Bauforschung

Schrauben mit planmäßiger Biegebeanspruchung

T 1980

<sup>1</sup> Fraunhofer IRB Verlag

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

#### Fraunhofer IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

# TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG INSTITUT FÜR STAHLBAU

o. Prof. Dr.-Ing. Joachim Scheer

Bericht Nr.

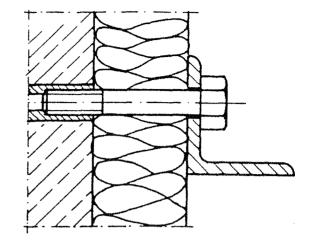
6079

"Schrauben mit planmäßiger Biegebeanspruchung"

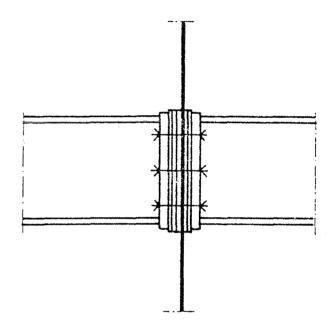
1987

# Auftraggeber

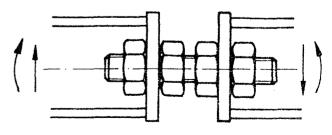
Institut für Bautechnik Reichpietschufer 72 - 76 1000 Berlin 30


Dieser Bericht besteht aus 62 Seiten und 111 Anlagen

| Inhalt | Seite                                  |     |  |  |  |  |
|--------|----------------------------------------|-----|--|--|--|--|
| 1      | Ziel des Forschungsvorhabens           | 1   |  |  |  |  |
| 2      | Problemstellung und Lösungsweg         | 3   |  |  |  |  |
| 3      | Versuchskonzeption                     | 3   |  |  |  |  |
| 3.1    | Allgemeines                            | 3   |  |  |  |  |
| 3.1.1  | 1.1 Verwendete Festigkeitsklassen      |     |  |  |  |  |
| 3.1.2  | .1.2 Schraubendurchmesser              |     |  |  |  |  |
| 3.1.3  | Hebelarm der Belastung (Exzentrizität) | 4   |  |  |  |  |
| 3.1.4  | Winkel der Belastung                   | 4   |  |  |  |  |
| 3.1.5  | Einschraubtiefe                        | 5   |  |  |  |  |
| 3.2    | Belastung                              | 6   |  |  |  |  |
| 4      | Versuchsbericht                        | 7   |  |  |  |  |
| 4.1    | Allgemeines                            | 7   |  |  |  |  |
| 4. 2   | Versuchsprogramm                       | 7   |  |  |  |  |
| 4.2.1  | Vorversuche                            | 7   |  |  |  |  |
| 4.2.2  | Hauptversuche                          | . 8 |  |  |  |  |
| 4.3    | Versuchskörper                         | 9   |  |  |  |  |
| 4.3.1  | Beschaffung der Versuchskörper         | 9   |  |  |  |  |
| 4.3.2  | Werkstoffkennwerte                     | 9   |  |  |  |  |
| 4.3.3  | Vorhandene Schaftdurchmesser           | 11  |  |  |  |  |
| 4.4    | Versuchsaufbau                         | 11  |  |  |  |  |
| 4.5    | Versuchsdurchführung und Dokumentation | 14  |  |  |  |  |
| 4.6    | Versuchsergebnisse                     | 15  |  |  |  |  |
| 5      | Theoretische Untersuchung              | 17  |  |  |  |  |
| 5. 1   | Allgemeines                            | 17  |  |  |  |  |
| 5. 2   | Analytische Untersuchung               | 17  |  |  |  |  |
| 5.3    | Untersuchung mittels FEM               | 18  |  |  |  |  |


|     |                                              | Seite |
|-----|----------------------------------------------|-------|
| 6   | Tragverhalten der Versuchskörper             | 33    |
| 6.1 | Allgemeines                                  | 33    |
| 6.2 | Definition der Grenzlast                     | 38    |
| 6.3 | Tragfähigkeit der Schrauben im Schaftbereich | 39    |
| 6.4 | Einfluß der Einschraubtiefe                  | 42    |
| 6.5 | Einfluß des Hebelarmes, M-Q-Interaktion      | 49    |
| 6.6 | Einfluß der Normalkraft, M-N-Interaktion     | 52    |
|     |                                              |       |
| 7   | Bewertung der Ergebnisse, Normenvorschlag    | 5 4   |
| 7.1 | Allgemeines                                  | 5 4   |
| 7.2 | Entwurf eines Normtextes                     | 5 8   |
|     |                                              |       |
| 8   | Zusammenfassung                              | 60    |
|     |                                              |       |
| 9   | Literaturverzeichnis                         | 61    |
|     |                                              |       |

#### 1 ZIEL DES FORSCHUNGSVORHABENS


In der Praxis werden häufig Schrauben eingesetzt, deren Schraubenschaft Biegemomente überträgt. Ein Beispiel hierfür sind Schrauben von Metallspreizdübeln bei Fassadenabhängungen vor einer Dämmschicht. Dabei werden die in der Tragkonstruktion verankerten Schrauben planmäßig durch Biegung, Querkraft und bei Windsog zusätzlich durch Zug beansprucht.



Auch im konventionellen Stahlbau gibt Schraubenverbindungen, bei es denen Biegung im Schraubenschaft Erhaltung des Gleichgewichts erforderlich ist und damit die aus den Biegemomenten stammende Spannung nicht etwa als Nebenspannung angesehen werden kann. Dies ist z.B. beim Querkraftanschluß mit Futterblechen der Fall. wie er u.a. im Geschoßbau beim Anschluß von Deckenträgern an guerlaufende Unterzüge oder unmittelbar an Stützen vorkommt. Die verwendeten Futterbleche oder -pakete können in Grenzfällen relativ dick sein.



Im Gerüstbau werden, bedingt durch den Zwang zur Anpassung an geometrisch unterschiedliche Bedingungen, häufig Schraubenverbindungen eingesetzt, bei denen die Schrauben auf Biegung beansprucht werden. Beispielhaft ist hierfür die Obergurt-Verbindung eines Rüstträgers dargestellt.



Eine Ermittlung der Vergleichsspannung aus den Nennwerten der Biegenormalspannungen und Schubspannungen würde zu falschen Ergebnissen führen, da im Gewindegrund ein räumlicher Spannungszustand herrscht, der u.a. durch äußerst hohe Kerbfaktoren gekennzeichnet ist. Trotz zähen Werkstoffes besteht die Gefahr eines spröden Bruchs im Gewindegrund. Dieses Versagen gefährdet insbesondere Verbindungen mit mehreren Schrauben: Durch die unvermeidbaren Passungsungenauigkeiten wird zunächst eine Schraube überbeansprucht und versagt, da es wegen des spröden Verhaltens nicht zu einem Ausgleich der Beanspruchung mit den anderen Schrauben kommt. Es kommt zu einem "reißverschlußartigen" Versagen.

In Versuchen /2/ wurden derartige Brüche im kritischen Gewindegrund bei Biegebeanspruchung beobachtet. In /4/ sind Versuchsergebnisse angegeben, die eine deutliche Abnahme der Fließfähigkeit der Schraube anzeigen, wenn der Gewindebereich zur Kraftübertragung ausgenutzt wird.

Die Frage gewinnt zunehmend an Bedeutung für den Stahlbau, da im Entwurf von DIN 18 800, Teil 1 in Übereinstimmung mit der internationalen Entwicklung vorgesehen ist, Schraubenverbindungen mit planmäßiger Lage des Gewindes in den Scherfugen zuzulassen. Dies bringt Vorteile in der Lagerhaltung, da keine enge Abstufung der gewindefreien Schaftlänge mehr erforderlich ist. Die Entwicklung wird – wie in Österreich – zum Einsatz der sog. Maschinenbauerschrauben führen, bei dem das Gewinde bis gegen den Schraubenkopf geführt ist.

Die im Rahmen dieses Forschungsvorhabens durchgeführten experimentellen und theoretischen Untersuchungen dienen der Erarbeitung quantitativer Angaben über die zulässigen Beanspruchungen bei statischer Biegebeanspruchung von Schrauben, wobei die Interaktion gleichzeitig auftretender Quer- und Normalkraftbeanspruchungen mit untersucht wurden. Das Vorhaben beschränkt sich auf die Untersuchung vorwiegend ruhender Belastung. Auf eine genaue Ermittlung der statistischen Kennwerte aller Basisvariablen mußte aus Kostengründen verzichtet werden.

#### 2 PROBLEMSTELLUNG UND LÖSUNGSWEG

Die Schwierigkeiten bei der Festlegung zulässiger Beanspruchungen für die Momententragfähigkeit im Gewindebereich von Schrauben sind größtenteils durch Unsicherheit in der Beurteilung des Tragverhaltens begründet. Die Auswirkungen des mehrachsigen nungszustandes im Kerbgrund des Gewindes auf das Tragverhalten Schrauben unter Berücksichtigung von nichtlinearem Werkstoffverhalten (z.B. näherungsweise idealelastisch-idealplastisch bei 4.6-Schrauben) sind weit:gehend unerforscht. Da bei Schrauben unterschiedliche Festigkeitsklassen mit unterschiedlichen stoffeigenschaften verwendet werden, wird eine umfangreiche experimentelle Parameterstudie durchgeführt, die über die verschiedenen Einflüsse auf das Tragverhalten Aufschluß geben soll. Zur Verdeutlichung des Tragverhaltens werden theoretische suchungen durchgeführt. Dazu werden ein analytisches (Kerbspannungslehre) und ein numerisches Verfahren (Finite Elemente Methode) ausgewählt.

# 3 VERSUCHSKONZEPTION

#### 3.1 Allgemeines

Um die verschiedenen Einflüsse auf das Tragverhalten zu erfassen, wurden folgende Parameter in den Versuchen variiert:

- Festigkeitsklasse der Schrauben
- Schraubendurchmesser
- Verhältnis M/Q
- Verhältnis M/N
- Einschraubtiefe

Die zu untersuchenden Parameter wurden wie folgt in Versuchen realisiert.

#### 3.1.1 Verwendete Festigkeitsklassen

Zunächst wurden Schrauben der Festigkeitsklassen 4.6, 5.6 und 10.9 untersucht. Wegen der Bedeutung der planmäßigen Biegebeanspruchung von Schrauben bei Metallspreizdübeln wurden ergänzend die dort häufig verwendeten Festigkeitsklassen 8.8 und A4-70 (nichtrostende Schrauben) untersucht.

#### 3.1.2 Schraubendurchmesser

Um die Anzahl der Versuche in Grenzen zu halten, wurden überwiegend Schrauben M12, M20 und M24 verwendet. Um Aussagen auch für andere Durchmesser machen zu können, wurden Ergänzungsversuche mit den Durchmessern M6, M16 und M30 durchgeführt.

# 3.1.3 M/Q-Verhältnis, Hebelarm der Belastung (Exzentrizität)

Die unterschiedlichen M/Q-Verhältnisse wurden durch die Wahl von unterschiedlichen Belastungshebelarmen (e) realisiert. Dabei war keine beliebige Variation möglich, der abgedeckte Bereich ist jedoch für praktisch genutzte Bereiche ausreichend.

Die den Versuchen zugrundeliegenden Verhältniswerte von Exzentrizität zu Schraubendurchmesser (kurz e/d) lagen etwa zwischen 1,0 und 8,0. Kleinere e/d-Werte als 1,0 ließen sich mit der (im späteren beschriebenen) Versuchseinrichtung nicht realisieren, die obere Grenze der verwendeten e/d-Verhältnisse ergab sich aus den maximalen Schraubenlängen.

# 3.1.4 M/N-Verhältnis, Winkel der Zugbelastung

Neben den Versuchen mit einem Winkel von 90° zwischen Kraftrichtung und Schraubenachse (zum Zeitpunkt des Versuchsbeginns) wurden auch Schrägzugversuche durchgeführt, bei denen der Winkel um 30° bzw. 60° verändert wurde. Diese Versuche sollten den Einfluß der Normalkraft auf die Momententragfähigkeit der Schrauben untersuchen.

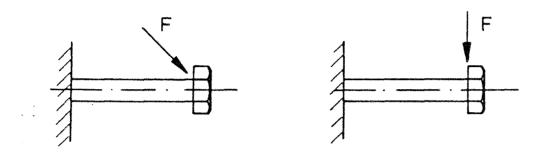



Bild 1: Versuche mit und ohne Zugkraftanteil

#### 3.1.5 Einschraubtiefe

Ein weiterer Einfluß auf die Biegetragfähigkeit der Schrauben ist durch den genauen Ort der Einspannung gegeben. Es wurde daher eine Versuchsreihe durchgeführt, bei der nur der Schaftbereich der Schrauben belastet wurde, also der ganze Schraubenschaftquerschnitt zur Aufnahme des Biegemomentes zur Verfügung stand und keine Kerbwirkung durch das Gewinde auftrat. In allen anderen Versuchen lag der Ort des Einspannmomentes (also die Einspannung) im Bereich des Gewindes. Dabei unterschieden sich die Versuche durch die Anzahl der belasteten freien Gewindegänge außerhalb der Einspannung. Die Gewindegänge wurden vom Schaft her nummeriert, d.h. eine im Versuch ganz eingeschraubte Schraube bekam die Versuchsbezeichnung: "Einspannung in der 1. Kerbe".

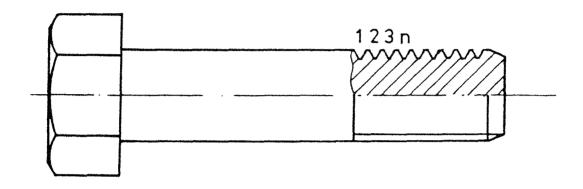



Bild 2: Bezeichnung der Gewindegänge

#### 3.2 Belastung

Die Schrauben wurden einmalig statisch belastet, bis der zur definierten Grenzlast  $F^*$  zugehörige Weg  $w^*$  überschritten wurde (vergl. Kap. 6.2, Seite 38).

Die Belastungsgeschwindigkeit wurde so gewählt, daß eine Verdrehung um 10° nach ca. 15 min erreicht wurde. Zusätzlich wurden bei mehreren Versuchen 1 - 3 Haltepausen von 10 min. eingelegt, der Lastabfall wurde registriert, um Aussagen über die statische Grenzlast machen zu können.

Auf Versuche mit mehrmaliger statischer Belastung wurde im Rahmen dieses Forschungsvorhabens verzichtet, Aussagen über Dauerfestigkeit können demnach nicht gemacht werden.

# 4 VERSUCHSBERICHT

# 4, 1 Allgemeines

Im folgenden Versuchsbericht werden das Versuchsprogramm, Versuchskörper, der Versuchsaufbau, die Meßwerterfassung sowie die Versuchsdurchführung beschrieben. Die Versuchsergebnisse sind in den Anlagen 1-16 und 96-108 dokumentiert und werden in Kap. 6 erläutert.

#### 4.2 Versuchsprogramm

#### 4.2.1 Vorversuche

Um einen ersten Einblick in das Tragverhalten von biegebeanspruchten Schrauben zu bekommen wurde eine Reihe von Vorversuchen durchgeführt. In den Vorversuchen wurden folgende Parameter variiert:

- Festigkeitsklasse der Schrauben
- Schraubendurchmesser
- Verhältnis vom Moment zur Querkraft (M/Q) über die Exzentrizität der Last
- Einschraubtiefe (Gewinde ganz oder teilweise eingeschraubt)

Im einzelnen wurden folgende Parameterkombinationen untersucht:

| Durchmesser | Festigk.kl. |      | Exzent | rizität | Einschraubtiefe |           |
|-------------|-------------|------|--------|---------|-----------------|-----------|
|             | 4.6         | 10.9 | 45 mm  | 90 mm   | ganz            | teilweise |
|             |             |      |        |         |                 |           |
| M 12        | x           | x    | x      | х       | x               | х         |
| M 16        | x           | х    | х      | x       | x               | x         |
| M 24        | x           | x    | ×      | x       | x               | x         |

Tabelle 1: Parameter der Vorversuche

### 4.2.2 Hauptversuche

Die Versuche der experimentellen Parameterstudie wurden in fünf Einzelbereiche unterteilt:

- a) Untersuchung der M-Q-Interaktion im Gewindebereich bei 4.6und 5.6-Schrauben. Es wurden Schrauben nach DIN 7990, DIN 931 und DIN 601 mit den Durchmessern M12, M20 und M24 verwendet.
- b) Untersuchung der M-Q-Interaktion im Gewindebereich bei 10.9-Schrauben. Es wurden Schrauben nach DIN 6914 mit den Durchmessern M12, M20 und M24 verwendet.
- c) Untersuchung der M-Q-N-Interaktion (Schrägzugversuche) im Gewindebereich von Schrauben der Festigkeitsklassen 4.6, 5.6 und 10.9 mit den Durchmessern M12, M20 und M24.
- d) Ergänzungsversuche M-Q-Interaktion mit Schrauben der Festigkeitsklasse A4-70 (rostfrei) und 8.8. Zusätzlich Versuche mit Schraubendurchmesser M6.
- e) Versuche zur Bestimmung der Momententragfähigkeit im Schaftbereich. Diese Versuche wurden mit Schrauben der Festigkeitsklasse 4.6, 5.6, 8.8, 10.9 und A4-70 sowie den Durchmessern M6, M12, M20, M24 durchgeführt.

Die Parameter der einzelnen Versuche gehen aus den Anlagen 1 bis 16 hervor. Insgesamt wurden etwa 450 Versuche durchgeführt.

### 4.3 Versuchskörper

#### 4.3.1 Beschaffung der Versuchskörper

Um die Streuungen der Versuche möglichst klein zu halten, wurde bei der Beschaffung der Schrauben darauf geachtet, daß gleichartige Schrauben immer aus einer Charge und einer Wärmebehandlung des Herstellers entstammten. Die Schraubenhersteller wurden gebeten, einen beigefügten Fragebogen auszufüllen, der Aufschluß über Herstellungsprozesse und Gütekontrollen der gelieferten Schrauben geben sollte. Dadurch war es möglich, in den Versuchen aufgetretene Phänomene zu deuten und Herstellungsprozessen bzw. Werkstoffen zuzuordnen. Der Fragebogen ist als Anlage 17 angefügt. Die Schrauben wurden nach Durchmessern, Längen und Festigkeitsklassen sortiert geliefert.

#### 4.3.2 Werkstoffkennwerte

Da für die Beurteilung des Tragverhaltens von Schrauben die Streckgrenze der verwendeten Werkstoffe von großer Bedeutung ist, reicht die Ermittlung der Zugfestigkeit der Schrauben allein nicht aus. Aus einem Teil der gelieferten Schrauben wurden Rundproben nach DIN 50125 gefertigt, an denen neben der Zugfestigkeit auch die Streckgrenze gemessen wurde.

Die Zugproben wurden an der servogeregelten Einraumprüfmaschine HUN-20 der Lieferfirma MFL nach einer über die Materialprüfnorm DIN 50145 hinausgehenden Prüfprozedur durchgeführt. Dabei wurden die Werkstoffproben mit Hilfe eines Feindehnungsmessers von 25 mm Meßlänge bis  $\mathcal{E}=0,5\%$  mit der Dehngeschwindigkeit  $\dot{\mathcal{E}}=0,1\%$ /min gezogen. Nach einer zehnminütigen Haltezeit bei  $\mathcal{E}=0,5\%$  wurde die "untere statische Streckgrenze"  $\sigma_{\bullet,u}$  (Bild 3) bestimmt. Dann wurde bis  $\mathcal{E}=1,0\%$  mit der Dehngeschwindigkeit  $\dot{\mathcal{E}}=0,5\%$ /min gezogen.

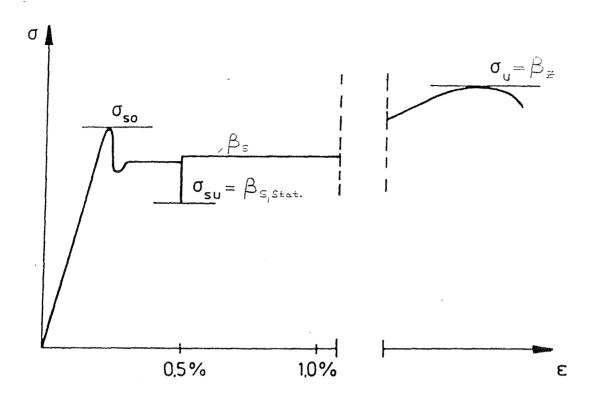



Bild 3. Schematisiertes  $\sigma$ - $\epsilon$ -Diagramm

Nach der Entfernung des Feindehnungsmessers wurde zur Bestimmung der Zugfestigkeit ß, die Werkstoffprobe unter Regelung der Querhauptgeschwindigkeit mit einer Dehngeschwindigkeit  $\dot{\epsilon}$  < 5%/min. zu Bruch gefahren.

Während der Versuche wurden die Kraft-Verlängerungs-Kurven und die Kraft-Dehnungskurven mit einem x-y-Schreiber aufgenommen. Die Ergebnisse der Versuche sind in Anlage 18 zusammengestellt.

Neben den gedrehten Zugproben wurden den Schrauben auch ca. 1cm dicke Scheiben entnommen, diese wurden poliert und Vickers Härteprüfung durchgeführt. Durch Vergleich mit den gemessenen Zugfestigkeiten ließen sich die Werte der Härteprüfung relativ gut kalibrieren (vergl. Anlage 20). Wenn bei den Versuchen Schrauben mit stark abweichenden Kraft-Weg-Diagrammen auftraten, so ließen sich hinterher durch Härteprüfungen rasch eventuelle Über- oder Unterfestigkeiten feststellen. Der Schluß von Vickershärte auf Zugfestigkeit (nach DIN 50150) ist allerdings mit Unsicherheiten behaftet und läßt nur größenordnungsmäßige Abschätzungen zu, kann aber durchaus zur Deutung von Versuchsergebnissen beitragen.

Desweiteren wurden an einer Reihe von Schrauben Ganzzugversuche nach DIN 150 898 Teil 1 durchgeführt. Die Kraft-Verlängerungsdiagramme der Ganzzugversuche wurden ebenfalls auf einem x-y-Schreiber aufgezeichnet. Kurz nach Erreichen der Fließgrenze (eine genaue Angabe der 0,5% Dehnung ist bei diesen Versuchen nicht möglich) wurde eine zehnminütige Haltepause eingelegt, um auch hier Angaben über die untere statische Streckgrenze machen zu können. Danach wurden die Schrauben bis zum Bruch gezogen. Die Ergebnisse dieser Versuche sind in Anlage 19 zusammengestellt.

#### 4.3.3 Vorhandene Schaftdurchmesser

Wegen sehr geringer Streuung wurden nur von 3 Schrauben jeder verwendeten Schraubensorte im Schaftbereich der tatsächlich vorhandene Durchmesser bestimmt. Die Messungen geschahen in dem Bereich, in dem später die Schaft-Biegeversuche durchgeführt wurden. Damit war es möglich, die tatsächlich vorhandenen Widerstandsmomente zu ermitteln.

# 4.4 Versuchsaufbau

Alle Versuche mit Schrauben <u>> M12</u> wurden in der Einraumprüfmaschine HUN-100, die Versuche mit Schrauben M6 in der HUN-20 des Instituts für Stahlbau der Technischen Universität Braunschweig weggeregelt durchgeführt.

Zur Vermeidung von Zusatzexzentrizitäten infolge der Verformung des Versuchskörpers wurde der Versuchsaufbau symmetrisiert. In der entworfenen Versuchseinrichtung wurden immer zwei gleiche Schrauben zugleich einer Belastungsprobe unterworfen. Dadurch entstand eine Versuchseinrichtung, die auch bei großer Verformung der Schrauben Winkelfehler zwischen Zuglaschen und Einspannebene weitgehend vermeidet.

In den Anlagen 109-111 sind Fotos der verwendeten Versuchseinrichtung zu sehen.

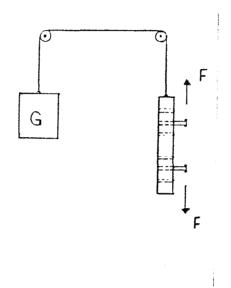



Bild 4. Prinzipskizze Versuchseinrichtung

Die Krafteinleitung in die Schrauben erfolgte über Schneidenlager in den Zuglaschen, um einen eindeutigen Lastangriffspunkt zu erhalten. Die Schrauben wurden in eine 60 mm dicke Stahlplatte geschraubt, die über ein rollengelagertes Stahlseil durch ein Gegengewicht gehalten wurde und die beim Versuch auftretenden Verformungen nahezu kräftefrei mitmachte.

Für die Schrägzugversuche wurde dasselbe Prinzip beibehalten. In der dafür vorgesehenen Einrichtung wurden die Schrauben nicht mit einem Winkel von 90° zwischen Kraftrichtung und Schraubenachse in unbelastetem Zustand belastet, sondern der Winkel betrug 120° bzw. 150°. (Ein Winkel von 180° entspricht einem reinen Zugversuch).

BERICHT NR. 6079

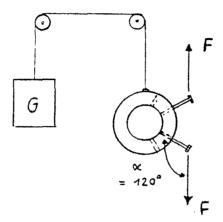



Bild 5. Systemskizze für die Schrägzugversuche

Für die Schrägzugversuche wurde die Stahlplatte mit den Gewindelöchern durch ein sehr dickwandiges Rohr ersetzt, in dem die Gewindelöcher unter den entsprechenden Winkeln angeordnet waren.

Die von der Prüfmaschine aufgebrachte Kraft wurde von einer Kraftmeßdose gemessen. Sie war über einen Analogkompensator von einer Anzeige ablesbar und wurde gleichzeitig von einer PCM-Meßanlage digitalisiert. Die digitalen Werte konnten während der Versuche auf einem Bildschirm verfolgt werden und wurden anschließend zu weiterer Bearbeitung auf Magnetband gespeichert.

Zur Kontrolle wurden die von der Analoganzeige abgelesenen Werte in ein Versuchsprotokoll übertragen.

Bei jedem Versuch wurde die Querhauptverschiebung w mit einem geeichten induktiven Wegaufnehmer gemessen. Diese Verschiebung kann als Durchbiegung der Versuchskörper angesehen werden, da bei den auftretenden großen Wegen und kleinen Kräften der Anteil der Dehnung der Laschen und der Maschinenstauchung vernachlässigt werden kann.

BERICHT NR. 6079 SEITE 14

# 4.5 Versuchsdurchführung und Dokumentation

Jeder Versuch begann mit einer Nullmessung im unbelasteten Zustand. Anschließend wurden die Versuchskörper weggeregelt belastet, bis entweder der zur definierten Grenzlast F\* (vergl. Kap. 6.2, S.38) zugehörige Weg w\* überschritten war oder eine Schraube durch Bruch versagte. Bei einigen Versuchen wurden eine oder zwei zehnminütige Haltepausen eingelegt, der zugehörige Lastabfall wurde registriert. Der Verlauf des F-w-Diagramms wurde während des Versuches auf einem Tektronix-Bildschirm verfolgt.

Die Meßstellen waren an eine prozeßrechnergesteuerte Vielstellenmeßanlage angeschlossen. Die Meßwerte wurden mit Hilfe eines Programmpaketes des Instituts für Stahlbau der Technischen Universität Braunschweig kontinuierlich abgefragt und bei vorgegebenen Meßwertänderungen aufgezeichnet. Durch Multiplikation mit den zugehörigen Eichfaktoren wurden die Versuchslasten F sowie die Querhauptverschiebung w ermittelt. Diese beiden Werte wurden anschließend zur weiteren Auswertung gespeichert.

Für jeden Versuch wurde ein Kraft-Weg-Diagramm gezeichnet. Von Hand wurden dann die zu den Versuchen gehörenden Werte für  $w^*$  ( $w^* = e \cdot \sin f^*$ ) in die Diagramme eingetragen, wobei der bei einigen Versuchen aufgetretene anfängliche Schlupf berücksichtigt wurde.

Daraufhin wurde die dazugehörige Grenzlast  $F^*$  ermittelt. Von jedem Versuch wurden folgende Informationen protokolliert:

- Hersteller
- Festigkeitsklasse
- Durchmesser
- Länge
- Herstellverfahren
- Exzentrizität der Belastung
- Winkel der Belastung
- Einschraubtiefe (bzw. Schaftbereich)
- F\*
- maximale Last im Versuch

BERICHT NR. 6079 SEITE 15

Der Punkt Herstellverfahren beinhaltet neben Angaben über die verwendeten Grundwerkstoffe Hinweise auf Fertigungsprozesse. Dabei werden unterschieden:

- spanende Formung
- spanlose Formung a) Kaltformung
  - b) Warmformung
- Gewinde a) geschnitten
  - b) gerollt

Aus den gemessenen Werten für  $F^*$  und e (Exzentrizität) ergibt sich das im Versuch aufgetretene Grenzmoment

 $M_v$  = F • e

Da für den Grenzzustand mit f \*= 10° der tatsächlich wirksame Hebelarm e · cos 10° beträgt, und außerdem noch ein Faktor B für den Einfluß der Belastungsgeschwindigkeit in die Berechnung des tatsächlichen Grenzmomentes eingeht, ergibt sich das Grenzmoment für die Schrauben zu:

$$M^* = M_v^* \cdot \cos 10^\circ \cdot B$$

Der Einflußfaktor B ergibt sich aus der Auswertung der aufgezeichneten Lastverringerung während der Haltepausen bei den Versuchen. In den Anlagen 21-22 sind die Haltepausen zusammengefaßt, sie sind näherungsweise normalverteilt, im Mittel ergibt sich ein Lastabfall von 5,8%, die Standardabweichung beträgt 2,07%. Legt man eine Normalverteilung zugrunde, ergibt sich eine 5% Fraktile von 9,22%, vereinfachend wird auf der sicheren Seite liegend mit 10% Lastabfall gerechnet, also mit B=0,90.

Bei den Schrägzugversuchen (Schraubenneigung 30° bzw. 60° gegen die Horizontale) wird die horizontale Exzentrizität eH in Abhängigkeit der gemessenen Exzentrizität e und des Schraubendurchmessers d bestimmt. Da für das Grenzmoment eine Sehnenverdrehung von

 $\phi$  \* = 10° gegenüber der Ausgangslage zugrundegelegt wird, ergibt sich:

Für Versuche mit 30°

$$e_H = e \cdot \cos 40^\circ + d/2 \cdot \sin 40^\circ$$

Für Versuche mit 60°

$$e_{H} = e \cdot \cos 70^{\circ} + d/2 \cdot \sin 70^{\circ}$$

Die zusätzliche Verringerung des Hebelarmes aus der Krümmung der Schraubenachse ist sehr klein und wird deshalb vernachlässigt. Bild 6 verdeutlicht die geometrischen Verhältnisse.

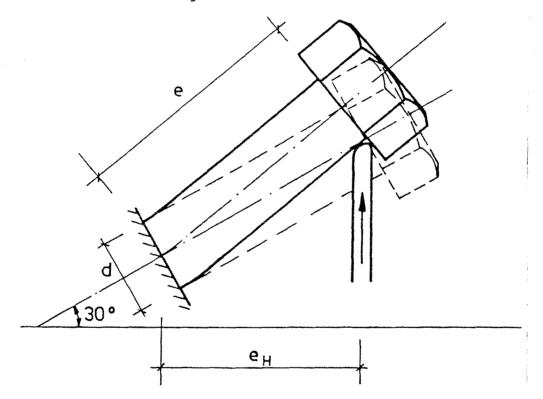



Bild 6 Geometrische Verhältnisse bei 30°

#### 4.6 Versuchsergebnisse

Die in den einzelnen Versuchen ermittelte Grenzlast F\* ist in den Anlagen 1 bis 16 aufgeführt. Ein Teil der aufgezeichnten F-w-Diagramme sind als Anlagen 96 bis 108 beigefügt. Die übrigen Diagramme sind zu den Akten genommen. Erläutert werden die Ergebnisse in Kapitel 6.

#### THEORETISCHE UNTERSUCHUNG

# 5.1 Allgemeines

Begleitend zu den experimentellen Studien wurden theoretische Untersuchungen durchgeführt, die helfen sollten, das Tragverhalten im elastisch-plastischen Beanspruchungszustand zu verstehen und damit Hilfsmittel für die Deutung der Versuchsergebnisse zur Verfügung zu stellen. Dazu wurden ein analytisches (Kerbspannungslehre) und ein numerisches Verfahren (Finite-Element-Methode, kurz FEM) ausgewählt.

# 5,2 Analytische Untersuchung

ein Gefühl für die Größenordnung der Kerbspannungen im Gewindegrund zu bekommen, wurden zunächst die Kerbspannungen nach der Kerbspannungslehre /2/ ermittelt. Dabei wurde von einem linearen Werkstoffgesetz ausgegangen und die Kerbspannungen für einen mit flacher Außendrehkerbe für die Lastfälle Quer- und Normalkraft bestimmt. Dazu wurde ein Programm erstellt, das auf eine Datenbasis für die Gewindegeometrien der Schrauben metrischen ISO-Gewinden nach DIN 13 zugreifen konnte. erhaltenen Kerbspannungsspitzen, ausgedrückt durch die sog. Formziffer, sind für die Durchmesser M10, M12, M16, M20, M24, M27, мэз für Schub M30 und etwa gleich. Sie betrugen 3, 1  $(\tau_{Kerb}/(Q/A))$  und für Normalkraft und Biegung 4,6 ( Okerb/ Obrutto).

Danach tritt schon bei sehr geringen Biegebeanspruchungen der Schrauben im Kerbgrund ein mehrachsiger Spannungszustand in Höhe der Fließgrenze auf. Diese räumlich sehr begrenzten Spannungsspitzen wachsen jedoch bei duktilen Werkstoffen bei weiterer Belastung nicht weiter an, die Spannungen werden umgelagert, so daß Ermittlungen mit linearem Werkstoffgesetz hier zu unbefriedigenden Lösungen führen.

Da die zuvor nicht berücksichtigte Art der Lasteinleitung über den Gewindezahn die Kerbspannungen stark beeinflussen kann, wurde im folgenden zur genaueren Ermittlung das Modell einer Zahnstange herangezogen /11/, bei der die Belastung über mehrere Zahnflanken eingetragen wurde.

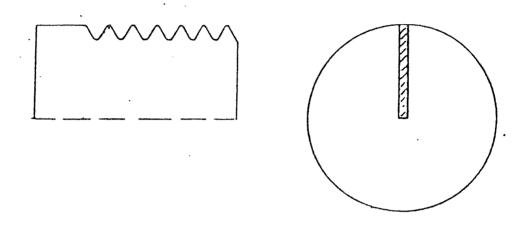
Die maximalen Spannungen im Kerbgrund treten hierbei in Richtung der belasteten Flanke seitlich verschoben auf, in diesem Bereich kommen zusätzlich die lokalen Spannungen des belasteten Zahnes zum Tragen, so daß sich hier möglicherweise ein hydrostatischer Spannungszustand bildet, der das Erreichen der Fließgrenze herausschiebt.

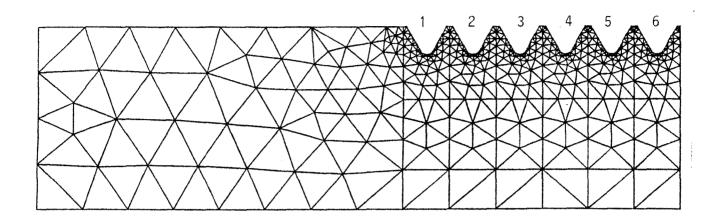
Die Ermittlung der Formziffern mit Hilfe der Kerbspannungslehre kann jedoch für Schraubengewinde nur einen groben ersten Anhalt darstellen. Die Voraussetzungen der untersuchten Modelle beschreiben nur sehr unvollkommen die geometrischen Verhältnisse eines Schraubengewindes. Im folgenden wird daher eine FEM-Untersuchung durchgeführt, bei der der Einfluß mehrerer Gewindegänge und eines nichtlinearen Werkstoffgesetzes mit untersucht wird.

#### 5.3 Untersuchung mittels FEM

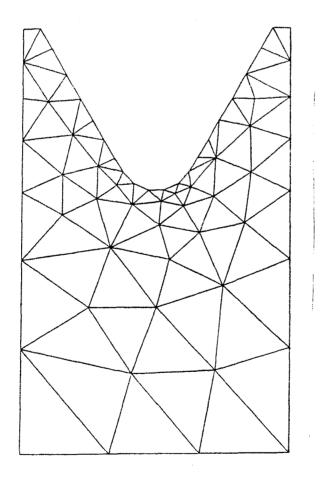
#### 5.3.1 Allgemeines

Die FEM-Untersuchung wurde mit Hilfe des Programmsystems ADINA durchgeführt. Um den numerischen Aufwand in praktikablen Grenzen zu halten, wurde die Schraube nicht vollständig durch räumliche Elemente diskretisiert. Durch gedankliches Herausschneiden eines dünnen Scheibenelementes wurde das räumliche Problem näherungsweise auf ein ebenes Verformungsproblem übertragen, diese Ergebnisse dürfen nach Neuber /12/ auf den im Gewinde herrschenden räumlichen Spannungszustand übertragen werden, weil Gewindekerben flache Außenumdrehungskerben sind. Dabei wurde die Steigung des Gewindes vernachlässigt.





Bild 7 herausgeschnittenes Scheibenelement aus einer Schraube mit metr. ISO Gewinde

Zunächst wurde mit Hilfe des ADINA-Preprozessors SUPERTAB ein FEM-Netz erstellt, das einen Teil des Schaftes sowie die ersten 6 Gewindegänge einer Schraube M20 abbildet. In der Schraubenmitte wurde eine Symmetrieachse gewählt.


Die Wahl der Elementengröße mit großen Elementen im Schaft und kleineren Elementen im interessierenden Gewindebereich ermöglicht eine gute Näherungslösung bei vertretbarem Rechenaufwand.

Die Ergebnisse der Berechnungen wurden mit dem ADINA Postprozessor ADIP aufbereitet und dargestellt.

Im folgenden werden die Gewindekerben der einzelnen Gewindegänge häufig vereinfacht als "Kerben" bezeichnet.



FEM - Netz ganz



# 1. Gewindekerbe

Bild 8: Verwendetes FE - Netz

Als Belastung wurde ein Biegemoment in Form einer im Gleichgewicht stehenden Lastgruppe aufgebracht. An dem linken Ende (Bild 9) als lineare Spannungsverteilung (in Knotenpunktbelastung umgerechnet), auf der rechten Seite auf drei Gewindegänge verteilt als Gewindeflankenbelastung. Eine realistische Ganglastverteilung (z.B. nach /9/) geht über ca. 8 Gewindegänge (volle Mutternhöhe). Um mit einer solchen Ganglastverteilung unterschiedliche Einschraubtiefen zu untersuchen, müßte das gewählte FEM-Netz um mindestens 6 Gewindekerben erweitert werden, der numerische Aufwand würde dadurch beträchtlich steigen. Die hier angenommene Ganglastverteilung über drei Gewindegänge beschreibt in guter Näherung den Zustand in den stark belasteten Kerben. Dabei erhielt jeweils die Gewindeflanke der ersten Kerbe 50%, die zweite 35% und die dritte 15% der Gesamtlast.

Diese Lastgruppe wurde in verschiedenen Rechengängen dann seitlich verschoben, so daß die Belastung in den Kerben 1-3, 2-4 und
3-5 auftrat. Die Lastverteilung an der Gewindeflanke wurde aus
einem konstanten und einem sinusförmigen Anteil zusammengesetzt
(Maximum in der Flankenmitte), und zwar normal zur Flanke. Die in
/10/ errechnete, hiervon leicht abweichende Flankenbelastungsverteilung ist offensichtlich auf das dort verwendete FE-Netz zurückzuführen, die Spitze am gewindegrundseitigen Rand der Flankenbelastung fällt mit einem großen Sprung der gewählten Elementgröße zusammen, was erfahrungsgemäß zu größeren Ungenauigkeiten
führt.

# 5.3.2 Berechnungen mit linear-elastischem Werkstoffgesetz

Die Berechnungen wurden zunächst mit linear-elastischem Werkstoffgesetz durchgeführt. Bild 11 und Bild 12 zeigen den Verlauf der Normalspannungen einmal im Schaftbereich und im Schnitt durch die Mitte der 1. Gewindekerbe (Lage der Schnittlinien: siehe Bild 10). Der Spannungsanstieg aufgrund der Kerbwirkung ist deutlich zu erkennen.

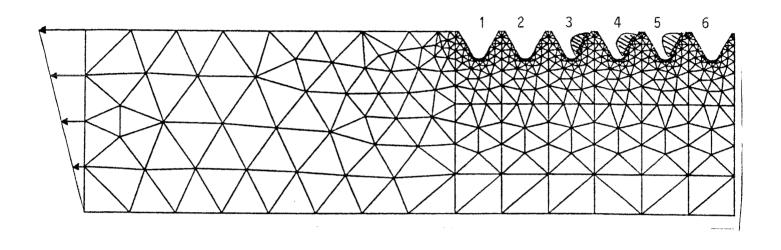



Bild 9: Lastverteilung an den Gewindeflanken der Kerben 3, 4 und 5 und am linken Schaftende

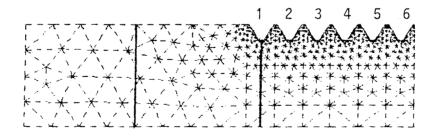



Bild 10: Lage der Schnittlinien im FE-Netz (Gewindebereich und Schaftmitte)

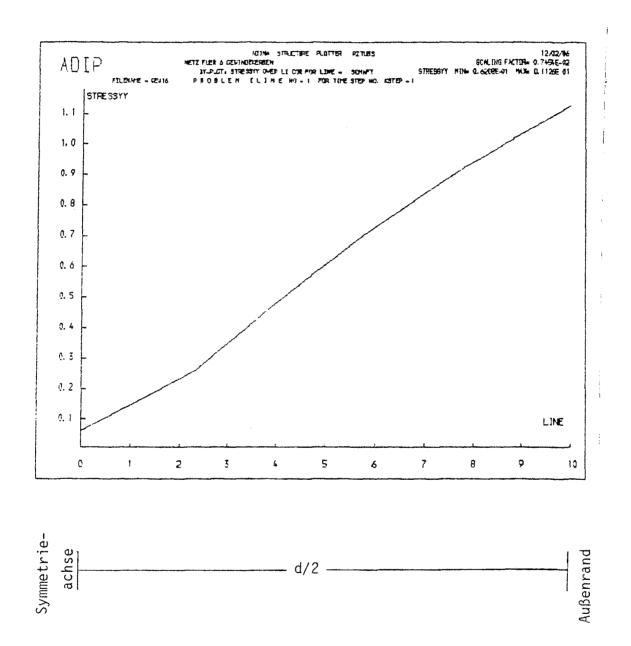



Bild 11: Verlauf der Normalspannungen  $\sigma_{\nu,\nu}$  im Schaftbereich

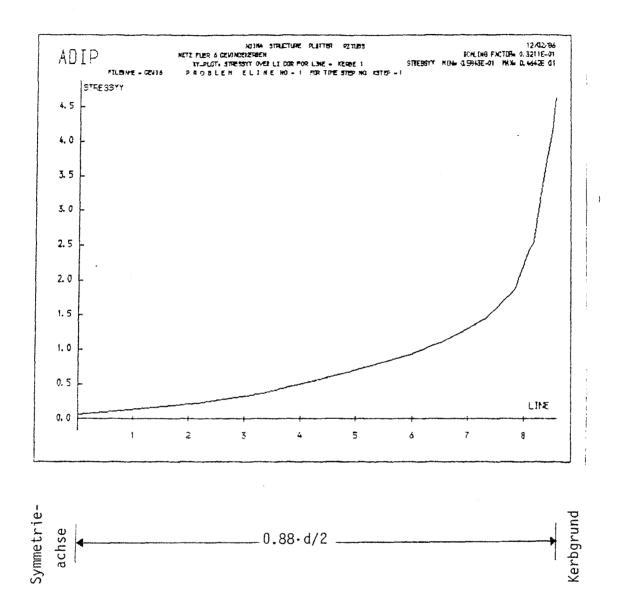



Bild 12: Verlauf der Normalspannungen  $\sigma_{y,y}$  im Gewindebereich

Die örtliche Verteilung der Spannungsspitzen ist auf den beiden folgenden Bildern gut zu erkennen, es sind die Iso-Linien für Normalspannungen in Schraubenlängsrichtung dargestellt.

