Bau<u>forschung</u>

Einfluß aggressiver Wasser und Böden auf das Langzeitverhalten von Verpressankern und Verpresspfählen

T 1993

⁺ Fraunhofer IRB Verlag

T 1993

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

FORSCHUNGS- UND MATERIALPRUFUNGSANSTALT BADEN - WURTTEMBERG Otto - Graf - Institut

FORSCHUNGSVORHABEN

EINFLUSS AGGRESSIVER WASSER UND BÖDEN AUF DAS LANGZEITVERHALTEN VON VERPRESSANKERN UND VERPRESSPFÄHLEN

ABSCHLUSSBERICHT ZU TEIL I

- RUNDSATZVERSUCHE -

Von

Prof.Dr.Ing. W. Manns Prof.Dr.Ing. R. Zimbelmann Dipl.-In g . M. Bayer

Stuttgart, August 1987

Inhaltsverzeichnis

1.	Einleitung		_	1	_
2.	Versuchsprogramm		_	З	
З.	Herstellung der Prüfkörper		-	4	
4.	Versuchsdurchführung			5	
4.1	Versuchseinrichtung		_	5	
4.2	Bestimmung der Massenänderung		_	7	
4.3	Bestimmung der Eindringtiefe			7	
4.4	Elektronenmikroskopische Untersuchungen		_	9	_
4.5	Bestimmung des dynamischen E-Moduls		_	10	
5.	Versuchsergebnisse		_	10	-
5.1	CO ₂ -Gehalt des Wassers		_	10	_
5.2	Beurteilung der Proben nach Augenschein		_	11	
5.3	Massenänderung der Prüfkörper			14	
5.3.1	Ergebnisübersicht		-	14	_
5.3.2	Ersatzschichtdicke s _E		_	16	<u> </u>
5.4	Eindringtiefe	•	_	19	
5.5	Elektronenmikroskopische Untersuchungen	× • •	_	21	
5.5.1	Struktur der Zementsteinoberfläche	I;	- :	21	_
5.5.2	Analyse der Zementsteinoberfläche		-	23	
6.	Wertung der Ergebnisse		- :	26	_
7.	Empfehlungen für den 2. Versuchsabschnitt		- 3	30	
8.	Zusammenfassung		- (32	
9.	Literaturverzeichnis		- :	38	
Abbildungen					

Tabellen

Anhang A

1. Einleitung

Die Anwendung von Verpreßankern und Verpreßpfählen als Reibungspfähle zur Verankerung bzw. Gründung von Bauwerken und Bauteilen setzt voraus, daß die Anker- bzw. Pfahlkräfte im wesentlichen durch Mantelreibung auf den Untergrund übertragen werden können [1]. Die Größe der Mantelreibung wird durch die radiale Druckspannung und die Rauhigkeit in der Grenzfläche zwischen Anker bzw. Pfahl und umliegendem Erdreich bestimmt. Kann der Anker bzw. Pfahl an seiner Oberfläche von aggressivem Wasser oder Boden angegriffen werden, besteht die Gefahr einer Zerstörung der kraftübertragenden Scherfuge. Aus diesem Grunde weisen die für Verpreßanker und Verpreßpfähle zuständigen Normen, DIN 4125 Teil 2, "Verpreßanker für dauernde Verankerung im Lockergestein" (Ausgabe Februar 1976) und DIN 4128, "Verpreßpfähle, Ortbetonpfähle mit kleinem Durchmesser" (Entwurf Juni 1980), ausdrücklich auf DIN 4030, "Beurteilung betonangreifender Wässer, Böden und Gase" (Ausgabe November 1969) hin. DIN 4128, Abschnitt 6.3, enthält ergänzend die Angabe, daß die Krafteintragungslänge von Verpreßpfählen nicht in einem Baugrund liegen darf, in dem oder in dessen Grundwasser Stoffe enthalten sind, die Beton angreifen.

Es ist bislang noch nicht bekannt, ob und gegebenenfalls in welcher Größe die Tragfähigkeit eines Verpreßankers oder Verpreßpfahls bei Anwesenheit betonangreifender Stoffe verringert wird. Bisherige Untersuchungen über die Schädigung von Beton durch aggressive Stoffe wurden vorwiegend im Hinblick auf die Minderung

der Betondeckung (bei lösendem Angriff), der Tragfähigkeit des Betons (bei treibendem Angriff) oder des Korrosionsschutzes (bei Karbonatisierung oder Chlorid-Diffusion) durchgeführt. Um eine merkliche Beeinträchtigung der Dauerhaftigkeit bei üblichen Bauwerken hervorzurufen, mußte die zu berücksichtigende Schädigung des Betons in der Größenordnung von einem cm und mehr liegen. Im Gegensatz hierzu kann bei Verpreßankern und -pfählen aufgrund der Tragwirkung bereits eine wesentlich geringere geschädigte Schicht zum Versagen führen. Aufgrund der Lage im Boden und des Schadensmechanismus dürfte vor allem lösender Angriff Verpreßankern und -pfählen gefährlich werden können.

Zur Abschätzung des Einflusses lösenden Angriffs auf das Langzeitverhalten von Verpreßankern bzw. -pfählen wurden im Rahmen eines Forschungsvorhabens Grundsatzversuche durchgeführt, aus denen Erkenntnisse über die Schädigung von Beton bzw. Zementstein unter der Einwirkung kalklösender Kohlensäure – wie sie häufig in Grundwasser anzutreffen ist – gewonnen werden sollten. Als Versuchskörper dienten aus Zementleim hergestellte, mit Verpreβankern vergleichbare Zylinder, die über einen Zeitraum von annähernd zwei Jahren kalklösender Kohlensäure unterschiedlicher Konzentration ausgesetzt wurden.

Die Untersuchungen wurden vom Institut für Bautechnik, Berlin, finanziert.

2. Versuchsprogramm

Aus Zementleimen mit w/z-Werten von 0,40 , 0,45 und 0,50 wurden zylindrische Probekörper - in Annäherung an die Gestalt von Verpreßankern - mit einem Durchmesser von 40 mm und einer Höhe von rd. 160 mm hergestellt und im Alter von einem Tag in kontinuierlich fließendem, CO₂ -angereichertem Leitungswasser bzw. reinem Leitungswasser (Null-Serie) eingelagert. Neben dem w/z-Wert wurde als zweiter Parameter der Gehalt des Wassers an kalklösender Kohlensäure (im folgenden zur Vereinfachung auch mit CO₂-Gehalt bezeichnet) in den Abstufungen "niedrig", "mittel" und "hoch" variiert. Als niedriger Gehalt sollte 25 mg CO₂/1 Wasser, als mittlerer ein solcher von 50 mg CO₂/1 Wasser und als hoher ein solcher von 75 mg CO₂/1 Wasser erreicht werden. In vorgegebenen Zeitabständen wurden an den Zementsteinzylindern folgende Untersuchungen vorgenommen:

- ^{*} Beurteilung der Prüfkörper nach Augenschein,
 - Ermittlung der Massenänderung der Prüfkörper,
 - Messung der Eindringtiefe einer mit 200 N belasteten
 Stahlkugel (Durchmesser 10 mm, entsprechend der
 Härtemessung nach DIN 1168),
 - Rasterelektronenmikroskopische Untersuchung der Zemensteinoberfläche und chemische Analyse derselben mittels EDAX.¹⁾

1) Energy - Dispersive - Analysis - on - X - Rays

З

Die ursprünglich vorgesehene Messung des dynamischen E-Moduls wurde im Anschluß an Vorversuche aus Gründen begrenzter Verwertbarkeit der Ergebnisse nicht durchgeführt (s.Abschnitt 4.5).

Die oben genannten Untersuchungen wurden - abweichend vom Versuchsprogramm, das einen Beobachtungszeitraum von 365 Tagen vorsah, um die Einwirkung besser erfassen zu können, - bis zu einer Lagerungszeit von annähernd 600 Tagen durchgeführt.

3. Herstellung der Prüfkörper

Die Zementleime wurden mit w/z - Werten von 0,40, 0,45 und 0,50 aus handelsüblichem Portlandzement der Festigkeitsklasse Z 35 F unter Zugabe von normalem (Stuttgarter) Leitungswasser hergestellt. Die nach DIN 1164 Teil 3, Ausgabe November 1979 durchgeführte Analyse des Zementes ergab die in Tabelle 1 aufgeführte Zusammensetzung. Für das verwendete Leitungswasser kann die in Tabelle 2 angegebene Zusammensetzung angenommen werden.

Die Herstellung der Zementleime erfolgte in Anlehnung an DIN 4227 Teil 5, Ausgabe Dezember 1979. Die Ausgangsstoffe wurden in der Reihenfolge Wasser, Zement in den laufenden Mischer gegeben und rd. 3 Minuten intensiv durchgemischt. Unmittelbar nach Abschluß des Mischvorgangs wurde der Zementleim in vorbereitete Kunststoffrohre (Innendurchmesser rd. 40 mm, Länge rd. 2000 mm) eingefüllt und gleichzeitig mittels eines an der Rohraußenwand entlang geführten Flaschenrüttlers verdichtet. Die vollständig

verfüllten Rohre wurden an ihren Enden mit Gummistopfen und wasserdichtem Klebeband dicht verschlossen und horizontal gelagert. Zur Vermeidung von Sedimentationserscheinungen wurden die Rohre für rd. 6 Stunden in Rotation um ihre Längsachse versetzt. Nach einer 24-stündigen Erhärtungszeit konnten die Rohre in 16 cm lange Teilstücke zersägt und die Zementsteinzylinder ausgeschalt werden.

4. Versuchsdurchführung

4.1 Versuchseinrichtung

Im Gegensatz zu den aus der Literatur bekannten Versuchseinrichtungen, die mit einem geschlossenen Wasserkreislauf betrieben wurden, in welchem das Wasser nach Erreichen eines unteren Grenzwertes im Umlaufverfahren erneut mit Kohlensäure angereichert wurde, bot sich für die vorliegende Untersuchung im Hinblick auf die praxisorientierte Thematik an, ein offenes System (Durchlaufverfahren) zu wählen, um den natürlichen Gegebenheiten, denen ein Verpreßanker im aggressiven Boden bzw. Grundwasser ausgesetzt sein kann, möglichst nahe zu kommen. Das offene System simuliert hierbei einen kontinuierlichen Grundwasserstrom, der infolge seiner Entstehung oder des bis dahin zurückgelegten Weges eine bestimmte Menge an kalkaggressiver Kohlensäure enthält, die mit dem Zementstein reagieren kann. Der ständige Zufluß von frischem Wasser beim Durchlaufverfahren sorgt dafür, daß das chemische Ungleichgewicht zwischen Zementstein auf der einen Seite und

umgebendem Wasser auf der anderen Seite fortlaufend erneuert bzw. erhalten bleibt.

In Bild 1 ist die CO₂ - Dosieranlage schematisch dargestellt. Das Leitungswasser wird über ein Verteilerrohr in einen Mischbehälter mit einem Fassungsvermögen von rd. 100 l eingespeist und dort mit Kohlendioxid angereichert, das über Gasleitungen bis auf den Grund des Mischbehälters geleitet wird und über sogenannte Aquariensteine als feinperliges Gas austritt. Im oberen Drittel des Mischbehälters befindet sich ein Abzweig, über den das angereicherte Wasser bis in die auf dem Grund der Lagerbehälter installierten, gelöcherten Verteilerrohre gelangt. Von dort durchströmt das CO2 - haltige Wasser den Behälter in vertikaler Richtung bis zum Überlauf am oberen Rand der Lagerbehälter und wird abgeleitet. Der Wasserdurchsatz beträgt annähernd 0,65 l/min je Lagerbecken. Bei einer Wasseroberfläche von 0,24 m² errechnet sich damit die Durchflußgeschwindigkeit zu rd. 0,16 m/h. Für eine mittlere Wassertiefe von rd. 20 cm ergibt sich hieraus eine Umwälzzeit von 75 Minuten. Die Bilder 2, 3 und 4 zeigen Einzelheiten der Versuchseinrichtung.

Die Wassertemperatur, die einen entscheidenden Einfluß auf die Löslichkeit von Kohlendioxid in Wasser hat, lag während des gesamten Versuchszeitraums nahezu konstant zwischen 14 und 15 °C. Die Versuchsanlage wurde in einem Raum mit weitgehend gleichmäßigen klimatischen Verhältnissen installiert, wenngleich vereinzelt auftretende Schwankungen in den klimatischen Bedingungen nicht restlos ausgeschaltet werden konnten.

4.2 Bestimmung der Massenänderung

In vorgegebenen Zeitabständen wurden die Massen der Prüfkörper bestimmt und die jeweils eingetretene Massenänderung ermittelt. Als Bezugswert diente bei allen Prüfkörpern die Körpermasse im Alter von 24 Stunden. Dabei ist zu beachten, daß die Prüfkörper nach dem Ausschalen bis zur Durchführung der ersten Wägung aus arbeitstechnischen Gründen etwa 3 Stunden unter Wasser lagerten. Innerhalb dieser Zeit trat - durch Ermittlung der Rohdichte nachweisbar - eine Wasseraufnahme ein, die jedoch für das zu untersuchende Problem der Massenänderung infolge des Angriffs durch Kohlensäure unerheblich ist, da ausschließlich die Änderung der Masse im Laufe der Zeit nicht aber der Absolutwert der Masse von Interesse ist.

Die Massenbestimmung erfolgte auf einer elektronischen Präzisionswaage auf 1/10 Gramm Genauigkeit. Vor der Wägung wurde den nassen Prüfkörpern durch Abrollen auf einem feuchten Tuch das überschüssige, an der Oberfläche anhaftende Wasser entzogen.

4.3 Bestimmung der Eindringtiefe

Die Eindringtiefe wurde in Anlehnung an die Härteprüfung von Baugips nach DIN 1168 Blatt 2, Ausgabe 1975, geprüft. Der Eindringkörper – eine Stahlkugel mit einem Durchmesser (d) von 10 mm – wird zunächst auf den Prüfkörper aufgesetzt und mit einer Prüfvorkraft von 10 N belastet. Innerhalb von 2 Sekunden wird die

Prüfkraft F1 = 200 N aufgebracht. Nach einer Belastungsdauer von 15 Sekunden wird entlastet und nach weiteren 15 Sekunden die bleibende Eindringtiefe t an einer Meßuhr abgelesen. Die Härte ergibt sich als Quotient aus Prüfkraft F1 und Kalottenoberfläche des Kugeleindrucks nach der Formel H = F1 / (π * d * t). Aus dieser Gleichung ist ersichtlich, daß zwischen Härte und Eindringtiefe eine umgekehrte Proportionalität besteht, sich die beiden Größen also nur durch einen konstanten Faktor unterscheiden. Dennoch wurde es für die vorliegende Untersuchung vorgezogen, die Eindringtiefe als Kenngröße für den Korrosionsfortschritt des Zementsteins zu verwenden und auf den Begriff der Härte zu verzichten, da bei einer durch Kohlensäure angegriffenen Zementsteinschicht nicht mehr - wie in Abschnitt 5.2 näher beschrieben wird - von einem definitionsgemäßen "Widerstand, den ein Körper dem Eindringen eines anderen entgegensetzt ", gesprochen werden kann.

Die zylindrische Form der Prüfkörper erforderte die Herstellung einer speziellen Meßvorrichtung, wie sie in Bild 5 dargestellt ist. Die Meßform diente einerseits als paßgenaue Auflagerung für die Prüfkörper, andererseits als Zentriervorrichtung, so daß die Messung der Eindringtiefe stets im Scheitelpunkt der liegend angeordneten Zylinder erfolgen konnte. Für die Messung der Eindringtiefe standen je w/z - Wert und Lagerungsbedingung (CO_2 -Gehalt des Wassers) 6 Einzelprüfkörper zur Verfügung, an denen je Prüftermin 18 Einzelwerte ermittelt wurden. Die Messungen erfolgten entlang der in Bild 5 gekennzeichneten Meßabschnitte 1-3. Die Meßabschnitte 4-6 wurden nicht benutzt, da sich in Vorver-

suchen gezeigt hatte, daß infolge der Auflagerpressung im Bereich der Meßabschnitte 4-6 beim Prüfen der Meßabschnitte 1-3 Schädigungen der angegriffenen Zementsteinoberfläche (Kompaktierung) auftreten können, die das Meßergebnis unzulässig beeinflußt hätten.

Aus den 18 erhaltenen Einzelwerten der Eindringtiefe je Prüftermin wurde der Mittelwert gebildet und die Standardabweichung berechnet.

