 259 287 281 231 259 287 281 282 321 151 16-40 SFK 225 312 0.032 233 258 287 151 16-40 SFK 2259.0 16.9 0.032 233 258 288 16 40-63 NV 255.1 14.7 0.015 233 255 279 18 40-63 SFK 231 325 230 233 252 282 299 0-63 SFK 231 325 290 0.107 233 252 280 303	bh. bhe	230	0-63	SFK NV LNV NVF	218 265.1 4.20 251.8 k =	329 21.2 0.31 28.6 0.70	195.6 235.6	9.6	0.065 0.016 0.018	233 230 236 235	262 265 262 263	306 300 307 304
SFK 225 312 0.032 233 258 287 151 16-40 KNV 2259.0 16.9 0.032 231 259 287 151 16-40 KNV 259.0 16.9 0.028 196.2 0.028 235 257 291 16 40-63 SFK 218 279 0.015 233 258 288 18 40-63 SFK 218 279 0.123 231 255 279 18 40-63 SFK 218 279 0.123 231 255 279 299 0-63 SFK 231 325 288 0.322 230 251 287 299 0-63 SFK 231 325 299 0.43 324 0.32 199.9 0.096 233 250 290 44 0-16 SFK 251 325 20.7 250.5 0.25 280	he Bundesb eprüfte St	61	0-16	SFK NV LNV NVF	238 283.1 4.93 281.3 k =	329 16.9 0.16 23.7 0.97	143.4 237.4	0.2	0.050 0.053 0.039	242 247 254 248	285 283 282 282 282	313 319 324 321
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ur Deutsci ach 1979 g	151	16-40	SFK NV LNV NVF	225 259.0 4.10 256.8 k =	312 16.9 0.28 18.9 0.94	196.2 226.4	3.7	0.032 0.028 0.015	233 231 235 233	258 259 257 258	287 287 291 288
299 0-63 SFK NV NVF 231 254.0 325 18.4 0.324 0.096 230 233 252 293 284 44 0-16 SFK NV NVF 251 280.0 325 251 325 280.0 0.32 17.2 0.096 0.048 230 230 251 280 230 230 251 280 252 280 303 250 44 0-16 SFK NV NVF 251 280.0 325 280.0 17.2 280.0 0.055 252 252 280 303 312 44 0-16 SFK NV NVF 231 240.0 326 20.7 0.059 255 278 312 302 255 279 311 251 15-40 SFK NV NVF 231 212.0 326 29.6 0.77 232.0 0.112 226 233 246 278 278 4 40-63 SFK NV 3.61 0.25 200.9 0.77 0.252 0.212 221 231 248 278 278	e e	18	40-63	SFK NV LNV	218 255.1 4.83	279 14.7 0.12	129.4	-	0.123 0.107	231 232	252 255 255	279 282
44 0-16 SFK NV NVF 251 325 280.0 0.216 197.6 90.216 0.059 0.071 252 252 280 308 280 251 16-40 SFK NVF 275.6 275.6 20.7 29.6 250.5 0.2 0.055 255 278 312 251 16-40 SFK NVF 277.6 302.7 14.4 0.112 226 250.2 250.2 279 311 251 16-40 SFK NVF 27.7 14.4 0.112 226 250.2 273 248 278 3.69 0.27 199.0 0.108 231 248 278 4 40-63 SFK NV 231 257 - - 233 246 278 4 40-63 SFK 231 257 - - 231 248 275 3.61 0.25 200.9 0.169 221 239 256 4 40-63 SFK 231 257 238 <td>E e</td> <td>299</td> <td>0-63</td> <td>SFK NV LNV NVF</td> <td>231 254.0 3.94 214.61 k =</td> <td>325 18.4 0.32 35.4 0.68</td> <td>199.9 230.9</td> <td>0.1</td> <td>0.096 0.096 0.048</td> <td>233 224 230 233</td> <td>252 254 251 250</td> <td>293 284 287 290</td>	E e	299	0-63	SFK NV LNV NVF	231 254.0 3.94 214.61 k =	325 18.4 0.32 35.4 0.68	199.9 230.9	0.1	0.096 0.096 0.048	233 224 230 233	252 254 251 250	293 284 287 290
SFK 231 302 233 248 278 251 16-40 SFK 231 302 0.112 226 250 273 266 V NV 3.89 0.27 199.0 0.112 226 250 273 V NVF 212.0 29.6 232.0 0.7 0.108 231 248 278 4 40-63 SFK 231 257 0.25 0.16 0.212 221 239 256 1.NV 3.61 0.25 200.9 0.169 225 238 256	e Bundesba üfte Stähl	44	0-16	SFK NV LNV NVF	251 280.0 4.39 275.6 k =	325 17.2 0.216 20.7 0.89	197.6 250.5	0.2	0.059 0.071 0.055	252 252 255 255	280 280 278 279	303 308 312 311
4 40-63 SFK 231 257 - 231 - NV 239.0 10.6 0.212 221 239 256 LNV 3.61 0.25 200.9 0.169 225 238 257	ur Deutsch 1969 gepr	251	16-40	SFK NV LNV NVF	231 249.7 3.89 212.0 k =	302 14.4 0.27 29.6 0.25	199.0 232.0	0.7	0.112 0.108 0.052	233 226 231 233	248 250 248 246	278 273 275 278
	-	4	40-63	SFK NV LNV	231 239.0 3.61	257 10.6 0.25	200.9		0.212	221 225	231 239 238	256 257

Tabelle 2.5. Auswertung der Ergebnisse der oberen Streckgrenze /N/mm²/ für den St37

Tabelle	2.5.	Auswertung der Ergebnisse der oberen Streckgre	enze
		/N/mm ² / für den St52 (Fortsetzung)	

r	1		Ek.		D 2	ter		¥/5		Fraktilo	
1	zahl	ι			ratonie			Test-		. ancite	
	n	/mm/	Тур	θι	θ2	θ3	θ	gr.	5%	50%	95%
			SFK	349	495			0.070	360	400	446
	440	0-63	NV LNV	402.2	26.6	314.7		0.072	369	402 398	440
			NVF	398.9	28.6	350.7	1.1	0.050	361	401	448
	ļ		ļ	K =	0.95						
			SFK NV	357	495 26.4			0.088	370 365	406 409	450
gen	255	0-16	LNV	4.65	0.248	300.9	0.5	0.043	370	405	458
un			NVF	405.8 k ≈	0.96	350.4	0.5	0.005	300	409	434
le			SEK	49	464				353	390	431
hei	177	16-40	NV	393.4	24.3			0.064	353	393	434
ssc			LNV NVF	4.50	28.1	349.3	1.9	0.045	350	392	439
B				k≖	0.92						
			SFK	349	417			0.055		378	
	8	40-63	LNV LNV	3/7.9	0.34	311.5		0.056	342	378	421
	<u> </u>	<u> </u>	SEK	355	495			<u>}</u>	364	417	463
	55	0-63	NV	415.5	26.7			0.103	372	416	459
			LNV NVF	5.38	30.6	197.1	0.5	0.081	3/1	414	400
د ه	ļ			k, ≠	0.98						
e u			SFK	373	495				373	421	464
st.	30	0-16		420.5	28.6 0.29	197.7		0.081	3/4	421	468
ebe			NVF	412.5	34.7	371.9	0.4	0.099	379	418	472
1. In	L			K =	, v.88						
Bet 9ep			SFK	355	463 28.2			0.112	355	405 410	447 457
r 79	23	16-40	LNV	5.33	0.14	201.0	0.6	0.097	361	408	461
100			NVF	407.6 k =	0.96	353.1	0.0	0.093	300	409	433
	<u> </u>	·	SFK	353	490			<u>}</u>	355	415	464
	75	0-63	NV	407.3	31.4	106 7		0.063	356	407	459
bah tăh			NVF	400.2	37.1	352.1	0.4	0.047	361	405	462
de s				k =	0.90						
L L			SFK	373	490			0.000	374	413	464
Pr(42	0-16	LNV	5.37	0.13	197.8		0.093	305	415	404
ge			NVF	388.4	45.0	372.4	0.5	0.041	376	410	463
eut 979	<u> </u>	}		200				<u> </u>	255	402	
	1 22	16 40	NY	355	404 29.7			0.118	355	403	440 448
r action	32	10-40	LNV	5.23	0.15	197.6	05	0.118	354	397	452
		ł		k =	0.77	555.0	0.5	0.127		535	- 34
	[SFK	352	463				363	400	444
	192	0-63		400.1	24.4	198.2		0.111	360	400 399	440 442
ahn			NVF	394.0	29.1	358.2	5.0	0.081	364	398	444
esb tăh	L	 	ļ	К =	0.89				ļ		
Sind			SFK	360	463			0.117	364	400 404	444
fte	145	0-16	LNV	5.32	0.12	198.2		0.100	366	403	448
che		1	NVF	198.2 k =	29.6	359.5	0.2	0.085	306	402	449
uts 9el		 	SEV	352	420				358	390	420
De 69	47	16-40	NV	389.0	17.8			0.112	360	389	418
1.5	"	1 70	LNV NVF	5.25	0.09 18.8	198.3	3.0	0.112	361	388 389	420
^c		ŀ		k =	0.98						

2.6.4.4 Zugfestigkeit R_m

- 2

Die Auswertung der Ergebnisse ist in Tabelle 2.6 zusammengestellt.

Die Abhängigkeit von der Erzeugnisdicke t ist nur gering. Es ist lediglich ein leichter Abfall der Zugfestigkeit von der Erzeugnisdicke festzustellen.

Die Grenzwerte nach DIN 17 100 (s. Tabelle 2.3) werden in fast allen Fällen eingehalten; bei der Auswertung der Bescheinigungen der Betriebe sind beim St37 zwei Werte oberhalb des Höchstwertes. Die Unterschiede zwischen den Verteilungsfunktionen Deutsche Bundesbahn und Betriebe sind gering; die Fraktilwerte liegen jedoch bei den Bescheinigungen der Betriebe im Gegensatz zu R_{eH} etwas niedriger.

Der Vergleich der Summenhäufigkeitskurven der Ergebnisse der Deutschen Bundesbahn zwischen nach 1979 und 1969 geprüften Stählen ergab nach dem K/S/O-Test nur beim St37 für 16<t≤40 mm einen signifikanten Unterschied, wobei für die 1969 geprüften Stähle geringere Fraktilwerte festgestellt wurden.

Da aus den Histogrammen keine ausgeprägten Filter ersichtlich sind, wird für die normalverteilte Gesamtheit mit Filter nach Gl. 2.6 die Dichtefunktion nicht angegeben.

Allgemein paßt sich hier die Normalverteilung der Stichprobenfunktion besser als die Lognormalverteilung an.

				<u> </u>	t 37										<u> </u>	<u>t52-</u>		-			
	An-	t	FKt.		Parame	ter	K/S- Test-		Fraktile		An-		t	Fkt.		Parai	eter	K/S- Test-	F	raktile	
	n	/mm/	Тур	θ	θ ₂	θ3	gr.	5%	50%	95%	n		/mm/	Тур	θ ₁	θ ₂	θ3	gr.	5%	50%	951
	1733	0-63	SFK NV LNV	349 418.9 4.51	504 21.9 0.248	325.2	0.031 0.026	384 383 386	419 419 416	456 455 461	43	9	0-63	SFK NV LNV	509 575.7 4.68	634 24.3 0.2	8 464.8	0.032 0.032	540 536 538	575 576 573	619 616 624
gungen	1081	0-16	SFK NV LNV	349 419.1 4.65	504 22.7 0.224	312.1	0.033 0.023	385 382 384	418 419 417	456 456 463	25	4	0-16	SFK NV LNV	509 577.1 4.72	633 24.5 0.2	33 462.1	0.047 0.037	532 537 538	575 577 574	619 617 627
alle scheinî	616	16-40	SFK NV LNV	352 418.2 4.45	471 20.5 0.250	329.3	0.016 0.043	384 385 386	419 418 415	451 452 459	17	77	16-40	SFK NV LNV	514 574.2 4.59	634 24.5 0.2	57 472.3	0.047 0.030	536 534 537	573 574 571	611 614 623
Be	36	40-63	SFK NV LNV	380 423.9 4.61	460 19.9 0.20	321.3	0.085 0.058	380 391 394	422 424 422	456 457 461		8	40-63	SFK NV LNV	546 563.4 4.26	601 17.3 0.2	16 490.6	0.202	535 541	563 563 562	592 592
ب و	1210	0-63	SFK NV LNV	352 418.9 5.23	504 22.7 0.121	233.4	0.049 0.064	383 381 385	417 419 419	456 456 460	5	55	0-63	SFK NV LNV	523 575.5 4.88	623 19.8 0.1	54 442.6	0.028	536 543 545	576 576 574	609 608 612
be, na te Ståh	973	0-16	SFK NV LNV	355 419.3 5.14	504 22.5 0.133	225.3	0.086 0.086	385 382 387	418 419 421	457 457 463	3	30	0-16	SFK NV LNV	543 575.4 4.865	615 17.6 0.1	35 444.5	0.026 0.025	543 546 548	576 575 574	602 604 607
Betriel geprüfi	220	16-40	SFK NV LNV	352 414.5 5.12	471 22.5 0.135	5 249.0	0.032 0.067	379 378 383	415 415 416	453 452 458	2	23	16-40	SFK NV LNV	523 575.8 4.87	623 21.7 0.1	35 358.6	0.102 0.100	523 540 542	572 576 574	602 612 613
nur 1979	17	40-63	SFK NV LNV	380 407.5 4.93	423 10.6 0.08	271.7	0.122 0.150	- 390 393	408 408 410	425 429											
bahn. táhle	229	0-63	SFK NV LNV	371 425.2 5.22	470 21.4 0.11	9 242.5	0.034 0.064	387 390 395	427 425 427	457 460 467		75	0-63	SFK NV LNV	530 572.6 4.84	628 21.1 0.1	62 444.1	0.055 0.050	543 538 541	571 573 571	610 607 610
Bundes rüfte S	61	0-16	SFK NV LNV	371 417.5 5.22	458 22.8 0.12	6 234.4	0.069 0.072	373 380 385	417 418 419	448 455 462		42	0-16	SFK NV LNV	540 575.7 4.86	623 20.7 0.1	59 445.2	0.070 0.050	547 542 544	572 576 574	607 610 613
eutsche 179 gep	150	16-40	SFK NV LNV	375 426.1 5.13	470 20.2 0.12	1 258.3	0.023 0.047	389 393 396	427 426 427	459 459 465		32	16-40	SFK NV LNV	530 569.3 4.84	610 21.0 0.1	64 441.0	0.071	530 535 538	571 569 568	608 604 607
nur De nach 15	18	40-63	SFK NV LNV	416 442.9 4.54	460 11.7 0.13	348.8	0.098	424 425	440 443 442	462 463											
ahn.	299	0-63	SFK NV LNV	375 417.2 4.90	458 17.1 0.12	8 284.6	0.028	384 389 393	419 417 416	444 445 450	1	92	0-63	SFK NV LNV	520 579.0 5.39	633 26.0 0.	24 363.3	0.070	532 535 542	580 579 582	620 623 631
Bundest te Stäh	44	0-16	SFK NV LNV	377 417.3 5.00	554 17.7 0.12	0 270.8	0.035	370 388 393	416 417 419	440 446 452	1	45	0-16	SFK NV LNV	520 577.4 5.42	633 27. 0.	3 23 355.0	0.087 0.106	530 533 539	580 577 580	620 622 631
utsche geprüf	251	16-40	SFK NV LNV	375 417.3 4.92	458 17.1 0.12	6 282.6	0.034	384 389 394	417 417 420	444 445 451		47	16-40	SFK NV LNV	540 583.3 4.37	628 23.0 0.1	32 6 501.0	0.072 0.098	540 544 547	584 583 580	610 622 636
nur De 1969	4	40-63	SFK NV LNV	405 415.5 4.57	462 7.4 0.08	320.8	0.197 0.174	403 406	412 415 417	428 431											

فعد

2.6. Auswertung der Ergebnisse (/N/mm²/ für den St37 und St52

der

Zugfestigkeit

. **\$**is

Tabelle

2.6.4.5 Bruchdehnung A5

In Tabelle 2.7 ist die Auswertung der Ergebnisse der Bruchdehnung zusammengestellt.

Alle Mindestwerte nach DIN 17 100 (s. Tabelle 2.3) wurden eingehalten.

Da beim St52 für 40<t≤63 mm nicht genügend Werte zur Verfügung standen, wurde auf eine Auswertung verzichtet.

Erwartungsgemäß sind alle Fraktilwerte beim St52 im Vergleich zum St37 um ca. 50 bis 100%, kleiner. Weiterhin nimmt die Bruchdehnung bei größeren Erzeugnisdicken ab.

Die Fraktilwerte sind bei allen Auswertungen jeweils für eine Erzeugnisdicke nahezu gleich. Der K/S-Test nach Abschnitt 2.5.2 bestätigt diese Annahme, sodaß davon ausgegangen werden kann, daß die Werte im Vergleich Deutsche Bundesbahn und Betriebe, sowie Deutsche Bundesbahn für nach 1979 und 1969 geprüfte Stähle sich nicht signifikant unterscheiden.

I. allg. paßt sich die Lognormalverteilung der Sichprobenfunktion am besten an. Da jedoch der Lageparameter x_0 (θ_3 in der Tabelle) relativ klein ist und die Lognormalverteilung bei kleinem x_0 sich der Normalverteilung annähert, liegt zwischen beiden Verteilungen kein großer Unterschied vor.

2.6.4.6 Kerbschlagarbeit A_k

Die Ergebnisse der Auswertung der Kerbschlagarbeiten sind in Tabelle 2.8 ausschließlich für die Bescheinigungen der Betriebe für nach 1979 geprüfte Stähle zusammengestellt. Da von der Deutschen Bundesbahn und für 40<t≤63 mm beim St52 nicht genügend Ergebnisse vorlagen, wurde auf eine Auswertung verzichtet.

				<u> </u>	t37-								-	<u>S</u>	st 52-						
	An-	t	Fkt.		Parame	ter	K/S-		Fraktile		An-	t	Fkt.		Parame	ter	K/S-		Fraktile]	-Ta
	n	/mm/	Тур	θ,	θ2	θ3	gr.	5%	50%	95%	n	/mm/	Тур	θ ₁	θ2	θ ₃	gr.	5%	50%	95%	đ
	1734	0-63	SFK NV LNV	240 353.1 5.28	480 35.8 0.193	151.9	0.043 0.067	289 294 296	360 353 350	410 412 423	440	0-63	SFK NV LNV	210 279.0 4.69	360 31.7 0.304	165.0	0.080 0.069	230 227 231	280 279 274	330 331 345	lle
gungen	1081	0-16	SFK NV LNV	240 357.6 5.32	480 38.2 0.202	148.3	0.061 0.084	284 295 296	360 358 354	410 420 434	255	0-16	SFK NV LNV	210 283.0 4.77	350 32.9 0.295	161.0	0.090 0.079	230 229 233	290 283 278	340 337 353	2
alle scheini	617	16-40	SFK NV LNV	240 346.8 5.17	430 29.9 0.183	168.1	0.051	300 298 296	350 347 344	390 396 409	177	16-40	SFK NV LNV	210 274.0 4.64	360 30.4 0.300	166.0	0.088	230 224 229	270 274 269	320 323 335	7.
8e	36	40-63	SFK NV LNV	290 329.7 4.84	390 26.2 0.203	200.3	0.121 0.130	290 287 291	330 330 327	410 373 377	- 8	40-63	SFK NV LNV	250 271.0 3.90	300 22.0 0.385	214.0	0.196 0.144	235 242	270 271 267	308 314	Aus /%.
ach hle	1210	0-63	SFK NV LNV	240 355.5 5.61	450 37.9 0.145	80.9	0.052	281 293 296	360 356 355	410 418 427	55	0-63	SFK NV LNV	230 280.4 4.87	340 23.8 0.184	147.3	0.107 0.081	240 241 244	280 280 278	320 320 324	wert
ebe. r fte Sta	973	0-16	SFK NV LNV	240 357.4 5.62	450 38.9 0.148	79.6	0.049 0.072	281 293 296	360 357 355	410 421 431	30	0-16	SFK NV LNV	240 280.9 4.89	340 21.9 0.166	5 154.4	0.142	240 245 256	290 281 288	320 317 330	ir d
Betri 9 gepru	220	16-40	SFK NV LNV	250 348.5 5.30	430 33.0 0.179	145.9	0.085	280 294 295	350 349 346	400 403 414	23	16-40	SFK NV LNV	230 267.3 4.76	320 20_6 0.17	5 149.2	0.187 0.164	230 233 236	270 267 265	280 301 304	de S
1979	17	40-63	SFK NV LNV	300 340.0 5.24	390 24.5 0.129	150.0	0.070 0.050	300 302	340 340 338	380 383							1				r E
sbahn. Stänle	230	0-63	SFK NV LNV	290 350.3 5.30	430 28.7 0.144	148.9	0.086	300 303 306	350 350 348	400 398 402	75	0-63	SFK NV LNV	240 302.1 5.29	350 27.9 0.14	7 103.0	0.110	250 256 258	300 302 301	340 348 355	rgeb und
Bunde	61	0-16	SFK NV LNV	300 355.7 5.32	410 30.5 0.152	2 147.9	0.095	300 306 308	360 356 353	400 406 412	42	0-16	SFK NV LNV	250 306.7 5.30	350 27.3 0.14	8 104.3	0.130	250 262 264	310 307 306	340 352 358	nise St52
eutsche 979 gep	151	16-40	SFK NV LNV	300 351.5 5.30	430 26.7 0.132	2 149.1	0.081 0.077	310 308 311	350 352 350	400 395 399	32	16-40	SFK NV LNV	240 296.3 5.24	340 28.03 0.15	4 105.8	0.121	240 250 253	300 296 295	330 342 350	Õ
nur D	18	40-63	SFK NV LNV	290 321.7 5.14	360 21.4 0.12	4 150.0	0.071 0.050	287 289	320 322 320	357 359							 				der
Jahn.	299	0-63	SFK NV LNV	280 345.0 4.84	420 27.3 0.21	8 216.0	0.058 0.088	300 300 304	350 345 343	400 390 397	192	0-63	SFK NV LNV	210 268.2 5.11	350 32.1 0.18	5 99.3	0.139	230 215 222	260 268 265	320 321 324	E E
Bundest te Stär	44	0-16	SFK NV LNV	320 362.1 4.96	420 23.1 0.16	0 218.0	0.107	322 324 328	360 362 361	420 400 403	142	0-16	SFK NV LNV	220 273.6 5.14	350 32.5 0.18	4 99.3	0.105	230 220 226	270 274 271	330 327 331	ruch
utsche	251	16-40	SFK NV LNV	280 342.7 4.82	420 26.5 0.21	5 216.0	0.067 0.087	290 299 303	340 343 340	390 386 393	47	16-40	SFK NV LNV	210 251.7 5.01	320 24.2 0.15	2 100.3	0.224	210 212 217	250 252 250	290 291 292	dehn
nur De	4	40-63	SFK NV LNV	290 300.0 4.44	310 7.1 0.08	4 215.0	0.411 0.250	288 289	290 300 300	412 313						-					nng

лă

38

.k

Die Mindestwerte von 27 J nach DIN 17 100 wurden bis auf das Ergebnis eines Versuches eingehalten.

Die Fraktilwerte liegen beim St37 etwas höher als beim St52. Eine Abhängigkeit von A_k von der Erzeugnisdicke kann nicht festgestellt werden.

I. allg. paβt sich die Normalverteilung besser als die Lognormalverteilung der Stichprobenfunktion an.

Tabelle 2.8. Auswertung der Ergebnisse der Kerbschlagarbeit /J/ für den St37 und St52; nur nach 1979 geprüfte Stähle aus den Bescheinigungen der Betriebe

			St3	37					
An- zahl	t	Fkt.		Paramet	er	K/S- Test-		Fraktile	
n	/mm/	Тур	θ ₁	θ2	θ3	gr.	5%	50%	95%
432	0-63	SFK NV LNV	26 2 141.2 4.875	270 49.0 0.383	1.1	0.032 0.056	66 61 71	140 141 132	235 222 247
305	0-16	SFK NV LNV	26 2 139.7 4.853	270 51.0 0.399	1.7	0.050 0.050	64 56 68	135 140 130	239 224 249
110	16-40	SFK NV LNV	55 2 148.6 4.940	40.3 0.307	2.7	0.071 0.128	76 82 87	146 149 143	218 215 243
17	40-63	SFK NV LNV	32 2 121.2 4.679	235 40.3 0.476	1.5	0.154	32 51	101 121 109	- 211 237
			St5	52		-			
54	0-63	SFK NV LNV	42 127.6 4.784	221 49.4 0.431	2.4	0.073 0.130	48 51 59	130 128 118	192 203 237
30	0-16	SFK NV LNV	42 127.8 4.753	221 45.8 0.417	2.4	0.090 0.125	42 53 61	132 128 118	192 204 233
22	16-40	SFK NV LNV	48 130.8 4.776	221 40.8 0.439	1.9	0.105 0.161	48 54 60	130 131 121	188 208 246

2.6.5 Auswertung der Ergebnisse der chemischen Analyse

. 3

In den Bescheinigungen werden größtenteils Schmelzanalysen ausgewiesen. Deshalb werden die Auswertungen nicht getrennt für verschiedene Erzeugnisdicken durchgeführt. Im Bild 2.9 sind die Ergebnisse in Form von Histogrammen aufgetragen, wobei nicht nach Herkunft und Prüfdatum unterschieden wurde. Es kann festgestellt werden, daß die Grenzwerte nach DIN 17 100 nur in wenigen Fällen beim Stickstoffgehalt überschritten werden.

In Tabelle 2.9 sind die Parameter der Verteilungsfunktionen zusammengestellt. Um die Zahlenrechnung zu vereinfachen, wurden für C, Si und Mn die Werte, die sämtlich in % angegeben werden, mit 100, für P und S mit 1000 und für N mit 10000 multipliziert und die Parameter berechnet. Um die Dichtefunktionen zu berechnen, müssen die Eingangsparameter entsprechend umgerechnet werden.

Die Werte von C, Mn und Si sind beim St52 im Vergleich zum St37 signifikant größer, wobei speziell Mn und Si zur Festigkeitssteigerung und als Desoxidationsmittel beigegeben werden.

Ein Vergleich der Ergebnisse Betriebe und Deutsche Bundesbahn für nach 1979 geprüfte Stähle ergab keine signifikanten Unterschiede. Der Vergleich nach 1979 und 1969 geprüfte Stähle der Deutschen Bundesbahn ergab ebenfalls keine signifikanten Unterschiede. Lediglich der Mn und Si-Gehalt ist beim St37 bei den nach 1979 geprüften Stählen etwas höher.

Der Einfluß der Legierungselemente auf die Festigkeit wird im Abschnitt 2.8 untersucht.