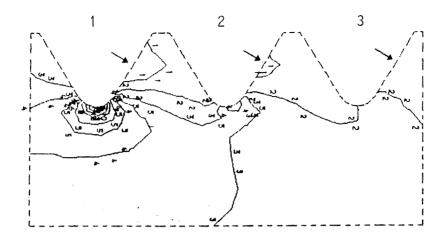



Bild 13:  $\sigma_{y,y}$  in den Kerben 1-3 bei Belastung der Kerben 1-3

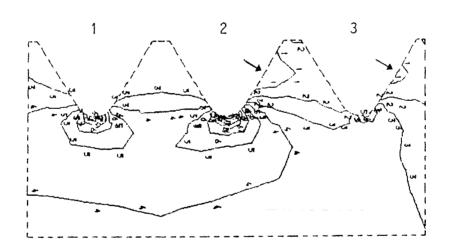



Bild 14:  $\sigma_{yy}$  in den Kerben 1-3 bei Belastung der Kerben 2-4

Bild 14 zeigt die Entlastungswirkung des 1. Gewindeganges für die Spannungen im Kerbgrund des 2. Gewindeganges, wenn die Belastung in den Kerben 2-4 aufgebracht wird. Die Bilder 16 und 17 zeigen für diesen Fall die Normalspannungen in Schnittlinien durch die erste und zweite Kerbe.

Aus Bild 15 ergibt sich eine Formziffer von  $\alpha$  = 5,9 für die erste Kerbe bei Belastung der Kerben 1-3. Ermittelt wird die Formziffer aus dem Quotienten der maximalen Kerbspannung und der zugehörigen Biegerandspannung im Schaft (vergl. Bild 11). Die maximale Kerbspannung ist in den belasteten Kerben höher als aus den  $\sigma_{v,v}$ -Verläufen in den zugehörigen Schnittlinien ersichtlich, da das Maximum von der Kerbgrundmitte etwas zur belasteten Flanke verschoben liegt (vergl. Kap. 5.2). Bei den angegebenen Formziffern ist dies berücksichtigt.

Mit 5,9 liegt die ermittelte Formziffer höher als der nach Neuber ermittelte Wert. Dies ist auf die mitberücksichtigte Gewindeflankenbelastung zurückzuführen.

Bei Belastung der Kerben 2-4 ergaben sich die Formziffern  $\alpha$  = 4,1 für die erste und  $\alpha$  = 5,25 für die zweite Kerbe, d.h. der erste (unbelastete) Gewindegang wirkt wie erwartet als Entlastungskerbe (vergl. Bilder 15 bis 17).

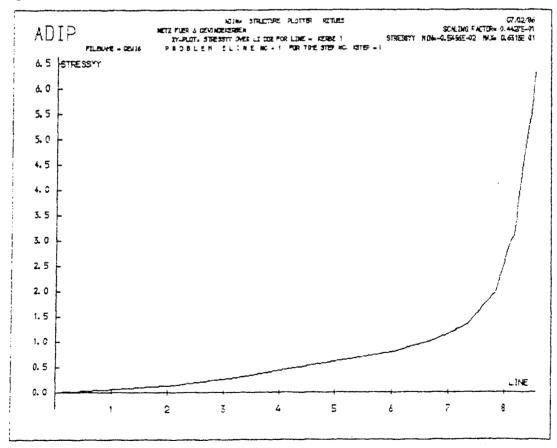



Bild 15: Spannungsverlauf 1. Kerbe Oyy Belastung Kerbe 1-3

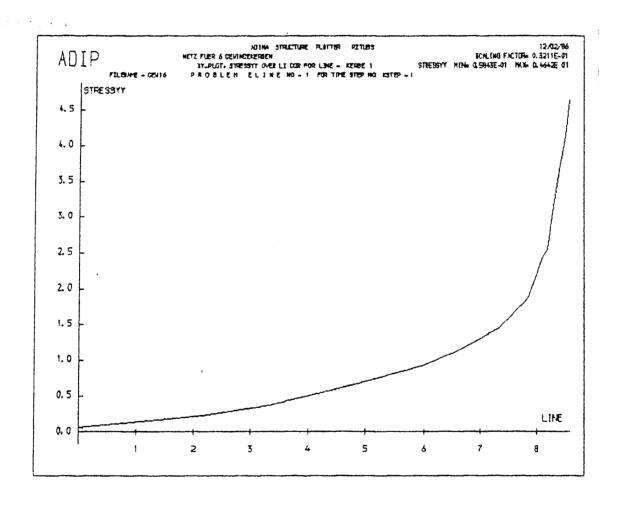



Bild 16: Oyy in Kerbe 1 bei Belastung der 2.-4. Kerbe

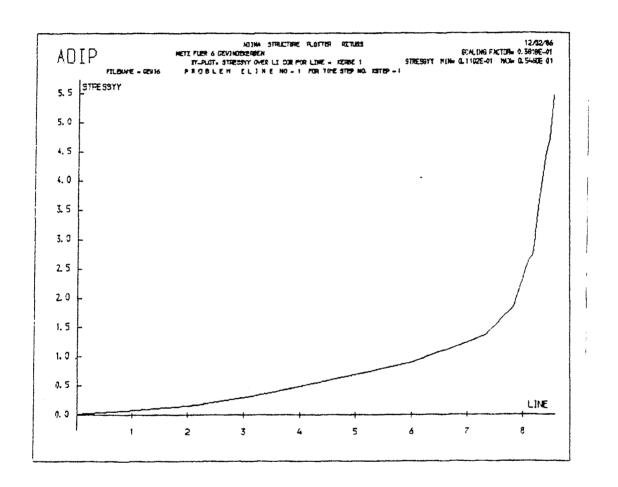



Bild 17: Ovv in Kerbe 2 bei Belastung der 2.-4. Kerbe

Wird die Lastgruppe in die Kerben 3-5 gesetzt, verringern sich die Spannungen am ersten Gewindegang ( $\alpha$  = 3,8) etwas. Die zweite (ebenfalls unbelastete) Kerbe weist ein niedrigeres Spannungsniveau auf ( $\alpha$  = 3,4). Die dritte Kerbe (also direkt vor der ersten belasteten Gewindeflanke) weist mit  $\alpha$  = 5,2 in diesem Beispiel die höchsten Kerbspannungen auf.

Dieses Ergebniss läßt sich folgendermaßen deuten: Die hohen Kerbspannungen entstehen aus der Kerbwirkung des 1. Gewindeganges und aus der Gewindeflankenbelastung am Ort der Einspannung. Weitere unbelastete Kerben haben nur einen geringen entlastenden Einfluß auf die Kerbspannung in der ersten belasteten Kerbe und weisen niedrigere Kerbspannungen auf, da der Kraftfluß in der Schraube bereits in den Kern umgelenkt ist.

Dieser Effekt konnte auch in den Versuchen beobachtet werden, bei Einspannung in der 3. Kerbe traten die ersten Anrisse im 1. und 3. Gewindegang auf, während der Kerbgrund des 2. Gewindeganges noch keine Risse zeigte.

Die Ergebnisse der Berechnungen bei Belastung der dritten bis fünften Kerbe sind als Anlage 23 bis 26 beigefügt. Bei der Darstellung der  $\sigma_r$ , Spannung in Kerbe 3 (Anlage 26) ist zu beachten, daß die Schnittlinie genau durch den Gewindegrund gelegt wurde, die tatsächlich höchsten Spannungen aber etwas nach rechts verschoben liegen (vgl. Kapitel 5.2). Die Lage des Höchstwertes der Spannungen  $\sigma_r$ , ist in den Anlagen 23 und 24 zu erkennen, er liegt um 8% über dem Wert in der Mitte der Kerbe.

Als nächstes wurde der Einfluß der Querkraft untersucht.

Dabei wurde auf der Schaftseite die Einleitung von Zugkräften mit linearer Verteilung zunächst teilweise, dann ganz durch eine Einleitung von Querkräften mit annähernd parabolischer Verteilung ersetzt, so daß das Moment in der ersten belasteten Kerbe konstant blieb. So wurde das ebenfalls in den Versuchen variierte Verhältnis e/d von 1,0 bis  $\infty$  simuliert.

Die Anlagen 27 bis 29 zeigen, daß in der 1. belasteten Kerbe kein Einfluß des e/d-Verhältnisses sichtbar wird, lediglich in den davor liegenden, unbelasteten Kerben sinken die Kerbspannungen mit sinkendem Verhältnis e/d. Die Momentenbelastung nimmt bei kurzem Hebelarm der Belastung zum Belastungspunkt hin rasch ab, so daß dieser Effekt leicht erklärbar ist.

Auch in den Versuchen konnte für e/d > 1,0 kein signifikanter Einfluß der Querkraft auf die Biegetragfähigkeit festgestellt werden.

Um den Einfluß der gewählten Ganglastverteilung zu untersuchen, wurde bei diesem Beispiel mit einer Lastverteilung von je 1/3 der Gesamtbelastung je belastete Kerbe gerechnet. Dadurch fallen die Formziffern etwas niedriger aus als bei der zuvor gewählten Ganglastverteilung, da die Gewindeflankenbelastung in der ersten belasteten Kerbe um 40% niedriger ist.

Die durchgeführten Berechnungen mit linearem Werkstoffgesetz geben einen ersten Einblick in das Tragverhalten von Schrauben unter Biege- und Querkraftbeanspruchung. Sie stehen qualitativ im Einklang mit der Kerbspannungslehre nach Neuber, mittels der FEM-Berechnung ließ sich die Entlastungswirkung unbelasteter Gewindegänge differenzierter betrachten.

#### 5.3.3 Berechnungen mit nichtlinearem Werkstoffgesetz

Zunächst wurde für die Berechnung ein bilineares, idealelastisch – idealplastisches Werkstoffgesetz ausgewählt, bei dem der E-Modul nach Erreichen der Fließgrenze zu null gesetzt wurde.

Dies führte jedoch zu numerischen Schwierigkeiten bei der Berechnung, die Dehnungen im Kerbgrund wuchsen so schnell an, daß das verwendete Rechenprogramm nicht mehr konvergierte.

Im folgenden wurde ein bilineares Werkstoffgesetz mit einem Verfestigungs-Modul in Höhe von 10% des E-Moduls verwendet. Die numerischen Probleme konnten so gelöst werden, die aus den großen Dehnungen im Kerbgrund resultierenden Spannungen werden jedoch etwas überschätzt.

Als Anlagen 30 bis 33 sind die Ergebnisse einer solchen Berechnung beigefügt. In diesem Beispiel wurden die Kerben 3-5 belastet. Die erste Laststufe wurde so gewählt, daß erste lokale Plastizierungen auftreten. Dann wurden drei weitere Laststufen mit den Laststeigerungsfaktoren 1,1, 1,2 und 1,3 gerechnet. Dies führte zur weiteren Plastizierung der Schraube im Bereich des Gewindegrundes. In diesem Beispiel sind gut die hohen Spannungen in der 1. und 3. Kerbe zu erkennen, die dazwischenliegende unbelastete Kerbe hat ein niedrigeres Spannungsniveau (siehe Anlage 31).

Bild 18 zeigt (~2fach vergrößert) die Verformungen der Schraube für den beschriebenen Lastfall.

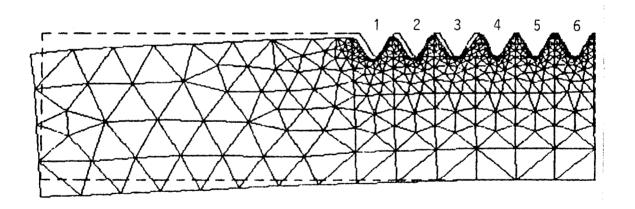


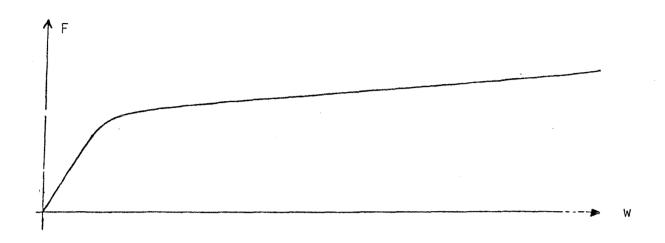

Bild 18: Deformierte Struktur, Kerben 3-5 belastet

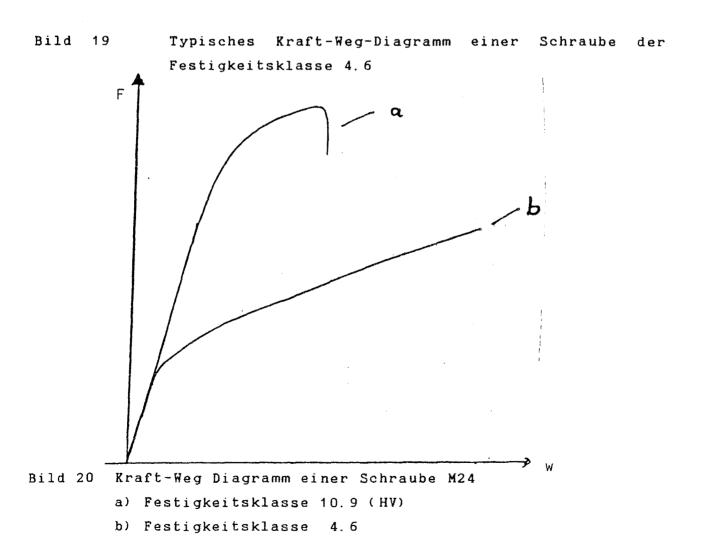
In den Anlagen 34 bis 40 sind die Dehnungen in y-Richtung, die Spannung  $\sigma_{vv}$  und die Vergleichsspannungen für 11 Laststufen aufgetragen. Bei der darauffolgenden 12. Laststufe traten dann auch bei dem hier gewählten Werkstoffgesetz Konvergenzschwierigkeiten auf.

In den dargestellten Diagrammen ist gut das schnelle Anwachsen der Dehnungen und damit auch der Spannungen im Kerbgrund zu erkennen. Unter zunehmender Biegebeanspruchung bilden sich immer größer werdende plastische Zonen aus.

Die Ausbreitung der plastischen Zonen ist in den Anlagen 39 bis 40 dargestellt ( schraffierte Bereiche ).

In Anlage 41 sind die Durchbiegungen des freien Schaftendes für mehrere Laststufen dargestellt. Das nichtlineare Last-Verformungsverhalten entspricht qualitativ den in den Versuchen aufgezeichneten Last-Verschiebungsdiagrammen.


## 6 TRAGVERHALTEN BIEGEBEANSPRUCHTER SCHRAUBEN


#### 6.1 Allgemeines

In diesem Kapitel werden die bei den experimentellen Studien untersuchten Einflüsse auf das Tragverhalten dargelegt. Zunächst wird das charakteristische Verhalten der Schrauben qualitativ beschrieben, in den folgenden Unterkapiteln werden die maßgeblichen Einflüsse genauer untersucht.

Schrauben der Festigkeitsklasse 4.6 verhalten sich erwartungsgemäß sehr viel duktiler als die der Festigkeitsklassen 8.8 und 10.9. Einige Schrauben der Festigkeitsklasse 10.9 versagten schon bei Durchbiegungen von etwa 9°, also kurz vor Erreichen des definierten "Grenzmoments" (vergl. S. 38). Bild 19 zeigt ein typisches Kraft-Weg-Diagramm einer 4.6-Schraube, das duktile Verhalten ist gut zu erkennen. Die dargestellten Wege sind Komponenten der Verschiebung in Richtung der Last, gemessen in der Lastachse. In Bild 20 sind die F-w-Diagramme einer 10.9- und einer 4.6-Schraube einander gegenübergestellt, wobei die Kurve der 4.6 Schraube aus Darstellungsgründen abgebrochen wurde, wogegen der abfallende Teil der Kurve der 10.9-Schraube den Bruch anzeigt.

INSTITUT FÜR STAHLBAU DER TECHNISCHEN UNIVERSITÄT BRAUNSCHWEIG





Die 10.9-Schrauben verhalten sich bei leicht reduzierter Traglast duktiler, wenn ihr Gewinde nicht vollständig in die Versuchsein-richtung eingeschraubt wird. Bild 21 zeigt zum Vergleich zwei Kraft-Weg-Diagramme einer 10.9-Schraube, einmal bis zur 1. und einmal nur bis zur 5. Kerbe eingeschraubt.

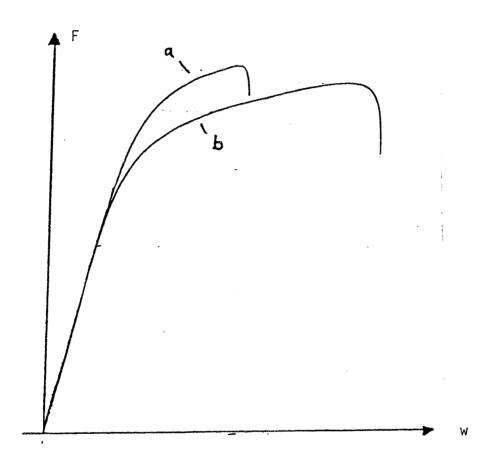



Bild 21: Kraft-Weg Diagramm einer HV-Schraube M24

- a) Einspannung in der 1. Kerbe
- b) Einspannung in der 5. Kerbe

Bild 22 zeigt das unterschiedliche Verhalten der Schrauben :

- a) Schraube der Festigkeitsklasse 4.6, Einspannung in der 1.
   Kerbe, der Schaftbereich ist deutlich plastiziert.
- b) Schraube der Festigkeitsklasse 4.6, Einspannung in der 4. Kerbe, deutlich ist ein Aufweiten der ersten drei Gewindegänge zu erkennen.
- c) Schraube der Festigkeitsklasse 10.9, Einspannung in der 1. Kerbe, hier ist sprödes Verhalten erkennbar, Gewinde- und Schaftbereich sind kaum verformt, der Riß in der 1. Kerbe ist gut zu erkennen.
- d) Schraubenschaft (ebenfalls 10.9), Einspannung im Schaftbereich, trotz des gleichen Werkstoffes wie bei c) ist aufgrund der fehlenden Kerbspannungen duktiles Verhalten erkennbar.

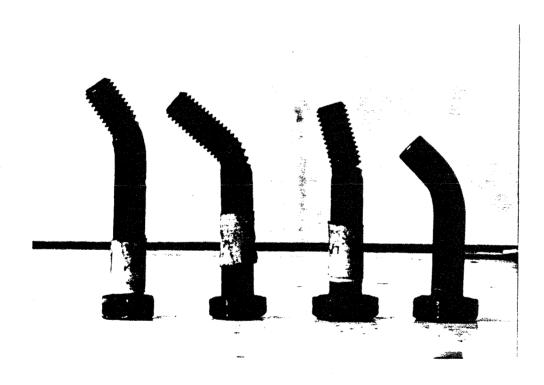



Bild 22: Schrauben nach dem Versuch

Überraschenderweise zeigte sich bei den Versuchen, daß die Biegetragfähigkeit der 4.6- und 5.6-Schrauben nahezu gleich ist. Die 5.6-Schrauben verhielten sich zum Teil spröde, was bei 4.6-Schrauben in keinem Fall beobachtet wurde. Dieses unterschiedliche Verhalten innerhalb der Festigkeitsklasse 5.6 ist auf die

Verwendung unterschiedlicher Werkstoffe bei der Schraubenherstellung zurückzuführen. Ein Teil der untersuchten Schrauben wurde aus einem Stahl C 22 (abgeschreckt und angelassen) hergestellt, diese Schrauben zeigten ein duktiles Verhalten. Schrauben, die aus einem unvergüteten C 35 gefertigt wurden, verhielten sich sehr spröde. Bild 23 zeigt die Bruchfläche einer solchen Schraube.

Ein weiterer herstellungsbedingter Unterschied zeigte weniger Einfluß auf die Tragfähigkeit: gerollte Gewinde hatten gegenüber geschnittenen im allgemeinen eine größere Oberflächengüte, und damit setzte das Einreißen am Kerbgrund offensichtlich etwas später ein. Das etwas frühere Auftreten kleiner Anrisse im Kerbgrund der Schrauben mit geschnittenen Gewinden führt aber erst bei großen Verformungen (oberhalb der definierten Grenzlast) zu einem Abfall der aufnehmbaren Lasten.

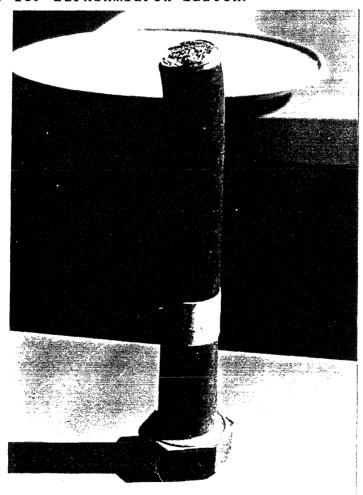



Bild 23: Sprödbruch einer Schraube M24 5.6, aus unvergütetem C35 gefertigt

## 6.2 Definition der Grenzlast

Bei der Untersuchung der Biegetragfähigkeit von Schrauben ist das Ziel die Angabe von Grenzmomenten. Da in den Versuchen Momente als Last mit einem Hebelarm aufgebracht wurden, ergaben sich zunächst Grenzlasten, die Grenzmomente ergeben sich durch Multiplikation mit den zugehörigen Exzentrizitäten.

Das unterschiedliche Verhalten der Schrauben führt zu Schwierigkeiten bei der Definition der Grenzlast. Bei duktilen Schrauben ist eine Laststeigerung auch nach dem Durchplastizieren der Schraube, aufgrund des mit zunehmender Durchbiegung abnehmenden Hebelarmes, noch weiter möglich, bis die Schraube um nahezu 90° abgeknickt ist. Aus versuchstechnischen Gründen konnten die Versuche nicht soweit gefahren werden. Die dazu gehörige Last ist jedoch wie oben beschrieben mit so großen Verformungen behaftet, daß sie ohnehin keine baupraktische Bedeutung hat. Daher wird für die Versuchsauswertung eine Grenzlast "F\*" definiert, die es möglich macht, auch spröde mit duktilen Schrauben zu vergleichen. Als Grenzlast wird die Kraft gewählt, die zu einer Gesamtverformung der Schraube mit einem Sehnendrehwinkel von  $\mathcal{S}^*=10^\circ$  führt. Die verbleibenden Tragreserven sind wegen der kleineren Steigung des Last-Verschiebungsdiagramms relativ gering.

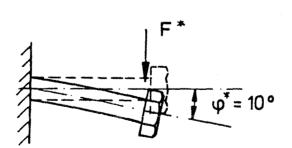



Bild 24: Definition der Grenzlast F\*

DEKIUNI NK. 00/9 SELLE 39

Bei sehr spröden Schrauben, die schon vor Erreichen einer Durchbiegung von 10° durch Bruch versagen, entspricht die Grenz-last der tatsächlichen Traglast.

Wählt man einen Sicherheitswert von r=1,5, so betragen aufgrund des nichtlinearen Verhaltens die Verformungen im Gebrauchszustand nur etwa  $1,5-3,5^\circ$ , wobei der untere Wert für Schrauben der Festigkeitsklassen 4.6 und 5.6 bei großen Exzentrizitäten und der obere Wert für Schrauben der Festigkeitsklassen 8.8 und 10.9 gilt.

## 6.3 Tragverhalten der Schrauben im Schaftbereich

Aus Vergleichsgründen wurde eine große Anzahl von Versuchen durchgeführt, die das reine Biegetragverhalten der Schrauben im Schaftbereich untersuchten. Hierbei wurden nur Versuche mit größtmöglicher Exzentrizität der Belastung gefahren, um den Einfluß der Querkraft auf das Biegetragverhalten möglichst klein zu halten. In dieser Versuchsreihe wurden keine Schrägzugversuche durchgeführt.

Die Ergebnisse der Biegeversuche im Schaftbereich der Schrauben sind in den Anlagen 44-47 und 50-51 zusammengefaßt. Es zeigte sich, daß aufgrund der fehlenden Kerbwirkung durch Gewindegänge auch die Schrauben der Festigkeitsklassen 10.9 und 8.8 ein zähes Tragverhalten aufwiesen und niemals vor Erreichen von w\* durch Bruch versagten. Erwartet wurde bei den Versuchen eine Biegetragfähigkeit in der Größe des vollplastischen Momentes, also

$$M_{Pi} = 1,7 \cdot - d^{3}_{ech} \cdot \beta_{e}$$

$$32$$

mit d.ch = Durchmesser des Schaftes

In Anlage 44-47 sind für die einzelnen Versuche die Verhältniswerte  $M^*/M_{\text{Pl},nonn}$  bzw.  $M^*/M_{\text{Pl},vorh}$  tabelliert und in Diagrammen eingetragen (Anlagen 50,51).

BERICHT NR. 6079 SEITE 40

Dabei bedeuten:

 $M^* = M^* v \cdot \cos 10^\circ \cdot 0,9 \text{ (vgl. Kap. 4.5)}$ 

M<sub>Pl,nenn</sub> = vollplastisches Moment (Sollwert) aus den Nennwerten für Durchmesser und Fließgrenze der Schrauben ermittelt (siehe Anlagen 41 und 42)

M<sub>Pl,vorh</sub> = vollplastisches Moment (Istwert) aus gemessenem

Durchmesser und aus in Zugversuchen bestimmter statischer Streckgrenze ermittelt

Die Darstellung in Anlage 51 zeigt, daß im Mittel die vorhandene Biegetragfähigkeit größer als das vorhandene vollplastische Moment ist.

Dies ist darauf zurückzuführen, daß bei Erreichen von w\* die Dehnungen in den äußeren Fasern des plastizierten Bereiches Beträge erreichen, die bereits in dem Verfestigungsbereich des Werkstoffes der Schrauben liegen.

Gerade 4.6- und 5.6-Schrauben haben daher noch Tragreserven, da die Fließgrenze ihres Werkstoffes bei ca. 60% der Zugfestigkeit liegt.

Bei einer verwendeten Schraubensorte (M24, 5.6) lag die gemessene Fließgrenze nur bei 50% der gemessenen Zugfestigkeit. Wie im Diagramm (Anlage 51) ersichtlich hat diese Schraubensorte eine Biegetragfähigkeit, die etwa 55% über dem vollplastischen Moment liegt.

Die Schrauben der Festigkeitsklassen 10.9 und 8.8 liegen mit ihren Werten der Biegetragfähigkeit relativ genau beim vollplastischen Moment.

Eine statistische Auswertung der Messwerte aus den Anlagen 44-47 ergab für  $\overline{M}$  einen Mittelwert von 1,19 und bei Zugrundelegung einer Normalverteilung eine 5% Fraktile von 0,94, d.h. die Standardabweichung beträgt 15,3 %.

Zutreffender wird die Verteilungsdichte durch eine logarithmische Normalverteilung beschrieben (vergl. Anlage 56), hierfür ergibt sich ein 5 % Fraktilwert von 0,97 und ein 50 % Fraktilwert von 1,17.

Zum Vergleich sind in Anlage 55 die gemessenen Grenzmomente auf die Sollwerte der vollplastischen Momente der einzelnen Durchmesser und Festigkeitsklassen aufgetragen.

Die Streuungen sind größer, da viele Schrauben Überfestigkeiten aufweisen. Die statistische Auswertung dieses Diagrammes ergab bei Zugrundelegung einer Normalverteilung für  $\overline{M}$  einen Mittelwert von 1,39 und eine 5% Fraktile von 0,95.

Auch hier wird die Verteilungsdichte besser durch eine log. Normalverteilung genähert (siehe Anlage 55), die Fraktilwerte betragen für 5 % 1,03 und für 50 % 1,35.

Die vorab beschriebenen Tragreserven der 4.6- und 5.6-Schrauben führen zu einer Vergrößerung der Streuung im Diagramm (Anlage 51). Diese große Streuung ist also auf einen systematischen Fehler, hier ein ungenaues Berechnungsmodell für den Bezugswert Mp1 zurückzuführen.

Im folgenden wurde daher in einer weiteren FEM-Berechnung der Schraubenschaft als Fasermodell idealisiert und die Biegetragfä-higkeit für verschiedene Spannungs-Dehnungs-Beziehungen ermittelt.

Für die Schrauben der Festigkeitsklassen 10.9 und 8.8 genügt die Ermittlung der Biegetragfähigkeit mit einem bilinearen Werkstoffgesetz (Verfestigungsmodul gleich null), hier ist der Bezug auf das vollplastische Moment also ausreichend.

Für die Schrauben der Festigkeitsklassen 4.6 und 5.6 wurde ein trilineares Werkstoffgestz verwendet; für die 4.6-Schrauben ein linearer Verlauf der Verfestigung von 240 N/mm² bei einer Dehnung 20 ‰ (Lüdersdehnung) bis 400 N/mm² bei 200 ‰ (Gleichmaßdehnung) verwendet, davon abweichend wurde für die 5.6-Schrauben von 160‰ als Gleichmaßdehnung ausgegangen (vergl.[15]).

Bei den Berechnungen wurde die Last solange gesteigert, bis sich (bei einem e/d-Verhältnis von 5,0) eine Sehnenverdrehung des Schraubenschaftes von  $\mathcal{S}$  ergab. Gegenüber dem vollplastischen Moment (bilineares Werkstoffverhalten) ergaben sich unabhängig vom Schaftdurchmesser die Laststeigerungsfaktoren (im folgenden mit  $\overline{M}_{V,f}$  bezeichnet) 1,24 für 4.6- und 1,26 für 5.6-Schrauben. Ein Berechnungsbeispiel ist als Anlage 60 - 68 beigefügt.

Schrauben der Festigkeitsklasse A4-70 konnten in diesem Zusammenhang nicht untersucht werden, da keine zuverlässigen Angaben über den wahrscheinlichen Verlauf des Verfestigungsbereiches der Arbeitslinie vorlagen.

Dividiert man die Werte für M der 4.6- und 5.6- Schrauben in der Anlage 51 durch den zugehörigen Wert für Mvf, so ergibt sich das Diagramm in Anlage 53. Der Mittelwert der bezogenen Biegetragfähigkeit liegt nun bei 1,05, die Verteilung der Einzelwerte läßt sich hier gut durch eine Normalverteilung mit 9,7 % Standardabweichung beschreiben, es ergibt sich ein 5 % Fraktilwert von 0,89 (s. Anlage 58). Die hier noch auftretende deutlich kleinere Streuung der Versuchsergebnisse kann als Streuung der Materialkennwerte aufgefaßt werden, der unterschiedliche Verfestigungseinfluß wurde eliminiert.

Eine Berücksichtigung dieser erhöhten Biegetragfähigkeit durch partielle Verfestigung von Schrauben mit großem Verhältnis  $\beta_z/\beta_s$  erscheint (auch im Hinblick auf die Gebrauchsfähigkeit) für Bemessungsvorschriften wenig zweckmäßig, neben dem hohen numerischen Aufwand zur Ermittlung der Werte für  $\overline{M}_{V,f}$  würde dies eine Unterscheidung der verschiedenen Festigkeitsklassen erfordern.

## 6.4 Einfluß der Einschraubtiefe

Wie in Kapitel 5.3 erwähnt, hat die Anwesenheit von freien Gewindegängen außerhalb der Einspannung großen Einfluß auf den Spannungszustand im Gewindebereich. Die hohen Kerbspannungen ergeben sich einmal aus der Einschnürung des Schraubenquerschnittes am Übergang vom Schaft zum Gewindebereich und zum anderen aus der Gewindeflankenbelastung am Ort der Einspannung. Bei der Einspannung in der 1. Kerbe treffen beide Ursachen zusammen. Liegen mehrere freie Gewindegänge vor, so treten die hohen Kerbspannungen in der 1. Kerbe sowie am Ort der Einspannung auf. Die dazwischen liegenden Kerben haben ein deutlich niedrigeres Spannungsniveau.

Um den Einfluß der Einschraubtiefe zu erfassen, wurde eine große Anzahl von Versuchen durchgeführt, in denen Schrauben verschiedener Festigkeitsklassen und verschiedenen Durchmessers belastet wurden. Der Ort der Einspannung wurde variiert und lag in den Kerben 1 bis 10. Dabei wurde der Hebelarm der Belastung so groß gewählt, daß die Querkraft offensichtlich noch keinen Einfluß auf die Biegetragfähigkeit der Schraube hatte.

Von denselben Schrauben wurden danach die Gewinde und der plastizierte Schaftbereich abgesägt. An den verbleibenden Schaftteilen wurden Biegeversuche durchgeführt. Es wurde die gleiche Versuchseinrichtung wie bei den eingeschraubten Schrauben verwendet, hier wurden die Schraubenschäfte in gewindefreie Löcher gesteckt. Damit bestand die Möglichkeit, die Biegetragfähigkeit der Schrauben im Gewindebereich unmittelbar mit der Tragfähigkeit im Schaftbereich zu vergleichen. Unter der Voraussetzung, daß im Schaft- und Gewindebereich identische Werkstoffkennwerte und Arbeitslinien vorliegen, ergibt sich die Möglichkeit, die reine Geometrieabhängigkeit der Tragfähigkeit zu bestimmen.

Wie jedoch die relativ großen Streuungen der Versuche vermuten ließen, ist dies leider nicht für alle Schrauben der Fall.

In den Anlagen 74-77 sind die Ergebnisse aufgetragen. Auf der Abszisse ist die Einschraubtiefe verzeichnet, auf der Ordinate die bezogene Biegetragfähigkeit  $\overline{\mathbf{M}}$ .

## Dabei ist: $M = M^*_{KERB} / M^*_{SCHAFT}$

Im durchplastizierten Zustand haben die Kerbspannungen nur geringen Einfluss auf die Höhe des plastischen Momentes, das Bruchkriterium wird durch die großen Dehnungen im Kerbgrund jedoch früher erreicht. Für den Gewindebereich, in dem der Übergang vom Schaft zum Gewinde keine Rolle mehr spielt, ist daher theoretisch für das bezogene Moment das Verhältnis der plastischen Widerstandsmomente in Gewinde- und Schaftbereich zu erwarten, letztendlich also  $d_{*,p}^{-3}$  /  $d_{*,ch}^{-3}$ , wobei der Gewindequerschnittsbereich durch den Spannungsquerschnitt mit dem Durchmesser  $d_{*,p}^{-1}$  ersetzt wird.

Dieses Verhältnis ist für die verschiedenen Schraubendurchmesser in Tabelle 2 eingetragen.

Vergleich Schaftbereich - Gewinde

|   |    | dsch | d s p | $d_{sp}^3/d_{sch}^3$ |
|---|----|------|-------|----------------------|
| M | 6  | 6    | 5, 06 | 0,60                 |
| M | 12 | 1 2  | 10,36 | 0,64                 |
| M | 20 | 20   | 17,65 | 0,69                 |
| M | 24 | 24   | 21,19 | 0,69                 |
| M | 27 | 27   | 24,19 | 0,72                 |
| M | 30 | 30   | 26,72 | 0,71                 |

Tabelle 2. Verhältnis der Widerstandsmomente im Gewinde- und Schaftbereich

Diese Verhältniswerte sind als Linien in die Anlagen 74-77 eingetragen. Man erkennt, daß bei der Einspannung in der ersten Kerbe der Mittelwert der Biegetragfähigkeit deutlich über dem o.g. Verhältniswert liegt, während mit der Zunahme der freien Gewindegänge der Mittelwert der Biegetragfähigkeit gegen diesen Verhältniswert strebt. Ab ca. 4-5 freien Gewindegängen ist keine weitere Änderung mehr ersichtlich.

Auffällig sind die Werte für Versuche mit A4-70-Schrauben sowie mit 4.6-Schrauben des Durchmessers M 6. Sie liegen deutlich über den Werten der anderen Schrauben.

Bei mit diesen Schrauben durchgeführten Ganzzugversuchen zeigte sich die Erklärung: Diese Schrauben hatten durch das Aufrollen des Gewindes einen stark verfestigten Gewindebereich, im Ganzzugversuch versagten sie im Schaftbereich, während der Gewindebereich nicht sichtbar plastizierte!

Damit wird auch die erhöhte Biegetragfähigkeit im Gewindebereich verständlich.

(In der Regel wird die beim Aufrollen des Gewindes auftretende Verfestigung durch eine Wärmebehandlung rückgängig gemacht, so daß die erhöhte Biegetragfähigkeit im Gewindebereich bei den meisten Schrauben mit gerolltem Gewinde nicht auftrat!)

Die beiden folgenden Fotos zeigen einen Teil der Schrauben, mit denen Ganzzugversuche durchgeführt wurden. Bild 25 zeigt Schrauben des Durchmessers M6. Hier versagten die Schrauben der Festigkeitsklassen A4-70 und 4.6 im Schaftbereich, die Schraube, die im Gewindebereich durch Bruch versagte, gehört der Festigkeitsklasse 8.8 an. Auf Bild 26 sind Schrauben des Durchmessers M12 zu sehen. Ganz links im Bild befinden sich zwei Schrauben der Festigkeitsklasse klassen A4-70. Sie versagten bei den Versuchen im Schaftbereich, während sich die übrigen Schrauben im Gewindebereich einschnürten. Bei den Schrauben mit den Nummern 18 und 19 begann der Schaftbereich zu plastizieren, als sich der Gewindebereich zu verfestigen begann.

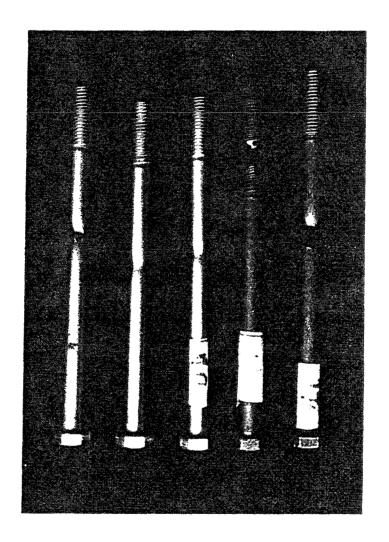



Bild 25: Schrauben M6 nach dem Ganzzugversuch

- a) c) Festigkeitsklasse A4-70
- d) Festigkeitsklasse 8.8
- e) Festigkeitsklasse 4.6

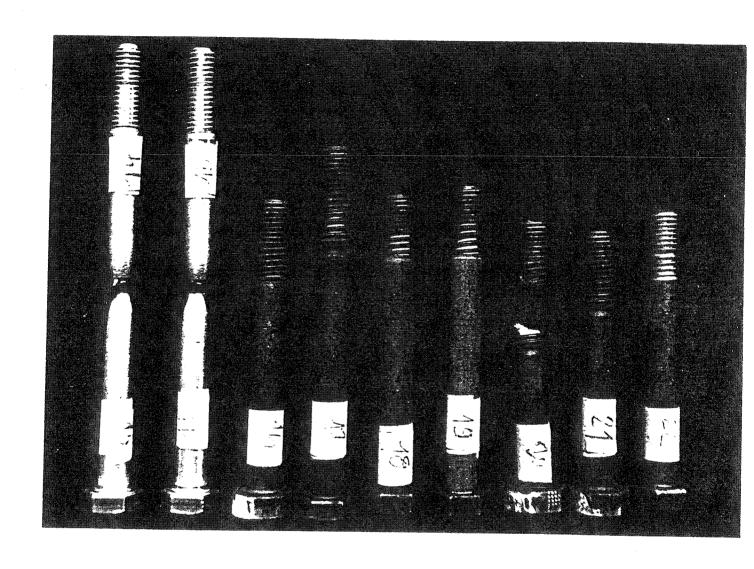



Bild 26: Schrauben des Durchmessers M12 nach dem Ganzzugversuch

| Nr. | 14-15 | Festigkeitsklasse | A4-70 |          |
|-----|-------|-------------------|-------|----------|
| Nr. | 16    | mp P8             | 10.9  | (AF)     |
| Nr. | 17    | etros P2 mero     | 8.8   |          |
| Nr. | 18-19 | -775 PF -4457     | 4.6   |          |
| Nr. | 20-21 | acts (FE) with    | 10.9  | (Peiner) |
| Nr. | 22    | Festigkeitsklasse | 5.6   |          |

Analog zu der Auswertung der Versuche im Schaftbereich der Schrauben wurde nun auch eine Auswertung im Gewindebereich der Schrauben durchgeführt. Um eine Verzerrung der Ergebnisse nach oben zu vermeiden, wurden alle Versuchsergebnisse mit erhöhter Tragfähigkeit vernachlässigt, also die Versuche mit weniger als vier freien Gewindegängen außerhalb der Einspannung, sowie die oben beschriebenen Versuche an Schrauben mit auffällig verfestigtem Gewindebereich.

In den Anlagen 48-49,52 sind die Ergebnisse zusammengestellt. Wie schon bei den Versuchen im Schaftbereich wurden die Grenzmomente zunächst auf das vollplastische Moment (hier Spannungsgerschnittes) bezogen. Die statistischen Kennwerte gehen aus Anlage 57 hervor, für eine Normalverteilung beträgt die Standardabweichung 22,5 % und der 5 % Fraktilwert liegt bei 0,94, eine dem Histogramm besser angepaßte logarithmische verteilung liegt die 5 % Fraktile bei 0,97. Auch hier ergaben sich wieder sehr große Streuungen, vor allem die 4.6- und Schrauben zeigten eine mittlere Biegetragfähigkeit, die das zugehörige vollplastische Moment deutlich übertraf. Dies ist wieder auf die Verfestigung der Randfasern zurückzuführen. Im folgenden wurde daher der Verfestigungseffekt mit den in Kapitel 6.3 gebenen Laststeigerungsfaktoren Mv; rückgerechnet.

Es ergibt sich auch hier eine deutliche Verringerung der Streuung, der Mittelwert liegt bei 1,12 und für eine Normalverteilung ergibt sich eine Standardabweichung von 13,7 % und damit ein 5 % Fraktilwert von 0,89 (Anlage 59).

Um die unterschiedlichen Festigkeitsklassen in einer Bemessungsvorschrift zusammenfassen zu können, werden im Kapitel 7 die Tragreserven der Schrauben mit großem Verfestigungspotential im Rahmen der vorgeschlagenen Bemessungsvorschrift nicht berücksichtigt.

## 6.5 Einfluß des Hebelarmes, M-Q-Interaktion

Wie im Kapitel 3.1.3 erläutert, lagen die in den Versuchen realisierten e/d Verhältnisse etwa zwischen 1,0 und 8,0.

Da die Schrauben bei Einspannung in den Kerben 1 bis 3 eine höhere Tragfähigkeit aufweisen als bei Einspannung im übrigen Gewindebereich (vergl. Kap. 6.4), wurden solche Versuche in der folgenden Auswertung nicht mit berücksichtigt.

In den Anlagen 78-80 sind Versuche zusammengefaßt, die mindestens 4 freie Gewindegänge während der Versuche aufwiesen, so daß der Übergang vom Schaft in den Gewindebereich keine Rolle mehr spielt.

In den Diagrammen (Anlagen 81-82) sind für die Versuche folgende dimensionslosen Parameter dargestellt:

Abszisse e/d (Verhältnis von Exzentrizität zu Durchmesser)

Ordinate 
$$\overline{M} = \frac{M^*_{v,kerb}}{M^*_{v,sch}} \cdot \frac{d_{sch}^3}{d_{se}^3}$$

M gibt hier also den im Versuch gemessenen Wert für das Grenzbiegemoment an, bezogen auf die im Verhältnis der Widerstandsmomente in Gewinde- und Schaftbereich abgeminderte Tragfähigkeit der Schrauben im Schaftbereich.

Bei der Betrachtung des Diagrammes in Anlage 81 fällt ein gleichmäßig gefülltes Streuband für M-Werte zwischen 0,9 und 1,20 auf. Darüber liegen noch einmal Werte zwischen 1,4 und 1,6. Diese Werte sind den Schrauben zuzuordnen, die im Gewindebereich eine höhere Festigkeit als im Schaftbereich aufweisen (vgl. Seite 43). Ein Einfluß der Querkraft auf die Biegetragfähigkeit ist bei den untersuchten Verhältnissen nicht zu erkennen.