4.4 Elektronenmikroskopische Untersuchungen

Mit Hilfe des Raster - Elektronen - Mikroskops wurden anhand kleiner, nach Augenschein repräsentativer Bruchstücke, die aus der Oberfläche der Zementsteinproben abgespalten und unter Vakuum getrocknet wurden, sowohl optische als auch analytische Untersuchungen vorgenommen. Die chemische Analyse, die unter Benutzung der an das REM angeschlossenen EDAX - Anlage durchgeführt wurde, beschränkte sich auf die maßgebenden Elemente Ca, Si, Al und Fe. Im Gegensatz zu den übrigen Versuchen mußte die elektronenmikroskopischen Untersuchungen nach einer Lagerungszeit der Proben von rd. 300 Tagen abgebrochen werden, da eine einwandfreie und meßgerechte Probenpräparation aufgrund der Empfindlichkeit der angegriffenen Zementsteinoberfläche gegenüber mechanischer Beanspruchung nicht mehr möglich war.

4.5 Bestimmung des dynamischen E - Moduls

Bei Vorversuchen¹⁾ wurde erkannt, daß die Messung des dynamischen Elastizitätsmoduls in jungem Alter keine verwertbaren Ergebnisse liefert, da die Dicke der korrodierten Schicht vergleichsweise gering ist und sich daher nur eine Änderung der dynamischen Eigenschaften der Probekörper ergeben kann, die innerhalb der Toleranzen der Meßanlage liegt. Die Messung des dynamischen E -Moduls wurde deshalb nicht weiter verfolgt und durch die Untersuchungen mit dem Raster - Elektronen - Mikroskop ersetzt.

5. Versuchsergebnisse

5.1 Kohlendioxidgehalt des Wassers

Die Löslichkeit von CO_2 in Wasser ist von mehreren Einzelfaktoren abhängig. Das genaue Einstellen der CO_2 - Dosieranlage auf die angestrebten CO_2 - Konzentrationen von 25, 50 und 75 mg/l Wasser bereitete daher solche Schwierigkeiten, daß ein exaktes Einhalten der Sollwerte unmöglich war. Zur Vereinfachung der Versuchsbedingungen wurde festgelegt, daß der CO_2 - Gehalt des Wassers in vorgeschriebenen Grenzen schwanken darf, deren Einhaltung aus versuchstechnischer Sicht möglich erschien. Für die

1) siehe 2. Zwischenbericht

einzelnen angestrebten CO₂ - Konzentrationen "niedrig", "mittel" und "hoch" wurden die in Tabelle 3 genannten Mittelwerte erreicht.

Der Gehalt des Wassers an kalklösender Kohlensäure wurde mit dem Marmorversuch nach Heyer - gemäß DIN 4030 - bestimmt. Die Überprüfung des CO₂ - Gehaltes erfolgte anfänglich im Abstand von Tagen bzw. maximal 1 Woche, später in größeren Zeitabständen.

5.2 Beurteilung der Proben nach Augenschein

Die Korrosion des Zementsteins infolge Kohlensäureangriffs kann optisch an einer bräunlichen Verfärbung der Oberfläche wahrgenommen werden. In der oberflächennahen Zone des Zementsteinkörpers ensteht eine gallertartige, weiche Schicht. Vergleichbare Beobachtungen wurden verschiedentlich gemacht, siehe u.a. [3].

Der Verlauf der Korrosion stellt sich in folgender Weise dar: Während einer Anfangsphase, die sich je nach CO_2 - Gehalt des Wassers über einen Zeitraum von etwa 10 - 80 Tagen erstreckt, traten praktisch keine sichtbaren Veränderungen an den Proben auf. Danach konnte die Korrosion des Zementsteins an einer stetig zunehmenden Braunverfärbung der Oberfläche verfolgt werden. Der Zeitraum bis zum Auftreten erster, sichtbarer Korrosionserscheinungen betrug unabhängig vom w/z - Wert der Proben bei einem niedrigen CO_2 - Gehalt des Wassers von 44 mg/l rd. 70 - 85 Tage,

bei einem mittleren Gehalt von 66 mg/l rd. 20 - 30 Tage und bei einem hohen Gehalt von 96 mg/l rd. 10 - 20 Tage. Deutlich ist in Bild 6 zu erkennen, daß mit abnehmendem CO_2 - Gehalt des Wassers die Zeit bis zum Auftreten erster Korrosionserscheinungen überproportional zunimmt. Wenngleich Bild 6 aufgrund der nur unpräzise angebbaren Zeitpunkte des Korrosionsbeginns mehr qualitativer als quantitativer Natur ist, finden sich dennoch deutliche Hinweise darauf, daß die Größe des CO_2 - Gehaltes des Wassers von übergeordneter Bedeutung für die Korrosion des Zementsteins sein dürfte.

Obwohl es sich beim Kohlensäureangriff um einen allseitig wirkenden, flächenhaften Angriff handelt [4], konnte bei allen Prüfkörpern unabhängig von w/z - Wert und CO₂ - Gehalt des Wassers beobachtet werden, daß die Korrosion zunächst ausschließlich punktuell, an exponierten Stellen auftrat. Als besonders anfällig gegenüber dem Angriff können in dieser Hinsicht die Kanten der Prüfkörper sowie die Randbereiche nach außen reichender, kleiner Poren bezeichnet werden (vgl. Bild 7 und 8). Die Ursache hierfür dürfte darin zu finden sein, daß an diesen Stellen der Kohlensäureangriff von mehreren Seiten aus erfolgen kann. Mit zunehmender Lagerungszeit vermehren und vergrößern sich die anfänglichen Korrosionsstellen und überdecken im Laufe der Zeit den ganzen Prüfkörper. Die einzelnen Stadien des Korrosionsfortschrittes können Bild 7 entnommen werden.

Die korrodierte Schicht besitzt im feuchten Zustand nur eine sehr geringe Eigenfestigkeit und ist äußerst gleitfähig. Trocknet man

die Proben aus, so entstehen zahlreiche, mit dem bloßen Auge gut sichtbare Risse in der Schicht (Bild 9), die offensichtlich auf starke Schwindvorgänge zurückzuführen sind. Die ausgetrocknete Schicht weist praktisch keine Eigenfestigkeit auf und sandet bei der geringsten mechanischen Beanspruchung ab.

Unter dieser unmittelbar an der Oberfläche gelegenen, korrodierten Schicht weist der Zementstein eine weitere in Struktur und Zusammensetzung veränderte Zone auf, die mit der karbonatisierten Zone von Zementstein verglichen werden kann. Beim Besprühen der Querschnittsfläche eines aufgespaltenen Prüfkörpers mit 1%-iger Phenolphthalein - Lösung verfärbt sich diese Zone nicht, sondern behält ihre weiße Farbe bei. Im Vergleich zu einer an Luft entstandenen karbonatisierten Schicht besitzt die an den Prüfkörpern festgestellte Karbonatschicht allerdings eine wesentlich geringere Festigkeit. Mit einem stumpfen Gegenstand läßt sich die Schicht ohne nennenswerten Aufwand entfernen. Die Dicke dieser Schicht ist abhängig von der CO₂ - Konzentration des Wassers. Messungen an rd. 500 Tage eingelagerten Prüfkörpern ergaben bei einem mittleren CO₂ - Gehalt des Wassers von 44, 66 und 96 mg/l "Carbonatisierungzonen" von 0,5 , 0,5 - 1,0 und 1,0 - 1,5 mm Dicke (s.Bilder 10 bis 13). Die Dicke der Schicht wird vermutlich durch komplizierte Lösungs- und Diffusionsmechanismen bestimmt, in denen sich die Größe des chemischen Ungleichgewichts zwischen dem aggressiven Wasser und dem Probeninneren widerspiegelt. Unter dieser carbonatisierten Schicht liegt der Zementstein augenscheinlich in ungestörter Form vor.

Die Gesamtdicke der als angegriffen zu bezeichnenden Zementsteinschicht betrug nach einer Lagerungszeit von rd. 500 Tagen etwa 0,5-0,7 mm bei einem CO_2 -Gehalt des Wassers von 44 mg/l, 0,7-1,2 mm bei einem CO_2 -Gehalt des Wassers von 66 mg/l und 1,5-2,0 mm bei einem CO_2 -Gehalt des Wassers von 96 mg/l.

5.3 Massenänderung der Prüfkörper

5.3.1 Ergebnisübersicht

In den Bildern 14, 15 und 16 (vgl.a.Tabelle 4-15) sind die Werte der Massenänderung in Abhängigkeit von der Lagerungsdauer für die verschiedenen Prüfkörperserien graphisch dargestellt.

Erwartungsgemäß weisen Prüfkörper, die in reinem Leitungswasser lagerten; ausschließlich eine Massenzunahme auf, die im Zusammenhang mit der Bildung von Schrumpfporen - infolge der fortschreitenden Hydratation des Zementes - und einer damit verbundenen Wasseraufnahme zu sehen ist. In den ersten 50 Tagen der Lagerung nehmen die Prüfkörper relativ schnell Wasser auf. Danach ist eine sich stetig verlangsamende Wasseraufnahme zu beobachten, die nach einer Lagerungsdauer von etwa 200 Tagen praktisch zum Stillstand kommt und - unabhängig vom jeweiligen Wasserzementwert der Prüfkörper - einen Endwert von annähernd 2,5 M.-%, bezogen auf die Masse am 1. Tag, erreicht.

Prüfkörper, die in CO₂ - angereichertem Wasser lagerten, weisen zu Beginn der Lagerung - wie die Prüfkörper der "Null - Serie" einen durch Wasseraufnahme bedingten Massenzuwachs auf. Nach Erreichen eines Maximalwertes, der bei allen Versuchsserien - unabhängig von w/z - Wert der Prüfkörper und CO2 - Gehalt des Wassers - unterhalb des vergleichbaren Wertes der Null-Serie liegt und der mit zunehmendem CO₂ - Gehalt des Wassers zu früheren Zeitpunkten verschoben erscheint, folgt eine stetige Massenabnahme, die auf den zunehmenden Fortschritt der durch den Kohlensäureangriff bedingten Zementsteinkorrosion zurückzuführen ist. Zwischen der Massenänderung - als Kennwert für den Korrosionsfortschritt - und der CO₂ - Konzentration des Wassers - als Maß für die Stärke des Angriffs - besteht hierbei eine deutliche Korrelation. Ein Einfluß des w/z-Wertes auf die Größe und die Geschwindigkeit der Zementsteinkorrosion konnte im betrachteten Versuchszeitraum nicht festgestellt werden, wenngleich sich ein solcher Einfluβ bei höherem CO₂ - Gehalt des Wassers (>66 mg/l) und entsprechend langer Lagerung tendenziell andeutet (vgl. hierzu [7],[8]).

Beachtet man, daß die in den Bildern 14-16 dargestellten Werte der Massenänderung sowohl die Massenabnahme der Prüfkörper infolge des Kohlensäureangriffs als auch deren Massenzunahme infolge der durch Schrumpfporenbildung bedingten Wasseraufnahme beinhalten, so kann davon ausgegangen werden, daß der wirkliche Massenverlust und somit die Schädigung des Zementsteins wesentlich größer ist als es die gemessenen Werte der Massenänderung anzeigen. Setzt man voraus, daß die Wasseraufnahme der in CO₂-haltigem

Wasser eingelagerten Prüfkörper nicht oder nicht nennenswert durch die Bildung einer korrodierten und/oder karbonatisierten Zone beeinträchtigt wurde, ergeben sich für Prüfkörper, die in Wasser mit CO₂-Gehalten von 44, 66 bzw. 96 mg/l eingelagert waren, nach einer Lagerungszeit von annähernd 500 Tagen unter Berücksichtigung der Wasseraufnahme effektive Massenverluste in der Größenordnung von rd. 2,2, 4,5 bzw. 6,5 M.-%, bezogen auf die Masse der Prüfkörper am 1. Tag.

5.3.2 Ersatzschichtdicke s_F

Die Bilder 14-16 sowie die Ausführungen des vorangegangenen Abschnittes zeigen, daß die Bestimmung der Prüfkörpermasse grundsätzlich geeignet ist, um den Korrosionsfortschritt der Zementsteinkörper quantitativ und qualitativ zu erfassen. Die Prüfkörpermasse bzw. die daraus ermittelte Massenänderung ist allerdings eine Prüfgröße, die in dieser Form weder eine unmittelbare Aussage darüber gestattet, bis zu welcher Tiefe die Korrosion des Zementsteins fortgeschritten ist, noch darüber, welcher zeitabhängigen Entwicklung die Korrosion folgt. Bei der Interpretation der Bilder 14 - 16 muß berücksichtigt werden, daß sich die Geometrie (Volumen, Oberfläche und Umfang) des noch nicht durch Korrosion beeinträchtigten Zementsteins (Probekörperkern) infolge des anhaltenden CO₂ - Angriffs ständig verändert. Ein Massenverlust bestimmter Größe korrespondiert daher zu Beginn des Versuchszeitraums mit einer anderen Korrosionstiefe als am Ende des Versuchszeitraums. Die über die Massenbestimmung erhaltenen Werte der Massenänderung können daher für sich betrachtet zu

einer Fehleinschätzung des Korrosionsfortschrittes führen.

Um dieser Problematik zu begegnen, wurden Berechnungsansätze veröffentlicht [9], mit deren Hilfe es möglich ist, die Dicke der korrodierten Schicht aus meßbaren Größen, wie z.B. der Prüfkörpermasse, zu bestimmen und dadurch prüfkörperunabhängige und vergleichbare Kenngrößen für das Korrosionsausmaß zu erhalten. Neben einer genauen, mathematisch jedoch aufwendigen Methode, wird in [9] eine Näherungslösung vorgestellt, mit der die sogenannte "Ersätzschichtdicke "s_F eines korrodierten Prüfkörpers berechnet werden kann. Vereinfachend wird bei der Näherungslösung angenommen, daß der korrodierte Prüfkörper in zwei Bereiche unterteilt werden kann: einen Kernbereich mit durch Korrosion unbeeinflußten Eigenschaften und einen durch Korrosion beeinflußten Bereich; dieser Bereich wird als durch Korrosion abgetragen angesehen werden. Etwaige, diesem Bereich zugeschriebene Eigenschaften sind nicht mehr vorhanden. Der korrodierte Bereich wird durch die Ersatzschichtdicke s_F beschrieben; diese ist allerdings kleiner als die Dicke der tatsächlich durch Korrosion beeinflußten Schicht, da die ursprünglich vorhandenen Eigenschaften der korrodierten Schicht naturgemäß meist noch in geringem Umfang vorhanden sind.

Der Berechnungsgang zur Ermittlung der Ersatzschichtdicke s_E aus der Prüfkörpermasse bzw. den daraus ermittelten Massenänderungen ist im Anhang A wiedergegeben.

Bild 17 zeigt die Entwicklung der Ersatzschichtdicke mit zunehmender Lagerungszeit. Nach 500 Tagen Lagerung in CO_2 -angereichertem Wasser beträgt die Dicke der korrodierten Schicht bei einem CO_2 -Gehalt des Wassers von 44, 66 bzw. 96 mg/l mindestens 225, 400 bzw. 575 μ m.

Vergleicht man die berechneten Ersatzschichtdicken mit der augenscheinlich erkennbaren Dicke der korrodierten Schicht, so stellt man fest, daß die Ersatzschichtdicke nur etwa die Hälfte bis ein Drittel der augenscheinlich erkennbaren Dicke der korrodierten Schicht beträgt.

Im Hinblick auf die Aufgabenstellung dürfte von wesentlicher Bedeutung sein, daβ die Ersatzschichtdicke s_E und damit die Korrosionstiefe annähernd linear mit der Dauer der Lagerung zunimmt, eine deutliche Verlangsamung des Korrosionsfortschrittes also noch nicht erkennbar ist.

Wie bereits bei den Werten der Massenänderung festgestellt werden konnte, hat der w/z-Wert keinen oder zumindest keinen nennenswerten Einfluß auf die Korrosionstiefe; sie ist bei gleichem CO_2 -Gehalt des Wassers für die untersuchten Wasserzementwerte von 0,40-0,50 annähernd gleich groß.

5.4 Eindringtiefe

Die Ergebnisse der an den Prüfkörpern durchgeführten Messung der Eindringtiefe sind in den Tabellen 16 bis 27 aufgeführt und in den Bildern 18, 19 und 20 in Abhängigkeit von der Lagerungsdauer, dem w/z-Wert und der CO_2 -Konzentration des Wassers graphisch dargestellt.