Bild 2.9. Histogramme für die Legierungselemente ohne Berücksichtigung von Prüfdatum und Herkunft

Ele- ment	An- zahl	Funk- tion	Funk 01	tionsparam θ ₂	neter 03	Testgr. K/S	5 %	Fraktile 50%	95 %	Ele- ment	An- zahl	Funk- tion	Funk e1	tionsparam θ ₂	eter 0 ₃	Testgr. K/S	5%	raktile 50%	95%
<u>+</u>			- alle i	Bescheinig	jungen -	•-					()eutsch	e Bunde:	sbahn, nur	nach 1	979 gepr	ifte St	ähle	-
C /%/* 100	1511	SFK NV LNV	5 11.4 2.23	20 2.91 0.321	1.6	0.102 0.056	7 6.6 7,1	11 11.4 10.9	16 16.2 17.4	C /%/* 100	230	SFK NV LNV	8 13.4 2.58	19 2.24 0.178	0	0.109 0.116	9 9.8 9.9	14 13.4 13.2	17 17.1 17.7
Si /%/* 100	1441	SFK NV LNV	3 17.1 2.65	57 7.99 0.708	0	0.079 0.211	3 3.9 4.4	19 17.1 14.2	27 30.2 45.6	SI /%/* 100	230	SFK NV LNV	2 19.3 2.78	28 7.90 0.720	0	0.238 0.313	3 4.3 4.9	23 19.3 16.1	26 32.3 52.7
Mn /%/* 100	1451	SFK NV LNV	28 60.7 3.76	144 15.8 0.346	14.9	0.077 0.019	39 34.7 39.3	59 60.7 58.0	91 86.5 91.1	Mn /%/* 100	230	SFK NV LNV	38 65.7 4.16	109 15.3 0.227	0	0.045 0.041	46 40.5 44.1	64 65.7 64.1	92 90.9 93.1
P /%/* 1000	1502	SFK NV LNV	1 18.1 2.82	50 7.15 0.410	0	0.075 0.023	8 6.3 8.5	17 18.1 16.7	31 29.9 32.8	P /%/* 1000	230	SFK NV LNV	11 22.2 3.08	50 5.22 0.228	0	0.086 0.066	14 13.6 15.0	21 22.2 21.8	30 30.8 31.7
S /%/* 1000	1499	SFK NV LNV	1 21.6 2.98	50 8.84 0.446	0	0.080 0.027	9 7.1 9.5	20 21.6 19.8	39 36.2 41.1	S /%/* 1000	230	SFK NV LNV	7 17.9 2.85	32 4.86 0.273	0	0.117 0.074	11 9.9 11.0	17 17.9 17.2	26 25.8 27.0
N /%/* 10000	919	SFK NV LNV	3 59.2 3.97	122 23.1 0.545	0	0.099 0.098	20 21.2 21.6	60 59.2 53.0	100 97.2 130										
		nu	r Betri	ebe, nach	1979 ge	prüfte S	tähle		····			Deutsch	e Bunde	sbahn, nur	1969 9	jeprüfte	Stähle		
C /%/* 100	1209	SFK NV LNV	5 10.9 2.36	20 2.88 0.271	0	0.111 0.078	7 6.2 6.8	11 10.9 10.6	16 15.7 16.5	C /%/* 100	71	SFK NV LNV	5 12.6 2.52	20 2.16 0.168	0	0.102 0.094	7 9.0 9.4	12 12.6 12.4	16 16.1 16.4
S1 /%/* 100	1143	SFK NV LNV	1 16.3 2.60	39 7.90 0.709	0	0.111 0.237	3 3.3 4.2	18 16.3 13.5	28 29.3 43.2	Si /%/* 100	67	SFK NV LNV	2 21.0 3.00	27 4.04 0.364	0	0.206 0.318	4.8 14.4 11.0	21 21.0 20.1	26 27.7 36.6
Mn /%/* 100	1142	SFK NV LNV	28 60.1 4.06	144 16.1 0.262	0	0.066 0.132	38 33.6 44.4	59 60.1 58.0	91 86.6 75.7	Mn /%/* 100	71	SFK NV LNV	41 54.4 3.99	74 5.93 0.110	0	0.031	41 44.6 45.1	54 54.4 54.0	67 64.1 64.8
P /%/* 1000	1199	SFK NV LNV	1 17.0 2.75	45 6.80 0.406	0	0.091 0.022	8 5.8 8.0	16 17.0 15.6	29 28.2 30.5	р /%/* 1000	71	SFK NV LNV	8 24.3 3.08	48 10.00 0.500	0	0.187 0.221	9 7.9 9.6	22 24.3 21.8	36 40.8 49.5
\$ /%/* 1000	1196	SFK NV LNV	1 22.1 3.00	50 9.37 0.474	0	0.077 0.034	9 6.7 9.2	21 22.1 20.0	40 37.5 43.6	S /%/* 1000	71	SFK NV LNV	17 26.0 3.24	36 4.74 0.187	0	0.060 0.040	17 18.2 18.8	26 26.0 25.6	34 33.8 34.8
N /%/* 10000	895	SFK NV LNV	3 60.3 4.02	122 21.9 0.433	0	0.118	20 24.3 27.3	60 60.3 55.7	100 96.3 113.6										

. dec

Tabelle 2.9. Parameter der Legierungselemente für den St37 der Verteilungsfunktion und Fraktilwerte

Ele-	An-	Funk-	Funkt	ionsparam	eter	Testgr.		Fraktile		Ele-	An-	Funk	Funkt	ionsparam	eter	Testgr.		Fraktil	e
ment	zahl	tion	θ ₁	θ2	θι	K/S	5%	50%	95%	ment	zahl	tion	θ ₁	θ2	θ3	K/S	5%	50%	95%
			- alle B	lescheinig	ungen -						C	eutso	the Bundes	sbahn, nur	nach 1	979 gepr	üfte S	tähle -	
C /%/* 100	439	SFK NV LNV	8 17.8 2.69	21 1.74 0.138	3.0	0.126 0.125	15 14.9 14.6	18 17.8 17.6	20 20.6 21.4	C /%/* 100	75	SFK NV LNV	10 16.9 2.82	20 2.25 0.152	0	0.209 0.241	11 13.2 13.0	17 16.9 16.7	19 20.6 21.5
Si /%/* 100	440	SFK NV LNV	3.9 41.9 3.72	55 6.08 0.190	0	0.106 0.160	29 31.9 30.2	43 41.9 41.3	49 51.9 56.5	Si /%/* 100	75	SFK NV LNV	33 44.1 3.78	52 3.50 0.082	0	0.078 0.077	37 38.3 38.4	44 44.1 44.0	49 49.8 50.3
Mn /%/* 100	440	SFK NV LNV	69 137.0 4.59	160 10.3 0.116	37.6	0.062 0.092	119 120.1 119.0	138 137.0 136.0	180 153.9 157.0	Mn /%/* 100	75	SFK NV LNV	129 141.8 4.52	160 6.45 0.070	49.5	0.095 0.101	131 129.2 129.8	142 141.8 141.0	152 153.2 153.7
P /1/* 1000	440	SFK NV LNV	8 21.0 2.99	41 6.79 0.333	0	0.081 0.036	11 9.8 8.1	20 21.0 19.7	33 32.1 34.4	P /%/* 1000	75	SFK NV LNV	13 23.2 3.12	34 5.05 0.228	0	0.069 0.079	15 14.9 15.5	23 23.2 22.6	32 31.5 32.9
S /%/* 1000	440	SFK NV LNV	2 19.2 4.17	41 6.86 0.472	0	0.033 0.104	6 7.9 8.1	20 19.2 17.5	29 30.5 38.1	S /%/* 1000	75	SFK NV LNV	4 16.5 2.73	37 6.11 0.386	0	0.097 0.088	7 6.5 8.2	16 16.5 15.4	27 26.6 29.0
N /%/* 10000	110	SFK NV LNV	40 67.5 3.67	110 15.8 0.378	24.6	0.169 0.154	50 41.5 46.1	70 67.5 64.6	91 93.5 99.1										
		N	ur Betri	ebe, nach	1979 ge	prüfte S	Stähle				/	Deuts	che Bunde	sbahn, nur	1969	geprüfte	Stähle		
C /%/* 100	55	SFK NV LNV	14 17.6 2.86	21 1.73 0.090	0	0.060 0.070	14 14.7 15.1	18 17.6 17.5	20 20.4 20.3	C /%/* 100	191	SFK NV LNV	14 18.1 2.90	21 1.40 0.078	0	0.071 0.078	16 15.8 15.9	18 18.1 18.1	20 20.4 20.6
Si /%/* 100	55	SFK NV LNV	30 39.2 3.66	50 5.57 0.142	0	0.132	31 30.0 30.7	39 39.2 38.8	48 48.3 49.0	Si /%/* 100	192	SFK NV. LNV	25 40.8 3.693	55 6.61 0.179	0	0.126 0.163	28 30.0 29.9	42 40.8 40.2	48 51.6 53.9
Mn /%/* 100	55	SFK NV LNV	125 142.7 4.53	16C 9.07 0.098	49.5	0.073 0.053	126 127.8 128.4	141 142.7 142.3	157 156.6 158.5	Mn /%/* 100	192	SFK NV LNV	107 132.7 4.41	153 9.63 0.120	49.5	0.039 0.064	114 116.9 117.3	133 132.7 132.1	147 148.6 150.2
P /%/+ 1000	55	SFK NV LNV	8 15.4 2.68	33 5.48 0.322	0	0.111 0.057	8 6.4 8.4	14 15.4 14.6	26 24.4 25.1	P /%/* 1000	192	SFK NV LNV	10 21.1 2.99	41 7.50 0.350	0	0.130 0.085	11 8.7 11.5	19 21.1 19.8	35 33.4 35.3
S /1/* 1000	55	SFK NV LNV	2 8.87 2.04	22 4.64 0.544	0	0.095 0.078	2 1.2 3.2	7 8.9 7.7	19 16.5 18.9	S /%/* 1000	192	SFK NV LNV	15 22.9 3.12	39 3.90 0.169	0	0.086 0.105	17 16.5 17.1	23 22.9 22.6	29 29.3 29.9
N /%/* 10000	40	SFK NV LNV	40 67.5 3.86	110 16.02 0.321	17.6	0.132 0.152	50 41.1 45.6	60 67.5 65.1	91 93.8 98.1										

. á

Tabelle 2.9. Parameter der Legierungselemente für den St52 (Fortsetzung) der Verteilungsfunktion und Fraktilwerte

Ł

2.7 KORRELATION

Um einen Anhaltswert zu bekommen, ob Abhängigkeiten zwischen den Kennwerten vorliegen, wurden Korrelationsrechnungen durchgeführt. Diese Untersuchungen wurden ohne eine Unterteilung der Bescheinigungen in Erzeugnisdicke, Herkunft und Herstellungsdatum durchgeführt. Es wurde davon ausgegangen, daß diese Unterteilung nur einen geringen Einfluß auf die Korrelatioskoeffizienten hat und eine Korrelationsrechnung nur einen Anhalt gibt, ob eine

Abhängigkeit vorhanden ist und wie stark sie ausgeprägt ist. Bild 2.10 zeigt beispielhaft die Abhängigkeit der Zugfestigkeit R_m und der Streckgrenze R_{eH} für den St37, die bei einem Korrelationskoeffizient $\rho = 0.5$ nicht sehr stark ausgeprägt ist. Die Korrelation zwischen Festigkeitskennwerten und Legierungselementen ist bei den niedrigen Legierungsgehalten der Allgemeinen Baustähle nur schwach ausgebildet. Deshalb wurde Korrelationsrechnung eine auch für alle Stähle ohne Unterscheidung der Stahlsorten durchgeführt. In Tabelle 2.10 sind die Korrelationskoeffizienten zusammengefaßt.

Bild 2.10. Abhängigkeit von R_{eH} und R_m

몧

		R _m	А ₅	С	Si	Mn
St37	R _{eH} R _m A5	0.5	-0.1 -0.4 -	-0.3 0.2 -0.2	0.2 0.4 -0.3	- 0.1 0.1
St52	R _{eH}	0.7	-0.1	-0.1	0.1	0.3
	R _m	-	-0.3	-0.4	0.4	0.3
	A5	-	-	-0.1	0.2	-0.1
St37	R _{eH}	0.9	-0.6	0.5	0.8	0.8
und	R _m	_	-0.7	0.7	0.8	0.9
St52	A5	_	-	-0.6	-0.6	-0.6

Tabelle 2.10. Korrelationskoeffizienten

Eine stark ausgeprägte Korrelation konnte bei der Berechnung für die Zusammenfassung beider Stahlsorten festgestellt werden. Die Korrelationskoeffizienten sind - jeweils für eine Stahlsorte berechnet - klein, d.h. die Abhängigkeiten sind nur schwach ausgeildet. Speziell bei den Legierungselementen kann daraus geschlossen werden, daß nicht gezielt ein Legierungselement zur Festigkeitssteigerung hinzugegeben wird. Wahrscheinlich werden zur Erzielung einer gewünschten Festigkeit verschiedene Elemente hinzugegeben, und weil jeder Stahlhersteller eine andere Rezeptur hat, ist eine ausgeprägte Korrelation eines einzelnen Elementes nicht vorhanden. Für die übrigen Legierungselemente konnte keine Korrelation nach dem Testverfahren nach Abschnitt 2.5.5 festgestellt werden.

Auf eine Korrelationsrechnung für die Abhängigkeit von R_{eH} von der Erzeugnisdicke twurde verzichtet, da bekannt ist, daß ein nichtlinearer Zusammenhang besteht.

2.8 REGRESSIONSRECHNUNG

2.8.1 Einflüsse auf die Festigkeitskennwerte

Die Allgemeinen Baustähle St37 und St52 haben ein sog. ferritisches Gefüge. d. h. beim Abkühlen des Stahls aus der Schmelze lagern sich an sog. Keimen die Eisenatome an (Kornwachstum). Bei Raumtemperatur entsteht nach dem Abkühlvorgang ein Gefüge aus einzelnen Körnern. Die Eisenatome bilden in diesen Körnen ein Kristall mit kubisch-raumzentriertem Gitter: Stellt man sich einen Quader vor, so ist an jeder Ecke sowie im Schwerpunkt jeweils ein Atom angeordnet. An Stelle der Eisenatome können auch Atome anderer Elemente (Fremdatome) eingelagert sein, die bis zu einem bestimmten Gehalt vom kubisch-raumzentrierten Gitter aufgenommen werden können. Man spricht dann von einem Mischkristall. Im Gefüge entstehen während des Abkühlens aus der Schmelze um die Körner Korngrenzen mit erhöhtem Gehalt an nicht vom diesem Gitter lösbaren Legierungselementen. Bei den Allgemeinen Baustählen bestehen diese Korngrenzen größtenteils aus der Eisen-Kohlenstoff-Verbindung Fe₃C (Zementit), weil speziell der Kohlenstoff bei Raumtemperatur im Gitter praktisch unlösbar ist.

Bei langsamen Abkühlvorgängen können Körner oberhalb ca. 550 ^o C zusammenwachsen, d. h. die mittlere Korngröße ist von der Abkühlgeschwindigkeit abhängig.

Eine Festigkeitssteigerung erfolgt grundsätzlich durch eine Behinderung von Versetzungen bei Belastung. Hindernisse sind z. B. Fremdatome, Versetzungen im Kristallgitter, Korngrenzen und Ausscheidungen von im Gitter unlösbaren Elementen auf den Korngrenzen.

Die Festigkeit ist weiterhin von der Temperatur und von der Belastungsgeschwindigkeit abhängig.

Die Zusammenhänge können durch empirische Formeln beschrieben werden. Die Beziehung für die untere Streckgrenze für eine Kombination von Einflüssen ist z. B. in /6/ ohne Berücksichtigung von Temperatur- und Belastungsgeschwindigkeit angegeben

$$R_{eL} = \sigma_{i} + k_{v} d^{-1/2} + \sigma_{C} + \sigma_{H}$$
(2.20)

mit

σ_i	Ħ	Reibungsspannung des unlegierten Grundwerkstoffs					
$k_y d^{-1/2}$	-	Einfluß der Korngröße					
d	=	Korngröße					
σ_{C}	-	Wirkung von Fremdatomen					
σ _H	-	Einfluβ von festliegenden Versetzungen und nicht schneidbaren Teilen.					

Für ferritische Stähle werden proportionale Zusammenhänge für die Streckgrenzenerhöhung infolge der Legierungselemente angegeben /6/.

Dem Regressionsmodell werden folgende Annahmen zugrunde gelegt:

- 1. Kein Einfluß der Legierungselemente auf die Korngröße
- Proportionaler Zusammenhang zwischen Erzeugnisdicke und Korngröße
- 3. Kein Einfluß von σ_H
- 4. Proportionale Zusammenhänge zwischen den Gehältern der einzelnen Legierungselemente und der Streckgrenzenerhöhung
- 5. Vollständige Korrelation zwischen unterer und oberer Streckgrenze

Der Regressionsansatz für R_{eH} ergibt sich somit zu:

 $R_{eH} = a_0 + a_1 t^{-1/2} + a_2 C + a_3 Si + a_4 Mn + a_5 P + a_6 S.$ (2.21)

Der Ansatz nach Gl. 2.21 wird auch auf die Zugfestigkeit übertragen, auch wenn eine Abhängigkeit der Zugfestigkeit von der Erzeugnisdicke gering ist.

Für die Bruchdehnung gilt dieser Ansatz nicht und wurde deswegen

mit einem guadratischen Ansatz für die Erzeugnisdicke formuliert, obwohl ein Einfluß der Erzeugnisdicke nach Abschnitt 2.6.4 nur gering ist:

 $A_5 = a_0 + a_1 t + a_2 t^2 + a_3 C + a_4 Si + a_5 Mn + a_6 P + a_7 S.$ (2.22)

In die Regressionsrechnung wurden alle in der Datenbank vorhandenen Bescheinigungen aufgenommen. Es wird hierbei davon ausgegangen, daß die Festigkeitskennwerte der Allgemeinen Baustähle nur von der chemischen Zusammensetzung und von der Erzeugnisdicke (gleich Annahme über die Korngröße) abhängen.

2.8.2 Berechnung der Regressionskoeffizienten

Um die einzelnen Einflüsse zu studieren, wurden folgende Ansätze untersucht:

A	= Abhängigkeit n t, C, Si, Mn, P, S
В	= Abhängigkeit von t, C, Si, Mn
С	= Abhängigkeit von t
D	= keine Abhängigkeit (a ₁ bis a ₁ = 0)

mit l = 6 für Gl. 2.21 = 7 für Gl. 2.22für Ansatz A

In Tabelle 2.11 sind die Standardfehler s_F (= Streuung der Einzelwerte um die Regressionsgerade nach Abschnitt 2.5.6) aus der Regressionsrechnung zusammengestellt. Da die Regressionsgleichungen auch ohne Berücksichtigung der Stahlsorte gelten, wurde die Regression für die Ansätze A und B auch ohne Unterscheidung der Stahlsorten durchgeführt.

	Stahlsorte	Ansatz				
		Α	В	С	D	
R _{eH}	St37	22.3	22.3	23.6	27.7	
	St52	23.6	24.6	26.4	27.8	
/N/mm ² /	St37 + St52	25.6	25.6	_	-	
R _m	St37	18.5	19.1	21.8	21.8	
	St52	20.7	20.8	24.6	24.8	
/N/mm ² /	St37 + St52	21.5	21.8		-	
A ₅	St37	30.0	33.0	34.1	35.6	
	St52	28.5	28.6	29.8	30.6	
/%。/	St37 + St52	33.5	33.7	-	-	

Tabelle 2.11. Standardfehler s $_{\rm F}$ für verschiene Regressionsan-sätze

Im Vergleich Ansatz C mit D -jeweils ohne Berücksichtigung der Legierungselemente- ist durch die Hinzunahme der Erzeugnisdicke t in den Regressionsansatz D für R_{eH} der Standardfehler s_F deutlich geringer, für R_m kann nur ein geringer Einfluß festgestellt werden. Im Vergleich Ansatz A mit B kann man feststellen, daß die Legierungselemente P und S keinen wesentlichen Einfluß haben. Bemerkenswert ist der geringe Standardfehler s_F für die Auswertung beider Stahlsorten.

Eine Abschätzung der Festigkeitskennwerte ist deshalb nur für die Ansätze B und C sinnvoll. Die Regressionskoeffizienten sind in Tabelle 2.12 angegeben. Ein Einfluß der Erzeugnisdicke t auf die Bruchdehnung A_5 konnte nicht festgestellt werden. Daher wurde in Tabelle 2.12 keine Abhängigkeit für die Erzeugnisdicke t angegeben.

Koeffizient Einfluβfaktor /Dimension/		a ₀	a ₁	a 2	ag	a4	n	s _F	
		-	t-1/2	С	Si	Mn			
		-	/mm/	/%/	/%/	/%/			
		St37	233.2	155.6	-81.2	86.6	16.6	2428	22.3
		St52	249.4	185.3	-239.4	42.5	93.8	676	24.6
	St5	2+St37	133.2	203.1	103.1	17.3	85.8	3104	25.6
R _{eH}	- -			* ,	······································				+
/N/mn	n²/	St37	232.4	167.5		-	-	2871	23.6
		St52	365.7	136.3	· -	-		678	26.4
		St37	329.0	64.3	26.3	15.2	27.3	2427	19.1
		St52	356.7	86.7	37.7	107.5	61.2	676	20.8
	St5	2+St37	248.2	109.5	442.6	230.5	86.0	3103	21.8
Rm	-			······					
/N/mn	n ²	St37	418.7	2.5	_	-	-	2870	21.8
		St52	562.3	46.5	``	-	-	678	24.6
A5		St37	405	 .	-270	-118	19	2428	33.0
1%。/		St52	323	. —	-283	151	31	676	28.6
	St52	2+St37	440	-	-347	-145	-22	3104	33.7

Tabelle 2.12. Regressionskoeffizienten

Speziell für Ansatz B ist festzustellen, daß durch die Hinzunahme der Elemente C, Si und Mn der Standardfehler s_F für den St37 bzw. St52 geringfügig abnimmt, d.h. ein Einfluß auf die Festigkeitskennwerte ist nicht ausgeprägt, was bereits durch die Korrelationskoeffizienten deutlich wurde. Die Regressionskoeffizienten wurden jedoch zur Vollständigkeit angegeben. Wider Erwarten sind die Koeffizienten bei R_{eH} für den Kohlenstoffgehalt für den St37 und St52 negativ. Da die Unterschiede in den Legierungsgehalten sehr gering sind und Korrelationen nur schwach ausgebildet sind, sollten diese Gleichungen nur mit Vorsicht interpretiert werden, und nur die Regressionsgleichungen für die Zusammenfassung der Stahlsorten St37 und St52 benutzt werden.

Es ist anzumerken, daß die Festigkeitskennwerte, die aus den Regressionsfunktionen errechnet werden, Erwartungswerte sind. Da die Verteilung der Residuen nicht immer einer Normalverteilung folgt (z.B. durch Filter bei R_{eH}), können Fraktilwerte, die aus den Regressionsgleichungen und den Standardfehlern errechnet werden, nur als Anhaltswerte gedeutet werden.

Zusammenfassend kann aus den Regressionskoeffizienten geschlossen werden, daß R_{eH} infolge C um 100 N/mm², infolge Si um 175 N/mm² und infolge Mn um 85 N/mm² pro Prozent der Legierungselemente linear erhöht wird. Dagegen fällt R_{eH} um ca. 200 N/mm²/t^{1/2}, d.h. wird die Erzeugnisdicke verfünffacht, fällt R_{eH} um ca. 100 N/mm². R_m wird ebenfalls durch C, Si und Mn mit ca. 440, 230 und 85 N/mm² pro Prozent der Legierungselemente erhöht. R_m fällt um 110 N/mm²/t^{1/2}.

A₅ wird durch C, Si und Mn um 347, 145 und 22 %, /%, der Legierungselemente linear niedriger. Ein Einfluß von der Erzeugnisdicke t auf die Bruchdehnung A₅ konnte nicht festgestellt werden.
3 STICHPROBENENTNAHME FUR EINE FREMDPRUFUNG

3.1 ALLGEMEINES

11-12

Für die nachfolgenden Untersuchungen wurde eine Stichprobe aus deutschen Stahlbaubetrieben entnommen. Sie umfaßt den Besuch der Stahlbaubetriebe, die Entnahme von ca. 400 Proben, die Prüfung der Stähle und eine statistische Auswertung.

Zur Abgrenzung der Auswertung von Bescheinigungen über Materialprüfungen, die als Eigenkontrolle der Hersteller zu verstehen ist, wird diese Untersuchung als Fremdprüfung bezeichnet.

3.2 AUSWAHL DER STAHLBAUBETRIEBE

3.2.1 Zur statistischen Stichprobe

Nach Vincze /20/ muß die Stichprobe die folgenden Bedingungen erfüllen, um aus den gewonnenen Daten Rückschlüsse auf die Grundgesamtheit ziehen und Gesetzmäßigkeiten angeben zu können:

- 2. Die einzelnen Elemente der Stichprobe müssen unabhängig voneinander sein.

Eine entsprechende Definition der Stichprobe findet sich in /1/, /42/ und /43/.

In dem hier vorliegenden Fall einer praktisch unendlichen Grundgesamtheit und für den Fall, daß technische bzw. wirtschaftliche Überlegungen andere Methoden der Stichprobenentnahme rechtfertigen, schlägt Vincze die "Stichprobenentnahme mit Schichtung" vor. Bei diesem Verfahren wird die Grundgesamtheit in Schichten eingeteilt, aus denen zufällig oder auf repräsentative Art einige ausgewählt werden. Besonders bei kleinen Stichprobenumfängen muß darauf geachtet werden, daß die Verteilung möglichst vieler Einflüsse in der Stichprobe mit der Verteilung dieser Einflüsse in der Grundgesamtheit übereinstimmt.

In dieser Hinsicht wurde auf folgende Kriterien geachtet:

- Vertrauensverhältnis zu den Betrieben

Jedes Stichprobenelement muß mit gleicher Wahrscheinlichkeit in die Stichprobe gelangen können. Um dies zu gewährleisten, muß ein Vertrauensverhältnis zu den Betrieben aufgebaut werden. Dazu sollten sich die Beteiligten z.B. persönlich kennen, beispielsweise durch einen Besuch vor der Stichprobenentnahme. Des weiteren muß garantiert sein, daß die Namen der Betriebe vertraulich behandelt werden.

Auch ein Eigeninteresse an objektiven Untersuchungen muβ geweckt werden, indem eine detaillierte Auswertung der Untersuchungen zugesagt und übergeben wird.

- <u>Verwechselungsgefahr der Stahlsorte</u>

Die Allgemeinen Baustähle sind äußerlich nicht voneinander zu unterscheiden. Sie müssen deshalb gekennzeichnet werden, um Verwechselungen auszuschließen.

- <u>Betriebsgröβe</u>

Größere Betriebe, die konstruktiv anspruchsvollere Bauwerke errichten, haben in der Regel eine eigene Abteilung zur Qualitätssicherung. Sie sind als Kunden für die Lieferanten interessanter, es wird mehr auf die Wünsche eingegangen als bei kleineren Betrieben, d.h. in den Augen der Lieferanten wird "besserer" Stahl geliefert, z.B. auch mit Prüfbescheinigungen.

Bei der Stichprobenentnahme wird der Einfluß der Betriebsgröße damit berücksichtigt, daß die Stichprobe sowohl aus kleinen als auch aus mittleren und großen Betrieben entnommen wurde.

- <u>Stahlhersteller</u>

Stahlhersteller bedienen sich verschiedener Herstellungsverfahren, um ein gewünschte Erzeugnis zu erhalten. Als Herstellungsverfahren gelten hierbei das Erschmelzungsverfahren, die Art der Desoxidation, die Art der Vergießung, sowie Formgebungs- und Wärmebehandlungsverfahren. Es ist nicht möglich, anhand einfacher optischer Prüfungen die Einflußgrößen zu bestimmen, die die Werkstoffkennwerte beeinflussen. DIN 17 100 überläßt das Herstellungsverfahren und die entsprechenden Einzelheiten dem Hersteller und weist ausdrücklich darauf hin, daß Einzelheiten bei Bestellung zu vereinbaren sind. In den Prüfbescheinigungen brauchen die Herstellungsverfahren sonst nicht angegeben zu werden. Um den Einfluß auszuschalten, muß die Stichprobenentnahme in mehreren Betrieben erfolgen.

- Erzeugnisform und Erzeugnisdicke

Die Erzeugnisform (Blech, Walzprofil o.ä.) hat einen Einfluß auf die Kennwerte und wurde bei der Stichprobenanweisung dadurch berücksichtigt, daß alle anfallenden Halbzeuge innerhalb eines definierten Zeitabschnitts der Produktion entnommen wurden und somit alle in dieser Zeit verarbeiteten Halbzeuge in die Stichprobe aufgenommen worden sind.

- Einfluß des Zeitpunktes der Herstellung

Neue Herstellungverfahren führen ständig zu Veränderungen der Stahlqualitäten. Die geschichtliche Entwicklung der Herstellungsverfahren ist z.B. in /21/ nachzulesen. Der Einfluß der Zeit kann durch die Stichprobenentnahme nicht erfaßt werden, da nur ein kurzer Zeitraum für die Untersuchungen zur Verfügung stand.

3.2.3 Schichtung

- 20

Um die Betriebsgröße in der Stichprobenanweisung zu erfassen, wurden die Betriebe unter der Annahme in drei Schichten eingeteilt, daß keine signifikanten Unterschiede innerhalb der Gruppen vorhanden sind. Anhand der Belegschaftsgrößen wurde folgende Einteilung gewählt:

kleine Betriebe bis 49 Mitarbeiter mittlere Betriebe 50 - 399 Mitarbeiter große Betriebe ab 400 Mitarbeiter

In Tabelle 3.1 ist die Größenklassenstruktur im Stahlbau, Stand September 1984, nach Informationen des Deutschen Stahlbauverbandes und die entsprechende Wahl der Betriebe dargestellt. Von den zur Stichprobenentnahme ausgewählten Betrieben haben 3 ihren Sitz im Rhein-Main-Gebiet und 5 in Norddeutschland. Der Stichprobenzeitraum wurde vom November 1985 bis Oktober 1986 zeitlich begrenzt.

3.3 STICHPROBENANWEISUNG

Jeder Betrieb wurde mindestens einmal besucht, um sich über Lagerhaltung, Verarbeitung und Qualitätssicherung zu informieren und die Stichprobenanweisung darzulegen.

Allen Betrieben wurde folgender Entnahmemodus vorgeschlagen:

Von einem bestimmten Stichtag an wird von allen in die Fertigung gehenden Halbzeugen eines Betriebes eine Probe entnommen, bis der Stichprobenumfang von 60 - 80 Proben erreicht ist.