Eine Interaktionsformel für die M-Q Interaktion anzugeben bereitet gewisse Schwierigkeiten, da das Grenzmoment in Abhängigkeit von der Fließgrenze  $\beta_{\bullet}$  und die Grenzabscherkraft in Abhängigkeit von der Zugfestigkeit  $\beta_{z}$  der Schrauben berechnet wird. Auch das

Grenzmoment auf die Zugfestigkeit zu beziehen hätte den Nachteil, daß man bei der Berechnung des Grenzmomentes 4.6-(u.5.6-), 8.8-und  $10.9-Schrauben unterschiedlich behandeln müßte, da sie unterschiedliche Verhältnisse <math>\beta_{\bullet}/\beta_{z}$  haben.

Benutzt man nun trotzdem die Fließbedingung nach v. Mises für die Beschreibung der M-Q Interaktion (und liegt damit für den Fall des reinen Abscherens etwa um den Faktor  $\beta_z/\beta_s$  auf der sicheren Seite) erhält man das in Anlage 82 dargestellte Bild. Hierbei wurden in die Fließbedingung

$$\sigma_{v} = \sqrt{\sigma_{x}^{2} + 3\tau^{2}}$$

die Spannung aus Schub und Moment

$$\sigma_{x} = M/W_{*1} = \frac{M \cdot 32}{1,7 \cdot \pi \cdot d^{3}}$$

$$\tau = Q/A = \frac{4 \cdot Q}{\pi \cdot d^2}$$

eingesetzt und so umgeformt, daß eine Beziehung zwischen M und e/d entsteht, wie sie in Anlage 62 (durchgezogene Kurve) aufgetragen ist.

Es ergibt sich

$$M = \frac{18,82 \cdot (e/d)}{\sqrt{354 \cdot (e/d)^2 + 48}}$$

Die Kurve zeigt deutlich, daß für e/d größer als 2,0 die Querkraftinteraktion vernachlässigbar ist, für e/d-Werte zwischen 1,0 und 2,0 spielt sie nur eine untergeordnete Rolle. Dies deckt sich mit den Ergebnissen der Versuche. Der Bereich für e/d Werte kleiner als 1,0, in dem der Einfluß der Querkraft auf die Momententragfähigkeit von Bedeutung ist, konnte im Rahmen dieses Forschungsvorhabens nicht mehr näher untersucht werden. Reine Schubbeanspruchung kommt praktisch nicht vor. Selbst bei zweischnittigen Schraubenverbindungen, die so bemessen wurden, daß das Abscheren der Schraube maßgebend (also Lochleibung ausgeschlossen) ist, liegt in der Scherfuge eine Biegebeanspruchung allein aus dem Hebelarm der lasteinleitenden Lasche vor. Zur genauen Berechnung der Momentenbelastung ist eine genaue Kenntnis der Spannungsverteilung in der lasteinleitenden Lasche nötig. Bei Annahme einer konstanten Spannungsverteilung liegt der minimale e/d Wert bei 0,15. Bei Verwendung dickerer Laschen oder Futterblechen kann der e/d Wert rasch anwachsen. So enthalten die experimentell gefundenen Werte für die Grenztragfähigkeit bei Schubbeanspruchung immer gewisse Biegeanteile.

## 6.6 Einfluß der Normalkraft, M-N-Interaktion

Der Einfluß der Normalkraft wurde durch Schrägzugversuche (beschrieben im Kapitel 4.4) untersucht. Neben den Winkeln der Belastung (30° und 60°) wurden auch die Hebelarme variiert. Die Belastungsexzentrizität war jedoch immer so groß, daß eine Beeinflussung der Versuchsergebnisse durch Querkraft gering gehalten wurde (e/d > 2,0).

Bei der gleichzeitigen Beanspruchung durch Biegung und Zug resultiert bei der vorgegebenen Belastungsanordnung der größere Teil der Normalspannungen aus den Biegemomenten, daher wurden bei den Versuchen nur bezogene Normalkräfte

$$\overline{N} = \frac{N_v^*}{\overline{N}} = 0, 1 \text{ erreicht.}$$

Dabei bedeuten:

 $N_v$ \*: Normalkraft im Versuch bei Erreichen von  ${\cal P}$ \*

 $N_u$ : Bruchkraft im Ganzzugversuch

In den Anlagen 83 bis 95 sind die Versuchsergebnisse tabelliert und in Diagrammen aufgetragen.

In den Diagrammen liegt der Wert  $\overline{N}=0$  auf der Abszisse nicht im Schnitt mit der Ordinate damit zur besseren Übersichtlichkeit die Werte der normalkraftfreien Versuche ( $f_o=0^\circ$ ) nicht auf der Ordinate liegen.

In den Diagrammen bedeutet

$$\widetilde{M} = \frac{M^*_{v,kerb}}{d_{sp}^3} \cdot \frac{d_{sp}^3}{d_{sch}^3}$$

Trotz der aufgetretenen Streuung ist deutlich ein Einfluß der Normalkraft erkennbar.

INSTITUT FÜR STAHLBAU DER TECHNISCHEN UNIVERSITÄT BRAUNSCHWEIG

BERICHT NR. 6079

Eine einfache lineare Interaktionsbeziehung läßt sich wie folgt formulieren:

$$B_s = N/A_{sp} + M/W_{Pl}$$

mit 
$$\overline{M} = M/(W_{P1} \cdot B_s)$$

und 
$$\overline{N} = N/(A_{sp} + B_z)$$

ergibt sich 
$$\overline{M} = 1 - \overline{N} \cdot 1/(\beta_s/\beta_z)$$

Diese Geraden sind für  $\beta_*/\beta_z = 0$ , 9 (10.9-Schrauben) und für  $\beta_*/\beta_z = 0$ , 6 (4.6-, 5.6-Schrauben) in den Anlagen 93 bis 96 in die Diagramme mit den Versuchsergebnissen eingezeichnet. Die o.g. Beziehung beschreibt den Einfluß der Normalkraft im untersuchten Bereich recht gut, genauere Aussagen lassen die Streuung der Versuche und die Beschränkung von  $\overline{N}$  in den Versuchen auf Werte unter 0,1 nicht zu.

Die oben angegebene lineare Interaktionsbeziehung liegt auf der sicheren Seite, da M-N-Interaktionen im plastischen Bereich im allgemeinen "fülliger" sind.

#### 7 BEWERTUNG DER ERGEBNISSE, NORMENVORSCHLAG

#### 7.1 Allgemeines

Die vorausgehenden Überlegungen lassen sich wie folgt zusammenfassen:

Bei Schrauben mit planmäßiger Biegebeanspruchung muß unterschieden werden, ob die maximale Beanspruchung im Schaft- oder Gewindebereich auftritt.

Die im folgenden angegebenen charakteristischen Werte für die Biegetragfähigkeit der Schrauben enthalten keine Sicherheitsbeiwerte.

#### a) maximale Beanspruchung im Schaftbereich.

In diesem Fall liegen einfache Verhältnisse vor, da Kerbspannungseinflüsse entfallen. Die Schrauben erreichen schon bei Verdrehwinkeln von ca. 10° ihre vollplastischen Momente, da zwar innenliegende Fasern noch nicht fließen, außenliegende Fasern (die größeren Einfluß auf das Moment haben) aber bereits in den Verfestigungsbereich kommen.

Die Schrauben aller hier untersuchten Festigkeitsklassen weisen keine Gefahr von Sprödbrüchen im Schaftbereich auf. Als Grenzlast wird eine Last mit der zugehörigen Sehnenverdrehung der Schraube von 10° festgelegt.

Die in den Versuchen ermittelten Grenzmomente der Schrauben lagen im Mittel über dem vollplastischen Moment, unter Berücksichtigung der 5%-Fraktile der ermittelten Grenzmomente ergal sich folgender Wert für M\* im Schaftbereich (vergl Kap. 6.3):

$$M_s$$
 = 0,97 • WP1, sch •  $\beta_s$ 

 $\operatorname{mit}$ 

$$W_{P1,sch} = 1,7 \cdot \pi/32 \cdot d_{sch}^{3}$$

BERICHT NR. 6079 SEITE 55

Im Normenvorschlag wird der Wert für das charakteristische Moment  $M_k$  auf der sicheren Seite liegend zur Vereinfachung auf

$$M_k = 0.90 \cdot W_{Pl,sch} \cdot Bs$$

abgemindert.

Damit ergibt sich für das Grenzmoment:

$$M_{gr} = 0.90 \cdot W_{Pl,sch} \cdot Bs / \gamma_{H}$$

Eine Querkraft - Interaktion braucht für e/d Werte größer als 1,0 nicht berücksichtigt zu werden.

Bei Zugkraft-Interaktion ist das Grenzmoment folgendermaßen abzumindern:

$$M_{ur} = 0,90 \cdot W_{Pl} \cdot B_{e} \cdot (1 - N/N_u) / T_{H}$$

mit  $N_u = A_{*, \bullet} \cdot B_z$  (A<sub>\*, \epsilon</sub> = Spannungsquerschnitt)

#### b) Maximale Beanspruchung im Gewindebereich

Hier müssen zwei Fälle unterschieden werden:

- Die Einspannung liegt direkt am Übergang Schaft-Gewinde (Belastung 1. Kerbe)
- 2) Es liegen freie Gewindegänge zwischen Schaft und Einspannung (Belastung n. Kerbe)

Betrachtet wird zunächst der zweite Fall:

Die Schrauben weisen aufgrund der Entlastungswirkung der freien Gewindegänge ein ausreichend duktiles Verhalten auf, bei keinem der Versuche kam es vor Erreichen von f zum Bruch.

INSTITUT FÜR STAHLBAU DER TECHNISCHEN UNIVERSITÄT BRAUNSCHWEIG

BERICHT NR. 6079 SEITE 56

In den Versuchen (vgl. Kap. 5.3) wurde eine mittlere Grenztragfähigkeit im Gewindebereich von

$$Ms_P$$
 =  $Ms_{ch}$  \*  $(ds_P^3/ds_{ch}^3)$ 

gefunden, wobei  $d_{SP}$  für den mittleren Durchmesser-im Gewindebereich steht ( $d_{SP}$  wird zur Berechnung des Spannungsquerschnittes verwendet).

Vernachlässigt man auf sicherer Seite die Versuche, die durch Aufrollen des Gewindes eine z.T. erheblich höhere Tragfähigkeit im Gewindebereich besitzen, so ergibt sich analog zum Schaftbereich ein Grenzmoment von

$$M_{gr,sp} = 0,90 \cdot W_{PL,sp} \cdot Bs / \gamma_{H}$$

mit 
$$W_{P1,SP} = 1,7 \cdot \pi/32 \cdot d_{SP}^3$$

Das oben angegebene  $M_{er}$ , pliegt damit unterhalb des 5%-Fraktilwertes der gemessenen Grenzmomente im Gewindebereich (vergl Kap. 6.4, Seite 48).

Bei gleichzeitig auftretender Belastung aus Normal- oder Querkräften gelten dieselben Aussagen bzw. Zusammenhänge wie im Schaftbereich:

Eine Querkraft-Interaktion braucht für e/d Werte größer als 1,0 nicht berücksichtigt zu werden.

Die Normalkraft-Interaktion ist wie auf Seite 52 angegeben zu berücksichtigen.

Wenn das maximale Biegemoment direkt am Übergang zwischen Schaft und Einspannung liegt (Einspannung in der 1. Kerbe) tritt häufig ein Versagen durch Sprödbruch ein, bei einigen GILL OIL IVII. GOVS

Schrauben der Festigkeitsklassen 10.9 und 8.8 auch schon vor Erreichen des Grenzwinkels  $f^*$ . Gleichzeitig liegt die Tragfähigkeit im diesem Falle deutlich über der Tragfähigkeit im Falle mehrerer vorliegender freier Gewindegänge.

So können auch in diesem Bereich die Bemessungsvorschläge für den Gewindebereich angewendet werden.

Die ermittelten Biegetragfähigkeiten liegen damit deutlich über den zulässigen Biegebeanspruchungen für Schrauben und Gewindebolzen bei Metallspreizdübeln und Schwerlastankern (zul  $M = W_{\bullet, 1} \cdot \beta_{\bullet}$  /1,5). Die angegebene Zugkraftinteraktion sowie die in der Regel nicht zu berücksichtigende Querkraftinteraktion entsprechen den Zulassungsangaben.

An dieser Stelle sei noch einmal ausdrücklich darauf hingewiesen, daß alle Ergebnisse nur für den statischen Fall gelten, und Aussagen über Dauerfestigkeit bei wechselnder Beanspruchung nicht gemacht werden können.

## 7.2 Entwurf eines Normtextes

Schrauben mit planmäßiger Biegebeanspruchung bei ruhender Belastung.

## Grenzbiegemoment

Das Grenzbiegemoment Mer von Schrauben ist

$$M_{\text{gr}} = 0,90 \text{ WpL} \cdot \beta_{\text{S}} / \gamma_{\text{M}}$$
 (1)

mit

$$W_{PL} = 1, 7 \cdot \pi / 32 \cdot d^3$$
. (2)

Hierbei ist für d der Schaftdurchmesser  $d_{*ch}$  einzusetzen, wenn der Schaft im Bereich der Biegebeanspruchung liegt. Liegt Biegebeanspruchung auch im Gewinde vor, so ist beim Nachweis des Gewindebereiches für d der Durchmesser des Spannungsquerschnittes  $d_{*ch}$  einzusetzen.

# Interaktion Biegung und Abscheren

Eine Querkraftinteraktion braucht für

e/d > 1,0 bzw. M  $/(Q \cdot d) > 1,0$ 

nicht berücksichtigt zu werden.

ون بديين

Interaktion Biegung und Zug

Bei Zugkraft-Interaktion ist das Grenzmoment  $M_{\bullet,r}$  auf  $M^{\bullet,}_{\bullet,r}$  folgendermaßen abzumindern:

$$M^*_{gr} = M_{gr} \cdot (1 - N/N_u)$$
 (4)

mit  $N_u = A_{sp} \cdot B_z / \gamma_H$  (A<sub>sp</sub> = Spannungsquerschnitt)

Im Gewindeteil der Schraube sind für  $W_{\text{PL}}$  und d die Werte des Spannungsquerschnittes einzusetzen.

8 ZUSAMMENFASSUNG

Schrauben mit planmäßiger Biegebeanspruchung sind häufig eingesetzte Verbindungsmittel im gesamten Bauwesen. Beispiele hierfür sind z.B. Fassadenabhängungen mit Hilfe von Metallspreizdübeln, Konstruktionen mit Futterblechen im Stahlbau, Verbindungen im Gerüstbau.

Im Rahmen des vorliegenden Forschungsvorhabens wurden theoretische und praktische Untersuchungen durchgeführt, die zur Klärung des Tragverhaltens von Schrauben mit Biegebeanspruchung dienten. Ferner wurden innerhalb gewisser Grenzen die Wirkung gleichzeitiger Beanspruchung durch Quer- und Zugkräfte untersucht.

Die Ergebnisse werden als Normvorschlag dargestellt und sind als Ergänzung für DIN 18800 Teil 1 vorgesehen.

Prof.Dr.-Ing.J.Scheer

Leiter der Abteilung

Stahlbau

Dr.-Ing. U.Peil

Projektleiter

Dipl.-Ing. H.Nölle

Sachbearbeiter

## 9 LITERATURVERZEICHNIS

- Scheer, J.; Peil, U.; Paustian, O.:
  Zum Tragverhalten einschnittiger, ungestützter
  Einschraubverbindungen
  Bauingenieur 59 (1984) 389 396.
- Scheer, J.; Peil, U.; Paustian, O.: Einfache Schraubverbindungen. Ber. Nr. 6061 Inst. Stahlbau, TU Braunschweig 1980.
- Scheer, J.; Peil, U.; Paustian, O.:
  Einfache Schraubverbindungen. Ber. Nr. 6064
  Inst. Stahlbau, TU Braunschweig 1983.
- Fischer, J.-W.; Struick, J. H. A.;
  Guide to Design Criteria for Bolted and Riveted Joints.
  New York, London, Sydney, Toronto. J. Wiley & Sons 1974.
- Scheer, J.; Maier, W.; Paustian, O.:
  Statistik, Planung und Auswertung von Versuchen an geschraubten Verbindungen. Ber. Nr. 6065
  Inst. Stahlbau, TU Braunschweig
- Scheer, J.; Maier, W.; Paustian, O.:

  Experimentelle und theoretische Untersuchungen zum Tragverhalten von Trägerklemmen

  Bauingenieur 59 (1984) 415 421.
- 7 Scheer, J.; Peil, U.; Grüter, A.:
  Untersuchungen zu Ursachen des Lockerns von Trägerklemmen
  Ber. Nr. 6068, Inst. Stahlbau, TU Braunschweig 1983.
- 8 Utscher, G.:
  Beurteilungsgrundlagen für Fassadenverankerungen
  W. Ernst u. Sohn.

- 9 Feldmann, H.:
  Spannungsberechnung an Gewinden von Schraube- MutterVerbindungen mittels der Methode der Finiten Elemente.
  Diss. TU Braunschweig 1981
- 10 Kober, A.:
  Schäden an großen Schraubenverbindungen. Der Maschinenschaden, 59. Jahrgang, Heft 1, (1986). Allianz Versicherungs AG.
- 11 Neuber, H.:
  Über die Spannungsverteilung in Zahnstangen
  Forsch. Ing. Wesen Bd. 29 (1963) S. 176 181.
- Neuber, H.:Kerbspannungslehre3. Aufl. Springer-Verlag, Berlin
- 13 Schmid, J.:

  Beitrag zur genaueren Bestimmung des Kerbfaktors von Schraube-Mutter-Verbindungen
  Diss. TU München 1974.
- 14 Bretl, J.L.:

  Modelling the Load Transfer in Threaded Connections by the Finite Element Method

  Int. Journ. Num. Meth. Eng. (1979) S. 1359 1377.
- 15 Scheer, J.; Maier, W.; Rohde, M.:

  Zur Beschreibung des mechanischen Verhaltens von Baustahl
  Bericht 6087, Inst. Stahlbau, TU Braunschweig 1987

# -Vorversuche-

| Versuch | Hersteller | Festigk.<br>klasse | D E  | xzentr | Einschr.<br>tiefe | - F* | M*    |
|---------|------------|--------------------|------|--------|-------------------|------|-------|
|         |            |                    |      | [mm]   | [Kerbe]           | [kN] | [Nm]  |
|         |            |                    |      |        |                   |      |       |
| 0 1     | Friedb.    | 10.9               | 16   | 90     | 1.K.              | 7.6  | 684   |
| 02      | Friedb.    | 10.9               | 16   | 90     | 1.K.              | 7.8  | 702   |
| 03      | Peiner     | 10.9               | 16   | 40     | 1.K.              | 17.0 | 680   |
| 04      | Peiner     | 10.9               | 16   | 45     | 1.K.              | 13.8 | 621   |
| 0.5     | Peiner     | 10.9               | 16   | 52     | 4.K.              | 10.3 | 535   |
| 06      | Friedb.    | 10.9               | . 16 | 51     | 1.K.              | 15.1 | 770.1 |
| 07      | Friedb.    | 10.9               | 16   | 50     | Schaft            | 13.9 | 695   |
| 08      | Fuchs      | 4.6                | 16   | 81     | 1.K.              | 3.3  | 267.3 |
| 09      | Fuchs      | 4.6                | 16   | 80     | 1.K.              | 3.2  | 256   |
| 10      | Fuchs      | 4.6                | 16   | 48     | 1.K.              | 6.8  | 326.4 |
| 1 1     | Fuchs      | 4.6                | 16   | 46     | Schaft            | 7.5  | 345   |
| 12      | SM         | 4.6                | 16   | 35     | 1.K.              | 9.7  | 339.5 |
| 13      | SM         | 4.6                | 16   | 49     | 6.K.              | 5.1  | 249.9 |
| 14      | SM         | 4.6                | 16   | 36     | 1.K.              | 9.3  | 334.8 |
| 15      | Fuchs      | 4.6                | 24   | 68     | 1.K.              | 13.2 | 897.6 |
| 16      | Fuchs      | 4.6                | 24   | 78     | 5.K.              | 9.1  | 709.8 |
| 17      | Peiner     | 10.9               | 24   | 87     | 1.K.              | 24.8 | 2158  |
| 18      | Peiner     | 10.9               | 24   | 86     | 1.K.              | 27.1 | 2331  |
| 19      | Peiner     | 10.9               | 24   | 86     | 4.K.              | 23.9 | 2055  |
| 20      | Thyssen    | 4.6                | 24   | 48     | 1.K.              | 15.7 | 753.6 |
| 21      | Thyssen    | 4.6                | 24   | 48     | 4.K.              | 14.6 | 700.8 |
| 22      | Thyssen    | 4.6                | 24   | 48     | 4.K.              | 13.6 | 652.8 |
| 23      | Peiner     | 10.9               | 24   | 38     | 1.K.              | 57.5 | 2185  |
| 24      | Peiner     | 10.9               | 24   | 38     | 1.K.              | 58.9 | 2238  |
| 25      | Peiner     | 10.9               | 24   | 40     | 6.K.              | 54.5 | 2180  |
| 26      |            | 4.6                | 12   | 46     | 1.K.              | 2.8  | 128.8 |
| 27      |            | 4.6                | 12   | 46     | 1.K.              | 3.0  | 138   |
| 28      |            | 4.6                | 12   | 46     | 6.K.              | 1.9  |       |
| 29      | Peiner     | 10.9               | 12   | 52     | 1.K.              | 5.0  | 260   |
| 30      | Peiner     | 10.9               | 12   | 52     | 1.K.              | 5.0  | 260   |

| Versuch 'He | ersteller | Festigk<br>klasse | D Exzentr. |    | Einschr<br>tiefe | F*   | M*    |
|-------------|-----------|-------------------|------------|----|------------------|------|-------|
|             |           |                   | [mm] [m    | m] | [Kerbe]          | [kN] | [Nm]  |
|             |           |                   |            |    |                  |      |       |
| 31          | Peiner    | 10.9              | 12         | 52 | 3.K.             | 3.8  | 197.6 |
| 32          | Fuchs     | 4.6               | 12         | 89 | 1.K.             | 1.1  | 97.9  |
| 33          | Fuchs     | 4.6               | 12         | 89 | 1.K.             | 1.4  | 124.6 |
| 34          | Fuchs     | 4.6               | 12         | 90 | 5.K.             | 1.1  | 99    |
| 35          | Verbus    | 10.9              | 12         | 82 | 1.K.             | 3.8  | 311.6 |
| 36          | Verbus    | 10.9              | 12         | 82 | 1.K.             | 3.4  | 278.8 |
| 37          | Verbus    | 10.9              | 12         | 83 | 4.K.             | 2.7  | 224.1 |

# Tabelle\_der\_Versuchsparameter

| Versuch | Din Herst. | Festigk<br>klasse | ·- D Exz. E | inschr<br>iefe | F* M*     | Bem.             |
|---------|------------|-------------------|-------------|----------------|-----------|------------------|
|         | ,          |                   | [mm] [mm] [ | Kerbe] [       | [kN] [Nm] | Herstellierjahre |
| 001     | 7990 Fuchs | 5.6               | 12 22       | 1.K (4         | .6)(101)  | H2/H4            |
| 002     | 7990 Fuchs | 5.6               | 12 22       | 1.K 5          | .9 130    | H21H4            |
| 003     | 7990 Fuchs | 5.6               | 12 21       | 1.K 5          | .6 118    | H21H4            |
| 004     | 7990 Fuchs | 5.6               | 12 21       | 1.K 5          | .4 113    | 42144            |
| 005     | 7990 Fuchs | 5.6               | 12 23       | 3.K 4          | .5 103.5  | H21H4            |
| 006     | 7990 Fuchs | 5.6               | 12 23       | 4.K 4          | .0 92     | 42144            |
| 007     | 7990 Fuchs | 5.6               | 12 23       | 5.K 3          | .8 87.4   | H21H4            |
| 800     | 7990 Fuchs | 5.6               | 12 24       | 6.K 3          | .9 94     | H21H4            |
| 009     | 7990 Fuchs | 4.6               | 12 20       | 1.K 5          | .2 104    | H11H3            |
| 010     | 7990 Fuchs | 4.6               | 12 20       | 4.K 3          | .6 72     | H11H3            |
| 011     | 7990 Fuchs | 4.6               | 12 20       | 1.K 4          | .6 92     | H11H3            |
| 012     | 7990 Fuchs | 4.6               | 12 20       | 4.K 4          | .0 80     | HAIHB            |
| 013     | 7990 Fuchs | 5.6               | 12 46       | 1.K 2          | .3 106    | H21H4            |
| 014     | 7990 Fuchs | 5.6               | 12 46       | 2.K 2          | .3 106    | H2/H4            |
| 015     | 7990 Fuchs | 5.6               | 12 45       | 3.K 2          | .25 101   | 42144            |
| 016     | 7990 Fuchs | 5.6               | 12 47       | 4.K 2          | .0 94     | HZ/H4            |
| 017     | 7990 Fuchs | 4.6               | 12 45       | 1.K 2          | .7 121.5  | H11H3            |
| 018     | 7990 Fuchs | 4.6               | 12 45       | 4.K 2          | .2 99     | H11H3            |
| 019     | 7990 Fuchs | 5.6               | 12 70       | 1.K 1          | .5 105    | H2/H4            |
| 020     | 7990 Fuchs | 5.6               | 12 69       | 2.K 1          | .5 103.5  | H2/H4            |
| 021     | 7990 Fuchs | 5.6               | 12 70       | 3.K 1          | .4 98     | H21H4            |
| 022     | 7990 Fuchs | 5.6               | 12 70       | 4.K 1          | .4 98     | H2/H4            |
| 023     | 7990 Fuchs | 5.6               | 12 70       | 5.K 1          | .3 91     | H21H4            |
| 024     | 7990 Fuchs | 4.6               | 12 68       | 1.K 1          | .8 122.4  | HAIHB            |
| 025     | 7990 Fuchs | 4.6               | 12 69       | 4.K 1          | .4 97     | HAIHS            |
| 026     | 7990 Fuchs | 4.6               | 12 75       | 1.K 1          | .6 120    | HAIHZ            |
| 027     | 7990 Fuchs | 5.6               | 24 156      | 1.K 5          | .5 858    | 42144            |
| 028     | 7990 Fuchs | 5.6               | 24 155      | 1.K (6         | .4)(992)  | H21H4            |
| 029     | 7990 Fuchs | 5.6               | 24 155      | 4.K 5          | .2 806    | H21H4            |
| 030     | 7990 Fuchs | 5.6               | 24 100      | 1.K 9          | .9 990    | H21H4            |

HA = Kaltformung

HZ = Warmformung HB = Gewinde geroili

Ht = Gewinde geschi

| Versuch | Din Herst. | Festigk<br>klasse | - D | Exz. | Einsch<br>tiefe<br>[Kerbe | r     | M,*<br>[Nm] | Bemerk.<br>Herstellverfahre |
|---------|------------|-------------------|-----|------|---------------------------|-------|-------------|-----------------------------|
|         |            |                   |     |      |                           |       |             |                             |
| 031     | 7990 Fuchs | s 5.6             | 24  | 98   | 4.K                       | (8.6) | (843)       | H21H4                       |
| 032     | 7990 Fuchs | 5.6               | 24  | 60   | 1.K                       | (17.0 |             | H21H4                       |
| 033     | 931 Fried  | db. 5.6           | 12  | 20   | 1.K                       | (7.0  | 140)        | H11H3                       |
| 034     | 931 Fried  | ib. 5.6           | 12  | 20   | 4.K                       | (6.8  | 135)        | H11H 3                      |
| 035     | 931 Fried  | ib. 5.6           | 12  | 45   | 1.K                       | 3.1   | 140         | H11H 3                      |
| 036     | 931 Fried  | db. 5.6           | 12  | 47   | 2.K                       | (2.6  | 122)        | H11H3                       |
| 037     | 7990 Fuchs | 5.6               | 24  | 60   | 4 . K                     | (13.5 | 810)        | H21H4                       |
| 038     | 7990 Fuchs | 5.6               | 24  | 60   | 1.K                       | 17.4  | 1044        | H21H4                       |
| 039     | 7990 Fuchs | 4.6               | 24  | 60   | 1.K                       | 15.8  | 948         | H21H4                       |
| 040     | 7990 Fuchs | 4.6               | 24  | 59   | 4.K                       | 12.2  | 720         | H21H4                       |
| 041     | 7990 Fuchs | 4.6               | 20  | 128  | 1.K                       | 4.2   | 538         | H21H4                       |
| 042     | 7990 Fuchs | 4.6               | 20  | 128  | 4.K                       | 3.6   | 461         | H21H4                       |
| 043     | 7990 Fuchs | 4.6               | 20  | 91   | 1.K                       | 4.7   | 428         | H21H4                       |
| 044     | 7990 Fuchs | 4.6               | 20  | 45   | 1.K                       | (12.2 | 549)        | H21H4                       |
| 045     | 7990 Fuchs | 4.6               | 20  | 44   | 4.K                       | 10.7  | 471         | H21H4                       |
| 046     | 7990 Fuchs | 4.6               | 20  | 44   | 1.K                       | 12.7  | 559         | H21H4                       |
| 047     | 7990 Fuchs | 4.6               | 20  | 46   | 1.K                       | 12.0  | 552         | HAIH3                       |
| 048     | 7990 Fuchs | 4.6               | 20  | 44   | 4.K                       | 9.9   | 436         | HAIH3                       |
| 049     | 7990 Fuchs | 5.6               | 20  | 45   | 1.K                       | 13.5  | 608         | H21H4                       |
| 050     | 7990 Fuchs | 5.6               | 20  | 44   | 4.K                       | 11.6  | 510         | H21H4                       |
| 051     | 7990 Fuchs | 5.6               | 24  | 47   | 1.K                       | 22.3  | 1048        | H21H4                       |
| 052     | 7990 Fuchs | 5.6               | 24  | 44   | 4.K                       | 18.4  | 810         | H21H4                       |
| 053     | 931 Fried  | b. 5.6            | 12  | 44   | 3.K                       | 2.6   | 113         | HAIHZ                       |
| 054     | 931 Fried  | b. 5.6            | 12  | 45   | 4.K                       | 2.6   | 116         | HAIHZ                       |
| 055     | 931 Fried  | b. 5.6            | 12  | 44   | 5.K                       | 2.4   | 106         | EHINH                       |
| 056     | 931 Fried  | b. 5.6            | 12  | 45   | 6.K                       | 2.35  | 106         | HAIHZ                       |
| 057     | 931 Fried  | b. 5.6            | 12  | 68   | 1.K                       | 1.9   | 128         | HAIHS                       |
| 058     | 931 Fried  | b. 5.6            | 12  | 68   | 1.K                       | 1.9   | 129         | HAIHB                       |
| 059     | 931 Fried  | b. 5.6            | 12  | 69   | 3.K                       | 1.7   | 117         | HAIHS                       |
| 060     | 931 Fried  | b. 5.6            | 12  | 69   | 5.K                       | 1.5   | 103.5       | HAIHS                       |

H1= Kaltformun H2= Warmformu H3= Gewinde ger H4= Gewinde gerel

| Versuch | Din  |         | Festigk.<br>Klasse | D    | Exz. | Einschr. | - F <sup>*</sup> | V     | Bem.               |
|---------|------|---------|--------------------|------|------|----------|------------------|-------|--------------------|
|         |      |         |                    | [mm] | [mm] | [Kerbe]  | [kN]             | [Nm]  | derstell verjährev |
|         |      |         |                    |      |      |          |                  |       |                    |
| 061     | 931  | Friedb. | 5.6                | 12   | 71   | 7.K      | 1.4              | 99.4  | 1 HAIH3            |
| 062     | 931  | Friedb. | 5.6                | 12   | 70   | 9.K      | 1.4              | 98    | HAIHZ              |
| 063     | 601  | Graeka  | 4.6                | 12   | 70   | 1.K      | 1.9              | 133   | HIIH3              |
| 064     | 601  | Graeka  | 4.6                | 12   | 70   | 4.K      | 1.3              | 91    | H1/1H3             |
| 065     | 7990 | Friedb. | 4.6                | 12   | 20   | 1.K      | 4.5              | 90    | EHINH              |
| 066     | 601  | Friedb. | 4.6                | 24   | 109  | 1.K      | 9.5              | 1035  | HAIH3              |
| 067     | 601  | Friedb. | 4.6                | 24   | 108  | 4.K      | 8.2              | 886   | H11H3              |
| 068     | 601  | Friedb. | 4.6                | 24   | 61   | 1.K      | 13.6             | 830   | HAIH3              |
| 069     | 601  | Friedb. | 4.6                | 24   | 61   | 4.K      | 12.2             | 744   | HAIHS              |
| 070     | 931  | Friedb. | 5.6                | 24   | 156  | 1.K      | 6.5              | 1014  | HAIHZ              |
| 071     | 931  | Friedb. | 5.6                | 24   | 157  | 4.K      | 6.0              | 942   | H11H3              |
| 072     | 931  | Friedb. | 5.6                | 24   | 185  | 1.K      | 6.0              | 1110  | HAIH3              |
| 073     | 931  | Friedb. | 5.6                | 24   | 186  | 4.K      | 5.0              | 930   | HMH3               |
| 074     | 931  | Friedb. | 5.6                | 24   | 60   | 4.K      | 15.7             | 942   | HAIHS              |
| 075     | 931  | Friedb. | 5.6                | 24   | 59   | 1.K      | 18.9             | 1115  | H11H3              |
| 076     | 601  | Friedb. | 4.6                | 20   | 49   | 1.K      | 9.4              | 461   | HAIH3              |
| 077     | 601  | Friedb. | 4.6                | 20   | 49   | 4.K      | 8.0              | 392   | EHINH              |
| 078     | 601  | Friedb. | 4.6                | 20   | 130  | 1.K      | 3.5              | 468   | H11H3              |
| 079     | 601  | Friedb. | 4.6                | 20   | 130  | 4.K      | 3.1              | 403   | HAIH3              |
| 080     | 931  | Friedb. | 5.6                | 20   | 129  | 1.K      | 5.4              | 697   | HAIHS              |
| 081     | 931  | Friedb. | 5.6                | 20   | 128  | 4.K      | 4.8              | 614.4 | H11H3              |
| 082     | 931  | Friedb. | 5.6                | 20   | 129  | 6.K      | 4.5              | 580.5 | 5 H11H3            |
| 083     | 931  | Friedb. | 5.6                | 20   | 130  | 8.K      | 4.2              | 546   | HAIHZ              |
| 084     | 931  | Friedb. | 5.6                | 20   | 80   | 1.K      | 9.0              | 720   | HAIHZ              |
| 085     | 931  | Friedb. | 5.6                | 20   | 78   | 4.K      | 8.1              | 631   | HNIHZ              |
| 086     | 931  | Friedb. | 5.6                | 20   | 48   | 1.K      | 13.0             | 624   | HN1H3              |
| 087     | 931  | Friedb. | 5.6                | 20   | 49   | 4.K      | 11.7             | 573   | EHINH 2            |
| 880     | 931  | Friedb. | 5.6                | 12   | 21   | 1.K      | 6.3              | 132   | HAIH3              |
| 089     | 931  | Friedb. | 5.6                | 12   | 44   | 1.K      | 3.1              | 136   | HILH               |
| 090     | 7990 | Fuchs   | 5.6                | 24   | 102  | 1.K      | 8.8              | 898   | 42144              |

H1= Kale formung
H2= Warm formung
H3= Gewinde gerolle
H4= Gewinde geschn

| Versuch | Din  | Herst. | Festigk.<br>klasse | - D  | Exz. | Einschr<br>tiefe | ·- <sub>F</sub> * | M <sup>*</sup> √ | Bemerk.           |
|---------|------|--------|--------------------|------|------|------------------|-------------------|------------------|-------------------|
|         |      |        |                    | [mm] | [mm] | [Kerbe]          | [kN]              | [Nm]             | Herstellverlahren |
|         |      |        |                    |      |      |                  |                   | -                |                   |
| 091     | 7990 | Fuchs  | 5.6                | 24   | 100  | 4.K              | 7.8               | 780              | H2 1H 4           |
| 092     | 7990 | Fuchs  | 5.6                | 24   | 60   | 4.K              | 13.8              | 828              | H21H4             |
| 093     | 7990 | Fuchs  | 5.6                | 24   | 58   | 1.K              | 16.3              | 945              | H21H4             |
| 094     | 7990 | Fuchs  | 4.6                | 24   | 60   | 1.K              | 15.7              | 942              | H21H4             |
| 095     | 6914 | Friedb | .10.9              | 12   | 42.  | 5 1.K            | 6.8               | 288              | HAIHZ             |
| 096     | 6914 | Friedb | .10.9              | 12   | 42.  | 5 4.K            | 5.4               | 230              | HAIH3             |
| 097     | 6914 | Friedb | .10.9              | 12   | 19   | 1.K              | 15.5              | 285              | H11H3             |
| 098     | 6914 | Friedb | .10.9              | 12   | 20.  | 5 4.K            | 11.0              | 225              | HAIHZ             |
| 099     | 6914 | Friedb | .10.9              | 12   | 21   | 5.K              | 10.2              | 214              | 17/11/3           |
| 100     | 6914 | Friedb | .10.9              | 12   | 20.  | 5 6.K            | 10.5              | 215              | HAIH3             |
| 101     | 6914 | Friedb | .10.9              | 12   | 71   | 1.K              | 4.0               | 284              | HAIHZ             |
| 102     | 6914 | Friedb | .10.9              | 12   | 71.  | 5 4.K            | 3.0               | 214              | .5 HAIH?          |
| 103     | 6914 | Friedb | .10.9              | 12   | 72.  | 5 5.K            | 3.0               | 217              | .5 H1/H3          |
| 104     | 6914 | Friedb | .10.9              | 12   | 71   | 6.K              | 2.9               | 206              | HM1H3             |
| 105     | 6914 | Friedb | .10.9              | 20   | 72   | 1.K              | 16.5              | 1188             | HAIHZ             |
| 106     | 6914 | Friedb | .10.9              | 20   | 74   | 4.K              | 14.5              | 1073             | HIMA              |
| 107     | 931  | Friedb | .10.9              | 20   | 129  | 1.K              | 10.7              | 1380             | HNIHZ             |
| 108     | 931  | Friedb | .10.9              | 20   | 130  | 4.K              | 9.1               | 1183             | HMH3              |
| 109     | 6914 | Friedb | .10.9              | 24   | 58   | 1.K              | 40.1              | 2326             | HAIH3             |
| 110     | 6914 | Friedb | .10.9              | 24   | 58   | 4.K              | 35.4              | 2053             | H11H3             |
| 111     | 6914 | Friedb | .10.9              | 24   | 118  | 1.K              | 20.6              | 2431             | HAIH3             |
| 112     | 6914 | Friedb | .10.9              | 24   | 119  | 4.K              | 17.7              | 2106             | HAIH 3            |
| 113     | 6914 | Friedb | .10.9              | 24   | 32   | 1.K              |                   |                  | HM1H3             |
| 114     | 6914 | Peiner | 10.9               | 12   | 17   | 1.K              | 18.4              | 313              | HMHZ              |
| 115     | 6914 | Peiner | 10.9               | 12   | 18   | 4.K              | 13.5              | 243              | FHINH             |
| 116     | 6914 | Peiner | 10.9               | 12   | 42   | 1.K              | 6.5               | 273              | HMH3              |
| 117     | 6914 | Peiner | 10.9               | 12   | 43   | 4.K              | 5.5               | 237              | HAIH3             |
| 118     | 6914 | Peiner | 10.9               | 12   | 62   | 1.K              | 4.4               | 273              | HAIH3             |
| 119     | 6914 | Peiner | 10.9               | 12   | 62   | 4.K              | 3.8               | 236              | HAIH3             |
| 120     | 6914 | Peiner | 10.9               | 12   | 20   | 1.K              | 12.8              | 256              | EHINH             |

H1= Kaltformung
H2= Warmformung
H3= Gewinde gerollt
H4= Family days d

| Versuch | Din  | Herst.  | Festigk.<br>klasse | - D  | Exz.  | Einschr.tiefe | F*   |      | Bemerk.         |
|---------|------|---------|--------------------|------|-------|---------------|------|------|-----------------|
|         |      |         |                    | [mm] | ][mm] | [Kerbe]       | [kN] | [Nm] | Herstellversing |
|         |      |         |                    |      |       |               |      |      |                 |
| 121     | 6914 | Peiner  | 10.9               | 12   | 22    | 6.K           | 10.1 | 222  | H11H3           |
| 122     | 6914 | Peiner  | 10.9               | 12   | 20    | 8.K           | 12.0 | 240  | HAIHS           |
| 123     | 6914 | Peiner  | 10.9               | 12   | 10    | 1.K           | 22.8 | 228  | НЛНЗ            |
| 124     | 6914 | Peiner  | 10.9               | 12   | 9     | 4.K           | 22.6 | 203  | HAIH3           |
| 125     | 6914 | Peiner  | 10.9               | 12   | 9     | 6.K           | 25.9 | 233  | HAIH3           |
| 126     | 6914 | Friedb  | .10.9              | 12   | 10    | 6.K           | 18.9 | 189  | HAIHZ           |
| 127     | 6914 | Friedb  | .10.9              | 12   | 9     | 1.K           | 26.1 | 235  | нлінз           |
| 128     | 6914 | Peiner  | 10.9               | 24   | 143   | 1.K           |      |      | EH1/H3          |
| 129     | 6914 | Peiner  | 10.9               | 24   | 143   | 4.K           |      |      | H 1H3           |
| 130     | 6914 | Peiner  | 10.9               | 24   | 49    | 1.K           | 43.9 | 2151 | HAIHZ           |
| 131     | 6914 | Peiner  | 10.9               | 24   | 48    | 4.K           | 40.0 | 1920 | HAIH3           |
| 132     | 6914 | Peiner  | 10.9               | 24   | 33    | 1.K           |      |      | H1/H3           |
| 133     | 931  | Friedb. | 5.6                | 24   | 33    | 1.K           | 35.0 | 1155 | HAIHZ           |
| 134     | 931  | Friedb. | 5.6                | 24   | 29    | 7.K           | 32.1 | 931  | HAIH3           |
| 135     | 6914 | Peiner  | 10.9               | 24   | 145   | 1.K           | 16.5 | 2392 | HAIHZ           |
| 136     | 931  | Friedb. | 5.6                | 12   | 15    | 4.K           | 7.2  | 108  | HAIH3           |
| 137     | 7990 | Fuchs   | 5.6                | 12   | 9     | 1.K           | 9.9  | 89   | H21H4           |
| 138     | 931  | Friedb. | 5.6                | 20   | 19    | 1.K           | 37.4 | 711  | H11H3           |
| 139     | 931  | Friedb. | 10.9               | 20   | 21    | 1.K           | 63.0 | 1323 | H11H3           |
| 140     | 931  | Friedb. | 10.9               | 20   | 51    | 1.K           | 28.0 | 1428 | H11H3           |
| 141     | 931  | Friedb. | 10.9               | 20   | 50    | 4.K           | 24.8 | 1240 | HAIH3           |
| 142     | 931  | Friedb. | 10.9               | 20   | 52    | 8.K           | 24.6 | 1212 | HMH3            |
| 143     | 6914 | Peiner  | 10.9               | 20   | 61    | 1.K           | 22.6 | 1379 | HAIH3           |
| 144     | 6914 | Peiner  | 10.9               | 20   | 60    | 4.K           | 20.6 | 1236 | HAIHZ           |
| 145     | 6914 | Peiner  | 10.9               | 20   | 120   | 1.K           | 11.3 | 1356 | HAIH3           |
| 146     | 6914 | Peiner  | 10.9               | 20   | 120   | 4.K           | 9.8  | 1176 | HNIH3           |
| 147     | 6914 | Peiner  | 10.9               | 20   | 37    | 1.K           | 34.8 | 1278 | HNIHZ           |
| 148     | 6914 | Peiner  | 10.9               | 20   | 36    | 6.K           | 33.3 | 1199 | HAIH3           |
| 149     | 6914 | Peiner  | 10.9               | 20   | 17    | 4.K           | 62.9 | 1069 | HNIHZ           |
| 150     | 6914 | Peiner  | 10.9               | 20   | 20    | 1.K           | 60.0 | 1200 | EHINH           |
|         |      |         |                    |      |       |               |      |      |                 |

