Bauforschung

Einfluß der Nachgiebigkeiten von Stößen und Anschlüssen auf die Standsicherheit stabilitätsgefährdeter Stahlbauten

T 2252

¹ Fraunhofer IRB Verlag

T 2252

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

Technische Universität München Lehrstuhl für Stahlbau

Bericht Nr. 105 b

Schlußbericht Forschungsvorhaben Teil 1

"EINFLUSS DER NACHGIEBIGKEITEN VON STÖSSEN UND ANSCHLÜSSEN AUF DIE STANDSICHERHEIT STABILITÄTSGEFÄHRDETER STAHLBAUTEN"

Auftraggeber: Institut für Bautechnik, Referat IV/1, Reichpietschufer 74-76 1000 Berlin 30

München, Juli 1990

Schlußbericht Forschungsvorhaben Teil 1

"EINFLUSS DER NACHGIEBIGKEITEN VON STÖSSEN UND ANSCHLÜSSEN AUF DIE STANDSICHERHEIT STABILITÄTSGEFÄHRDETER STAHLBAUTEN"

Gesch. Z. IfBt: IV/1 - 5 - 250/80

1. Einführung

Die meisten heute erstellten statischen Berechnungen gehen davon aus, daß Stöße oder Anschlüsse eines Stahltragwerkes für die Wirkung der entsprechenden Schnittgröße entweder als gelenkig oder starr angesehen werden können. Beide Annahmen werden von der wirklichen Ausführung meist nicht bestätigt. Das Tragwerk selbst weist vielmehr, je nach Betrachtungsweise, eine nachweisbare Nachgiebigkeit, bzw. eine spürbare Verformungsbehinderung auf.

Die Berechnung eines nicht durch Verbände ausgesteiften stählernen Rahmens wird z.B. bei Ansatz von biegestarren Stößen und Anschlüssen an diesen Stellen zu große Biegemomente ergeben. Andererseits wird sie die Verformungen des Tragwerkes unterschätzen und damit möglicherweise Probleme beim Stabilitäts- und beim Gebrauchstauglichkeitsnachweis schaffen.

Bei Ansatz von reinen Momentengelenken werden andererseits die entstehenden Anschluß- bzw. Stoßmomente unterschätzt. Zur Stabilisierung werden dann weitere Konstruktionsteile, meist Verbände, erforderlich. Diese könnten entfallen, wenn man die tatsächlich vorhandene Steifigkeit in den Stößen und Anschlüssen in Ansatz bringt. Blatt - 2 -

Schließlich können die Auswirkungen von Zwangsverformungen wie z.B. Stützensenkungen und Wärmedehnungen (auch im Brandfall) auf das Tragwerk bei Ansatz realer Nachgiebigkeiten in den Stößen und Anschlüssen korrekter erfaßt werden. Dies wird im allgemeinen zu einer wirtschaftlicheren Bemessung für diese Belastungsfälle führen.

Entscheidend für die Nutzung bzw. Erfassung der Nachgiebigkeit von Stößen und Anschlüssen in statischen Berechnungen ist jedoch das Vorhandensein gesicherter Steifigkeitswerte in diesen Punkten.

Das Forschungsvorhaben "Einfluß der Nachgiebigkeiten von Stö-Ben und Anschlüssen auf die Standsicherheit stabilitätsgefährdeter Stahlbauten" war auf drei Forschungsjahre ausgelegt.

Dabei war es im ersten Forschungsjahr ein besonderes Anliegen neben der Auswirkung nachgiebiger Verbindungen auf den Stabilitätsnachweis, gerade solche Steifigkeitswerte für geschraubte Stöße und Anschlüsse zu ermitteln.

Dieser erste Schlußbericht bezieht sich nur auf die Ergebnisse des ersten Abschnittes. Die ursprünglich geplanten zwei weiteren Abschnitte sollen aufgrund neuerer Untersuchungen u.a. im DASt-Gemeinschaftsprogramm "Verbindungstechnik" entfallen. Weitere Einzeluntersuchungen werden am Lehrstuhl für Stahlbau der TU-München über Diplomarbeiten bzw. Dissertationen, zunächst ohne zusätzlichen Forschungsmittelbedarf, durchgeführt.

2. Stand der Untersuchungen

Neben der Sichtung wesentlicher nationaler und internationaler Literatur auf dem Gebiet "nachgiebiger Verbindungen im Stahlbau" wurden exemplarisch einige Stöße und Anschlüsse untersucht, welche hohe Ansprüche der Wirtschaftlichkeit erfüllen. Mit den ermittelten Dreh- und Senkfedersteifigkeiten wurden wiederum beispielhafte Standsicherheitsnachweise für praxisnahe stabilitätsgefährdete Stahlbauten durchgeführt. Blatt - 3 -

Im einzelnen wurden folgende Arbeiten erbracht:

- a. Sichtung nationaler und internationaler Literatur betreffend den einschlägigen Themenkreis. Hierbei wurden über 100 einschlägige Literaturstellen gesichtet und hinsichtlich ihrer Verwendbarkeit für Aussagen zum Forschungsthema untersucht. Die entsprechenden Literaturstellen sind von Nather in [1], und von Kreutz in [2], sowie in den erst Mitte bzw. Ende 1989 erschienenen zusammenfassenden Darstellungen [3] und [4] ausführlich behandelt.
- b. Ermittlung beanspruchungsabhängiger Drehfedersteifigkeiten von Laschenstößen unter Verwendung hochfester Schrauben der Güte 10.9 als SL-Verbindung.