Tabelle	belle 3.1. Gröβenklassenstru		im Stahlbau	und	Wahl	der
		Betriebe				

з

Mit bis Beschäftigte	1 - 49	50 - 399	400 u.m.	Insgesamt
Betriebe	572	393	19	984
Beschäftigte in Betrieben	17296	43053	18641	78990
Umsatz ohne MWST 1983 in Mio. DM	1792.5	5209.4	2797.6	9799.5
		in	%	
Betríebe	58.1 %	40.0 %	1.9 %	100 %
Beschäftigte in Betrieben	21.9 %	54.5 %	23.6 %	100 %
Umsatz ohne MWST 1983 in Mio. DM	18.3 %	53.2 %	28.5 %	100 %
		Auswahl der	Betriebe	
Anzahl	2	4	2	8

Die Stichprobenentnahme konnte aus Kostengründen nur teilweise überwacht werden und wurde deshalb von den Betrieben in Eigenregie durchgeführt. Um möglichst viele Informationen von den Betrieben zu erhalten grundsätzliche Fragestellung : "Was wissen die Stahlbauer über ihren Stahl" - wurden weiterhin noch folgende Informationen für jede Probe erfragt:

- Stahlsorte (mindestens Angabe, ob St37 oder St52) und falls bekannt, Angabe, ob RSt37-2, QSt37-2 o.ä.
- Bei Blechen Walzrichtung
- Bescheinigungen über Werkstoffprüfungen (falls vorhanden) beilegen
- Vergußart (Strangguß, Blockguß)
- Herstellungsjahr
- Hersteller
- Wärmebehandlung
- Liefermenge

3.4 ZUR QUALTATSSICHERUNG

3.4.1 Geforderte Qualitätssicherung

Die in der Bundesrepublik Deutschland zugelassenen Allgemeinen Baustähle werden von den Herstellern mit Gütezeichen oder Kennzeichnungen vertrieben, wodurch eine Zuordnung zu Bescheinigungen über Materialprüfungen nach DIN 50 049 - im weiteren kurz Bescheinigungen - möglich ist. Die Händler und auch die Stahlbaubetriebe (kurz: Betriebe) brauchen selbst keine Güteüberwachungen durchzuführen. Hierzu legt DIN 18 800 Teil 1 für die Stahlbauten fest :

"Die verwendeten Stähle sind durch Bescheinigungen nach DIN 50 049 zu belegen, ausgenommen ungeschweißte Bauteile aus St37 und untergeordnete Bauteile...."

Die Ausnahmeregelung "untergeordnete Bauteile" beschränkt sich nur auf Bauteile, die keine wesentliche Tragfunktion haben. Grundsätzlich müssen alle geschweißten Stähle güteüberwacht sein. Der erforderliche Prüfumfang ist hierbei in der Gütenorm DIN 17 100 "Allgemeine Baustähle" festgelegt.

Der Händler trägt für eine Verwechselung der gelieferten Stahlsorten nur im Rahmen seiner Lieferbedingungen eine Verantwortung. Wird die Lieferung von dem bestellenden Betrieb abgenommen, liegt die Haftung bei ihm. So schreibt die "Niedersächsische Bauordnung 1986" /22/ im \$59,1 :

"Jeder Unternehmer ist dafür verantwortlich, daß seine Arbeiten dem öffentlichen Baurecht entsprechend ausgeführt und insoweit auf die Arbeiten anderer Unternehmer abgestimmt werden. Er hat die Nachweise über die Brauchbarkeit der Baustoffe, Bauteile oder Bauarten im Sinne des \$1 zu erbringen und auf der Baustelle bereitzuhalten."

Gegenüber den Bauämtern ist der Bauherr verantwortlich, der entsprechende Fachingenieure beauftragen muß /22,\$57/. Die Baugenehmigung enthält entsprechende Bedingungen und überläßt die Gütekontrolle fast ausschließlich der Eigenverantwortung und Eigenüberwachung der Betriebe.

Diese Bedingungen sind z.B. erfüllt, wenn bei der Bestellung die "Allgemeinen Technischen Lieferbedingungen für Stahl und Stahlerzeugnisse" nach DIN 17 010, 6.1985 oder EURONORM 21-78, die beide im wesentlichen inhaltlich übereinstimmen, vereinbart werden. Hier wird z.B. geregelt, in welchen Fällen Bescheinigungen vorzulegen sind. Desweiteren wird die Rechtslage bei Beanstandungen in den Erläuterungen der DIN 17 010 ausführlich behandelt.

4

3.4.2 Zur Qualitätssicherung in den Betrieben

In allen Betrieben war es ohne weiteres möglich, die Lagerhaltung und die Fertigungsanlagen zu besichtigen. Alle zeigten Interesse an den Untersuchungen und waren bereit, die gestellten Fragen zu beantworten.

In den kleineren Betrieben sind i. allg. ein oder zwei Ingenieure für die Bereich Konstruktion, Statik, Ausführung und Qualitätssicherung sowie als Schweißfachingenieure verantwortlich. Da die gesamte Projektabwicklung somit praktisch in "einer Hand" liegt, ist der Informationsfluß von und zur Werkstatt naturgemäß sehr gut. Diese Betriebe konnten zumeist keine Bescheinigungen vorlegen, konnten jedoch nach ihren Angaben über die Güte der verarbeiteten Stähle eine Aussage machen, da beim Bohren oder Sägen der Stähle sich höherfeste schlechter als durch die vorhandene Erfahrung erwartet verarbeiten lassen. Durch ein entsprechendes Qualitätsbewußtsein bei den Mitarbeitern in der Werkstatt würden die niedriger festen Stähle aus der Produktion herausgenommen falls z.B. ein Bauteil aus St52 errichtet werden soll und der Werkstoff wahrscheinlich "nur" ein St37 ist.

Andere Betriebe kontrollierten den Werkstoff mit Härteprüfungen, auch wenn die Stähle gekennzeichnet und mit Bescheinigungen bestellt waren. Diese Bescheinigungen konnten jedoch wegen der Lagerhaltung ohne besondere Kennzeichnung z.B. nach Schmelzennummern oder Kennziffern nicht zugeordnet werden, man verließ sich ausschließlich auf die Härteprüfungen.

Die großen und mittleren Betriebe hatten meistens für alle verarbeiteten Bleche Prüfbescheinigungen nach DIN 50 049 - 2.2 bestellt. Mit diesen sog. Werkszeugnissen bestätigt das herstellende Werk, daß das gelieferte Erzeugnis den Vereinbarungen bei der Bestellung entspricht. Es war auch hier nur in Ausnahmefällen möglich, die unter 2.3 aufgeführten Informationen wie z. B. Hersteller zu erhalten. Für Walzprofile wurden i. allg. Prüfbescheinigungen nach DIN 50049 - 3.1 (Abnahmeprüfzeugnisse) bestellt, bei denen zahlenmäßige Ergebnisse aus den Prüfungen selbst oder an den in den Normen angegebenen Prüfeinheiten durch Sachverständige bestätigt werden. Grundsätzlich konnte bei den Lagerbegehungen festgestellt werden, daß alle Stähle gekennzeichnet waren. Bescheinigungen konnten nur mit großem Aufwand zugeordnet werden. Ob und in welchem Umfang Bescheinigungen vorlagen, konnte nicht festgestellt werden.

Ergänzend wird an dieser Stelle ein Ausschnitt aus dem Erfahrungsbericht von Schneider /34/ über die Erfahrungen des Prüfers in der Gütegemeinschaft Stahlhochbau angeführt:

"Eine wichtige Kontrolle, die jedesmal durchgeführt werden muß, ist die Überprüfung des Nachweises, daß alle Materialien durch Werks- oder Händlerbescheinigungen hinsichtlich ihrer Güte belegbar sind. Dies geschieht in der Form, daß ich willkürlich aus Stücklisten Profile auswähle, für die dann die Bescheinigungen vorzulegen sind. Ich suchte damals im TB einige Profile aus. Dann gingen wir in die Einkaufsabteilung. Der Chef dieser Abteilung war ein alter Fachmann auf dem Gebiete der Materialbeschaffung. Er wies nach. daß die gewünschten Bescheinigungen bestellt waren. Aber den Beweis, daß sie wirklich geliefert worden sind, mußte er schuldig bleiben. ...

Es sollte anschließend das Materiallager besichtigt werden. Eine Überprüfung des Lagers ist erforderlich, da alle Materialien so zu kennzeichnen und zu lagern sind, daβ ein Verwechseln der Materialgüten nach menschlichen Ermessen ausgeschlossen werden kann. Gewöhnlich geschieht die Kennzeichnung durch Farben, manchmal durch Beschriftung.

Im geschilderten Fall war nichts geschehen, weder Farbe noch Beschriftung. Man erklärte mir, das sei nicht notwendig, da man einen erfahrenen, zuverlässigen Lagerverwalter habe. Dieser wisse, wo und wie gelagert sei. Es waren einige Stäbe aus St52 am Lager. Ich wollte sie sehen. Unglücklicherweise

60

fehlte der Lagerverwalter an diesem Tag. Wir haben trotz heftigen Suchens den St52 nicht gefunden. ..."

Die Erfahrungen decken sich größtenteils mit denen aus der durchgeführten Stichprobenentnahme. Die Forderungen der Gesetze und Normen werden nicht überall erfüllt. Dadurch entstehen keine Konsequenzen für die einzelnen Betriebe, weil Kontrollen praktisch nur nach Schadensfällen durchgeführt werden.

An dieser Stelle wird nicht über die Auswirkungen auf die Güte der Stähle eingegangen. Bei der Auswertung der Stichprobe im Abschnitt 6 wird diese Problematik noch einmal aufgegriffen.

4 PRUFKÖRPERENTNAHME UND PRUFMODUS FUR ZUGVERSUCHE

4.1.1 PRUFKORPER

4.1.1 Allgemeines

Die Entnahme der Prüfkörper wurde entsprechend den Regelungen von DIN 17 100, Bilder 2 - 13 festgelegt. Bei Walzprofilen wurden die Prüfkörper ausschließlich aus den Flanschen entnommen. Eine Wärmebehandlung z.B. durch Spannungsarmglühen wurde nicht durchgeführt. Um eine eventuelle Wärmeentwicklung bei der Herstellung zu vermeiden, wurden sämtliche Prüfkörper aus den Halbzeugen herausgesägt, und bei der Herstellung mehrmalige Pausen beim Drehen bzw. Fräsen zum Abkühlen eingelegt.

4.1.2 Geometrie

Von den Blechen und den Flachstählen wurde mittels Schieblehre mit einer Genauigkeit von 1/100 mm die Erzeugnisdicke ausgemessen. Die Geometrie der Walzprofile wurde erfaßt, indem ein Teil des Querschnitts ca. 20 mm vom Rand rechtwinklig zur Achse abgesägt, anschliessend auf ein Photopapier gestellt und im Maßstab 1:1 belichtet wurde. Somit war sichergestellt, daß alle Details wie Ausrundungsradien oder Parallelität der Flansche leicht auszumessen sind. Bild 4.1 stellt Profilphotographien dar.

4.1.3 Zugproben

Sämtliche Zugproben wurden in Walzrichtung entnommen und nach den Vorschriften von DIN 50 125 mit der Geometrie eines kurzen Proportionalstabs hergestellt. Die Proben wurden zuerst durch Sandstrahlen von Zunder, Rost und Farbresten befreit. Die Probenentnahme in den Betrieben (s. Abschnitt 3.1) ergab oft nicht ausreichende Meßlängen, um eine Flachprobe mit der geforderten Geometrie eines kurzen Proportionalstabs herzustellen. In diesen Fällen wurden Rundproben gefertigt. Aus nicht parallelgurtigen Flanschen (z.B. bei Walzprofilen), wurden Rundzugproben gefertigt.

Bild 4.1. Auswertung der Probengeometrie

4.1.4 Kerbschlagproben

Es wurden ausschließlich ISO - V Spitzkerbproben hergestellt. Die Probenlängsachse wurde in Walzrichtung gelegt, wobei eine Seite möglichst nahe an der Walzoberfläche und der Kerb senkrecht zur Probenoberfläche lag. Es wurden je Halbzeug 3 Prüfkörper entnommen. Es wurden jedoch nur einige Proben zur Kontrolle entnommen, da aus finanziellen Gründen eine umfassende Untersuchung auch mit Bestimmung der Übergangstemperatur nicht durchgeführt werden konnte.

4.2 PRUFMODUS FUR ZUGVERSUCHE

Für die nachfolgenden Untersuchungen wurde ein Prüfmodus für Zugversuche entwickelt, der den Bestimmungen der DIN 50 145 "Zugversuche" entspricht. Es werden mit dem Prüfmodus weitere Festigkeitskennwerte ermittelt, die nach DIN 17 100 nicht gefordert werden und teilweise nicht genormt sind. Die Zugproben werden dabei dehngeregelt in den Verfestigungsbereich des Stahls und weggeregelt bis zum Bruch belastet. Der Versuch läuft in vier Phasen ab und ist Tabelle 4.1 und Bild 4.2 zu entnehmen.

Jeder Versuch wird von einem Rechner ausgewertet. Das zugehörige Programm und die Vorgehensweise zum Bestimmmen der Kenngrößen ist im Anhang A1 beschrieben.

Die Versuchsergebnisse werden vom Programm in eine Transferdatei übertragen und anschließend in eine Datenbank mit dem Arbeitstitel "Fremdprüfung" (Anhang A2, Seite 168) eingelesen. Dort werden neben den Versuchsergebnissen auch zusätzliche Informationen wie z.B. Stahlsorte eingegeben. Eine Übersicht über die aufgenommenen Daten ist Anhang A1 in den Bildern A1.11 - A1.14 (Seite 163-164) zusammengestellt.

Vers phase	Regel- größe	Geschw. /‰/s/ /mm/s/	Meßber. Dehnaufn. Wegaufn.	Beschreibuņg	Ermittlung von
1	ε	1/60 0 1/60	+/- 5 %.	Die Probe wird dehngeregelt in den Fließbereich gefahren. Bei $\varepsilon = 4\%$ wird die Dehnung für 10 min kon- stant gehalten und anschließend bis $\varepsilon = 5$ % weitergefahren. Danach wird entlastet und nochmals bis zu einer Spannung unterhalb der sta- tischen Streckgrenze be- und ent- lastet	Vor Haltepause: E - Modul E ₁ 0,2 % Dehngrenze R _p 0,2 obere Streckgr. R _{eH} untere Streckgr. R _{eL} UA1 Während Haltepause: statische Streckgr. R _{eS} Nach Haltepause: untere Streckgr. R _{eL} UA2 E - Modul E ₂
2	ε	5/60	+/- 50 %.	Die Probe wird dehngeregelt min- destens 3 ‰ in den Verfestigungs- bereich gefahren und danach ent- lastet.	untere Streckgr. R _{eL} UB Lüdersdehnung A _{lü} Verfestigungsmod. E _v
3	ε	1/60	+/- 5 %.	Es wird einmalig im Verfestigungs- bereich be- und entlastet	E-Modul E ₃
4	W	2.5/60 - 10 /60	+/- 50 mm	Die Probe wird weggeregelt bis zum Bruch gefahren. Die Quer- hauptweggeschwindigkeit der Prüf- maschine wird so eingestellt, daß die Dehngeschwindigkeit ca. 1 % /s entspricht. Bei $\varepsilon = 60-75$ % wird der Querhauptweg für 10 min kon- stant gehalten.	Zugfestigkeit R _m Gleichmaßdehnung A _g Parameter der Ludwikgleichung: Verfestigungsexp. n Konstante k _l Bruchdehnung A stat. Zugfestigk. R _m ,S

-.8

L

6ე

5 BLINDPRUFUNG

5.1 ALLGEMEINES

Die Materialkennwerte der Bescheinigungen werden gelegentlich angezweifelt, weil Ergebnisse von Prüfungen an Stählen z.B. nach Schadensfällen oder nach begründeten Beanstandungen teilweise erheblich von den Materialkennwerten aus den Bescheinigungen abweichen.

Neben einer Verwechselungsmöglichkeit der Stähle kann die Genauigkeit der Prüfungen unzureichend sein. Die möglichen Einflüsse und die zugehörige Regelung in den Fachnormen sind in Tabelle 5.1 zusammengestellt.

Tabelle 5.1. Einflüsse auf die Materialkennwerte

Einfluß	Regelung in
Probenform	DIN 50 125
Probenlage (längs/quer zur Walzrichtung)	DIN 17 100
Entnahmeort	DIN 17 100
Herstellung der Probe	DIN 50 125
Belastungseinrichtung	DIN 51 221
Regelungsart (Kraft-, Weg- oder Dehnr.)	keine
Versuchsgeschwindigkeit	DIN 50 145
Ablesegenauigkeit	DIN 51 221

Mit nur einem Zugversuch und den festgelegten Entnahmeort werden Streuungen durch Inhomogenitäten des Stahls innerhalb eines Erzeugnisses, die sog. Binnenstreuung, nicht erfaßt /15,24/.

67

Ein großer Spielraum ist bei der Versuchsdurchführung zugelassen, z.B. kann die Dehngeschwindigkeit beim Bestimmen der Zugfestigkeit bis zu 7 % /s betragen. Auch können subjektive Einflüsse beim Ablesen bzw. unterschiedliche Genauigkeitsanforderungen die Ergebnisse beeinflussen.

Zur Ermittlung dieser Einflüsse wurden zwei Untersuchungen durchgeführt:

- Es wurden verschiedene Materialprüfanstalten durch Mittelsmänner beauftragt, Zugversuche an Proben, die aus einer Blechtafel entnommen wurden, durchzuführen.
- Zugversuche an Proben aus jeweils einer Schmelze, die in der Datenbank "Bescheinigungen" gespeichert sind, wurden miteinander verglichen.

5.2 BLINDPRUFUNG UND VERGLEICH ZUM PRUFMODUS

Aus einer Blechtafel 7*1800*3150 mm wurden 33 Flachproben hergestellt. Die Zugproben wurden in Walzrichtung entnommen und von 1 bis 33 nummeriert (Bild 5.1). Jede 2. Probe, also die 1., 3., 5. usw., wurde mit dem im Abschnitt 4 und in Anlage A1 beschriebenen Prüfmodus geprüft (Eigenprüfung). Die anderen wurden von Mittelsmännern an insgesamt 8 verschiedene Materialprüfanstalten verschickt.

Zuerst wurde eine erste Probe mit einer Standardfragestellung (Fragestellung "A") verschickt. Die hierbei geforderten Materialkennwerte werden in den Bescheinigungen über Materialprüfungen angegeben.

Bild 5.1. Probengeometrie und Entnahmeplan für die Blindprüfung aus einer Blechtafel 7*1800*3150 mm Wir bitten um Feststellung - der Streckgrenze ²⁹ - der Zugfestigkeit und - der Bruchdehnung

für die beiliegende Flachprobe.

Erst nach Vorliegen der Ergebnisse der ersten Probe wurde eine zweite Probe mit einer erweiterten Fragestellung (Fragestellung "B") versandt:

Wir bitten um Feststellung

- der Streckgrenze
- der Zugfestigkeit
- der Bruchdehnung
- des Elastizitätsmoduls
- der statischen Streckgrenze und
- der Gleichmaßdehnung

für die beiliegende Flachprobe.

Durch dieses Vorgehen mit dem Arbeitstitel "Blindprüfung" wurde zum einen die Genauigkeit der Ergebnisse der Materialprüfanstalten und zum anderen durch Vergleich mit der Eigenprüfung der Prüfmodus getestet.

Die Anforderungen an den Versuchsaufbau und an die Genauigkeit waren bei der Fragestellung "B" erheblich größer. Um gleiche Anforderungen an die Prüfapparatur zu stellen, wie sie auch für

69

die Standardprüfungen angesetzt werden, erschien es deshalb notwendig, zuerst nur die Kennwerte bestimmen zu lassen, die auch in den Bescheinigungen aufgeführt werden (Fragestellung "A"). Der Versendungsplan der Proben wurde gemäß Bild 5.1 und Tabelle 5.2 festgelegt.

Die Meßlänge der Zugproben entsprach nicht der nach DIN 50 125 geforderten Meßlänge eines kurzen Proportionalstabes, weil bei E-Modulmessungen zur Erzielung ausreichender Genauigkeiten größere Meßlängen sinnvoll sind. Die Anfangsmeßlänge zur Ermittlung der Bruchdehnung A₅ (Geometrie eines kurzen Proportionalstabes) wurde nicht markiert.

T	abe	1	le	5.	2.	Versendungspla	ın
---	-----	---	----	----	----	----------------	----

Materialprüf- anstalt	1	2	3	4	5	6	7	8	-
Fragestellung "A"	2	6	10	14	18	22	26	30	-
Fragestellung "B"	4	8	12	16	20	24	28	32	-

Sämtliche geforderten Materialkennwerte nach Fragestellung "B" wurden lediglich von einer Materialprüfanstalt ermittelt. Von 8 geforderten Werten wurde die statische Streckgrenze 2 mal, die Gleichmaßdehnung und der E-Modul jeweils 6 mal ermittelt. Es wird daraus deutlich, daß speziell die statische Streckgrenze als Materialkennwert nur von wenigen Materialprüfanstalten ermittelt werden kann, bzw. für sie ein Begriff ist.

Die Ergebnisse sind der Tabelle 5.3, sowie den Bildern 5.2 - 5.4 zu entnehmen.

Vergleicht man die Werte auf den Bildern, kann festgestellt

werden, daß sie über die Breite der Blechtafel nahezu konstant sind, also keine Tendenz nach oben oder unten aufweisen.

Die Vertrauensbereiche für die Erwartungswerte \overline{x} in Tabelle 5.3 bei einer Irrtumswahrscheinlichkeit von 5 % sind nach Sachs /4/

$$VB(\bar{x}) = \bar{x} + - t_{0.05, n-1} \sigma_{n-1} \sqrt{n-1}$$
(5.1)

mit \overline{x} = Mittelwert und σ_{n-1} = Standardabweichung.

-2

Die Genauigkeit der Prüfungen ist im Vergleich der Streuungen der Ergebnisse Fragestellung "A" zu "B" nicht signifikant unterschiedlich. Auch lassen die Vertrauensbereiche (letzte und vorletzte Spalte der Tabelle 5.3) im Vergleich zu den Prüfungen im Institut (Eigenprüfung) den Schluß zu, daß die Ergebnisse keine signifikanten Unterschiede aufweisen.

Lediglich bei der Zugfestigkeit kann festgestellt werden, daß die Werte aus der Blindprüfung im Vergleich zur Eigenprüfung etwas höher liegen, was auf eine größere Belastungsgeschwindigkeit zurückgeführt wird, die bei der Eigenprüfung mit ca. 1 % /s (zulässig bis zu 7 % /s) relativ niedrig lag.

Die Streuung der Festigkeitskennwerte der statischen und oberen Streckgrenze sowie der Zugfestigkeit (Bild 5.2) liegen im üblichen Bereich, der für die Streuung innerhalb einer Blechtafel erwartet wird /15,18/. Die obere Streckgrenze streut im Vergleich zu den anderen Werten etwas mehr, was aber durch ihre Empfindlichkeit infolge von Prüfeinflüssen erwartet wurde. Entsprechendes gilt für Gleichmaß- und Bruchdehnung (Bild 5.3).

Die Bestimmung des E-Moduls (Bild 5.4) erfolgte in den Materialprüfanstalten größtenteils graphisch aus der Kraft-Dehnungs-Kurve durch Abgreifen der Werte "von Hand". Die Dehnmeßgeräte waren Dehnaufnehmer, in einem Fall ein Dehnungsmeßstreifen. Hier wurde der E-Modul zu 190000 N/mm² bestimmt, der im Vergleich zu den anderen Messungen zu klein ist. Tabelle 5.3. Auswertung der Blind- und Eigenprüfung

T

	Mittel-	Standard-	Anzahl	Variations-	95%-Ve	ertrau-
	wert	abweich.	Vers.	koeffizient	ensbe	f. x
	x	σ _{n-1}	n	v /%/	unt. 🤇	Sr. ob.
Frage "A"	292.3	12.7	8	4.3	282.0	302.7
"B" R _{eH}	293.1	9.5	8	3.2	285.4	300.8
Eigenpr. /N/mm ²	302.9	9.7	16	3.2	296.6	309.2
Zusammen	297.8	11.3	32	3.8	293.7	301.9
Frage "A"	389.7	5.6	8	1.4	385.1	394.3
"B" R _m	387.8	8.4	8	2.2	381.0	396.6
Eigenpr. /N/mm ²	384.2	1.2	16	0.3	383.5	384.8
Zusammen	386.5	5.4	32	1.4	384.6	388.4
Frage "A"	424.6	16.9	8	4.0	410.8	438.4
"B" A ₅	416.5	34.5	8	8.3	388.4	444.4
Eigenpr. /%。/	428.1	8.3	14	1.9	423.3	432.9
Zusammen	424.1	20.2	30	4.4	416.6	431.6
Frage "B"	247.5	2.1	2	0.9		-
Eigenpr. R _{eS}	248.7	3.0	15	1.2	247.0	250.4
Zusammen /N/mm ²	248.6	2.9	17	1.2	247.1	250.1
Frage "B"	221.7	14.4	6	6.5	207.3	236.1
Eigenpr. A _g	210.7	5.9	14	2.8	207.3	214.1
Zusammen /%。/	214.0	10.3	20	4.8	209.2	218.8
Frage "B"	204600	7900	6	3.9	196700	212500
Eigenpr. E ₁	205900	1200	16	0.6	205300	206500
Zusammen /N/mm ²	205500	4000	22	1.9	203700	207300
		Eig				
E_2 /N/mm ²	204500	5000	16	2.4	201900	207200
E_3 /N/mm ²	201300	6600	10	3.1	196600	206600
R_{eL} UA1 /N/mm ²	266.0	3.7	16	1.4	264.0	268.0
R_{eL} UA2 /N/mm ²	264.1	3.6	16	1.4	262.2	265.0
R _{eL} UB /N/mm ²	268.4	3.3	16	1.2	266.7	270.1
A _{1ü} /%。/	24.7	2.4	15	9.7 [°]	23.4	26.0
E_v /N/mm ²	4300	1500	15	34.9	3475	5125

Alle von den Materialprüfanstalten ermittelten Materialkennwerte streuen mit Variationskoeffizienten unter 5 % wenig. Auch im Vergleich zur Eigenprüfung konnten keine signifikanten Unterschiede

Bild 5.2. Streuung von ${\tt R}_{eS},\ {\tt R}_{eH}$ und ${\tt R}_{m}$

몧

festgestellt werden. Lediglich beim E-Modul und bei der Bruchdehnung sind fehlerhafte Messungen nicht auszuschlieβen. Eine Wertung wird später vorgenommen.

Bei der Eigenprüfung zeigte die untere Steckgrenze $R_{eL}UA1$ vor und $R_{eL}UA2$ nach der Haltepause bei einer Dehngeschwindigkeit von $\dot{\epsilon} = 1/60$ % /s keine signifikanten Unterschiede bei einem Variations-koeffizienten kleiner 2 %. Im Bereich UB nach der Entlastung mit $\epsilon > 5$ % bis zum Verfestigungsbereich mit $\dot{\epsilon} = 5/60$ % /s ergaben sich für $R_{eL}UB$ etwas höhere Werte bei Variationskoeffizienten ebenfalls kleiner 2 % (Bild 5.5) (Die Definition der unteren Streckgrenzen ist im Abschnitt 4.2 nachzulesen).

Die Variationskoeffizienten der E-Moduli E_1 , E_2 und E_3 (Bild 5.4) sind mit Werten unter 4% klein. Kontrolluntersuchungen, bei denen der E-Modul an einer Probe bis zu 200 mal wiederholt gemessen wurde, ergaben Variationskoeffizienten unter 1% (Die Definition der einzelnen E-Moduli ist Bild 4.2 zu entnehmen).

Bild 5.4. Streuung der E-Moduli; a E_1 ; b E_2 ; c E_3 ; d E_v

Der Verfestigungsmodul Ev ist mit einem Variationskoeffizienten von ca. 35% eine Materialkenngröße, die selbst bei Proben aus einer Blechtafel stark streut. da sich durch die Anzahl und Orientierung der Lüdersbänder die Übergangsbereiche verschieden ausbilden /9,11,12/.

1.00

2

Die Lüdersdehnung $A_{FÜ}$ mit einem Variationskoeffizienten von ca. 10 % (Bild 5.5) streut entsprechend stark, ist aber für baupraktische Untersuchungen ausreichend genau. Untersuchungen über die Streuung der Lüdersdehnung in /29/ ergaben ähnliche Ergebnisse.

Bild 5.5. Streuung von a R_{eL}UA1; b R_{eL}UA2; c R_{eL}UB; d A_{lü}

5.3.1 Allgemeines

Aus einer Schmelze werden mehrere Erzeugnisse, z.B. Blechtafeln oder Walzprofile hergestellt. So ist es möglich, daß verschiedene Bescheinigungen für Erzeugnisse aus einer Schmelze vorliegen können. Auch sind mehrere Versuche bei größeren Lieferumfängen vorgeschrieben.

Eine Vergleichbarkeit ist immer dann gegeben, wenn mindestens zwei Prüfungen an Proben aus einer Schmelze vorliegen. (Kurzbezeichnung: Mehrfachprüfung)

In der Datenbank "Bescheinigungen" (s.Abschnitt 2 und Anhang A2) sind insgesamt 931 Proben aus 422 verschiedenen Schmelzen für den St37 sowie 352 Proben aus 132 verschiedenen Schmelzen für den St52 gespeichert, bei denen die Schmelzennummer und der Hersteller mindestens zweimal gleich sind und die Prüfungen an verschiedenen Materialproben durchgeführt wurden.

Eine Auswertung der Ergebnisse der chemischen Analyse von Mehrfachprüfungen wurde nicht durchgeführt, da sämtliche Werte identisch waren. Es wurde deshalb auch für alle nachfolgenden Auswertungen unterstellt, daß in die Bescheinigungen die Schmelzanalysen aufgenommen wurden (s. Abschnitt 2.2, Seite 4 und 5).

Die Auswertung erfolgte jeweils für die Proben aus einer Schmelze mit gleichen Soll-Erzeugnisdicken und gleicher Erzeugnisform (Blech, Flachstahl oder Walzprofil). Auch wurden die Bescheinigungen jeweils einer Schmelze von einer Materialprüfanstalt ausgestellt.

Ein Einfluß der Erzeugnisdicke, der Erzeugnisform und durch unterschiedliche Prüfanordnungen infolge von Prüfungen in verschiedenen Materialprüfanstalten auf die Ergebnisse konnte somit ausgeschlossen werden.