H1= Kaltformun
H2= Warmformur
H3= Gewinde ge
H4= Gewinde co

| Versuch | Din  | Herst. | Festigk<br>klasse |    | D Exz.   | Ein:  | schr<br>efe | F*   | M*    | Bemerk.        |
|---------|------|--------|-------------------|----|----------|-------|-------------|------|-------|----------------|
|         |      |        |                   | [m | m][mm,°] | [Ke   | rbe]        | [kN] |       | Herstellverjak |
|         |      |        |                   |    |          |       |             |      |       |                |
| 151     | 7990 | Fuchs  | 5.6               | 24 | 65,2/3   | 0°    | 1.K         | 14.5 | 945   | H21H4          |
| 152     | 7990 | Fuchs  | 5.6               | 12 | 18.4/3   | 0°    | 1.K         |      |       | H21H4          |
| 153     | 7990 | Fuchs  | 5.6               | 12 | 18.4/3   | 0°    | 1.K         | 6.8  | 125.2 | HZ1H4          |
| 154     | 7990 | Fuchs  | 4.6               | 12 | 18.4/3   | 0°    | 1.K         | 5.25 | 96.6  | HAIHS          |
| 155     | 7990 | Fuchs  | 4.6               | 12 | 17.6/3   | 0° 4  | 4.K         | 4.5  | 79.4  | HAIHZ          |
| 156     | 7990 | Fuchs  | 4.6               | 12 | 29.1/3   | 0°    | 1.K         | 3.9  | 113.6 | EHIVH          |
| 157     | 7990 | Fuchs  | 4.6               | 12 | 29.1/3   | 0° 4  | 4.K         | 2.85 | 83.0  | EHINH3         |
| 158     |      |        |                   |    |          |       |             |      |       | •              |
| 159     |      |        |                   |    |          |       |             |      |       |                |
| 160     | 7990 | Fuchs  | 4.6               | 12 | 51.3/3   | 0°    | 1.K         | 2.3  | 118.1 | HAIH3          |
| 161     | 7990 | Fuchs  | 4.6               | 12 | 50.6/3   | 00 4  | ł.K         | 1.8  | 91.0  | EHINH          |
| 162     | 7990 | Fuchs  | 5.6               | 12 | 52.1/3   | ) ° ′ | 1.K         | 2.0  | 104.2 | H21H4          |
| 163     | 7990 | Fuchs  | 5.6               | 12 | 53.6/3   | ) ° 4 | I.K         | 1.9  | 101.9 | H21H4          |
| 164     | 7990 | Fuchs  | 5.6               | 12 | 27.6/3   | )° 1  | I.K         | 4.1  | 113.2 | H21H4          |
| 165     | 7990 | Fuchs  | 5.6               | 12 | 27.6/30  | ) ° 4 | l.K         | 3.8  | 104.9 | H21H4          |
| 166     | 7990 | Fuchs  | 4.6               | 12 | 26.5/6   | ) ° 1 | . K         | 3.4  | 90.1  | HMHZ           |
| 167     | 7990 | Fuchs  | 4.6               | 12 | 26.2/60  | ) ° 4 | . K         | 3.0  | 78.5  | HAIHZ          |
| 168     | 7990 | Fuchs  | 5.6               | 12 | 26.2/60  | )° 1  | . K         | 3.2  | 83.7  | HZIHH          |
| 169     | 7990 | Fuchs  | 5.6               | 12 | 25.8/60  | )° 4  | . K         | 2.75 | 71.0  | 42144          |
| 170     | 7990 | Friedb | .4.6              | 12 | 27.6/30  | ) ° 1 | . K         | 3.75 | 103.5 | HAIHZ          |
| 171     | 931  | Friedb | .5.6              | 12 | 26.8/30  | )° 1  | . K         | 5.5  | 147.6 | EHINH          |
| 172     | 601  | Friedb | .4.6              | 12 | 48.3/30  | )° 1  | . K         | 2.5  | 120.7 | HAIH3          |
| 173     | 601  | Friedb | .4.6              | 12 | 49.0/30  | ) ° 8 | . K         | 1.8  | 88.3  | HAIH3          |
| 174     | 931  | Friedb | .5.6              | 12 | 59.3/30  | 1° 1  | . K         | 2.3  | 118.1 | HMH3           |
| 175     | 7990 | Friedb | .4.6              | 12 | 18.4/30  | ° 1   | . K         | 5.6  | 103.1 | HAIH3          |
| 176     | 931  | Friedb | .5.6              | 12 | 17.6/30  | 0 1   | . K         | 7.0  | 123.5 | HAIH3          |
| 177     | 931  | Friedb | .5.6              | 12 | 16.9/30  | ° 8   | . K         | 6.2  | 104.6 | HAIH3          |
| 178     | 601  | Friedb | .4.6              | 12 | 27.2/60  | ° 1   | . K         | 4.1  | 111.5 | HMH3           |
| 179     | 931  | Friedb | .5.6              | 12 | 27.5/60  | ° 1   | . K         |      | 89.5  |                |
| 180     | 6914 | Friedb | 10.9              | 12 | 25.5/60  | ° 1   | . K         | 8.6  | 219.1 |                |
|         |      |        |                   |    |          |       |             |      |       |                |

HA = Kallformuna H2 = Warmformuni

| Versuch | Din    |         | estigk.<br>lasse | . <b>-</b> D | Exz.     | Einschr<br>tiefe | •- F* | M*    | Bemerk.           |
|---------|--------|---------|------------------|--------------|----------|------------------|-------|-------|-------------------|
|         |        |         |                  | [mm]         | ] [mm,°] | [Kerbe]          | [kN]  | [Nm]  | Herstellverjahren |
|         |        |         |                  |              |          |                  |       |       |                   |
| 181     | 6914   | Friedb. | 10.9             | 12           | 58/60    | )° 4.K           | 6.6   | 168.1 | H11H3             |
| 182     |        | Friedb. | 10.9             | 12           | •        | )° 6.K           | 6.6   | 168.1 |                   |
| 183     |        | Friedb. |                  | 12           |          | )° 8.K           | 6.4   | 167.4 | , -               |
| 184     |        | Peiner  | 10.9             | 12           | ·        | )° 1.K           | 8.4   | 208.3 |                   |
| 185     |        | Peiner  | 10.9             | 12           | •        | )° 6.K           | 7.0   | 175.9 | •                 |
| 186     |        |         | 10.9             | 12           | · .      | 8.K              | 6.7   | 168.4 |                   |
| 187     |        |         | 10.9             | 12           | •        | 0 · K            | 5.8   | 280.0 |                   |
| 188     |        | Friedb. | 10.9             | 12           | •        | 1° 4.K           |       | 196.2 |                   |
| 189     |        | Friedb. |                  |              | •        | 1° 6.K           |       |       |                   |
|         |        |         | 10.9             | 12           | •        | ° 8.K            | 4.0   | 202.3 |                   |
| 190     |        | Friedb. | 10.9             | 12           | •        |                  | 4.1   | 204.2 |                   |
| 191     |        | Peiner  | 10.9             | 12           |          | ° 1.K            | 4.7   | 241.3 |                   |
| 192     |        | Peiner  | 10.9             | 12           | -        | ° 6.K            | 4.15  |       | HAIHS             |
| 193     |        | Peiner  | 10.9             | 12           | •        | ° 1.K            | 10.0  | 268.3 |                   |
| 194     |        | Friedb. | 10.9             | 12           | ·        | ° 1.K            | 9.6   | 257.6 | HAIHZ             |
| 195     |        | Friedb. | 10.9             | 12           |          | ° 1.K            | 12.9  | 227.6 | HNIHZ             |
| 196     |        | Friedb. | 10.9             | 12           | •        | ° 4.K            | 13.3  | 234.6 | HMH3              |
| 197     | 6914   | Peiner  | 10.9             | 12           | 18/30    | ° 1.K            | 15.8  | 278.7 | EHINH             |
| 198     | 6914   | Peiner  | 10.9             | 12           | 18/30    | ° 6.K            | 11.9  | 209.9 | HNHZ              |
| 199     | 7990   | Fuchs   | 4.6              | 20           | 105/30   | ° 1.K            | 6.3   | 547.1 | MZIHY             |
| 200     | 7990   | Fuchs   | 4.6              | 20           | 105/30   | ° 4.K            | 5.5   | 477.7 | H21H4             |
| 201     | 7990   | Fuchs   | 4.6              | 20           | 106/30   | ° 6.K            | 5.0   | 438.1 | H21H4             |
| 202     | 7990   | Füchs   | 4.6              | 20           | 43/30    | ° 1.K            | 14.5  | 570.7 | HAIH3             |
| 203     | 7990   | Fuchs   | 5.6              | 20           | 42/30    | ° 1.K            | 16.6  | 640.6 | H21H4             |
| 204     | 7990   | Fuchs   | 5.6              | 20           | 24/309   | ° 1.K            | 21.9  | 543.2 | H21H4             |
| 205     | 7990   | Fuchs   | 4.6              | 20           | 25/309   | ° 1.K            | 18.3  | 467.9 | HAIHZ             |
| 206     | 7990   | Fuchs   | 4.6              | 20           | 63/60°   | • 1.K            | 13.3  | 411.6 | H21H4             |
| 207     | 7990 1 | Fuchs   | 4.6              | 20           | 64/609   | 3 4.K            | 11.0  | 344.2 | HZIHH             |
| 208     |        | Fuchs   | 4.6              | 20           | 68/60    | ° 6.K            | 9.6   | 313.5 | H21H4             |
|         |        | Fuchs   | 4.6              |              | 103/609  |                  |       | 455.2 |                   |
| 210     |        | Friedb. |                  |              | 124/60°  |                  |       | 606.2 |                   |
|         |        |         |                  | -            | ,        |                  |       |       |                   |

H1 = Kaliformung

HZ= Warmformung

H3 = Gewinde geseilt

H4 = Gewinde geschnit

| Versuch | Din  | Herst.  | Festigk.<br>klasse | - D | Exz.     | Einschr<br>tiefe | `- <sub>F</sub> * | V        | Bemerk.       |
|---------|------|---------|--------------------|-----|----------|------------------|-------------------|----------|---------------|
|         |      |         |                    |     | ] [mm,°] | [Kerbe]          | ] [kN]            | I [Nm] H | erstellverjah |
|         |      |         |                    |     |          |                  |                   |          |               |
| 211     | 931  | Friedb. | 5.6                | 20  | 123/60   | 1° 8.K           | 9.7               | 499.2    | HAIHZ         |
| 212     | 931  |         |                    | 20  | 61/60    | ° 1.K            | 16.9              | 511.4    | HAIHS         |
| 213     | 931  | Friedb. |                    | 20  | 59/60    | ° 6.K            | 14.3              | 423.0    | HMH3          |
| 214     | 931  | Friedb. | 5.6                | 20  | 60/60    | ° 8.K            | 13.5              | 403.9    | нлін3         |
| 215     | 601  | Friedb. | 4.6                | 20  | 63/60    | ° 1.K            | 11.4              | 352.8    | HMH3          |
| 216     | 931  | Friedb. | 5.6                | 20  | 104/30   | ° 1.K            | 8.7               | 748.9    | HMH3          |
| 217     | 931  | Friedb. | 5.6                | 20  | 99/30    | ° 6.K            | 7.5               | 616.9    | HAIHS         |
| 218     | 931  | Friedb. | 5.6                | 20  | 101/30   | ° 8.K            | 7.0               | 586.5    | HAIH3         |
| 219     | 601  | Friedb. | 4.6                | 20  | 100/30   | ° 1.K            | 6.2               | 514.7    | HAIH3         |
| 220     | 601  | Friedb. | 4.6                | 20  | 98/30    | • 6.K            | 5.2               | 423.7    | HAIHZ         |
| 221     | 931  | Friedb. | 10.9               | 20  | 100/30   | ° 1.K            |                   |          | HAIHZ         |
| 222     | 931  | Friedb. | 10.9               | 20  | 101/30   | ° 6.K            | 14.2              | 1190     | нинз          |
| 223     | 931  | Friedb. | 10.9               | 20  | 101/30   | ° 1.K            | 16.8              | 1408     | HNH3          |
| 224     | 6914 | Peiner  | 10.9               | 20  | 100/30   | • 1.K            | 16.7              | 1386     | HAIHZ         |
| 225     | 6914 | Peiner  | 10.9               | 20  | 100/30   | ° 6.K            |                   |          | HAIHZ         |
| 226     | 6914 | Peiner  | 10.9               | 20  | 101/30   | ° 8.K            | 13.0              | 1089     | HAIH3         |
| 227     | 931  | Friedb. | 5.6                | 20  | 43/30    | ° 1.K            | 17.7              | 696.6    | HAIH3         |
| 228     | 931  | Friedb. | 5.6                | 20  | 45/30    | ° 6.K            | 14.3              | 584.7    | EHINH3        |
| 229     | 931  | Friedb. | 10.9               | 20  | 43/30    | ° 1.K            | 33.1              | 1302     | HAIH3         |
| 230     | 931  | Friedb. | 10.9               | 20  | 46/30    | ° 6.K            | 26.7              | 1112     | EHINH         |
| 231     | 6914 | Peiner  | 10.9               | 20  | 43/30    | ° 1.K            | 35.8              | 1409     | H11H3         |
| 232     | 6914 | Peiner  | 10.9               | 20  | 42/30    | ° 6.K            | 30.7              | 1185     | HAIH3         |
| 233     | 931  | Friedb. | 5.6                | 20  | 23/30    | ° 1.K            | 25.7              | 617.8    | HNHZ          |
| 234     | 931  | Friedb. | 5.6                | 20  | 25/30    | ° 6.K            | 23.3              | 595.8    | HAIH3         |
| 235     | 931  | Friedb. | 5.6                | 20  | 24/30    | ° 8.K            | 21.2              | 525.8    | HAIH3         |
| 236     | 931  | Friedb. | 10.9               | 20  | 24/30    | ° 1.K            | 44.2              | 1096     | H1/H3         |
| 237     | 931  | Friedb. | 10.9               | 20  | 24/30    | ° 6.K            | 40.9              | 1014     | HAIHS         |
| 238     | 6914 | Peiner  | 10.9               | 20  | 22/30    | ° 1.K            |                   |          | НЛІНЗ         |
| 239     | 6914 | Peiner  | 10.9               | 20  | 23/30    | ° 1.K            | 51.3              | 1233     | HAIH3         |
| 240     | 6914 | Peiner  | 10.9               | 20  | 23/30    | ° 6.K            | 47.1              | 1132     | HAIHS         |
|         |      |         |                    |     |          |                  |                   |          | V 11 C        |

| Versuch | Din  | Herst. Festigk.<br>klasse | D  | Exz.   | Einschr.<br>tiefe | - F* | M*    | Bemerk.           |
|---------|------|---------------------------|----|--------|-------------------|------|-------|-------------------|
|         |      |                           |    | [mm,°] | [Kerbe]           | [kN] | [Nm]  | Herstellverfisher |
|         |      |                           |    |        |                   |      |       |                   |
| 241     | 6914 | Peiner 10.9               | 20 | 23/30  | )° 8.K            | 46.4 | 1115  | HAIHZ             |
| 242     | 6914 | Friedb.10.9               | 20 | 60/60  | )° 1.K            | 34.3 | 1027  | HNIHZ             |
| 243     | 6914 | Friedb.10.9               | 20 | 63/45  | 5° 6.K            | 23.9 | 1059  | HAIH3             |
| 244     | 6914 | Peiner 10.9               | 20 | 64/45  | 5° 1.K            | 27.1 | 1217  | HAIH3             |
| 245     | 6914 | Peiner 10.9               | 20 | 64/45  | 5° 6.K            | 24.2 | 1087  | EHINH 3           |
| 246     | 6914 | Peiner 10.9               | 20 | 62/60  | )° 6.K            | 28.2 | 863.  | 0 H11H3           |
| 247     | 6914 | Peiner 10.9               | 20 | 60/60  | )° 1.K            | 32.4 | 969.  | 4 HAIH3           |
| 248     | 6914 | Friedb.10.9               | 20 | 58/60  | )° 6.K            | 30.5 | 891.  | 7 HAIH3           |
| 249     | 6914 | Peiner 10.9               | 20 | 121/60 | )° 1.K            | 23.3 | 1183. | 2 HNIH3           |
| 250     | 931  | Friedb.10.9               | 20 | 123/60 | )° 1.K            | 23.6 | 1215  | EHINH3            |
| 251     | 6914 | Friedb.10.9               | 20 | 117/60 | )° 6.K            | 19.6 | 968.  | 5 HAIH 3          |
| 252     | 7990 | Fuchs 4.6                 | 24 | 60/30  | )° 1.K            | 18.9 | 1014  | HZIHY             |
| 253     | 7990 | Fuchs 4.6                 | 24 | 26/30  | )° 1.K            | 30.8 | 850.  | 7 H21H4           |
| 254 -   | 7990 | Fuchs 4.6                 | 24 | 30/30  | 0° 6.K            | 27.6 | 846.  | 9 HZ]H4           |
| 255     | 7990 | Fuchs 5.6                 | 24 | 64/60  | 1° 1.K            | 19.8 | 656.  | 7 H2IH4           |
| 256     | 7990 | Fuchs 5.6                 | 24 | 64/60  | )° 5.K            | 18.0 | 597.  | 0 нинч            |
| 257     | 931  | Friedb. 5.6               | 24 | 61/60  | )° 1.K            | 23.5 | 755.  | 3 HAIH3           |
| 258     | 931  | Friedb. 5.6               | 24 | 58/60  | 0° 10.K           | 21.2 | 659.  | 7 HAIH3           |
| 259     | 6914 | Friedb.10.9               | 24 | 61/60  | )° 6.K            | 45.6 | 1466  | EHINH             |
| 260     | 6914 | Friedb.10.9               | 24 | 61/60  | 1° 1.K            | 52.6 | 1691  | EHINH             |
| 261     | 6914 | Peiner 10.9               | 24 | 62/60  | 1° 1.K            | 51.2 | 1663  | HA/H3             |
| 262     | 6914 | Peiner 10.9               | 24 | 61/60  | ° 5.K             | 46.0 | 1478  | HAIH3             |
| 263     | 6914 | Friedb.10.9               | 24 | 116/60 | ° 1.K             | 42.6 | 2170  | HMH3              |
| 264     | 6914 | Friedb.10.9               | 24 | 115/60 | ° 10.K            | 33.6 | 1700  | HMH3              |
| 265     | 6914 | Peiner 10.9               | 24 | 117/30 | ° 1.K             | 25.6 | 2492  | EHINH             |
| 266     | 6914 | Peiner 10.9               | 24 | 117/30 | ° 6.K             | 20.6 | 2005  | HMHZ              |
| 267     | 931  | Friedb.10.9               | 24 | 117/30 | ° 1.K             | 26.3 | 2560  | HMHZ              |
| 268     | 931  | Friedb.10.9               | 24 | 114/30 | ° 10.K            | 20.4 | 1939  | HMH3              |
| 269     | 931  | Friedb. 5.6               | 24 | 120/30 | ° 1.K             | 11.4 | 1136  | HMHZ              |
| 270     | 931  | Friedb. 5.6               | 24 | 120/30 | ° 5.K             | 9.8  | 976.  | 3 HNH-7           |
|         |      |                           |    |        |                   |      | 41=   | Kalt formuna      |

HI = Kait for mung

H1 = Warmformung

H3= Chewinay geroll+

HH= Gewinde Jeschnite
INSTITUT FÜR STAHLBAU DER TECHNISCHEN UNIVERSITÄT BRAUNSCHWEIG

| Versuc | h Din | Herst.  | Festigk.<br>klasse | - D  | Exz.   | Einschr<br>tiefe | F*    | $M_{v}^{\star c}$ | Bem.         |
|--------|-------|---------|--------------------|------|--------|------------------|-------|-------------------|--------------|
|        |       |         |                    | [mm] | [mm,°] | [Kerbe]          | [kN]  | [Nm] He           | rstellverjah |
| 271    | 931   | Friedb. | . 5.6              | 24   | 124/30 | ° 10.K           | 8.3   | 852.3             | HAIH3        |
| 272    | 931   | Friedb. | . 5.6              | 24   | 130/30 | ° 15.K           | 8.0   | 858.3             | HAIH3        |
| 273    | 931   | Friedb. | 4.6                | 24   | 61/30  | ° 1.K            | 22.1  | 1202              | HA1H3        |
| 274    | 931   | Friedb. | 5.6                | 24   | 61/30  | ° 1.K            | 20.3  | 1105              | H1/H3        |
| 275    | 931   | Friedb. | 5.6                | 24   | 64/30  | ° 6.K            | 16.2  | 919               | HAIH3        |
| 276    | 931   | Friedb. | 5.6                | 24   | 65/30  | ° 10.K           | 15.5  | 891.2             | HINHS        |
| 277    | 931   | Friedb. | 5.6                | 24   | 60/30  | ° 15.K           | 16.2. | 869.4             | HAIH3        |
| 278    | 931   | Friedb. | 10.9               | 24   | 62/30  | ° 1.K            | 41.2  | 2274              | HAIH3        |
| 279    | 931   | Friedb. | 4.6                | 24   | 34/30  | ° 1.K            | 25.2  | 850.4             | HMHZ         |
| 280    | 931   | Friedb. | 4.6                | 24   | 35/30  | ° 5.K            | 23.7  | 818.0             | HAIH3        |
| 281    | 931   | Friedb. | 5.6                | 24   | 32/30  | ° 1.K            | 28.4  | 914.9             | HU1H3        |
| 282    | 931   | Friedb. | 5.6                | 24   | 33/30  | ° 6.K            | 27.4  | 903.7             | HAIH3        |
| 283    | 931   | Friedb. | 5.6                | 24   | 34/30  | ° 10.K           | 26.6  | 897.7             | EHINH        |
| 284    | 6914  | Friedb. | 10.9               | 24   | 30/30  | ° 5.K            | 65.0  | 1994              | HAIH3        |
| 285    | 6914  | Peiner  | 10.9               | 24   | 32/30  | ° 5.K            | 61.3  | 1975              | HAIHZ        |
| 286    | 6914  | Peiner  | 10.9               | 24   | 31/30  | ° 1.K            | 71.5  | 2249              | HAIH3        |
| 287    | 6914  | Friedb. | 10.9               | 24   | 32/30  | ° 1.K            | 70.8  | 2281              | EHNH3        |
| 288    | 931   | Friedb. | 5.6                | 12   | 60     | Schaft           | 2.54  | 152               | HAIHZ        |
| 289    | 931   | Friedb. | 5.6                | 12   | 65     | Schaft           | 2.35  | 153               | HAIHZ        |
| 290    | 931   | Friedb. | 5.6                | 12   | 70     | Schaft           | 2.10  | 147               | HAIHZ        |
| 291    | 601   | Graeka  | 4.6                | 12   | 61     | Schaft           | 2.65  | 162               | HMH3         |
| 292    | 601   | Graeka  | 4.6                | 12   | 51     | Schaft           | 3.10  | 158               | HMH3         |
| 293    | 7990  | Fuchs   | 4.6                | 12   | 33     | Schaft           | 3.70  | 122               | HAIH3        |
| 294    | 7990  | Fuchs   | 4.6                | 12   | 47     | Schaft           | 3.00  | 141               | HAIH3        |
| 295    | 7990  | Fuchs   | 4.6                | 12   | 31     | Schaft           | 4.08  | 126               | HAIH3        |
| 296    | 7990  | Fuchs   | 5.6                | 12   | 33     | Schaft           | 3.75  | 124               | HZIHY        |
| 297    | 7990  | Fuchs   | 5.6                | 12   | 30     | Schaft           | 4.25  | 127               | H21H4        |
| 298    | 7990  | Fuchs   | 5.6                | 12   | 34     | Schaft           | 3.7   | 126               | 42144        |
| 299    | 6914  | Friedb. | 10.9               | 12   | 19     | Schaft           | 17.1  | 325               | HAIH3        |
| 300    | 6914  | Friedb. | 10.9               | 12   | 41     | Schaft           | 8.2   | 336               | HAH3         |
|        |       |         |                    |      |        |                  |       |                   |              |

H1= Kalt formung
H2= Warmformung
H3= Siewinde geschnik
H4= Gewinde geschnik

|   | Versuch | Din  | Herst.  | Festigk<br>klasse | ·- D | Exz. | Einschr<br>tiefe | <b>F</b> * | M*   | Bem.             |
|---|---------|------|---------|-------------------|------|------|------------------|------------|------|------------------|
|   |         |      |         |                   | [mm] | [mm] | [Kerbe]          | [kN]       | [Nm] | lenstell ver fah |
|   |         |      |         |                   |      |      |                  |            |      |                  |
|   | 301     | 6914 | Friedb. | . 10.9            | 12   | 40   | Schaft           | 8.3        | 332  | HAIH3            |
|   | 302     | 6914 | Peiner  | 10.9              | 12   | 19   | Schaft           | 14.9       | 283  | HNIHZ            |
|   | 303     | 6914 | Peiner  | 10.9              | 12   | 20   | Schaft           | 14.2       | 284  | H11H3            |
|   | 304.    | 6914 | Peiner  | 10.9              | 12   | 33   | Schaft           | 9.5        | 313  | HAIHZ            |
|   | 305     | 6914 | Peiner  | 10.9              | 12   | 33   | Schaft           | 8.75       | 289  | H1/H3            |
|   | 306     | 7990 | Fuchs   | 4.6               | 20   | 59   | Schaft           | 9.65       | 569  | H21H4            |
|   | 307     | 7990 | Fuchs   | 4.6               | 20   | 83   | Schaft           | 6.5        | 540  | 42144            |
|   | 308     | 7990 | Fuchs   | 4.6               | 20   | 58   | Schaft           | 9.5        | 551  | HZIHH            |
|   | 309     | 601  | Friedb. | 4.6               | 20   | 29   | Schaft           |            |      | HAIH3            |
|   | 310     | 601  | Friedb. | 4.6               | 20   | 38   | Schaft           | 14.6       | 555  | HAIH3            |
|   | 311     | 601  | Friedb. | 4.6               | 20   | 70   | Schaft           | 8.05       | 564  | HAIHZ            |
|   | 312     | 601  | Friedb. | 4.6               | 20   | 99   | Schaft           | 5.55       | 549  | EHINH            |
|   | 313     | 931  | Friedb. | 5.6               | 20   | 95   | Schaft           | 8.5        | 808  | MIHZ             |
|   | 314     | 931  | Friedb. | 5.6               | 20   | 118  | Schaft           | 6.75       | 796  | HAIHS            |
|   | 315     | 931  | Friedb. | 5.6               | 20   | 111  | Schaft           | 7.1        | 788  | HAIHS            |
|   | 316     | 931  | Friedb. | 5.6               | 20   | 50   | Schaft           | 15.6       | 780  | HMHZ             |
|   | 317     | 931  | Friedb. | 5.6               | 20   | 32   | Schaft           | 23.5       | 790  | HAIHS            |
|   | 318     | 931  | Friedb. | 10.9              | 20   | 97   | Schaft           | 16.0       | 1630 | нлінз            |
|   | 319     | 931  | Friedb. | 10.9              | 20   | 107  | Schaft           | 14.3       | 1606 | HAIH3            |
|   | 320     | 6914 | Peiner  | 10.9              | 20   | 93   | Schaft           | 17.1       | 1590 | HAIHZ            |
|   | 321     | 6914 | Peiner  | 10.9              | 20   | 71   | Schaft           | 20.9       | 1484 | HMIHZ            |
|   | 322     | 6914 | Friedb. | 10.9              | 20   | 35   | Schaft           | 41.1       | 1532 | HUIHZ            |
|   | 323     | 6914 | Friedb. | 10.9              | 20   | 32   | Schaft           | 46.4       | 1559 | HAIHZ            |
|   | 324     | 601  | Friedb. | 4.6               | 24   | 50   | Schaft           | 24.4       | 1220 | EHINH            |
|   | 325     | 601  | Friedb. | 4.6               | 24   | 40   | Schaft           | 26.1       | 1044 | HAIHZ            |
|   | 326     | 601  | Friedb. | 4.6               | 24   | 41   | Schaft           | 31.2       | 1279 | HAIH3.           |
|   | 327     | 7990 | Fuchs   | 5.6               | 24   | 77   | Schaft           | 12.9       | 993  | H2/H4            |
| ( | 328     | 931  | Friedb. | 5.6               | 24   | 144  | Schaft           |            | 1217 | 41143            |
| 3 | 329     | 931  | Friedb. | 5.6               | 24   | 137  | Schaft           | 9.2        | 1260 | -11H3            |
|   | 330     |      | Friedb. | 5.6               | 24   | 132  | Schaft           |            | 1201 | 41143            |
|   |         |      |         |                   |      |      |                  |            |      |                  |

HA= Calt formung
H2= Warmformung
H3= Gewinde geroll
H== Sewinde geschn

| Versuch | Din  | Herst.  | Festigk.<br>klasse | - D  | Exz. | Einschr<br>tiefe | F*    | M <b>*</b> | Bem.        |
|---------|------|---------|--------------------|------|------|------------------|-------|------------|-------------|
|         |      |         |                    | [mm] | [mm] | [Kerbe]          | [kN]  | [Nm] He:   | stellvetjah |
|         |      |         |                    |      |      |                  |       |            |             |
| 331     | 7990 | Fuchs   | 5.6                | 24   | 79   | Schaft           | 12.75 | 1007       | H21H4       |
| 332     | 7990 | Fuchs   | 5.6                | 24   | 60   | Schaft           | 17.1  | 1026       | HZ1H4       |
| 333     | 931  | Friedb. | 5.6                | 24   | 45   | Schaft           | 28.1  | 1264       | HAIHS       |
| 334     | 931  | Friedb. | 5.6                | 24   | 29   | Schaft           | 42.4  | 1230       | HMH3        |
| 335     | 6914 | Friedb. | 10.9               | 24   | 111  | Schaft           | 23.9  | 2653       | HN1H3       |
| 336     | 6914 | Friedb. | 10.9               | 24   | 124  | Schaft           | 22.2  | 2753       | HIIH3       |
| 337     | 6914 | Peiner  | 10.9               | 24   | 8.1  | Schaft           | 31.6  | 2560       | HAIH3       |
| 338     | 6914 | Peiner  | 10.9               | 24   | 68   | Schaft           | 38.0  | 2584       | EHINH3      |
| 339     | 6914 | Friedb. | 10.9               | 24   | 45   | Schaft           | 57.5  | 2588       | HAIHZ       |
| 340     | 6914 | Friedb. | 10.9               | 24   | 41   | Schaft           | 62.0  | 2542       | HAIH3       |
| 341     | 6914 | Peiner  | 10.9               | 24   | 33   | Schaft           | 69.5  | 2293       | HAIH3       |
| 342     | 6914 | Peiner  | 10.9               | 20   | 93   | Schaft           | 17.5  | 1628       | HN1H3       |
| 343     | 6914 | Peiner  | 10.9               | 20   | 74   | Schaft           | 21.8  | 1613       | HIHZ        |
| 344     | 931  | Peiner  | 8.8                | 12   | 58   | 1.K.             | 3.8   | 220        | НЛІНЗ       |
| 345     | 931  | Peiner  | 8.8                | 12   | 60   | 6.K.             | 3.0   | 160        | HAIHZ       |
| 346     | 931  | Peiner  | 8.8                | 12   | 57   | 10.K.            | 2.9   | 165        | HAIHZ       |
| 347     | 931  | Peiner  | 8.8                | 12   | 22   | 1.K.             | 8.1   | 178        | HAIH3       |
| 348     | 931  | Peiner  | 8.8                | 12   | 21   | 6.K.             | 7.8   | 164        | HINHB       |
| 349     | 931  | Peiner  | 8.8                | 12   | 20   | 10.K.            | 8.0   | 160        | HAIH3       |
| 350     | 931  | Gebi    | A4-70              | 12   | 24   | 10.K.            | 7.8   | 187        | HAIHZ       |
| 351     | 931  | Gebi    | A4-70              | 12   | 20   | 6.K.             | 9.3   | 186        | HAIHZ       |
| 352     | 931  | Gebi    | A4-70              | 12   | 19   | 1.K.             | 11.3  | 215        | HAIH3       |
| 353     | 931  | Gebi    | A4-70              | 12   | 59   | 1.K.             | 3.5   | 206.5      | HAIH3       |
| 354     | 931  | Gebi    | A4-70              | 12   | 59   | 6.K.             | 3.32  | 196        | HNHZ        |
| 355     | 931  | Gebi    | A4-70              | 12   | 60   | 10.K.            | 3.25  | 195        | HAIH3       |
| 356     | 931  | Gebi    | A4-70              | 12   | 58   | 1.K.             | 3.5   | 203        | HAIHS       |
| 357     | 931  | Nedur   | 8.8                | 24   | 77   | 1.K.             | 27.1  | 2087       | HNIHZ       |
| 358     | 931  | Nedur   | 8.8                | 24   | 76   | 6.K.             | 22.7  | 1725       | HN1H3       |
| 359     | 931  | Nedur   | 8.8                | 24   | 73   | 10.K.            | 23.5  | 1715       | HMH3        |
| 360     | 931  | Nedur   | 8.8                | 24   | 32   | 1.K              | 62.5/ | 2000       | HN1H3       |
|         |      |         |                    |      |      |                  |       |            |             |

H1 = Kalt formung

H2 = Warmformung H3 = Gewinde geroll H4 = Gewinde geschni

| Versuch | Din | Herst.  | Festigk.<br>klasse | Ú  | Exz.   | Einschr<br>tiefe | F*   | Y     | emerk.<br>-ellverfahrer |
|---------|-----|---------|--------------------|----|--------|------------------|------|-------|-------------------------|
|         |     |         |                    |    | _mm _l | [Kerbe]          | [kN] | [Nm]  | cure Tarrist.           |
|         |     |         |                    |    |        |                  |      |       |                         |
| 361     | 931 | Nedur   | 8.8                | 24 | 33     | 6.K.             |      |       | :HILH                   |
| 362     | 931 | Friedb. | 8.8                | 24 | 35     | 10.K.            | 42.0 | 1470  | HNIHZ                   |
| 363     | 931 | PL      | A4-70              | 20 | 56     | 1.K.             | 13.5 | 756   | EHINH 3                 |
| 364     | 931 | Vefe    | A4-70              | 20 | 56     | 6.K.             | 16.4 | 918   | HN/H3                   |
| 365     | 931 | PL      | A4-70              | 20 | 55     | 10.K.            |      |       | EHINH .                 |
| 366     | 931 | Vefe    | A4-70              | 20 | 21     | 1.K.             | 47.0 | 987   | HAIH3                   |
| 367     | 931 | Vefe    | A4-70              | 20 | 20     | 6.K.             | 43.5 | 870   | EHINH 3                 |
| 368     | 931 | Vefe    | A4-70              | 20 | 20     | 10.K.            | 43.0 | 860   | HAIHS                   |
| 369     | 931 | Dorn    | 4.6                | 6  | 40     | 1.K.             | 0.31 | 12.4  | FHINH                   |
| 370     | 931 | Dorn    | 4.6                | 6  | 40     | 6.K.             | 0.31 | 12.4  | EHINH                   |
| 371     | 931 | Dorn    | 4.6                | 6  | 40     | 10.K.            | 0.29 | 11.6  | H11413                  |
| 372     | 931 | Dorn    | 4.6                | 6  | 10     | 1.K.             | 1.12 | 11.2  | HAIHZ                   |
| 373     | 931 | Dorn    | 4.6                | 6  | 10     | 6.K.             | 0.99 | 9.9   | HAIHZ                   |
| 374     | 931 | Dorn    | 4.6                | 6  | 10     | 10.K.            | 1.02 | 10.2  | HAIHZ                   |
| 375     | 931 | Gebi    | A4-70              | 6  | 39     | 1.K.             | 0.56 | 21.8  | HAIHS                   |
| 376     | 931 | Gebi    | A4-70              | 6  | 38     | 6.K.             | 0.54 | 20.5  | EHINH                   |
| 377     | 931 | Gebi    | A4-70              | 6  | 38     | 10.K.            | 0.54 | 20.3  | HAIHZ                   |
| 378     | 931 | Gebi    | A4-70              | 6  | 1 1    | 1.K.             | 1.99 | 21.8  | HAIHZ                   |
| 379     | 931 | Gebi    | A4-70              | 6  | 1 1    | 6.K.             | 1.71 | 18.8  | HAIHZ                   |
| 380     | 931 | Gebi    | A4-70              | 6  | 12     | 10.K.            | 1.75 | 21.0  | EHINH?                  |
| 381     | 931 | 3F      | 8.8                | 6  | 39     | 1.K.             | 0.58 | 22.6  | HATHS                   |
| 382     | 931 | 3 F     | 8.8                | 6  | 39.5   | 6.K              | 0.43 | 17.0  | HAIH3                   |
| 383     | 931 | 3F      | 8.8                | 6  | 40     | 10.K.            | 0.44 | 17.6  | HAIHZ                   |
| 384     | 931 | 3F      | 8.8                | 6  | 11.5   | 1.K.             | 2.29 | 26.3  | HAIHS                   |
| 385     | 931 | 3 F     | 8.8                | 6  | 1 1    | 6.K              | 1.48 | 16.3  | HMH3                    |
| 386     | 931 | 3F      | 8.8                | 6  | 12     | 10.K.            | 1.48 | 17.8  | HAIH?                   |
| 387     | 931 | 3 F     | 8.8                | 6  | 38     | 2.K              | 0.58 | 22.04 | SHINH                   |
| 388     | 931 | Dorn    | 4.6                | 6  | 46     | Schaft           | 0.29 | 13.3  | HNH3                    |
| 389     | 931 | Gebi    | A4-70              | 6  | 4 1    | Schaft           | 0.55 | 22.6  | HAHS                    |
| 390     | 931 | 3 F     | 8.8                | 6  | 5 1    | Schaft           | 0.60 | 30.6  | EAIHS.                  |

HA = Kalt formung
HB = Warm formung
HB = Gewinde geront
HH - Gewinde geschnis

| Versuch | Din  | Herst.  | Festigk<br>klasse | U  | Exz. | Einschr<br>tiefe<br>[Kerbe] | F <sup>*</sup><br>[kN] | V     | Bemerk. |
|---------|------|---------|-------------------|----|------|-----------------------------|------------------------|-------|---------|
|         |      |         |                   |    |      | 2                           | 2                      |       |         |
| 391     | 931  | Nedur   | 8.8               | 24 | 3 1  | 6.K.                        | 55.4                   | 1717  | EHINH   |
| 392     | 931  | Nedur   | 8.8               | 24 | 3 1  | 10.K.                       | 53.0                   | 1643  | HIHZ    |
| 393     | 931  | Nedur   | 8.8               | 24 | 3 1  | 6.K.                        | 53.3                   | 1652  | HAIH3   |
| 394     | 931  | Nedur   | 8.8               | 24 | 60   | Schaft                      | 43.8                   | 2628  | H1143   |
| 395     | 931  | Gebi    | A4-70             | 12 | 50   | Schaft                      | 4.1                    | 205   | EHINH3  |
| 396     | 931  | Peiner  | 8.8               | 12 | 45.5 | Schaft                      | 6.1                    | 278   | HNIHZ   |
| 397     | 931  | Vefe    | A4-70             | 20 | 43   | Schaft                      | 19.65                  | 845   | HAIH3   |
| 398     | 931  | PL      | A4-70             | 20 | 49   | Schaft                      | 15.6                   | 764   | HAIHZ   |
| 399     | 931  | Friedb. | 5.6               | 30 | 162  | 1.K.                        | 13.7                   | 2219  | HAIH 3  |
| 400     | 931  | Friedb. | 5.6               | 30 | 162  | 1.K.                        | 14.0                   | 2268  | HAIHS   |
| 401     | 931  | Friedb. | 5.6               | 30 | 162  | 6.K.                        | 11.4                   | 1847  | EHINH 3 |
| 402     | 931  | Friedb. | 3.6               | 30 | 127  | 1.K.                        | 12.0                   | 1524  | HMH3    |
| 403     | 931  | Friedb. | 3.6               | 30 | 123  | 6.K.                        | 10.2                   | 1255  | HAIHZ   |
| 404     | 7990 | Fuchs   | 4.6               | 30 | 54.5 | 1.K.                        | 36.7                   | 2000  | H21H4   |
| 405     | 7990 | Fuchs   | 4.6               | 30 | 57   | 6.K.                        | 27.3                   | 1556  | H21H4   |
| 406     | 6914 | Friedb. | 10.9              | 30 | 130  | 1.K.                        | 34.6                   | 4498  | EHINH   |
| 407     | 931  | 3F      | 8.8               | 6  | 50   | Schaft                      | 0.59                   | 29.5  | EHINH   |
| 408     | 931  | 3F      | 8.8               | 6  | 49   | Schaft                      | 0.65                   | 31.85 | EHINH 3 |
| 409     | 931  | Gebi    | A4-70             | 6  | 40   | Schaft                      | 0.55                   | 22    | HMIHZ   |
| 410     | 931  | Gebi    | A4-70             | 6  | 4 1  | Schaft                      | 0.54                   | 21.5  | EHINH   |
| 411     | 931  | Dorn    | 4.6               | 6  | 40   | 6.K.                        | 0.32                   | 12.8  | HAIHZ   |
| 412     | 931  | Dorn    | 4.6               | 6  | 52   | Schaft                      |                        |       | HAIHS   |
| 413     | 931  | Dorn    | 4.6               | 6  | 50   | Schaft                      | 0.28                   | 14.2  | HAIHS   |
| 414     | 931  | Dorn    | 4.6               | 6  | 50   | Schaft                      | 0.25                   | 12.7  | HAIH3   |
| 415     | 931  | Gebi    | A4-70             | 12 | 48   | Schaft                      | 4.3                    | 206   | HNIHZ   |
| 416     | 931  | Gebi    | A4-70             | 12 | 46   | Schaft                      | 4.4                    | 202   | HNH3    |
| 417     | 931  | Peiner  | 8.8               | 12 | 44   | Schaft                      | 6.3                    | 294   | HIVIH3  |
| 418     | 931  | Peiner  | 8.8               | 12 | 47   | Schaft                      | 5.8                    | 273   | HMH3    |
| 419     | 931  | Nedur   | 8.8               | 24 | 55.5 | Schaft                      | 46.9                   | 2603  | FNH3    |

HA = Kaltformung HZ = Warmformung H3 = Gewinde gerollt H4 = Gewinde geschni

| iben   F<br>  I<br>  L<br> <br>  Iler  <br>  ner Cha | DIN-Norm: Anzahl: Testigkeitskla Nenndurchmesse Tänge: Trge         |                                                                                                                                                              |                                                                                                 |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ner Cha                                              | i                                                                   |                                                                                                                                                              |                                                                                                 | 1                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                               |
|                                                      | i                                                                   |                                                                                                                                                              |                                                                                                 |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                               |
| ner Wär                                              | mebehandluna                                                        |                                                                                                                                                              | nein:□                                                                                          |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                               |
|                                                      |                                                                     | ja:□                                                                                                                                                         | nein:□                                                                                          |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                               |
| itahl mi<br>itahl mi<br>itahl mi                     | it niedrigem C<br>it mittlerem C<br>t-niedrigem C                   | -Gehalt<br>-Gehalt u.                                                                                                                                        | Zusätze,                                                                                        | -                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                             |
| tahl mi<br>tahl mi                                   | t mittlerem C<br>t mittlerem C                                      | -Gehalt, ab                                                                                                                                                  |                                                                                                 | nd angelassen                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                               |
| panende                                              | Formung . Kaltf                                                     | <b>.</b>                                                                                                                                                     | Schrau                                                                                          | ben                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                               |
| winde                                                | gerollt '                                                           |                                                                                                                                                              | 0                                                                                               |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                               |
| it tb t t                                            | tahl mi<br>ahl mi<br>geschr<br>ahl mi<br>gierte<br>anende<br>anlose | cahl mit mittlerem Cahl mit niedrigem Cogeschreckt und ange ahl mit mittlerem Cahl mit mittlerem Cogierter Stahl  anende Formung  Kaltfanlose Formung  Warmf | tahl mit niedrigem C-Gehalt tahl mit mittlerem C-Gehalt den | tahl mit niedrigem C-Gehalt  tahl mit mittlerem C-Gehalt  tahl mit mittlerem C-Gehalt u. Zusätze,  geschreckt und angelassen  ahl mit mittlerem C-Gehalt, abgeschreckt u  ahl mit mittlerem C-Gehalt und Zusätze  gierter Stahl  anende Formung  Kaltformung  Warmformung  gerollt  inde  geschnitten | tahl mit niedrigem C-Gehalt tahl mit mittlerem C-Gehalt tahl mit mittlerem C-Gehalt u. Zusätze, tigeschreckt und angelassen tahl mit mittlerem C-Gehalt, abgeschreckt und angelassen tahl mit mittlerem C-Gehalt und Zusätze tigierter Stahl tanende Formung  Kaltformung  Warmformung  Gerollt  Geschnitten  Schrauben  Gerollt  Geschnitten |

Ergebnisse der Materialproben nach DIN 50125

| Schraube                | $\beta_s$  | $eta_{s,stat}$ | $eta_{\scriptscriptstyle{2\!\!-}}$ | ٤ <sub>в</sub> |
|-------------------------|------------|----------------|------------------------------------|----------------|
| Fuchs 4.6 M12/100       | 244        | 223            | 428                                | 34,0           |
| H.F. Graeka 4.6 M12/120 | 444        | 423            | 550                                | 31,7           |
| Fuchs 5.6 M12/95        | 303        | 286            | 5 48                               | 30,3           |
| A. Friedb. 5.6 M121140  | 417        | 400            | 562                                | 36,0           |
| Fuchs 4.6 M20175        | 289        | 289            | 457                                | 20,0           |
| Fuchs 4.6 M201160       | 298        | 284            | 430                                | 37,3           |
| A. Friedb. 4.6 M201140  | 293        | 274            | 400                                | 3 6,0          |
| Fuchs 5.6 M20175        | 281        | 260            | 527                                | 31.7           |
| A. Friedb. 5.6 M201220  | 440        | 420            | 625                                | 28,8           |
| Peiner 10.9 M201160     | 1061       | 1023           | 1079                               | 15.0           |
| Fuchs 4.6 M24195        | 298        | 281            | 439                                | 36,7           |
| A. Friedb. 4.6 M24/180  | 435        | 420            | 517                                | 28,8           |
| Fuchs 5.6 M241100       | 364        | 334            | 597                                | 31,7           |
| Fuchs 5.6 M241190       | 234        | 207            | 509                                | 36,0           |
| A.Friedb. 5.6 M 241280  | 413        | 313            | 556                                | 29,5           |
| Nedur 8.8 M241150       | 867        | 834            | 966                                | 16.4           |
| Fuchs 4.6 M27/100       | 323        | 315            | 529                                | 28,7           |
| Fuchs 4.6 M30/100       | 319        | 285            | 474                                | 34,0           |
|                         | $[N/mm^2]$ | [N/mm2]        | [N/mm2]                            | [%]            |

Ergebnisse der Material proben (Ganzzugversuche)

| Schraube                   | )        | $eta_{\mathtt{s}}$ | $eta_{s,stat}$ | $eta_{z}$ | Bemerk.               |
|----------------------------|----------|--------------------|----------------|-----------|-----------------------|
| Dorn 4.6 M                 | 6/90     | 322                | 293            | 388       | Versagen<br>im Schaft |
|                            |          | 322                | 282            | 384       | Versagen<br>im Schaft |
| Gebi A4-70                 | M6180    | 606                | 536            | 632       | Versagen<br>im Schaft |
|                            |          | 587                | 560            | 625       | Versagen<br>im Schaft |
| 3F 8.8                     | M6190    | 845                | 780            | 845       |                       |
| Fuchs (K) 4.6              | M12/100  | 400                |                | 496       |                       |
|                            |          | 392                | 368            | 508       |                       |
|                            |          | 320                | 297            | 475       |                       |
| Fuchs 5.6                  | M12195   | 415                | 382            | 582       |                       |
| Gebi 174-70                | M121120  | 632                | 591            | 670       | Versagen<br>im Schaft |
|                            |          | 642                | 600            | 684       | Versagen<br>im Schaft |
| Peiner 8.8 N               | 1121120  | 813                | 783            | 843       |                       |
| Peiner 10.9 1              | M12175   | 1021               | 979            | 1032      |                       |
| Peiner 10.9 1              | M 12 190 | 1015               | 979            | 1038      |                       |
| A. Friedb. 10.9 1          | M121100  | 997                | 961            | 1009      |                       |
| Fuchs 5.6 M                | 1241/190 | 289                | 284            | 567       |                       |
| $[N/mm^2][N/mm^2][N/mm^2]$ |          |                    |                |           |                       |

#### <u>Vickershärteprüfungen</u>

| Probe Nr. | Festigkeitsk | 1. HV 1 | 0     |
|-----------|--------------|---------|-------|
|           |              | Mitte   | Rand  |
| 1         | 5.6          | 158.5   | 160.4 |
| 2         | 4.6          | 140     | 146   |
| 3         | 5.6          | 172     | 178   |
| 4         | 5.6          | 164     | 169   |
| 5         | 5.6          | 168     | 166   |
| 6         | 4.6          | 146     | 142   |
| 7         | 4.6          | 135     | 137   |
| 8         | 4.6          | 174     | 166   |
| 9         | 4.6          | 164     | 150   |
| 10        | 4.6          | 145     | 136   |

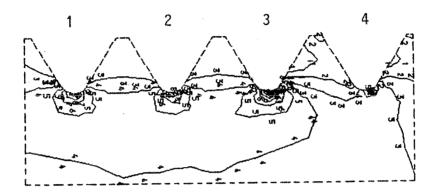
Die angegebenen Werte wurden als Mittel von sechs Messungen bestimmt.