Es wurden zwölf Biegeträger der IPE-Reihe untersucht (5 Träger IPE 400 sowie 7 Träger IPE 200). Die Belastung wurde so gewählt, daß an der rechnerischen Stoßstelle als Schnittgröße lediglich ein Biegemoment vorhanden war.

Als wichtige Parameter für die Nachgiebigkeit der Verbingen wurde neben der Profilgröße insbesondere das Lochspiel und die Vorspannung der Schrauben variiert. Der Versuchsbericht Nr. 105 des Lehrstuhls für Stahlbau vom Januar 1983 (Anlage 1) zeigt die Versuchsanordnung, sowie die Zusammenstellung der variierten Parameter.

c. Um die Extrapolation der Ergebnisse der Biegeträgerstöße auf andere geometrische Stoß- bzw. Anschlußverhältnisse vorzubereiten, wurden zusätzliche Untersuchungen an Einschraubenverbindungen durchgeführt. Wie Anlage 1 zeigt, wurden stets einschnittige Verbindungen untersucht. Neben dem Schrauben- und Lochdurchmesser wurde auch die rechnerische Exzentrizität der Wirkungslinie der Kraft im Zugblech und der Stoßlasche variiert, weshalb bei Prüfkörperform B die Stoßlasche U-Querschnitt hat.

Es wurden insgesamt 16 Einschraubenzugversuche durchgeführt, wobei sich, da stets zwei Schrauben geprüft wurden, insgesamt $2 \times 16 = 32$ "Einschraubenanschlußnachgiebigkeiten" ergaben. Blatt - 4 -

Zusammenstellungen der untersuchten Parameter sind im Versuchsbericht (Anlage 1) angegeben.

- d. Die vorausgehend untersuchten Nachgiebigkeiten sollen als Eingabegrößen für die Standsicherheitsnachweise stabilitätsgefährdeter Stahlbauten dienen. Daher wurden einige exemplarische Traglastuntersuchungen an ausgewählten Bauten durchgeführt, wobei verschiedene Parameter untersucht wurden. Im einzelnen wurden berechnet:
 - Ein mehrstöckiger Rahmen aus dem Industriebau (ebene Be-Betrachtung). Die Steifigkeiten der Biege- und Senkfedern wurden variiert.
 - 2. Ein Zweigelenkrahmen (ebene Betrachtung) als häufigstes System des Stahlhochbaus. Hierbei wurde insbesondere der Einfluß der unterschiedlichen Lage der Stöße im Tragsystem untersucht.
 - 3. Ein zweischiffiger Hallenrahmen mit biegebeanspruchten Rahmenstößen und normalkraftbeanspruchten Verbandsfeldanschlüssen. Hierbei wurde eine räumliche Betrachtung durchgeführt.
 - 4. Ein Verbandsfeld mit zahlreichen Konstruktionsparametern bei den Anschlüssen, wiederum als räumliche Betrachtung.

Systeme, Berechnungsannahmen und Ergebnisse sind im Untersuchungsbericht Nr. 105a (Anlage 2) dargestellt.

e. Bereits bei den unter Punkt d.) durchgeführten Berechnungen war es nötig, eine Umrechnung der unter b.) und c.) ermittelten Nachgiebigkeiten von Stößen und Anschlüssen auf andere Geometrien vorzunehmen.

Es werden daher Berechnungsmodelle untersucht, die auf der Basis der Finit-Element-Methode einerseits eine Nachrechnung der Einschraubenversuche (inclusive Schlupfbetrachtungen) ermöglichen sollen und andererseits, entsprechend kalibriert, auch eine Nachrechnung der Biegeträgerversuche zulassen. Die Übertragung auf andere geometrische Stoß- und Anschlußformen wird dadurch erleichtert.

Blatt - 5 -

f. Schließlich wurden Untersuchungen zum Kraftverlauf in der Einzelschraube und im anschließenden Blechbereich, als reine lokale Untersuchung, auf der Basis der Finit-Element-Rechnung begonnen. Sie sollten Auskunft über das für die Gesamtnachgiebigkeit des Anschlusses so wichtige Detailverhalten der Schraube liefern.

3. Ergebnisse der Untersuchungen

Die Ergebnisse der Versuche und die Traglastuntersuchungen an den unter Punkt 2 aufgeführten Stahlbauten können zunächst nur als exemplarische Erkenntnisse gewertet werden. Sie sind mit Sicherheit noch nicht bereichsdeckend und können im statistischen Sinne nicht gewichtet werden. Es ergaben sich im einzelnen folgende Erkenntnisse:

3.1. Literatursichtung

Die Sichtung der Literatur ergab, daß i.a. nur sehr speziell auf den einzelnen untersuchten Fall bezogene Versuchsergebnisse zur "Nachgiebigkeit von Verbindungen im Stahlbau" veröffentlicht sind. Teilweise sind sie aufgrund fehlender Angaben zu den tatsächlich vorhandenen Geometrien und Werkstoffpaarungen nicht nachvollziehbar. Eine erheblich größere Anzahl von Veröffentlichungen geht auf die angesprochene Thematik bei genieteten Bauteilen ein. Diese sind jedoch nur sehr eingeschränkt auf die vorliegenden geschraubten Konstruktionen anwendbar. Ein Teil der angelsächsischen Literatur bezieht sich auf andere Anschlußformen und selbstverständlich andere Profil- und Werkstoffpaarungen.

Veröffentlichungen von Steinhardt, Scheer, Valtinat, Lindner und Schmidt, zu Schraubenverbindungen des heutigen Stahlbaus ergaben dagegen Beiträge zum angesprochenen Forschungsthema. Die Untersuchungen wurden z.T. im Rahmen des DASt-Gemeinschaftsprogrammes "Schraubenverbindungen" abgewickelt und in mehreren Forschungsberichten veröffentlicht (s. z.B. [7], [8], [9]). Blatt - 6 -

Darüber hinaus wurde im Rahmen eines Forschungsberichtes von Uhlmann [5], im Zusammenhang mit mehrteiligen Druckstützen, auf Fragen der Nachgiebigkeit der Verbindungen hingewiesen.