Bei allen Prüfkörperserien ist innerhalb der ersten 20-50 Tage der Lagerung eine rasche Abnahme der Eindringtiefe zu beobachten, die auf die Festigkeitsentwicklung des Zementsteins zurückzuführen ist. Nach dieser Zeit ist bei Proben, die in reinem Leitungswasser lagerten, keine wesentliche Veränderung mehr erkennbar. Mit zunehmender Lagerungsdauer nähern sich die Werte der Eindringtiefe einem Grenzwert, der mit etwa 75-80 μ m angegeben werden kann.

Im Gegensatz hierzu weisen Prüfkörper, die in CO₂-angereichertem Wasser eingelagert waren, nach der anfänglichen Abnahme eine stetige Zunahme der Eindringtiefe auf, die auf die fortschreitende Korrosion des Zementsteins in der oberflächennahen Zone zurückzuführen ist.

Wie bei der Massenänderung der Prüfkörper ist auch bei der Eindringtiefe ein deutlicher Zusammenhang zwischen der Größe des Prüfwertes – als Kennwert für das Korrosionsausmaß – und der Größe des CO_2 -Gehaltes – als Maß für die Stärke des Kohlensäureangriffs – feststellbar. Nach einer Lagerungszeit von 400 Tagen

wurden - weitgehend unabhängig vom jeweiligen w/z-Wert der Prüfkörper, dem im betrachteten Versuchszeitraum nur eine untergeordnete Bedeutung hinsichtlich der Größe und der Geschwindigkeit der Zementsteinkorrosion zukommt - Eindringtiefen von 130-160 um (CO2-Gehalt des Wassers: 44 mg/l), 230-235 μ m (CO2-Gehalt des Wassers: 66 mg/l) und 515-550 μ m (CO₂-Gehalt des Wassers: 96 mg/l) gemessen. Diese Werte korrespondieren in etwa mit den aus der Massenänderung errechneten Ersatzschichtdicken (vgl.Bild 17). Wie bei der Ersatzschichtdicke muß auch bei der Eindringtiefe berücksichtigt werden, daß die Meßwerte nicht die wahre Größe der Korrosionstiefe angeben, sondern einen Mindestwert, der sich als Mischgröße aus der Dicke der gallertartigen, weichen, äußeren Schicht und der Dicke der darunterliegenden, als bedingt tragfähig anzusehenden, karbonatisierten Schicht ergibt. Aufgrund der Ergebnisse, die bei der Schichtdickenmessung an rd. 500 Tage eingelagerten Prüfkörper erhalten wurden (vgl. Abschnitt 5.2), ist anzunehmen, daß die korrodierte Schicht der Zementsteinzylinder etwa 3-4 mal gröβer ist als es die gemessenen Eindringtiefen anzeigen.

In Bild 21 ist die Eindringtiefe (hier angegeben als Mittelwert der Eindringtiefen von Prüfkörpern mit unterschiedlichem w/z-Wert) in Abhängigkeit vom CO_2 -Gehalt des Wassers für Lagerungszeiten von 100, 200, 300 und 400 Tagen dargestellt. Hier wird noch einmal deutlich, daß die Eindringtiefe und damit die Schädigung des Zementsteins maßgeblich durch den CO_2 -Gehalt des Wassers bestimmt wird. Darüber hinaus deuten die Meßergebnisse darauf hin, daß zwischen dem Korrosionsausmaß (Eindringtiefe)

und der Stärke des Kohlensäureangriffs (CO₂-Gehalt des Wassers) kein linearer Zusammenhang besteht, sondern daß mit zunehmendem CO₂-Gehalt des Wassers eine überproportionale Schädigung des Zementsteins verbunden ist. Dabei dürfte - wie die Kurvenschar in Bild 21 zeigt - die Dauer der Einwirkung der kalklösenden Kohlensäure von erheblicher Bedeutung sein.

5.5 Elektronenmikroskopische Untersuchung der Zementsteinoberfläche

5.5.1 Struktur der Zementsteinoberfläche

Die Bilder 22 - 25 zeigen beispielhaft Ausschnitte der Zementsteinoberflächen einzelner Prüfkörper vor bzw. nach der Beanspruchung durch kalkaggressive Kohlensäure. Die Aufnahmen können als repräsentativ für alle Prüfkörper angesehen werden, unabhängig davon mit welchem w/z-Wert diese hergestellt wurden und wie hoch der CO_2 -Gehalt des Wassers war, in dem sie eingelagert waren.

Bild 22 zeigt die Oberfläche eines Prüfkörpers (Vergrößerung etwa 1000-fach) im Alter von 14 Tagen, der ausschließlich in reinem Leitungswasser gelagert war. Die oberflächennahe Zone des Prüfkörpers besteht aus einer wenige μ m dicken Calcit-Schicht (Calciumcarbonat), die als Reaktionsprodukt des aus dem Zementstein herausdiffundierenden Calciumhydroxids mit dem im Wasser enthaltenen Calciumhydrogencarbonat entstanden sein

dürfte. Diese, von KOELLIKER in [6] als Schutzschicht bezeichnete Calcit-Schicht vermag wirkungsvoll die Hydrolyse des Zementsteins zu verhindern, die auch in nicht-aggressivem Wasser stattfinden kann. Einer Zerstörung des Zementsteins wird auf diese Weise entgegengewirkt. Wie die eigenen Untersuchungen zeigten, verändert sich diese Schicht mit zunehmender Lagerungsdauer nicht, sofern die Lagerung in reinem Leitungswasser erfolgt.

Wie Bild 23 (linke Bildhälfte) zeigt entsteht auch bei Prüfkörpern, die in CO2-angereichertem Wasser lagerten, eine Calciumcarbonat-Schicht. Die Bildung dieser Schicht dürfte jedoch weniger auf der zuvor beschriebenen Reaktion beruhen, sondern vielmehr darauf zurückzuführen sein, daß die im Wasser enthaltene kalkaggressive Kohlensäure mit dem in ausreichender Menge zur Verfügung stehenden Calciumhydroxid reagiert, wobei als Reaktionsprodukt Calciumcarbonat entsteht, das sich in einer dünnen Schicht auf der Oberfläche der Prüfkörper ablagert. Der ständige Zufluß von frischem, CO_2 -angereichertem Wasser - wie dies bei der gewählten Versuchseinrichtung (Durchlaufverfahren) der Fall war - bewirkt, daß die Calciumcarbonat-Schicht nur über einen begrenzten Zeitraum vorhanden ist, da die praktisch in unendlicher Menge zur Verfügung stehende Kohlensäure mit dem Calciumcarbonat weiter reagieren und das lösliche Calciumhydrogencarbonat bilden kann. Dabei wird die anfänglich gebildete Calcit-Schicht nach entsprechend langer Einwirkung der kalklösenden Kohlensäure vollständig aufgelöst und der darunterliegende Zementstein angegriffen.

In der rechten Hälfte von Bild 23 ist die angegriffene Oberfläche eines Prüfkörpers sichtbar. Bild 24 zeigt den Teilausschnitt einer Prüfkörperoberfläche in fortgeschrittenem Zersetzungszustand.

In Bild 25 ist die getrocknete Oberfläche eines durch Kohlensäure beanspruchten Zementsteinskörpers nach rd. 200-tägiger Lagerung in Wasser mit einem CO_2 -Gehalt von 96 mg/l (w/z = 0.45) abgebildet (20-fache Vergrößerung). Deutlich ist zu erkennen, daß die Oberfläche von zahlreichen Rissen durchzogen ist, die ein netzartiges Muster bilden. Die beim Austrocknen des korrodierten Zementsteins einsetzende starke Rißbildung könnte mit der Anwesenheit von äußerst quell- und schrumpffähigen, gelförmigen Korrosionsprodukten erklärt werden.

5.5.2 Analyse der Zementsteinoberfläche

In den Bildern 26 bis 28 sind die Ergebnisse der mittels EDAX durchgeführten chemischen Analyse der Zementsteinoberfläche in in vereinfachter Form dargestellt.

Die an zahlreichen Probestücken vorgeneommene Analyse der Zementsteinoberfläche ergab für alle Versuchsserien unabhängig vom w/z-Wert der zugehörigen Prüfkörper in der ersten Zeit der Lagerung einen relativ starken Anstieg der Ca-Anteile, der mit der Bildung der bereits erwähnten (vgl. Abschnitt 5.5.1), dünnen Calcit-Schicht auf der Oberfläche der Prüfkörper erklärt werden kann.

Stichprobenhaft durchgeführte Messungen an den Querschnittsflächen von zerbrochenen Probestücken ergaben für diese Calcit-Schicht, die je nach CO_2 -Gehalt des Wassers über einen mehr oder minder langen Zeitraum bestimmend für die chemische Zusammensetzung der äußersten Zone der Prüfkörper ist, eine mittlere Dicke in der Größenordnung von 5-10 μ m (vgl. hierzu a. [6]).

Eine Veränderung in der chemischen Zusammensetzung der äußeren Prüfkörperzone, die den Auflösungsprozeß der Calcit-Schicht und des darunterliegenden, noch nicht beeinflußten Zementsteins anzeigt, ist bei Prüfkörpern, die in Wasser mit einem CO_2 -Gehalt von 44 mg/l lagerten, nach etwa 100-120 Tagen, bei solchen, die in Wasser mit 66 mg CO_2/l lagerten, nach etwa 20-30 Tagen und bei Prüfkörpern, die in Wasser mit 96 mg CO_2/l lagerten, bereits nach etwa 10-20 Tagen zu beobachten. Der Ca-Anteil der äußersten Prüfkörperzone verringert sich hierbei mit zunehmender Lagerungszeit in erheblichem Maße, und zwar umso schneller je höher der CO_2 -Gehalt des Wassers ist. In gleichem Maße nehmen die Massenanteile der Elemente Si, Al und Fe zu.

Bemerkenswert erscheint, daß die durch den Kohlensäureangriff bedingte Abnahme des Ca-Anteils bis zu einem Wert von etwa 20-25 M.-% relativ rasch fortschreitet. Danach scheint sich zwischen den Elementen Ca, Si, Al und Fe hinsichtlich ihrer Massenanteile eine Art Gleichgewichtszustand einzustellen, der bei Prüfkörpern, die in Wasser mit einem CO₂-Gehalt von 96 mg/l lagerten, bereits nach etwa 150 Tagen und bei solchen, die in Wasser mit einem CO₂-Gehalt von 66 mg/l lagerten, nach rd. 250 Tagen erreicht wird. Bei

Prüfkörpern, die in Wasser mit einem CO₂-Gehalt von 44 mg/l eingelagert waren, wurde der Gleichgewichtszustand innerhalb des Beobachtungszeitraums nicht erreicht. Aufgrund des Kurvenverlaufs läβt sich jedoch abschätzen, daß dies voraussichtlich nach 650 Tagen Lagerung der Fall gewesen wäre.

Nach anderen Untersuchungen über die kohlensäurebedingte Korrosion von Zementstein, kann davon ausgegangen werden, daß der Zementstein nach einer entsprechend langen Einwirkung der kalklösenden Kohlensäure völlig aufgelöst wird [3],[6]. Danach verbleiben nur gelartige Produkte aus Kieselsäure, Aluminiumoxid und Eisenoxid. Calciumbestandteile sind nur noch in geringem Umfang vorhanden. Es ist daher nicht auszuschließen, daß es sich bei dem hier ermittelten Sachverhalt nicht um einen andauernden Gleichgewichtszustand, sondern nur um eine starke Verlangsamung des Auflösungsprozesses handelt.

Die chemische Analyse einer durch Kohlensäure beanspruchten Zementsteinoberfläche mittels EDAX gestattet aus versuchstechnischen Gründen keine Aussage darüber, bis zu welcher Tiefe die Zerstörung des Zementsteins vorangeschritten ist. Die in den Bildern 26 bis 28 dargestellten Ergebnisse veranschaulichen jedoch sehr deutlich, daß die äußerste Zone der im Fall von Verpreßankern und Verpreßpfählen kraftübertragenden Zementsteinschicht durch den Kohlensäureangriff entscheidend in ihrer chemischen Zusammensetzung verändert wird. Insbesondere kann davon ausgegangen werden, daß nicht nur die zur Festigkeit des Zementsteins wenig beitragenden Calciumhydroxide, sondern auch die für die Festig-

keitsbildung maßgeblichen Calciumsilicathydrate durch die Kohlensäure angegriffen und aufgelöst werden. Mit der Veränderung der chemischen Zusammensetzung ist demnach zwangsläufig eine Änderung der mechanischen Eigenschaften der oberflächennahen Zementsteinschicht verbunden.

Ergänzend wird darauf hingewiesen, daβ verschiedentlich ein Beton als zerstört angesehen wird, wenn etwa ein Drittel seines CaO-Gehaltes ausgelaugt wurde (vgl. [5]).

6. Wertung der Ergebnisse

Die in Abschnitt 4 beschriebenen Ergebnisse der Grundsatzversuche veranschaulichen, in welchem Ausmaß und mit welcher Geschwindigkeit Korrosionsschäden an Zementstein auftreten, wenn dieser über einen längeren Zeitraum dem Einfluß kalklösender Kohlensäure ausgesetzt wird. Im Hinblick auf die Aufgabenstellung des Forschungsvorhabens darf aufgrund der vorliegenden Ergebnisse angenommen werden, daß die kohlensäurebedingte Korrosion eines Verpreßankers bzw. Verpreßpfahls in einem Außmaß, wie es an den untersuchten Zementsteinzylindern festgestellt wurde, unter bestimmten Voraussetzungen zu einer nennenswerten Minderung der Tragfähigkeit des Ankers bzw. Pfahls führen kann.

Ob in einem speziellen Anwendungsfall eine Beeinträchtigung der Tragfähigkeit eines Verpreßankers oder Verpreßpfahls infolge des

Kohlensäureangriffs zu erwarten ist, wird durch verschiedene Einflußgrößen bestimmt. Dies sind im wesentlichen :

- der Gehalt des Grundwassers an kalklösender Kohlensäure,
- die Strömungsgeschwindigkeit des Grundwassers,
- die Bodenart,
- das Herstellungsverfahren, insbesondere das Bohrverfahren, das zur Anwendung kommt.

Der Gehalt des Grundwassers an kalklösender Kohlensäure beträgt in verschiedenen Gebieten der Bundesrepublik Deutschland etwa 50 - 80 mg/l [7] und liegt damit in einer Größe vor, die nach DIN 4030 "Beurteilung betonangreifender Wässer, Böden und Gase" (Ausgabe Juli 1969) als "stark" bzw. "sehr stark" angreifend einzustufen ist. Wie die Grundsatzversuche gezeigt haben, kann Zementstein, der kalklösender Kohlensäure in dieser Menge ausgesetzt wird, im ungünstigen Fall innerhalb von etwa 2 Jahren bis zu einer Tiefe von rd. 2 mm korrodieren. Während bei üblichen Beton- und Stahlbetonbauteilen eine Schädigung des Zementsteins bzw. Betons in diesem Ausmaß im allgemeinen zu keiner Beeinträchtigung in der Funktionfähigkeit eines Bauteils führt, kann bei Verpreßankern und Verpreßpfählen eine ungünstige Beeinflußung der Tragfähigkeit nicht ausgeschlossen werden, da infolge des Kohlensäureangriffs zumindest ein Teil der kraftübertragenden Scherfuge zwischen Verpreßkörper und umgebenden Erdreich zerstört wird.

Der Durchgangsgeschwindigkeit des Grundwassers kommt insofern Bedeutung zu, als durch sie der Nachschub an kalklösender Kohlensäure und der Abtransport der aus dem Zementstein herausgelösten

Calciumverbindungen geregelt wird. Es ist allerdings anzunehmen, daß die Durchgangsgeschwindigkeit aus reaktionskinetischen Gründen nur bis zu einer bestimmtem Größe für die Korrosionsgeschwindigkeit des Zementsteins maßgebend ist.