# Lastabfall durch Stoppen des Versuchs für 10 Min.

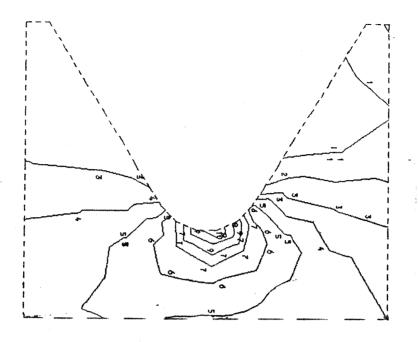
| Versuch Nr. | F*[kN] | FHelt, oben | FHalt, unten | Abfall[%] |
|-------------|--------|-------------|--------------|-----------|
| 11          | 4,6    | 4,0         | 3,6          | 10.0      |
| 13          | 2.9    | 1,7         | 1,6          | 5,9       |
| 14          | 2,3    | 2.5         | 2,4          | 4.0       |
| 15          | 2.25   | 2.4         | 2.25         | 6.25      |
| 27          | 5,5    | 3,9         | 3,7          | 5,1       |
| 28          | 6.4    | 6.2         | 5,8          | 6,5       |
| 29          | 5.2    | 5,0         | 4,7          | 6,0       |
| 32          | 17.0   | 18.0        | 16.8         | 6.7       |
| 33          | 7,0    | 8.3         | 7,6          | 8.4       |
| 37          | 13,5   | 12.0        | 10.7         | 10,8      |
| 38          | 17,4   | 13,2        | 12.3         | 6,8       |
| 39          | 15,8   | 12,9        | 11.9         | 7,8       |
| 39          | 158    | 20,7        | 18,7         | 9,7       |
| 40          | 12.2   | 14,1        | 12.8         | ٩, 2      |
| 41          | 4,2    | 4,3         | 4,0          | 7,0       |
| 42          | 3,6    | 3,7         | 3,5          | 5,4       |
| 43          | 4,7    | 6,5         | 6,1          | 6,2.      |
| 49          | 13,5   | 14.7        | 13,7         | 6,8       |
| 49          | 43,5   | 18.2        | 17,0         | 6,6       |
| 56          | 2.4    | 2.4         | 2.2          | 8.3       |
| 66          | 9,5    | 10,3        | 9.8          | 4.9       |
| 67          | 8.2    | 8.7         | 8,3          | 4,6       |
| 7/1         | 6,0    | 4.7         | 4.5          | 4,3       |
| 71          | 6.0    | 5,5         | 5.3          | 3,6       |
| 75          | 18,9   | 25,0        | 23,2         | 7,2       |
| 80          | 5.4    | 6.1         | 5,6          | 8.2       |

### Lastabfall durch Stoppen des Versuchs für 10 Min.

| Versuch Nr. | F* [kN] | FHalt, oben | FHalt, unten | Abfall[%] |
|-------------|---------|-------------|--------------|-----------|
| 86          | 13.0    | 19.5        | 18,0         | 7.7       |
| 91          | 7.8     | 8.9         | 8.3          | 6.7       |
| 96          | 5.4     | 5,4         | 5.2          | 3,7       |
| 98          | 11,0    | 10.0        | 9,5          | 5.0       |
| 99          | 10.2    | 9,6         | 9,1          | 5.2       |
| 100         | 10,5    | 9,6         | 9,2          | 4.2       |
| 102         | 3,0     | 2.7         | 2,6          | 3,7       |
| 105         | 16,5    | 16.0        | 15,5         | 3,0       |
| 107         | 10,7    | 5,9         | 5,7          | 3,4       |
| 107         | 10,7    | 8,5         | 8,3          | 2.4       |
| 407         | 10,7    | 10,0        | 9.7-         | 3,0       |
| 108         | ۸٬۶     | 7.6         | 7.4          | 2,6       |
| 142         | 23,3    | 22.4        | 21.3         | 4,9       |
| 146         | 9.8     | 9,8         | 9,5          | 3,1       |
| 205         | 18,3    | 13,1        | 12.4         | 5,3       |
| 205         | 18.3    | 24,1        | 22,8         | 5,4       |
| 28          | 46.8    | 50,0        | 47.7         | 4,6       |
| 2.39        | 54.3    | 50,7        | 47.7         | 5,9       |


## Statistische Auswertung:

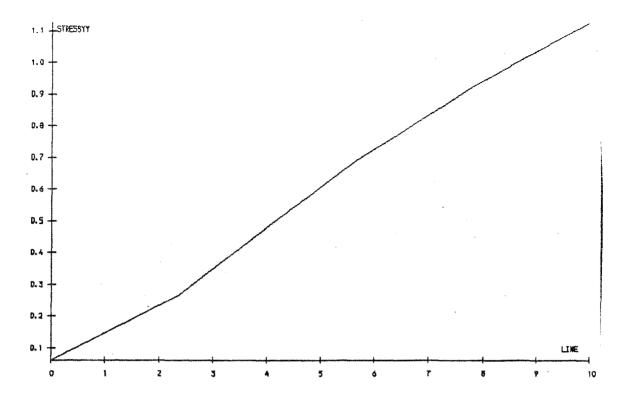
Hbfall: n = 44  $\Sigma \times = 256$   $\Sigma \times^2 = 1673,2$ 


Mittelwert:  $\bar{x} = 256/44 = 5.82\%$ 

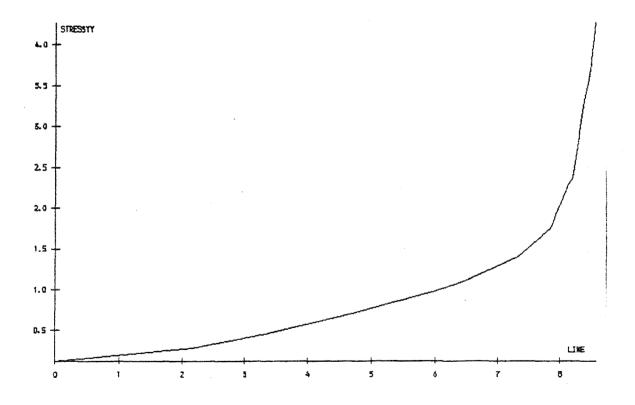
Standardabweichung: s= 2,07%.

Für Normalverteilung: 5%-Fraktile bei 9,22%

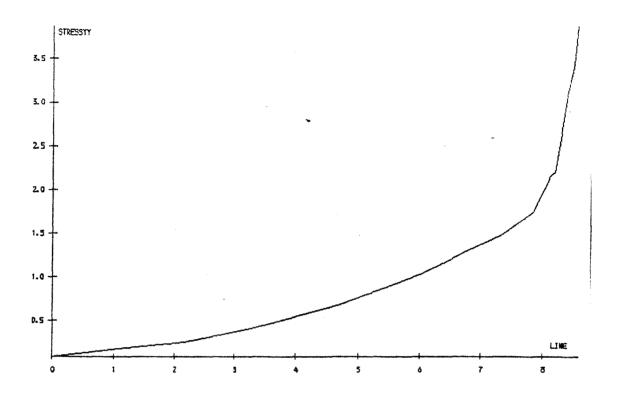



Normalspannungen  $\varepsilon_{yy}$  im Bereich der Kerben 1-4 bei Belastung der Kerben 3-5

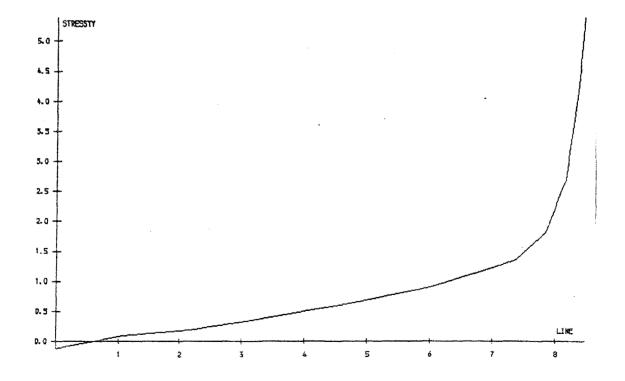



 $6_{yy}$  in Kerbe 3 , max  $8_{yy} = 5.8$  Gewindeflanke belastet



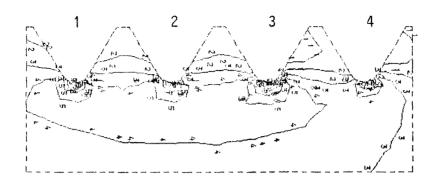

 $6_{yy}$  in Kerbe 1 , max  $8_{yy} = 4.3$ Gewindeflanke unbelastet

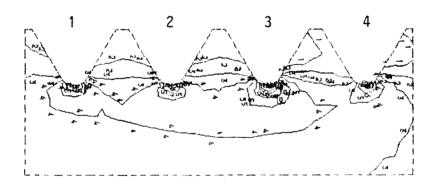


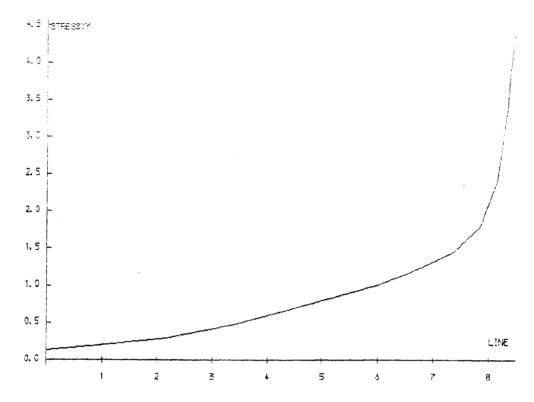

 $\mathfrak{S}_{yy}$  im Schaft bei Belastung der Kerben 3-5

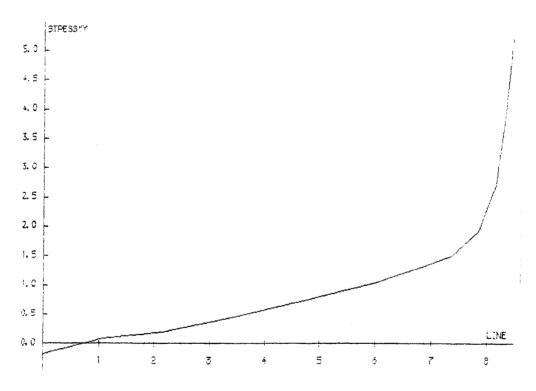


 $\Theta_{yy}$  in Kerbe 1 bei Belastung der Kerben 3-5

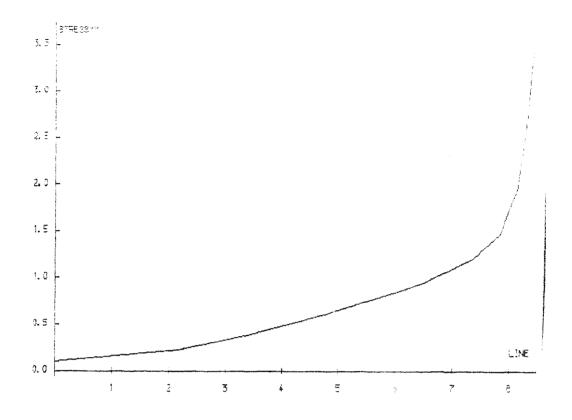


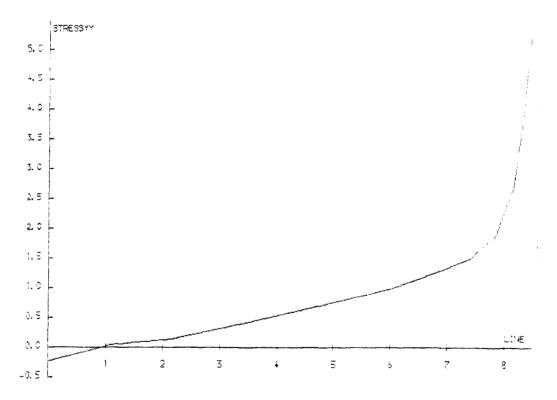


 $\Theta_{yy}$  in Kerbe 2 bei Belastung der Kerben 3-5



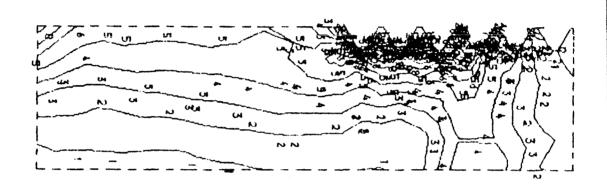


6 yy in Kerbe 3 bei Belastung der Kerben 3-5

#### INSTITUT FÜR STAHLBAU DER TECHNISCHEN UNIVERSITÄT BRAUNSCHWEIG Beethovenstraße 51 · 3300 Braunschweig

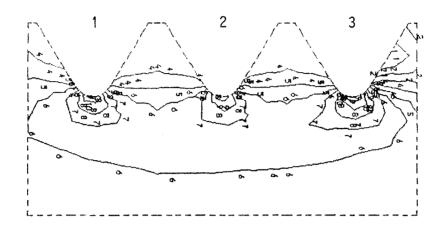


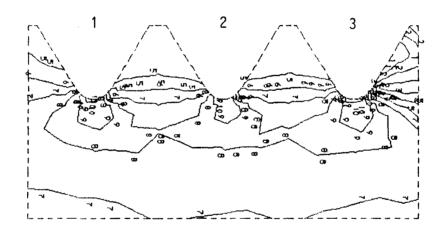





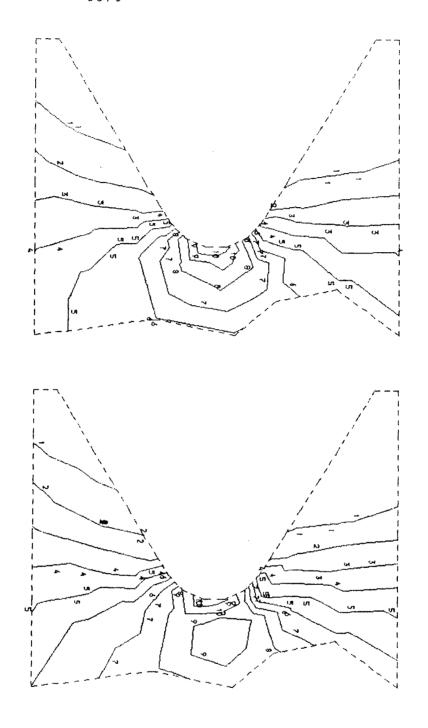




 $\mathcal{G}_{yy}$  in Kerbe 1 (oben) und in Kerbe 3 (unten) Belastung der Kerben 3-5 Einleitung von Zug- und Querkräften am Schaft (e=10cm)

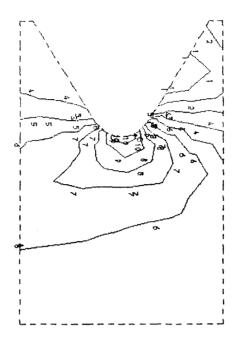


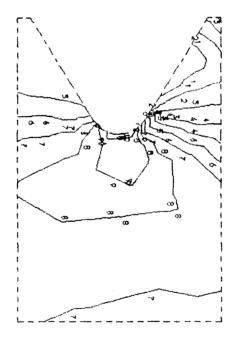




'S yy in Kerbe 1 (oben) und in Kerbe 3 (unten)
Belastung der Kerben 3-5
Einleitung nur von Querkräften am Schaft

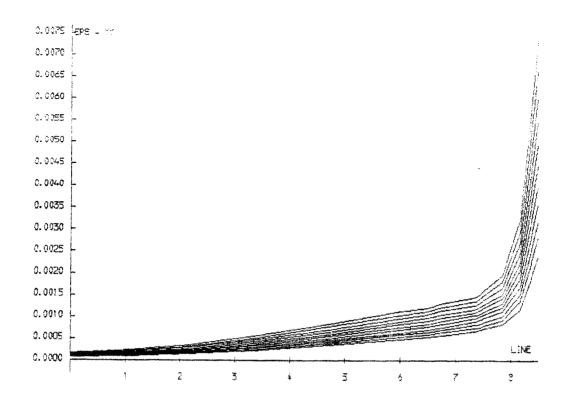


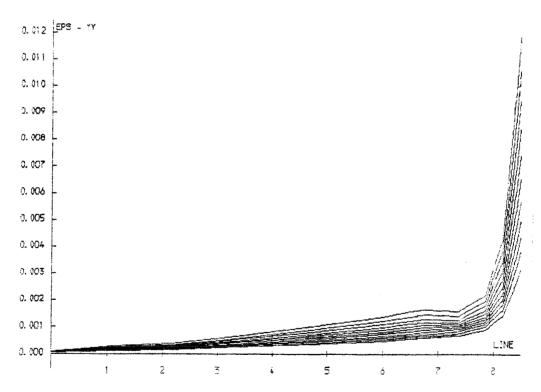

Isolinien der Normalspannungen  $\sigma_{yy}$  (Gesamtstruktur). Hier ist der lineare Spannungsverlauf im Schaftbereich zu erkennen. Die Spannungsverteilung im Gewindebereich, hier nicht zu erkennen, ist in den folgenden Anlagen dargestellt.



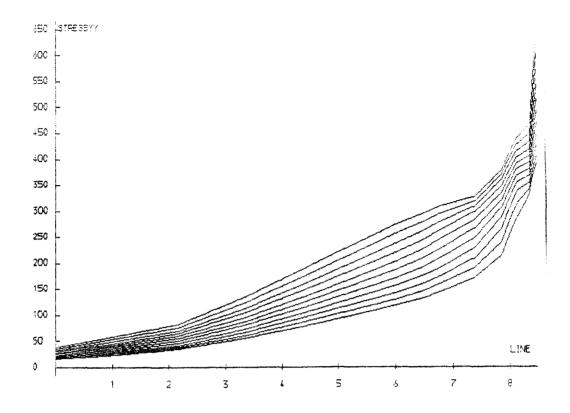



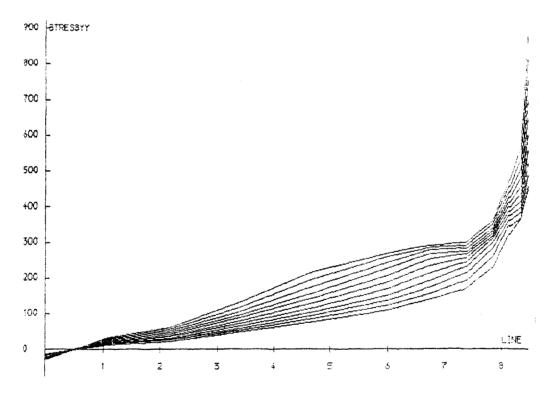

6 yy im Bereich der Kerben 1-3 für die Laststufen 1.0 (oben) und 1.3 (unten) bei Belastung der Kerben 3-5



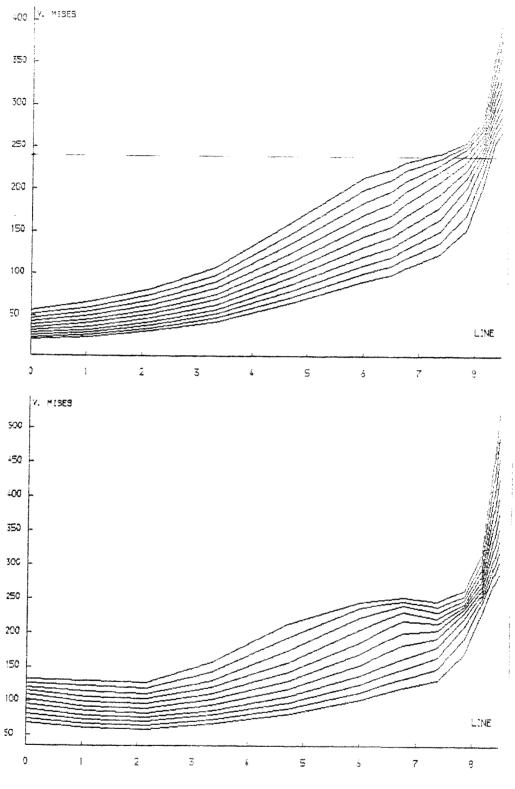


& yy in Kerbe 1 Laststufe 1.0 (oben) und 1.3 (unten) Belastung der Kerben 3-5



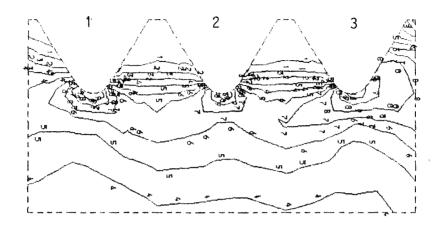


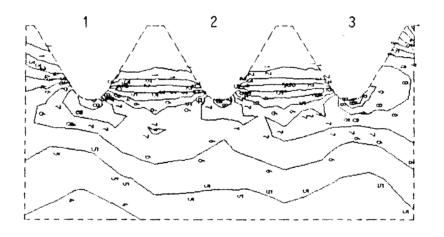


& yy in Kerbe 3
Laststufe 1.0 (oben) und 1.3 (unten)
Belastung der Kerben 3-5



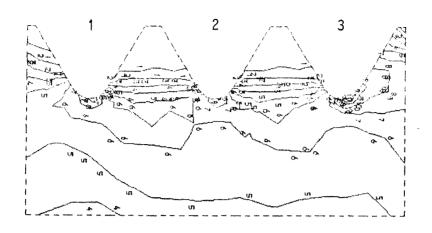


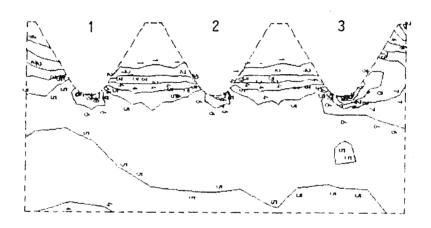

Dehnungen  $\mathcal{E}_{yy}$  für 11 Laststufen Kerbe 1 (oben) und Kerbe 3 (unten) Belastung der Kerben 3-5

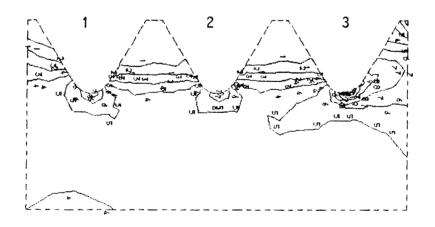


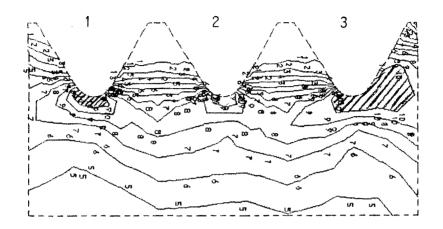

Normalspannungen e yy für 11 Laststufen Kerbe 1 (oben) und Kerbe 3 (unten) Belastung der Kerben 3-5

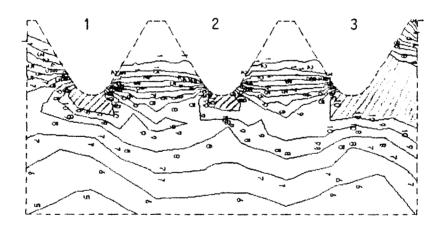




Vergleichsspannungen seff für 11 Laststufen Kerbe 1 (oben) und Kerbe 3 (unten) Belastung der Kerben 3-5

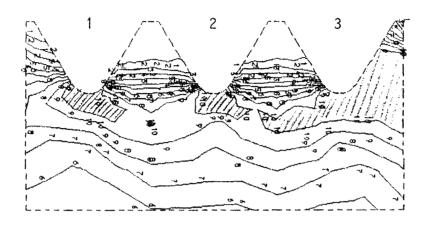


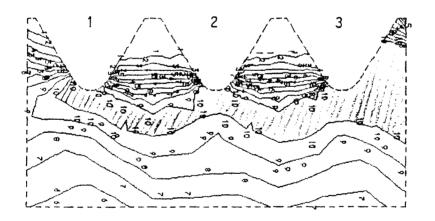




Vergleichsspannungen  $\Theta_{\rm eff}$  für die Laststufen 1 (oben) und 4 (unten) in den Kerben 1-3 Belastung der Kerben 3-5

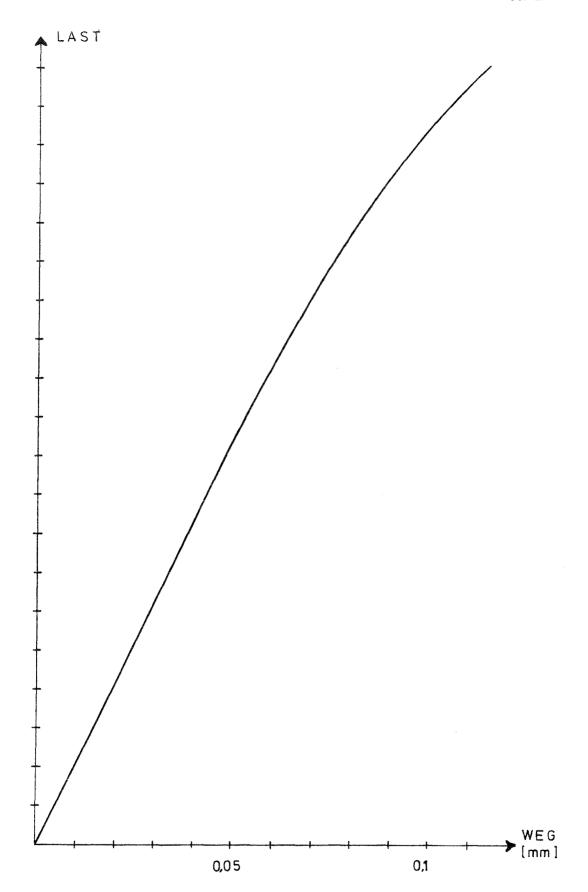






Vergleichsspannungen seff für die Laststufen 7 (oben), 9 (Mitte) und 11 (unten) in den Kerben 1-3 Belastung der Kerben 3-5






Vergleichsspannungen  $\mathbf{e}_{eff}$  für die Laststufen 1.0 (oben) und 1.1 (unten) in den Kerben 1-3 Belastung der Kerben 3-5 Der schraffierte Bereich ist plastiziert.





Vergleichsspannungen  $\varepsilon_{\rm eff}$  für die Laststufen 1.2 (oben) und 1.3 (unten) in den Kerben 1-3 Belastung der Kerben 3-5 Der schraffierte Bereich ist plastiziert.



Last-Verschiebungsdiagramm

Belastung der Kerben 3-5

# Berechnung\_des\_plastischen\_Momentes\_der\_Schrauben\_im\_Schaftbereich

|                       |                   | T                 |                      |                 | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------|-------------------|-------------------|----------------------|-----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Schraube              | <sup>d</sup> nenn | <sup>d</sup> vorh | <sup>β</sup> s(nenn) | βs,stat, (vorh) | Mpl(nenn)  | Mpl(vorh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | [mm]              | [mm]              | [kN/mm²]             | [kN/mm²]        |            | [Nm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Dorn 4.6 6190 -       | -6-               | 5,85              | 0,24                 | 0,288           | 8,65       | 9.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Gesi 14-70 6180       | 6                 | 5,8-              | 0,45                 | 0,536           | 16,22      | 17.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3F 8.8 6/90           | 6                 | 6.0               | 0,64                 | -0,18-          | 23,01      | 28,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Fuchs 4.6 121/100     | 12                | 11,85             | 0,24                 | 0,368           | -69,22     | 102,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -AF(Grada) 4.6-121.00 | AL                | 14.85             | - Or24               | 0,423           | 69,22      | 117,47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fuchs 5.6 12195       | -12               | 14,8              | -0,3                 | 0,286           | -86,52     | - 78,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RF 5.6 121440         | 12                | 11.9              | -0,3 -               | 0,400           | -86,52     | 112,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sesi P4-70 AZIAZO     | 12                | 11.7              | -0,45                | 0,596           | 129,78     | 15918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Peiner 8.8-12/120     | 12                | 11,95             | -0,64                | 0,783           | 184,57     | 223,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AF, 10.9-12170        | 12-               | 11,95             | -0,9                 |                 | Z 59,56    | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7.F 10 9 121100       | N                 | 11.9              | 0,9                  | 0,961           | -259,S6    | 270,28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Peiner 10.9 12115     | 12                | 11.5              | -0,9                 | 0,979           | -259,56-   | 24850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Peiner 10.9 12190     | AZ.               | 11.5              | 0,9                  | 0,979           | 259,56     | 248,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fuchs 4-6-201160      | 20                | 19,75             | -0,24                | -0,284          | 320,44     | -365,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0+A105-9.H 7.F        | 20                | 19,95             | -0,24                | - 0,274         | -320,44    | -363,10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A = 46 201200         | 20                | 19,95             | 0,24                 |                 | 320,44     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 F 5 6 201,40        | 20                | 19,9              | -0.3                 |                 | 40955      | months and the same of the sam |
| P.F. 5.6 201220       | 20-               | 1965              | -0,3                 | 0,420           | 400,55     | 534,85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VEFE A4-70 201/HO     | 20                | 19,85             | 0,45                 |                 | 600,83     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PL P4-70 2011-10      | 20                | 20,1              | -0,45                |                 | 600,83     | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| F. 10.9 201115        | 20                | 19,4              | 0,9                  |                 | -1201,66   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A.F. 10.9-201200      | 20                | 19,9              | -0,9                 |                 | 1201,66    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Peiner 10.9 201160    | 20                | 19,8              | -0,9-                | 1,023           | -AZON, 66- | 1325,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Schraube           | d <sub>nenn</sub> | <sup>d</sup> vorh | <sup>β</sup> s(nenn) | <sup>β</sup> s,stat,<br>(vorh) | <sup>M</sup> pl(nenn) | M <sub>pl(vorh)</sub> |
|--------------------|-------------------|-------------------|----------------------|--------------------------------|-----------------------|-----------------------|
|                    | _mm ]             | [mm]              | [kN/mm²]             | [kN/mm²]                       |                       | [Nm]                  |
| AF 4.6-241460      | 24 -              | 23,9              | 0,24                 |                                | 553,72-               | /                     |
| A.F. 4.6 241/80    | 24                | 23,85             | 0,24                 | 0.42.0                         | 553,72                | 956,96                |
| Frichs 5.6 241/190 | 24                | 23,8              | 0,3                  | 0,284                          | 692.16                | 639,38                |
| A.F. 5 6 241A70    | 24                | 23,9              | 0,3                  |                                | 692,16                | /                     |
| A.F. S. 6 241280   | 24                | 23,75             | -0,3                 | - 0,393                        | 692,16                | 878,68                |
| Neolur 8 8 241/50  | 24                | 23,8              | 0,64                 | 0.834                          | 1476,60               | -1869,74              |
| A.F. 10.9 24 LHD   | 24                | 23,4              | 0,9                  | /-                             | 2076,47               | /                     |
| P.F. 109 241235    | 24                | 23.65             | 0,9                  |                                | 2074,47               | /                     |
| Peines 109 24/95   | 24                | 23 35             | 0,9                  | 0,958 *                        | 2076.47               | 2036,01               |
| Peiner 10.9-24/190 | 24                | 23,3              | 0,9                  | 1,053*                         | 74265                 | - 2223,52             |

<sup>\* \$ = 0,95</sup> Bs

Werte aus Anlage 19 (Ganzzugversuche)

# Gemessene\_Grenzmomente\_der\_Schrauben\_im\_Schaftbereich (M\*=M\*,schaft.0.9.cos10°) (vgl.Anl.50,51,55,56)

| Schraube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vers. | M <sub>v,sch</sub> . | е     | M <sub>pl(nenn)</sub> | M <sub>pl(vorh)</sub> | M* Mpl(nenn) | M* pl(vorh) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|-------|-----------------------|-----------------------|--------------|-------------|
| A annumentation of the state of |       | [Nm]                 | [ mm] | [Nm]                  | [Nm]                  | [-]          | [-]         |
| Dorn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 388   | 13,3                 | 46    | 8.65                  | 9,62                  | A-37         | 1,23        |
| 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4/3   | 14,2                 | 50    | 8,65                  | 9,62                  | 1,45         | 1,31        |
| 6190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 414   | 12,7                 | 50    | <b>8.65</b>           | 9,62                  | 1,30         | 1,17        |
| Gebi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 389   | 22,6                 | 41    | 16.22                 | 11,45                 | 1,23         | 1.15        |
| A4-70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 409   | 22,0                 | 40    | 16.22                 | 17.45                 | 1,21         | -A, 12      |
| 6180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 410   | - 24.5               | 41    | 16.22                 | ,17,45 ·              | 1,18         | 1,09-       |
| 3F8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 390   | 30,6                 | 51    | 23,07                 | 28,12                 | 1,18         | 0,96        |
| 6/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 407   | -29,5                | 50    | 23,07                 | 28,12                 | 1.13         | 0,93-       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 408   | - 3485               | 49    | - 23, 67              | 28,12                 | 1.22         | - 1,00      |
| Fuchs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 293   | 122                  | 33    | 69,22                 | 1.02,20               | 1,56         | 1,06        |
| 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 294   | 141                  | 47    | 69, 22                | 102,20                | 1,81         | 1,22        |
| 121100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 295   | 126                  | 31    | 69,22                 | 102,20                | 1,61         | 1,09        |
| A.F. Graeka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29/1  | A62                  | 61    | 69,22                 | AN7,47                | 2,07         | -122        |
| 4.6 12/120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 292   | 158                  | 5/    | 69,22                 | 1/12/47 -             | 2,02         | 1119        |
| Fuchs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 296   | 124                  | 33    | 86.52                 | 78,43                 | 1.27         | A40         |
| 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 297   | 127                  | 30-   | 86,52                 | 78,43                 | 1.30         | 444         |
| 12195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 298   | - 126                | 34-   | 86.52-                | 78,43                 | A29          | 442-        |
| A. F. 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 288   | :152                 | 60    | 8652                  | 112,50                | 1,56         | 1,20        |
| 121140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 289   | 153                  | 65    | 36,52                 | 112,50                | 1,57         | 1,2A        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 290   | 147                  | 70    | 86.52                 | 112,50                | 1,51         | 1.16        |
| Gebi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 416   | 202                  | 46    | 129,78                | 159,18                | 1,38         | A, A-2      |
| F4-70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 395   | 205                  | SO    | 1129,78               | 159,18                | 1,40         | 1.14        |
| 121120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/15  | 206                  | 48    | 129,78                | 159,18                | 1,41         | 1,15        |

| Mpl(vorh) |
|-----------|
|           |
|           |
| AM        |
| 417       |
| 7.09      |
|           |
| 1,10      |
| - Ar09    |
| 1,01      |
| 1.01      |
| 1,12      |
| 1.03      |
| 1,34      |
| ;t;38     |
| A3A -     |
| 71,36     |
| ~ dv      |
|           |
|           |
|           |
| 1.35      |
| 1,31      |
| 1,33      |
|           |
|           |
|           |

| -                  |       |                       |      |           |           |                         |                         |
|--------------------|-------|-----------------------|------|-----------|-----------|-------------------------|-------------------------|
| Schraube           | Vers. | M <sup>∗</sup> v,sch. | е    | Mpl(nenn) | Mpl(vorh) | M <sup>*</sup> pl(nenn) | M <sup>K</sup> pl(vorh) |
|                    |       | [Nm]                  | [mm] | [Nm]      | [Nm]      | [-]                     | [-]                     |
| A.F. 10.9          | 323   | 1559                  | 32   | 1201,66   |           | A, A5                   | ·                       |
| 201115             | 322   | 1532                  | 35,5 | 1201.66   |           | 1,13                    |                         |
| F.F. 10.9          | 3/18  | 1630                  | 97   | 1201,66   |           | 1,21                    |                         |
| 201200             | 319   | 1606                  | 107  | 1201.66   |           | 1,19                    |                         |
| Peiner             | 321   | 1484                  | 71   | 1201,66   | 1325,23   | - A 09                  | 0,99                    |
| 10.9               | 343   | 16.13                 | 74   | 1201.66   | 1325,23   | 1,19                    | A.08                    |
| 201160             | 320   | <sub>A</sub> S90      | 93   | 1201,66   | 1325,23   | 1,17                    | 1.06                    |
|                    | 342   | 1628                  | 93   | 1201,66   | 1325.23   | 1,20                    | 1.09                    |
| H.F. 4.6<br>241/60 | 325   | 1044                  | 40   | 553,72    |           | - 168                   |                         |
| A.F. 4.6           | 326   | 1279                  | 41   | 253,72    | 956,96 -  | 2,05                    | 1,18                    |
| 241/180            | 324   | 1220                  | 50   | 553,72    | 956,96    | 195                     | 1,13                    |
| Fuchs              | 332   | 1026                  | 60   | 692,16    | 639,38    | 1,31                    | 1,60                    |
| 5.6                | 327   | 993                   | 77-  | 692,16-   | 639,38-   | -127                    | 1,55                    |
| 241/190            | 33/   | F001                  | 79   | 697,16    | 63938     | 1,29                    | A,57                    |
| R.F. 5.6           | 334   | 1230                  | . 29 | 692,16    |           | 1,58                    |                         |
| 241/170            | 333   | 1264                  | 45   | -692,16   |           | 162                     |                         |
| A.F. 5.6           | 330   | 1201                  | 132  | 692,16-   | 878,68    | 1,54                    | -121                    |
| 241280             | 329   | 1260                  | 137  | 692.16    | 878,68    | 1,61                    | 1,27                    |
|                    | 328   | 1217                  | 144  | 692.16    | 878,68    | 1.56                    | 1,23                    |
| Nedur              | 419   | 2603                  | 55,5 | 1476,60   | 1869,74   | 1,56                    | 1,23                    |
| 8.8<br>241150      | 394   | 262.8                 | 60 - | 1476,60   | 1869,74   | 1.58                    | A125                    |
| H.F. 10.9          | 340   | 2542                  | 41   | 2076,47   |           | 1,08                    |                         |
| 241140             | 339   | 2588                  | 45   | 2076,47   |           | 1.AA                    |                         |
|                    |       |                       |      |           | <u></u>   |                         |                         |

| Schraube             | Vers. | ™<br>v,sch. | е    | Mpl(nenn) | Mpl(vorh) | M <sup>*</sup><br><sup>M</sup> pl(nenn) | M*<br>Mpl(vorh) |
|----------------------|-------|-------------|------|-----------|-----------|-----------------------------------------|-----------------|
|                      |       | [ Nm]       | [mm] |           | [Nm]      |                                         |                 |
| A.F. 10.9            | 335   | 2653        | NAN  | 2076,47   |           | 1.13                                    |                 |
| 241235               | 336   | 2753        | 124  | 1076.47   |           | 1,18                                    |                 |
| Peiner<br>10.9 24195 | 341   | 2293 -      | 33   | 2076,47   | 203601    | 0,98                                    | 1,00            |
| Peiner               | 338   | 2584        | 68   | १५,३५०ऽ   | 2223,52   | 1,10                                    | 1,03            |
| 10.9                 | 337   | 2560        | 81   | 16,9603   | 2223,52   | 109                                     | 102             |