Neuere Initiativen auf diesem Forschungsgebiet [3], [4] stehen z.T. im Zusammenhang mit der Schaffung von Eurocode 3 [6]. In Eurocode 3 ist erstmals in einem Normenwerk, das auch Gültigkeit für Deutschland haben wird, bei Biegemomentenanschlüssen eine Abgrenzung "gelenkig-halbsteif-starr" angegeben, sowie die Ausnutzung dieser Eigenschaften ermöglicht, sofern ausreichend gesicherte Momenten-Verdrehungs-Beziehungen vorhanden sind. Im Anhang J gibt der Eurocode auch einen rechnerischen Weg zur Ermittlung einer Drehfedersteifigkeit an.

Derartige Momenten-Verdrehungsbeziehungen werden, wie unter Punkt 3.2 bzw. 3.3 näher beschrieben, in [3] und [4] beispielhaft angegeben. Die Lösung des Anhangs J von Eurocode 3 stammt aus [3] bzw. [4].

3.2 Beanspruchungsabhängige Drehfedersteifigkeiten

Die durchgeführten Biegeträgerversuche zeigten bereits bei Gebrauchslast eine etwa doppelt so große Mittendurchsenkung wie rechnerisch an einem ungestoßenen Vergleichsträger ermittelt wird. Hierbei wurde beim Zusammenbau der Träger versucht, einen möglichst geraden Träger zu erzeugen. Der maximal mögliche Schraubenschlupf wurde hier nicht voll ausgenutzt.

Die Ergebnisse der Durchsenkungsmessungen und der Messungen der Relativverschiebungen im Mittenbereich des Trägers sind im Versuchsbericht (Anlage 1) enthalten. Der Einfluß der Versuchsparameter Lochspiel und Vorspannung sowie der Trägerhöhe wird deutlich. Die sich ergebenden Drehfedersteifigkeiten, ermittelt aus Meßwerten unterschiedlicher Meßverfahren, sind im Versuchsbericht (Anlage 1, S. 36, 37 bzw. 40 bis 44) dargestellt. Die Federsteifigkeiten nehmen Blatt - 7 -

bereits unterhalb der Gebrauchslast ab und bleiben dann bis zur Traglast näherungsweise konstant.

Die von Nethercot und Zandonini in [4] aufgeführten Versuchsergebnisse für geschraubte Riegel-Stützenanschlüsse mittels Steg- und Flanschwinkeln, zeigen bei den Drehfedersteifigkeiten einen im Prinzip ähnlichen Verlauf. Sie unterscheiden sich jedoch wegen abweichender geometrischer Parameter etc. von den Ergebnissen dieses Forschungsvorhabens.

3.3 Federsteifigkeiten von einschnittig beanspruchten Einschraubenverbindungen u.a. für die Übertragung auf Biegeträgerstöße mit anderen Abmessungen

Bei den ergänzenden Versuchen an einschnittig beanspruchten Einschraubenverbindungen wurden die Versuchskörper ebenfalls nicht speziell so zusammengebaut, daß sich stets der maximal mögliche Schlupf einstellen konnte, sondern es wurde dem Zufall überlassen, welches tatsächliche Lochspiel entstand. Im Teil B des Versuchsberichtes sind die Last-Verschiebungs-Kurven für die Einschraubenversuche dargestellt. Der unterschiedliche tatsächliche Schlupf, der sich bei rund 80 % der Gebrauchslast bereits voll ausgebildet hat, wird deutlich. Entsprechend haben auch die nicht schlupfbereinigten Federsteifigkeiten große Streuungen. Die auf die Gebrauchslast bzw. die auf die Traglast bezogenen, schlupf- und nicht schlupfbereinigten Federsteifigkeiten sind ebenfalls im Versuchsbericht (Anlage 1) dargestellt. Hierbei wurde für Schrauben M16 und M20 - 10.9 die Abhängigkeit vom Lochspiel und die Abhängigkeit von der rechnerischen Exzentrizität dargestellt.

Die ermittelten Last-Verschiebungs-Kurven und die daraus resultierenden beanspruchungsabhängigen Senkfederkonstanten sind bei den Verbandstabanschlüssen und bei der Bestimmung von Drehfedersteifigkeiten mit abweichenden geometrischen Verhältnissen verwendet worden. Auf den Seiten 14 bis 19 des Untersuchungsberichtes Nr. 105a (Anlage 2) sind derartige Umsetzungen angegeben und nachfolgend unter Pkt. 3.5 behandelt. Blatt - 8 -

3.4 Ausgewählte Beispiele für den Einfluß der Nachgiebigkeit von Stößen und Anschlüssen auf die Standsicherheit stabilitätsgefährdeter Stahlbauten

Im Untersuchungsbericht Nr. 105a (Anlage 2) sind die Ergebnisse der Berechnungen unter Einbeziehung der Nachgiebigkeit der Stöße und Anschlüsse dargestellt.

Ergänzend hierzu sind auf Anlage 5 Berechnungsergebnisse einer Diplomarbeit von Felkel [13] angegeben, die an einem ausgeführten Erweiterungsbau, mit für die Diplomarbeit erhöhten Verkehrslasten, die wirtschaftlich vorteilhafte Auswirkung nachgiebiger Verbindungen zeigen.