Nach dem Darcy'schen Filtergesetz $v = k_f * J$ [1] hängt die Durchgangsgeschwindigkeit des Grundwassers vom Grundwasserspiegelgefälle J und der Durchlässigkeit kf des Bodens ab. Im allgemeinen kann davon ausgegangen werden, daβ ein feinkörniger, bindiger Boden eine erheblich geringere Durchlässigkeit aufweist. als ein grobkörniger nicht bindiger Boden. Die Gefahr der kohlensäurebedingten Korrosion eines Verpreßankers oder Verpreßpfahls dürfte – unter der Voraussetzung gleicher Gehalte des Grundwassers an kalklösender Kohlensäure - folglich in einem Schluffboden wesentlich kleiner sein als beispielsweise in einem Kiesboden. Die Durchlässigkeit des Bodens für Wasser stellt jedoch kein hinreichendes Kriterium dar, um abschätzen zu können, ob ein Verpreßanker oder Verpreßpfahl bei Anwesenheit von kalklösender Kohlensäure als gefährdet anzusehen ist. Es darf nicht außer acht gelassen werden, daß die Verzahnung des Verpreßkörpers mit dem umliegenden Erdreich in einem grobkörnigen Boden wesenlich größer sein dürfte als in einem feinkörnigen Boden. Die Durchlässigkeit des Bodens und die Verzahnung des Verpreßankers bzw. -pfahls mit dem Boden sind demnach von der Bodenart abhängige, gegenläufige Größen. In einem sehr feinkörnigen Boden dürfte die Gefahr, daß ein Verpreßanker oder Verpreßpfahl versagt, vermutlich gering sein, da die kalklösende Kohlensäure infolge der geringeren Grundwassergeschwindigkeit nur langsam an den Verpreßkörper

herantransportiert wird. In einem grobkörnigen Boden dürfte die kohlensäurebedingte Korrosion des Zementsteins infolge der höheren Grundwassergeschwindigkeit zwar grundsätzlich schneller voranschreiten, jedoch muß das Korrosionsausmaß auch größer als in einem feinkörnigen Boden sein, um die günstigere Verzahnung des Verpreßkörpers mit dem umliegenden Erdreich unwirksam werden zu lassen. Aus dieser Überlegung darf geschlossen werden, daß Verpreßanker bzw. Verpreßpfähle bei Anwesenheit kalklösender Kohlensäure besonders dann in ihrer Tragfähigkeit gefährdet sind, wenn sie in Böden eingebaut werden, die hinsichtlich ihrer Wasserdurchlässigkeit und Korngröße zwischen den beschriebenen Extremfällen eines feinkörnigen, bindigen Bodens und eines grobkörnigen, nicht-bindigen Bodens einzustufen sind.

Das Langzeitverhalten eines Verpreßankers bzw. Verpreßpfahls, der dem Einfluß kalklösender Kohlensäure ausgesetzt ist, kann weiterhin maßgeblich durch das Herstellungsverfahren, insbesondere das Bohrverfahren beeinflußt werden. Dabei können verschiedene Verfahren sowohl günstig als auch ungünstig wirken. Beispielsweise kann von einer Schneckenbohrung i.d.R. ein günstiger Einfluß erwartet werden, da sie eine Profilierung der Bohrlochwand erzeugt, an der sich der Anker bzw. Pfahl zusätzlich abstützen kann. Im Gegensatz hierzu kann es sich als nachteilig erweisen, wenn - wie in der Praxis meist üblich [1] - verrohrte Bohrungen ausgeführt werden, bei denen das Bohrrohr erst während des Verpreßvorgangs herausgezogen wird. Die Bohrlochwandung weist dadurch eine relativ ebene Oberfläche auf. Die Scherfuge zwischen Verpreßkörper und umgebedem Bodenreich dürfte dann besonders

empfindlich gegenüber einer Beanspruchung durch kalklösende Kohlensäure sein.

Aus der voranstehenden Beschreibung möglicher Einflußgrößen ist ersichtlich, daß eine allgemeingültige Bewertung des Einflusses von kalklösender Kohlensäure auf das Langzeitverhalten von Verpreßankern und Verpreßpfählen nicht möglich ist. Die im Rahmen der Grundsatzuntersuchung gewonnenen Erkenntnisse lassen es empfehlenswert erscheinen, die bisher vorliegenden Ergebnisse durch weitere Untersuchungen an Modellen zu ergänzen.

7. Empfehlungen für den 2. Versuchsabschnitt

Zur Abschätzung des Einflusses aggressiver Wasser und Böden auf das Langzeitverhalten von Verpreßankern und Verpreßpfählen sind in einem 2. Versuchsabschnitt Ausziehversuche anhand von Modellankern vorgesehen. Zur Durchführung dieser Versuche soll eine Versuchseinrichtung benutzt werden, wie sie bei früheren Versuchen mit Verpreßankern (s. Forschungsvorhaben "Schwellverhalten von Injektionsankern in bindigen Böden") bereits verwendet wurde. Die Modellanker werden in mit Bodenmaterial gefüllten Stahlzylindern (D=700-1000 mm) eingebaut und durch eine entsprechende Ausziehvorrichtung mit konstanter Kraft belastet. Während des Versuchs soll das Bodenmaterial gleichmäßig von CO₂-angereichertem Wasser durchströmt werden.

Als Kenngröße für den möglichen Verlust der Tragfähigkeit des Verpreßankers wird die Verschiebung des Ankers bei konstant gehaltener Kraft gemessen. Nach Abschluß der Versuche erfolgt der Ausbau und die augenscheinliche Begutachtung der Modellanker.

Aufgrund der Ergebnisse, die im Rahmen der Grundsatzversuche erhalten wurden, wird der folgende Prüfumfang vorgeschlagen:

- Der w/z-Wert wird mit 0,45 auf einen bei Verpreβankern üblichen Wert festgelegt. Eine Abstufung des w/z-Wertes erscheint nicht erforderlich, da die Grundsatzversuche gezeigt haben, daß der Einfluß des w/z-Wertes vernachlässigbar ist.
- Der Gehalt des Wassers an kalklösender Kohlensäure wird in den Abstufungen 0, 60 und 100 mg/l variiert. Auf eine Variante mit 40 mgCO₂/l wird verzichtet, da eine Schädigung des Verpreßankers erst nach einer Zeit zu erwarten ist, die die Versuchsdauer unverhältnismäßig verlängern würde. Die gewählten Abstufungen erlauben es, die an den Modellankern erhaltenen Ergebnisse unmittelbar den in den Grundsatzversuchen erhaltenen Ergebnissen gegenüberzustellen und gegebenenfalls Zusammenhänge festzutellen.

Die CO_2 -Dosierung erfolgt in gleicher Weise wie bei den Grundsatzversuchen, sofern nicht technische Probleme eine Änderung erzwingen.

- Als Bodenmaterial ist ein Sandboden mit einem Größtkorn von etwa 1 mm und einer stetigen Kornverteilung vorgesehen. Der Boden soll eine Durchlässigkeit aufweisen, die eine Durchgangsgeschwindigkeit des kohlensäurehaltigen

Wassers von 0,10-0,15 m/h = $3 \times 10^5 - 4 \times 10^5$ m/s ermöglicht. Vor Versuchsbeginn werden sämtliche, den Boden charakterisierenden Kennwerte ermittelt.

- Die Herstellung der Modellanker soll sich soweit technisch möglich - an der Praxis orientieren. Zur Verschärfung der Versuchsbedingungen wird die Bohrung verrohrt ausgeführt.
- Die Anzahl der Modellanker wird auf zwei Anker je CO₂-Gehalt des Wassers begrenzt. Bei stark divergierenden Meβergebnissen wird ein dritter Anker zur Kontrolle hergestellt und geprüft.
- Die Versuchsdauer wird auf zunächst 1 Jahr festgelegt. Nach Ablauf dieser Zeit wird über die Fortsetzung der Versuche anhand der bis dahin vorliegenden Ergebnisse entschieden.

8. Zusammenfassung

Zur Abschätzung des Einflusses aggressiver Stoffe auf das Langzeitverhalten von Verpreßankern und Verpreßpfählen wurden im Rahmen des Forschungsvorhabens Grundsatzversuche durchgeführt, die Aufschluß darüber geben sollten, welche Veränderungen an Zementstein auftreten, wenn dieser der Wirkung kalklösender Kohlensäure ausgesetzt wird.
Hierzu wurden zylindrische Prüfkörper, deren Form in Anlehnung an die Gestalt von Verpreβankern gewählt wurde, aus Zementleimen mit w/z-Werten von 0,40, 0,45 und 0,50 hergestellt und über einen Zeitraum von bis zu 600 Tagen in fließendem Wasser mit Gehalten an kalklösender Kohlensäure von 44, 66 und 96 mg/l eingelagert.

In vorgegebenen Zeitabständen wurden an den Zementsteinzylindern folgende Prüfungen vorgenommen:

- Beurteilung der Prüfkörper nach Augenschein,
- Ermittlung der Massenänderung,
- Messung der Eindringtiefe an der Oberfläche,
- Elektronenmikroskopische Untersuchungen.

Die Untersuchungen ergaben die nachstehenden Feststellungen:

Grundsätzlich konnte bei allen Versuchen ein deutlicher Zusammenhang zwischen dem Korrosionsausmaß und der Stärke des Kohlensäureangriffs festgestellt werden.Ein Einfluß des w/z-Wertes im Bereich von 0,40 bis 0,50 auf das Korrosionsausmaß oder die Korrosionsgeschwindigkeit konnte nicht nachgewiesen werden.

Die Korrosion des Zementsteins kann optisch an einer bräunlichen Verfärbung der Oberfläche wahrgenommen werden. Infolge des Kohlensäureangriffs entsteht auf der Oberfläche eine weiche, leicht verletzliche Schicht, die in nassem Zustand äußerst gleitfähig ist und in trockenem Zustand bei der geringsten mechanischen Beanspruchung absandet. Unter dieser Schicht bildet sich eine guasi carbonatisierte Schicht mit verminderter Festigkeit aus. Die Dicke dieser Schicht ist von der Größe des CO₂-Gehaltes des Wassers abhängig. Unter dieser Schicht liegt der Zementstein in ungestörter Form vor.

Messungen an rd. 500 Tage eingelagerten Prüfkörpern ergaben für die Dicke der als zerstört anzusehenden Zementsteinschicht Werte von

- 0,5-0,7 mm bei einem CO_2 -Gehalt des Wassers von 44 mg/l, - 0,7-1,2 mm bei einem CO_2 -Gehalt des Wassers von 66 mg/l, - 1,5-2,0 mm bei einem CO_2 -Gehalt des Wassers von 96 mg/l.

Die Bestimmung der Massenänderung ergab für Prüfkörper, die in CO_2 -angereichertem Wasser lagerten, nach einer anfänglichen Massenzunahme, die auf die Wasseraufnahme des Zementsteins zurückzuführen sein dürfte, eine stetige Massenabnahme, die umso größer ausfiel je höher der CO_2 -Gehalt des Wassers war. Nach einer Lagerungszeit von rd. 500 Tagen wurden, unter Berücksichtigung der Wasseraufnahme der Prüfkörper, effektive Massenverluste von rd.

- 2,2 M.-% bei einem CO₂-Gehalt des Wassers von 44 mg/l,

- 4,5 M.-% bei einem CO_2 -Gehalt des Wassers von 66 mg/l,

- 6,5 M.-% bei einem CO₂-Gehalt des Wassers von 96 mg/l gemessen. Prüfkörper, die in reinem Leitungswasser lagerten, wiesen erwartungsgemäß ausschließlich eine Massenzunahme auf, die wie bei den übrigen Prüfkörpern auf die Wasseraufnahme zurückzuführen sein dürfte.

Aus den Werten der Massenänderung wurde auf rechnerischem Wege die Dicke der korrodierten Schicht überschlägig bestimmt. Der Berechnung der sogenannten Ersatzschichtdicke lagen stark vereinfachende Annahmen zu Grunde, die für die Dicke der korrodierten Schicht wesentlich günstigere Werte ergaben als es den tatsächlichen Verhältnissen entsprach. Als Mindestwerte für die Dicke der korrodierten Schicht wurden die nachstehenden Zahlen ermittelt:

- $s_F = 225 \ \mu m$ bei einem CO₂-Gehalt des Wassers von 44 mg/l,
- s_F =400 μ m bei einem CO₂-Gehalt des Wassers von 66 mg/l,
- $s_F = 575 \ \mu m$ bei einem CO₂-Gehalt des Wassers von 96 mg/l.

Die an den Prüfkörpern ermittelte Eindringtiefe nahm bei allen Prüfkörpern, unabhängig vom CO_2 -Gehalt des Wassers, zu Beginn der Lagerung infolge der Festigkeitsentwicklung des Zementsteins rasch ab. Mit zunehmender Lagerungsdauer konnte bei Prüfkörpern, die in CO_2 -angereichertem Wasser lagerten, eine stetige Zunahme der Eindringtiefe beobachtet werden, die auf die zunehmende Korrosion der oberflächennahen Zementsteinschicht zurückzuführen ist. Nach einer Lagerungzeit von rd. 400 Tagen wurden bei einer Eindringtiefe im Nullversuch von etwa 75 μ m Eindringtiefen von

- 130-160 μ m bei einem CO₂-Gehalt des Wassers von 44 mg/l,

- 230-235 μ m bei einem CO₂-Gehalt des Wassers von 66 mg/l,

- 515-550 μ m bei einem CO₂-Gehalt des Wassers von 96 mg/l gemessen.

Die elektronenmikroskopische Untersuchung und Analyse der Zementsteinoberfläche ergab für alle Prüfkörper – unabhängig vom CO_2 -Gehalt des Wassers – zu Beginn der Lagerung eine merkliche Erhöhung des Ca-Anteils in der oberflächennahen Zone des Zementsteins. Die Ursache hierfür dürfte in der Bildung einer Calcit-Schicht auf der Oberfläche der Prüfkörper zu sehen sein. Mit zunehmender Lagerungsdauer konnte bei Prüfkörpern, die in CO_2 -angereichertem Wasser lagerten, eine anhaltende Auflösung des Zementsteins festgestellt werden, die sich in einer deutlichen Abnahme der Ca-Anteile zeigte. Bei Prüfkörpern, die in Wasser mit Gehalten an kalklösender Kohlensäure von 66 und 96 mg/l lagerten, nahm der Ca-Anteil bis auf rd. 25 M.-% ab.

Im Hinblick auf die Aufgabenstellung des Forschungsvorhabens lassen sich folgende, zusammenfassende Aussagen formulieren: Nach 500-tägiger Einwirkung von kalklösender Kohlensäure bis 211 einem Gehalt von 100 mg/l Wasser korrodiert Zementstein bis ZUeiner Tiefe von rd. 2,0 mm. Die korrodierte Schicht besteht aus einer vollständig aufgelösten, nicht mehr tragfähigen, äuβeren Zone und einer darunterliegenden, guasi carbonatisierten Zone mit verminderten Festigkeitseigenschaften. Nach den vorliegenden Erkenntnissen kann davon ausgegangen werden, daß diese Schicht nicht in der Lage ist, kraftübertragend zu wirken. Bei Verpre β ankern und Verpreßpfählen, die in einem Ausmaß korrodiert sind, wie dies an den untersuchten Zementsteinzylindern nach rd. 500 Tagen festzustellen war, kann eine Beeinträchtigung der Tragfähigkeit in Abhängigkeit von Bodenart und Herstellverfahren grundsätzlich nicht ausgeschlossen werden.

Aufgrund dieser Feststellungen wird es für notwendig gehalten, die Ergebnisse der Grundsatzversuche durch Versuche an Modellankern zu ergänzen.