5.3.2 Vergleich der Ergebnisse

ទឹក

Ein Maß für die Streuung ist der Standardfehler s_F der Werte um die Regressionsgerade.

Der Standardfehler s[']_F der Ergebnisse y_{ii} kann angegeben werden zu

$$s_{F}' = \sqrt{\sum_{j=1}^{m} \sum_{i=1}^{n_{j}} \sum_{j=1}^{n_{j}} (y_{ij} - y_{Fj})^{2} / (\sum_{j=1}^{n_{j}} n_{j-1})}, \qquad (5.2)$$

wenn der wahre Materialkennwert y_{Fj} jeder Schmelze j (j = 1,m) bekannt ist. n_j ist die Anzahl der Prüfungen der Schmelze j mit $n_j > 1$. Da y_{Fj} unbekannt ist, wird y_{Fj} durch den Mittelwert $\bar{y}_j = 1/n_j \cdot \Sigma y_{ij}$ angenähert. Der Standardfehler \bar{s}_F ist unter der Voraussetzung Korrelationskoeffizient $\rho = 1$

$$= \sqrt{\sum_{j=1}^{m} \sum_{i=1}^{n_{j}} (Y_{ij} - \overline{Y}_{j})^{2} / (\sum_{j=1}^{n_{j}} n_{j} - 1)},$$
(5.3)

Für $\rho \neq 1$ wird der Zusammenhang zwischen den Ergebnissen y_{ij} und \overline{y}_i mit einem linearen Regressionsansatz

 $f(\overline{y}_i) = \hat{a}_0 + \hat{a}_1 \,\overline{y}_i \tag{5.4}$

beschrieben mit dem Standardfehler um die Regressionskurve

$$s_{F} = \sqrt{\sum_{j=1}^{m} \sum_{i=1}^{n_{j}} (y_{ij} - (a_{0} + a_{1}\overline{y}_{j}))^{2} / (\sum_{j=1}^{n_{j}} n_{j} - 1)}, \qquad (5.5)$$

 a_0 und a_1 werden mit der Fehlerquadratmethode ermittelt /2,3,4/.

Für $\rho = 1$, $a_0 = 0$ und $a_1 = 1$ ist $\overline{s}_F = s_F$. Da in allen Fällen $\rho \neq 1$ ist, wird s_F mit dem Regressionsansatz nach Gl. 5.4 und 5.5 berechnet. Es wird hierbei vorausgesetzt, daß die Residuen $y_{ij} = (a_0 + a_1 \overline{y}_i)$ normalverteilt mit den Parametern $(0, s_F)$ sind.

In den Bildern 5.6 und 5.7 sind die Ergebnisse y_{ij} in Abhängigkeit von den Mittelwerten \overline{y}_j für R_{eH} , R_m , A_5 und A_k getrennt für die Stähle St37 und St52 dargestellt. Die Auswertung für s_F in Tabelle 5.4 erfolgte mit dem Regressionsansatz nach Gl. 5.5. Der Standardfehler $s_F^{"}$ für den Regressionsansatz $f(y_{ij}) = \hat{a}_0 + \hat{a}_1 y_{ij}$

Bild 5.6. Abhängigkeit der Ergebnisse von den Mittelwerten der Schmelzen für den St37; a R_{eH}; b R_m; c A₅; d A_k

-

wurde nicht berechnet, weil die Korrelationskoeffizienten (s. Tabelle 5.4) groß sind und sich somit keine signifikanten terschiede für s_F'' und s_F ergeben.

Bild 5.7. Abhängigkeit der Ergebnisse von den Mittelwerten der Schmelzen für den St52; a R_{eH}; b R_m; c A₅; d A_k

Material-	Stahl-	Anzahl	Standard-	Korrelations-
kennwert	sorte		fehler s _F	koeffizient
R _{eH}	St37	931	8.4 N/mm ²	0.95
R _m		931	6.4 N/mm ²	0.95
A ₅		931	12.8 %	0.94
A _k		234	16.5 J	0.95
R _{eH}	St52	352	11.9 N/mm ²	0.91
R _m		352	8.6 N/mm ²	0.95
A5		352	11.4 %	0.91
A _k		76	28.5 J	0.70

Tabelle 5.4. Auswertung der Ergebnisse

- 92

5.4 VERGLEICH BLINDPRUFUNG – MEHRFACHPRUFUNG

Die Standardabweichung σ_{n-1} aus Tabelle 5.3 und der Standardfehler s_F aus Tabelle 5.4 geben die Streuung der Ergebnisse an und sind vergleichbar. In Tabelle 5.5 sind σ_{n-1} und s_F zusammengestellt.

Die Ergebnisse können durch die Versuchsdurchführung und die Meßfehler sowie die Binnenstreuung innerhalb eines Erzeugnisses auftreten. Einflüsse durch die Probenentnahme oder die Erzeugnisform werden vernachlässigt.

Die Materialkennwerte können innerhalb einer Schmelze bei gleichen Entnahmearten und Erzeugnisdicken unterschiedlich sein. Als Maß wird der Standardfehler s_F herangezogen.

Setzt man für alle Fehlermöglichkeiten jeweils Unabhängigkeit zu den anderen Fehlern voraus, so ist nach /2,3,4/ näherungsweise

$$\sigma_{\rm G}^2 = \sigma_{\rm M}^2 + \sigma_{\rm B}^2 + \sigma_{\rm E}^2$$

mit

-

 $\sigma_{\rm M}$ = Streuung der Ergebnisse zwischen den Materialprüfanstalten, $\sigma_{\rm B}$ = Binnenstreuung innerhalb eines Erzeugnisses,

 $\sigma_{\rm E}$ = Streuung zwischen verschiedenen Erzeugnissen aus einer Schmelze,

 $\sigma_{\rm G}$ = Gesamtstreuung infolge $\sigma_{\rm M}$, $\sigma_{\rm B}$ und $\sigma_{\rm E}$.

Mit den Bezeichnungen in der 2. Spalte der Tabelle 5.5 kann die Gesamtstreuung näherungsweise abgeschätzt werden:

 $\sigma_{\rm G}^2 = {\bf s}_1^2 - {\bf s}_2^2 + {\bf s}_3^2$ (5.7)

Der 95% Vertrauensbereich für einen Meßwert x ist

VB (x) = x +/- 1.96 $\sigma_{\rm G}$ = x +/- s₄. (5.8)

82

(5.6)

		Bez.	R _{eH} /N/mm ² /	R _m /N/mm ² /	A5 /‰ /
Frage- stellung	"A" "B" "A"und"B"	s ₁	12.7 9.5 11.2	5.6 8.4 7.1	16.9 34.5 27.2
Eigenprüft	ung	s2	9.7	1.2	8.3
Mehrfach- prüfung	St37 St52 St37+St52	ຮຽ	8.4 11.9 9.5	6.4 8.6 7.1	12.8 11.4 18.4
Gesamtstre nach Gl.5	euung .7		11.0	10.0	28.7
95%-Vertrau bereich na	uens- ach Gl.5.8	^s 4	21.6	19.6	56.3

Tabelle 5.5. Zusammenstellung der Streuungen

Der Vertrauensbereich der Gesamtstreuung σ_G ist ein Maß für die Güte der Materialprüfungen, d.h. der tatsächliche Materialkennwert streut in 95% aller Fälle mit s₄ um den in den Bescheinigungen ausgewiesenen Wert. So schwankt in 95% aller Fälle R_{eH} mit +/- 21.6 N/mm² um die von einer Materialprüfung bekannten Streckgrenze eines anderen Halbzeuges aus der gleichen Schmelze. Anders ausgedrückt: Kennt man die Ergebnisse eines Zugversuches an einer Probe, so können für andere Erzeugnisse aus derselben Schmelze die Ergebnisse von Zugversuchen mit dem Vertrauensbereich in Tabelle 5.5 vorhergesagt werden. Durch die fehlerhafte Messung der Bruchdehnung bei der Blindprüfung ist jedoch der Vertrauensbereich verhältnismäßig groß. Werden die wahrscheinlich fehlerhaften Messungen eliminiert, verkleinert sich der Vertrauensbereich nach Tabelle 5.5 auf ca 50 % . -2

6 AUSWERTUNG DER ERGEBNISSE DER FREMDPRUFUNG

6.1 ALLGEMEINES

Im Vordergrund der Auswertung der Ergebnisse steht die Streckgrenze, da sie in den heutigen Normen der maßgebende Bemessungswert ist.

Auch für zukünftig erlaubte Nachweise elastisch-plastisch und plastisch-plastisch wird der Fließbereich, jedoch nicht der Verfestigungsbereich, berücksichtigt. Er gilt als "stille Reserve". die in vielen Fällen bereits heute bewußt ausgenutzt wird. Man denke z.B. an Schraubenlöcher, wo Spannungsspitzen im Nettoquerschnitt durch Plastizieren des Stahls bis in den Verfestigungsbereich hinein abgebaut werden.

In diesem Abschnitt werden entsprechend dem Ablauf im Zugversuch nacheinander der elastische Bereich, der Fließbereich, der Übergang vom Fließ- in den Verfestigungsbereich und der Verfestigungsbereich ausgewertet. Im Anschluß wird die Frage nach der Abhängigkeit der Materialkennwerte von der Erzeugnisform und die Korrelation der Materialkennwerte untereinander behandelt.

6.2 BESTANDSAUFNAHME

Es wurden insgesamt 395 Halbzeuge entnommen, die eine Stichprobe aus aus der Grundgesamtheit nach Abschnitt 2.3 darstellen. Tabelle 6.1 gibt einen überblick über die aufgenommenen Halbzeuge. Einteilung hinsichtlich der Stahlsorte erfolgte nach den Die Angaben der Betriebe.

Erzeugnisform	St37	St52
Flachstähle Bleche Walzprofile	55 111 141	8 60 20
Gesamt	307	88

Tabelle 6.1. Verteilung der Stichprobenelemente

Die erfragten Angaben zu den Stichproben konnten zwar - wie auf Rückfrage bestätigt - in vielen Fällen zum Zeitpunkt der Lieferung in die Betriebe angegeben werden, gingen jedoch auf dem Weg vom Lager in die Fertigung verloren.

Sie wären für die meisten Stähle erhältlich gewesen, wenn der Materialfluß von der Lieferung bis zum endgültigen Einbau in ein Bauwerk überwacht worden wäre (s.a. Abschnitt 3.3.2). Es wurde jedoch darauf verzichtet, weil die Gefahr bestand, daß die Stähle ohne die gewünschten Angaben von den Betrieben aussortiert worden wären.

Insgesamt wurden nur für 28 Halbzeuge Bescheinigungen vorgelegt.

6.3 VERWECHSELUNGEN UND AUSREISSER

Verwechselungen der Stahlsorte können nicht ausgeschlossen werden (s. Abschnitt 3.2). Auch kann nicht ausgeschlossen werden, daß in Fällen, in denen Stähle ohne Bescheinigungen, also ohne nachgewiesene Qualitätskontrolle eingebaut werden, die Bedingungen der DIN 17 100 nicht erfüllt sind.

Versteht man die durchgeführten Versuche als Qualitätskontrolle

"vor Ort", müssen die Grenzwwerte von DIN 17 100 als Abnahmekriterium herangezogen werden (s. Tabelle 2.3). In Tabelle 6.2 ist die Anzahl der zurückzuweisenden und die Gesamtanzahl aller Erzeugnisse zusammengestellt. Die Bruchdehnung A₅ war in allen Fällen größer als der Mindestwert nach DIN 17 100. Deshalb ist sie als Abnahmekriterium nicht mit aufgeführt worden.

Tabelle 6.2. Vergleich der zurückzuweisenden Erzeugnisse zur Gesamtanzahl aller Erzeugnisse

Krite-	t	Sta	97	St52		
rium	/mm/	zurück-	Ge-	zurück-	Ge-	
		zuweisen	samt	zuweisen	samt	
R _{eH}	<0 -≤16	6	240	5	58	
bzw.	<16-≤40	1	56	2	30	
R _{p0,2}	<40−≤63	0	11	0	0	
	gesamt	7	307	7	88	
<min r<sub="">m</min>		2	307	З	88	
>max R _m		37	307	4	88	

Von den Erzeugnissen, die bei einer Abnahmeprüfung zurückgewiesen werden müßten, werden diejenigen als verwechselt definiert, die die Grenzwerte jeweils der anderen Stahlsorte (St37 bzw. St52) erfüllen.

11 Stähle, die als St37 in die Stichprobe aufgenommen wurden, erfüllen die Bedingungen für den St52 und 2 Stähle des St52 die Bedingungen des St37.

Es wurden auch andere Stahlsorten verarbeitet, die weder als St37 noch als St52 eingestuft werden können. Jedoch nur die Fälle, bei denen offensichtlich eine Verwechselung der Stahlsorte nach der Definition vorlag, wurden in der Auswertung gesondert berücksichtigt.

Zwei Stähle, die als St52 geliefert wurden, konnten von dem betroffenen Betrieb nicht eingebaut werden, weil sie praktisch nicht bearbeitbar waren. Diese Stähle wurden ebenfalls geprüft. Sie haben Zugfestigkeiten über 1000 N/mm² und sind nicht in die Gruppe St52 einzuordnen. Beide wurden in die Datenbank aufgenommen, jedoch für alle weiteren Auswertungen nicht berücksichtigt.

Die Auswertung wurde getrennt für die Stahlsorten St37 und St52 durchgeführt, wobei die Stähle getrennt mit und ohne Berücksichtigung der als verwechselt definierten Stähle untersucht wurden.

Die Tabellen sind entsprechend Abschnitt 2 aufgebaut. Die Parameterbeschreibung ist Abschnitt 2.6.4.2, Seite 30 zu entnehmen.

6.4 ELASTISCHER BEREICH

Wird eine Stahlprobe belastet, verhält sie sich zunächst elastisch und folgt beim allgemeinen Baustahl dem Hookeschen Gesetz, d.h. einer Geraden. Nichtlinearitäten infolge der Prüfanordnung zu Beginn des Versuches und z.B. durch den Bauschinger Effekt /6,9,38/ vor Erreichen der Streckgrenze wurden bei der Auswertung eliminiert (s. Anhang A1.3.2).

Der E-Modul wurde im elastischen Bereich, im Fließ- und im Verfestigungsbereich bestimmt, wobei jeweils eine Entlastung und eine anschließende Belastung durchgeführt wurde. Der E-Modul wurde in allen drei Bereichen nur bei Belastung mit einer Dehngeschwindigkeit von 1/60 % /s ermittelt, wobei die Meßbasislänge l_0 jeweils nach der Entlastung neu bestimmt wurde und die Dehnung

-

mit der neu bestimmten Meβbasislänge ermittelt wurde (s.Anhang A1.3.2).

In Bild 6.1 und Ta-6.3 sind belle die Histogramme und Parameter der E-Moduli und E3 ohne E₁, E_2 Berücksichtigung der veränderten Flächen zusammengestellt.

Bemerkenswert ist, daß die Streuung der E-Moduli E_1 und E_2 mit Variationskoeffizienten unter 3 % sehr klein ist.

Der E-Modul E3 zeigt in den Histogrammen eine Mischverteilung und ist im Vergleich $zu E_1$ und E_2 deutlich kleiner. Dieser Effekt kann an dieser Stelle nicht abschließend geklärt werden. Vermutlich sind Einflüsse der Reckalterung durch die Vorverformung in

Bild 6.1. Histogramme für E_1 , E_2 und E_3

den Verfestigungsbereich hinein die Ursache. Untersuchungen von Lenz /40/ ergaben Einflüsse von Kohlenstoff, Mangan, Aluminium und Stickstoff auf die mechanischen Festigkeitskennwerte infolge der Reckalterung. Durch Diffusion dieser Elemente bildet sich nach einer Vorverformung in den Verfestigungsbereich nach gewisser Zeit wieder ein Fließbereich mit oberer Streckgrenze auf einem höheren Spannungsniveau aus. Da die Versetzungen kurz nach der Vorverformung weniger stark behindert sind, ist der E-Modul des vorgereckten Stahls kleiner. Eine Untersuchung des Einflusses der Reckalterung auf den E-Modul ist nicht bekannt. Es kann aber nach /6,40/ davon ausgegangen werden, daß durch Versetzungsbehinderung infolge Diffusion der Legierungselemente der E-Modul im Verfestigungsbereich nach einer gewissen Zeit wieder steigt. Der E-Modul E₃ wird deshalb als Kennwert nur kurz nach der Vorverformung gedeutet.

Es kann festgestellt werden, daß E_3 deutlich niedriger als E_1 und E_2 ist und mit 5%-Fraktilen unter 175 000 N/mm² ca. 20 % unter dem in DIN 18 800 Teil 1 festgelegten charakteristischen Wert von 210 000 N/mm² liegt.

Die Auswertung in Tabelle 6.3 wurde getrennt für die Stähle St37 und St52 durchgeführt, weil angenommen wurde, daß durch die unterschiedlichen Gehalte an Legierungselementen der E-Modul unterschiedlich sein kann.

Der E-Modul ist beim St52 etwas größer als beim St37, was auf die höhere Versetzungsdichte infolge des höheren Gehaltes an Legierungselementen zurückgeführt wird. Die 50%-Fraktile liegt mit 206 000 N/mm² bzw. 209 000 N/mm² für die Stähle St37 bzw. St52 etwas unterhalb des charakteristischen Wertes nach DIN 18 800 Teil 1 von 210 000 N/mm². Es ist jedoch anzumerken, daß sowohl die Lasten als auch die Widerstände bei der Umstellung der Normen auf die SI-Einheiten mit dem Faktor 10 - anstatt 9.81 umgerechnet wurden. Rechnerisch würden somit die 50%-Fraktilen beider E-Moduli den charakteristen Wert einhalten.

	An-	Fkt.		Parameter		K/S-		Fraktile	
	n	Тур	θ1	θ ₂	θ3	gr.	5%	50%	95%
		St37	ohne Beri	ücksichtig	ung der	verwec	hselten	Stähle	
E ₁ /N/mm ² /	278	SFK NV LNV	179800 205500 11.49	227600 6900 0.072	107500	0.102 0.108	193700 194200 194500	205900 205500 205400	214800 216900 217800
E ₂ /N/mm ² /	279	SFK NV LNV	177500 202400 11.47	216200 4800 0.052	106100	0.053 0.063	194100 194500 194300	202900 202400 202200	209200 210300 210700
E ₃ /N/mm ² /	254	SFK NV LNV	170200 187800 11.24	206900 8800 0.117	111600	0.053 0.106	172600 174900 173800	188800 187800 187100	200200 204600 203300
		St37	mit Beri	icksichtig	ung der	verwecl	nselten	Stähle	
^E 1 /N/mm ² /	289	SFK NV LNV	179800 205700 11.47	227600 6900 0.074	109300	0.100 0.105	193800 194300 194700	206100 205700 205700	215700 217100 218100
E ₂ /N/mm ² /	290	SFK NV LNV	177500 202500 11.47	216200 4800 0.051	106300	0.052 0.065	194200 194600 194500	203100 202500 202200	209200 210300 210700
E ₃ /N/mm ² /	264	SFK NV LNV	170200 187800 11.27	206900 9000 0.116	108900	0.122 0.091	172400 174900 173900	188800 187800 187500	200400 205200 203900
		St52	ohne Berü	icksichtig	ung der	verwect	nselten	Stähle	
^E 1 /N/mm ² /	77	SFK NV LNV	192300 209200 11.13	233000 5400 0.077	141200	0.107 0.108	199800 200400 201200	208900 209200 209200	217100 218100 218400
E ₂ /N/mm ² /	73	SFK NV LNV	193800 205400 11.17	216800 4200 0.061	133900	0.084 0.107	195100 198400 198300	205600 205400 205100	210400 212300 212500
^E 3 /N/mm ² /	71	SFK NV LNV	173800 185700 11.20	211300 9000 0.302	157300	0.177 0.072	174500 173700 173800	182600 185700 184400	198500 206800 201800
ŀ		St52	mit Berü	cksichtig	ung der	verwech	selten	Stähle	
^E 1 /N/mm ² /	78	SFK NV LNV	192300 209200 10.64	233000 5300 0 125	167300	0.111 0.102	199800 200500 201100	208900 209200 208900	217100 218000 218600
E ₂ /N/mm ² /	74	SFK NV LNV	193800 205400 11.17	216800 4200 0.060	134300	0.083 0.091	195100 198400 198800	205700 205400 205500	210400 212300 212900
E ₃ /N/mm ² /	73	SFK NV LNV	173800 186000 10.21	211300 9100 0.306	157400	0.177 0.073	174500 173800 173900	183200 186000 184700	199000 206900 202600

Tabelle 6.3. Parameter der Verteilungsfunktionen und Fraktilwerte der E-Moduli E_1 , E_2 und E_3

-

6.5 FLIEβBEREICH

6.5.1 Definition der Streckgrenze

Die Form der Spannungs-Dehnungs-Kurve der Allgemeinen Baustähle kann nach Bild 4.1 in den elastischen Bereich, den Fließ-, Verfestigungs- und Einschnürbereich unterteilt werden. Durch verschiedene Einflüsse kann sich die Form der Spannungs-Dehnungs-Kurve ändern. So ist die obere Streckgrenze nicht in allen Fällen vorhanden /6,8,9,15/. Bei einigen Stählen ist auch der Fließbereich nicht vorhanden, weil der Stahl bereits bis in den

Bild 6.2. Ausbildungsformen der Spannungs-Dehnungs-Kurve

a ausgeprägte obere Streckgrenze mit Flieβbereich b keine ausgeprägte obere Streckgrenze mit Flieβbereich c keine ausgeprägte obere Streckgrenze ohne Flieβbereich

Verfestigungsbereich vorverformt wurde oder eine Stahlsorte ohne Fließbereich vorliegt.

In der Auswertung wurden drei Ausbildungsformen nach Bild 6.2 definiert. Da bei Ausbildungsform c kein Fließbereich vorhanden ist, wird in diesen Fällen die untere und statische Streckgrenze, sowie die Lüdersdehnung und der Verfestigungsmodul nicht ausgewertet. Insgesamt haben 43 Proben aus St37 und 10 Proben aus St52 keine ausgeprägte obere Streckgrenze, jedoch einen Fließbereich und wurden der Ausbildungsform b zugeordnet; der Ausbildungsform c wurden 4 Proben (St37) bzw. 5 Proben (St52) zugeordnet. Alle anderen Proben wurden der Ausbildungsform a zugeordnet.

6.5.2 Auswertung der Ergebnisse für die Streckgrenze

DIN 50 145 definiert die obere und untere Streckgrenze R_{eH} und R_{eL} , sowie die 0,2%-Dehngrenze $R_{p0,2}$.

In der Diskussion ist in neuerer Zeit die statische Streckgrenze R_{eS} , die als sicher zu ermittelnder Festigkeitskennwert gilt, da sie weitgehend von Prüfeinflüssen wie Dehngeschwindigkeit und Probenform unabhängig ist /10,14,15,32,33/. Ihre Ermittlung stellt jedoch an die Regelung der Prüfmaschine erhöhte Anforderungen.

Die Angabe der oberen Streckgrenze R_{eH} wird in den Werkstoffnormen noch heute als maßgebende Festigkeitskenngröße gefordert, da sie einfach zu bestimmen ist. In der Prüfpraxis wird die 0,2%-Dehngrenze $R_{p0,2}$ angegeben, wenn sich keine ausgeprägte obere Streckgrenze R_{eH} ausbildet.

Als Vergleichswert zur oberen Streckgrenze R_{eH} aus den Bescheinigungen wird deshalb für alle Ausbildungsformen nach Bild 6.2 ein Bescheinigungswert R_p definiert:

 $R_p = R_{eH}$, falls obere Streckgrenze R_{eH} vorhanden; sonst $R_p = R_{p0,2}$.

Im Rahmen dieser Arbeit werden folgende Streckgrenzen ausgewertet:

1.	Bescheinigungswert	Rp				
2.	obere Streckgrenze	R _{eH}				
З.	0,2%-Dehngrenze	$R_{p0,2}$	ίĖ	=	1/60	%。/s)
4.	statische Streckgrenze	Res				
5.	untere Streckgrenze	R _{eL} UA1	(Ė	=	1/60	%º/s)
6.	untere Streckgrenze	R _{eL} UB	(Ė	=	5/60	%°/3)

4

Die Ermittlung der Streckgrenzen ist Abschnitt 4.2 und Anhang A1 zu entnehmen.

In Bild 6.3 sind die Histogramme für die Streckgrenzen ohne Unterteilung in verschiedene Erzeugnisdicken dargestellt, wobei die verwechselten Stähle nicht berücksichtigt wurden. Auf eine Darstellung in Form von Histogrammen für die verschiedenen Erzeugnisdicken wurde an dieser Stelle verzichtet. Für alle untersuchten Streckgrenzen wurden die Dichtefunktionen der Normal- und Lognormalverteilung nach Gl. 2.2 und 2.3 berechnet. Hierbei wurden die Dichtefunktionen getrennt für die verschiedenen Erzeugnisdicken $0 < t \le 16$, $16 < t \le 40$ und $40 < t \le 63$ mm sowie ohne Berücksichtigung der Erzeugnisdicken $0 < t \le 63$ mm berechnet. In den Tabellen 6.4 und 6.5 sind die Auswertungen zusammengestellt.