Weitere Parameterstudien an statischen Systemen aus dem Stahlhochbau werden im Rahmen von Arbeiten des Lehrstuhls, ohne Finanzierung durch das Institut für Bautechnik, durchgeführt.

3.5 Entwicklung eines Modells für die Idealisierung einer einzelnen SL-beanspruchten Schraube und dessen Anwendung auf untersuchte Gesamtstöße

Die Entwicklung eines Modelles für die Idealisierung einer einzelnen SL-beanspruchten Schraube mit ihrem nichtlinearen Kraft-Verformungsverhalten ist im Untersuchungsbericht (Anlage 2) dargestellt. Die Entwicklung des SL-Schraubenmodells erfolgte dabei empirisch aus den durchgeführten Ein-Schrauben-Versuchen. Das Modell wurde an den Gesamtstößen, über die im Versuchsbericht umfassende Darstellungen angegeben sind, überprüft. Die Betrachtung der Kraft-Verformungs-Kurven aus dem Versuch und aus der Nachrechnung ergab sehr gute Übereinstimmungen.

Weitere rechnerische Wege zur Ermittlung der Drehfedersteifigkeiten, insbesondere für Stirnplattenanschlüsse, wurden von Kreutz in [2] und von Nethercot und Zandonini in [4] dargelegt. Nethercot und Zandonini setzen die Nachgiebigkeit eines Blatt - 9 -

Stirnplattenanschlusses "Riegel-Stiel" aus maßgebenden Einzelverformungsanteilen zusammen, nämlich

- der Schubnachgiebigkeit des Stützensteges im Anschlußbereich,
- der Steifigkeit des Stützenprofile gegenüber Normalkraftbeanspruchung (infolge Zug oder Druck),
- der Nachgiebigkeit des Stützenflansches infolge der Beanspruchung durch die Zugkräfte der Schrauben bzw. die Druckkräfte des anstehenden Riegelflansches
- die Nachgiebigkeit der Schrauben auf Zugbeanspruchung
- sowie die Nachgiebigkeit der Stirnplatte des Riegels.

Diese Aufteilung entspricht weitgehend den Ersatzfedern, wie sie von Tschemmernegg [11] und Tautschnig [12] für das "makromechanische Modell" eines Riegel-Stielanschlusses mit Stirnplatte zur Berücksichtigung der Nachgiebigkeit des Anschlusses vorgeschlagen werden.

Auch der Eurocode 3 gibt im Anhang J dieses Verfahren zur rechnerischen Ermittlung der Drehfedersteifigkeit an.

Das Problem, daß die Federsteifigkeit einer Schnittgröße an einem räumlich beanspruchten Knoten streng betrachet nicht von der Wirkung der übrigen Schnittgrößen entkoppelt werden kann, wurde von Techmer [10] für einen zweiachsig biegebeanspruchten Stirnplattenanschluß mittels räumlicher Finit-Element-Rechnung untersucht. Die Kurzdarstellung eines Ergebnisses dieser Diplomarbeit ist in Anlage 3 wiedergegeben.

Auf die Bedeutung der Nachgiebigkeit von Verbindungen bei Verbundkonstruktionen des Hochbaus weist Zandonini in [4] hin. - Ergänzend zum hier vorgegebenen Forschungsthema, welches zunächst auf reine Stahlkonstruktionen ausgerichtet war, sind daher in Anlage 4 einige Aspekte zu Verbundkonstruktionen zusammengestellt.

3.6 Der lokale Kraftverlauf in der Einzelschraube und im direkt anschließenden Blechbereich

Auf der Basis der Finit-Element-Rechnung war beabsichtigt den lokalen Kraftverlauf in der Einzelschraube und im direkt anschließenden Blechbereich zu ermitteln. Eine erste Veröffentlichung (außerhalb des Forschungsvorhabens) liegt vor (s. Versuchsbericht 105a). Darin wird jedoch nur ein ebenes FE-Modell betrachtet, welches z.B. die Kontaktpressungsfragen nicht ausreichend wiedergeben kann.

Im Rahmen des hier vorgegebenen einjährigen Forschungsprogrammes konnte jedoch die räumliche FE-Betrachtung nicht zum Abschluß gebracht werden. Aufgrund der günstigen Ergebnisse mit den kalibrierten Federmodellen für die Einzelschraube (s. Pkt. 3.5) erscheint diese Untersuchung nicht mehr so dringlich.

4. Weiteres Vorgehen und Hinweise auf offene Fragen

Aufgrund neuerer Untersuchungen auch anderer Forschungsstätten im Rahmen des DASt-Gemeinschaftsprogrammes "Verbindungstechnik" wird das Programm, soweit ursprünglich geplant, hiermit abgeschlossen.

Die Ergebnisse sind aufgrund der Beschränkung auf nur ein Förderungsjahr natürlicherweise nicht so bereichsdeckend, wie sie ursprünglich für das Dreijahresprogramm vorgesehen waren.

Weitere Aktivitäten zur experimentellen Absicherung von anzusetzenden Federsteifigkeiten, für Stöße und Anschlüsse, scheinen trotz rechnerischer Ansätze, wie z.B. im Eurocode 3, notwendig, insbesondere dann, wenn die Verbindungsmittel Schlupf zulassen.

Dabei sollte auch untersucht werden, wie sich die anderen, an einem Knoten wirkenden Schnittgrößen, auf die Federsteifigkeit der ausgelösten Schnittgröße auswirken. Blatt - 11 -

Generell sollten nominell starre und gelenkige Anschlüsse auf ihre Nachgiebigkeit hin untersucht werden. Zugleich sollten Werte der erreichbaren Rotationskapazitäten für die Absicherung der plastischen Bemessung weiter experimentell untermauert werden.