9. Schrifttum

- [1] Schulze, W.E.; Simmer, K.: "Grundbau 2", 15. Auflage,B.G. Teubner, Stuttgart 1978
- [2] Ostermeyer,H. : "Verpreβanker", Grundbau Taschenbuch Teil
 2, 3.Auflage, Verlag Wilhelm Ernst&Sohn, Berlin München
 1982
- [3] Koelliker, E. : "Über die Wirkung von Wasser und wäßriger Kohlensäure auf Beton", Sonderdruck aus: Werkstoffwissenschaften und Bau-Sanierung, Edition Lack + Chemie
- [4] Höll, K. : "Wasser", 5. Auflage, Walter de Gruyter + Co., Berlin 1970
- [5] Biczok, I. : "Betonkorrosion Betonschutz", Bau-Verlag Gmbh, Wiesbaden - Berlin 1968
- [6] Koelliker, E. : "Beton unter Wasser: Selbstschutz oder
 Auflösung des Gefüges", Cementbulletin Mai 1987, Jahrgang
 55, Nr. 17
- [7] Locher, F.W.; Sprung, S. : "Die Beständigkeit von Beton gegenüber kalklösender Kohlensäure", Betontechnische Berichte, beton 25 (1975), H.7 S. 241/245
- [8] Locher, F.W.; Rechenberg, W.; Sprung, S. : "Beton nach 20-jähriger Einwirkung von kalklösender Kohlensäure", beton 34 (1984), H.5 S. 193/198
- [9] Friede, H.; Schubert, P. : "Zur Bestimmung der Dicke der korrodierten Schicht von Beton bei Angriff kalklösender Kohlensäure", TIZ-Fachberichte, Vol. 107, No.1 1983

- [10] Friede, H.; Schubert, P.; Lühr, H.P. : "Angriff kalklösender Kohlensäure auf Beton", beton 29 (1979), H.7 S.250/253
- [11] "Die Entwicklungsgeschichte der Erde", Brockhaus Taschenbuch der Geologie, VEB Brockhaus Verlag, Leipzig 1961

Normen und Richtlinien

- DIN 4125 Teil 1, "Erd- und Verpreßanker für vorübergehende Zwecke im Lockergestein", Ausgabe 1972, Beuth - Verlag
- DIN 4125 Teil 2, "Erd- und Felsanker Verpreßanker für dauernde Verankerung im Lockergestein, Ausgabe 1976, Beuth - Verlag
- DIN 4128[°] "Verpreßpfähle, Ortbetonpfähle mit kleinem Durchmesser", Entwurf 1980, Beuth - Verlag
- DIN 4030 "Beurteilung betonangreifender Wässer, Böden und Gase", Ausgabe 1969, Beuth - Verlag

Bild 1. Schema der CO₂-Dosieranlage

Bild 2. CO_2 -Dosieranlage mit Misch- und Lagerbehälter (25, 50 und 75 mg $CO_2/1$ Wasser)

Bild 3. Eingelagerte Zementsteinzylinder ("Null"-Serie)

Bild 4. Druckminderer und Feindosierventile der CO2-Dosieranlage

Bild 5. Meßvorrichtung für die Messung der Eindringtiefe

Bild 6. Auftreten erster sichtbarer Korrosionserscheinungen in Abhängigkeit von der Lagerungsdauer und dem CO₂-Gehalt des Wassers

Bild 7. Fortschritt der Zementsteinkorrosion nach rd. O, 30, 60 und 120 Tagen Lagerung in Wasser mit einem CO₂-Gehalt von 66 mg/l

1 mm

Bild 8. Korrodierter Zementstein nach 42-tägiger Lagerung in Wasser mit einem CO_2 -Gehalt von 66 mg/l (w/z = 0,40)

Bild 9. Ausgetrocknete Zementsteinoberfläche nach einer Lagerung über rd. 600 Tage in kohlesäurehaltigem Wasser (w/z = 0,40; 75 mg CO₂/1)

Bild 10. Aufgespaltene Zementsteinzylinder nach einer Lagerungszeit von rd. 500 Tagen in Wasser mit einem Gehalt an kalklösender Kohlensäure von 0 mg/l

Bild 11. Aufgespaltene Zementsteinzylinder nach einer Lagerungszeit von rd. 500 Tagen in Wasser mit einem Gehalt an kalklösender Kohlensäure von 44 mg/l

Bild 12. Aufgespaltene Zementsteinzylinder nach einer Lagerungszeit von rd. 500 Tagen in Wasser mit einem Gehalt an kalklösender Kohlensäure von 66 mg/l

Bild 13. Aufgespaltene Zementsteinzylinder nach einer Lagerungszeit von rd. 500 Tagen in Wasser mit einem Gehalt an kalklösender Kohlesäure von 96 mg/l

Bild 14. Massenänderung der Prüfkörper in Abhängigkeit von der Lagerungsdauer bei unterschiedlichen Gehalten des Wassers an kalklösender Kohlensäure (w/z = 0,40)

Bild 15. Massenänderung der Prüfkörper in Abhängigkeit von der Lagerungsdauer bei unterschiedlichen Gehalten des Wassers an kalklösender Kohlensäure (w/z = 0,45)

Bild 16. Massenänderung der Prüfkörper in Abhängigkeit von der Lagerungsdauer bei unterschiedlichen Gehalten des Wassers an kalklösender Kohlensäure (w/z = 0,50)

Bild 17. Ersatzschichtdicke S_E in Abhängigkeit von der Lagerungsdauer für unterschiedliche Gehalte des Wassers än kalklösender Kohlensäure und verschiedene w/z-Werte

Bild 18. Eindringtiefe an der Prüfkörperoberfläche in Abhängigkeit von der Lagerungsdauer bei unterschiedlichen Gehalten des Wassers an kalklösender Kohlensäure (w/z = 0, 40)

Bild 19. Eindringtiefe an der Prüfkörperoberfläche in Abhängigkeit von der Lagerungsdauer bei unterschiedlichen Gehalten des Wassers an kalklösender Kohlensäure (w/z = 0, 45)

Bild 20. Eindringtiefe an der Prüfkörperoberfläche in Abhängigkeit von der Lagerungsdauer bei unterschiedlichen Gehalten des Wassers an kalklösender Kohlensäure (w/z = 0,50)

Bild 23. Elektronenmikroskopische Aufnahme der Zementsteinoberfläche eines Prüfkörpers nach 112-tägiger Lagerung in Wasser mit 96 mg CO₂/1 (Vergrößerung ~ 1000fach)

Bild 24. Elektronenmikroskopische Aufnahme der Zementsteinoberfläche eines Prüfkörpers nach 126-tägiger Lagerung in Wasser mit 96 mg CO₂/1 (Vergrößerung ~ 1000fach)

Bild 25. Elektronenmikroskopische Aufnahme der Oberfläche eines ausgetrockneten Prüfkörpers nach 200-tägiger Lagerung in Wasser mit 96 mg CO₂/1 (Vergrößerung ~ 20fach)

Bild 26. Ergebnisse der chemischen Analyse der Zementsteinoberfläche bei einem Gehalt des Wassers an kalklösender Kohlensäure von 44 mg/l

Bild 27. Ergebnisse der chemischen Analyse der Zementsteinoberfläche bei einem Gehalt des Wassers an kalklösender Kohlensäure von 66 mg/l

Bild 28. Ergebnisse der chemischen Analyse der Zementsteinoberfläche bei einem Gehalt des Wassers an kalklösender Kohlensäure von 96 mg/l

Bestandteil	Anteil in M%	Anteil in M% glühverlustfrei
sio ₂	18,91	19,44
so ₃	2,90	2,98
C1 ⁻	0,01	0,01
CaO	63,30	65,08
MgO	1,30	1,34
Fe203	2,93	3,01
TiO ₂	0,02	0,02
Al ₂ 0 ₃	5,40	5,55
Na ₂ O	0,13	0,13
к ₂ 0	1,28	1,32
Mn ₂ O ₃	0,30	0,31
GV bei 1000 ⁰ C	2,73	-
davon [CO ₂]	[1,82]	-
unlösl.Rückstand	0,77	0,79
n.bestimmb.Rest	0,02	0,02
Summe	100,00	100,00

Tabelle 1. Zusammensetzung des Zementes

Tabelle 2. Wasseranalyse "Stuttgarter Leitungswasser"

Bezeichnung	Kurz- zeichen	Einheit	Analysewert				
elektr. Leitfähigkeit		µS/m	294				
pH-Wert	рH	_	7,86				
Härte		d ⁰ H (m mol/l)	9,2 (1,6)				
Karbonathärte		d ⁰ H (m mol/l)	7,5 (1,3)				
nicht Karbonathärte		d ^O H (m mol/l)	1,7 (0,3)				
Calcium	Ca ²⁺	mg/l	42,5				
Magnesium	Mg ²⁺	mg/l	14,0				
Eisen	Fe ³⁺	mg/l	n.n. ¹⁾				
Mangan	Mn ⁴⁺	mg/l	n.n. ¹⁾				
Ammonium	NH4+	mg/l	n.n. ¹⁾				
Nitrit	NO2-	mg/l	n.n. ¹⁾				
Nitrat	NO3-	mg/l	4,2				
Chlor	C1 ⁻	mg/l	6,0				
freies Chlor		mg/l	31				
Sulfat	so42	mg/l	3,9				
organische Stoffe (KMNO ₄ -Verbr.)		mg/l	11,9				
Sauerstoff gelöst	0 ₂	mg/l	0,16				
Abdampfrückstand		mg/l	205				
Glührückstand		mg/l	135				
Glühverlust		mg/l	70				
1) n.n. = nicht nachweisbar							

Tabelle 3. CO₂-Gehalt des Wassers

Gehalt an kalklösender Kohlensäure	angestrebter Wert der CO ₂ -Konzentration	erreichter Wert der ¹⁾ CO ₂ -Konzentration (Mittelwert)					
-	mg/l Wasser	mg/l Wasser					
niedrig	25	44					
mittel	50	66					
hoch	75	96					
1) Bestimmung mit dem "Heyer"-Versuch							

Tabelle 4. Massenänderung der Prüfkörper

w/z = 0.40 $CO_2 = 0$ mg/l

Dauer der Lagerung	Massenänderung in M%						
in Tagen	Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	i.M.
1	± 0	<u>+</u> 0	<u>+</u> 0	<u>+</u> 0	± 0	<u>+</u> 0	<u>+</u> 0
2	+ 0,31	+ 0,31	+ 0,31	+ 0,31	+ 0,31	+ 0,31	+ 0,31
3	+ 0,88	+ 0,88	+ 0,88	+ 0,91	+ 0,94	+ 0,88	+ 0,90
7	+ 1,43	+ 1,40	+ 1,41	+ 1,46	+ 1,44	+ 1,38	+ 1,42
9	+ 1,48	+ 1,43	+ 1,43	+ 1,48	+ 1,51	+ 1,48	+ 1,47
. 14	+ 1,65	+ 1,65	+ 1,67	+ 1,92	+ 1,75	+ 1,69	+ 1,72
28	+ 1,89	+ 1,82	+ 1,86	+ 1,80	+ 1,92	+ 1,86	+ 1,86
41	+ 2,03	+ 1,98	+ 2,01	+ 2,03	+ 2,11	+ 2,07	+ 2,04
56	+ 2,08	+ 2,03	+ 2,10	+ 2,11	+ 2,14	+ 2,12	+ 2,10
70	+ 2,12	+ 2,10	+ 2,17	+ 2,18	+ 2,21	+ 2,24	+ 2,17
77	+ 2,22	+ 2,17	+ 2,25	+ 2,23	+ 2,26	+ 2,24	+ 2,23
112	+ 2,27	+ 2,22	+ 2,29	+ 2,27	+ 2,30	+ 2,29	+ 2,27
140	+ 2,32	+ 2,25	+ 2,36	+ 2,32	+ 2,35	+ 2,36	+ 2,33
442	+ 2,43	+ 2,36	+ 2,51	+ 2,42	+ 2,45	+ 2,46	+ 2,44
589	+ 2,43	+ 2,34	+ 2,51	+ 2,42	+ 2,47	+ 2,46	+ 2,44
				<u>~</u>	l		

Tabelle 5. Massenänderung der Prüfkörper

w/z = 0.45 $CO_2 = 0 mg/l$

Dauer der Lagerung	Massenänderung in M%						
in Tagen	Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	i.M.
1	± 0	<u>+</u> 0	<u>+</u> 0	<u>+</u> 0	± 0	<u>+</u> 0	<u>+</u> 0
2	+ 0,40	+ 0,40	+ 0,39	+ 0,40	+ 0,39	+ 0,40	+ 0,40
3	+ 0,74	+ 0,74	+ 0,71	+ 0,74	+ 0,69	+ 0,72	+ 0,72
7	+ 1,26	+ 1,29	+ 1,21	+ 1,34	+ 1,26	+ 1,26	+ 1,27
9	+ 1,36	+ 1,36	+ 1,33	+ 1,36	+ 1,33	+ 1,36	+ 1,35
14	+ 1,51	+ 1,51	+ 1,48	+ 1,61	+ 1,50	+ 1,51	+ 1,52
28	+ 1,73	+ 1,76	+ 1,67	+ 1,81	+ 1,70	+ 1,78	+ 1,74
42	+ 1,98	+ 1,93	+ 1,92	+ 1,98	+ 1,90	+ 1,95	+ 1,94
56	+ 2,00	+ 2,01	+ 1,94	+ 2,08	+ 1,95	+ 2,00	+ 2,00
70	+ 2,08	+ 2,28	+ 2,04	+ 2,20	+ 2,10	+ 2,13	+ 2,14
77	+ 2,15	+ 2,18	+ 2,12	+ 2,23	+ 2,15	+ 2,20	+ 2,17
112	+ 2,23	+ 2,25	+ 2,19	+ 2,30	+ 2,22	+ 2,25	+ 2,24
140	+ 2,30	+ 2,30	+ 2,24	+ 2,38	+ 2,27	+ 2,33	+ 2,30
442	+ 2,40	+ 2,43	+ 2,34	+ 2,45	+ 2,39	+ 2,42	+ 2,41
589	+ 2,43	+ 2,45	+ 2,34	+ 2,48	+ 2,42	+ 2,45	+ 2,43
			-				
				i.			
					-		

Tabelle 6. Massenänderung der Prüfkörper

 $w/z = 0.50 co_2 = 0 mg/l$

Dauer der Lagerung	Massenänderung in M%						
in Tagen	Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	i.M.
1	± 0	± 0	<u>±</u> 0	± 0	<u>+</u> 0	± 0	± 0
2	+ 0,51	+ 0,49	+ 0,49	+ 0,51	+ 0,49	+ 0,49	+ 0,50
3	+ 0,72	+ 0,67	+ 0,64	+ 0,61	+ 0,64	+ 0,59	+ 0,65
7	+ 1,21	+ 1,21	+ 1,18	+ 1,18	+ 1,15	+ 1,14	+ 1,18
9	+ 1,31	+ 1,26	+ 1,26	+ 1,20	+ 1,23	+ 1,16	+ 1,24
14	+ 1,49	+ 1,49	+ 1,44	+ 1,43	+ 1,41	+ 1,37	+ 1,44
28	+ 1,72	+ 2,01	+ 1,62	+ 1,59	+ 1,64	+ 1,60	+ 1,70
42	+ 2,00	+ 2,24	+ 1,92	+ 1,61	+ 1,95	+ 1,78	+ 1,92
56	+ 2,08	+ 2,31	+ 1,98	+ 1,59	+ 1,87	+ 1,88	+ 1,95
70	+ 2,16	+ 2,08	+ 2,00	+ 1,95	+ 2,13	+ 1,96	+ 2,05
77	+ 2,13	+ 2,08	+ 2,05	+ 2,00	+ 2,03	+ 1,96	+ 2,05
112	+ 2,21	+ 2,16	+ 2,10	+ 2,08	+ 2,08	+ 2,04	+ 2,11
140	+ 2,29	+ 2,24	+ 2,18	+ 2,15	+ 2,16	+ 2,12	+ 2,19
442	+ 2,54	+ 2,52	+ 2,44	+ 2,41	+ 2,41	+ 2,40	+ 2,45
589	+ 2,62	+ 2,54	+ 2,46	+ 2,48	+ 2,44	+ 2,45	+ 2,50
		-					

Tabelle 7. Massenänderung der Prüfkörper

w/z	=	0,4 0	$\infty_{2} = 44$	mg/l
			1 4	

Dauer der Lagerung		Massenänderung in M%					
in Tagen	Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	i.M.
1	<u>+</u> 0	± 0	± 0	<u>+</u> 0	<u>+</u> 0	<u>+</u> 0	± 0
7	+ 0,82	+ 0,97	+ 0,92	+ 0,90	+ 0,82	+ 0,82	+ 0,88
9	+ 0,96	+ 1,11	+ 1,04	+ 1,04	+ 0,99	+ 0,96	+ 1,02
14	+ 1,12	+ 1,33	+ 1,25	+ 1,20	+ 1,15	+ 1,13	+ 1,20
28	+ 1,36	+ 1,63	+ 1,53	+ 1,46	+ 1,38	+ 1,39	+ 1,46
42	+ 1,45	+ 1,70	+ 1,65	+ 1,58	+ 1,50	+ 1,46	+ 1,56
56	+ 1,47	+ 1,75	+ 1,67	+ 1,60	+ 1,46	+ 1,48	+ 1,57
63	+ 1, 52	+ 1,80	+ 1,74	+ 1,60	+ 1,48	+ 1,53	+ 1,61
84	+ 1,52	+ 1,82	+ 1,74	+ 1,63	+ 1,57	+ 1,55	+ 1,64
126	+ 1,54	+ 1,85	+ 1,74	+ 1,67	+ 1,57	+ 1,58	+ 1,66
168	+ 1,52	+ 1,82	+ 1,74	+ 1,63	+ 1,46	+ 1,55	+ 1,62
189	+ 1,50	+ 1,75	+ 1,67	+ 1,56	+ 1,50	+ 1,48	+ 1,58
422	+ 0,02	+ 0,62	+ 0,52	+ 0,45	+ 0,14	+ 0,26	+ 0,34
575	- 0,40	+ 0,21	+ 0,12	+ 0,12	0,28	- 0,14	- 0,06
÷				-			