Bi ld σ ٠ ω von Histogramme verwechselten Stählen für die Streckgrenzen ohne Berücksichtigung

94

8.1

Tabelle 6.4. Verteilungsfunktionen verwechselten Stähle Streckgrenze für den St37 mit Berücksichtigung und Fraktilwerte für der die

i, i

	An-	t	Fkt.	Parameter	K/S-	<u> </u>	Fraktile			An-	t	Fkt.		Parame	ter	K/S-		Fraktile]
	2401 0	/mm/	Тур	Θ ₁ Θ ₂ Θ ₃	gr.	5%	50%	95%		zahl n	/mm/	Тур	Θ,	Θ2	Θ	gr.	5%	50%	95%
	307	0-63	SFK NV LNV	204 495 295.9 40.0 5.27 0.20 98.3	0.055 0.020	238 230 238	292 294 292	361 362 368		301	0-63	SFK NV LNV	189 257.3 5.01	436 36.5 0.23	102.9	0.054 0.029	208 197 206	253 257 253	321 317 322
٥	240	0-16	SFK NV LNV	204 495 301.0 40.1 5.33 0.19 91.5	0.042 0.033	244 235 243	298 301 298	369 367 374		236	0-16	SFK NV LNV	189 263.4 5.12	436 35.3 0.20	93.4	0.066 0.044	212 205 214	262 263 261	324 321 326
"p /N/mm ²	/ 56	16-40	SFK NV LNV	224 402 279.6 35.7 4.75 0.28 158.9	0.014 0.078	230 221 232	274 280 274	350 338 342	^r eS /N/mm ²	/ 55	16-40	SFK NV LNV	195.0 235.2 3.62	343 34.0 0.69	137.9	0.113 0.047	197 179 200	226 235 225	317 291 304
	11	40-63	SFK NV LNV	238 301 269.1 18.0 5.01 0.12 118.1	0.074 0.094	239 241	263 269 268	299 301		10	40-63	SFK NV LNV	213 234.1 4.23	266 14.6 0.20	163.9	0.072 0.079	210 213	229 234 233	258 259
	258	0-63	SFK NV LNV	211 495 296.8 38.6 5.24 0.20 104.6	0.043	239 233 240	293 297 293	359 360 367		302	0-63	SFK NV LNV	192 275.5 5.14	457 37.9 0.21	100.8	0.056 0.023	223 213 222	270 276 272	339 338 342
D	198	0-16	SFK NV LNV	211 495 302.5 38.3 5.32 0.18 95.5	0.043	245 239 248	300 303 300	369 366 370	P IIAI	237	0-16	SFK NV LNV	204 282.0 5.17	457 36.7 0.20	103.1	0.073 0.044	235 222 230	280 282 279	343 342 348
"eH /N/mm ²	/ 53	16-40	SFK NV LNV	224 402 279.3 34.5 4.75 0.28 159.3	0.136	230 223 232	274 279 275	333 336 343	/N/mm ²	/ 56	16-40	SFK NV LNV	192 252.5 4.31	365 34.9 0.40	171.1	0.107 0.042	212 295 210	145 253 246	322 310 315
	7	40-63	SFK NV LNV	242 301 270.8 18.1 4.71 0.16 158.7	0.064 0.070	241 244	263 271 270	301 303		9	40-63	SFK NV LNV	229 248.8 4.53	266 123 0.14	155.6	0.112 0.101	229 229	240 249 248	269 272
	307	0-63	SFK NV LNV	190.0 457 275.8 38.0 5.15 0.21 99.7	0.053 0.024	224 213 222	272 276 272	343 338 343		284	0-63	SFK N¥ LNV	198 279.4 5.13	462 36.0 0.20	106.3	0.051 0.021	229 220 228	276 279 275	345 339 341
8	240	0-16	SFK NV LNV	204 457 282.3 36.7 5.15 0.20 106.3	0.067 0.029	233 222 230	281 282 279	348 343 346	R., US	221	0-16	SFK NV LNV	207 286.3 5.18	462 34.3 0.18	105.7	0.066 0.038	240 230 238	285 286 283	346 343 345
"p0.2 /N/mm ²	/ 56	16-40	SFK NV LNV	190 363 252.4 35.3 - 4.46 0.35 160.1	0.125	208 194 209	243 252 247	335 310 314	/N/mm ²	/ 54	16-40	SFK NV LNV	198 255.5 4.36	368 33.2 0.37	171.3	0.113 0.073	215 201 214	248 256 250	315 310 315
	11	40-63	SFK NV LNV	228.7 284 253.3 16.6 4.50 0.18 161.6	0.073 0.067	226 229	249 253 252	281 283		9	40-63	SFK NV LNV	235 251.7 4.39	265 9.49 0.12	170.0	0.123 0.168	236 236	252 252 251	267 268

SFK = Stichprobenfunktion NV = Normalverteilung LNV = Lognormaiverteilung

	An- zahl	L C	Fkt.		Parame	ter	K/S-		Fraktile			[An-	t	Fkt.		Parame	ter	K/S-		Fraktile	
	n	/mm/	Тур	θ ₁	θ2	Θ 3	gr.	5%	50%	95%		z an j n	/mm/	Тур	θ,	θ	θ ₃	gr.	51	50%	951
	296	0-63	SFK NV LNV	204 292.3 5.31	399 34.8 0.17	87.6	0.035 0.019	237 235 241	291 292 290	350 350 355		290	0-63	SFK NV LNV	189 253.5 4.66	334 30.5 0.30	143.7	0.027 0.051	207 203 208	251 254 249	306 304 317
	233	0-16	SFK NV LNV	204 297.7 5.36	399 35.1 0.17	81,4	0.022 0.047	243 240 242	296 298 294	351 355 363	D	229	0-16	SFK NV LNV	189 260.1 5.08	334 29.2 0.19	96.0	0.021 0.055	212 212 216	259 260 257	313 308 312
p N/mm ²	/ 52	16-40	SFK NV LNV	224 272.9 5.03	333 26.7 0.17	117.2	0.079 0.047	230 229 233	271 273 270	322 317 319	[™] eS ∕N/#m	² / 51	16-40	SFK NV LNV	195 227.8 3.86	288 21.9 0.42	176.0	0.125 0.075	197 192 200	223 228 223	266 364 271
	11	40-63	SFK NV LNV	238 269.1 5.01	301 18.0 0.12	118.1	0.074 0.094	239 241	263 269 268	299 301		10	40-63	SFK NV LNV	213 234.1 4.20	266 14.6 0.20	163.9	0.072 0.079	210 213	229 234 233	258
	250	0-63	SFK NV LNV	211 293.8 5.29	399 34.1 0.17	93.2	0.025 0.021	239 238 243	293 294 292	350 350 356		291	0-63	SFK NV LNV	192 271.7 5.14	397 32.1 0.19	97.5	0.034 0.043	221 219 222	269 272 268	325 325 331
	193	0-16	SFK NV LNV	211 299.8 5.35	399 33.9 0.16	86.3	0.020 0.043	245 244 248	300 300 297	351 356 360		230	0-16	SFK NV LNV	204 278.6 5.19	397 30.7 0.17	96.3	0.028 0.047	235 228 232	278 279 276	330 329 334
e∺ N∕mm ²	/ 50	16~40	SFK NV LNV	224 273.8 5.07	333 267 0.17	112.7	0.082 0.065	230 230 233	273 274 272	322 318 323	N/mm ⁴	² / 52	16-40	SFK NV LNV	192 245.2 4.81	306 23.5 0.19	120.8	0.079 0.053	212 207 211	241 245 244	289 284 289
	7	40-63	SFK NV LNV	242 270.8 4.71	301 18.1 0.16	158.7	0.064 0.070	241 244	263 271 270	301 303		9	40-63	SFK NV LNV	229 248.8 4.53	266 12.3 0.14	155.6	0.112 0.101	229 229	240 249 248	269
	296	0-63	SFK NV LNV	190 272.1 5.21	390 32.4 0.18	87.0	0.038	224 219 223	270 272 270	327 325 333		275	0-63	SFK NV LNV	198.0 276.2 5.17	369 31.3 0.18	97.4	0.034 0.032	229 225 228	273 276 273	331 328 334
	233	0-16	SFK NV LNV	204 279.1 5.23	390 31.1 0.17	89.7	0.027 0.037	233 228 231	280 279 276	336 330 337	0 110	215	0-16	SFK NV LNV	207 283.5 5.21	369 29.5 0.16	98.5	0.034 0.030	237 235 239	284 284 282	340 332 336
'p0,2 'N/mm ²	/ 52	16-40	SFK NV LNV	190 245.0 4.98	306 23.4 0.16	98.2	0.057 0.046	208 207 210	240 245 244	286 283 287	^K el ^{UB} /N/mm ²	2/51	16-40	SFK NV LNV	198 249.8 4.76	315 23.7 0.20	131.1	0.121 0.098	215 211 215	241 250 248	285 289 293
	11	40-63	SFK NV LNV	229 253.3 4.50	284 16.6 0.18	161.6	0.073	226 229	249 253 252	281 283		9	40-63	SFK NV LNV	235 251.7 4.99	265 9.49 0.12	170.0	0.123	236	252 252 251	267

Tabelle 6.4. Streckgrenze Verteilungsfunktionen wechselten für Stähle den (Fort St37 und setzung) ohne Fraktilwerte Berücksichtigung für der die

4.5

96

SFK = Stichprobenfunktion NV = Normalverteilung LNV = Lognormalverteilung

Tabelle 6.5. Verteilungsfunktionen und Fraktilwerte für die Streckgrenze für den St52 mit Berücksichtigung der verwechselten Stähle

[An-	t	Fkt.		Parame	ter	K/S-	F	raktile	
	n	/==/	Тур	θ1	θ2	θι	gr.	58	50%	95%
	86	0-40	SFK NV LNV	290 396.0 5.61	510 38.0 0.14	120.6	0.061	329 333 338	393 396 394	457 459 465
R _p /N/mm ²	56	0-16	SFK NV LNV	290 398.0 5.64	510 41.1 0.15	113.7	0.071	292 330 333	397 398 395	472 466 474
	30	16-40	SFK NV LNV	327 392.1 5.40	480 31.0 0.14	167.3	0.094 0.104	327 341 343	388 392 389	429 443 446
	72	0-40	SFK NY LNV	392 399.5 5.59	510 35.2 0.13	128.6	0.069	329 342 345	397 400 396	457 457 460
R _{eH} /N/mm ² ,	42	0-16	SFK NV LNV	292 404.7 5.65	510 37.0 118.9	118.9	0.085	343 344 348	402 405 403	441 466 471
	30	16-40	SFK NV LNV	327 392.1 5.40	480 31.0 0.14	167.3	0.094 0.104	327 341 343	388 392 389	429 443 446
	86	0-40	SFK NV LNV	290.0 376.0 5.49	489 32.2 0.13	132.49	0.110 0.097	325 323 328	374 376 375	431 429 432
R _{p0,2} /N/mm ² /	56	0-16	SFK NV LNV	290.4 380.9 5.54	488.7 33.4 0.13	123.8	0.115 0.130	391 326 329	376 381 378	442 436 439
	30	16-40	SFK NV LNV	321.6 366.7 5.12	433 27.4 0.16	197.2	0.097	321 322 326	372 367 365	397 412 415
	80	0-40	SFK NV LNV	275 335 5.42	468 330 0.14	127.8	0.099 0.086	303 301 307	353 355 354	420 409 412
R _{es} /N/mm ²	50	0-16	SFK NV LNV	275 360.6 5.48	468 33.9 0.14	118.3	0.113	277 305 309	355 361 358	422 416 420
	30	16-40	SFK NV LNV	301 346.3 5.00	420 29.4 0.19	194.4	0.085	301 298 303	349 346 343	380 395 397
	81	0-40	SFK NV LNV	289 377.1 5.50	492 32.6 0.13	129.4	0.111 0.089	325 323 327	374 377 374	434 431 432
R _{eL} UA1 /N/mm ²	51	0-16	SFK NV LNV	289 382.6 5.56	492 33.7 0.13	119.2	0.133 0.153	291 327 329	375 383 379	439 438 441
	30	16-40	SFK NV LNV	323 367.6 4.65	446 28.3 0.26	259.8	0.114 0.115	323 321 328	370 368 364	392 414 420
	79	0-40	SFK NV LNV	302 381.1 5.43	508 31.9 0.14	150.6	0.124 0.101	323 329 332	376 381 379	437 434 438
R _{eL} UB /N/mm ² /	51	0-16	SFK NV LNV	302 385.9 5.48	508 33.9 0.14	143.2	0.142	304 330 334	378 386 383	442 442 445
	28	16-40	SFK NV LNV	323 372.3 5.14	437 25.5 0.15	199.6	0.137 0.126	323 330 333	376 372 370	404 414 418

SFK = Stichprobenfunktion NV = Normalverteilung LNV = Lognormalverteilung

Tabelle 6.5. Verteilungsfunktionen und Fraktilwerte für die Streckgrenze für den St52 ohne Berücksichtigung der verwechselten Stähle (Fortsetzung)

<u> </u>	An-	t	Fkt.		Paramo	eter	K/S-	1	Fraktile	
	zahi n	/==/	Тур	θ1	Θ2	θ3	Test- gr.	5%	50%	95 %
	84	0-40	SFK NV LNV	327 398.5 5.34	510 34.8 0.16	186.3	0.057	338 341 347	393 399 395	457 456 458
R _p /N/mm ²	54	0-16	SFK NV LNV	334 402.0 4.59	510 36.2 0.25	256.6	0.060	338 342 350	399 402 398	472 462 470
	30	16-40	SFK NV LNV	327 392.1 5.40	480 31.0 0.14	167.3	0.094 0.104	327 341 343	388 392 389	429 443 446
	71	0-40	SFK NV LNV	327 401.0 5.38	510 33.0 0.15	180.8	0.071	343 347 351	397 401 398	457 455 459
R _{eH} /N/mm ²	41	0-16	SFK NV LNV	343 407.5 4.99	510 32.9 0.21	256.6	0.074 0.061	361 353 361	402 408 404	441 462 464
	30	16-40	SFK NV LNV	327 392.1 5.40	480 31.0 0.14	167.3	0.094 0.104	327 341 343	388 392 389	429 443 446
	84	0-40	SFK NV LNV	321 378.0 5.09	489 29.7 0.17	212.9	0.116	329 329 336	375 378 375	431 427 428
R _{p0,2} /N/mm ²	54	0-16	SFK NV LNV	334 384.2 4.84	489 29.1 0.21	254.7	0.132 0.090	338 336 344	376 384 381	442 432 433
	30	16-40	SFK NV LNV	321 366.7 5.12	433 27.4 0.16	197.2	0.097 0.117	321 322 326	372 367 365	397 412 415
	78	0-40	SFK NV LNV	301 357.3 5.10	468 30.9 0.18	190.1	0.104 0.091	308 306 312	355 357 354	420 408 411
R _{eS} /N/mm ²	48	0-16	SFK NV LNV	318 364.2 4.46	468 29.8 0.30	273.8	0.138	323 315 327	355 364 360	422 413 416
	30	16-40	SFK NV LNV	301 346.3 5.00	420 29.1 0.19	194.4	0.085	301 298 303	349 346 343	380 395 397
	79	0-40	SFK NV LNV	323 379.3 4.78	492 29.9 0.24	256.8	0.114 0.080	327 330 337	375 379 376	439 428 434
R _{el} UAÍ /N/mm²	/ 49	0-16	SFK NV LNV	340 386.0 4.35	492 28.6 0.31	304.5	0.142 0.082	345 339 351	377 386 382	439 433 434
	30	16-40	SFK NV LNV	323 367.6 4.65	446 28.3 0.26	259.8	0.114 0.115	323 321 328	370 368 364	392 414 420
	77	0-40	SFK NV LNV	323 383.1 4.81	508 29.6 0.22	257.0	0.135 0.085	342 334 342	376 383 380	437 432 433
R _{eL} UB /N/mm ² /	49	0-16	SFK NV LNV	342 389.3 4.39	508 30.0 0.31	305.0	0.135 0.101	350 340 353	378 389 386	442 439 439
	28	16-40	SFK NV LNV	323 372.3 5.14	437 25.5 0.15	199.6	0.137 0.126	323 330 333	376 372 370	404 414 418

SFK = Stichprobenfunktion NV = Normalverteilung LNV = Lognormalverteilung

Die Untersuchung, ob eine Qualitätskontrolle stattgefunden hat, wird später anhand der Dichtefunktion einer normalverteilten Grundgesamtheit mit Filterfunktion nach Gl. 2.6 (Abschnitt 2.5.2) für die Streckgrenze R_p durchgeführt.

Besonders auffällig ist beim St37 und St52 die niedrige 5%-Fraktile aller Streckgrenzen.

Die 5%-Fraktile des Bescheinigungswertes R_p ist beim St37 für 0<t ≤ 16 mm mit 243 N/mm² für die Auswertung ohne Verwechselungen nur wenig größer als der charakteristische Wert von 240 N/mm² nach DIN 18 800 Teil 1. Für 16<t ≤ 40 mm ist sie mit 230 N/mm² deutlich unterhalb von 240 N/mm².

Beim St52 liegt sie in beiden Fällen unterhalb des charakteristischen Wertes von 360 N/mm².

Für einige Konstruktionselemente ist die statische Streckgrenze R_{eS} für die Tragfähigkeit maßgebend /14/. Wird als charakteristischer Wert für die Streckgrenze die statische Streckgrenze R_{eS} angesetzt, liegt die 5%-Fraktile mit 212 N/mm² für 0<t≤16 mm bzw. 197 N/mm² für 16<t≤40 mm deutlich unterhalb von 240 N/mm². Entsprechendes gilt für den St52.

In Bild 6.4 sind die 5, 50 und 95%-Fraktilen für die ermittelten Streckgrenzen und zum Vergleich R_{eH} aus den Bescheinigungen für die Auswertung ohne Unterscheidung von Herkunft und Prüfdatum aufgetragen. Die Werte wurden auf die charakteristischen Bemessungswerte β_S nach DIN 18800 Teil 1 mit 240 N/mm² für den St37 und 360 N/mm² für den St52 bezogen.

Es wurden nur die Fraktilwerte ohne Unterscheidung in die verschiedenen Erzeugnisdicken aufgetragen.

Die verwechselten Stähle wurden nicht berücksichtigt. Die Werte unterscheiden sich nur bei der 95%-Fraktile beim St37 und der 5%-Fraktile beim St52 deutlich, so daß in den anderen Fällen die Punkte in der Darstellung praktisch zusammenfallen.

Bild 6.4. Fraktilwerte der Streckgrenze für alle Erzeugnisdicken

Es kann festgestellt werden, daß die Fraktilwerte für R_p im Vergleich zu R_{eH} aus den Bescheinigungen bei der 5 und 50%-Fraktilen kleiner sind. Die 95%-Fraktile ist dagegen größer. Die Streckgrenze des eingebauten Stahls, der durch die Stichprobenentnahme erfaßt wurde, streut mehr als die aus den Bescheinigungen.

Weiterhin liegen alle 5%-Fraktilen der Streckgrenze unterhalb des charakteristischen Bemessungswertes.

Eine wichtige Frage ist weiterhin, ob aus den Ergebnissen der Fremdprüfung eine Qualitätskontrolle nachgewiesen werden kann. Falls sie durchgeführt wurde, muß sie aus den Auswertungen für R_p ersichtlich sein, weil aus den Bescheinigungen deutlich wurde, daß durch eine Qualitätskontrolle die Erzeugnisse fast ausschließlich infolge zu niedriger Streckgrenzen zurückgewiesen

werden müssen. Sind die Prüfungen gemäß den Vorschriften durchgeführt worden, wird trotzdem erwartet, daß der Filter durch Binnenstreuung, Probenentnahme und Prüfverfahren eine größere Streuung hat (s. Abschnitt 5.2, Seite 66). Im Bild 6.5 sind die Histogramme der Streckgrenze R_p für die Stähle St37 und St52 getrennt für die Erzeugnisdicken 0<t≤16 mm und 16<t≤40 mm aufgetragen. Ein ausgeprägter Filter, wie er aus den Histogrammen der Bescheinigungen für R_{eH} zu erkennen war, wird nicht deutlich.

Bild 6.5. Histogramme für R_p in Abhängigkeit von der Erzeugnisdicke

Die Dichtefunktion der normalverteilten Grundgesamtheit mit Filter wurde für R_p nach Gl. 2.6 berechnet. Die Ergebnisse sind in Tabelle 6.6 zusammengefaßt. Die verwendeten Parameter sind im Abschnitt 2.5 und 2.6.4.2 beschrieben.

Tabelle	6.6.	Dich	tefunktion	für ı	normalv	verte	ilte	Gru	Indge	samtheit
		mit	Filterfun	ction	nach	G1.	2.6	für	die	Streck-
		gren	ze R _p							

Stahl-	An-	t	θ ₁	θ ₂	θ ₃	θ ₄	k
sorte	zahl	/mm/	/N/mm ² /	/N/mm ² /	/N/mm ² /	/N/mm ² /	-
St37	233	< 0-≤16	296.9	34.8	201.0	1.8	0.99
	52	<16-≤40	268.8	30.2	222.8	2.1	0.94
St52	54	< 0-≤16	398.6	40.8	336.1	0.8	0.94
	30	<16-≤40	390.3	33.0	324.5	1.5	0.98

Aus den Ergebnissen ist ersichtlich, daβ eine Qualitätskontrolle vermutlich nicht immer durchgeführt wurde.

Wahrscheinlich liegt eine Mischverteilung vor, d.h. teilweise wurde eine Qualitätskontrolle durchgeführt; in den anderen Fällen gelangten Erzeugnisse ohne Qualitätskontrolle in die Stichprobe. Der Nachweis kann allerdings mit dem geringen Stichprobenumfang nicht geführt werden.

Die Ergebnisse in Tabelle 6.6 zeigen, daß die angesetzten Filter rechnerisch sehr niedrig sind. Die Werte liegen unterhalb der zulässigen Werte, so daß die Dichtefunktion praktisch nur die Deutung erlaubt, daß ein Filter mit dem Ansatz nach Gl. 2.6 nicht nachweisbar ist.

Aus den Erläuterungen kann für die Streckgrenze folgendes gefolgert werden:

1. Eine Qualitätskontrolle wird nicht für alle Stähle durchgeführt.

- 2. Die 5%-Fraktile der Streckgrenze liegt beim St52 deutlich unterhalb des charakteristischen Wertes nach DIN 18800, Teil 1.
- 3. Die Wahrscheinlichkeit, daß Bauteile aus St52 fließen, ist größer als bei Bauteilen aus St37.

6.5.3 Abhängigkeit der Streckgrenze von der Dehngeschwindigkeit

6.5.3.1 Allgemeines

Da sich in jeder Faser eines Bauteils bei Belastung verschiedene Dehngeschwindigkeiten einstellen, kann es für die Berechnung sinnvoll sein, die untere Streckgrenze in Abhängigkeit von der Dehngeschwindigkeit anzugeben. Sie ist von der Dehngeschwindigkeit abhängig, wobei die statische Streckgrenze ein Grenzfall für $\dot{E} \rightarrow 0$ ist, die bestimmt wird, indem im Fließbereich die Dehnung über eine bestimmte Zeit konstant gehalten wird. Der Spannungswert für R_{eS} wird für t $\rightarrow \infty$ mit einem Regressionsansatz extrapoliert /7,10,15,17,26/.

Die Ermittlung der statischen Streckgrenze R_{eS} stellt an die Prüfanordnung erhöhte Anforderungen. Sie ist durch lange Versuchszeiten teuer, und es stellt sich die Frage, ob mit einfach zu ermittelnden Größen die statische Streckgrenze mit ausreichender Genauigkeit bestimmt werden kann.

In /32,33/ werden Abhängigkeiten der unteren Streckgrenze von der Dehngeschwindigkeit angegeben. Sie beruhen vornehmlich auf Versuchsergebnissen an amerikanischen Stählen A36, A441 und A514, deren Festigkeitskennwerte in etwa denen der Stähle St37, St52 und StE500 entsprechen. Die Parameter a_0 und a_1 der vorgeschlagenen Funktionstypen zur Berechnung der statischen Streckgrenze bei bekannter Dehngeschwindigkeit und unterer Streckgrenze

$$R_{eL,\dot{e}} = R_{eS} (1 + a_0^{\dot{e}a_1}) \quad und \tag{6.1}$$

$$R_{eL} \dot{\epsilon} = R_{eS} + a_0 \dot{\epsilon}^{a_1} \tag{6.2}$$

sind nach /32,33/ von der Stahlsorte abhängig. Der Ansatz nach Gl. 6.1 beinhaltet auch eine Abhängigkeit des Spannungsabfalls von dem Spannungsniveau der statischen Streckgrenze, d.h. je größer die statische Streckgrenze ist, desto größer ist der Spannungsabfall von einer unteren Streckgrenze auf die statische Streckgrenze, der im weiteren mit $\Delta \sigma$ bezeichnet wird.

Bei den o.a. Versuchen zur Bestimmung der Parameter wurden Dehngeschwindigkeiten bis maximal 1.6 % /s untersucht. Die Parameter nach Gl. 6.1 sind z.B. in Erläuterungen zur SIA-Norm 161 "Stahlbauten" /37/ aufgenommen worden. Sie werden an dieser Stelle nicht angegeben, da sie für größere Dehngeschwindigkeiten É > 0.2 % /s gelten und die Dehngeschwindigkeit É bei den im Institut für Stahlbau der TU Braunschweig durchgeführten Versuchen 1/60 % /s und 5/60 % /s betrug.

Im Rahmen dieser Arbeit werden folgende Fragestellungen untersucht:

- Ist die Gröβe des Spannungsabfalls ∆σ von der Stahlsorte abhängig?
- 2. Kann die statische Streckgrenze mit einfach zu ermittelnden Kenngröβen mit ausreichender Genauigkeit bestimmt werden?
- 3. Kann eine Beziehung zwischen unterer Streckgrenze und der Dehngeschwindigkeit angegeben werden, die es erlaubt, die statische Streckgrenze mit ausreichender Genauigkeit zu bestimmen?

Zur Untersuchung wurde der Spannungsabfall $\Delta \sigma$ von der unteren auf die statische Streckgrenze getrennt für die Stahlsorten St37 und St52 berechnet. In Tabelle 6.7 sind die Ergebnisse zusammengefaßt.

Tabelle 6.7. Auswertung des Spannungsabfalls ∆σ von der 0,2%-Dehngrenze auf die statische Streckgrenze

Stahl-	An-	Mittel-	Stand a rd-	95%-Vertr	auensber.
sorte	zahl	wert	abweichung	untere	obere
				Gre	nze
	-	/N/mm ² /	/N/mm ² /	/N/mm ² /	/N/mm ² /
St37	286	17.9	4.1	9.8	26.0
St52	74	18.9	2.7	13.5	24.2

Der Spannungsabfall $\Delta \sigma$ beträgt bei einer Dehngeschwindigkeit von 1/60 %°/s im Mittel 17.9 bzw. 18.9 N/mm². Da jedoch die Standardabweichung mit 4.1 N/mm² bzw. 2.7 N/mm² relativ hoch ist, ist die Spanne zwischen unterer und oberer Grenze des 95%-Vertrauensbereiches groß. Da der Mittelwert des Spannungsabfalls $\Delta \sigma$ beim St52 nur etwas größer als beim St37 ist, kann aus den Untersuchungen festgestellt werden, daß die Größe des Spannungsabfalls nahezu unabhängig von der Stahlsorte ist.

Die Abhängigkeit des Spannungsabfalls $\Delta \sigma$ von der Größe der 0,2%-Dehngrenze R_{p0,2} ist beispielhaft für den St37 im Bild 6.6 dargestellt. Die Regressionsgerade zeigt einen leichten Anstieg. Die 95%-Vertrauensbereiche für einen Meßwert der statischen Streckgrenze sind relativ groß.

abfalls $\Delta \sigma R_{p0,2} - R_{eS}$

6.5.3.3 Kann die statische Streckgrenze mit einfach zu ermittelnden Kenngrößen mit ausreichender Genauigkeit bestimmt werden ?

Im dehngeregelten Zugversuch kann im Fließbereich i. allg. die untere Streckgrenze und die Dehngeschwindigkeit angegeben werden. Es stellt sich die Frage, ob die statische Streckgrenze bei bekannter Dehngeschwindigkeit mit ausreichender Genauigkeit mit der unteren Streckgrenze ermittelt werden kann.

Im Bild 6.7 ist die statische Streckgrenze beispielhaft in Abhängigkeit zur 0,2%-Dehngrenze dargestellt. Zur Ermittlung einer Beziehung zwischen unterer und statischer Streckgrenze wurde ein Regressionsansatz

$$R_{eS} = R_{eL} + a_0$$

gewählt. Der Parameter a_0 ist hierbei der Spannungsabfall $\Delta \sigma$, um den die statische Streckgrenze kleiner als R_{eL} ist. Im Bild 6.7

ist die Regressionsgerade nach Gl. 6.3 und die 95%-Vertrauensbereiche für einen Meßwert x eingetra-Untersuchung Zur gen. wurden die Beziehungen von R_{p0.2}, R_{eL}UA1 und R_{el}UB zu R_{eS} ausgewertet. In Tabelle 6.8 sind die Ergebnisse getrennt für die Stähle St37 und St52, sowie für alle Stähle ohne Berücksichtigung der Stahlsorte zusammengefaßt.

_____ 95%-Vertrauensbereich für einen Meβwert x

Bild 6.7. R_{eS} in Abhängigkeit von $R_{p0,2}$ bei $\dot{\epsilon} = 1/60 \%/s$

Zur Beurteilung der Güte der Regression wird der Standardfehler des Spannungsabfalls $\Delta\sigma$ herangezogen. Er ist für die Auswertung für R_{p0,2} - R_{eS} am geringsten und beträgt im Mittel beim St37 ca. 18 N/mm² und beim St52 ca. 20 N/mm². Da der Standardfehler groß ist, sind die 95%-Vertrauensbereiche entsprechend groß.

Eine Bestimmung der statischen Streckgrenze ist deshalb nur bedingt möglich. Es kann jedoch mit dem Standardfehler die 95%-Fraktile bestimmt werden, die die Aussage erlaubt, wie groß der Spannungsabfall in 95% aller Fälle maximal ist. Bei einer Dehngeschwindigkeit von 1/60 % /s liegt die statische Streckgrenze in 95% aller Fälle beim St37 bis zu 26.2 N/mm², beim St52 bis zu 29.4 N/mm² und ohne Berücksichtigung der Stahlsorte bis zu 27.0 N/mm² unter der 0,2%-Dehngrenze.

107

(6.3)

Stahl- sorte	Streck- grenze	An- zahl	a ₁ /N/mm ² /	Standard- fehler /N/mm ² /	95%-Ver berei /N/mm ² /	trauens- ch /N/mm ² /	95% Fraktile /N/mm ² /
St37	R _{p0,2}	290	-18.1	4.9	-8.5	-27.8	-26.2
	R _{eL} UA1	289	-18.4	7.3	-4.0	-33.0	-30.5
	R _{eL} UB	273	-22.6	5.5	-11.8	-33.4	-31.7
St52	R _{p0,2}	78	-20.4	5.4	-9.7	-31.1	-29.4
	R _{eL} UA1	78	-21.7	5.5	-10.8	-32.6	-30.9
	R _{eL} UB	76	-24.1	5.9	-12.4	-35.8	-33.9
St37	R _{p0,2}	368	-18.6	5.1	-8.6	-28.6	-27.0
und	R _{eL} UA1	367	-19.1	7.1	-5.2	-33.0	-30.8
St52	R _{eL} UB	349	-22.9	5.6	-11.9	-33.9	-32.1

Tabelle 6.8. Spannungsabfall von der unteren Streckgrenze auf die statische Streckgrenze

6.5.3.4. Kann eine Beziehung zwischen unterer Streckgrenze und der Dehngeschwindigkeit angegeben werden, die es erlaubt, die statische Streckgrenze mit ausreichender Genauigkeit zu bestimmen?

Die im Abschnitt 6.5.3.1 angegebenen Funktionen zur Beschreibung der Streckgrenze wurden ausgewertet. Es ist jedoch aus den Vertrauensbereichen nach Tabelle 6.8 ersichtlich, daß die Streuung groß ist. Für eine Berechnung der Streckgrenze sind die Parameter der Gleichungen deshalb nur als Anhaltswert zu interpretieren. Zur Regression wurden die unteren Streckgrenzen $R_{el}UA1$ ($\dot{\epsilon} =$ 1 / 60 % / s) und $R_{el}UB$ ($\dot{\epsilon} = 5/60 \% / s$) berücksichtigt. Die Auswertung nach Gl. 6.1 und 6.2 ergab die folgenden Regressionsgleichungen. Die Dimension für $R_{eL}, \dot{\epsilon}$ und R_{eS} ist N/mm²; $\dot{\epsilon}$ ist in % / seinzusetzen. Nach Gl. 6.1 ergaben sich für den St37

sowie für den St52

 $R_{eL,\dot{e}} = R_{eS} (1+0.075 \dot{e}^{0.058})$ (n = 150 Messungen).

Nach Gl. 6.2 ergaben sich für den St37

$$R_{eL,\acute{e}} = R_{eS} + 32.5 \epsilon^{0.154}$$
 (n = 535 Messungen)

sowie für den St52

$$R_{eL,\dot{e}} = R_{eS} + 26.8\dot{e}^{0.056}$$
 (n = 150 Messungen).