Bei der statischen Bemessung von Stahl- und Stahlverbundbauten im Hochbau wäre stärker auf die wirtschaftlichen Vorteile zu verweisen, die mit wirklichkeitsnahen Annahmen der Steifigkeit von sog. starren Knoten bzw. Gelenken erzielt werden können. Der Nachteil des größeren Rechenaufwandes wäre dann meist vertretbar.

Bei den Nachweisen der Gebrauchstauglichkeit ist damit eine größere Wirklichkeitsnähe zu erzielen.

Forschungsleiter:

(Univ.-Prof. Dipl.-Ing. F. Nather)

Sachbearbeiter:

J. Flassen.

(Dr.-Ing. G. Klassen)

An Teilen dieses Schlußberichts hat Herr Dr.-Ing. J.-St. Kreutz, der am 13.6.1986 ausgeschieden ist, als Sachbearbeiter mitgewirkt.

Anlage 1: Belastungsversuche an Biegeträgern mit geschraubten Laschenstößen, sowie an zugbeanspruchten geschraubten Stabanschlüssen zur Abschätzung der Nachgiebigkeit der Stöße und Anschlüsse. - Versuchsbericht Nr. 105 des Lehrstuhls für Stahlbau der TU-München. Jan. 1983. Blatt - 12 -

- Anlage 2: Einfluß der Nachgiebigkeiten von Stößen und Anschlüssen auf die Standsicherheit stabilitätsgefährdeter Stahlbauten. - Untersuchungsbericht Nr. 105a des Lehrstuhls für Stahlbau der TU-München. Nov. 1985.
- Anlage 3: Untersuchung des Einflusses der Verbindungsmittelnachgiebigkeit auf die Steifigkeit von Stirnplattenanschlüssen unter räumlicher Belastung. - Teilergebnis aus Diplomarbeit Nr. 167 des Lehrstuhls für Stahlbau der TU-München; Techmer, O.
- Anlage 4: Zur Nachgiebigkeit der Stöße und Anschlüsse von Verbundkonstruktionen im Hochbau - Dipl.-Ing. F.Neuner.
- Anlage 5: Kurzfassung einiger Berechnungsergebnisse der Diplomarbeit von A. Felkel (Nr. 171 des Lehrstuhls für Stahlbau der TU-München)

Blatt - 13 -

Literatur:

- [1] Nather, F.: Standsicherheit von Stahlbauten unter Berücksichtung der Nachgiebigkeit von Verbindungen. Mitt: aus dem Lehrstuhl für Stahlbau, TUM, Heft 16, 1980.
- [2] Kreutz, J.-St.: Ein Beitrag zur Beigeknickbemessung von Stahlhochbaukonstruktionen mit IPE- und HE-Profilen in: Mitt. aus dem Lehrstuhl für Stahlbau, TUM, Heft 21, 1984.
- [3] Bijlaard, F.S.K.; Nethercot, D.A.; Stark, J.W.B.; Tschemmernegg, F.; Zoetemeijer, P.: Structural Properties of Semi-Rigid Joints of Steel Frames. IABSE SURVEYS S-42/89. Zürich, Mai 1989 (dort weitere Literaturhinweise).
- [4] Narayanan, R.: Structural Connections. Stability and Strength. Elsevier Applied Science. London 1989 (dort weitere Literaturhinweise).
- [5] Uhlmann, W.: Mehrteilige Druckstäbe. 1. Arbeitsbericht zum Forschungsvorhaben Uh 28/8. TH-Darmstadt 1984.
- [6] Commission of the European Communities: Eurocode No. 3. Design of Steel Structurs. Part 1. - General Rules and Rules for Buildings. Edited draft, Issue 3, April 1990, London 1990.
- [7] Scheer, J.; Maier, W.; Klahold, M.; Vajen, K.: Bestimmung der reinen Lochleibungsfestigkeiten und des Lochleibungspressungs-Verformungsverhaltens. Bericht Nr. 6066 des Instituts für Stahlbau der TU-Braunschweig. Braunschweig Dez. 1985.
- [8] Steinhardt, O.: Verbindungstechnik Allgemeine Hinweise. In: Stahlbau Handbuch. Band 1. S. 395 - 401. Stahlbau-Verlags-GmbH. Köln 1982.

Blatt - 14 -

- [9] Valtinat, G.: Verbindungstechnik Schraubenverbindungen. In: Stahlbau Handbuch. Band 1. S. 402 - 425. Stahlbau-Verlags-GmbH. Köln 1982.
- [10] Diplomarbeit Nr. 167; Lehrstuhl für Stahlbau, TU-München; Techmer, O.: Untersuchung des Einflusses der Verbindungsmittelnachgiebigkeit auf die Steifigkeit von Stirnplattenanschlüssen unter räumlicher Belastung.
- [11] Tschemmernegg, F.; Tautschnig, A.; Klein, H.; Braun, Ch.; Humer, Ch.: Zur Nachgiebigkeit von Rahmenknoten. Der Stahlbau 56/1987). S. 299 - 306.
- [12] Tautschnig, A.: Makromechanisches Knotenmodell zur Berücksichtigung der nichtlinearen Nachgiebigkeit von Verbindungselementen. Dissertation, Universität Innsbruck. 1983.
- [13] Diplomarbeit Nr. 171; Lehrstuhl für Stahlbau, TU-München; Felkel, A.: Eine Gegenüberstellung der Bemessung eines zweigeschossigen, ebenen Stochwerkrahmens in Stahl nach der gültigen DIN 18800 (incl. DIN 4114) Ausg. 3.81., nach EDIN 18800, Ausg. 3.88. und nach Eurocode 3, Stand 7.88.
- [14] Cosenza, E., De Luca, A. and Faella, C.: Nonlinear behaviour of framed structures with semirigid joints. Costruzioni Metalliche 36 (1984), pp. 199 -211.
- [15] Tschemmernegg, F., Lener, G. und Tans, M.: Zur Nachgiebigkeit von Rahmenknoten, Teil 2. Stahlbau 58 (1989), S. 45 - 52.
- [16] Stutzki, Ch.: Traglastberechnung räumlicher Stabwerke unter Berücksichtigung verformbarer Anschlüsse. Dissertation RWTH Aachen. Schriftenreihe Lehrstuhl für Stahlbau, Heft 3, Aachen 1982.