# Gemessene Grenzmomente der Schrauben im Gewindebereich

M\*Gew.=M\*v,Gew. 0.9 cos 10 (vgl.Anl.52,57)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gew. v,              | Gew.      |                                                                                                                                        | <del></del>        | ·       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|
| Schraube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *<br>M∨,Gew.<br>[Nm] | e<br>[mm] | Mpl(vorh,Gew)                                                                                                                          | MGew Mpl(vorh,Gew) | Versuch |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |           |                                                                                                                                        |                    |         |
| 3F 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.0                 | 39.5      | 16.87                                                                                                                                  | 0.89               | 382     |
| 6/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.6                 | 40        | 16.87                                                                                                                                  | 0.92               | 383     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.8                 | 12        | 16.87                                                                                                                                  | 0.94               | 386     |
| Fuchs 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 99                   | 45        | 65.76                                                                                                                                  | 1.33               | 018     |
| 12/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97                   | 69        | 65.76                                                                                                                                  | 1.31               | 025     |
| A.F.Graeka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 91                   | 70        | 75.59                                                                                                                                  | 1.07               | 064     |
| 12/120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |           |                                                                                                                                        |                    |         |
| Fuchs 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94                   | 47        | 50.47                                                                                                                                  | 1.65               | 016     |
| 12/95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98                   | 70        | 50.47                                                                                                                                  | 1.72               | 022     |
| And the second s | 91                   | 70        | 50.47                                                                                                                                  | 1.59               | 023     |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95                   | 24        | 50.47                                                                                                                                  | 1.66               | 800     |
| A.Friedb.5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 116                  | 43.5      | 72.39                                                                                                                                  | 1.42               | 054     |
| 12/140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 106                  | 44        | 72.39                                                                                                                                  | 1.29               | 055     |
| T d d d d d d d d d d d d d d d d d d d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 103.5                | 69        | 72.39                                                                                                                                  | 1.26               | 060     |
| # The state of the | 105                  | 45        | 72.39                                                                                                                                  | 1.28               | 056     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.4                 | 71        | 72.39                                                                                                                                  | 1.21               | 061     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98                   | 70        | 72.39                                                                                                                                  | 1.20               | 062     |
| Peiner 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 160                  | 60        | 143.50                                                                                                                                 | 0.99               | 345     |
| 12/120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 165                  | 57        | 143.50                                                                                                                                 | 1.02               | 346     |
| A.Friedb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 214.5                | 71.5      | 173.92                                                                                                                                 | 1.09               | 102     |
| 10.9 12/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>2</sup> 217.5   | 72.5      | 173.92                                                                                                                                 | 1.11               | 103     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 206                  | 71        | 173.92                                                                                                                                 | 1.05               | 104     |
| Peiner 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 237                  | 43        | 159.90                                                                                                                                 | 1.31               | 117     |
| 12/75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |           |                                                                                                                                        |                    |         |
| Peiner 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 236                  | 62        | 160.28                                                                                                                                 | 1.30               | 119     |
| 12/.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |           |                                                                                                                                        |                    |         |
| Fuchs 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 461                  | 128       | 250.97                                                                                                                                 | 1.63               | 042     |
| 20/160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |           |                                                                                                                                        |                    |         |
| A.Friedb.4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 392                  | 49        | 249.56                                                                                                                                 | 1.39               | 077     |
| 20/140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |           |                                                                                                                                        |                    | 219     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           | man tirakatin ka 18g. tinon kantilogi filataan 1900-ta 400 kilosooni a maasuuga moota katiloga aasuun daankaa aasuu anga ka aasuu anga | 1                  |         |

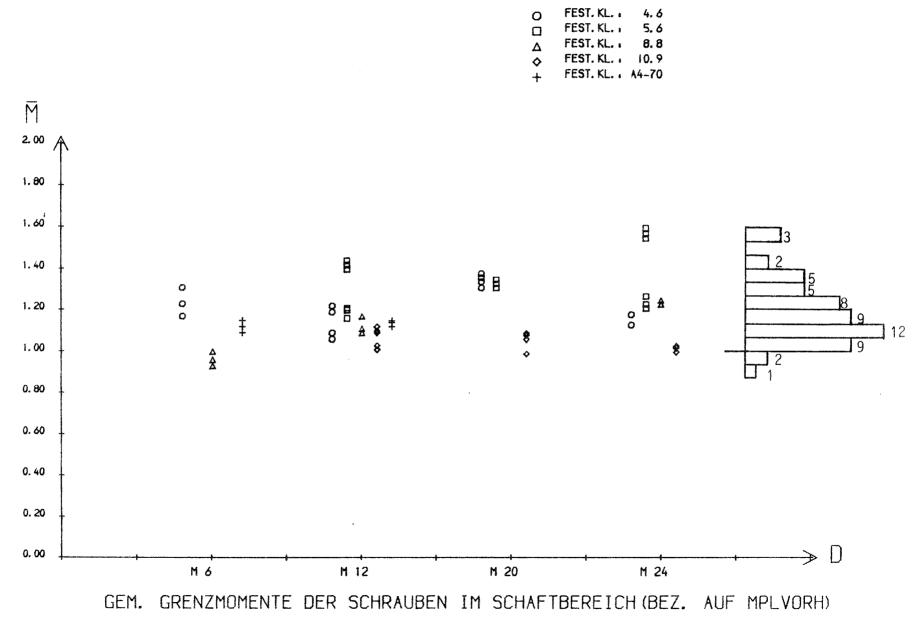
| Schraube     | M*<br>v,Gew | e    | Mag (work Corr) | M <sup>t</sup><br>Gew | Versuch |
|--------------|-------------|------|-----------------|-----------------------|---------|
|              | v,Gew       |      | Mpl(vorh,Gew)   | Mpl(vorh,Gew)         |         |
|              | [Nm]        | [mm] | [Nm]            | [-]                   |         |
| A.Friedb.5.6 | 614.4       | 128  | 365.54          | 1.49                  | 081     |
| 20/220       | 631         | 78   | 365.54          | 1.53                  | 085     |
|              | 580.5       | 129  | 365.54          | 1.41                  | 082     |
|              | 546         | 130  | 365.54          | 1.32                  | 083     |
| Peiner 10.9  | 1176        | 120  | 910.89          | 1.14                  | 146     |
| 20/160       |             |      |                 |                       |         |
| A.Friedb.4.6 | 886         | 108  | 658.65          | 1.19                  | 067     |
| 24/180       |             |      |                 |                       |         |
| Fuchs5.6     | 806         | 155  | 440.00          | 1.62                  | 029     |
| 24/190       | 780         | 100  | 440.00          | 1.57                  | 091     |
|              | 828         | 60   | 440.00          | 1.66                  | 092     |
| A.Friedb.5.6 | 942         | 157  | 604.77          | 1.38                  | 071     |
| 24/ 80       | 930         | 186  | 604.77          | 1.36                  | 073     |
| Nedur 8.8    | 1725        | 76   | 1286.89         | 1.19                  | 358     |
| 24/150       | 1715        | 73   | 1286.89         | 1.18                  | 359     |
| Peiner 10.9  | 1920        | 48   | 1401.32         | 1.21                  | 131     |
| 24/95        |             |      |                 |                       | /       |

Folgende Schrauben sind im Gewindebereich durch das Aufrollen des Gewindes verfestigt (vergl. Seite 43-44) und werden deshalb in Anlage  $^{52}$  und der statistischen Auswertung vernachlässigt:

| Dorn 4.6   | 12.4 | 40 | 5.77   | 1.90 | 370 |
|------------|------|----|--------|------|-----|
| 6/90       | 12.8 | 40 | 5.77   | 1.97 | 411 |
|            | 11.6 | 40 | 5.77   | 1.78 | 371 |
| Gebi A4-70 | 20.5 | 38 | 10.47  | 1.74 | 376 |
| 6/80       | 20.3 | 38 | 10.47  | 1.72 | 377 |
|            | 21   | 12 | 10.47  | 1.78 | 380 |
| Gebi A4-70 | 196  | 59 | 102.43 | 1.69 | 354 |
| 12/120     | 187  | 24 | 102.43 | 1.61 | 350 |
|            | 195  | 60 | 102.43 | 1.68 | 355 |

Z D

FEST. KL. . FEST. KL. . 10.9 FEST. KL. . 44-70 FUER 2.00 1.80 1.60 10 DER 1.40 1.20 ΔΔ 1.00 UNIVERSITAET 0.80 0. 60 0.40 BRAUNSCHWEIG 0. 20 0.00 M 12 M 6 M 20 M 24 Gemessene Grenzmomente der Schrauben im Schaftbereich (bez. auf  $M_{pl(nenn)}$ )


(vergl. Anlagen 44-47, 55)

FEST. KL. .

INSTITUT FUER

STAHLBAU DER

TECHNISCHEN UNIVERSITAET BRAUNSCHVEIG



(vergl. Anlagen 44-47,56)

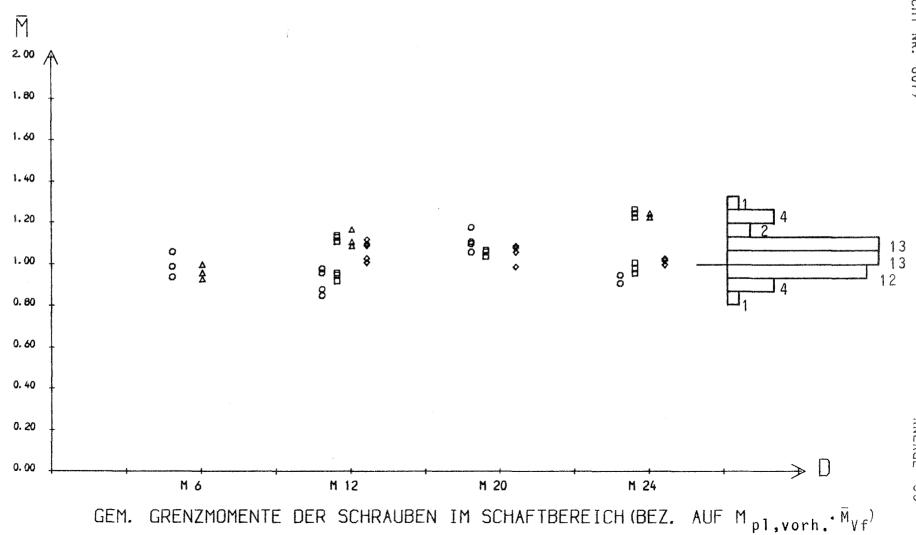
INSTITUT FUER

STAHLBAU

DER

TECHNISCHEN UNIVERSITAET BRAUNSCHVEIG

(vergl. Anlagen 48-49 ,57)


INSTITUT FUER

STAHLBAU

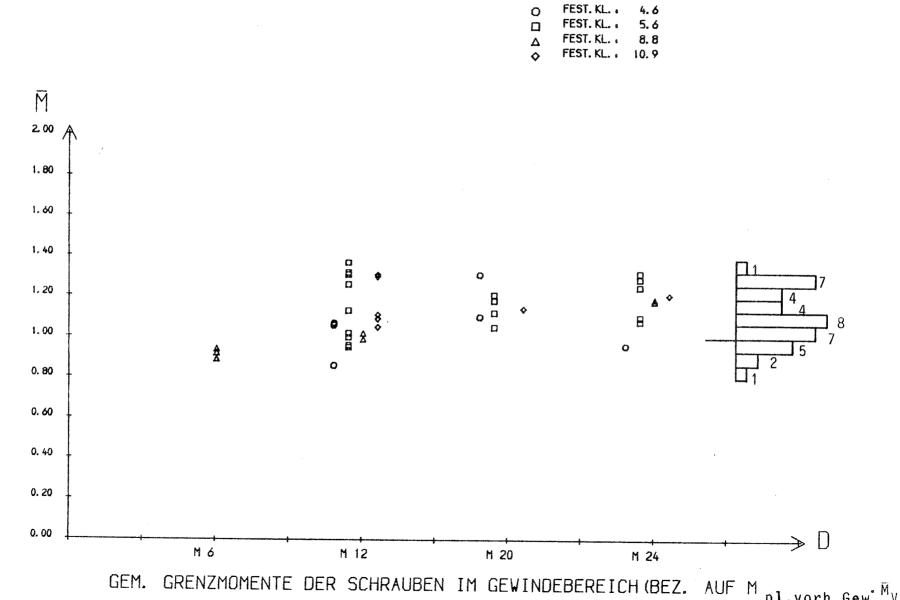
DER

TECHNISCHEN UNIVERSITAET BRAUNSCHVEIG

BERICHT NR. 6079

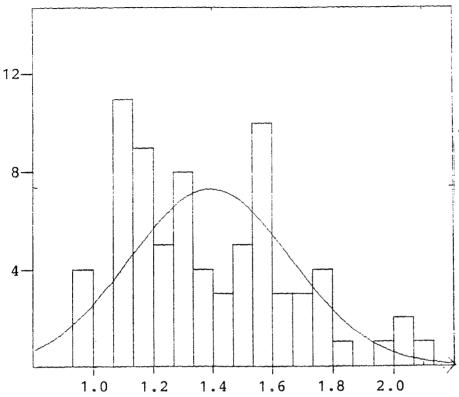


TECHNISCHEN UNIVERSITAET BRAUNSCHWEIG


INSTITUT FUER STAHLBAU DER



BERICHT


Z D

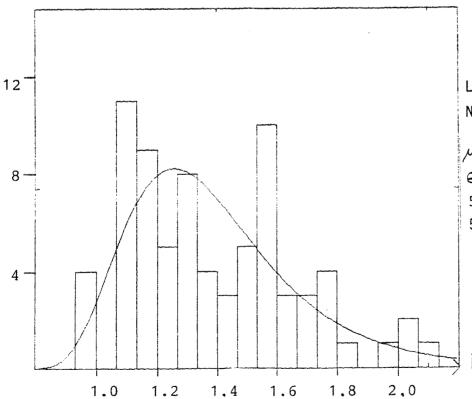
6079



# Statistische\_Auswertung

 $\overline{M}$  (Mpl,Nenn,Schaft)




Normalverteilung

 $\mu = 1.39$ 

G = 0.270

5%-Fraktile: 0.95

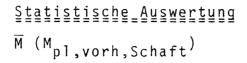
 $\overline{M} = M/M$ pl,Nenn,Schaft

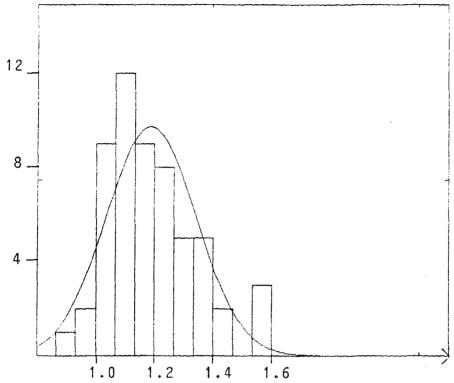


Logarithmische Normalverteilung

 $\mu = 0.374$ 

G = -0.377


5%-Fraktile: 1.03


50%-Fraktile:1.35

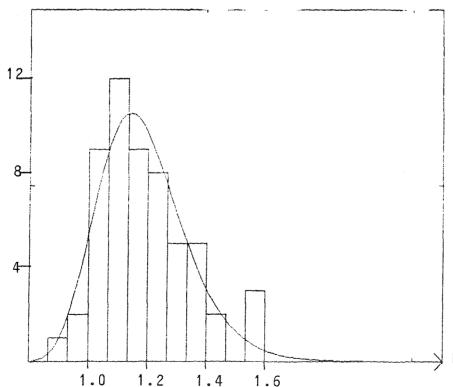
 $\overline{M} = M^*/M_{pl,Nenn,Schaft}$ 

vergl. Anlagen 44-47,50

# INSTITUT FÜR STAHLBAU DER TECHNISCHEN UNIVERSITÄT BRAUNSCHWEIG Beethovenstraße 51 · 3300 Braunschweig






Normalverteilung

M = 1.19

S = 0.153

5%-Fraktile:0.94

 $\overline{M} = M^*/M$ pl, vorh, Schaft

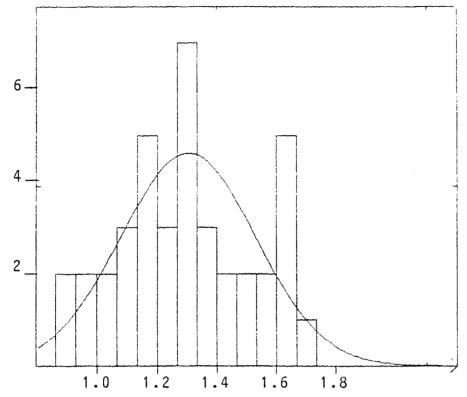


Logarithmische Vert.

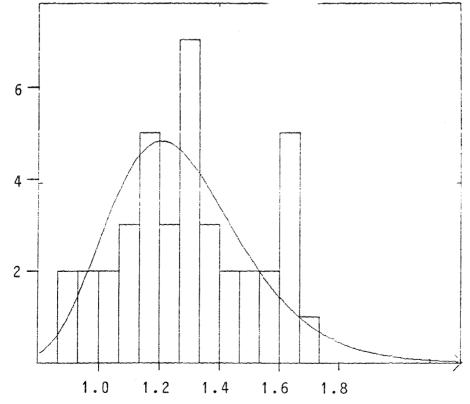
 $\mu = 0.215$ 

**⇔** =-0.398

5%-Fraktile:0.97


50%-Fraktile:1.17

 $\overline{M} = M^*/M_{pl}$ , vorh, Schaft


vergl. Anlagen 44-47,51

# INSTITUT FÜR STAHLBAU DER TECHNISCHEN UNIVERSITÄT BRAUNSCHWEIG Beethovenstraße 51 · 3300 Braunschweig

# Statistische\_Auswertung M (Mpl,vorh,Gew)



Normalverteilung

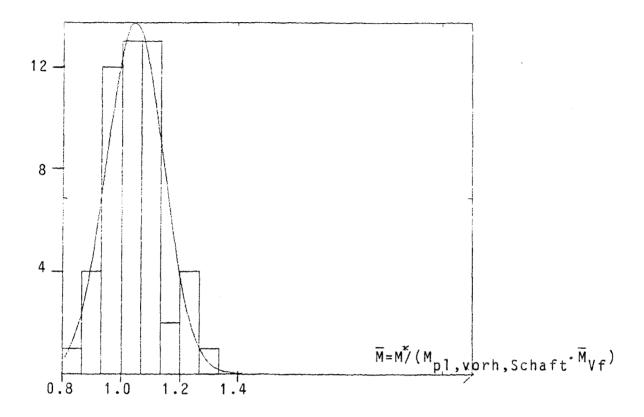


Logarithmische Vert.

$$\mu = 0.229$$

5%-Fraktile:0.97

50%-Fraktile:1.28


M̄=M<sup>\*</sup>Gew.<sup>/M</sup>pl,vorh,Gew

Vergl. Anlagen 48-49,52

# INSTITUT FÜR STAHLBAU DER TECHNISCHEN UNIVERSITÄT BRAUNSCHWEIG Beethovenstraße 51 · 3300 Braunschweig

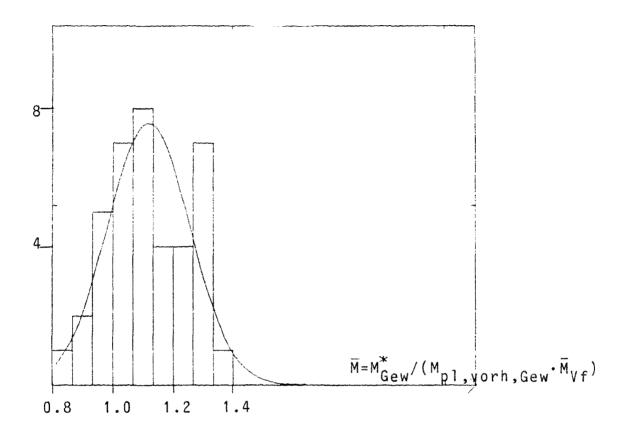
# Statistische\_Auswertung

$$\overline{M}$$
 (Mpl,vorh,Schaft $\overline{M}$ Vf)



### Normalverteilung

$$\mu = 1.05$$
 $6 = 0.097$ 


5%-Fraktile: 0.89

Verteilung der Versuchsergebnisse für die Biegetragfähigkeit der Schrauben im Schaftbereich unter Berücksichtigung des Verfestigungseinflusses der Randfasern.

vergl. Anlage 53

# Statistische\_Auswertung

$$\overline{M}$$
 ( $M_{pl,vorh,Gew}$ ,  $\overline{M}_{Vf}$ )



Normalverteilung

$$\mu = 1.12$$

6 = 0.137

5%-Fraktile:0.89

vergl. Anlage 54

# Berechnung eines Kragträgers mit kreisförmigem Querschnitt

d = 24 mm l = 120 mm

# Werkstoffgesetz:

$$\beta_s = 300 \text{ N/mm}^2$$
  $\beta_z = 500 \text{ N/mm}^2$ 

$$\beta_{*} = 500 \text{ N/mm}^2$$

$$\epsilon_{\text{L}\ddot{u}} = 0.02$$

$$\epsilon_{\rm gl} = 0.16$$

# Knoten: 14 Elemente: 13

# Knotenpunkte:

| Nr. | X       | Υ     | Z     |
|-----|---------|-------|-------|
| 1   | 0.000   | 0.000 | 0.000 |
| 2   | 6.000   | 0.000 | 0.000 |
| 3   | 12.000  | 0.000 | 0.000 |
| 4   | 18.000  | 0.000 | 0.000 |
| 5   | 24.000  | 0.000 | 0.000 |
| 6   | 30.000  | 0.000 | 0.000 |
| 7   | 36.000  | 0.000 | 0.000 |
| 8   | 42.000  | 0.000 | 0.000 |
| 9   | 48.000  | 0.000 | 0.000 |
| 10  | 54.000  | 0.000 | 0.000 |
| 11  | 60.000  | 0.000 | 0.000 |
| 12  | 46.000  | 0.000 | 0.000 |
| 13  | 72.000  | 0.000 | 0.000 |
| 14  | 120.000 | 0.000 | 0.000 |

### Elementzuordnung:

| Nr.    | Ak | Ek | Тур         | Querschn |
|--------|----|----|-------------|----------|
| 1      | 1  | 2  |             | 1        |
| 2      | 2  | 3  | 2           | 2        |
| 2<br>3 | 3  | 4  | 2           | 3        |
| 4      | 4  | 5  | 2           | 4        |
| 5      | 5  | 6  | N N N N N N | 5        |
| 6      | 6  | 7  | 2           | 6        |
| 7      | 7  | 8  | 2           | 7        |
| 8      | 8  | 9  | 2<br>2<br>2 | 8        |
| 9      | 9  | 10 | 2           | 9        |
| 10     | 10 | 11 | 2           | 10       |
| 11     | 11 | 12 | 2<br>2      | 11       |
| 12     | 12 | 13 | 2           | 12       |
| 13     | 13 | 14 | i           | 1        |
|        |    |    |             |          |

### Querschnittswerte:

| Nr. | E        | G        | F        | Fzz      | Fyy      | Id       |
|-----|----------|----------|----------|----------|----------|----------|
| 1   | 2.1E+005 | 8.1E+004 | 4.5E+002 | 1.6E+004 | 1.6E+004 | 1.0E-005 |

Nr. IO m daempfg. 1 0.0E+000 0.0E+000

# Elemente mit Faserquerschnitten:

| 1 |    | a = = = | 0 | 11691 | erh  | mit. | t Nr  | 1   | -12 |
|---|----|---------|---|-------|------|------|-------|-----|-----|
|   | Γ. | 떠느뜨!    |   | uer   | 5011 |      | L IVI | . 1 | - L |

| F.nr | F-Faser          | У       | Z         |
|------|------------------|---------|-----------|
| 1    | 11.77240         | 0.00000 | 11.10000  |
| 2    | 20.86600         | 0.0000  | 9.70000   |
| 3    | 26.08080         | 0.00000 | 8.24000   |
| 4    | 29.72320         | 0.00000 | 6.74000   |
| 5    | 32.33960         | 0.00000 | 5.24000   |
| 6    | 34.16960         | 0.00000 | 3.74000   |
| 7    | 35.33680         | 0.00000 | 2.24000   |
| 8    | 35.90600         | 0.00000 | 0.75000   |
| 9    | 35.90600         | 0.00000 | -0.75000  |
| 10   | <b>35.</b> 33680 | 0.00000 | -2.24000  |
| 11   | 34.16960         | 0.00000 | -3.74000  |
| 12   | 32.33960         | 0.0000  | -5.24000  |
| 13   | <b>29.7232</b> 0 | 0.00000 | -6.74000  |
| 14   | 26.08080         | 0.00000 | -8.24000  |
| 15   | 20.86600         | 0.00000 | -9.70000  |
| 16   | 11.77240         | 0.00000 | -11.10000 |
| 17   | 1.00000          | 1.00000 | 0.00000   |
| 18   | 1.00000          | 1.00000 | 0.00000   |

### Randbedingungen:

| Kn.nr. | Richtg. | Rwert  |   |
|--------|---------|--------|---|
| 1      | 1       | 0.0000 | 1 |
| 1      | 2       | 0.0000 | 2 |
| 1      | 3       | 0.0000 | 3 |
| 1      | 4       | 0.0000 | 4 |
| 1      | 5       | 0.0000 | 5 |
| 1      | 6       | 0.0000 | 6 |

## Last- Zeitverlauf :

| Zeit    | Lastwert   |
|---------|------------|
| 0.00000 | 0.00000    |
| 1.00000 | 7400.00000 |

### Ergebnis :

====== wz Knoten 14 : 20.884863

| Verschi    | ebasnorm :                | 0.02064 eps:         | 0.00099           |
|------------|---------------------------|----------------------|-------------------|
| ti =       | 1.00000                   | 124 Iterationen      | !!                |
| Ubknr.     | W W                       | Y                    | <br>Б             |
| 1          | 0.00000000                | 0.00000              | 0.0000            |
| 2          | 0.00000000                | 0.00000              | 0.0000            |
| Ī          | 0.00000000                | 0.00000              | 0.0000            |
| 4          | 0.00000000                | 0.00000              | 0.0000            |
| 5          | 0.00000000                | 0.00000              | 0.0000            |
| 6          | 0.00000000                | 0.00000              | 0.0000            |
| 7          | -0.00000000               | -0.00000             | -0.0000           |
| 8          | -0.00000000               | -0.00000             | -0.0000           |
| 9          | 0.18920165                | 0.56760              | 1.1352            |
| 10         | 0.00000000                | 0.00000              | 0.0000            |
| 11         | -0.06116686               | -0.18350             | -0.3670           |
| 12         | -0.00000000               | -0.00000             | -0.0000           |
| 13         | -0.00000000               | -0.00000             | -0.0000           |
| 14         | -0.00000000               | -0.00000             | -0.0000           |
| 15         | 0.71098858                | 2.13297              | 4.2659            |
| 16         | 0.00000000                | 0.00000              | 0.0000            |
| 17         | -0.11082684               | -0.33248             | -0.6650           |
| 18         | -0.00000000               | -0.00000             | -0.0000           |
| 19         | -0.00000000               | -0.00000             | -0.0000           |
| 20         | -0.00000000               | -0.00000             | -0.0000           |
| 21         | 1.49577231                | 4.48732              | 8.9746            |
| 22         | 0.00000000                | 0.00000              | 0.0000            |
| 23         | -0.14881109               | -0.44643             | -0.8929           |
| 24         | -0.00000000               | -0.00000             | -0.0000           |
| 25<br>25   | -0.00000000               | -0.00000             | -0.0000           |
| 25<br>26   | -0.00000000               | -0.00000             | -0.0000           |
| 27         | 2.47176373                | 7.41529              | 14.8306           |
| 28         | 0.00000000                | 0.00000              | 0.0000            |
| 29         | -0.17431637               | -0.52295             | -1,0459           |
| 27<br>30   | -0.00000000               | -0.00000             | -0.0000           |
| 30<br>31   | -0.00000000               | -0.00000             | -0.0000           |
| 32         | -0.00000000               | -0.00000             | -0.0000           |
| 33<br>33   | 3.55824630                | 10.67474             | 21.3495           |
| 33<br>34   | 0.00000000                | 0.00000              |                   |
|            |                           |                      | 0.0000            |
| 35<br>34   | -0.18516042               | -0.55548             | -1.1110 $-0.0000$ |
| 36<br>77   | -0.00000000               | -0.00000<br>-0.00000 |                   |
| 37<br>70   | -0.00000000               |                      | -0.0000           |
| 38<br>38   | -0.00000000<br>4.474740E4 | -0.00000             | -0.0000           |
| 3 <b>9</b> | 4.67636954                | 14.02911             | 28.0582           |
| 40<br>41   | 0.00000000                | 0.00000              | 0.0000            |
| 41         | -0.18734485               | -0.56203             | -1.1241           |
| 42<br>43   | -0.00000000               | -0.00000             | -0.0000           |
| 43         | -0.00000000               | -0.00000             | -0.0000           |
| 44         | -0.00000000               | -0.00000             | -0.0000           |
| 45         | 5.80481033                | 17.41443             | 34.8289           |
| 46         | 0.00000000                | 0.00000<br>-0.54477  | 0.0000            |
| 47         | -0.18874221               | -0.56623             | -1.1325           |
| 48         | -0.00000000               | -0.00000             | -0.0000           |

4.\*

```
-0.0000
49
                        -0.00000
     -0.00000000
                        -0.00000
                                        -0.0000
50
     -0.00000000
                                        41.6443
      6.94071438
                        20.82214
51
                                         0.0000
                         0.00000
52
      0.00000000
                        -0.56958
                                        -1.1392
53
     -0.18985875
                                        -0.0000
54
     -0.00000000
                        -0.00000
                        -0.00000
                                        -0.0000
55
     -0.00000000
                                        -0.0000
                        -0.00000
56
     -0.00000000
                                        48.4967
                        24.24834
57
      8.08277864
                                         0.0000
58
                         0.00000
      0.00000000
                                         -1.1448
                        -0.57242
59
     -0.19080695
                                         -0.0000
     -0.00000000
                        -0.00000
60
                        -0.00000
                                         -0.0000
61
     -0.00000000
                        -0.00000
                                        -0.0000
62
     -0.00000000
                                         55.3810
                        27.69050
63
      9.23016812
                                         0.0000
                         0.00000
64
      0.00000000
                                         -1.1498
65
     -0.19164030
                        -0.57492
                        -0.00000
                                         -0.0000
     -0.00000000
66
                                         -0.0000
67
     -0.00000000
                        -0.00000
68
     -0.00000000
                        -0.00000
                                         -0.0000
                                         62.2937
69
     10.38228614
                        31.14686
70
                         0.00000
                                         0.0000
      0.00000000
                                         -1.1543
                        -0.57716
71
     -0.19238558
                                         -0.0000
72
     -0.00000000
                        -0.00000
                                         -0.0000
73
     -0.00000000
                        -0.00000
                                         -0.0000
74
                        -0.00000
     -0.00000000
                        34.61591
                                         69.2318
75
     11.53863606
                         0.00000
                                         0.0000
      0.00000000
76
                                         -1.1583
77
     -0.19305133
                        -0.57915
                                         -0.0000
     -0.00000000
                        -0.00000
78
79
                        -0.00000
                                         -0.0000
     -0.00000000
                                         -0.0000
80
     -0.00000000
                        -0.00000
                        62.65459
                                        125.3092
81
     20.88486294
82
      0.00000000
                         0.00000
                                         0.0000
                        -0.58663
                                         -1.1733
83
     -0.19554392
                                         -0.0000
                        -0.00000
84
     -0.00000000
```

### Schnittkraefte:

```
Element Nr.:
                1
                    Knoten:
kappa bei nit =1:,
                     nf:
                             18
  0.00000000 0.00000000 0.01114465
                                          -448.15
                    -0.12371
                               sig :
faser:
         1
            eps:
                                          -425.86
         2
            eps :
                    -0.10810
                               sig :
faser:
                                          -402.62
                    -0.09183
                               sig :
faser:
            eps :
                                          -378.74
                    -0.07511
                               siq :
faser:
            eps :
                                          -354.85
         5
faser:
            eps :
                    -0.05840
                               sig :
faser:
                                          -330.97
            eps :
                    -0.04168
                               siq:
         6
                                          -307.09
         7
                    -0.02496
                               sig :
faser:
            eps:
                                          -300.00
faser:
            eps :
                    -0.00836
                               sig :
```

```
Element Nr.:
                1
                    Knoten:
                                2
kappa bei nit =1 :,
                      nf :
  0.0000000 0.00000000 0.00924430
faser:
          1
             eps :
                     -0.10261
                               sig:
                                          -418.02
faser:
          2
             eps :
                     -0.08967
                                          -399.53
                               siq:
          3
                                          -380.25
faser:
             eps:
                    -0.07617
                               siq :
faser:
          4
             eps :
                     -0.06231
                                          -360.44
                               siq :
          5
                                          -340.63
faser:
             eps:
                     -0.04844
                               siq:
faser:
                     -0.03457
                                          -320.82
             eps:
          6
                               siq :
faser:
          7
             eps :
                     -0.02071
                                          -301.01
                               siq :
faser:
          8
             eps :
                     -0.00493
                               sig :
                                          -300.00
                   0.00
   1
          1
                              0.00
                                     -7310.09
                                                    0.00 883941.77
                                                                          0.00
          2
                                      7310.09
                                                    0.00-840081.25
                  -0.00
                             -0.00
                                                                         -0.00
Element Nr.:
                2
                    Knoten:
                                1
kappa bei nit =1 :.
                      nf :
  0.00000000 0.00000000 0.00924430
                                          -418.02
faser:
          1
             eps:
                    -0.10261
                               siq:
faser:
             eps :
                    -0.08967
                               siq :
                                          -399.53
faser:
                    -0.07617
                                          -380.25
             eps :
                               sig :
                                          -360.44
faser:
             eps:
                    -0.06231
                               siq :
faser:
          5
                                          -340.63
             eps :
                     -0.04844
                               siq :
faser:
                     -0.03457
                                          -320.82
          4
             eps:
                               siq :
faser:
          7
                                          -301.01
                    -0.02071
             eps:
                               sig :
faser:
          8
             eps :
                    -0.00693
                               sig :
                                          -300.00
Element Nr.:
                2
                    Knoten:
                                2
kappa bei nit =1 :,
                      nf :
  0.00000000 0.00000000 0.00730903
faser:
                                          -387.33
          1
             eps :
                    -0.08113
                               siq :
faser:
                    -0.07090
                                          -372.71
             eps :
                               siq:
                                          -357.47
faser:
                    -0.06023
             eps:
                               sig:
faser:
          4
             eps:
                    -0.04926
                                          -341.80
                               sig:
          5
faser:
             eps :
                    -0.03830
                               sig:
                                          -326.14
faser:
             eps:
                    -0.02734
                                          -310.48
          6
                               sig:
         7
faser:
                    -0.01637
                                          -300.00
             eps :
                               sig :
         8
faser:
             eps :
                    -0.00548
                               siq:
                                          -300.00
   2
          2
                   0.00
                              0.00
                                     -7307.66
                                                    0.00 840081.25
                                                                         0.00
          3
                  -0.00
                             -0.00
                                      7307.66
                                                    0.00-796235.29
                                                                         -0.00
Element Nr.:
                3
                    Knoten:
                      nf:
                             18
kappa bei nit =1 :,
  0.00000000
               0.00000000
                            0.00730903
                                          -387.33
faser:
          1
             eps :
                    -0.08113
                               sig :
                                          -372.71
faser:
             eps :
                    -0.07090
                               siq :
faser:
             eps :
                    -0.06023
                                          -357.47
                               sig :
                    -0.04926
faser:
         4
                                          -341.80
            eps :
                               sig:
         5
                                          -326.14
                    -0.03830
faser:
            eps:
                               siq:
faser:
            eps :
                    -0.02734
                               siq:
                                          -310.48
faser:
         7
             eps:
                    -0.01637
                               sig:
                                          -300.00
         8
                    -0.00548
                                          -300.00
faser:
            eps :
                               sig:
```

```
3
                               2
Element Nr.:
                   Knoten:
kappa bei nit =1 :,
                     nf :
                          18
  0.00000000
              0.00000000 0.00535239
                                         -356.30
            eos:
                   -0.05941
faser:
         1
                              siq :
                                         -345.40
         2
            eps :
                   -0.05192
faser:
                              sia:
                                         -334.43
                   -0.04410
faser:
         3
           eps :
                              siq :
                                         -322.96
                   -0.03408
                              siq:
faser:
           eps:
         5 eps :
                   -0.02805
                                         -311.50
faser:
                              sig:
                                         -300.03
                   -0.02002
faser:
         6
            eps :
                              siq :
                                         -300.00
faser:
         7
            eps:
                   -0.01199
                              sia:
                                         -300.00
                   -0.00401
                              sig:
         8
faser:
            eps:
                                                  0.00 796235.29
                                   -7361.40
                                                                       0.00
         3
                             0.00
   3
                  0.00
                                                                      -0.00
                                                  0.00-752066.88
                            -0.00
                                    7361.40
         4
                 -0.00
Element Nr.:
                   Knoten:
                               1
kappa bei nit =1:.
                      nf :
                            18
  0.0000000 0.00000000
                          0.00535239
                                         -356.30
                   -0.05941
            eps:
                              sig :
faser:
         1
                                         -345.60
faser:
            eps:
                    -0.05192
                              sig:
                   -0.04410
                              sig:
                                         -334.43
            eps:
faser:
                                         -322.96
         4
                   -0.03608
                              sig :
faser:
           eps:
                                         -311.50
         5 eps:
faser:
                    -0.02805
                              siq :
                                         -300.03
            eps :
                   -0.02002
                              sig :
faser:
         6
                                         -300.00
         7
                    -0.01199
                              siq:
faser:
            eps:
                                         -300.00
                   -0.00401
                              sid:
         8
            eps:
faser:
Element Nr.:
               4
                   Knoten:
                               2
kappa bei nit =1 :.
                      nf :
                           18
              0.00000000 0.00314937
  0.00000000
                   -0.03496
                                         -321.37
                              siq :
faser:
         1
            eps:
                                         -315.07
                    -0.03055
                              siq:
faser:
            eps:
                    -0.02595
                                         -308.50
faser:
            eps:
                              siq:
                                         -301.75
         4
                    -0.02123
                              siq:
faser:
            eps :
                    -0.01650
                                         -300.00
faser:
         5
            eps:
                              sig:
                                         -300.00
faser:
            eps:
                    -0.01178
                              siq:
faser:
         7
            eps :
                    -0.00705
                              siq:
                                         -300.00
                                         -300.00
                   -0.00236
         8
                              siq:
faser:
            eps:
                                                  0.00 752066.88
                                                                       0.00
                                   -7505.80
   4
         4
                  -0.00
                             0.00
                                                  0.00-707032.08
                                                                       -0.00
                                    7505.80
         5
                   0.00
                            -0.00
Element Nr.:
               5
                   Knoten:
kappa bei nit =1 :,
                     nf:
  0.00000000 0.00000000
                          0.00314937
                                         -321.37
faser:
           eps :
                   -0.03496
                              sig:
faser:
            eps :
                    -0.03055
                              siq:
                                         -315.07
                                         -308.50
faser:
         3
            eps:
                    -0.02595
                              sig :
                   -0.02123
                                         -301.75
faser:
         4
           eps :
                              siq:
         5 eps:
                              sig:
                                         -300.00
faser:
                   -0.01650
                                         -300.00
faser:
         6 eps:
                   -0.01178
                              siq:
         7
                                         -300.00
            eps :
                   -0.00705
                              siq :
faser:
                                         -300.00
faser:
         8
            eps :
                   -0.00236
                              siq :
```

```
Element Nr.:
                5
                    Knoten:
                                2
 kappa bei nit =1 :, nf :
                            18
   0.0000000 0.00000000 0.00046531
 faser:
          1
            eos :
                    -0.00516
                              sid:
                                         -300.00
 faser:
          2
            eps :
                    -0.00451
                               sia:
                                         -300.00
 faser:
          3 eps:
                    -0.00383
                              sid :
                                         -300.00
 faser:
          4 eps:
                    -0.00314
                              sig :
                                         -300.00
 faser:
          5 eps:
                    -0.00244
                                         -300.00
                              siq :
 faser:
                    -0.00174
          6
             eps :
                                         -300.00
                              sig :
    5
          5
                  -0.00
                                   -6838.68
                             0.00
                                                  0.00 707032.08
                                                                       0.00
          6
                   0.00
                            -0.00
                                     6838.68
                                                  0.00-666000.00
                                                                      -0.QQ
Element Nr.:
                6
                    Knoten:
                               1
kappa bei nit =1 :, nf :
                            18
  0.0000000 0.00000000 0.00046531
faser:
          1
             eps :
                   -0.00516
                              siq:
                                         -300.00
faser:
             eps :
                    -0.00451
                              sia:
                                         -300.00
faser:
          3
             eps :
                    -0.00383
                              sig:
                                         -300.00
faser:
             eps:
                    -0.00314
                              siq:
                                         -300.00
faser:
          5
             eps :
                    -0.00244
                              sig:
                                         -300.00
faser:
                    -0.00174
             eps:
                              siq :
                                         -300.00
Element Nr.:
                6
                    Knoten :
                               2
kappa bei nit =1 :, nf :
                            18
  0.00000000 0.00000000 0.00024283
faser:
          1
            eps :
                   -0.00292
                              sig:
                                        -300.00
faser:
         2
                   -0.00255
            eps :
                              sig:
                                        -300.00
faser:
         3
            eps :
                   -0.00217
                              sid :
                                        -300.00
         4
faser:
            eps :
                   -0.00177
                              siq:
                                        -300.00
   6
         6
                             0.00 -7400.00
                  -0.00
                                                  0.00 666000.00
                                                                       0.00
         7
                   0.00
                            -0.QO
                                    7400.00
                                                  0.00-621600.00
                                                                      -0.00
Element Nr.:
               7
                   Knoten:
kappa bei nit =1 :. nf :
                           18
  0.0000000 0.00000000
                          0.00026283
faser:
            eps :
         1
                   -0.00292
                              siq:
                                        -300.00
faser:
         2
            eps:
                              sig :
                   -0.00255
                                        -300.00
faser:
         3
            eps :
                   -0.00217
                                        -300.00
                              siq:
faser:
         4
            eps :
                   -0.00177
                              sig:
                                        -300.00
Element Nr.:
               7
                   Knoten:
                               2
kappa bei nit =1 :, nf :
                          18
  0.0000000 0.00000000 0.00020295
faser:
         1
            eps: -0.00225
                             sig :
                                        -300.00
faser:
         2
            eps :
                   -0.00197
                              sig:
                                        -300.00
faser:
         3
            eps:
                   -0.00167
                             sig :
                                        -300.00
                 -0.00
   7
         7
                            0.00
                                   -7400.00
                                                 0.00 621600.00
                                                                      0.00
         8
                  0.00
```