6.6 UBERGANG VOM FLIEßBEREICH IN DEN VERFESTIGUNGSBEREICH

Zur Beschreibung des Übergangs vom Flieβ- in den Verfestigungsbereich werden die Lüdersdehnung und der Verfestigungsmodul angegeben. Da beide Materialkennwerte von der Dehngeschwindigkeit abhängen, wurde die Dehngeschwindigkeit auf 5/60 ‰/s festgelegt. Die Bestimmung der Materialkennwerte ist im Anhang A1.3.6 beschrieben. Im Bild 6.8 sind die Histogramme getrennt für die Stähle St37 und St52 dargestellt.

Da die Verwechselungen auf die Ergebnisse praktisch keine Auswirkung haben, sind in dem Bild 6.8 die als verwechselt definierten Stähle mit aufgenommen worden.

Bereits im Abschnitt 5.2 wurde darauf hingewiesen, daß $A_{l\ddot{u}}$ und E_V Materialkennwerte sind, die selbst bei Zugproben aus einer Blechtafel stark streuen.

Da bei 4 bzw. 5 Proben des St37 bzw. St52 kein Fließbereich vorhanden war, konnte keine Lüdersdehnung ermittelt werden. In diesen Fällen ist $A_{1\ddot{u}} = 0$. Die Auswertung nach Bild 6.8 und Tabelle 6.9 wurde jedoch ohne Berücksichtigung dieser Stähle durchgeführt. Sie gilt somit nur für Stähle mit Fließbereich.

 $A_{l\ddot{u}}$ hat mit 16.5 %, bzw. 16.8 %, bei beiden Stählen ungefähr den gleichen Erwartungswert bei annähernd gleicher Streuung. Die 5%-Fraktilen betragen mit $A_{l\ddot{u}} \approx 6-7$ %, nur das 3-5fache der elastischen Dehnung.

Bild 6.8. Relative Häufigkeiten für $A_{\rm l\ddot{u}}$ und $E_{\rm v}$ für die Stähle St37 und St52

[An-	Fkt.	F	'arameter		K/S- Test-		Fraktile	
		Тур	θ	θ2	θ3	gr.	5%	50%	95%
	9	5t37 o	hne Berüc	ksichtigu	ng der	verwechs	elten Sta	ihle	
E _v /N/mm ² /	269	SFK NV LNV	560 5330 8.50	13960 2110 0.420	0	0.084 0.063	2330 1850 2460	5020 5330 4910	9260 8800 9800
A _{1ü} /%。/	283	SFK NV LNV	2.5 16.7 2.75	35 5.6 0.413	0	0.023 0.092	6.6 7.5 7.9	16.8 16.7 15.6	25.7 25.9 30.7
	5	5t37 m	it Berüc	ksichtigu	ng der	verwechs	elten Stä	ihle	
E _v /N/mm ² /	278	SFK NV LNV	560 5360 8.50	13960 2150 0-421	0	0.088	2330 1930 2470	5020 5336 4930	9590 9010 9860
A _{1ü} /%。/	294	SFK NV LNV	2.5 16.7 2.74	35 5.6 0.423	0	0.021 0.103	6.2 7.4 7.7	16.8 16.7 15.5	25.7 25.9 31.1
	5	it52 o	hne Berüc	ksichtigu:	ng der	verwechs	elten Sta	ähle	
E _v /N/mm ² /	75	SFK NV LNV	2000 6920 8.77	22000 3010 0.384	0	0.156 0.096	2730 2260 3410	6410 6920 6410	11630 12210 12050
A _{lü} /%•/	78	SFK NV LNV	3.9 16.0 2.71	42 5.6 0.377	0	0.171 0.160	6.2 6.8 8.1	16.5 16.0 15.0	20.0 25.2 27.9
	S	t52 m	it Berüc	ksichtigu	ng der	verwechse	elten Stä	ihle	
E _v /N/mm ² /	.77	SFK NV LNV	2000 6880 8.76	22000 2980 0 381	0	0.131 0.095	2730 2260 3410	6410 6880 6380	11600 12130 11950
A _{1ü} /%•/	80	SFK NV LNV	3.9 16.0 2.71	42 5.5 0.374	0	0.160 0.150	6.3 6.9 8.1	16.5 16.0 15.0	20.2 25.1 27.8

Tabelle 6.9. Auswertung von $A_{1\ddot{u}}$ und E_v für die Stähle St37 und St52

-1

Die 50%-Fraktilen des Verfestigungsmoduls E_V betragen mit 5000, bzw. 6400 N/mm² nur ca. 1/30-1/40 des E-Moduls und streuen mit Variationskoeffizienten v>40 % stark. Da der Verfestigungsmodul als Tangentenmodul im Übergang vom Fließ- in den Verfestigungsbereich im Rahmen dieser Arbeit definiert worden ist, kennzeichnet er nur die Anfangssteigung, d.h. alle anderen Tangenten an die Spannungs-Dehnungs-Kurve im Verfestigungsbereich haben eine kleinere Steigung.

6.7 VERFESTIGUNGSBEREICH

6.7.1 Allgemeines

Sowohl Zugfestigkeit als auch Gleichmaß- und Bruchdehnung werden mit steigender Belastungsgeschwindigkeit größer /6,9/.

Durch Vorversuche wurde festgestellt, daß der Spannungsabfall $\Delta\sigma$ von der dynamischen Spannungs-Dehnungs-Kurve auf den statischen Wert über den gesamten Verfestigungsbereich nicht konstant ist, sondern mit zunehmender Dehnung größer wird. Ab einer bestimmten Dehnung fällt die Spannung auch noch nach mehreren Stunden, wie eigene Vorversuche und Versuche von Jäniche/Thiel /41/ bestätigen.

Um eine Aussage über die statische Zugfestigkeit machen zu können, wurde der Spannungsabfall bei $\in \approx 60$ %, gemessen. Die Definition und rechnerische Bestimmung der statischen Zugfestigkeit R_{m.s} ist im Anhang A1.3.7 beschrieben.

Da die Versuche im Verfestigungsbereich weggeregelt durchgeführt worden sind und die Belastungsgeschwindigkeit für alle Versuche konstant sein muß, wurde die Querhauptgeschwindigkeit so eingestellt, daß die Dehngeschwindigkeit $\dot{\epsilon} \approx 1 \%$ /s betrug (s. Abschnitt 4.2, Seite 64).

6.7.2 Zugfestigkeit

4

Im Bild 6.9 sind die Histogramme der statischen Zugfestigkeit $R_{m,S}$ und der Zugfestigkeit R_m dargestellt. Die als verwechselt definierten Stähle sind in den Histogrammen mit aufgenommen worden.

Bild 6.9. Histogramme der Zugfestigkeiten R_m und $R_{m,s}$ für die Stähle St37 und St52

In Tabelle 6.10 sind die Auswertungen für den Verfestigungsbereich zusammengestellt.

Tabelle 6.10. Auswertung der Materialkennwerte für den Verfesti-

St37 gungsbereich

	An-	Fkt.	1	Parameter		K/S-		Fraktile	
	n	Тур	θ	θ2	θ3	gr.	5%	50%	95%
			ohne Be	rücksichti	gung vo	n verwech	seiten S	tählen -	· -
R _m /N/mm ² /	296	SFK NV LNV	329 428.5 5.14	534 31.7 0.190	254.5	0.039 0.032	385 376 381	425 429 426	485 481 486
R _{m.s} /N/mm ² /	260	SFK NV LNV	270 386.0 5.58	499 32.5 0.123	120.0	0.043 0.038	340 333 335	382 386 384	442 439 443
A ₅ /%./	295	SFK NV LNV	247 366.2 5.90	471 42.9 0.124	0	0.054 0.068	278 296 297	373 366 363	425 437 445
A _g / %. /	267	SFK NV LNV	125 201.4 5.06	293 23.1 0.154	41.9	0.042 0.073	155 163 164	203 201 200	234 239 245
			mit Ber	ücksichtig	ung von	verwechs	elten St	ählen	-
R _m /N/mm ² /	306	SFK NV LNV	329 431.9 5.15	594 36.8 0.206	256.6	0.066 0.038	385 371 379	427 432 428	501 492 497
R _{m.s} /N/mm ² /	270	SFK NV LNV	270 390.1 5.52	577 38.9 0.143	126.8	0.072 0.055	340 326 335	383 390 388	455 454 457
A ₅ /%•/	306	SFK NV LNV	247 364.3 5.89	471 43.4 0.125	0	0.053	278 296 294	371 366 362	424 437 444
A _g /%./	278	SFK NV LNV	125 200.2 5.05	293 23.6 0.159	42.0	0.038	154 162 162	202 200 199	234 239 245

5	•	t	5	2	
_					

3

-4

	An-	Fkt.		Parameter		K/S-	Fraktile				
	n 12811	Тур	θ	θ2	θ3	gr.	5%	50%	95%		
			ohne Be	rücksichti	gung vo	n verwech	seiten S	itähien	-		
R _m /N/mm ² /	84	SFK NV LNV	484 554.9 5.29	630 26.1 0.134	355.8	0.109 0.135	515 512 514	557 555 553	582 598 602		
R _{m.s} /N/mm ² /	76	SFK NV LNV	412 505.1 5.67	583 27.9 0.097	212.9	0.058 0.072	461 459 461	509 505 504	543 551 555		
. ^A 5 /% /	84	SFK NV LNV	231 323.6 5.78	383 28.1 0.090	0	U.049 0.061	275 277 278	325 324 322	360 370 374		
Ag /\$ /	78	SFK NV LNV	118 159.8 4.73	186 14.0 0.132	46.0	0.033 0.055	125 137 137	161 160 159	179 183 186		
		••••	mit Be	rücksichti	gung vo	n verwech	selten S	tähien			
R _m /N/mm ² /	86	SFK NV LNV	443 552.5 5.85	630 30.6 0.092	205.2	0.130 0.144	491 503 503	556 553 551	582 602 608		
R _{m.s} /N/mm ² /	78	SFK NV LNV	392 502.4 5.80	583 32.4 0.103	168.8	0.076 0.102	412 449 449	508 502 500	543 556 562		
^5 /% /	86	SFK NV LNV	231 324.0 5.78	383 27.9 0.089	0	0.051 0.063	275 278 279	325 324 323	360 370 374		
Ag /% /	80	SFK NV LNV	118 160.7 4.73	197 14.9 0.138	46.5	0.036 0.051	125 136 137	162 161 160	182 185 189		

Aus der Auswertung kann für beide Stähle festgestellt werden, daß die Mindestzugfestigkeit nach DIN 17 100 nicht in allen Fällen eingehalten wird. Beim St37 liegen einige Stähle unter- bzw. oberhalb der Grenzwerte. Entsprechend liegen beim St52 insgesamt drei Werte unterhalb des Mindestwertes.

Die statische Zugfestigkeit liegt im Mittel um ca. 50-60 N/mm² niedriger als die Zugfestigkeit.

6.7.3 Gleichmaß- und Bruchdehnung

Ublicherweise wird im Standardzugversuch die Bruchdehnung A₅ angegeben und mit den Mindestwerten verglichen, um stark vorverformte Erzeugnisse aussortieren zu können.

Die maßgebende Kenngröße des Verformungsvermögens eines Stahls ist jedoch die Gleichmaßdehnung A_g . Die Differenzdehnung A_5-A_g ist die Einschnürdehnung. Sie spielt im Stahlbau jedoch keine wesentliche Rolle. Der Bereich der Einschnürdehnung wird gezielt in der Umformtechnik zur Erzielung sehr hoher Festigkeiten eingesetzt. Im Rahmen dieser Arbeit wird die Einschnürdehnung nicht ausgewertet.

Im Bild 6.10 sind die Histogramme der Bruchdehnung und Gleichmaβdehnung mit Berücksichtigung der als verwechselt definierten Stähle dargestellt. Die Auswertung ist Tabelle 6.10 zu entnehmen.

Festzustellen ist, daß sowohl die Bruch- als auch die Gleichmaßdehnung beim St37 um ca. 40-50 %, größer als beim St52 sind. Wird die 5%-Fraktile der Lüdersdehnung und der Gleichmaßdehnung verglichen, kann festgestellt werden, daß die Gleichmaßdehnung ca. 25 mal größer ist, d.h. ein nicht stabilitätsgefährdetes Bauteil, das nach der Fließgelenk-, bzw. Fließzonentheorie bemessen wurde, wird sich bis zum Bruch ca. 25 mal mehr verformen können. Die Last kann dagegen nur um ca. 50 % gesteigert werden.

6.7.4 Beschreibung des Verfestigungsbereiches mit der Ludwikgleichung

Zur Beschreibung der Spannungs-Dehnungskurve im Verfestigungsbereich sind in der neueren Literatur verschiedene Ansätze gemacht worden. Hier sind speziell ganzrationale Polynome, Exponential-

116

4

i.e.

funktionen oder Klothoiden zu nennen /6,9,42/. Sie liefern jedoch jeweils nur für eine spezielle Arbeitslinie eine gute Anpassungsfunktion.

Im Anhang A1.3.7 wurde deshalb der Verfestigungsbereich mit einem ganzrationalen Polynomansatz zur Bestimmung der Gleichmaßdehnung und der Zugfestigkeit gewählt.

Ein einfacher Ansatz mit nur zwei Parametern, der auch für eine statistische Auswertung herangezogen werden kann, ist die Ludwik-Gleichung:

 σ_w

(6.4)

Bild 6.11. Histogramme für k_1 und n

Sie ist z.B. in /6,9,19/ ausführlich beschrieben. Die Parameter sind temperatur- und geschwindigkeitsabhängig. Der Einschnürbereich wird nicht erfaßt. Durch Erweiterung der Gleichung nach Hollomon können Temperatur- und Dehngeschwindigkeit, sowie der Einschnürbereich mit erfaßt werden /19/. Die erweiterte Gleichung ist jedoch für eine statistische Auswertung ungeeignet und wird im Rahmen dieser Arbeit nicht berücksichtigt. Da die

Tabelle 6.11. Auswertung von k_l und n für die Stähle St37 und St52

Kenn- größe	An- zahl	Fkt.		Parameter			Fraktile					
<u> </u>	n	Тур	θ1	θ2	θ3	gr.	5%	50%	95%			
	St37 ohne Berücksichtigung der verwechselten Stähle											
n		SFK	0.166	0.289			0.194	0.239	0.264			
	273	NV	0.236	0.021		0.052	0.201	0.236	0.271			
1-1		LNV	0.136	-1.789	0.067	0.075	0.201	0.234	0.276			
k ₁		SFK	603	999			689	777	876			
	273	NV	778.2	58.6		0.032	682	778	875			
/N/mm ² /		LNV	0.251	5.500	526.2	0.042	688	771	896			
-	S	t52 c	ohne Ber	ücksicht	igung (ier ve	rwechselt	ten Stäh	le			
n		SFK	0.152	0.265			0.152	0.217	0.229			
	78	NV	0.212	0.017		0.136	0.184	0.212	0.240			
1-1		LNV	0.140	-1.768	0.038	0.175	0.175	0.204	0.253			
k _l		SFK	823	1154	<u></u>		837	989	1045			
	78	NV	973.3	61.7		0.103	872	973	1075			
/N/mm ² /		LNV	0.129	6.205	473.2	0.130	874	968	1086			

Versuche bei Raumtemperatur mit einer Dehngeschwindigkeit von $\dot{\epsilon} = 1 \%_{\circ}/s$ durchgeführt wurden, kann die Auswertung nach Gl. 6.4 durchgeführt werden. In Bild 6.11 sind die Histogramme für k₁ und n dargestellt. Da die Parameter von der Stahlsorte abhängen, wurde die Auswertung ohne die verwechselten Stähle durchgeführt.

Eine Korrelationsrechnung ergab keine Abhängigkeit von k_1 zu n, so daß eine Unabhängigkeit vorausgesetzt wird. In Tabelle 6.11 sind die Auswertungen für k_1 und n zusammengestellt. Um eine Grenzkurve für den Verfestigungsbereich zu erhalten, müssen jeweils die größeren bzw. kleineren Werte für k_1 und n eingesetzt werden. Es ist jedoch durch die Beschreibung des Verfestigungsbereiches mit nur zwei Parametern festzuhalten, daß die Regressionskurven sich nur näherungsweise an die im Versuch ermittelten Kurven anpassen. Ein Beispiel ist im Anhang A1.3.7 angegeben.

6.8 KERBSCHLAGARBEIT

Insgesamt wurde 3*27 Kerbschlagversuche durchgeführt. Die Versuche wurden aus den Proben entnommen, von denen Bescheinigungen vorlagen und aus denen Prüfkörper gefertigt werden konnten. Es wurden die Mittelwerte aus jeweils 3 Versuchen ausgewertet. Die Ergebnisse sind in Tabelle 6.12 zusammengestellt. Da die Anzahl der Versuche klein ist, werden keine Fraktilen angegeben.

Es kann festgestellt werden, daß sämtliche Werte die Mindestwerte nach DIN 17 100 überschreiten.

An- zahl	Fkt.		Paramete	An-	Fkt.		Parameter			
n	Тур	θ1	θ2	θ ₃	n	Тур	θ1	θ2	θ ₃	
		St37					St52 -			
22	SFK NV LNV	114 164.3 5.080	243 34.7 0.212	0	5	SFK NV LNV	78 154.2 4.963	209 54.6 0.403	0	

Tabelle 6.12. Auswertung der Kerbschlagarbeiten /J/ für die Stähle St37 und St52

6.9 ABHANGIGKEIT DER WERKSTOFFKENNWERTE VON DER ERZEUGNISFORM

Die Abhängigkeit der Festigkeitskennwerte von den verschiedenen Erzeugnisformen wurde mit dem K/S-Test für unabhängige Stichproben entsprechend Abschnitt 2.5.2 getestet.

Die Auswertung wurde ausschließlich für den St37 durchgeführt, weil für den St52 zuwenig Daten vorlagen. In Tabelle 6.13 sind die Auswertungen zusammengefaßt.

Es kann festgestellt werden, daß die Verteilungsfunktionen der Festigkeitskennwerte der Flachstähle sich signifikant von denen der anderen Erzeugnisse unterscheiden. Eine Untersuchung der Ursachen wird an dieser Stelle nicht durchgeführt. Vermutlich ist durch die Walzungen das Gefüge des Stahls verändert worden. Eine Untersuchung des Gefüges und des Gehaltes an Legierungselementen zur Ermittlung der Unterschiede ist in Vorbereitung. Tabelle 6.13. K/S-Test für die verschiedenen Erzeugnisse

Material-	Blech	e - P	rofile	Blech	ne –	Flachst.	Flac	hst.	- Profile	
kenngröβe	n ₁	n ₂	Ann.	n ₁	n ₂	Ann.	n1	n ₂	Ann.	
R _{eH}	87	115	a.	87	48	n.a.	48	115	a.	
$R_{p0,2}$	102	140	a.	102	54	n.a	54	140	n.a.	
R _m	102	140	a.	102	54	a.	54	140	a.	
R _{eS}	101	136	a.	101	53	n.a.	53	136	n.a.	
E ₁	91	134	a.	91	31	a.	53	134	a.	
A _{lü}	92	137	a.	92	54	a.	54	137	n.a.	
Ag	86	127	a.	86	51	a.	-51	127	n.a.	
A ₅	102	140	n.a.	102	54	ā.	54	140	n.a.	
a. = kein signifikanter Unterschied festgestellt										
r	n.a. =		signif	ikante	r Un	terschie	d fes	tgest	ellt	

6.10 KORRELATION

4

Die Abhängigkeit zwischen den einzelnen Festigkeitskennwerten wird mit einer Korrelationsrechnung überprüft. Entsprechend den Ausführungen in Abschnitt 2.5.2 bezieht sich die Korrelationsrechnung jeweils nur auf zwei Festigkeitskennwerte und ist somit nur ein Anhaltswert. In Tabelle 6.14 sind die Korrelationskoeffizienten getrennt für die Stähle St37 und St52 angegeben.

Die Korrelation der Streckgrenzen untereinander ist naturgemäß groß.

Ausgeprägt sind die Korrelationen der unteren Streckgrenze zur Zugfestigkeit sowie die der Gleichmaßdehnung zur Zugfestigkeit und Streckgrenze.

	R p	^R p0,2	R _{eL} UA1	^R eS	R _m	^R m,S	۸ _g	A ₅	E1	E2	E3	e,	A _{lü}]
R _D	\frown	0.84	0.82	0.82	0.56	0.54	-0.22	-0.15	-	0.21	0.15	-	0.33	1
R _{00.2}	0.90		0.98	0.99	0.70	0.66	-0.39	-0.32	-	-	-	-0.16	0.13	
R _{eL} UA1	0.92	0.99		0.97	0.73	0.69	-0.39	-0.30	-	-	-	-0.16	0.13	
[₽] eS	0.91	0.98	0.98		0.73	0.69	-0.38	-0.27	-	-	-	-0.17	0.12	
R _m	0.31	0.45	0.51	0.50		0.93	-0.48	-0.41	-	-	0.14	- **	-0.22	
^R m,S	0.35	0.43	0.50	0.51	0.95		-0.48	-0.41	-	-	0.14	-	-0.22	
Ag	-0.38	-0.46	-0.53	-0.52	-0.54	-0.50		0.65	-	0.20	-	0.18	0.51	
^ ₅	-	-	-0.20	-0.22	-0.26	-0.54	0.59		-	-	-	-	0.48	2
E ₁	-	-	-	-	-	-	-	- `		0.32	0.15	-	-	0
^E 2	-	-0.20	-0.19	-0.21	_ ·	-	-	-	0.37		0.43	-	0.30	
E3	-0.22	-0.29	-0.28	-0.30	-	-	-	-0.22	-	0.36		-	-	
ε _ν	-0.23	-0.16	-0.18	-0.21	-	0.19	0.18	-	-0.31	-	- `		0.19	
A _{lü}	0.46	0.29	0.28	0.30	-	-	0.30	0.26	-	0.25	-0.23	- \		
				St	52									I

Tabelle 6.14. Korrelationskoeffizienten für die Stähle St37 und St52

rechte obere Hälfte : St37 linke untere Hälfte : St52

Auf eine Regressionsrechnung wird im Rahmen dieser Arbeit verzichtet, weil die Festigkeitskennwerte vom Gefügeaufbau und von der chemischen Zusammensetzung abhängen. Die Untersuchungen werden im Rahmen der Auswertung der chemischen Analyse und der Gefüge durchgeführt.

7 VERGLEICH DER ERGEBNISSE AUS BESCHEINIGUNGEN UND FREMDPRUFUNG

- 24

In den bisherigen Ausführungen wurden zwei Stichproben vorgestellt und ausgewertet, die eine mit relativ großem Umfang (Bescheinigungen), der jederzeit beliebig erweiterbar ist und die andere mit kleinem Umfang (Fremdprüfung), die alle zur Beschreibung des Festigkeitsverhaltens der Allgemeinen Baustähle erforderlichen Materialkennwerte erfaßt. Bei der zweiten Stichprobe, der Fremdprüfung, ist der Aufwand jedoch relativ hoch, so daß der Umfang nicht beliebig erweiterbar ist.

So stellt sich die Frage, ob beide Stichproben zusammengefaßt werden können, also ob sie aus derselben Grundgesamtheit stammen, um mit einem relativ kleinem Stichprobenumfang auch größere Datenmengen erfassen zu können.

Eine ähnliche Fragestellung wurde bereits bei der Auswertung der Bescheinigungen untersucht, als die Ergebnisse aus den Bescheinigungen der Deutschen Bundesbahn und der Betriebe verglichen wurden. Dort wurde festgestellt, daß die Materialkennwerte der Stähle dieser beiden Gruppen sich signifikant unterscheiden und sie deshalb nur bedingt zu einer Stichprobe zusammengefaßt werden können.

Aus diesem Grund wird an dieser Stelle vorerst geklärt, inwieweit diese beiden Stichproben aus einer Grundgesamtheit stammen und wo sie unterschiedlich sind.

Die Stichprobe für die Fremdprüfung wurde ausschließlich deutschen Stahlbaubetrieben entnommen; die Auswahl der Betriebe (Abschnitt 3) erfolgte hinsichtlich der Betriebsgröße, d.h. die Stichprobe wurde aus kleinen, mittleren und großen Betrieben entnommen, und der Stichprobenzeitraum war auf ein Jahr (November 1985 - Oktober 1986) beschränkt.

Vergleichbar ist deshalb nur die Auswertung der Bescheinigungen für die nach 1979 geprüften Stähle der Betriebe. Hier stammen die Bescheinigungen jedoch nur von größeren Betrieben, und diese
Stähle sind grundsätzlich mit von den Stahlherstellern ausgestellten Bescheinigungen geliefert worden.

-

Viele Betriebe bestellen und kaufen die Stähle über den Zwischenhandel, also nicht direkt bei den Herstellern (Fachjargon: Strecke). Sicherlich ändern sich die Materialkennwerte eines Stahles auf dem Weg vom Hersteller über den Handel bis in die Betriebe nicht. Auf diesem Weg können aber auch Stähle ohne Bescheinigungen in die Betriebe gelangen, die nicht die Anforderungen der DIN 17 100 erfüllen. Eventuell kommen auch diejenigen Stähle in die Betriebe, die durch die Gütekontrolle der Hersteller zurückgewiesen wurden.

Festgehalten werden kann, daß die Stähle mit Bescheinigungen grundsätzlich einer Gütekontrolle unterworfen worden sind und sie diese bestanden haben.

Das gleiche kann für die Stähle, die durch die Fremdprüfung erfaßt wurden, nicht festgestellt werden, weil nur 28 Bescheinigungen (von 395 theoretisch möglichen) vorgelegt wurden.

Bestätigt wird diese Vermutung durch die Auswertung:

Eine ausgeprägte Gütekontrolle wurde bei den Bescheinigungen nachgewiesen, man konnte einen Filter bei der oberen Streckgrenze feststellen. Dieser Filter war bei der Fremdprüfung nicht nachweisbar, d.h. viele Stähle erfüllten nicht die Mindestwerte der oberen Streckgrenze bzw. die Grenzwerte der Zugfestigkeit nach DIN 17 100.

Weil für die Bemessung der Stahlbauwerke i. allg. ausschließlich die obere Streckgrenze maßgebend ist, jedoch nicht die Zugfestigkeit und die Bruchdehnung, wird in den nachfolgenden Untersuchungen die Verteilung der oberen Streckgrenzen beider Stichproben verglichen.

Die Verteilung der oberen Streckgrenze aus den Auswertungen der der Fremprüfung unterscheiden Bescheinigungen und sich signifikant, was allein aus dem Nachweis der Filter hervorgeht. Nimmt man an, daß die Gesamtheit aller Stähle vor der Gütekontrolle in beiden Fällen die gleiche ist, so könnte folgende Untersuchung einen Aufschluß geben:

Angenommen, daß Stähle, die zurückgewiesen werden müßten, gelangen in den Handel und die Stichprobe der Fremdprüfung stellt die gleiche Gesamtheit wie vor der Gütekontrolle dar. Dann müssen die Dichtefunktionen für eine Normalverteilung mit den Parametern $(\mu_1 \text{ und } \sigma_1)$ aus der Berechnung der normalverteilten Grundgesamtheit mit Filterfunktion nach Gl. 2.6 für die Bescheinigungen und die der Normalverteilung nach Gl. 2.2 (μ und σ) für die Fremdprüfung in etwa übereinstimmen.

-34

In Tabelle 7.1 sind diese Parameter aus den Tabellen 2.5 sowie 6.4 und 6.5 zusammengestellt. Für diese Auswertung sind die als verwechselt definierten Stähle nicht berücksichtigt worden.

Tabelle 7.1.	Parameter	der Normalverteilung	für die	e Gesamtheit
	aller Stä	hle aus Bescheinigunge	n und	Fremdprüfung
	für die ob	ere Streckgrenze		

Stahl-	t	Bescheinigungen			Fremdprüfung		
sorte	/mm/	n	μ1	σ1	n	μ	σ
St37	< 0-≤16	973	285.8	32.7	233	297.7	35.1
	<16-≤40	220	251.6	21.2	52	272.9	26.7
St52	< 0-≤16	30	412.5	34.7	54	402.0	36.2
	<16-≤40	23	407.6	30.8	30	392.1	31.0

Es kann festgestellt werden, daß die Streuungen der Ergebnisse der Fremdprüfung deutlich größer als diejenigen der Bescheinigungen sind. Die Mittelwerte sind bei der Fremdprüfung beim St37 größer, beim St52 kleiner als diejenigen aus den Bescheinigungen. Die Verteilungen sind also unterschiedlich.

Auf die Gründe wird hier nur kurz eingegangen:

Als nicht verwechselt definiert und bei der Auswertung berücksichtigt wurden auch die Stähle, die zwar die Bedingungen der Gütenormen nicht erfüllen, jedoch nicht der jeweils anderen Stahlsorte zugeordnet werden können.

So liegen beim St37 speziell bei der Zugfestigkeit viele Werte knapp ober- und unterhalb des Höchstwertes und beim St52 entsprechend um den Mindestwert. Die obere Streckgrenze ist entsprechend hoch bzw. niedrig.

Diese Feststellung kann für die Auswertung der Bescheinigungen nicht gemacht werden. Es wird vermutet, daß viele Stähle -wahrscheinlich über den Handel- vertrieben werden, die z.B. im Ausland nicht speziell als St37 oder St52 hergestellt werden und somit die Verteilung der Materialkennwerte dieser Stähle nicht mit derjenigen der Stahlsorten St37 und St52 übereinstimmt. Das bedeutet, die Streuungen werden größer und die Mittelwerte verschieben sich im Vergleich zu denjenigen, die gezielt als St37 oder St52 hergestellt werden.