Anlage 1

VERSUCHSBERICHT

Betr.: Belastungsversuche an Biegeträgern mit geschraubten Laschenstößen, sowie an zugbeanspruchten geschraubten Stabanschlüssen zur Abschätzung der Nachgiebigkeit der Stöße und Anschlüsse.

Auftraggeber: Institut für Bautechnik, Referat IV/1, Reichpietschufer 72 - 76, 1000 Berlin 30 Vertrag vom 14.12.1979, Az.: IV/1-5-250/80

Versuchsdurchführung: Lehrstuhl für Stahlbau, TU München, Arcisstraße 21, 8000 München 2

Unsere Auftragsnr.: 105

Lehrstuhlinhaber: 0.Prof.Dipl.-Ing.F.Nather Sachbearbeiter: Dr.-Ing. G. Klassen

Ein Teil der Versuche und Auswertungen wurde von Herrn Dipl.-Ing. A. Dylla durchgeführt, der zum 1.4.1981 ausschied.

München, Januar 1983

Inhaltsverzeichnis

Eir	nführung und Ziel der Untersuchungen	1				
Α.	2					
Α.	1. Versuchskörper	2				
Α.	2. Anzahl der Versuchskörper	3				
A.	3. Belastungsanordnung und Belastungsfolge	4				
Α.	4. Anordnung der Messtellen an den Biegeträgern	5				
Α.	5. Messergebnisse der Biegeträgerversuche	5				
Β.	Untersuchungen an zugbeanspruchten Einschrauben-	8				
	verbindungen					
B.	1. Versuchskörper der "Einschraubenzugversuche",	9				
	Versuchsparameter und -Anzahl					
B.	2. Belastungsanordnung und Belastungsfolge	10				
B.	3. Anordnung der Messtellen	11				
Β.	4. Messergebnisse	11				
Zus	15					
Zus	I – X					
Zusammenstellung der verwendeten Bezeichnungen XI						

Einführung und Ziel der Untersuchungen

Die in diesem Bericht beschriebenen Versuche sind Teil des Forschungsauftrages "Einfluß der Nachgiebigkeiten von Stößen und Anschlüssen auf die Standsicherheit stabilitätsgefährdeter Stahlbauten", dessen Auftraggeber das Institut für Bautechnik, Berlin ist.

Mit Hilfe von Belastungsversuchen sind für ausgewählte Biegeträgerstöße als Laschenstöße und zugbeanspruchte Stabanschlüsse quantitative Angaben über die Nachgiebigkeit der Verbindungen zu ermitteln.

Stirnplattenstöße wurden in die Untersuchungen nicht einbezogen, da diese in der Literatur ausreichend behandelt sind. Die Gestaltung der Stöße und Anschlüsse wurde weitestgehend praxisgerecht ausgeführt. Die Parameter wurden so gewählt, daß die Ergebnisse keine Extremaussagen, sondern Durchschnittswerte erwarten lassen.

Die gewählten Profile der Biegeträger entstammen der IPE-Profilreihe. Als Verbindungsmittel wurden hochfeste Schrauben der Güte 10.9 bei Verwendung als Scher-Lochleibungsverbindung eingesetzt. Das Lochspiel wurde überwiegend auf 1,0 und 2,0 mm begrenzt.

Als Stahl wurde St 37-2 verwendet. Für die zugbeanspruchten Anschlüsse wurde entsprechend vorgegangen.

An diesen speziellen Prüfkörpern sollte einerseits der Verlauf der Verformungen der Stöße und Anschlüsse in Abhängigkeit von der Beanspruchung ermittelt werden und andererseits daraus resultierend belastungsabhängige Drehfeder- bzw. Senkfedersteifigkeiten bestimmt werden. Diese Federsteifigkeiten werden als Eingabewerte für exemplarische Standsicherheitsnachweise benötigt, welche den Einfluß der Nachgiebigkeit der Verbindungen und Anschlüsse insbesondere auf stabilitätsgefährdete Stahlkonstruktionen aufzeigen sollen.

Um die Extrapolation der Ergebnisse der Vielschraubenverbindungen auf andere geometrische Stoß- bzw. Anschlußverhältnisse vorzubereiten, wurden zusätzlich Untersuchungen an Einschraubenverbindungen durchgeführt.

- 2 -

Als wichtige Parameter für die Nachgiebigkeit der Verbindungen wurden neben der Profilgröße insbesondere das Lochspiel und die Vorspannung der Schrauben variiert.

Die Träger und Bleche sowie die Schrauben wurden vom deutschen Stahlhandel bezogen und daraus in der Werkstätte des Instituts die Prüfkörper gefertigt.

Die Ausführung lag in den Händen der Werkmeister Fischer und Richter.

Die durchgeführten Versuche bilden einen Anfang für weitere experimentelle und rechnerische Untersuchungen.

Die nachfolgenden Ausführungen werden in zwei Berichtsteile aufgegliedert. Der Teil A umfaßt die Untersuchungsergebnisse der Bieteträgerstöße. Teil B dagegen behandelt die Versuche an zugbeanspruchten Einschraubenverbindungen.