Tabelle 8. Massenänderung der Prüfkörper

w/z = 0,45 $CO_2 = 44$ mg/1

Dauer der Lagerung		Massenänderung in M%					
in Tagen	Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	i.M.
1	± 0	<u>+</u> 0	<u>+</u> 0	<u>+</u> 0	± 0	<u>+</u> 0	± 0
7	+ 0,78	+ 0,78	+ 0,75	+ 0,75	+ 0,78	+ 0,78	+ 0,77
9	+ 0,90	+ 0,92	+ 0,82	+ 0,87	+ 0,90	+ 0,90	+ 0,89
14	+ 1,07	+ 1,12	+ 1,02	+ 1,06	+ 1,12	+ 1,04	+ 1,07
28	+ 1,39	+ 1,36	+ 1,31	+ 1,35	+ 1,32	+ 1,36	+ 1,35
42	+ 1,59	+ 1,53	+ 1,38	+ 1,50	+ 1,51	+ 1,46	+ 1,50
56	+ 1,44	+ 1,46	+ 1,40	+ 1,52	+ 1,46	+ 1,41	+ 1,45
63	+ 1,51	+ 1,53	+ 1,43	+ 1,50	+ 1,51	+ 1,46	+ 1,49
84	+ 1,54	+ 1,56	+ 1,45	+ 1,55	+ 1,51	+ 1,50	+ 1,52
126	+ 1,59	+ 1,63	+ 1,53	+ 1,59	+ 1,61	+ 1,58	+ 1,59
168	+ 1,59	+ 1,63	+ 1,55	+ 1,69	+ 1,61	+ 1,58	+ 1,60
189	+ 1,54	+ 1,58	+ 1,48	+ 1,55	+ 1,54	+ 1,48	+ 1,53
422	+ 0,39	+ 0,34	+ 0,29	+ 0,39	+ 0,37	+ 0,39	+ 0,36
575	<u>+</u> 0	- 0,15	- 0,05	+ 0,05	- 0,02	- 0,07	- 0,04
					,		
					·		
Tabelle 9. Massenänderung der Prüfkörper

w/z = 0,50 $CO_2 = 44$ mg/l

Dauer der Lagerung			Massenär	derung i	n M%		
in Tagen	Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	i.M.
1	<u>+</u> 0	± 0	± 0	<u>+</u> 0	<u>+</u> 0	<u>+</u> 0	± 0
7	+ 0,68	+ 0,56	+ 0,72	+ 0,61	+ 0,61	+ 0,66	+ 0,64
9	+ 0,81	+ 0,73	+ 0,85	+ 0,76	+ 0,74	+ 0,81	+ 0,78
14	+ 0,96	+ 0,91	+ 1,10	+ 0,96	+ 0,96	+ 1,04	+ 0,99
28	+ 1,26	+ 1,19	+ 1,36	+ 1,24	+ 1,24	+ 1,32	+ 1,27
42	+ 1,44	+ 1,39	+ 1,56	+ 1,37	+ 1,42	+ 1,47	+ 1,44
56	+ 1,44	+ 1,37	+ 1,56	+ 1,37	+ 1,40	+ 1,45	+ 1,43
63	+ 1,46	+ 1,39	+ 1,54	+ 1,39	+ 1,45	+ 1,50	+ 1,46
84	+ 1,49	+ 1,44	+ 1,56	+ 1,47	+ 1,47	+ 1,53	+ 1,49
126	+ 1,54	+ 1,49	+ 1,62	+ 1,52	+ 1,52	+ 1,58	+ 1,55
168	+ 1,54	+ 1,49	+ 1,59	+ 1,50	+ 1,50	+ 1,58	+ 1,53
189	+ 1,49	+ 1,39	+ 1,51	+ 1,42	+ 1,45	+ 1,47	+ 1,46
422	+ 0,38	+ 0,25	+ 0,38	+ 0,28	+ 0,38	+ 0,28	+ 0,33
575	+ 0,05	- 0,03	+ 0,05	- 0,08	<u>+</u> 0	- 0,13	- 0,02
							н. Н
							-

Tabelle 10. Massenänderung der Prüfkörper

w/z = 0,50 $CO_2 = 66$ mg/l

Dauer der			Massenän	derung i	n M%		
in Tagen	Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	i.M.
1	<u>+</u> 0	<u>+</u> 0	<u>+</u> 0	<u>+</u> 0	<u>+</u> 0	<u>+</u> 0	± 0
2	+ 0,46	+ 0,41	+ 0,51	+ 0,46	+ 0,39	+ 0,49	+ 0,45
7	+ 0,92	+ 0,80	+ 0,90	+ 0,88	+ 0,75	+ 0,88	+ 0,86
9	+ 1,00	+ 0,83	+ 1,00	+ 0,98	+ 0,85	+ 0,98	+ 0,95
14	+ 1,13	+ 1,13	+ 1,15	+ 1,14	+ 1,01	+ 1,14	+ 1,12
28	+ 1,31	+ 1,21	+ 1,28	+ 1,29	+ 1,13	+ 1,27	+ 1,25
42	+ 1,41	+ 1,24	+ 1,38	+ 1,34	+ 1,19	+ 1,32	+ 1,31
56	+ 1,44	+ 1,24	+ 1,38	+ 1,34	+ 1,21	+ 1,32	+ 1,32
. 70	+ 1,36	+ 1,09	+ 1,38	+ 1,27	+ 1,16	+ 1,22	+ 1,25
84	+ 1,23	+ 0,85	+ 1,21	+ 1 , 16	+ 1,01	+ 1,14	+ 1,10
98	+ 1,00	+ 0,65	+ 1,00	+ 0,90	+ 0,77	+ 0,93	+ 0,88
105	+ 1,00	+ 0,67	+ 0,97	+ 0,96	+ 0,80	+ 0,91	+ 0,89
126	+ 0,72	+ 0,36	+ 0,69	+ 0,65	+ 0,49	+ 0,60	+ 0,59
168	+ 0,31	<u>+</u> 0	+ 0,33	+ 0,28	- 0,10	+ 0,21	+ 0,17
210	- 0,26	- 0,52	- 0 , 18	- 0,21	- 0,41	- 0,31	- 0,32
470	- 2,13	- 2,38	- 2,02	-	- 2,35	- 2,17	- 2,21
617	- 2,72	- 3,05	- 2,64	-	- 2,99	- 2,82	- 2,84
							м. м.

Tabelle 11. Massenänderung der Prüfkörper

w/z = 0.45 $CO_2 = 66$ mg/l

Dauer der Lagerung			Massenär	derung i	n M%		
in Tagen	Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	i.M.
1	<u>+</u> 0	± 0	<u>+</u> 0	<u>+</u> 0	± 0	<u>+</u> 0	± 0
2	+ 0,48	+ 0,53	+ 0,51	+ 0,48	+ 0,53	+ 0,51	+ 0,51
7	+ 0,98	+ 1,01	+ 0,94	+ 0,93	+ 0,95	+ 0,92	+ 0,96
9	+ 1,08	+ 1,01	+ 1,06	+ 1,01	+ 1,05	+ 0,99	+ 1,03
14	+ 1,16	+ 1,16	+ 1,14	+ 1,16	+ 1,15	+ 1,14	+ 1,15
28	+ 1,31	+ 1,21	+ 1,22	+ 1,24	+ 1,12	+ 1,19	+ 1,22
42	+ 1,36	+ 1,25	+ 1,29	+ 1,26	+ 1,28	+ 1,25	+ 1,28
56	+ 1,36	+ 1,28	+ 1,29	+ 1,34	+ 1,28	+ 1,27	+ 1,30
70	+ 1,29	+ 1,18	+ 1,24	+ 1,16	+ 1,23	+ 1,17	+ 1,21
84	+ 1,16	+ 1,06	+ 1,12	+ 1,06	+ 1,23	+ 1,02	+ 1,11
98	+ 0,96	+ 0,83	+ 0,89	+ 0,86	+ 0,83	+ 0,79	+ 0,86
105	+ 0,93	+ 0,81	+ 0,91	+ 0,83	+ 0,83	+ 0,76	+ 0,85
126	+ 0,66	+ 0,58	+ 0,58	+ 0,56	+ 0,50	+ 0,43	+ 0,55
168	+ 0,23	+ 0,18	+ 0,20	+ 0,20	+ 0,18	+ 0,10	+ 0,18
210	- 0,33	- 0,38	- 0,30	- 0,30	- 0,40	- 0,43	- 0,36
470	- 2,07	- 2,19	- 2,33	- 2,22	- 2,25	- 2,24	- 2,22
617	- 2,72	- 2,77	- 2,94	- 2,85	- 2,88	- 2,82	- 2,83
							-

Tabelle 12. Massenänderung der Prüfkörper

 $w/z = 0.40 CO_2 = 66 mg/1$

Dauer der Lagerung			Massenär	derung i	n M%		
in Tagen	Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	i.M.
1	± 0	±Ο	± 0	± 0	± 0	<u>+</u> 0	± 0
2	+ 1,19	•	+ 0,69		+ 0,64	+ 0,69	+ 0,80
7	+ 1,63		+ 1,11		+ 1,03	+ 1,08	+ 1,21
9	+ 1,75		+ 1,19		+ 1,13	+ 1,13	+ 1,30
14	+ 1,85		+ 1,26		+ 1,23	+ 1,23	+ 1,39
28	+ 1,95		+ 1,36		+ 1,28	+ 1,30	+ 1,47
42	+ 2,05		+ 1,43		+ 1,33	+ 1,45	+ 1,57
56	+ 2,08		+ 1,43		+ 1,33	+ 1,50	+ 1,59
70	+ 1,90		+ 1,33		+ 1,16	+ 1,33	+ 1,43
84	+ 1,78		+ 1,23		+ 1,06	+ 1,25	+ 1,33
98	+ 1,53		+ 1,01		+ 0,86	+ 1,23	+ 1,16
105	+ 1,53		+ 0,99		+ 0,81	+ 0,93	+ 1,07
126	+ 1,24		+ 0,72		+ 0,52	+ 0,66	+ 0,79
168	+ 0,89		+ 0,37		+ 0,12	+ 0,30	+ 0,42
210	+ 0,40		- 0,12		- 0,39	- 0,20	- 0,08
470	- 1,33		- 1,77		- 2,16	- 1,97	- 1,80
617	- 1,98		- 2,39		- 2,76 ,	- 2,51	- 2,41
					-		
	-					-	

Tabelle 13. Massenänderung der Prüfkörper

 $w/z = 0,40 | CO_2 = 96 mg/l$

Massenänderung in M%										
Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	i.M.				
<u>+</u> 0	<u>+</u> 0	<u>+</u> 0	± 0	<u>+</u> 0	<u>+</u> 0	± 0				
+ 0,73	+ 0,59	+ 0,63	+ 0,68	+ 0,67	+ 0,68	+ 0,66				
+ 1,14	+ 0,99	+ 1,10	+ 1,10	+ 1,12	+ 1,14	+ 1,10				
+ 1,24	+ 1,10	+ 1,17	+ 1,17	+ 1,19	+ 1,21	+ 1,18				
+ 1,36	+ 1,24	+ 1,24	+ 1,30	+ 1,29	+ 1,31	+ 1,29				
+ 1,43	+ 1,27	+ 1,34	+ 1,37	+ 1,34	+ 1,43	+ 1,36				
+ 1,34	+ 1,12	+ 1,17	+ 1,20	+ 1,22	+ 1,21	+ 1,21				
+ 1,17	+ 1,00	+ 1,00	+ 1,00	+ 1,05	+ 1,07	+ 1,05				
+ 0,68	+ 0,51	+ 0,49	+ 0,49	+ 0,54	+ 0,53	+ 0,54				
+ 0,34	+ 0,15	+ 0,15	+ 0,15	+ 0,19	+ 0,19	+ 0,20				
+ 0,29	+ 0,10	+ 0,05	+ 0,07	+ 0,12	+ 0,12	+ 0,13				
- 0,17	- 0,39	- 0,41	- 0,37	- 0,34	- 0,34	- 0,34				
- 0,49	- 0,71	- 0,76	- 0,68	- 0,68	- 0,66	- 0,66				
- 2,82	- 3,12	- 2,95	- 3,15	- 3,14	- 3,20	- 3,06				
- 4,27	- 4,53	- 4,66	- 4,57	- 4,57	- 4,66	- 4,54				
-										
	Probe 1 ± 0 + 0,73 + 1,14 + 1,24 + 1,36 + 1,43 + 1,34 + 1,17 + 0,68 + 0,34 + 0,29 - 0,17 - 0,49 - 2,82 - 4,27	Probe 1Probe 2 \pm 0 \pm 0 \pm 0,73 \pm 0,59 \pm 1,14 \pm 0,99 \pm 1,24 \pm 1,10 \pm 1,24 \pm 1,21 \pm 1,36 \pm 1,27 \pm 1,34 \pm 1,27 \pm 1,34 \pm 1,27 \pm 1,34 \pm 0,15 \pm 0,68 \pm 0,51 \pm 0,29 \pm 0,10 $-$ 0,17 $-$ 0,39 $-$ 0,49 $-$ 0,71 $-$ 2,82 $-$ 3,12 $-$ 4,27 $-$ 4,53	Probe 1Probe 2Probe 3 \pm 0 \pm 0 \pm 0 $+$ 0,73 $+$ 0,59 $+$ 0,63 $+$ 1,14 $+$ 0,99 $+$ 1,10 $+$ 1,24 $+$ 1,10 $+$ 1,17 $+$ 1,36 $+$ 1,24 $+$ 1,24 $+$ 1,31 $+$ 1,27 $+$ 1,34 $+$ 1,34 $+$ 1,27 $+$ 1,34 $+$ 1,34 $+$ 1,27 $+$ 1,00 $+$ 0,68 $+$ 0,51 $+$ 0,49 $+$ 0,34 $+$ 0,15 $+$ 0,15 $+$ 0,29 $+$ 0,10 $+$ 0,05 $-$ 0,17 $-$ 0,39 $-$ 0,41 $-$ 0,49 $-$ 0,71 $-$ 0,76 $-$ 2,82 $-$ 3,12 $-$ 2,95 $-$ 4,27 $-$ 4,53 $-$ 4,66	Probe 1 Probe 2 Probe 3 Probe 4 ± 0 ± 0 ± 0 ± 0 + 0,73 + 0,59 + 0,63 + 0,68 + 1,14 + 0,99 + 1,10 + 1,10 + 1,24 + 1,10 + 1,17 + 1,17 + 1,36 + 1,24 + 1,24 + 1,30 + 1,43 + 1,27 + 1,34 + 1,37 + 1,34 + 1,27 + 1,34 + 1,37 + 1,34 + 1,27 + 1,34 + 1,37 + 1,34 + 1,27 + 1,34 + 1,37 + 1,34 + 1,27 + 1,34 + 1,37 + 0,68 + 0,51 + 0,49 + 0,49 + 0,34 + 0,15 + 0,15 + 0,15 + 0,29 + 0,10 + 0,05 + 0,07 - 0,17 - 0,39 - 0,41 - 0,37 - 0,49 - 0,71 - 0,76 - 0,68 - 2,82 - 3,12 - 2,95 - 3,15 - 4,27 - 4,53 - 4,66 - 4,57	Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 + 0,73 + 0,59 + 0,63 + 0,68 + 0,67 + 1,14 + 0,99 + 1,10 + 1,10 + 1,12 + 1,24 + 1,10 + 1,17 + 1,17 + 1,19 + 1,36 + 1,24 + 1,24 + 1,30 + 1,29 + 1,43 + 1,27 + 1,34 + 1,37 + 1,34 + 1,34 + 1,12 + 1,17 + 1,20 + 1,22 + 1,17 + 1,00 + 1,00 + 1,02 + 1,22 + 1,17 + 1,20 + 1,22 + 1,17 + 1,20 + 1,22 + 1,17 + 1,00 + 1,00 + 1,00 + 1,02 + 1,02 + 0,68 + 0,51 + 0,15 + 0,15 + 0,19 + 0,54 + 0,29 + 0,10 + 0,05 + 0,07 + 0,12 - 0,17 - 0,39 - 0,41 - 0,37 - 0,38	Hassenärderung in M% Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 Probe 6 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 1 0 + 0,73 + 0,59 + 0,63 + 0,68 + 0,67 + 0,68 + 1,14 + 0,99 + 1,10 + 1,10 + 1,12 + 1,14 + 1,24 + 1,10 + 1,17 + 1,19 + 1,21 + 1,36 + 1,24 + 1,30 + 1,29 + 1,31 + 1,43 + 1,27 + 1,34 + 1,29 + 1,31 + 1,43 + 1,27 + 1,34 + 1,22 + 1,21 + 1,43 + 1,27 + 1,34 + 1,22 + 1,21 + 1,43 + 1,21 + 1,17 + 1,20 + 1,22 + 1,21 + 1,43 + 1,21 + 1,17 + 1,20 + 1,22 + 1,21 + 1,43 + 0,15 + 0,15 + 0,19 + 0,53 + 0,53 + 0,68 + 0,51 + 0,49 + 0,49 + 0,54				