Abschließend kann nur festgestellt werden, daß die beiden Stichproben nicht aus einer Grundgesamtheit stammen und somit nicht zusammengefaßt werden können.

MODELL DER SPANNUNGS-DEHNUNGS-KURVE VON BAUSTAHL

8.1 ALLGEMEINES

8

Eine Berechnung von Last-Verformungskurven und Traglasten muß i. allg. auf Bauteile bzw. Bauwerke mit bekannten Einwirkungen und Widerständen beschränkt bleiben. Die Berechnung von charakteristischen Bauteilwiderständen in Form von %-Fraktilen oder von Versagenswahrscheinlichkeiten ist i. allg. nicht möglich, weil Verteilungen nur für spezielle Einwirkungen und Widerstände bekannt sind.

In diesem Abschnitt wird für den Allgemeinen Baustahl mit den Ergebnissen der Fremdprüfung ein Modell zur Berechnung der Verteilungsfunktion der Spannung für beliebige Dehnungen vorgestellt. Hiermit können z.B. für eine Monte-Carlo-Simulation, wie sie in /28/ und /35/ zur Berechnung von Bauteilwiderständen vorgeschlagen wurden, Modelle wirklichkeitsnäher beschrieben werden.

Im Rahmen dieser Arbeit wird die Verteilungsfunktion in Form von Fraktilen angegeben, die bei vorgegebener Wahrscheinlichkeit über- bzw. unterschritten werden. Als Beispiel werden die 5, 50 und 95%-Fraktilen berechnet und in Form von Spannungs-Dehnungs-Kurven dargestellt.

8.2 VERTEILUNGSFUNKTION DER SPANNUNG IN ABHANGIGKEIT VON DER DEHNUNG

8.2.1 Allgemeines

Die Spannungs-Dehnungs-Kurve wird in den elastischen Bereich, den Flieβ- und in den Verfestigungsbereich eingeteilt. Zur Beschreibung werden E-Modul, Streckgrenze Rp, untere Streckgrenze $R_{eL,\acute{e}}$, Lüders- und Gleichmaßdehnung $A_{l\ddot{u}}$ und A_{g} sowie die Zugfestigkeit R_{m} berücksichtigt, deren Dichtefunktionen in Abschnitt 6 berechnet wurden. Eine Korrelation der Festigkeitskennwerte untereinander wurde vernachlässigt.

Die Verteilungsfunktion wird hierbei teilweise analytisch nach /44/ berechnet und teilweise mit einer Monte-Carlo-Simulation ermittelt.

8.2.2 Zuordnung

8.2.2.1 Allgemeines

Die Spannungs-Dehnungs-Kurve wird in den elastischen Bereich, den Flieβ- und in den Verfestigungsbereich unterteilt.

Um die Übergänge von einem Bereich in einen anderen beschreiben zu können, müssen die Wahrscheinlichkeiten bekannt sein, mit denen sich die Spannungs-Dehnungs-Kurve bei einer vorgegebenen Dehnung \in in einem bestimmten Bereich befindet. Für diese Dehnung \in kann die gemeinsame Dichtefunktion $f(x_1, x_2)$ zweier möglicher Ereignisse, z.B. elastischer Bereich und Fließbereich, x_1 und x_2 nach Bild 8.1 angegeben werden.

Die Verteilungsfunktion von x unter der Bedingung, daß x_1 maßgebend ist, d.h. $x_1 > x_2$, ist

$$F_{1}^{*}(x/x_{1}>x_{2}) = 1/k_{1} \int_{-\infty}^{x} \int_{x_{2}}^{\infty} f(x_{1},x_{2}) dx_{2} dx_{1}$$
 (8.1)

und entsprechend

$$F_{2}^{*}(x/x_{2}>x_{1}) = 1/k_{2} \int_{-\infty}^{x} \int_{x_{1}}^{\infty} f(x_{1},x_{2}) dx_{1}dx_{2}$$
 (8.2)

 k_1 und k_2 sind Normierungskonstanten, die aus der Bedingung

$$F_1^*(\omega/x_1>x_2) = 1 \text{ und } F_2^*(\omega/x_2>x_1) = 1$$

bestimmt werden.

Bild 8.1. Gemeinsame Dichtefunktion zweier Ereignisse x_1 und x_2

 p_1 wird im weiteren als die Wahrscheinlichkeit bezeichnet, daß die Probe noch im elastischen Bereich, p_2 als die Wahrscheinlichkeit, daß die Probe noch nicht im Verfestigungsbereich und p_3 als die Wahrscheinlichkeit, daß die Gleichmaßdehnung größer als die tatsächliche Dehnung ist, bezeichnet.

Im folgenden wird angenommen, daß die Verteilungsfunktionen für p_1 , p_2 und p_3 unabhängig voneinander sind, d.h. $A_{l\ddot{u}}>0$ und $A_g\gg A_{l\ddot{u}}$.

8.2.2.2 Übergang vom elastischen Bereich in den Fließbereich

Die Probe ist im Fließbereich, wenn $\sigma = E \in R_p$ ist. Unter der Annahme, daß E und R_p stochastisch unabhängig voneinander sind, vereinfacht sich GL 8.1 zu

$$F_{1}^{*}(x/R_{p} \ge E) = 1/k_{2}f(R_{p})F(EE)$$
 (8.3)

p₁ ist identisch mit der Normierungskonstante k₂.

-2

8.2.2.3 Übergang vom Fließ- in den Verfestigungsbereich

Die Wahrscheinlichkeit p_2 , daß der Verfestigungsbereich noch nicht erreicht ist, ist

$$P_{2} = 1 - \frac{\int_{-\infty}^{E} (f(R_{eL}, \dot{e}/E) + f(A_{1\ddot{u}})) dx}{\int_{-\infty}^{\infty} (f(R_{eL}, \dot{e}/E) + f(A_{1\ddot{u}})) dx}$$
(8.4)

Hierbei sind $R_{eL,\dot{e}}$, E und $A_{l\ddot{u}}$ streuende Größen. Unter der Annahme, daß die elastische Rückfederung $\epsilon_{el} = R_{eL,\dot{e}}/E$ im Vergleich zu $A_{l\ddot{u}}$ klein ist und wenig streut, wird ϵ_{el} als deterministische Größe aufgefaßt und mit den 50%-Fraktilen bzw. Erwartungswerten für $R_{eL,\dot{e}}$ und E berechnet. Gl. 8.4 vereinfacht sich somit zu

$$e_{e_1} = 1 - \int_{-\infty}^{e_{e_1}} f(A_{1ii}) dx.$$

4

(8.5)

8.2.2.4 Überschreitung der Gleichmaßdehnung

Entsprechend der Annahmen unter 8.2.2.3 mit ϵ_{e1} = R_m/E ist

$$\begin{aligned} & \in -\epsilon_{el} \\ \mathbf{p}_3 = 1 - \int \mathbf{f} \left(\mathbf{A}_g \right) d\mathbf{x}. \end{aligned} \tag{8.6}$$

8.3 BESCHREIBUNG DER BEREICHE

8.3.1 Elastischer Bereich

Mit der Verrteilungsfunktion für den E-Modul

$$F(E) = \int_{-\infty}^{E} f(E) dx , \qquad (8.7)$$

der mit einer Wahrscheinlichkeit p unterschritten wird, ist die Verteilungsfunktion der Spannung bei bekannter Dehnung E

$$F(\sigma_1) = F(E) \in . \tag{8.8}$$

8.3.2 Fließbereich

ų,

Die Verteilungsfunktion wird mit der unteren Streckgrenze des Fließbereiches R_{eL}UA1 angegeben

$$F(\sigma_2) = \int_{-\infty}^{\infty} f(R_{eL}, \dot{\epsilon}) dx. \qquad (8.9)$$

8.3.3 Verfestigungsbereich

Die Verteilungsfunktion der Spannung im Verfestigungsbereich kann mit einfachen Ansätzen nicht beschrieben werden, weil zur Beschreibung des Bereiches mehrere Parameter notwendig sind, die nichtlinear miteinander verknüpft werden.

Im Rahmen dieser Arbeit wird die Spannungs-Dehnungs-Kurve mit einem quadratischen Ansatz approximiert. Andere Ansätze wie z.B. die Ludwik-Gleichung (s. Anhang A1.3.7) sind nicht geeignet, da sie den Übergang vom Fließ- in den Verfestigungsbereich nicht exakt beschreiben. Für die Berechnung werden die Festigkeitskennwerte E, $R_{eL,E}$, $A_{lü}$, A_g und R_m benötigt. In Bild 8.2 ist die Realisation einer Arbeitslinie dargestellt.

Bild 8.2 Berechnung der Arbeitslinie im Verfestigungsbereich

Ist die Dehnung größer als die Gleichmaßdehnung, wird die Spannung zu Null gesetzt, weil eine Dauerlast z.B. nach /6,30/

hier nicht mehr aufgenommen werden kann (s.a. Abschnitt 6.7).

Ist die Dichtefunktion der Spannung f($E, R_{eL}, \acute{\in}, A_{l\ddot{u}}, A_g, R_m$) für eine vorgegebene Dehnung bekannt, ist

$$F(\sigma_3) = \int_{-\infty}^{\infty} f(E, R_{eL, e}, A_{1ii}, A_g, R_m) dx \qquad (8.10)$$

die Verteilungsfunktion der Spannung im Verfestigungsbereich.

8.4 VERTEILUNGSFUNKTION DER SPANNUNG BEI BEKANNTER DEHNUNG

Die Verteilungsfunktion für eine beliebige Dehnung kann nur für den elastischen Bereich und den Fließbereich analytisch angegeben werden.

In diesem Fall sind zwei Verteilungsfunktionen F_a und F_b zu berücksichtigen, die mit den Wahrscheinlichkeiten p_a und $p_b = 1$ - p_a auftreten können. Die gemeinsame Verteilungsfunktion kann nach dem Satz der totalen Wahrscheinlichkeit angegeben werden zu

$$F = F_{a}p_{a} + F_{b}(1-p_{a}) . (8.11)$$

Für den elastischen Bereich und den Fließbereich mit $p_2 > 0.99$ ist $p_a = p_1$; F_a wird aus Gl. 8.8, F_b aus Gl. 8.9 berechnet.

Ab einer bestimmten Dehnung wird die Verteilungsfunktion durch Simulation mit der Monte-Carlo-Methode durchgeführt. Die Grundlagen dieses Verfahrens sind in /2,3,35/ beschrieben. Die Bereitstellung der notwendigen Zufallszahlen erfolgte entsprechend Paustian /28/.

Die Simulation wird durchgeführt, wenn $p_2 \leq 0.99$ ist.

Die Zuordnung zu den verschiedenen Bereichen erfolgt mit den Ansätzen nach Abschnitt 8.2.2, indem die vorgegebene Dehnung mit der aus den Zufallszahlen berechneten Lüders- und Gleichmaßdehnung mit elastischem Anteil verglichen wird:

$$\in \{A_{1ij} - \epsilon_{e1}: Fließbereich, F(\sigma) nach GL. 8.9$$

 $A_{1\ddot{u}} - \epsilon_{e1} \leq \epsilon_{A_g} - \epsilon_{e1}$: Verfestigungsbereich, F(σ) nach Gl. 8.10

 $\lambda_{q} - \epsilon_{e1} < \epsilon$: Spannung $\sigma = 0$.

-2

7.5 PARAMETER DER SPANNUNGS-DEHNUNGS-KURVE

Für alle Parameter wurde eine Normalverteilung nach Gl. 2.2 angenommen. Sie sind im Abschnitt 6 angegeben. Für alle Berechnungen wurde der E-Modul E_1 als maßgebender E-Modul angesetzt. Als untere Streckgrenze wurde R_{eL} UA1 gewählt.

Die Parameter der Dichtefunktionen aus Abschnitt 6 sind in Tabelle 8.1 zusammengestellt. Hierbei wurden die als verwechselt definierten Stähle nicht berücksichtigt.

Tabelle 8.1. Parameter der Spannungs-Dehnungs-Kurve

Material-		S	st37	St52		
kennwert		μ	σ	μ	σ	
	·					
Έ	/N/mm2/	205500	6900	209200	5370	
Rp	/Nmm ₂ /	292.3	34.8	398.5	34.8	
$R_{eL}UA1$	/N/mm ₂ /	271.7	32.1	386.0	28.6	
Res	/N/mm ₂ /	253.5	30.5	357.3	30.9	
A _{lü}	/%。/	16.7	5.6	16.0	5.6	
Ag	/%。/	201.4	23.1	159.8	14.0	
Rm	/N/mm ₂ /	428.5	31.7	554.9	26.1	
R _{m,S}	/N/mm ₂ /	386.0	32.5	505.1	27.9	

Zur Beschreibung der Spannungs-Dehnungs-Kurve für niedrige Dehngeschwindigkeiten $\dot{\varepsilon} \rightarrow 0$ wurde R_{eS} und $R_{m,S}$ gewählt. Es ist hierbei jedoch anzumerken, daß die Verteilungsfunktionen der Spannungen nur als "statische" Funktionen gelten, d.h. die Belastung muß mit einer Dehngeschwindigkeit $\dot{\varepsilon} \rightarrow 0$ aufgebracht werden; wenn die Dehnung an einer Stelle angehalten wird und der Spannungsabfall abgewartet wird, ergibt sich für die Versuche die Verteilungsfunktion. Diese Einschränkung muß deshalb gemacht werden, weil A_{lü} und A_g von der Dehngeschwindigkeit abhängen. Die Abhängigkeit der Materialkennwerte von der Dehngeschwindigkeit bleibt unberücksichtigt.

8.6 DARSTELLUNG DER SPANNUNGS-DEHNUNGS-KURVE

4

4

Um die Verteilungsfunktion der Spannung in Abhängigkeit von der Dehnung zu beschreiben, wurden die 5,50 und 95%-Fraktilen berechnet.

In den Bildern 8.3 und 8.4 sind die Fraktilwerte in Form von Spannungs-Dehnung-Kurven für die Stähle St37 und St52 für die dynamischen Festigkeitskennwerte R_{eL} UA1 und R_m dargestellt. Im unteren Teil der Bilder ist die Verteilung der Spannung für den Dehnungsbereich 0 $\leq < 250$ %, dargestellt. Die Übergangsbereiche sind als Details A-C im oberen Teil der Bilder mit den Verteilungen für p_1 , p_2 und p_3 dargestellt.

Die 5%-Fraktilen geben die Spannung an, die mit 5% Wahrscheinlichkeit im Zugversuch unterschritten wird. Entsprechend kann mit der 95%-Fraktile die Spannung angegeben werden, die in 95% aller Fälle unter- bzw. in 5% aller Fälle überschritten wird. Für die Simulation wurde die Anzahl der Realisationen für jede Dehnung auf 5000 beschränkt.

Bild 8.3. Fraktilwerte der Spannungs-Dehnungs-Kurve für den St37 mit dynamischen Festigkeitskennwerten R_{eL},UA1 und R_m

ಾ

Bild 8.4. Fraktilwerte der Spannungs-Dehnungs-Kurve für den St52 mit dynamischen Festigkeitskennwerten R_{eL},UA1 und R_m

3

С σ [N/mm²) 400 В 300 200 140 200 1,20 1,50 17,0 34,0 P[-] - ɛ [‰] 1,0 0,5 0-140 1.20 1.50 17.0 34.0 200 Verfestigungsber. noch nicht erreicht Gleichmaßdehnung elast. Bereich noch nicht überschritten $A_g \leq \epsilon$ σ [N/mm²] 500 С 400 В 300 200 △ 95% – Fraktile 100 ◊ 50% - Fraktile 5% - Fraktile 0 ε[‰] 0` 0 50 100 150 200 250

Im Bild 8.5 und 8.6 sind die Fraktilwerte der Spannungs-Dehnungs-Kurve für die Stähle St37 und St52 für die statischen Festig-

-4

Ą

Bild 8.5. Fraktilwerte der Spannungs-Dehnungs-Kurve für den St37 mit statischenn Festigkeitskennwerten R_{eS} und $R_{m,S}$

keitskennwerte R_{eS} und $R_{m,S}$ dargestellt. Im Vergleich zu den dynamischen Kurven sind die Spannungen deutlich kleiner.

Bild 8.6. Fraktilwerte der Spannungs-Dehnungs-Kurve für den St52 mit statischen Festigkeitskennwerten R_{eS} und R_{m,S}

8.7 ZUSAMMENFASSUNG

1

Mit der Beschreibung der Verteilungsfunktion der Spannungs-Dehnungs-Kurve können Grenzkurven angegeben werden, zwischen denen die im Versuch ermittelten Spannungen mit einer Wahrscheinlichkeit p liegen. Mit Verteilungsfunktionen wird der Übergang in die verschiedenen Bereiche beschrieben und mit dem Satz der totalen Wahrscheinlichkeit die Verteilungsfunktion der Spannung berechnet. Da der Verfestigungsbereich zur Erzielung einer ausreichenden Genauigkeit mit mehreren Parametern beschrieben werden muß, wird der Fließ- und Verfestigungsbereich mit der Monte-Carlo-Simulation beschrieben.

Mit Hilfe dieses Verfahrens kann der Verlauf der Spannungs-Dehnungs-Kurve für Simulationen beschrieben werden.

9 ZUSAMMENFASSUNG

In der vorliegenden Arbeit wurde auf statistischer Grundlage die Qualität der z.Zt. in Stahlbaubetrieben der Bundesrepublik Deutschland verarbeiteten Baustähle untersucht.

Hierfür standen zwei Möglichkeiten zur Verfügung:

Einerseits wurden die Ergebnisse von Qualitätsprüfungen der Hersteller, die in Bescheinigungen über Materialprüfungen dem Verarbeiter mitgeteilt werden müssen, ausgewertet.

Andererseits wurde eine Fremdprüfung durchgeführt, indem eine Stichprobe direkt in den Stahlbaubetrieben entnommen wurde.

Diese Stichprobe wurde nach den zur Verfügung stehenden Mitteln möglichst reräsentativ entnommen. Dazu war ein wiederholter Besuch in den Stahlbaubetrieben notwendig.

Zur Ermittlung möglichst vieler Materialkennwerte war eine möglichst umfangreiche Prüfung sinnvoll, weil wegen der Weiterentwicklung der Nachweismethoden auch heute noch nicht genormte Werte, die durch Standardprüfungen nicht erfaßt werden, in die Berechnung eingehen werden: Es wurde für die Materialproben ein neuer Prüfmodus entwickelt, der alle zur Beschreibung des Festigkeitsverhaltens von Baustahl notwendigen Kennwerte erfaßt.

Um zum einen die Genauigkeit der Ergebnisse der Materialprüfungen aus den Bescheinigungen und zum anderen den neuen Prüfmodus zu kontrollieren, wurde eine sog. "Blindprüfung" durchgeführt: Es wurden verschiedene Materialprüfanstalten beauftragt, Zugversuche an Proben aus einer Blechtafel durchzuführen. Weitere Proben aus dieser Blechtafel wurden mit dem Prüfmodus untersucht. Der Vergleich der Ergebnisse ergab einen Aufschluß über Genauigkeiten und Streuungen.

Die Verteilungsfunktionen der vergleichbaren Materialkennwerte aus Bescheinigungen und Fremdprüfung waren teilweise signifikant unterschiedlich. Erklärt werden konnte dieser Unterschied durch die Sichprobenentnahme, weil die Bescheinigungen im Vergleich zur Fremdprüfung grundsätzlich nur die Stähle mit nachgewiesener, bestandener Qualitätskontrolle repräsentieren. Ein Qualitätsnachweis in Form von Bescheinigungen für die in den Stahlbaubetrieben eingesetzten Stähle war nur in Ausnahmefällen erhältlich. Die 5%-Fraktilen - besonders der oberen Streckgrenze - lagen bei der Fremdprüfung im Vergleich zu denjenigen aus den Bescheinigungen deutlich niedriger. Daraus wurde geschlossen, daß auf dem Weg vom Hersteller über die Händler in die Stahlbaubetriebe Stähle hinzukommen, die nicht die Grenzwerte der Normen einhalten und daß jegliche Auswertung von Bescheinigungen nicht die Gesamtheit aller in der Bundesrepublik Deutschland verarbeiteten allgemeinen Baustähle erfaßt.

Als Anwendung der statistischen Auswertung der Fremdprüfung wurde ein Modell zur Berechnung von Verteilungsfunktionen der Spannungs-Dehnungs-Kurve von Baustahl für beliebige Dehnungen vorgeschlagen.

ANHANG

100

-- Prüfmodus für Zugversuche und Datenbank --

A1.1 PRUFMODUS UND AUSWERTUNG DER ZUGVERSUCHE

A1.1 DEHNMEBGERATE

Die Probendehnung wird mit einem Feinwegdehnaufnehmer mit der Firmenbezeichnung "DD1" - im weiteren als DD1 bezeichnet - bestimmt. Durch Wahl von Verstärkereinstellungen und durch Veränderung der Meßbasis kann der Meßbereich des DD1 von +/- 2,5 %, bis maximal +/- 100 %, betragen, wodurch die Genauigkeit im zweiten Fall bedeutend schlechter ist als im ersten.

Bild A1.1. Dehnaufnehmer DD1 und DA1

144

Durch Dehnungsmessung mit handelsüblichen Dehnmeßgeräten kann die Gleichmaßdehnung nicht ermittelt werden, die z.B. beim St37 Werte über 300 %, erreichen kann. Deshalb wurde ein Meßsystem für diese großen Dehnungen entwickelt, bei dem durch Anklemmen zweier zusätzlicher Schneiden mit einem bekannten Anfangsabstand l_0 und zugehörigen externen Wegaufnehmern die Dehnung bis zum Bruch der Probe bestimmt wird. Dieses Meßsystem zur Dehnungsmessung wird im weiteren Text mit "DA1" bezeichnet. Der Versuchsaufbau mit DA1 und DD1 ist im Bild A1.1 dargestellt. Bei DD1 und DA1 wird die Veränderung des Abstandes zweier Schneiden $\triangle 1$, bezogen auf den Schneidenabstand im unbelasteten Zustand l_0 , als Dehnung registriert.

A1.2 PRUFANLAGE

A1.2.1 Prüfeinrichtung

Sämtliche Zugversuche wurden an einer Universalprüfmaschine HUN 20 der Firma MFL durchgeführt. Die maximale Prüfkraft beträgt +/-200 kN bei einem maximalen Kolbenhub von 300 mm. Durch Verstärkereinstellungen kann der Kraftbereich auf +/- 40, 100 und 200 kN eingestellt werden, wodurch eine höhere Genauigkeit bei der Kraftmessung auch für kleinere Prüfkräfte erreicht wird. Die Steuerung erfolgt durch eine elektronische Regeleinrichtung der Firma MFL. Die von der Regeleinrichtung verstärkten Ist-Werte werden durch eine Meβanlage registriert, wobei die analogen Meβwerte verstärkt und digitalisiert werden. Eine detaillierte Beschreibung der Prüfanlage ist in /7/ nachzulesen.

Mit einem für den Prüfmodus erweiterten Meßprogramm können die Meßwerte von einem 16 Bit Rechner (DATA General Nova 3D) gelesen und weiterverarbeitet werden. Alle Meßwerte werden praktisch gleichzeitig mit einem maximalen Zeitunterschied von ca. 10 ms erfaßt. Durch Eichfaktoren erfolgt die Umrechnung in die physikalischen Größen, die während des Versuchs auf ein graphisches und ein alphanumerisches Display zur Kontrolle des

Versuchs, sowie zur späteren Auswertung auf die Platte des Rechners ausgegeben werden können. Sämtliche Meßstellen werden kontinuierlich abgerufen und vom Meßprogramm weiterverarbeitet. Die Entscheidung, ob ein Meßwertkollektiv ausgegeben wird, wird durch eine signifikante Änderung der Meßwerte gesteuert, wobei ein Meßwertkollektiv zum einen aus physikalischen Größen. zum anderen aus berechneten physikalischen Größen, z.B. Dehnungen oder Differenzwegen besteht. Sobald sich ein Meßwert im Vergleich zum zuletzt ausgegebenen um einen vor dem Versuch qewählten Schwellwert geändert hat, wird das Meßwertkollektiv ausgegeben. Schwellwerte und Eichfaktoren, sowie die Zuordnung der Kanäle der Meßanlage zu den Meßstellen, sind in einem sog. Steuerfile abgelegt (Tabelle A1.1). Vor Versuchsbeginn werden die Vorlast F_0 , sowie die Schneidenabstände im unbelasteten Zustand der Zugprobe für DD1 ($l_0(DD1)$) und DA1 ($l_0(DA1)$) eingegeben.

A1.2.2 Eichung

wurden mindestens 200 Messungen pro Eichung durchgeführt. Es Ausgehend von der elektrischen Nullpunktslage wurden die Sollwerte im Pilgerschrittverfahren verändert, d.h. der Sollwert wurde zunächst um 1/40 des Eichbereichs gesteigert. Nach ca. 10 s Warten wurde der Istwert mittels eines Eichprogramms zusammen mit dem Sollwert eingelesen und gespeichert. Danach wurde der Sollwert um 1/80 des Eichbereichs in der entgegengesetzten Richtung verändert und wiederum nach ca. 10 s Wartezeit eine Messung durchgeführt usw. . Entsprechend wurden nach Erreichen der Bereichsgrenzen die Sollwerte in entgegengesetzter Richtung in 1/40 1/80 Schritten verändert. Die Eichfaktoren wurden bzw. anschliessend durch lineare Regression ermittelt. Die Eichung der Kraftmeßdose erfolgte mittels eines geeichten 100 kN Kraftmeßbügels vom Typ MBM für den 40 und 100 kN-Bereich und mittels eines 500 kN Kraftmeßbügels des gleichen Typs für den 200 kN-Bereich. Nach DIN 50 301 ist die Geräteklasse beider Kraftmeβbügel G1. Die Eichung der Wegaufnehmer des DA1 sowie des DD1 erfolgte mit einem Meßschlitten mit einer Ablesegenauigkeit von 1/1000 mm.

Meβ- st.	Zeichen	Berech- nung	Bezeichnung	Einheit	Meßbereich	Schwellw. Aufzeich.
1	F ₁	Meβwert	gemessene Kraft	kN	+/- 40,100, 200 kN	1/400 der max. Last
2	W	Meßwert	Querhauptweg	mm	+/- 50 mm	1 mm
3	∆1(DD1)	Meßwert	Schneidenab- standsverän- derung DD1	1/1000 mm	+/-2.5,1.25 0.625, 0.25 mm	25/1000 mm
4	w _o	Meβwert	Weg obere Schneide DA1	mm	20 mm	1 mm
5	wu	Meßwert	Weg untere Schneide DA1	mm	20 mm	1 mm
6	F ₂	F ₁ -F ₀	tatsächliche Kraft	kN	-	1/400 der max. Last
7	l _B (DD1)	l ₀ (DD1)+ ∆l(DD1)	aktuelle Meßbasis DD1	mm	_	1 mm
8	€ _w (DD1)	∆1(DD1)/ 1 _B (DD1)	wahre Dehnung	% o	_	0.0125 ‰
9	1 _B (DA1)	$l_0(DA1) + (w_0 - w_u)$	aktuelle Meβbasis DA1	mm	-	-
10	€ (DA1)	(w _o -w _u)∕ 1 ₀ (DA1)	Dehnung	%₀	_	1 %。
11	t	Meßwert	Versuchszeit	S	-	5 s

Tabelle A1.1. Aufgenommene Größen, Schwellwerte und Bezeichnungen

A1.3 AUSWERTUNG DER ZUGVERSUCHE

A1.3.1 Allgemeines

Neben den während des Versuches zur Kontrolle an einem Analogkompensator abgelesenen Kraftwerten für die obere und statische Streckgrenze, sowie für den der Zugfestigkeit, werden die Meßergebnisse durch eine Auswertung nach dem Versuch mittels eines Rechnerprogramms ermittelt. Der Versuchsablauf wird über Kennziffern eingegeben, wobei in folgende Bereiche unterschieden wird:

- elastischer Bereich

- untere Streckgrenze
- statische Streckgrenze
- Entlastung
- Übergang Fließbereich in den Verfestigungsbereich
- Verfestigungsbereich.

Die Materialkennwerte werden mittels eines Regressionsansatzes

$$f(x) = f(x, \hat{a}_0, \hat{a}_1, \dots, \hat{a}_k)$$
 (A1.1)

ermittelt.

Die Meßwertkollektive werden bereichsweise in eine Matrix eingelesen und bearbeitet. Die Regressionsfunktion ist für die einzelnen Bereiche bekannt und hängt von den unbekannten Parametern \hat{a}_0 , \hat{a}_1 , ... \hat{a}_k ab. Es gilt zwischen den m gemessenen Beobachtungswerten y_j der Zufallsvariablen y, den gemesenen Werten x_j von xund der Abweichung der Meßwerte von der Regressionsfunktion δ_j der Zufallsvariablen δ die Beziehung

 $y_j = f(x_j, \hat{a}_0, \hat{a}_1, ..., \hat{a}_k) + \delta_j \quad (j = ia, ie)$ (A1.2) δ : NV (0, s_F).