A. Untersuchungen an Biegeträgerstössen

A. 1. Versuchskörper

Auf den Bildern 1 und 2 sind die Abmessungen der untersuchten Biegeträger - IPE 400-Profile und IPE 200-Profile - angegeben. Die gewählten Schraubendurchmesser und Schraubenabstände entsprechen den Anforderungen der DIN 1050 bzw. DIN 18800, Teil 1. Bei den Schraubenabständen wurden weitgehend die Minimalwerte ausgenützt.

In allen Fällen wurden die Schrauben im Stoß als im Sinne einer Scher-Lochleibungsverbindung tragend angenommen. Die Berührungsflächen der miteinander verschraubten Teile wurden nur entfettet und mit der Drahtbürste vom Flugrost befreit. - Die zu verbindenden Teile wurden nicht sandgestrahlt und auch nicht mit einem Primer versehen.

Beim Zusammenbau der Trägerteile wurde versucht, einen möglichst geraden Träger zu erzeugen. Eine Überhöhung der Träger zum Zweck des vollen Ausnützens des Lochspieles wurde daher nicht vorgenommen.

- 3 -

Auf den Bildern 4 bis 7 sind die wichtigsten Angaben zur tatsächlichen Geometrie der Träger und der Stoßlaschen angegeben. Das Bild 10 enthält die Angaben zur tatsächlichen Geometrie an Stichproben der Verbindungsmittel. Die Bilder 12 bis 15 schließlich zeigen exemplarisch die tatsächlichen Schraubenlochbilder an den Trägern und Laschen. Die übrigen Aufmessungen der Lochbilder wurden zu den Akten genommen.

Die Bilder 8, 9 und 11 geben die am Träger- und Laschenmaterial bzw. bei den Verbindungsmitteln tatsächlich vorgefundenen Festigkeitskenngrößen wieder.

Die Zugfestigkeit der Schrauben wurde über die Härteprüfung ermittelt.

Die Abweichungen zwischen der Sollgeometrie und der vorgefundenen Geometrie liegen im Rahmen der Regelungen der zuständigen Toleranznormen. Dies gilt i.a. auch für die kontrollierten Festigkeitskenngrößen des Träger- und Laschenmaterials sowie der Verbindungsmittel. Eine Ausnahme bildet ein Härtewert einer Sechskantmutter M20 nach DIN 6915 auf Bild 11. Es ergab sich ein deutlich unter dem Sollwert liegender Härtewert.

Die Schrauben wurden im leicht geölten Zustand eingebracht und durch einen geeichten Momentenschlüssel nach dem Drehmomentverfahren angezogen. Die Einstellwerte wurden so gewählt, daß bei der axialen Vorspannung der Schrauben (0,5 \cdot F_V nach DIN 18800, Teil 1, Tab. 9) stets der noch zulässige Minimalwert aufgebracht wurde.

A. 2. Anzahl der Versuchskörper

Die in diesem Bericht behandelten Versuche können aufgrund ihrer geringen Zahl paralleler Versuche mit gleichen Parametern, im statistischen Sinne nur schwer bewertet werden. Mit Trägern des Profils IPE 400 wurden insgesamt fünf Versuche durchgeführt, während vom Profil IPE 200 insgesamt sieben Biegeträger untersucht wurden. Eine Zusammenstellung der untersuchten Prüfkörper zeigt Bild 3.

- 3 -

- 4 -

Für den bisher in der Praxis am häufigsten vorkommenden Fall "Lochspiel 1,0 mm (nach DIN 18800, Teil 1 Lochspiel 2,0 mm) und Vorspannung vorh $F_V \stackrel{\geq}{=} 0,5 \cdot F_V$ (F_V n. Tag. 9 DIN 18800, Teil 1) wurden jeweils zwei Versuche durchgeführt.

Die Versuche mit einer Vorspannung von 1,0 $\,\cdot\,\,F_V^{}$ der Schrauben, geben in der Tendenz den Einfluß der Schraubenvorspannung wieder.

Der Einfluß des Lochspieles kann insbesondere bei der Gegenüberstellung der Ergebnisse an Schraubenverbindungen mit 1,0 bzw. 2,0 mm Lochspiel und an Paßschraubenverbindungen verdeutlicht werden. Deshalb war je Profilgröße jeweils ein Versuch mit Paßschrauben als Verbindungsmittel vorgesehen. Paßschrauben M12 in der Festigkeitsklasse 10.9 konnten jedoch bei den gegebenen Zeitgrenzen nicht zu vertretbaren Kosten beschafft werden.

A. 3. Belastungsanordnung und Belastungsfolge

Die Biegeträgerversuche sollten quantitative Angaben zur Abhängigkeit der Drehfedersteifigkeit vom aufgebrachten Moment liefern. Es wurde daher eine Belastungsanordnung gewählt, die, abgesehen vom Eigengewichstanteil des Trägers, ein konstantes Moment im Stoßbereich ergibt. Die Bilder 1 und 2 zeigen die Belastungsanordnung.

Um die Gefahr des Trägerkippens auszuschalten, wurden die Versuchskörper im Bereich der Krafteinleitung vertikal geführt. Eine Aufnahme von Vertikalkräften in den Führungen wurde konstruktiv ausgeschlossen.

Alle Be- und Entlastungen wurden quasistatisch vorgenommen, d. h. mit einer Be- und Entlastungsgeschwindigkeit von rund 0,75 kN/sec. Bei Erreichen des entsprechenden Lastzuwachses wurde die Last mit Hilfe einer automatischen Konstanthaltung angehalten. Der mögliche maschinenbedingte Fehler bei der Lastaufbrindung beträgt bei den Versuchen an den IPE400-Trägern rund ± 0,125 kN und bei den Versuchen an den IPE200-Trägern rund ± 0,05 kN.