-0.00

7400.00

0.00-577200.00

-0.00

11

```
Element Nr.: 8 Knoten: 1
kappa bei nit =1 :, nf : 18
 0.00000000 0.00000000 0.00020295
                                   -300.00
faser:
       1 eps: -0.00225 sig:
                                   -300.00
        2
                 -0.00197
faser:
          eps:
                          siq:
                                   -300.00
       3 eps: -0.00167 sig:
faser:
                           2
Element Nr.: 8
                 Knoten :
kappa bei nit =1 :. nf : 18
 0.00000000 0.00000000 0.00016923
                                   -300.00
faser:
        1
          eps: -0.00188 sig:
          eps: -0.00164 sig:
                                   -300.00
faser:
        2
                                           0.00 577200.00
                                                             0.00
        8
               -0.00
                        0.00 -7400.00
  8
                       -0.00 7400.00
                                           0.00-532800.00
                                                            -0.00
        9
               -0.00
Element Nr.: 9 Knoten:
kappa bei nit =1 :. nf : 18
 0.00000000 0.00000000 0.00014923
                                   -300.00
       1 eps: -0.00188 sig:
faser:
                                   -300.00
faser:
        2
          eps: -0.00164 sig:
Element Nr.:
            9 Knoten:
                           2
kappa bei nit =1:. nf: 18
 0.00000000 0.00000000 0.00014684
       1 eps: -0.00163 sig:
                                  -300.00
faser:
                        0.00 -7400.00
                                           0.00 532800.00
                                                             0.00
  9
        9
          -4.04E-027
          4.039E-027
                               7400.00
                                           0.00-488400.00
                                                             -0.00
                        -0.00
       10
Element Nr.: 10
                 Knoten: 1
kappa bei nit =1 :, nf : 18
 0.00000000 0.00000000 0.00014684
                                 -300.00
       1 eps: -0.00163 siq:
Element Nr.: 10
                 Knoten:
kappa bei nit =1:. nf: 18
 0.00000000 0.00000000 0.00013094
                                   -300.00
       1 eps: -0.00145 sig:
faser:
                                           0.00 488400.00
 10
       10
               0.00
                        0.00 -7400.00
                                                             0.00
                                           0.00-444000.00
              -0.00
                       -0.00 7400.00
                                                            -0.00
```

Element Nr.: 11 Knoten: 1

kappa bei nit =1 :, nf : 18

0.00000000 0.00000000 0.00013094

faser: 1 eps: -0.00145 sig: -300.00

Element Nr.: 11 Knoten: 2

kappa bei nit =1 :, nf : 18

0.00000000 0.00000000 0.00011749

Element Nr.: 12 Knoten: 1

kappa bei nit =1 :, nf : 18

0.00000000 0.00000000 0.00011749

Element Nr.: 12 Knoten: 2

kappa bei nit =1 :, nf : 18

0.00000000 0.00000000 0.00010443

12 12 -6.14E-026 0.00 -7400.00 0.00 399600.00 0.00 13 6.139E-026 -0.007400.00 0.00-355200.00 -0.00 13 13 0.00 -0.00 -7400.00 0.00 355200.00 -0.00 14 0.00 0.00 7400.00 0.00 -0.00 -0.00

# Gemessene\_Grenzmomente\_der\_Schrauben

(auf den Schaft bezogen)

(vergl. Anlage 74)

<u>M\_6</u>

| Schraube                        | M*<br>v,Schaft<br>Versuch [Nm]                | *<br>Mv,Kerbe<br>[Nm]                               | M*<br>v,Kerbe<br>M*<br>v,Schaft                      | Kerbe                        |
|---------------------------------|-----------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------------------|
| Dorn 4.6<br>6190<br>Gebi 114-70 | 369<br>372<br>370<br>373<br>411<br>371<br>374 | 12,4<br>11,4<br>12,4<br>9,9<br>12,8<br>11,6<br>10,2 | 0,93<br>0,84<br>0,93<br>0,74<br>0,96<br>0,87<br>0,77 | 1<br>6<br>6<br>6<br>10<br>10 |
| 6 /80                           | 376 22,0                                      | 20,5                                                | 0,93                                                 | 6                            |
|                                 | 379                                           | 18.8                                                | 0,85                                                 | 6                            |
|                                 | 371                                           | 20,3                                                | 0,92                                                 | 10                           |
|                                 | 380                                           | 21,0                                                | 0,95                                                 | 10                           |
| 3F 88 6/90                      | 384                                           | 22,6                                                | 0,74                                                 | 1                            |
|                                 | 384                                           | 26,3                                                | 0,86                                                 | 1                            |
|                                 | 387                                           | 22,0                                                | 0,72                                                 | 2                            |
|                                 | 382                                           | 17,0                                                | 0,56                                                 | 6                            |
|                                 | 385                                           | 16.3                                                | 0,53                                                 | 6                            |
|                                 | 383                                           | 17,6                                                | 0,575                                                | 10                           |
|                                 | 386                                           | 17,8                                                | 0,582                                                | 10                           |

|                    |                                                                                                        | <u>M_12</u>                                                                                             |                                                                                                      |                                         |
|--------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Schraube           | M*,Schaft<br>Versuch                                                                                   | M*<br>v,Kerbe                                                                                           | M*v,Kerbe  M*v,Schaft                                                                                | Kerbe                                   |
| Fuchs 4.6 12/100   | 011<br>017<br>024<br>026<br>012<br>018<br>025                                                          | 92<br>121,5<br>122,4<br>120<br>80<br>99<br>97                                                           | 0,73<br>0,96<br>0,97<br>0,95<br>0,63<br>0,79<br>0,77                                                 | 1<br>1<br>1<br>1<br>4<br>4<br>4         |
| Fuchs 5.6 12.195   | 003<br>004<br>013<br>014<br>013<br>014<br>020<br>0015<br>021<br>006<br>016<br>016<br>017<br>023<br>008 | 1/8<br>1/3<br>1/06<br>1/05<br>89 *)<br>1/06<br>1/03,5<br>1/03,5<br>1/04<br>98<br>92<br>94<br>98         | 0,94<br>0,90<br>0,84<br>0,83<br>0,71<br>0,84<br>0,82<br>0,82<br>0,82<br>0,80<br>0,73<br>0,75<br>0,75 | 111111111111111111111111111111111111111 |
| P.F. 5.6<br>121140 | 035<br>057<br>058<br>058<br>058<br>053<br>055<br>055<br>055<br>055<br>055<br>055<br>055<br>055<br>055  | 140<br>128<br>129<br>132<br>136<br>136<br>113<br>117<br>118<br>108<br>106<br>103,5<br>106<br>99,4<br>98 | 0,93<br>0,85<br>0,85<br>0,87<br>0,90<br>0,75<br>0,77<br>0,77<br>0,70<br>0,69<br>0,66<br>0,65         | 111111111111111111111111111111111111111 |

\*) =/d < 1.0

(vergl. Anlage 75)

| Annual limited in the control of the |                                                                           |                                                                           |                                                                      |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|
| Schraube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mv,Schaft<br>Versuch                                                      | M*v,Kerbe                                                                 | M*<br>v,Kerbe<br>M*<br>v,Schaft                                      | Kerbe                           |
| Gebi A4-70<br>121120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 352<br>353 205<br>356<br>351<br>354<br>350<br>355                         | 215<br>206,5<br>203<br>186<br>196<br>187                                  | 1,05<br>1,01<br>0,99<br>0,91<br>0,96<br>0,91<br>0,95                 | 1<br>1<br>6<br>6<br>10<br>10    |
| Peiner 8.8<br>121120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 344<br>347<br>276<br>345<br>348<br>346<br>349                             | 220<br>178<br>160<br>164<br>165<br>160                                    | 0,80<br>0,64<br>0,58<br>0,59<br>0,60<br>0,58                         | 1<br>1<br>6<br>6<br>10<br>10    |
| AZ170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 095 096 325                                                               | 288<br>230                                                                | 0,89<br>0.71                                                         | 1<br>4                          |
| P.F. 10.9<br>121100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 097<br>101<br>334<br>127<br>098<br>102<br>099<br>103<br>100<br>104<br>126 | 295<br>284<br>235 *)<br>225<br>214,5<br>214<br>217,5<br>215<br>206<br>189 | 0,88<br>0,85<br>0,40<br>0,64<br>0,64<br>0,65<br>0,64<br>0,62<br>0,57 | 1114455666                      |
| Peiner 10.9<br>12175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 116<br>117 283,5                                                          | 273<br>237                                                                | 0,96<br>0,84                                                         | 1 4                             |
| Peiner 10.9<br>12190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 118<br>120 301<br>123<br>119<br>124<br>121<br>125<br>122                  | 273<br>256<br>228<br>236<br>203<br>222<br>233                             | 7.91<br>28,0<br>34,0<br>84,0<br>84,0<br>14,0<br>14,0<br>0,80         | 1<br>1<br>1<br>4<br>4<br>6<br>6 |

\*) % < 1,0

| $\underline{\underline{M}} = \underline{\underline{20}}$ |                                                |                                              |                                              |                            |  |  |
|----------------------------------------------------------|------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------|--|--|
| Schraube                                                 | Mv,Schaft<br>Versuch                           | M <sup>*</sup> v,Kerbe                       | M*v,Kerbe<br>M*v,Schaft                      | Kerbe                      |  |  |
| Fuchs 4.6<br>201160                                      | 044<br>046<br>042<br>553                       | 538<br>559<br>461                            | 0,97<br>1,01<br>0,83                         | 1<br>1<br>4                |  |  |
| A.F. 4.6<br>201140                                       | 045<br>076<br>077 555                          | 471 461 392                                  | 0,85                                         | 4<br>1<br>4                |  |  |
| A.F. 4.6<br>201200                                       | 078<br>079 556,5                               | 468<br>403                                   | 0,84                                         | 1<br>4                     |  |  |
| A.F. S. 6<br>201/40                                      | 086 785                                        | 624<br>573                                   | 0,79                                         | 1<br>4                     |  |  |
| A.F. 5.6<br>201220                                       | 138<br>080<br>084<br>084<br>085                | 711<br>697<br>720<br>6144<br>631<br>580,5    | 0,89<br>0,87<br>0,90<br>0,77<br>0,79         | Л<br>Л<br>Ч<br>Ч<br>6      |  |  |
| VEFE P4-70                                               | 082<br>083<br>364 845                          | 546<br>918                                   | 0,73                                         | 8                          |  |  |
| 201140<br>PL 94-70<br>201140                             | 363 764                                        | 756                                          | 0,99                                         | 1                          |  |  |
| A.F. 10.9<br>201115                                      | 105<br>106<br>1545,5                           | 10+3                                         | 0,77<br>0,69                                 | 1<br>4                     |  |  |
| F.F. 10.9<br>201200                                      | 107<br>139<br>1618<br>140<br>103<br>141<br>142 | 1380<br>1323<br>1428<br>1183<br>1240<br>1212 | 7,85<br>0,82<br>0,88<br>0,73<br>0,77<br>0,75 | 1<br>1<br>1<br>4<br>4<br>8 |  |  |
| Peiner 10.9<br>201160                                    | 145<br>150 1610<br>146<br>149                  | 1356<br>1200<br>1176<br>1069 *)              | 0,84<br>0,75<br>0,73<br>0,66                 | 1<br>1<br>4<br>4           |  |  |

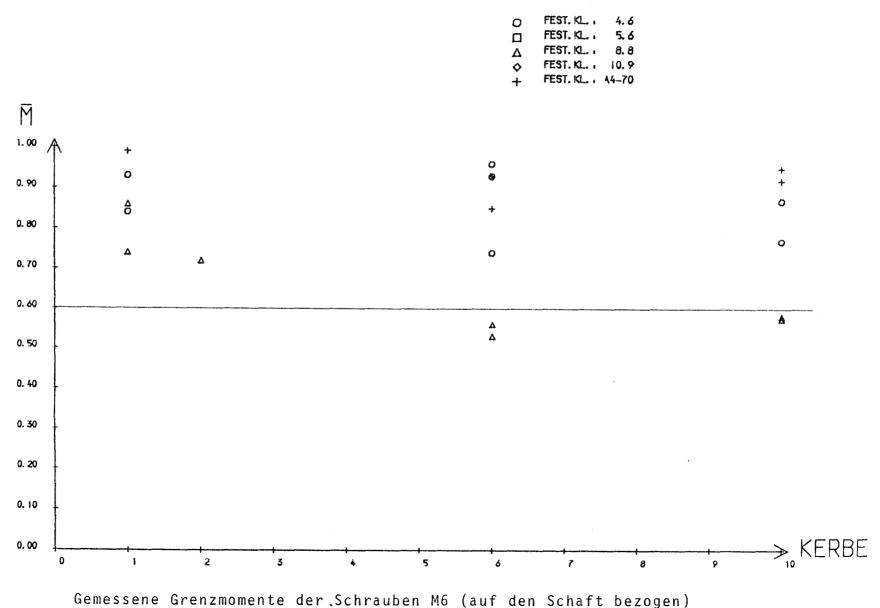
(vgl. Anlage 76)

\*) e/d<1.0

| М | 2     | 4        |
|---|-------|----------|
|   | <br>- | <u>-</u> |

|                       |                                                    | <u> </u>                                             |                                                      |                              |
|-----------------------|----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------|
| Schraube              | M*<br>v,Schaft<br>Versuch                          | M <sup>*</sup> v,Kerbe                               | w,Kerbe<br>M*v,Schaft                                | Kerbe                        |
| 7 F. 4.6<br>241/60    | 068 1044                                           | 830<br>744                                           | 0,80<br>0,7A                                         | Л<br>Ц                       |
| A.F. 4.6<br>241/80    | 066 1249,5                                         | 1035<br>886                                          | 0,83<br>0,71                                         | 1 4                          |
| Fuchs 5.6<br>241/90   | 027<br>030<br>090<br>093<br>029<br>091<br>092      | 858<br>990<br>898<br>945<br>806<br>780<br>828        | 0,85<br>0,48<br>0,89<br>0,94<br>0,80<br>0,77<br>0,82 | 1 1 1 1 4 4 4 4              |
| A.F. S.6<br>241/1-0   | 075                                                | 1115<br>942                                          | 0,89<br>0,76                                         | 14                           |
| A.F. S. 6<br>241280   | 133<br>070<br>1226<br>072<br>071<br>073<br>134     | 1155<br>1014<br>1110<br>942<br>930<br>931            | 0,94<br>0,83<br>0,91<br>0,77<br>0,76<br>0,76         | 1 1 1 4 4 7                  |
| Nedur 8.8<br>241150   | 357<br>360 2616<br>358<br>391<br>393<br>359<br>392 | 2087<br>2000<br>1725<br>1717<br>1652<br>1715<br>1643 | 0,80<br>0,76<br>0,66<br>0,66<br>0,63<br>0,66         | 1<br>1<br>6<br>6<br>10<br>10 |
| 7,F. 10.9<br>241140   | 109 2565                                           | 2326<br>2053                                         | 0,80                                                 | 1<br>4                       |
| A.F. 10.9<br>241235   | 111 2703<br>112                                    | 2431<br>2106                                         | 0,90                                                 | 1                            |
| Peiner 10.9<br>24195  | 130 2293<br>131                                    | 2151<br>1920                                         | 0,94                                                 | 14                           |
| Peiner 10.9<br>241190 | 135 2572                                           | 23.92                                                | 0,93                                                 | 1                            |

(vergl. Anlage 77)


BEETHOVENSTRASSE

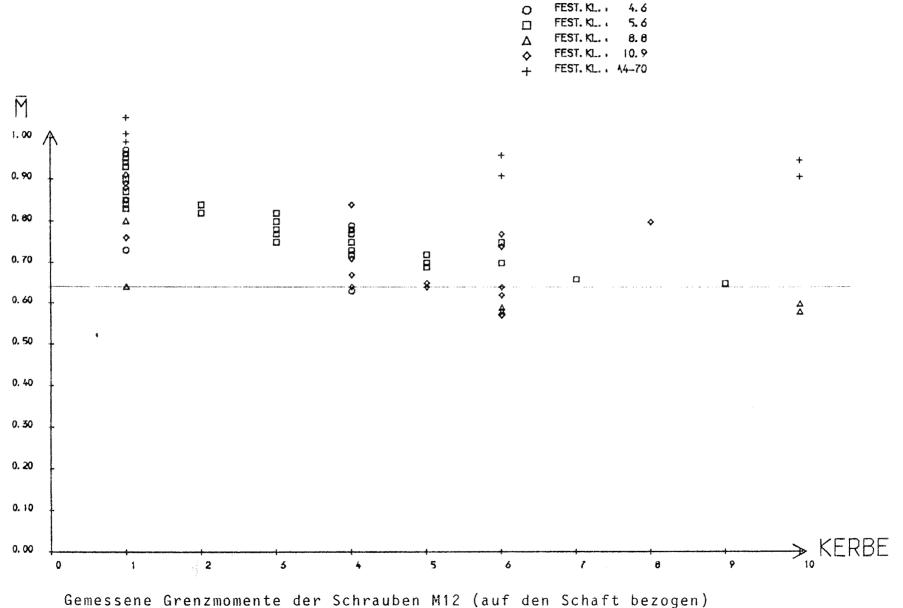
5

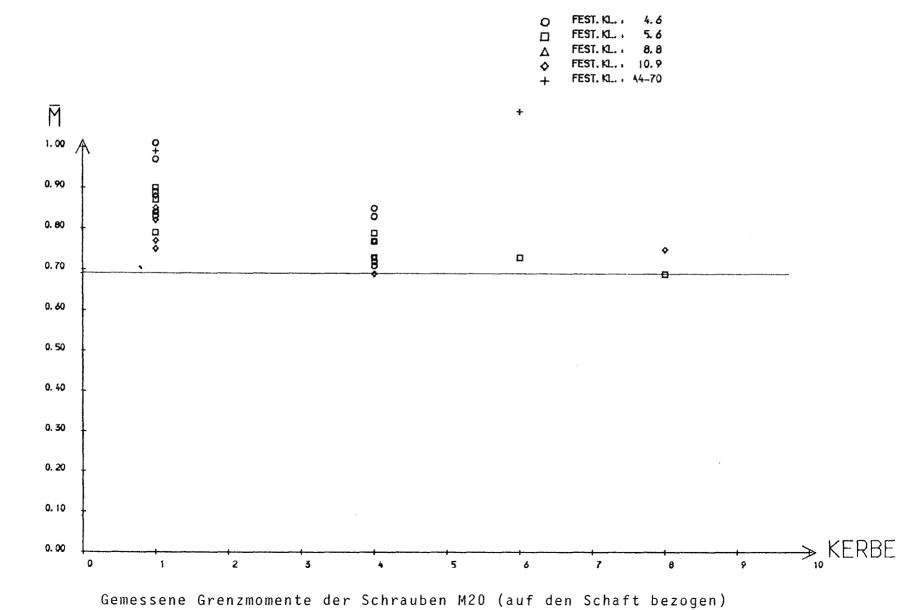
3300 BRAUNSCHWEIG

(vergl. Anlage 69)

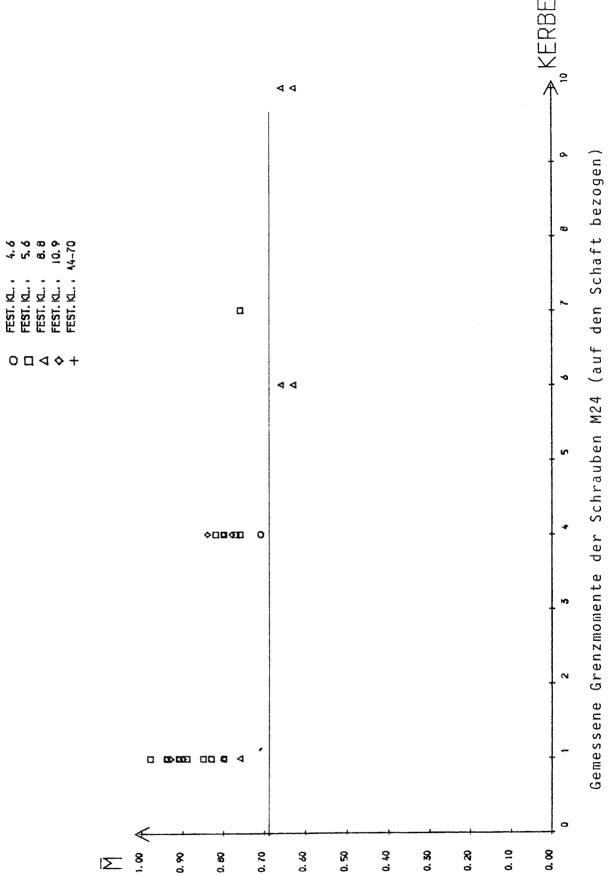
BERICHT NR.




FUER


STAHLBAU

DER


TECHNISCHEN UNIVERSITAET BRAUNSCHVEIG

ssene Grenzmomente der Schrauben M12 (auf den Schaft bezogen) (vergl. Anlagen 70-71)





(val. Anlage 72)



INSTITUT FUER STAHLBAU DER TECHNISCHEN UNIVERSITAET BRAUNSCHWEIG

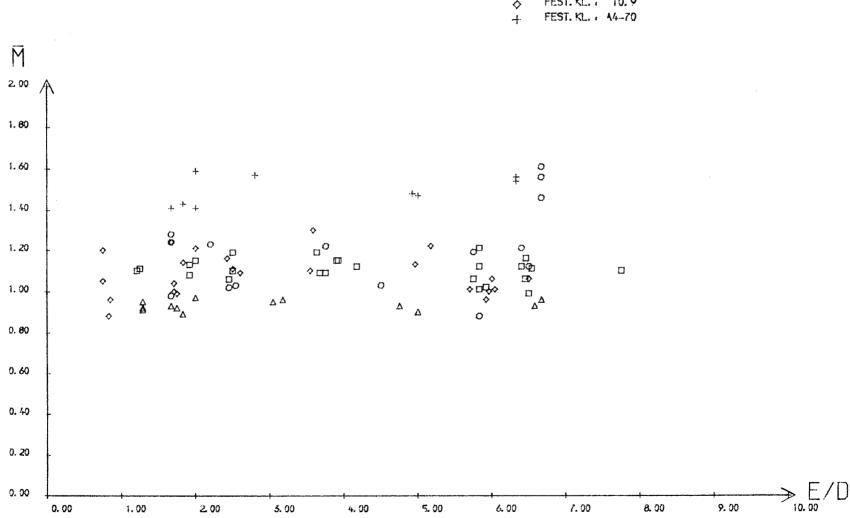
M-Q-Interaktion\_für\_mindestens\_4\_freie\_Gewindegänge

| Schraube                  | Vers.                                         | M*<br>v,Schaft | d <sup>3</sup> sch sp | M <sup>*</sup> v,Kerbe                          | е                                  | M                                                     | e/d                                                  |
|---------------------------|-----------------------------------------------|----------------|-----------------------|-------------------------------------------------|------------------------------------|-------------------------------------------------------|------------------------------------------------------|
|                           |                                               | [Nm]           | [-]                   | [Nm]                                            | [mm]                               | [-]                                                   | [-J                                                  |
| Dorn<br>4.6<br>6190       | 369<br>373<br>411<br>371<br>374               | 13,3           | 1,67                  | 12,4<br>9,9<br>12,8<br>11,6<br>10,2             | 40<br>10<br>40<br>40               | 1,56<br>1,24<br>1,61<br>1,46<br>1,28                  | 6,67<br>1,67<br>6,67<br>6,67<br>1,67                 |
| Gebi<br>A4-70<br>6180     | 376<br>379<br>377<br>380                      | 22,0           | 1,67                  | 20,5<br>18,8<br>20,3<br>21,0                    | 38<br>11<br>38<br>12               | 1,56<br>1,43<br>1,54<br>1,59                          | 6.33<br>4,83<br>6.33<br>2                            |
| 3 F 8.8<br>6 / 9 0        | 382<br>385<br>383<br>386                      | <b>૭૦,</b> 6   | 1,67                  | 17.0<br>16.3<br>17.6<br>17.8                    | 39,5<br>111<br>40<br>12            | 0,93<br>0.89<br>0.96<br>0.97                          | 6,58<br>1,83<br>667<br>2                             |
| Fuchs 4.6<br>121100       | 012<br>018<br>025                             | 126            | 1,55                  | €0<br><b>99</b><br>97                           | 20<br>45<br>69                     | 0,98<br>1122<br>11,19                                 | 1,67<br>3,75<br>5,75                                 |
| H.F. Graeka<br>4.6 121120 |                                               | 160            | 1,55                  | 91                                              | 70                                 | 0,83                                                  | 5,83                                                 |
| Fuchs<br>5.6<br>12195     | 006<br>016<br>022<br>007<br>023<br>008        | 126            | 1,55                  | 92<br>94<br>98<br>37,4<br>94<br>94              | 23<br>47<br>70<br>23<br>70<br>24   | 1/13<br>1/15<br>1/2/1<br>1/108<br>1/112<br>1/115      | 1,92<br>3,92<br>5,83<br>1,92<br>5,83<br>2            |
| F1. F.<br>5.6<br>121140   | 054<br>136<br>055<br>060<br>056<br>061<br>062 | 15A            | <i>1</i> ,55          | 116<br>108<br>106<br>103,5<br>106<br>99,4<br>98 | 43,5<br>15<br>44<br>69<br>45<br>70 | 1,19<br>1,111<br>1,09<br>1,06<br>1,09<br>1,02<br>1,01 | 3,63<br>1,25<br>3,67<br>5,75<br>3,75<br>5,92<br>5,83 |
| Gebi<br>F4-70<br>121120   | 351<br>354<br>350<br>355                      | 205            | 1,55                  | 186<br>196<br>187<br>195                        | 20<br>59<br>24<br>60               | 757<br>757<br>757<br>757                              | 1,67<br>4,92<br>2<br>5                               |
| Peiner<br>8.8<br>121120   | 345<br>348<br>346<br>349                      | 276            | 1,55                  | 160<br>164<br>165<br>160                        | 60<br>21<br>57<br>20               | 0,90<br>0,92<br>0,93<br>0,93                          | 5<br>1,75<br>4,75<br>1,67                            |

|                         | 7                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                 |                          |                                      |                                        |
|-------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|--------------------------|--------------------------------------|----------------------------------------|
| Schraube                | Vers.                           | M <sup>*</sup> v,Schaft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d <sup>3</sup> sch d <sup>3</sup> sp | M <sup>*</sup> v,Kerbe          | e                        | M                                    | e/d                                    |
|                         |                                 | [Nm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [-]                                  | [Nm]                            | [mm]                     | [-]                                  | [-]                                    |
| A.F.                    | 098                             | 334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.SS                                 | 225<br>2/45                     | 20,5<br>71.5             | 404<br>000                           | 1171<br>5,96                           |
| 10.9                    | 103                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 214                             | 21                       | 0,99                                 | 1.75                                   |
| 12/100                  | 100                             | Section of the sectio |                                      | 2/15<br>2/15                    | 72,5<br>20,5             | 1,01<br>1,00                         | 6,04<br>1,71                           |
|                         | 104                             | AND COLUMN TO THE PARTY OF THE  |                                      | 206                             | 71                       | 0,96                                 | 5,92                                   |
|                         | 126                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 189                             | 10                       | 0,88                                 | 0,83                                   |
| Peiner<br>10.9 12175    | 117                             | 283,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,SS                                 | 237                             | 43                       | 1/30                                 | 3,58                                   |
| Peiner<br>10.9<br>12190 | 119<br>124<br>121<br>125<br>122 | 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,55                                 | 236<br>203<br>222<br>233<br>240 | 62<br>9<br>22<br>9<br>20 | 1,22<br>1,05<br>1,14<br>1,20<br>1,24 | 5,17<br>0,75<br>11,83<br>0,75<br>11,67 |
| Fuchs<br>4.6<br>201/60  | 042<br>045                      | 553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,45                                 | 46 A<br>47 A                    | 128<br>44                | 1,21                                 | 6,4<br>2,2                             |
| H.F. 4.6 20/200         | 079                             | 556,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.45                                 | 430                             | 130                      | 1,12                                 | é S                                    |
| A.F. 4. 6 ZO140         |                                 | 525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Z 1.1                                | 392                             | 49                       | 1,02                                 | 2,45                                   |
| R.F. 5.6 20/440         | 087-                            | <del>1</del> 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,45                                 | 573                             | 49                       | 1.06                                 | 245                                    |
| A.F.<br>5.6<br>20/220   | 08/<br>085<br>082<br>083        | 797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,45                                 | 546<br>580'2<br>637<br>6'14'4   | 128<br>78<br>129<br>130  | 1,12<br>1,15<br>1,06<br>0,99         | 6,4<br>3,9<br>6,4<br>6,5               |
| VEFE<br>R4-70 201/40    | 364                             | 845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.1                                 | 918                             | 26                       | 1,57                                 | 2,8                                    |
| F.F. 10.9<br>201115     | 106                             | 15427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,45                                 | 1073                            | 74                       | 1,01                                 | 5,7                                    |
| A.F.<br>10.9<br>201200  | 108<br>141<br>142               | 1618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.45                                 | 1183<br>1240<br>1212            | 130<br>50<br>52          | 1,06<br>1,11<br>1,09                 | 6,5<br>2,5<br>2,6                      |
| Peiner<br>10.9 201160   | 146<br>149                      | 16,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,45                                 | 1069                            | 120<br>17                | 1,06<br>0,96                         | 6,0<br>0,85                            |

| Schraube          | Vers.      | M*<br>v,Schaft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d³ /d³<br>sch sp | M*<br>v,Kerbe | e        | M            | e/d         |
|-------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|----------|--------------|-------------|
|                   |            | [ Nm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·[ <b>-</b> ]    | [Nm]          | [mm]     | [-]          | [-]         |
| H.F. 4.6 241/160  | 069        | 1044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.45             | 744           | 61       | 1,03         | 2,54        |
| R.F. 4.6 241/180  | 067        | 1249,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,45             | 886           | ,108     | 7.03         | 4,5         |
| Fuchs             | 029        | 1009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.45             | 808           | 122      | 1.16         | 6.46        |
| 5.6               | 091        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 780           | 100      | 1.12         | 4,17        |
| 241/90            | 092        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 828           | 60       | 1,19         | 2,5         |
| A.F. 5.6 241/170  | 074        | 1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,45             | 942           | 60       | 1.10         | 2,5         |
| A.F. 5.6          | 071        | .1226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1145             | 945           | 157      | 1,11         | 6.54        |
| 24/280            | 073        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 930           | 186      | 1.10         | 7,75        |
|                   | 134        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 931           | 29       | 1.10         | 1,21        |
| Nedur             | 358        | 2616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.45             | 1725          | 76       | 0,96         | 3,17        |
| 8.8               | 39/        | u de la companya de l |                  | 1717          | 3/1      | 0.95         | 1,29        |
|                   | 393<br>359 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1652<br>1715  | 31<br>73 | 0,9Z<br>0,95 | 1,29<br>304 |
| 241/150           | 392        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1643          | 3.1      | 0,91         | 1.29        |
| A.F. 10.9 241/140 | 110        | 2565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.45             | 2053          | 58       | 1,16         | 2,42        |
| F.F. 10.9 241235  | 112        | 2703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.45             | 2106          | 119      | 1,13         | 4,96        |
| Peiner/10.9,24195 | 131        | 2293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.45             | 1920          | 48       | 1.21         | 2           |

(vergl. Anlagen81,82)


BEETHOVENSTRASSE

 $\overline{\Omega}$ 

3300

BRAUNSCHVEIG

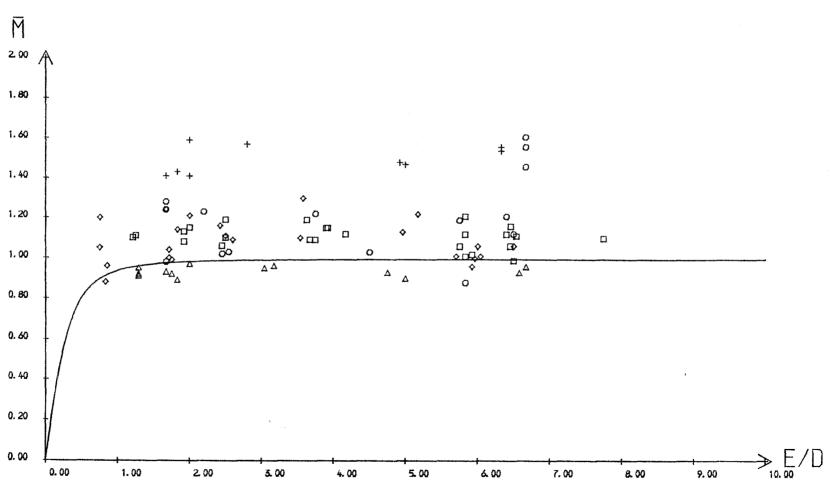




ABH. **EXZENTRIZITAET** (AUF SCHAFTVERSUCHE BEZOGEN) (vergl. Anlagen 78-80)

STAHLBAU

TECHNISCHEN UNIVERSITAET BRAUNSCHVEIG


O FEST. KL.: 4.6

☐ FEST. KL.: 5.6

△ FEST. KL.: 8.8

◇ FEST. KL.: 10.9

+ FEST. KL.: A4-70



ABH. V. D. EXZENTRIZITAET (AUF SCHAFTVERSUCHE BEZOGEN) (vergl. Anlagen 78-80)

BERICHT NR. 6079

M=N=Interaktion-im-Gewindebereich-(M=12)

Mv, Kerbe

dsch.

| Z | < \*

| Z                                    |              | Ve | rsv      | ch       | d <sub>s</sub> . | . 4*     | <b>.</b> . |     |      | )°  |    |          | 3        | 0°       |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |           |             |         |
|--------------------------------------|--------------|----|----------|----------|------------------|----------|------------|-----|------|-----|----|----------|----------|----------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|-------------|---------|
| TITITI                               | Schraube     | 0° | 309      | 60°      | ds.<br>ds.       | M* Nysen | N,         | M,* | 1    | *** | IZ | M*       | Σ        | N*       | Z                                                                                                             | M*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N                       |           |             | <u></u> |
| T FI R                               | Fuchs        | 12 | 1155     | 167      |                  | 124      | 36,1       | 80  | 1,01 | 0   | 0  | 79       | 1,00     | 2.25     | 0,06                                                                                                          | 78,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,07                    | 3         | s Scha<br>s | L.      |
|                                      | 4.6          | 18 | 157      |          | 1,56             |          |            | 99  | 4,25 | 0   | 0  | 83       | 4,05     | 1,43     | 0,04                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |           | ب<br>م<br>ب | Kerbe   |
| IHV.                                 | M12×100      | 25 | 161      |          |                  |          |            | 97  | 4,22 | 0   | 0  | 91       | 4,45     | 0,9      | 0,025                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | (         | -+          | 1       |
| STAHLBAU DER                         | A.F. Graeka. | 64 | 1773     |          | 1,56             | 160      | 46,4       | 91  | 0,89 | 0   | 0  | 88       | 0,86     | 9,0      | 0,02                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | (         | dω<br>Sn    | "Sch.   |
| DE                                   | M12×120      |    |          |          |                  |          |            |     |      |     |    |          |          |          |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | •         |             | 12      |
|                                      | Fuchs        | 6  | 163      | 169      | 1,56             | 126      | 46.2       | 92  | 1,14 | 0   | 0  | 102      | 1,26     | 0,95     | 0,02                                                                                                          | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,05                    |           |             |         |
| CHN                                  | 5.6          | 7  | 165      |          |                  |          |            | 87  | 4,08 | 0   | 0  | 105      | 1,30     | 4,90     | 0,04                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | POP Province and P |                         |           |             |         |
| ISCI                                 | M12×95       | 8  |          |          |                  |          |            | 94  | 1,17 | 0   | 0  |          |          |          |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C-New Market Control of the Street Control o |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ٥         | =           | <       |
| EZ                                   |              | 16 |          |          |                  |          |            | 94  | 1,17 | 0   | 0  |          |          |          |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nádovino-rocijy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |           |             |         |
|                                      |              | 22 |          |          |                  |          |            | 98  | 1.22 | 0   | 0  |          |          |          |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | messavorative<br>Transcription                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |           |             |         |
| VER                                  |              | 23 | 1        |          |                  |          |            | 91  | 1,13 | 0   | 0  |          |          |          |                                                                                                               | TO COMMUNICATION OF THE PROPERTY OF THE PROPER | en interpretation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |           |             |         |
| SITÄ                                 | A.Friedberg  | 54 | 177      |          | 1,56             | 151      | 47,4       | 116 | 1,20 | 0   | 0  | 105      | 1.09     | 3,1      | 0,065                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |           |             |         |
| 그<br>교<br>교                          | 5.6          | 55 | 1        |          |                  |          |            | 106 | 1,10 | 0   | 0  |          |          |          |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |           |             |         |
| TECHNISCHEN UNIVERSITÄT BRAUNSCHWEIG | ľ            | 56 | 1        |          |                  |          |            | 1   | 1.10 | l   | 0  |          |          |          |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P-PDJ-CCR-MISSIANGS-MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Recording to the second | <u>س</u>  | בל          | 2       |
| ISCH                                 | 11/12/1/10   | 60 | 1        |          |                  | :        |            | [   | 1,08 | 1   | 0  |          |          |          |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MACTE OF THE PARTY |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g                       | 89,92,95) | Anlagen     | (vergl  |
| IWE                                  |              | 61 |          |          |                  |          |            |     | 1,03 |     | 0  |          |          |          | ericano de la composição |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No. of Contract of |                         | 2,95      | gen         | •       |
| ล                                    |              |    | <u> </u> | <u> </u> |                  |          |            |     |      |     |    | <u> </u> | <u> </u> | <u> </u> | <u></u>                                                                                                       | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                |           |             |         |

83

M-N-Interaktion\_im\_Gewindebereich\_(M\_12)

| C 1 1.    | Ver  | su  | ch    | da.  | *                           |      |     | (     | )°                  |   |          | 3    | 0°   |      | 60° |      |      |       |  |
|-----------|------|-----|-------|------|-----------------------------|------|-----|-------|---------------------|---|----------|------|------|------|-----|------|------|-------|--|
| Schraube  | 00   | 30° | 60°   | ds,  | M* Nysen                    | N.   | M,* | 3     | $N_{\star}^{\star}$ | 2 | M*       | Z    | N*   | 7    | M*  | M    | N*   | N     |  |
|           | 62   |     |       |      |                             |      | 98  | ۸۵۱   | 0                   | 0 |          |      |      |      |     |      |      |       |  |
|           | 136  |     |       |      |                             |      | 108 | 1,12. | 0                   | O |          |      |      |      |     |      |      |       |  |
| A. Fried- | 098  | 188 | N81   | 1,56 | 334                         | 87,8 | 225 | 405   | 0                   | 0 | 196      | 0,92 | 2,0  | 0,02 | 168 | 0,79 | 5,72 | 0.065 |  |
|           | 0991 | 189 | 182   |      |                             |      | 214 | 1,04  | 0                   | 0 | 202      | 0,94 | 2,0  | 0,02 | 168 | 0,79 | 5,72 | 0,065 |  |
| 10.9      | 100  | 190 | 183   |      |                             |      | 215 | 1.12  | 0                   | 0 | 204      | 0,95 | 2,05 | 0,02 | 167 | 0,78 | 5,54 | 0.06  |  |
| M12×100   | 103  |     | 1     |      |                             |      | 218 | 1,02  | 0                   | 0 |          |      |      |      |     |      |      |       |  |
|           | 404  |     |       |      |                             |      | 206 | 0,96  | 0                   | 0 |          |      |      |      |     |      |      |       |  |
| M12×70    | 096  | 196 |       | 1,56 | 325                         | 90,0 | 230 | ЛЛЛ   | 0                   | 0 | 2.35     | 1,13 | 6,65 | 0.07 |     |      |      |       |  |
| Peiner    | 119  | 192 | 485   | 1,56 | 301                         | 91,7 | 236 | 1,22  | 0                   | 0 | 213      | 1,10 | 2,12 | 0,02 | 176 | 0,91 | 6,06 | 50,07 |  |
| 10.9      | 121  |     | N86   |      |                             |      | 222 | 1,15  | 0                   | 0 |          |      |      |      | 168 | 0.87 | 5,80 | 0,06  |  |
| M12×90    | 122  |     |       |      |                             |      | 240 | 1.25  | 0                   | 0 |          |      |      |      |     |      |      |       |  |
| 1 1/12 10 | 124  |     | 1     |      |                             |      | 203 | 1,05  | 0                   | 0 | <u> </u> |      |      |      | · · |      |      |       |  |
|           | 125  |     |       |      |                             |      | 233 | 1,21  | 0                   | 0 |          |      |      |      |     |      |      |       |  |
|           | 117  |     |       | 1,56 | 284                         | 96,0 | 237 | 1,30  | 0                   | 0 |          |      |      |      |     |      |      |       |  |
| M12×75    |      |     | !<br> |      | VIETNICOS E CONTRACTOS PERO |      |     |       |                     |   |          |      |      |      |     |      |      |       |  |
|           |      |     | l     |      |                             |      |     |       |                     |   |          |      |      |      |     |      |      |       |  |

INSTITUT FÜR STAHLBAU DER TECHNISCHEN UNIVERSITÄT BRAUNSCHWEIG

Beethovenstraße 51 · 3300 Braunschweig

| 11-                                    |
|----------------------------------------|
| 11 X                                   |
| ii->                                   |
|                                        |
| 111                                    |
| IIЭ                                    |
| 11                                     |
| IIC†                                   |
| 11-5                                   |
| 110                                    |
| ルス                                     |
| lict                                   |
| 10 n                                   |
| 110                                    |
| 11-                                    |
| <br>   -                               |
| ii∃                                    |
| 11                                     |
| iio                                    |
| IID                                    |
| IIΞ                                    |
| 11                                     |
| III                                    |
| IIQ.                                   |
| IIO                                    |
| 110                                    |
| ПФ                                     |
| 11 TO                                  |
| HO                                     |
| 11-4-                                  |
| 110                                    |
| II⊃                                    |
| 11                                     |
| 13                                     |
| الــــــــــــــــــــــــــــــــــــ |
|                                        |
| 20                                     |
|                                        |
| ••                                     |
|                                        |

| N                       |              | Versuch      | d <sup>3</sup> . | . *    | <b>a</b> 4 |      | (           | )°       |   |      | 3    | 0°    |       |     | 6          | 0°   |       |
|-------------------------|--------------|--------------|------------------|--------|------------|------|-------------|----------|---|------|------|-------|-------|-----|------------|------|-------|
| NSTITUT FÜR             | Schraube     | 0° 30° 60°   | ds.              | M*Isch | N.         | M,*  | 7           | <b>1</b> | Z | M,*  | Z    | N*    | 2     | M*  | M          | N*   | N     |
| T FÜI                   | Fuchs 4.6    | 42 200 207   | 1,45             | 553    | 105,2      | 461  | 1,2,1       | 0        | 0 | 478  | 1,25 | 2,75  | 0,03  | 344 | 0,90       | 9,53 | 0,09  |
| RST                     | M20×160      | 45/20/1208   |                  |        |            | 471  | <u>1,23</u> | 0        | Q | 438  | 1,15 | 2.5   | 0,02  | 314 | 0,82       | 8,3/ | 0.08  |
| STAHLBAU                | A.Friedb.4.6 | 77           | 1,45             | 555    | 101,7      | 392  | 4,02        | 0        | 0 |      |      |       |       |     |            |      |       |
| BAU                     | M20×140      |              |                  |        |            |      |             |          |   |      |      |       |       |     |            |      |       |
| フデマ                     | A.Friedb.4.6 | 79 220       | 1,45             | 556    | 98,8       | 403  | 1,05        | 0        | 0 | 424  | 1,11 | 2,6   | 0,03  |     |            |      |       |
|                         | M20×200      | -            |                  |        |            |      |             |          |   |      |      |       | -     |     | ·          |      |       |
| CHN                     | A.Friedb.5.6 | 87           | 1,45             | 785    | 142        | 573  | 1,06        | 0        | 0 |      |      |       |       |     |            |      |       |
| ISCF                    | M20×140      |              | •                |        |            |      |             |          |   |      |      |       |       |     |            |      |       |
| TECHNISCHEN UNIVERSITÄT | A. Friedb.   | 081 217 211  | 1,45             | 797    | 153        | 614  | 1,12        | 0        | 0 | 617  | 1,12 | 3,75  | 0,025 | 499 | 0,91       | 8,40 | 0,055 |
| Z                       | 5.6          | 82 218       |                  |        |            | 581  | 1,06        | 0        | 0 | 587  | 1,07 | 3,50  | 0,02  |     |            |      |       |
| ERS                     | M20×220      | 8312281      |                  |        |            | 546  | 0,99        | 0        | 0 | 585  | 1,06 | 7,15  | 0.05  |     |            |      |       |
| ITÄ                     |              | 85,234       |                  |        |            | 631  | 1,15        | 0        | 0 | 596  | 1,08 | 11,65 | 0,08  |     |            |      |       |
| •                       | A. Friedb.   | <del> </del> | 1,45             | 1618   | 279        | 1183 | 1.06        | 0        | 0 | 1190 | 1.07 | 7,10  | 0,025 | 969 | 0.87       | 16.6 | 0,06  |
| CN                      | 10.9         | 14/230       | -                |        |            | 1240 | 1,11        | 0        | 0 | 1112 | 1.00 | 13,35 | 0,05  |     | The second |      |       |
| SCH                     | M20×200      | 142 2371     |                  |        |            | 1212 | 1,09        | ٥        | 0 | 1014 | 0,91 | 20,45 | 0,07  |     |            |      |       |
| BRAUNSCHWEIG            | M20×115      |              | 1,45             | 1546   | 269        | 1073 | 1,01        | 0        | 0 |      |      |       |       | 892 | 0,84       | 26,4 | 0,10  |

M-N-Inte 117 ktien. ||\_\_\_; ||3 || - Gewinde 110 IIO 117 IID 11.0 h\_(M\_20)

| <u> </u>  |  |
|-----------|--|
| M X Xerbe |  |
| d 3ch.    |  |
| N<br>"    |  |

$$M = \frac{M_{v, Kerbe}}{M_{v, Schaft}} \cdot \frac{d_{Sch}}{d_{Sp}} \cdot \frac{N}{N} = \frac{N_{v}}{N_{u}}$$

30°

1185 0,48 15,35 0,05

60°

Z

0,09

M\* M

N

1089 1.00 6.50 0.025 863 0.79 24.4

$$\frac{ds_{ch}}{ds_{p}} = \frac{N}{N}$$

Versuch

0° 30° 60°

232

146 226 246

Schraube

Peiner 10.9

M20×100 Peiner

10.9

M20×160

d son

1,45

1,45

M\*

1748

1577

N.