Hierbei ist ia die erste und ie letzte für die Regression zu

berücksichtigende Messung mit n = ie-ia+1 und m = Anzahl der registrierten Messungen. Die Restvarianz um die Regressionskurve s_F ist

$$s_F^2 = \Sigma (\delta_i^2) / (n - k).$$
 (A1.3)

Die Parameter \hat{a}_i (i = 0,1, ... k) werden mit der Fehlerquadratmethode ermittelt und anschließend s_F berechnet. Mittels eines Ausreißertests über die zentrale t-Verteilung bei einer Irrtumswahrscheinlichkeit von 5% werden Ausreißer eliminiert, wenn die Bedingung

$$|y_j - f(x_j, \hat{a}_0, \hat{a}_1, \dots, \hat{a}_k)| < t_{0.05, n-k} s_F.$$
 (A1.4)

nicht erfüllt ist. Die Regression wird wiederholt, wenn mindestens ein Ausreißer gefunden wurde. Der Außreißertest wird bei allen nachfolgend beschriebenen Funktionsansätzen angewendet.

In allen Bereichen werden neben den Bereichsgrenzen die Dehn-, Querhauptweg- und Spannungszunahmegeschwindigkeit berechnet. Sämtliche Daten werden vor Beendigung des Programms in eine Datenbank eingespeist (siehe Abschnitt A2).

A1.3.2 Elastischer Bereich

Mittels eines Funktionsansatzes

 $\sigma = \hat{a}_0 + \hat{a}_1 \epsilon_w$ mit $\epsilon_w = \Delta 1 / (1_0 (DD1) + \Delta 1)$ (A1.5)

wird der E-Modul ermittelt, wobei a_1 der E-Modul ist. Die Dehnung \in_W ist hierbei die "wahre" Dehnung, gemessen mit dem DD1. Der Schnittpunkt der Regressionsgeraden mit der Abzisse (rechnerische Dehnung \in_0 bei einer Spannung $\sigma=0$) ist:

$$\in_0 = -a_0/a_1.$$
(A1.6)

Die elastische Gerade kann neben der Hysterese auch nach Überschreiten der Proportionalitätsgrenze im Endbereich, sowie durch Einspielerscheinungen im Anfangsbereich nichtlinear sein. In Bild A1.2 ist dazu das Vorgehen zur Ermittlung der ersten sowie letzten zu berücksichtigenden Messung ia und ie dargestellt. Zunächst sind ia und ie unbekannt. Im ersten Schritt wird ie von 3 bis m bei konstantem ia = 1 variiert (Bild A1.2.b). Ausgehend von den diskreten Meßwerten im Spannungs-Dehnungs-Diagramm des elastischen Bereiches wird

$$s_{\rm E}^2 = s_{\rm F}^2 / (\Sigma(x^2) - (\Sigma x)^2/n), \qquad (A1.7)$$

sowie der Vertrauensbereich des E-Moduls mit der zentralen t-Verteilung bei einer Irrtumswahrscheinlichkeit von 5%

$$VB(E) = a_1 + - t_{0.05, n-2}s_E$$
 (A1.8)

berechnet. Die letzte zu berücksichtigende Messung ie ergibt sich aus der Bedingung, daß $t_{0.05,n-2s_E}$ minimal wird. Entsprechend wird anschließend ia füer ia = 1 bis ie-3 bestimmt, wobei ie aus der vorherigen Berechnung bekannt ist (Bild A1.2.c).

In Bild A1.2.d ist die Regressionsgerade dargestellt, sowie in Bild A1.2.f die Abweichung der Meßwerte δ_j von der Regressionsgeraden. Die nichtlinearen Anteile im Anfangs- und Endbereich werden durch die Abweichungen von der Regressionsgeraden deutlich.

A1.3.3 Untere Streckgrenze

Die untere Streckgrenze wird aus dem Ansatz

$$\sigma = \hat{a}_0 + \hat{a}_1 \in (A1.9)$$

berechnet. Es wird die minimale und maximale Dehnung \in_A und \in_E bestimmt und $\in_M = (\in_A + \in_E)/2$ in die Regressionsfunktion eingesetzt. Die untere Streckgrenze ist somit

$$R_{eL} = a_0 + a_1 \epsilon_M. \tag{A1.10}$$

<u>A1.3.4 Statische Streckgrenze</u>

Im Fließbereich wird die Dehngeschwindigkeit $\dot{E} = 0$ über einen Zeitraum t $\longrightarrow \infty$ konstant gehalten. Die Spannung strebt einem Grenzwert R_{eS} zu, der als statische Streckgrenze definiert ist. Versuchstechnisch wird die statische Streckgrenze dadurch bestimmt, daß die Spannungs- und die dazugehörigen Zeitwerte über einen bestimmten Zeitraum registriert werden. Der Verlauf der diskreten Punkte im Spannungs-Zeit-Diagramm wird durch die Funktion

$$\sigma(t_S) = \hat{a}_0 + \hat{a}_1 e^t S^{\hat{a}_2}$$
(A1.11)

approximiert. Der Koeffizient a_0 ist für $t_S \rightarrow \infty$ die statische Streckgrenze, a_2 kann als Maßzahl für die Völligkeit der Kurve $\sigma(t_S)$, bzw. als Abklingfaktor gedeutet werden und ist immer negativ /7,10,15/. Die Meßwerte der ersten 45 Sekunden werden nicht berücksichtigt (s. Bild A1.3).

Bild A1.3. Schematische Darstellung für die Spannungswertermittlung für die statische Streckgrenze

Da durch den größeren Spannungsabfall zu Beginn der Haltepause mehr Meßwerte registriert werden, als zum Ende der Haltepause,

152

werden die Meßwerte so gewichtet, daß sie quasi äquidistante Zeitabstände haben. Der Wichtungsfaktor w_i für die Messung j ist

$$w_j = (t_{s,j+1} - t_{s,j-1}) / 2,$$
 (A1.12)

sowie für die erste zu berücksichtigende Messung

$$w_{ia} = (t_{s,ia+1} - t_{s,ia}) / 2$$
 (A1.13)

und für die letzte Messung

$$w_{ie} = (t_{s,ie} - t_{s,ie-1}) / 2$$
 (A1.14)

In Bild A1.4 ist beispielhaft die Berechnung der Wichtungsfaktoren für n = 5 Messungen dargestellt.

Bild A1.4. Beispiel zur Berechnung der Wichtungsfaktoren

Die Fehlerquadratmethode führt, wenn man

$$S = \Sigma (w_j \sigma_j - w_j (\hat{a}_0 + \hat{a}_1 e^{t_s j \hat{a}_2}))^2$$
 (A1.15)

partiell nach \hat{a}_0 , \hat{a}_1 und \hat{a}_2 ableitet und die Ableitungen zu Null setzt, zu den Bestimmungsgleichungen für a_0 , a_1 und a_2 :

$$\Sigma w_{j}^{2} \sigma_{j} - \hat{a}_{0} \Sigma w_{j}^{2} - \hat{a}_{1} \Sigma w_{j}^{2} e^{t_{sj} \hat{a}_{2}} = 0$$
 (A1.16)

$$\Sigma w_{j}^{2} \sigma_{j} e^{t_{sj} \hat{a}_{2}} - \hat{a}_{0} \Sigma w_{j}^{2} e^{t_{sj} \hat{a}_{2}} - \hat{a}_{1} \Sigma w_{j}^{2} e^{2t_{sj} \hat{a}_{2}} = 0 \quad (A1.17)$$

$$\Sigma w_{j}^{2} \sigma_{j} t_{sj} e^{t_{sj} \hat{a}_{2}} - \hat{a}_{0} \Sigma w_{j}^{2} t_{sj} e^{t_{sj} \hat{a}_{2}} - \hat{a}_{1} \Sigma w_{j}^{2} t_{sj} e^{2t_{sj} \hat{a}_{2}} = 0$$
 (A1.18)

Dieses Gleichungssystem ist nichtlinear in a_2 . Als Lösung erhält man

$$a_{0} = (\Sigma w_{j}^{2} \sigma_{j} - a_{1} \Sigma w_{j}^{2} e^{t_{sj} \hat{a}_{2}}) / \Sigma w_{j}^{2}$$

$$a_{1} = \frac{(\Sigma w_{j}^{2} \sigma_{j}) / \Sigma w_{j}^{2} \Sigma w_{j}^{2} t_{sj} e^{t_{sj} \hat{a}_{2}} - \Sigma w_{j}^{2} \sigma_{j} t_{sj} e^{t_{sj} \hat{a}_{2}}}{(\Sigma w_{j}^{2} t_{sj} e^{t_{sj} \hat{a}_{2}}) / \Sigma w_{j}^{2} \Sigma w_{j}^{2} e^{t_{sj} \hat{a}_{2}} - \Sigma w_{j}^{2} t_{sj} e^{2t_{sj} \hat{a}_{2}}}$$
(A1.19)
(A1.20)

$$\begin{split} f(\hat{a}_{2}) &= (\Sigma w_{j}^{2} \sigma_{j} e^{t_{sj}} \hat{a}_{2} - (\Sigma w_{j}^{2} \sigma_{j}) / \Sigma w_{j}^{2} \Sigma w_{j}^{2} e^{t_{sj}} \hat{a}_{2}) \cdot (\Sigma w_{j}^{2} t_{sj} e^{t_{sj}} \hat{a}_{2} \\ &- (\Sigma w_{j}^{2} t_{sj} e^{t_{sj}} \hat{a}_{2}) / \Sigma w_{j}^{2} \Sigma w_{j}^{2} e^{t_{sj}} \hat{a}_{2}) - (\Sigma w_{j}^{2} e^{2t_{sj}} \hat{a}_{2} - (\Sigma w_{j}^{2} e^{t_{sj}} \hat{a}_{2})^{2} / \Sigma w_{j}^{2}) \\ &\cdot (\Sigma w_{j}^{2} t_{sj} \sigma_{j} e^{t_{sj}} \hat{a}_{2} - \Sigma w_{j}^{2} \sigma_{j} / \Sigma w_{j}^{2} \Sigma w_{j}^{2} t_{sj} e^{t_{sj}} \hat{a}_{2}) \stackrel{!}{=} 0. \end{split}$$

$$(A1.21)$$

 a_2 wird iterativ aus Gl. A1.21 bestimmt und anschließend a_0 und a_1 aus Gl. A1.19 und A1.20. In Bild A1.5 ist die Auswertung für den Versuch K11025 der Blindprüfung (Abschnitt 5) dargestellt. Alle weiteren Beispiele stammen ebenfalls aus diesem Versuch. Die Regressionsfunktion stimmt im Endbereich mit den Meßwerten ausreichend genau überein und liefert eine gute Näherung der statischen Streckgrenze. Der Spannungsabfall $\Delta \sigma$ von der unteren zur statischen Streckgrenze wird ermittelt, indem die während der Haltepause konstante Solldehnung ε_s in den Regressionsansatz der unteren Streckgrenze nach Abschnitt A1.2.3 eingesetzt wird, abzüglich der statischen Streckgrenze nach G1. A1.21.

A1.3.5 Entlastung

Die Berechnung des E-Moduls erfolgt entsprechend der Berechnung bei A1.3.2.

A1.3.6 Übergang Fließbereich in den Verfestigungsbereich

In der Versuchsphase 2 wird die Probe mindestens 3 ‰ in den Verfestigungsbereich gefahren (s. Bild 4.2, Seite 66), um neben der unteren Streckgrenze auch die Lüdersdehnung A_{lü} und den Verfestigungmodul E_V zu ermitteln. Alle in der Literatur vorgeschlagenen Verfahren beruhen darauf , A_{lü} und E_V aus dem Spannungs-Dehnungs-Diagramm graphisch zu bestimmen /7,16,17,18/. Einheitliche Regelungen bestehen nicht. Auf die Definition und Berechnung von A_{lü} und E_V wird im weiteren eingegangen.

In Bild A1.6 sind 5 Vorschläge zur Ermittlung von E_V zusammengestellt (entnommen aus /18/), wobei die Verfahren nach Bild A1.6 b-e E_V als Sekantenmodul und nach Bild A1.5 a als Tangentenmodul definieren.

Bild A1.6. Zusammenstellung der Methoden zur Berechnung des Verfestigungsmoduls E_v

 $A_{1\ddot{u}}$ und E_V werden nach Bild A1.6 a rechnerisch ermittelt. Die Grenze \in_{gr} des Fließ- und Verfestigungsbereichs zur Bestimmung von $A_{1\ddot{u}}$ und E_V sind in Bild A1.7 dargestellt.

Bild A1.7. Abgrenzung des Fließbereichs vom Verfestigungsbereich für die Versuchsauswertung

Entsprechend Abschnitt A1.3.3 wird der Fließbereich mit einer Geraden

 $\sigma = \hat{a}_0 + \hat{a}_1 \in (A1.22)$

beschrieben. Der Verfestigungsbereich wird mit einem quadratischen Funktionsansatz

 $\sigma = \hat{a}_2 + \hat{a}_3 \epsilon + \hat{a}_4 \epsilon^2$ (A1.23)

approximiert. Durch Gleichsetzen von Gl. A1.22 und Gl. A1.23 wird der Schnittpunkt ermittelt:

$$\varepsilon' = \frac{a_1 - a_3}{2a_4} - \sqrt{\left(\frac{a_1 - a_3}{2a_4}\right)^2 - \frac{a_2 - a_0}{a_4}}$$
 (A1.24)

mit

 $\sigma_{i} = a_{0} + a_{1} \in \cdots$

(A1.25)

Bild A1.8. Auswertung für den Übergang Fließbereich - Verfestigungsbereich Versuch K11025

 A_{1ii} wird als die nichtproportionale Dehnung der Zugprobe im Übergang vom Fließ- in den Verfestigungsbereich im Punkt ($\sigma_{\ell}, \in_{\ell}$) definiert

$$A_{1ii} = \epsilon - \sigma / E_1, \qquad (A1.26)$$

und der Verfestigungsmodul E_V als Steigung der Tangente an die Parabel (Gl. A1.23) gemäß Bild A1.6 a im Punkt (σ', \in')

$$E_v = a_3 + 2a_4 \epsilon_r$$
. (A1.27)

In Bild A1.8 ist die Auswertung für einen Versuch dargestellt.

A1.3.7 Verfestigungsbereich

Der Verfestigungsbereich wird mit einem ganzrationalen Polynom vom Grad k

$$\sigma = \sum \hat{a}_i \in i .$$
 (A1.28)
i=0

approximiert. Es werden die Polynome für k = 3, 4 und 5 berechnet, wobei derjenige Grad gewählt wird, bei dem der Standardfehler s_F nach Gl. A1.1 am kleinsten ist.

Die Bereichsgrenzen werden ausgehend vom Maximum der Spannung im Punkt C nach Bild A1.9 so bestimmt, daß im Punkt B die Spannung maximal 90 % derjenigen im Punkt C ist und im Einschnürbereich (Punkt D) maximal 95 % derjenigen im Punkt C. Für den Regressionsansatz werden nur die Messungen berücksichtigt, deren Dehnungen größer als $\in_{\rm B}$ und kleiner als $\in_{\rm D}$ sind. Die Meßwerte innerhalb von Haltepausen werden nicht berücksichtigt.

Bild A1.9. Dehnungen und zugehörige Spannungen zur Bestimmung der Bereichsgrenzen im Verfestigungsbereich

Die Gleichmaßdehnung A_g ist die nichtproportionale Dehnung der Zugprobe bei Beanspruchung durch die Höchstzugkraft F_m und die Zugfestigkeit R_m die auf den Anfangsquerschnitt S_o bezogene Höchstzugkraft.

Ausgehend vom Schätzwert $\in_{\mathbb{C}}$ wird zunächst die Gleichmaßdehnung mit proportionalem Anteil Ag durch Bestimmung der Nullstelle der Ableitung des Regressionsansatzes nach Gl. A1.28 (= Dehnung bei Höchstzugkraft) bestimmt. Die Zugfestigkeit R_m wird durch Einsetzen von Ag in den Regessionsansatz bestimmt und Ag zu

$$A_{g} = A'_{g} - R_{m}/E_{1}$$
 (A1.30)

Die Spannungs-Dehnungslinie des Stahls im Verfestigungsbereich wird in der Literatur durch einen mathematisch einfach handhabbaren Ansatz nach Ludwik und Hollomon /9,19/ bestimmt:

 $\sigma_{W} = k_{1} * \phi^{n}$ mit $\sigma_{W} = \sigma(1+\phi)$ und $\phi = \ln(1+\epsilon)$ (A1.31)

Die Parameter der Gleichung werden für die Meßwerte zwischen \in_A und \in_C bestimmt.

Der Spannungsabfall $\Delta \sigma$ während der Haltepause bei $\epsilon_s \approx 60$ %, wird entsprechend Abschnitt A1.2.4 berechnet. Zur Abschätzung der Zeitstandfestigkeit wird die statische Zugfestigkeit

$$R_{m,S} = R_m - \Delta \sigma \tag{A1.32}$$

definiert. Anzumerken ist, daß bei in der Literatur beschriebenen Relaxationsversuchen /6,30/ mit Haltepausen von mehreren Wochen auch am Versuchsende noch ein Spannungsabfall beobachtet wurde und die Größe des Spannungsabfalls von der Solldehnung während der Haltepause abhing. Bei Zeitstandsversuchen waren die Kriechvorgänge noch nach über 11,5 Jahren nicht abgeklungen und innerhalb dieses Zeitraums konnten noch Zeitbrüche verzeichnet werden. Die statische Zugfestigkeit $R_{m,S}$ ist somit nur für kurzzeitige Maximalbeanspruchungen als charakteristischer Wert zur Bemessung geeignet.

In Bild A1.10 ist die Auswertung für den Verfestigungsbereich der Zugprobe K11025 ohne Berücksichtigung der Haltepause dargestellt.

161

Bild A1.10. Auswertung des Verfestigungsbereiches

A1.4 AUSWERTUNG EINES ZUGVERSUCHES

Die Auswertung der Zugversuche erfolgt mit zeichnersichen Darstellungen der Spannungs-Dehnungs-Zeit-Diagramme. Beispielhaft sind die Diagramme für den Versuch K11025 der Blindprüfung (Abschnitt 5) der Probe 25 in den Bildern A1.11 und A1.12 dargestellt, sowie die Ergebnisse der numerischen Auswertung als Versuchsprotokoll im Bild A1.13 mit den Erläuterungen im Bild A1.14.

Bild A1.11. Spannungs-Dehnungs-Zeit-Diagramm des Versuchs K11025; Dehnung gemessen mit DD1

ৰ্

Bild A1.12. Spannungs-Dehnungs-Zeit-Diagramm des Versuchs K11025; Dehnung gemessen mit DA1

3

Bezeichnung	Abschnitt	Abschnitt	Abschnitt			
	1	2	3			
Bereich	ε					
ε	205395.	205103.	200723.			
E (So)	205402.	204021.	194955.			
80	034	5.304	29.588			
tu	35	1128	1707			
to	110	1177	1737			
s(tu)	53.954	34.952	26.908			
s(to)	281.421	182.251	94.870			
V8	.148E-01	.148E-01	.116E-01			
VW	.246E-01	.162E-01	.156E-01			
∨∎	3.033	3.006	2.265			
V (E)	233.162	551.005	1048.227			
Bereich	Ua		Bereich Ub			
Pel	262 499	261.583	ReL	265.906		
+	119	1010	tu	1329		
to	389	1044	to	1628		
e(+u)	1.497	6.026	e(tu)	6.968		
e(to)	5.951	6.579	e(to)	31.079		
sin e	260.200	258,119	min #	263.806		
	265.471	264.083	max s	269.493		
	.590E-02	.545E-02	VW	.123E-01		
V.	.165E-01	.163E-01	Ve	.809E-01		
ve ve	180E-01	.110E 00	V \$	112E-01		
			A Lue	22.599		
			E∨	3458.156		
			bei s	266.839		
Bereich	5		GESAMTE	BEREICH		
ReS	247.063	289.805				
Delta s	13.935	50.898	ReH	297.649		
tu	450	2017	Rp0/2	262.434		
to	990	2525	Rm	384.034		
min e 🕓	5.959	63.910	Rays	333.135		
Max e	5.969	63.993	Ag (lo)	204.765		
min s	246.746	298.065	w(Ag-Br.)	12.210		
max s	249.520	312.212	Br. bei s	339.675		
C	-164.856	-504.732	kl	698.421		
VW	.000E 00	754E-04	n	.237926		
Ve	.135E-04	.143E-03	VW	.161133		
			V0	.934742		
			So	162.655		

Bild A1.13. Auswertungsprotokoll des Versuchs K11025

Ъ.

1 Einteilung der Bereiche im versuchsprotokoll Bereich E. Elastischer Bereich bei Be- und Entlestung Bereich Us Fliessbereich / Berechnung der unteren Streckgrenzenwerte Bereich Ub Fliessbereich mit anschliesendem Verfestigungsbereich Bereich S konstant gehaltene Dehnung bzw. konstant gehaltener Weg mit Abfall auf statische Streckgrenzenwerte 2 Bezeichnung der errechneten Werte F E-Modul (mit Ber. der veraenderten Flaeche)=E (So)*(1+eo) E (So) E-Nodul (ohne Ber, der vergenderten Flasche) Eν Verfestigungsmodul ReH obere Streckgrenze Rp0/2 0,2 0/0 - Dehngrenze ReL untere Streckgrenze ReS statische Streckgrenze R m Zugfestigkeit RayS statische Zugfestigkeit Ag (lo) Gleichmassdehnung Alue Luedersdehnung (Uebergang Fliessber. - Verfestigungsber.) V (E) E-Modul ligt mit 95% Wahrsch. zwischen E-V (E) und E+V (E) Querschnittsflasche So + Bez. fuer die Zeit, berechnet vom Beginn des Versuches Zeitpunkt zu Beginn des untersuchten Bereiches tμ Zeitpunkt am Ende des untersuchten Bereiches to Bezeichnung fuer Spennungen s(tu) Spannung zum Zeitpunkt tu s(to) Spannung zum Zeitpunkt to min e minimale Spannung im untersuchten Bereich ---maximale Spannung im untersuchten Bereich Bezeichnung fuer Dehnungen e(tu) Dehnung zum Zeitpunkt tu Dehnung zum Zeitpunkt to e(to) rechnerische Dehnung bei s = 0 bei Be- und Entlästung 80 Bezeichnung fuer Querhauptweg der Pruefmaschine w(Ag-Br.) w bei Gleichmassdehnung Ag (lo) - w bei Bruch der Probe Bezeichnung fuer Geschwindigkeiten v Geschwindigkeit Dehnungszunahme V. VW Geschwindigkeit Wegzunahme V B Geschwindigkeit Spannungszunahme Beiwerte der Ludwikgleichung sw = kl*phi^n klan zur Beschreibung der s - e - Kurve im Verfestigungsbereich : phi = wahre Dehnung = ln (1 + e) sw = wahre Spannung = s *(1 + e) = aktuelle Dehnung [dimensionslos] Beiwert fuer die Anpassung der Regressionskurve an die c Messwerte bei der Ermittlung von ReS (c = 1/a2) 3 Einheiten _______ CO/OOJZeitCsJCN/mm^2JcCsJCN/mm^2JnC-J [0/00] Cam J Dehnung Kraft CN3 Weg EN/mm^2] E-Modul Flaeche Emm^2] Spannung Geschw. [N/mm^2/s] [0/00/s] [mm/s] kl

Bild A1.14. Erläuterung zu den Parametern im Auswertungsprokoll

14

1

A2 DATENBANK

A2.1 ALLGEMEINES

Zur Aufnahme der Versuchsergebnisse aus Bescheinigungen und Fremdprüfung wurde ein Datenbanksystem eingerichtet. Mit diesem System können die Daten wahlweise über Dialog oder über Transferfiles eingegeben und geändert werden.

Der Fragenkatalog ist in einem Steuerfile abgelegt. Sämtliche Antworten werden in einem sog. ASCII-string abgelegt und auf die Platte des Rechners im Randomformat abgespeichert. Hierbei erhält jede Bescheinigung bzw. jeder Versuch eine Satznummer, mit der es jederzeit möglich ist, den entsprechenden Satz zu lesen. Die zu den Fragen zugehörigen Adressen im ASCII-string sind ebenfalls im Steuerfile gespeichert.

Eine Auswertung der Daten wird mit an das System gekoppelten Rechen- und Plottprogrammen durchgeführt.

Für dieses Forschungsvorhaben wurden zwei Datenbanken eingerichet:

1. Datenbank "Bescheinigungen"

2. Datenbank "Fremdprüfung"

4

A2.2 DATENBANK "BESCHEINIGUNGEN"

Sämtliche Daten aus den Bescheinigungen wurden über Dialog eingegeben. Im Bild A2.1 ist der auf dem Bildschirm angezeigte Fragenkatalog mit den entsprechenden (eingegebenen) Daten beispielhaft für eine Bescheinigung dargestellt. Zur Kontrolle wird nach der Eingabe ein Plausibilitätstest (Ausreißertest) durchgeführt, um Fehlermöglichkeiten bei der Eingabe zu minimieren.

Als Beispiel für die in die Datenbank aufgenommenen Ergebnisse

A2.3 DATENBANK "FREMDPRUFUNG"

Bild A2.1. Datenbank "Bescheinig

SATZ NR. 2212

ว้	Quelle	THY	SSE	N E	ENGINE	ERING	GMBH	WERK	KLOENNE	E DO	RTMU	ND			
5	Datum	198	4			STAHL	SORTE	St	52-3	3		Schmel:	zennr.		30215
Ξ	Probennr.		240	6		Werks	snumme	r	1264			Liefer:	zust.		-
D	Erschmelzur	ngsa	rt		-	Hers	stelle	e n	Thysse	en∕k	(loe.	Besche	inigung		3.10
0	Probe {F =	fla	ch	R	= run	d}	F	Liet	ferform	{F	т в)	В			
į.	Querschnitt	;	10	6-2	2000	Dime	ension	B	16.0		Т	16.3	[mm]		
9 	ReH EN/mm21]	· 4	17		bei	Temp.			··· •··					
J.	ReM EN/mm2:] .	50	63		bei	Temp.								
3	Bruchd. [%]]	- 30	D		bei	Temp.				For	m {A5 /	A10}	Α5	
3	Kerbs. Form	1	15	50-	-V	> Erg.	. { J	}	141		bei	Temp.		0	
	Kohlenstoff	° C	{%	*	100}	1	19	Sili	zium	Si	{% *	100}	34		
5	Mangan	Mn	{%	*	100}		151	Phos	phor	Р	{% *	1000}	19		
-	Schwefel	S	{%	*	1000}	1	11	Alun	ninium	ΑL	{% *	1000}		•	
	Niob	NЬ	{%	*	1000}	-		Vana	adium	V	{% *	1000}			
	Chrom	Cr	{%	*	100}	-		Kupt	'er	Cu	{% *	100}		•	
	Nickel	Ni	{%	*	100}	-		Stic	kstoff	Ν	{% ·★	10000}			
	Bemerkung 1	ļ	BES	сн.	. AUS I	DER VE	EROEFF	ENTLI	CHUNG K	< I N D	MANN	IM STAI	HLBAU 6/	86	
	Bemerkung 2	2	WERF	KST	FOFFKE	NNWERT	TE DER	REI	IERSTIE) -	KLAP	PBRUECKI	E		
	Lieferforme	n:	F =	FI	achst	ahl ;	T = P	rofil	e ; B =	= Bl	eche				

168

Å.

Bild Eine wort Anhang 1 S Ť. e n A2. detaillierte im A1. für Bild N den Datenbank A2.2 Firme Versuch Stahlsorte Steuerfilename K11025 St 37 Magnetband 13 Block 9 7.377 Querechnitt Blech 7*1800*3150 Bez. ---- b/t /d 22.04/ Form der Auswertung E-Modul E1 205395 eo -.0344 VW .02456 ve .01477 vs 3.0328 .01624 ve 5.3043 vw 205103 eo E-Modul E2 .01476 vs 3.0060 "Fremdprüfung' Fragenkatalog .01562 ve 200723 eo 29.587 VW E-Modul E3 .01164 vs 2.2653 K11025 ReL (Ua) 1 262.50 eu 1.4972 80 5.9513 vw .0059 ve .01649 vs -.018 ReL (Ua) 2 261.58 eu 6.0262 eo 6.5794 VW .0054 .01627 vs .1101 Ve ReL (Ub) 265.91 eu 6.9681 eo 31.078 VW .0123 .08092 vs -.011 ve A Lue 22.599 bei s. 266.84 Ev 3458.2 dieses der ReS 247.06 bei e. 5.9640 de 13.935 c -164.9 262.43 ReH 297.65 Rp0.2 .93474 Rm 384.03 Rm.S 333.14 VW .16113 Ve Blindprüfung dargestellt .23793 Ag (lo) 204.77 w(Ag-Br.) 12.210 kl 698.42 mit n Versuches ak(ISO-V)1 ---- 2 3 _ _ _ _ _ _ _ 294.5 99.8 Protokoll ReH Rm lo ReS 248 383 70 ιu den Zeuanis **. . .** Rm ---- dBr. ReH CE%*1003 ----SicX*1003 ----Mn[%*100] ---PE%*1000] ----S[%*1000] ----VE%*10003 ALC%*10003 ----NbC%*10003 ----NE%*10003 ----Cu[%*100] entsprechenden Chemische Analyse Analyseort - noch nicht durchgefuehrt erfolgte CE%*1003 ----SIC%*100] ----Mn[%*100] ---PE%*10003 ----S[%*1000] ALCX*10003 ----NECX*10003 ----VE%*1000] ----NE%*1000] ----Cu[%*100]

169

berei

ст б

H

Ant-

L