Tabelle 14. Massenänderung der Prüfkörper

w/z = 0,45 $CO_2 = 96$ mg/l

Dauer der Lagerung			Massenär	nderung i	n M%	· · · · ·	
in Tagen	Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	i.M.
1	<u>+</u> 0	<u>+</u> 0	<u>+</u> 0	± 0	<u>+</u> 0	<u>+</u> 0	± 0
3	+ 0,52	+ 0,52	+ 0,57	+ 0,55	+ 0,55	+ 0,52	+ 0,54
7	+ 1,07	+ 1,04	+ 1,12	+ 1,00	+ 1,02	+ 0,99	+ 1,04
9	+ 1,12	+ 1,14	+ 1,18	+ 1,09	+ 1,12	+ 1,07	+ 1,12
14	+ 1,25	+ 1,20	+ 1,33	+ 1,22	+ 1,23	+ 1,20	+ 1,24
28	+ 1,38	+ 1,33	+ 1,41	+ 1,38	+ 1,36	+ 1,33	+ 1,37
49	+ 1,25	+ 1,27	+ 1,36	+ 1,28	+ 1,23	+ 1,20	+ 1,27
63	+ 1,15	+ 1,14	+ 1,20	+ 1,12	+ 1,07	+ 1,10	+ 1,13
98	+ 0,65	+ 0,65	+ 0,68	+ 0,60	+ 0,57	+ 0,60	+ 0,63
112	+ 0,31	+ 0,31	+ 0,31	+ 0,29	+ 0,24	+ 0,29	+ 0,29
126	+ 0,26	+ 0,26	+ 0,26	+ 0,23	+ 0,16	+ 0,24	+ 0,24
168	- 0,23	- 0,21	- 0,21	- 0,26	- 0,26	- 0,21	- 0,23
189	- 0,55	- 0,57	- 0,55	- 0,57	- 0,57	- 0,57	- 0,56
429	- 3,28	- 3,22	- 3,22	- 3,25	- 3,24	- 3,21	- 3,24
582	- 4,92	- 5,17	- 4,92	- 4,89	- 5,01	- 4,85	- 4,96
							-
					-	-	

Tabelle 15. Massenänderung der Prüfkörper

 $w/z = 0,50 | CO_2 = 96 mg/1$

Dauer der Lagerung			Massenär	iderung i	n M%				
in Tagen	Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	i.M.		
1	± 0	± 0	<u>+</u> 0	<u>+</u> 0	<u>+</u> 0	± 0	± 0		
3	+ 0,52	+ 0,55	+ 0,42	+ 0,50	+ 0,55	+ 0,44	+ 0,50		
7	+ 0,94	+ 0,86	+ 0,91	+ 0,91	+ 0,99	+ 0,83	+ 0,91		
9	+ 0,99	+ 0,99	+ 0,94	+ 0,97	+ 1,01	+ 0,89	+ 0,97		
14	+ 1,15	+ 1,12	+ 1,12	+ 1,12	+ 1,20	+ 1,04	+ 1,13		
28	+ 1,33	+ 1,33	+ 1,28	+ 1,25	+ 1,33	+ 1,15	+ 1,28		
49	+ 1,26	+ 1,25	+ 1,20	+ 1,20	+ 1,25	+ 1,07	+ 1,21		
63	+ 1,15	+ 1,12	+ 1,04	+ 1,07	+ 1,12	+ 0,91	+ 1,07		
98	+ 0,65	+ 0,63	+ 0,55	+ 0,55	+ 0,60	+ 0,39	+ 0,56		
112	+ 0,31	+ 0,31	+ 0,21	+ 0,21	+ 0,26	+ 0,08	+ 0,23		
126	+ 0,24	+ 0,21	+ 0,13	+ 0,13	+ 0,16	- 0,03	+ 0,14		
168	- 0,21	- 0,29	- 0,36	- 0,37	- 0,36	- 0,52	- 0,35		
189	- 0,58	- 0,65	- 0,75	- 0,73	- 0,73	- 0,89	- 0,72		
429	- 3,27	- 3,42	- 3,41	- 3,42	- 3,43	-	- 3,39		
582	- 4,99	- 5,09	- 5,10	- 5,24	- 5,17	-	- 5,12		
		-							
				ш.					

Tabelle 16. Eindringtiefe

1

$W/Z = 0,40$ $CO_2 = 0 mg/1$

Alter	Prob	e Nr.:	1	Prob	e Nr.:	2	Pro	be Nr.	: 3	Prot	be Nr.	: 4	Prob	e Nr.:	5	Pro	be Nr.	: 6	Eindringtiefe t i.M.	Standardab- weichung
[d]	t bei	Messl (µm)	inie	t be	i Mess (µm)	linie	t bei	Messl (µm)	inie	t bei	Mess] (μm)	inie	t be	i Mess (µm)	linie	t be	i Mess (μm)	linie	(mu)	(µm)
	1	2	3	1	2	3	1	2	3		2	3	1	2	3	1	2	3		
2	130	130	120	190	125	110	120	160	100	105	130	125	140	110	130	125	180	120	131	24
3	111	100	110	132	98	98	129	129	108	88	10	112	90	91	175	102	154	100	114	23
7	70	79	79	139	61	67	81	138	72	81	112	89	49	65	79 ·	71	118	80	85	25
9	69	75	75	92	69	60	75	130	40	68	72	80	70	80	87	68	100	88	78	18
14	100	41	65	81	45	55	31	95	58	55	73	50	62	52	73	67	35	58	61	19
28	59	20	58	85	58	62	71	78	47	43	85	65	49	39	72	67	65	30	58	18
42	75	62	60	77	47	50	110	15	21	45	81	62	59	18	75	53	52	41	56	24
56	45	63	63	75	15	50	55	65	43	43	30	69	48	50	72	62	52	55	53	15
70	48	30	63	18	23	41	69	68	49	30	71	62	48	49	69	20	67	41	48	18
77	51	61	65	80	62	270	62	117	46	42	230	272	62	50	128	365	241	41	125 ¹⁾	102
112	42	68	66	85	79	48	50	60	41	51	75	54	52	50	109	60	50	38	60	18
140	40	70	79	89	60	50	65	90	48	35	66	62	43	53	115	70	68	48	64	20
442	82	100	77	89	80	62	92	82	67	41	69	⇒61	55	69	130	75	107	64	78	21
1) Me	essung f	ehlerha	ft durcl	n falsch	ne Prüfl	ast														

Tabelle 17. Eindringtiefe

																	L			
										<u> </u>		متنا المربية والمربية والم							-	
Alter	Prob	e Nr.:	1	Prob	e Nr.:	2	Pro	be Nr.	: 3	Prot	e Nr.:	: 4	Prob	e Nr.:	5	Pro	be Nr.	.: 6	Eindringtiefe t i.M.	Standardab- weichung
[d]	t beï	Messl (µm)	inie	t bei	i Mess (μm)	linie	t bei	Messl (µm)	inie	t bei	Messl (µm)	inie	t be	i Mess (µm)	linie	t be	i Mess (µm)	linie	(سر)	(µm)
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3		·
2	140	135	170	160	260	165	140	230	235	155	190	165	170	165	155	170	165	145	173	35
3	121	146	121	132	171	162	131	192	131	124	165	155	142	149	182	139	130	122	145	22
7	85	87	110	100	155	100	95	130	100	98	102	109	89	110	81	100	100	100	103	17
9	58	72	72	90	151	115	92	120	109	105	10,2	105	72	72	101	.90	105	29	93	27
14	59	70	90	70	58	40	78	102	70	89	75	88	81	72	89	75	91	90	77	15
28	73	72	75	48	59	79	87	83	69	65	90	80	69	68	78	71	102	83	75	12
42	55	70	65	62	68	68	72	10	10	30	85	81	58	61	42	69	107	75	60	24
56	51	73	67	62	62	70	72	75	63	63	65	58	72	57	60	55	.71	63	64	7
70	68	58	58	69	73	87	23	70	45	61	68	45	29	58	52	55	25	51	55	17
77	49	327	420	70	82	248	262	78	150	128	79	270	195	82	300	81	278	61	176 ¹⁾	113
112	50	62	59	66	63	59	60	76	63	82	60	60	58	69	60	67	50	57	62	8
140	76	61	64	70	71	80	60	77	60	70	115	80	69	77	58	85	69	71	73	13
442	65	78	66	81	130	60	61	61	73	65	60	50	61	81	55	47	53	80	68	19
									1		1							1		
									1											
<u> </u>	<u> </u>						-		1											
1) Me	essung f	l ehlerha	ft durc	h falsch	ne Prüfl	last	I	I	.L	L	· ·	<u>.</u>	· ·	1			•	· ·		<u></u>

W/Z = 0,45 $CO_2 = 0 mg/1$

• •

Tabelle 18. Eindringtiefe

W/Z = 0,50	^{CO} 2 =	0	mg/1

Alter	Probe	e Nr.:	1	Prob	e Nr.:	2	Pro	be Nr.	: 3	Prob	e Nr.:	4	Prob	e Nr.:	5	Pro	be Nr.	: 6	Eindringtiefe t i.M.	Standardab- weichung
[d]	t bei	Messl: (µm)	inie	t bei	i Mess (μm)	linie	t bei	Messl (µm)	inie	t bei	Messl (µm)	inie	t be:	i Mess (μm)	linie	t be	i Mess (µm)	linie	(µm)	(µm)
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3		
2	250	310	240	260	310	265	260	270	290	270	260	305	260	275	220	260	250	260	267	24
3	218	228	231	190	297	249	182	218	258	193	281	229	192	210	205	199	202	225	223	32
7	158	169	172	135	181	117	125	129	171	155	212	159	129	147	120	150	159	140	152	24
9	162	79	149	98	151	131	100	125	151	111	178	145	125	140	139	150	159	148	136	25
14	122	120	95	105	115	98	110	122	129	58	129	115	45	125	155	120	118	97	110	25
28	105	125	110	103	118	71	102	115	117	97	127	110	90	122	150	105	110	128	111	17
42	13	100	105	83	57	105	91	105	89	73	123	. 95	92	97	47	59	88	118	86	27
56	89	102	79	88	98	90	47	90	88	71	120	92_	80	88	87	73	80	31	83	20
70	88	97	81	88	80	92	103	80	95	80	30	81	23	88	28	78	78	35	74	26
77	250	102	112	400	91	262	72	102	421	270	471	62	79	500	162	100	9.5	101	2031)	150
112	75	80	90	79	81	81	80	94	105	74	80	80	82	90	90	95	88	90	85	8
140	102	87	82	81	75	82	79	90	90	80	103	82	72	180	110	88	110	82	93	24
442	71	89	100	70	73	50	73	92	80	59	100	71	31	84	95	165	121	99	85	29
-																				
				<u> </u>																
1) Me	ssung f	ehlerha:	ft durch	l falsch	e Prüfl	ast	<u>t</u>	<u></u>	I		<u>.</u>									

Tabelle 19. Eindringtiefe

W/2 =	0,40	co ₂ =	44 mg/l

Alter	Prob	e Nr.:	1	Prob	e Nr.:	2	Probe Nr.: 3			Probe Nr.: 4			Probe Nr.: 5			Pro	be Nr.	: 6	Eindringtiefe t i.M.	Standardab- weichung s
[ā]	t bei	Messl: (um)	lnie	t be:	i Mess (µm)	linie	t bei	Messl (µm)	inie	t bei	Messl (µm)	linie	t be:	i Mess (μm)	linie	t be	i Mess (µm)	linie	(mu)	(µm)
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3		
. 1	221	199	181	153	162	169	186	178	159	178	176	155	157	. 124	180	201	179	161	173	22
7	97	70	47	70	69	69	82	25	65	89	63	65	60	70	70	83	79	61	69	16
9	94	71	60	61	60	70	70	50	62	87	60	59	58	50	70	71	69	59	66	11
14	88	70	53	52	59	72	59	60	60	79	62	57	55	57	58	30	28		58	14
28	18	39	49	47	20	50	45	29	39	67	50	.42	40	43	51	40	55	43	43	12
42	23	63	45	52	20	50	40	30	38	71	53	61	45	50	40	63	57	21	46	15
56	21	29	47	38	48	48	18	29	25	40	39	- 45	45	67	23	67	30	53	40	14
63	62	51	45	184	48	53	41	159	39	62	39	218	33	165	40	62	60	62	80	58
84	81	53	42	40	52	44	39	29	39	57	47	48	43	30	41	75	58	34	47	14
126	105	68	49	40	55	51	49	80	69	73	50	55	50	45	68	50	60	45	59	16
168	75	61	56	52	55	52	51	39	50	94	64	50	59	48	61	60	60	56	58	12
189	100	62	70	43	39	65	63	40	51	84	58	46	57	50	78	63	59	48	60	16
422	150	102	116	171	110	88	291	120	169	154	123	80	109	142	178	180	103	130	140	49
	1																			

Tabelle 20. Eindringtiefe

W/Z = 0,45	$CO_2 = 44 \text{ mg/l}$

Alter	Prob	e Nr.:	1	Probe Nr.: 2 Probe Nr.: 3						Prob	e Nr.:	4	Prob	e Nr.:	5	Pro	be Nr.	: 6	Eindringtiefe t i.M.	Standardab- weichung
[d]	t bei	Messl (µm)	inie	t be	i Mess (µm)	linie	t bei	Messl (µm)	inie	t bei	Messl (µm)	inie	t be	i Mess (μm)	linie	t be	i Mess (µm)	linie	(រយា)	(µm)
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3		
1	232	252	282	232	279	269	319	221	233	295	249	222	300	195	200	247	291	291	256	36
7	99	125	81	75	102	70	145	72	42	131	100	110	125	61	98	42	130	163	98	34
9	100	89	77	69	118	100	139	80	85	120	93	110	160	79	63	73	141	135	102	28
14	70	68	85	62	35	48	98	78	77	90	48	79	85	75	88	90	139	98	78	23
28	55	59	51	49	55	68	115	57	62	69	69	58	120	52	71	72	92	115	72	23
42	58	51	59	42	67	60	113	63	57	80	55	57	119	61	50	58	102	100	70	23
56	43	47	5.5	45	48	62	101	45	55	107	62	49	89	18	41	65	89	100	62	25
63	49	51	198	43	70	49	107	58	53	118	55	45	340	55	69	51	92	250	97	83
84	62	48	41	49	68	50	121	58	58	105	50	69	100	51	57	68	82	106	. 69	24
126	50	60	47	37	59	70	57	62	48	100	60	71	90	52	62	40	90	100	64	19
168	59	68	48	49	51	60	109	61	67	130	57	60	120	75	55	68	101	110	75	26
189	67	50	60	56	65	79	109	59	81	111	68	160	51	117	150	78	60	79	83	33
422	159	155	84	125	148	101	167	113	151	165	116	252	170	151	165	119	120	191	147	38
												•.								
					<u> </u>															
	[

Tabelle 21. Eindringtiefe

$W/Z = 0,50$ $CO_2 = 44 \text{ mg/l}$

Alter	Prob	e Nr.:	1	Probe Nr.: 2 Probe Nr.: 3					: 3	Prob	e Nr.	4	Prob	e Nr.:	5	Pro	be Nr.	: 6	Eindringtiefe t i.M.	Standardab- weichung
[d]	t bei	Messl (µm)	inie	t be	i Mess (µm)	linie	t bei	Messl (µm)	inie	t bei	Mess] (µm)	inie	t be	i Mess (µm)	linie	t be	i Mess (µm)	linie	(µm)	(µm)
	1	2	3	1	2	3	1	2	3	1 .	2	3	1	2	3	1	2	3		
1	353	420	425	355	413	395	352	391	385	520	348	419	450	358	380	-	_	-	398	46
7	141	149	160	125	135	162	158	181	170	138	82	175	63	118	130	175	140	329	152	54
9	122	190	148	128	129	110	105	140	155	159	110	169	141	109	104	151	111	130	134	25
14	97	149	133	93	111	120	92	129	139	111	108	95	130	95	91	150	49	31	107	31
28	68	138	105	82	82	112	25	109	101	25	81	128	110	85	78	135	81	91	91	31
42	78	80	118	73	69	79	67	85	98	75	80	101	90	65	85	88	95	71	83	14
56	77	90	105	87	58	78	58	65	39	48	62	15	95	70	65	60	20	51	63	24
63	36	101	110	61	225	82	62	102	95	75	60	140	245	71	62	98	72	142	102	56
84	71	89	105	78	50	87	59	101	88	81	63	117	99	61	58	89	65	59	79	19
126	70	79	100	69	64	70	81	102	86	70	70	94	106	64	60	95	60	82	79	15
168	79	91	103	71	50	53	77	115	78	71	70	120	90	80	52	98	59	52	78	21
189	69	88	95	94	70	80	90	118	113	73	82	133	96	102	65	101	91	70	90	18
422	140	138	181	170	201	97	171	170	171	220	168	- 260	176	121	132	310	143	181	175	50

...l......