293

264

M\* M

1176 1.08

1069 0,98

0

0

 $\overline{\overline{N}}$ 

0

0

## III III # 1 111 110 11-3 lict 10 i 11 ::⊐: ::∃: Gewinde 110 110 110 110 ich $(\underline{M}_2\underline{2}\underline{4})$

|    | Ve       | 727            | ich          | da.  | <b>.</b> *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | • (          | )°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3    | 0°           |      |          | 6                                 | 0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                     |
|----|----------|----------------|--------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|------|----------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------|
| 2  | ()°      | 30             | 60°          | ds,  | $M_{v,sch}^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M,*        | 7            | <b>*</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z | M*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7    | N*           | N    | $M^*$    | M                                 | N*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N    |                     |
|    | 067      | <br> <br> <br> |              | 1,45 | 1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 886        | 1,03         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 | 848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,95 | 11,85        | 0,07 |          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                     |
|    | 069      |                |              | 1,45 | 1044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 744        | 1,09         | ٥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |      |          | ,                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | ,Kerbe<br>,Schaft   |
|    | 29       |                | <b>1</b> 256 | 4,45 | 1009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 179,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 806        | 1,16         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |      | 597      | 0,86                              | 15,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,09 | •                   |
| )  | 91<br>92 | 4              |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 780<br>828 | 1,12<br>1,19 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 | ESPRELATION OF THE PROPERTY OF |      |              |      |          | stadenie je večitive tekske štade | NATIONAL PROPERTY OF THE PROPE |      | dsch.               |
|    | 74       | 28             |              | 1,45 | 1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 942        | l            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    | 13,7<br>13,3 |      |          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                     |
| ٠. |          | T              | 1258         | 1,45 | 1226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93/1       | 1,10         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 | <b> </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 4,90         |      | <b> </b> | 0,78                              | 18,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,09 | <b>Z</b>  <br>      |
|    | 7/1      | 27,            | 4            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 942        | 1,11         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 | 852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.01 | 4,15         | 0,02 |          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Z Z                 |
| )  | 73       | 127            |              |      | THE CONTRACTOR OF THE CONTRACT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 930        | 1,10         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 4,00         |      |          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1                   |
|    |          | 275            | 1            |      | may programme of the control of the  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1    | 8,10         |      |          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                     |
|    |          | 1271           |              |      | or material programme and prog | West of the state |            |              | Miller of Gordania and Gordania |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    | 7,75         |      |          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | An<br>91            |
|    |          | 27-            | +            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,03 | 8.10         | 0,04 |          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Anlagen<br>91,94,95 |

INSTITUT FÜR STAHLBAU DER TECHNISCHEN UNIVERSITÄT BRAUNSCHWEIG

Schraube

A.Friedb 4.6

M24×180

A. Friedb. 4.6

M24×160

Fuchs 5.6

M24×190

M24×170

A. Friedb.

5.6

MZ4×280

A. Friedb. 74 2821

## M-N-Interaktion\_im\_Gewindebereich\_(M\_24)

조| ||

M \* V, Kerbe

d Sch.

**|** 

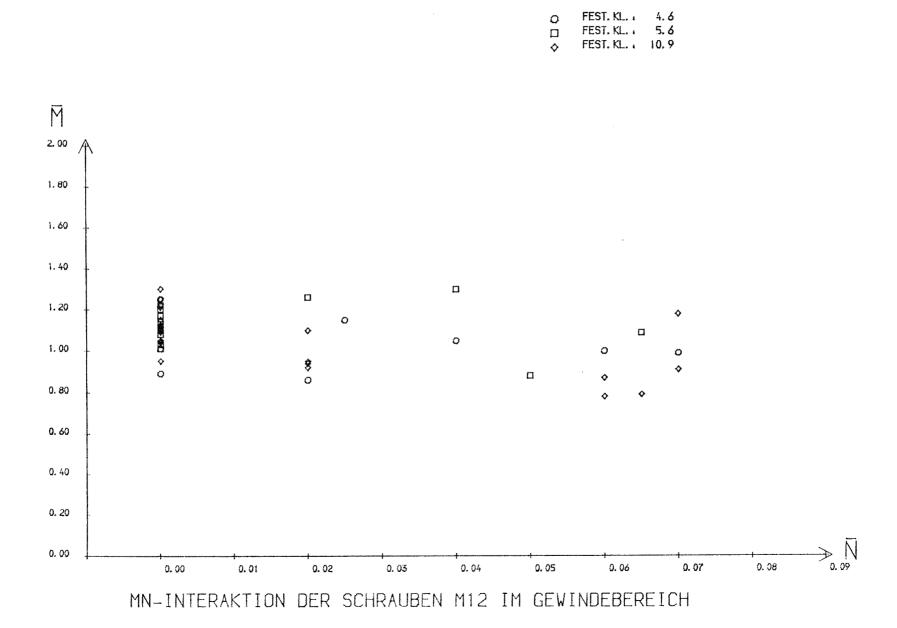
~ < \*

c Z

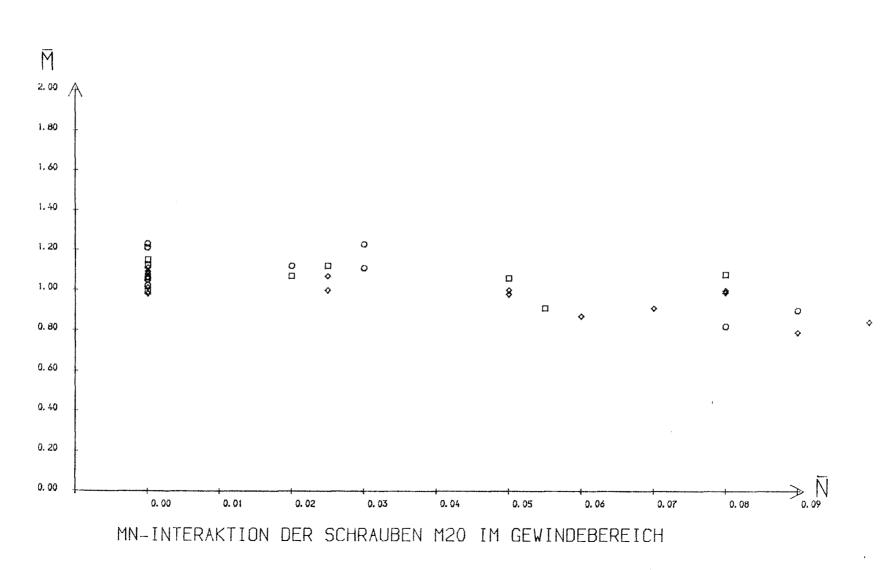
M\* v,Schaft

d<sub>3</sub>p.

| C 1                           |     | rsı                           | ich           |   | <b>.</b> 3     | *    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (    | )°         |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3    | 0°    |       |      | 6    | 0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------|-----|-------------------------------|---------------|---|----------------|------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Schraube                      | 00  | 30                            | 160           |   | 3<br>13<br>13, | M*   | N.  | M.*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M    | <b>1</b> * | N | M*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M    | N*    | N     | M*   | M    | N <sub>v</sub> *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| F. Friedb.<br>10.9<br>M24×140 | 110 | 28°                           | # <br>        | / | 1,45           | 2565 | 384 | 2053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,16 | 0          | 0 | 1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,13 | 32,5  | 0,085 |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A.Friedb.<br>10.9<br>M24×235  | M2  | 268                           | 259           | 1 | 1,45           | 2703 | 402 | 2106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,13 | 0          | 0 | 1939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,04 | 10,2  |       |      | 0,79 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Peiner<br>10.9<br>M24×95      | ЛЗЛ | 285                           |               | , | 1,45           | 2293 | 372 | 1920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,21 | 0          | 0 | 1975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,25 | 30,65 |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Peiner<br>10.9<br>M24×190     |     | <br> 266<br>                  | 1262<br> <br> |   | 1,45           | 2572 | 412 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |            |   | 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ллз  | 10,3  | 0,025 | 1478 | 0,83 | 39,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                               |     |                               |               |   |                |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               |     | -                             |               |   |                |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |            |   | and the state of t |      |       |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               |     |                               |               |   |                |      |     | decount of the state of the sta |      |            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |      |      | A CANADA CONTRACTOR CO | THE TRACTION OF THE PROPERTY O |
|                               |     | tone dimension physical tools |               |   |                |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CANCELLA HER MANAGEMENT PROGRAMMA CONTRACTOR AND CO |


INSTITUT FÜR STAHLBAU DER TECHNISCHEN UNIVERSITÄT BRAUNSCHWEIG

Beethovenstraße 51 · 3300 Braunschweig


BEETHOVENSTRASSE

5

3300 BRAUNSCHWEIG



FEST. KL. . 0 FEST. KL. 5. 6 10.9 FEST. KL.



חססידיים

П,

SZOO BONHINGCHUETO

2,00

1.80

1.60

1.40

1.20

1.00

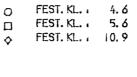
0.80

0.60

0.40

0.20

0.00


0.00

0.01

**\$** 

91





FEST. KL. .

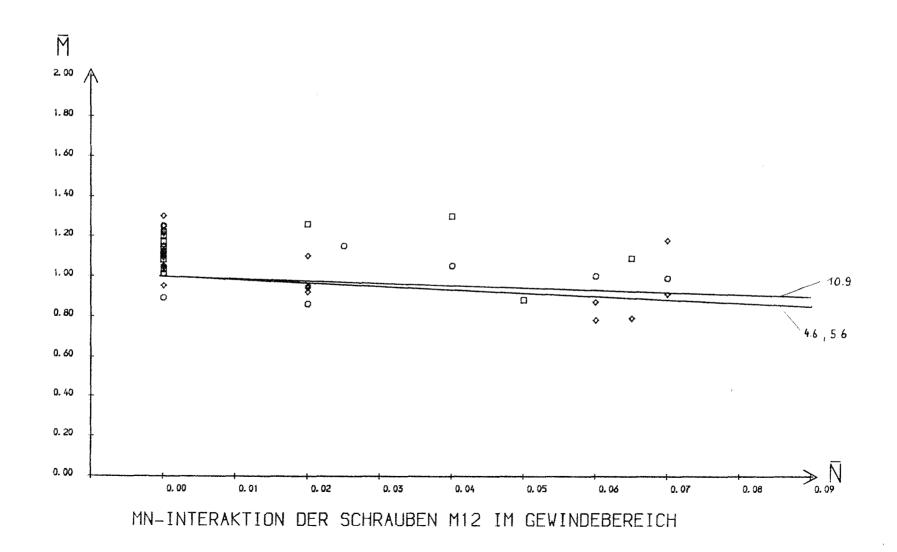
0



٠

INSTITUT FUER

STAHLBAU

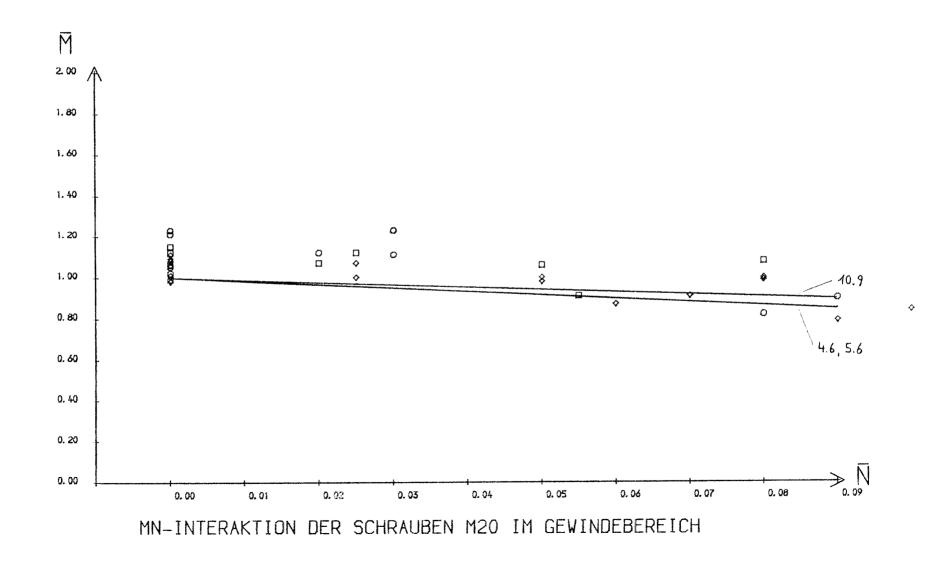

DER

TECHNISCHEN

UNIVERSITAET

BRAUNSCHVEIG

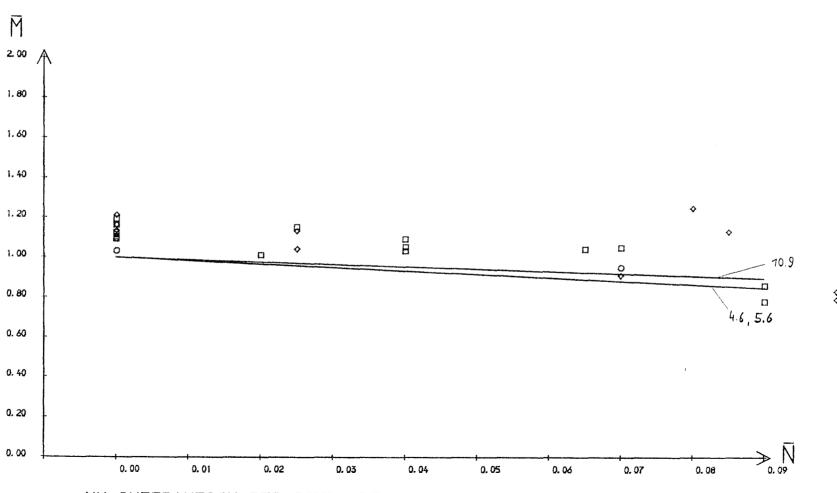
FEST. KL. . 4.6 FEST. KL. 5.6 FEST. KL. 10.9




INSTITUT FUER

STAHLBAU DER

TECHNISCHEN UNIVERSITAET BRAUNSCHWEIG


FEST. KL. . 0 FEST. KL. 10.9 



BEETHOVENSTRASSE

2

3300 BRAUNSCHWEIG



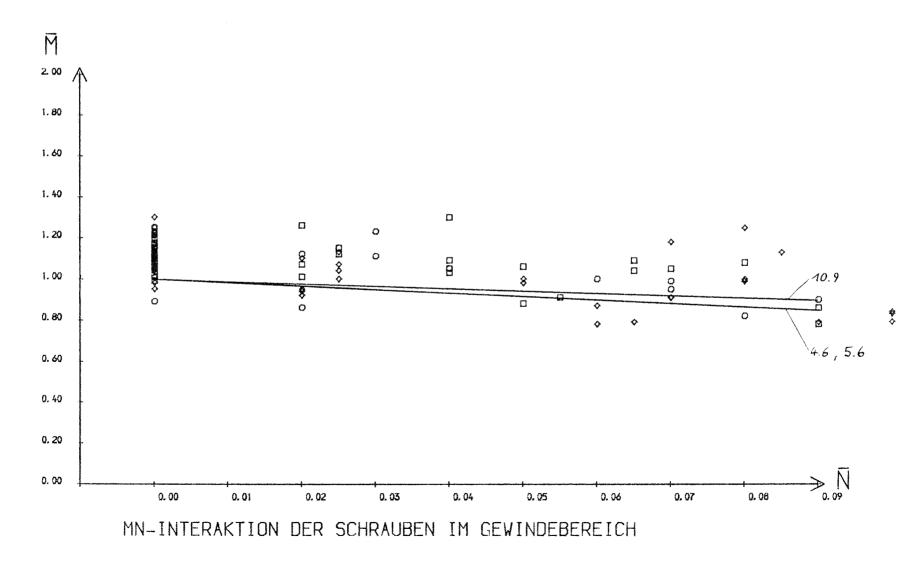
FEST. KL. FEST. KL. .

FEST. KL.

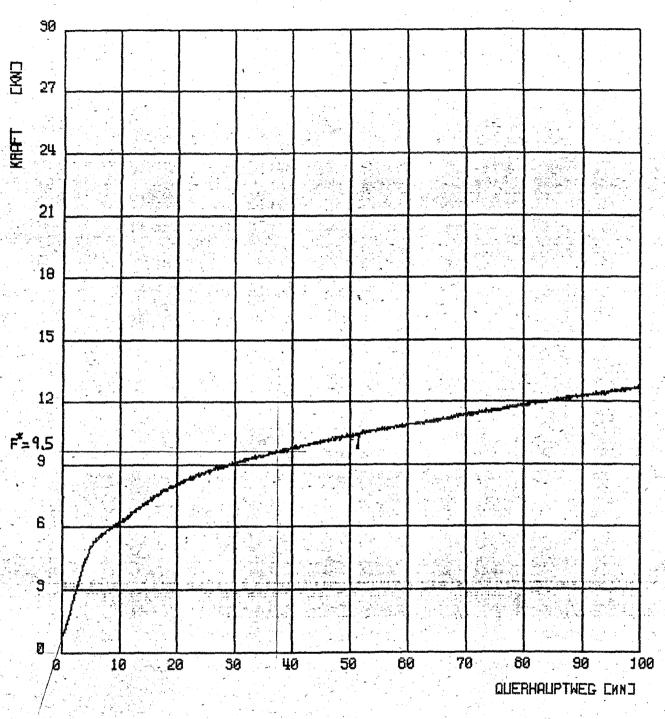
10.9

INSTITUT

FUER


STAHLBAU

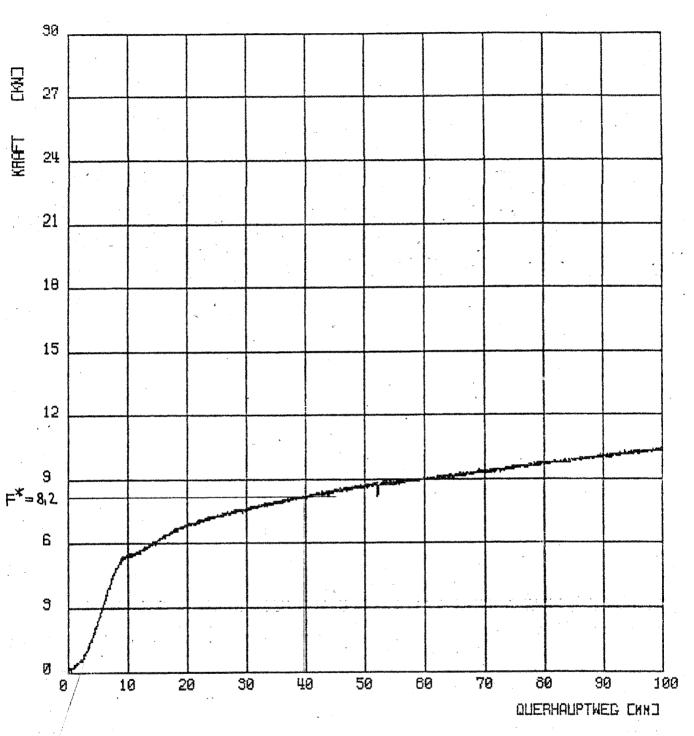
DER


TECHNISCHEN UNIVERSITAET

BRAUNSCHWEIG

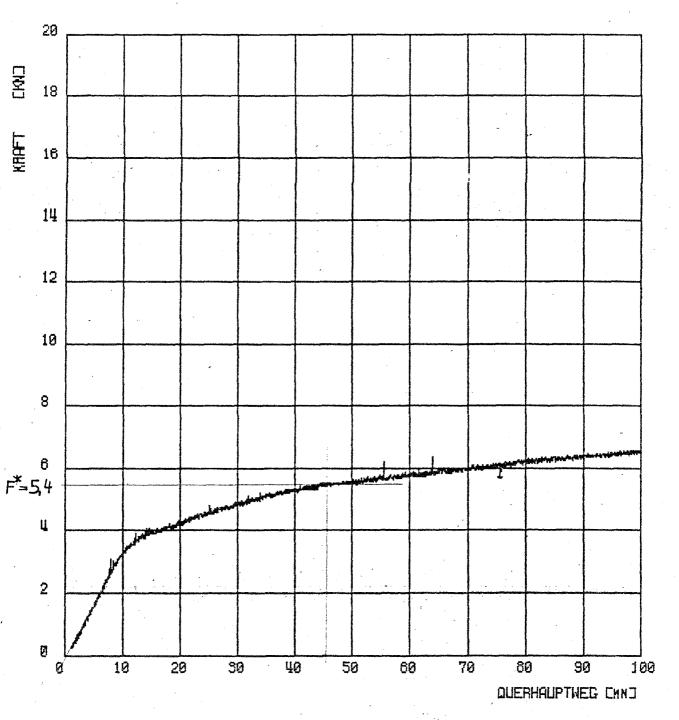
FEST. KL. . 4.6 5. ó 5. 9 FEST. KL. . FEST. KL. .




96

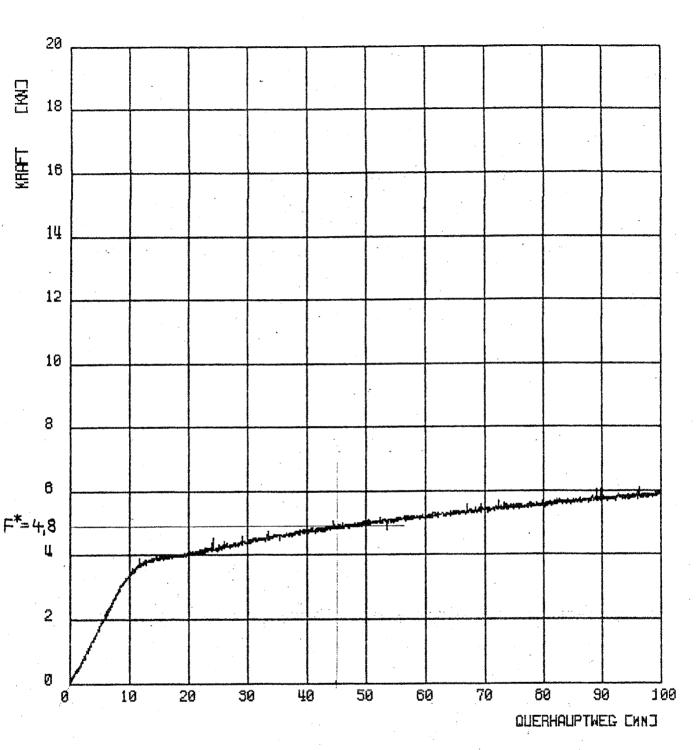


VERSUCH: FRIEDBERG--D24--4.6 , PROBE: AC1066


Exz.: 109mm
E. : 1.Kerbe

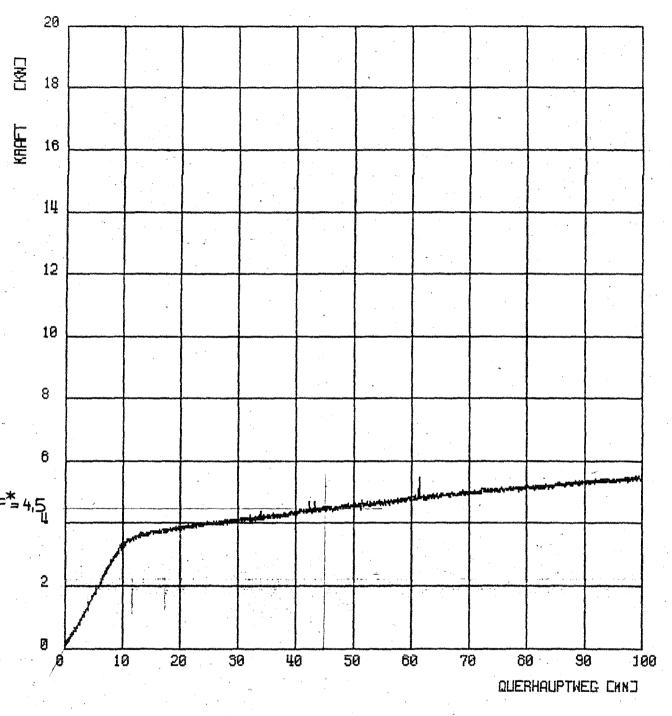
97




VERSUCH: FRIEDBERG--D24--4.5 , PROBE: AC1067

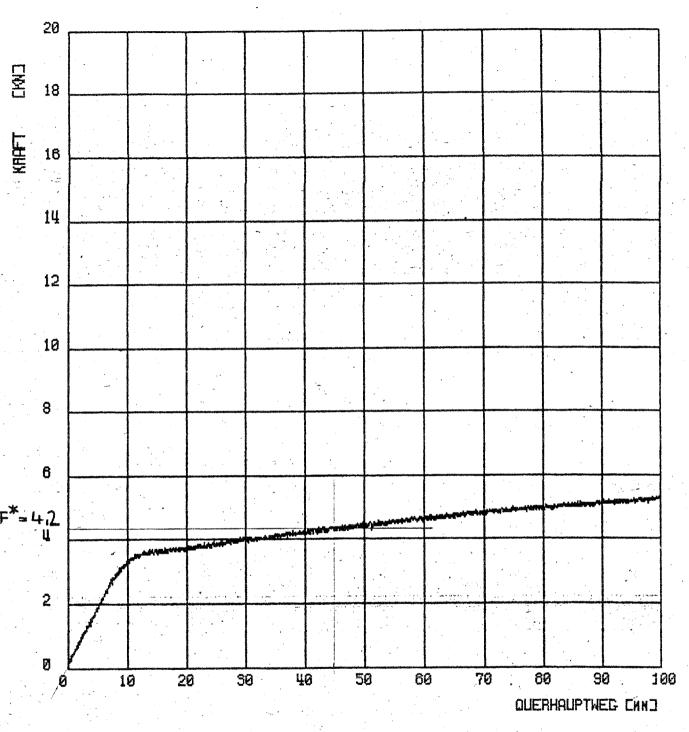
Exz.: 108mm E. : 4.Kerbe




VERSUCH: FRIEDBERG--020--5.5 PROBE: AB2000

Exz.: 129mm E. : 1.Kerbe

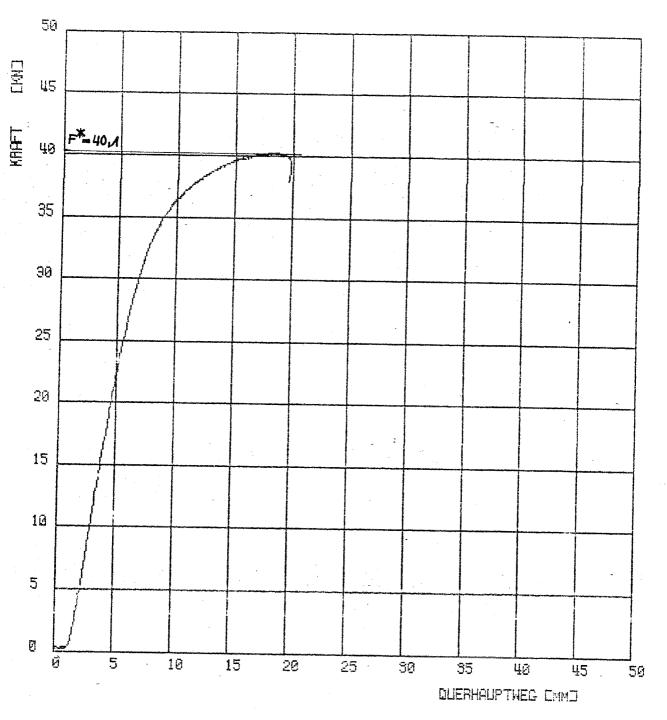



VERSUCH: FRIEDBERG--DZ0--5.6 , PROBE: A62081

Exz.:128mm
E. :4.Kerbe

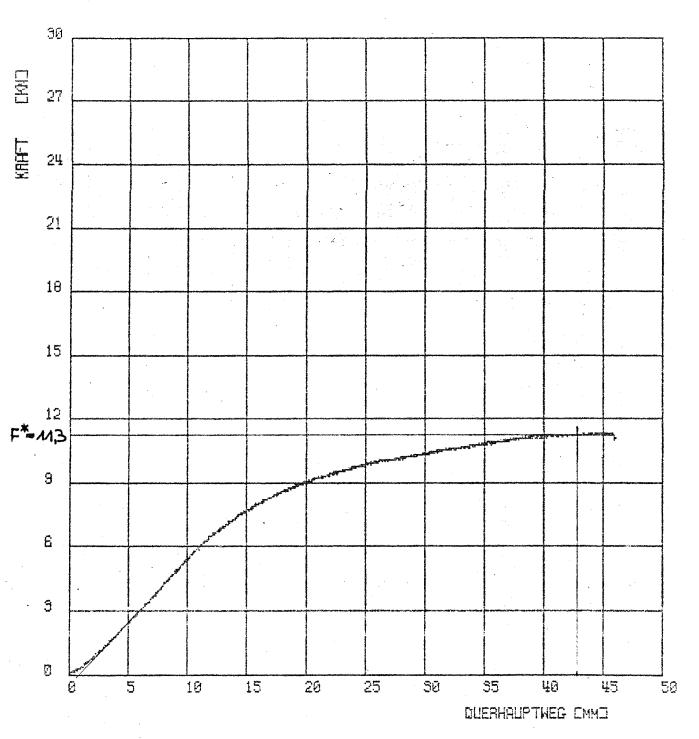


VERSUCH: FRIEDBERG--DZ0--5.5 PROBE: ABZ082


Exz.: 129mm
E. : 6.Kerbe

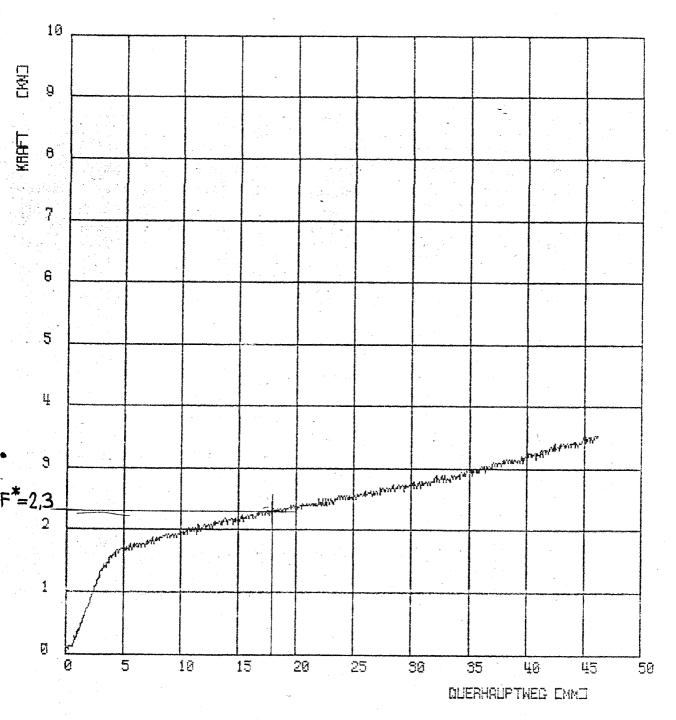


VERSUCH: FRIEDBERG--D20--5.6 , FROBE: AB2083


Exz.: 130mm

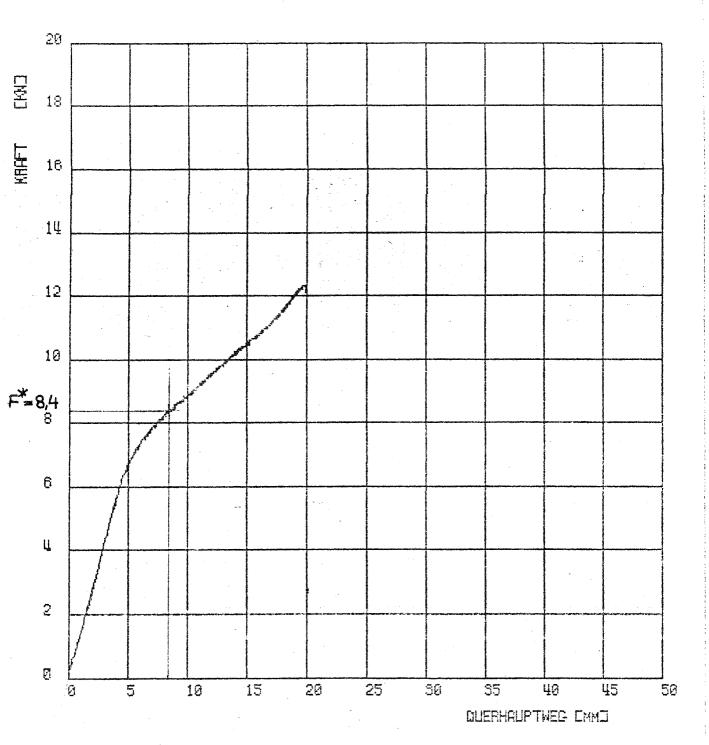
E. : 8.Kerbe




VERSUCH: FRIEDBERG-M24-10.5 . FROBE: RC3109

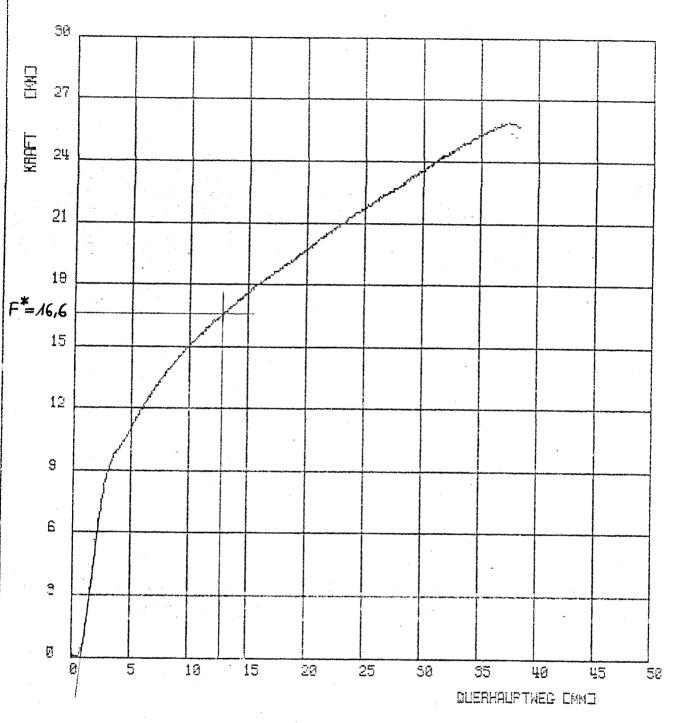
Exz.: 58mm E. : 1.Kerbe




VERSUCH: PEINER-M20-10.9 , PROBE: P63145

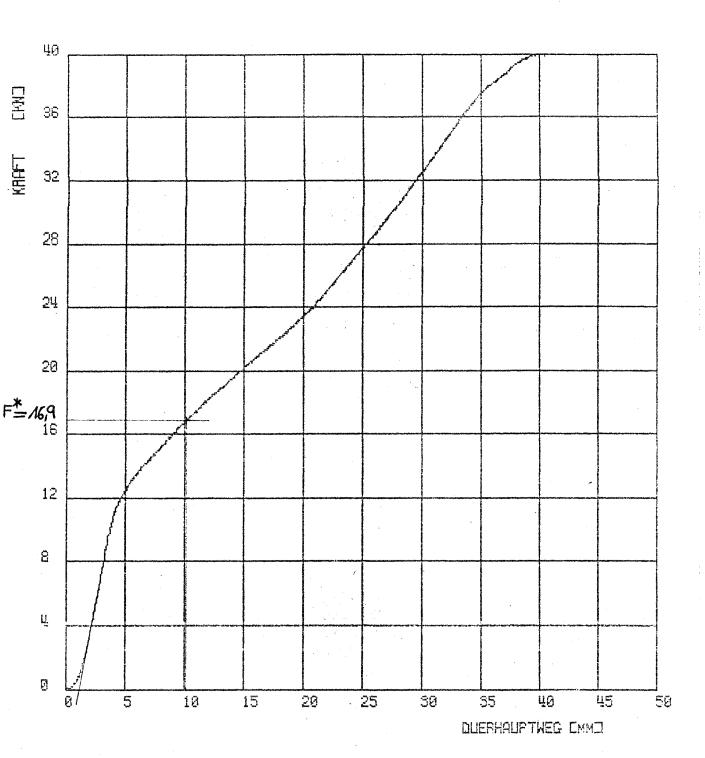
Exz.: 120mm E. : 1.Kerbe




VERSUCH: FRIEDSERG-M12-5.8 , PROBE: HAZ174

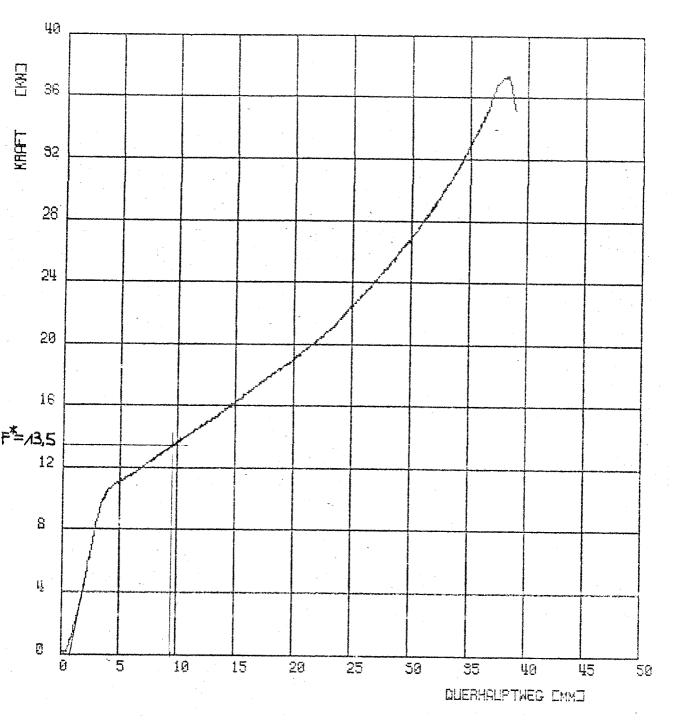
Exz.: 59.3/30° E. : 1.Kerbe




YERSUCH: PEINER-MIZ-10.3 , PROBE: PR3184

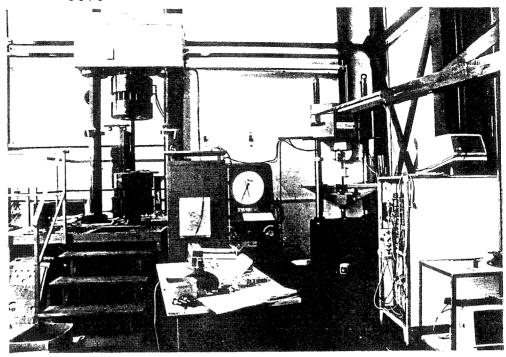
Exz.: 56/60° E. : 1.Kerbe

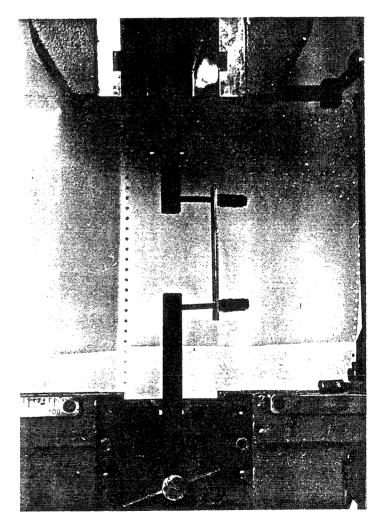



YERSUCH: FUCHS-M20-3.5 . PROBE: F62203

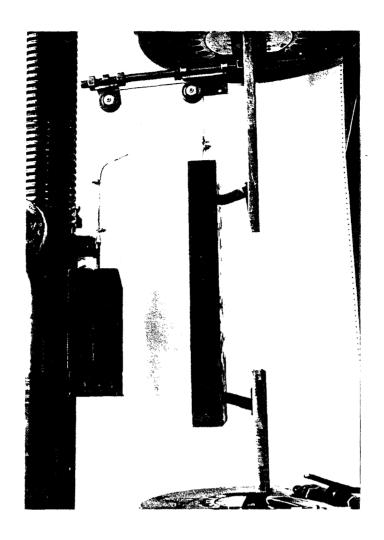
Exz.: 42/30° E. : 1.Kerbe



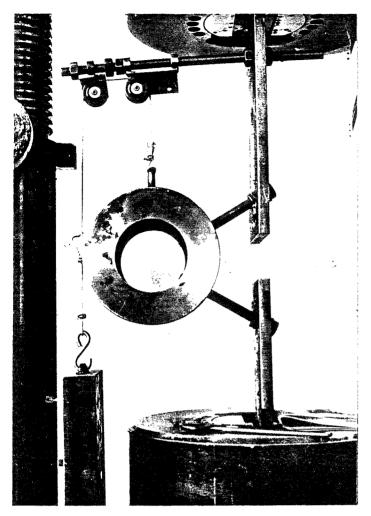

VERSUCH: FRIEDSERG-MZD-5.8 , FROBE: A62212

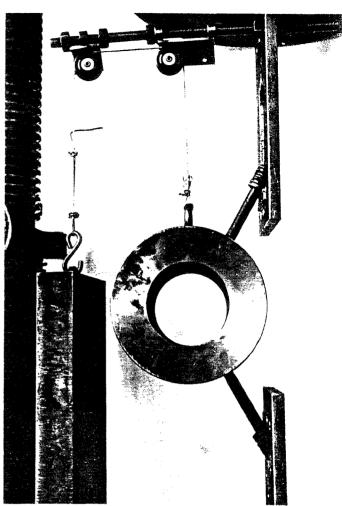

Exz.: 61/60° E. : 1.Kerbe




VERSUCH: FAIEDBERG-MZ0-5.6 , PROBE: R62214

Exz.: 60/60° E. : 8.Kerbe




Ansicht der gesamten Versuchsanlage (oben)
Versuchseinrichtung für Biegeversuche der Schrauben M6



Versuchseinrichtung für reine Biegeversuche (Schrauben M12-M30)





Versuchseinrichtung für Schrägzugversuche Schraubenneigung gegen die Horizontale: links 30° rechts60°