Tabelle 22. Eindringtiefe

1

W/Z = 0,40	co ₂ =	66 mg/l
	2	2.

Alter	Prob	e Nr.:	1	Prob	Probe Nr.: 2 Probe Nr.: 3						e Nr.:	4	Prob	e Nr.:	5	Pro	be Nr.	: 6	Eindringtiefe t i.M.	Standardab- weichung
[d]	t bei	Messl (µm)	inie	t be	i Mess (µm)	linie	t bei	Messl (µm)	inie	t bei	Messl (µm)	inie	t bei	Mess (μm)	linie	t be	i Mess (μm)	linie	(سر)	<u>(பா)</u>
L	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3		
1	140	140	120	-	-	-	140	160	145	-		-	140	131	110	150	125	123	136	13
3	90	100	105	-	-	-	100	110	93	_		-	103	85	82	101	90	81	95	9
7	56	71	51	-	-		71	72	60	-	-	_	105	67	63	83	73	60	69	14
9	51	61	72	_	-	-	76	74	60	4	-	-	99	59	56	73	62	58	67	13
14	49	59	71	_	-		81	72	52	-		-	83	56	61	86	62	61	66	12
28	41	45	59	-	-	-	71	56	38	-	_	-	81	48	71	75	72	52	59	15
42	45	30	95	-	-		70	75	55		-	-	90	49	45	68	51	61	61	19
56	58	51	60	_	-	-	47	43	48	-	-		90	51	69	62	69	39	57	14
70	32	42	62	-	-		58	85	50	_	_	-	139	39	43	68	37	40	58	30
84	67	12	43	-	_	-	89	45	21	_	-	_	82	55	41	59	69	47	52	23
98	58	42	43	-	-	· -	62	89	50	-		-	115	65	50	60	53	49	61	21
105	51	41	40	-		-	67	70	42	-	-	-	81	48	61	61	127	38	61	25
126	90		131	-		-	179	87	131	-	-	·\-	119	95	174	66	139	90	115	36
168	70	111	138	_	_	-	132	146	103	_	_	-	139	153	77	71	166	52	113	38
210	120	71	212			_	270	212	165	-		-	95	192	170	. 93	95	72	147	65
470	295	244	276	-	_	-	183	200	159	-	-	-	262	282	312	218	189	311	253	51

Tabelle 23. Eindringtiefe

																•	Ĺ	w/ 2 –		2 - 00 mg/1
Alter	Prob	e Nr.:	1	Prob	e Nr.:	2	Pro	be Nr.	: 3	Prol	be Nr.	: 4	Prob	e Nr.:	5	Pro	be Nr	.: 6	Eindringtie t i.M.	efe Standardab- weichung
[d]	t bei	Messl (µm)	inie	t be	i Mess (µm)	linie	t bei	Messl (µm)	inie	t bei	Messl (µm)	linie	t be	i Mess (µm)	linie	t be	i Mes (μm)	slinie	(Jum)	(11m)
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	· · · · · · · · · · · · · · · · · · ·	
1	190	163	172	165	178	182	198	180	163	168	220	206	203	212	213	153	170	150	183	22
3	132	128	138	125	132	138	141	133	125	110	134	141	131	141	101	120	130	111	128	11
7	85	82	87	.80	102	99	100	97	81	72	87	100	73	98	60	82	99	62	86	13
9	79	79	79	75	80	79	80	41	77	63	79	88	78	79	72	81	74	55	74	11
14	92	75	101	72	110	79	82	85	75	72	73	78	72	52	96	62	78	63	79	14
28	98	39	72	61	62	62	120	28	88	75	58	62	74	53	49	52	48	47	64	22
42	45	80	85	42	59	59	59	47	28	48	50	90	30	88	35	61	49	42	55	19
56	65	65	48	45	58	47	65	85	58	60	41	68	88	83	49	68	75	68	63	14
70	81	67	95	43	59	52	70	57	8.3	51	70	52	119	62	25	33	89	58	65	23
84	80	60	51	50	88	45	73	33	60	58	65	70	71	70	95	79	70	65	66	15
98	12	38	40	21	49	90	82	65	100	49	150	70	75	88	88	69	23	51	64	33
105	92	87	76	46	41	36	121	60	72	48	91	81	61	99	67	51	44	89	70	24
126	95	116	70	88	150	69	120	151	59	59	110	140	67	130	100	90	141	128	105	32
168	65	119	81	132	183	112	183	137	91	70	97	70	120	128	221	143	97	171	123	44
210	285	70	50	179	81	184	116	152	150	86	142	125	139	221	130	190	197	171	148	58
470	261	240	191	175	191	182	267	221	281	241	308	249	276	202	160	235	214	219	228	41

W/Z = 0,45 $CO_2 = 66 \text{ mg/l}$

Tabelle 24. Eindringtiefe

$W/Z = 0,50$ $CO_2 = 66 \text{ mg/l}$		W/Z = 0,50	^{co} 2 =	66 mg/l
---------------------------------------	--	------------	-------------------	---------

Alter	Prob	e Nr.:	1	Prob	e Nr.:	2 Probe Nr.: 3				Prob	e Nr.:	4	Prob	e Nr.:	5	Pro	be Nr.	: 6	Eindringtiefe t i.M.	Standardab- weichung
[d]	t bei	Messl: (µm)	inie	t be	i Mess (μm)	linie	t bei	Messl (µm)	inie	t bei	Messl (µm)	inie	t be	i Mess (μm)	linie	t be	i Mess (µm)	linie	(سر)	(mut)
	1	2	3	1	2	3	1	2	3	. 1	2	3	1	2	3	1	2	3		
1	201	235	298	292	273	235	248	307	328	202	238	316	232	210	378	243	268	298	267	48
3	130	180	226	219	172	140	147	267	230	120	168	220	140	121	194	135	178	197	177	43
7	98	148	161	142	153	122	176	170	159	90	140	176	112	118	215	108	122	158	143	32
9	98	142	158	111	110	111	91	130	134	76	118	,158	77	91	100	78	117	133	113	26
14	98	145	130	94	112	124	101	146	143	69	98	161	92	66	81	81	94	110	108	28
28	82	91	118	114	88	96	83	118	107	56	82	145	77	58	61	61	80	101	90	24
42	68	65	77	78	95	75	93	122	100	47	85	81	88	59	29	65	88	40	75	23
56	71	110	118	77	85	102	99	85	98	45	79	127	77	38	125	55	100	95	88	25
70	87	105	100	119	75	90	62	67	95	38	67	98	78	68	59	51	57	78	77	21
84	79	138	105	95	78	98	65	117	167	55	132	107	72	81	75	75	79	70	94	29
98	90	190	97	80	35	48	87	135	73	55	92	75	65	58	85	62	70	103	83	35
105	112	158	103	119	68	125	56	98	102	62	87	110	78	39	70	89	45	60	88	31
126	81	142	120	168	121	122	71	139	231	51	166	229	81	138	131	187	79	102	131	51
168	143	221	92	251	82	78	209	219	220	100	96	203	208	110	189	100	216	208	164	61
210	190	234	101	122	151	79	80	229	229	182	109	178	142	139	144	199	116	171	155	49
470	279	260	201	219	219	255	250	214	201	-	÷		316	311	306	219	221	240	247	40

Tabelle 25. Eindringtiefe

W/Z = 0,40	$CO_2 = 96 \text{ mg/l}$
------------	--------------------------

Alter	Prob	e Nr.:	1	Prob	e Nr.:	2	Pro	be Nr.	: 3	Prob	e Nr.:	4	Prob	e Nr.:	5	Probe Nr.: 6			Eindringtiefe t i.M.	Standardab- weichung
[d]	t bei	Messl: (µm)	inie	t bei Messlinie (µm)			t bei Messlinie (µm)			t bei Messlinie (µm)			t bei Messlinie (µm)			t bei Messlinie (μm)			(jum)	(µm)
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1.	2	3		·
1	179	165	188	148	173	150	180	199	138	151	175	160	182	155	140	163	185	200	168	19
3	88	100	95	99	91	98	105	81	85	81	119	90	85	100	102	109	109	125	98	12
7	75	61	78	61	50	79	72	58	71	75	41	81	55	68	65	85	59	79	67	12
9	61	55	65	51	25	61	79	52	60	57	59	59	51	58	55	70	61	80	59	12
14	60	50	55	59	40	58	61	50	31	60	71	41	58	61	25	68	72	39	53	13
28	53	43	52	81	65	61	70	53	47	51	56	60	62	52	46	78	48	52	57	11
49	72	41	59	45	47	61	38	17	62	60	90	62	97	49	42	55	41	89	57	20
56	68	83	47	46	71	66	70	48	59	50	78	92	49	41	83	147	34	59	66	26
70	58	81	180	62	81	75	82	78	195	79	254	102	105	78	79	118	241	64	112	62
98	62	192	136	71	146	62	149	110	70	166	163	· 93	154	62	81	150	137	160	120	43
112	82	142	130	76	51	242	231	240	72	155	230	231	219	132	97	120	181	166	153	66
126	150	145	59	122	161	165	250	130	111	86	152	207	73	80	129	71	203	161	136	52
168	201	170	195	236	188	180	279	155	240	246	168	95	250	166	100	160	170	112	181	54
189	172	270	187	279	195	152	290	348	383	198	254	142	261	184	237	300	130	230	234	70
429	622	512	551	581	649	545	570	581	581	572	470	564	482	555	572	520	525	590	558	45
								1												

Tabelle 26. Eindringtiefe

W/Z = 0,45 CO₂ = 96 mg/1

Alter	Probe	robe Nr.: 1 Probe Nr.: 2					Pro	be Nr.	: 3	Prob	e Nr.:	4	Prob	e Nr.:	5	Pro	be Nr.	: 6	Eindringtiefe t i.M.	Standardab- weichung
[4]	t bei	Messl: (µm)	inie	t bei Messlinie (um)			t bei Messlinie (μm)			t bei Messlinie (µm)			t bei Messlinie (µm)			t bei Messlinie (µm)			(mu)	(µm)
	1	2	3	1	2	3	1	2	3	1	2	3	_1	2	3	1	2	3		
1	201	201	159	228	139	207	215	228	258	259	160	241	310	215	181	288	222	275	221	46
3	202	149	110	155	89	147	68	139	100	139	132	187	240	122	338	151	152	225	158	63
7	58	140	39	135	55	60	73	39	98	72	57	78	113	58	80	97	50	53	75	30
9	82	90	45	78	39	81	42	70	42	88	40	68	75	81	61	81	53	49	65	18
14	87	88	45	70	50	85	50	59	79	77	49	63	91	55	59	25	88	32	64	20
28	130	75	37	61	43	68	43	68	90	76	32	60	69	75	51	63	49	44	63	23
49	50	41	120	69	49	75	30	50	89	47	30	59	89	95	47	50	75	45	62	24
56	74	73	32	77	60	110	66	68	82	45	30	61	73	43	49	68	48	. 33	61	20
70	77	37	32	62	82	123	47	53	105	72	25	60	119	42	55	72	51	41	64	28
98	78	100	159	99	99	120	181	98	151	154	50	150	143	92	196	110	210	82	126	44
112	100	173	82	115	87	78	145	85	100	71	133	48	231	59	190	188	61	55	111	54
126	93	126	179	180	70	77	96	61	107	167	101	172	251	155	71	200	245	75	135	61
168	210	273	325	275	192	150	160	140	90	180	189	170	161	187	200	198	202	145	191	55
189	211	152	191	283	167	209	327	164	172	216	201	210	210	272	219	295	140	286	218	54
429	512	559	600	672	582	600	587	495	533	705	660	689	563	609	655	489	609	652	598	65
									<u> </u>											

Tabelle 27. Eindringtiefe

W/Z = 0,50	$CO_2 = 96 \text{ mg/l}$

Alter	r Probe Nr.: 1 Probe Nr.: 2						Pro	be Nr.	: 3	Prob	e Nr.:	4	Prob	e Nr.:	5	Pro	be Nr.	: 6	Eindringtiefe t i.M.	Standardab- weichung
[d]	t bei Messlinie (µm)			t bei Messlinie (µm)			t bei Messlinie (µm)			t bei Messlinie (µm)			t bei Messlinie (µm)			t bei Messlinie (μm)			(µm)	(µm)
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3		
1	510	369	365	355	.359	422	370	355	355	383	339	378	399	130	330	480	455	453	378	80
3	199	161	172	268	185	125	225	180	220	230	175	165	329	162	151	185	180	249	198	49
7	129	133	98	133	95	107	130	102	163	132	100	169	110	109	57	115	125	142	119	26
9	138	100	97	125	97	85	95	89	122	120	100	100	118	110	61	101	120	180	109	25
14	95	88	120	163	93	87	99	95	115	140	91	98	119	49	80	99	112	143	105	26
28	101	72	83	93	79	76	86	46	83	113	80	79	118	77	81	74	98	140	88	21
49	88	83	58	133	77	82	88	77	83	142	58	68	83	58	67	67	151	139	89	30
56	69	59	77	142	102	68	69	65	89	128	68	98	89	98	77	115	94	128	91	25
70	140	270	78	120	300	52	450	, 300	81	451	98	112	85	261	331	142	431	401	228 ¹⁾	143
98	98	65	110	128	39	50	199	190	178	161	120	168	103	59	161	138	180	125	126	50
112	119	117	180	120	136	138	203	174	98	192	175	231	110	200	200	208	209	191	167	41
126	164	260	230	150	132	140	187	59	170	259	200	130	150	90	136	151	232	115	164	55
168	181	120	150	199	195	155	80	180	138	150	159	132	200	220	141	119	236	220	165	41
189	220	350	190	291	142	193	235	181	290	246	181	166	270	194	210	229	291	371	236	63
429	640	588	669	559	655	535	612	683	492	510	399	566	509	821	709	-		-	596	104
<u> </u>		1			1															
1) Me	1) Messung fehlerhaft durch falsche Prüflast																			

Berechnungsschema zur Ermittlung der Ersatzschichtdicke s $_{\rm E}$

Verwendete Indizes

- o : Vergleichsprüfkörper (Null-Serie)
- t : Zeitpunkt
- i : in CO2-haltigem Wasser gelagerte Versuchskörper

Bezugskörper

Zylinder mit	do	=	40 mm
	ho	=	160 mm
	v	=	201.062 mm ³
	ρ _ο	=	f (w/z) ; experimentell bestimmt
	mo	=	f (w/z); rechnerisch bestimmt

Massenänderung der Null-Serie

mit gemessener Wasseraufnahme WA_t [M.-%] folgt $m_{o,t} = m_o \left(1 + \frac{WA_t}{100}\right)$

und

$$\rho_{o,t} = \frac{m_{o,t}}{V_o} = \frac{m_o (1 + \frac{WA_t}{100})}{V_o}$$

Berechnungsgang

Masse eines in CO₂-haltigem Wasser eingelagerten Versuchskörpers nach einer Lagerungszeit von t Tagen

 $m_{i,t} = m_0 (1 + \frac{\Delta_{m,t}}{100}) \text{ mit } \Delta_{m,t} = \text{empirisch ermittelte Massen-anderung [M.-%]}$

zugehöriges Volumen des Probekörpers

$$V_{i,t} = \frac{m_{i,t}}{\rho_{o,t}} = \frac{m_{o}(1 + \frac{\Delta_{m,t}}{100})}{m_{o}(1 + \frac{WA_{t}}{100})} \times V_{o} = \frac{100 + \Delta_{m,t}}{100 + WA_{t}} \times V_{o}$$

Bestimmung der Ersatzschichtdicke s_E

durch Iteration aus V_{i,t} (mittels Newton-Verfahren)