- 5 -

Die Belastung wurde stufenweise aufgebracht. Nach jedem neuen Belastungszuwachs wurde entlastet, um so auch den Verlauf der bleibenden Verformungen erfassen zu können. Als erreichbare Maximallast wurde jene Last definiert, bei der infolge rasch zunehmender Verformung der Träger die hydraulischen Pressen nicht mehr in der Lage waren, die Last zu steigern bzw. zu halten. Dieses Versagensverhalten trat bei allen Biegeträgern auf.

Eine Ansicht des eingebauten Versuchskörpers zeigt Bild 16.

A. 4. Anordnung der Messtellen an den Biegeträgern

Die Erfassung der unter den Versuchslasten auftretenden Verfromungen geschah durch Weguhren und Rollenmeßgeräte. Die Genauigkeit der Weguhren liegt bei 10⁻² mm, die der Rollenmeßgeräte bei 10⁻¹ mm. Mit den Weguhren U2O, U23 und U24 wurden die Gesamtdurchsenkungen des Trägers unter den Lasteinleitungsstellen und in Trägermitte gemessen, während mit den Weguhren U10 bis U17 die Relativverformungen des Stoßes im Bereich der unteren Flanschlasche gegenüber einem in Trägermitte befestigten Meßbalken aufgenommen wurden. Die Bilder 17 und 18 geben die Lage der Meßstellen an.

Die Rollenmeßgeräte HR1 bis HR3 sollten nur eventuelle unplanmäßige seitliche Verschiebungen anzeigen.

A. 5. Messergebnisse der Biegeträgerversuche

Die Gesamtdurchsenkungen in Trägermitte sind für die IPE400-Versuche auf Bild 19 und für die IPE200-Versuche auf Bild 20 dargestellt. Man erkennt, daß bereits bei Gebrauchslast für Stöße mit einem oder zwei Millimeter Lochspiel und 0,5 [•] F_V - Vorspannung der Schrauben, etwa der zwei- bis dreifache Durchbiegungsbetrag auftritt, wie man ihn rechnerisch an einem ungestoßenen Vergleichsträger ermitteln würde. Infolge des stärkeren Einflusses des Lochspieles ist dieser Unterschied

- 6 -

zwischen rechnerisch ermittelter Durchbiegung am ungestoßenen Vergleichsträger und tatsächlich im Versuch auftretender Durchbiegung bei den Trägern IPE 200 noch deutlicher.

Die erreichten Traglasten - entsprechend der Definition unter Punkt 3 - nehmen bei Vergrößerung des Lochspieles zu.

Auf den Bildern 21 und 22 sind die Mittendurchsenkungen, sowie die Durchsenkungen unter den Lasteinleitungen, aufgespalten in bleibende und elastische Verschiebungsanteile, angegeben. Unter "bleibenden" Verschiebungsanteilen sind Verschiebungen infolge von Schlupfbewegungen und solche infolge von Materialplastizierungen zu verstehen.

Die Ergebnisse der Relativverschiebungsmessungen an den Weguhren U10 bis U17 sind exemplarisch für je einen Versuch der IPE400- wie der IPE200-Reihe auf den Bildern 23 und 24 dargestellt. Es zeigt sich, daß trotz möglichst genauer Einjustierung von Versuchskörper und Belastungszylinder z. T. unsymmetrische Relativverformungen r_i , vor allem bei den Trägern IPE 200 auftreten. Auf Bild 25 ist dieser Effekt nochmals erläutert. Es wurde daher bei den späteren Auswertungen auf die gemittelten Relativverformungen r_{ik} Bezug genommen, die aus zusammengehörigen Meßstellen ermittelt wurden.

Die Bilder 26 und 27 geben die gemessenen, gemittelten Relativverformungen r_{ik} für die IPE400- und IPE200-Träger, aufgeteilt in bleibende und elastische Verformungsanteile, wieder. Die Werte dieser Relativverformungen werden später zur Ermittlung der Drehfedersteifigkeiten C_{DSt} verwendet.

Auf Bild 28 sind exemplarisch für einen Trägerstoß an einem IPE 400 die Verformungsanteile des aus den gemessenen Mittendurchsenkungen V_{20} ermittelten Verdrehwinkels über dem an der Stoßstelle vorhandenen Moment M_{I-I} aufgetragen. Der Verformungsanteil aus der rechnerischen Durchbiegung des ungesto-Benen Vergleichsträgers wurde hierbei gegenübergestellt.

Bild 29 zeigt den gleichen Zusammenhang für einen Trägerstoß IPE 200. Die Bilder 30 und 31 zeigen diesen Zusammenhang für die Versuche I bis VIII. Auf den Bildern 32 und 33 sind die aus der Mittendurchsenkung V₂₀ für die Versuche I bis VIII ermittelten Drehfedersteifigkeiten C_D in Abhängigkeit vom Stoßmoment M_{I-I} dargestellt. Der Anteil der rechnerisch ermittelten elastischen Mittendurchsenkung wurde hierbei bereits abgezogen.

Aus den gemessenen gemittelten Relativverformungen r_{ik} lassen sich, wie bereits erwähnt, Verdrehwinkel $\mathcal{G}_{\text{Vi,k}}$ ermitteln und deren Verlauf in Abhängigkeit vom Stoßmoment M_{T-T} darstellen. Bild 34 zeigt dies für einen Trägerstoß IPE 400 und Bild 35 den entsprechenden Zusammenhang für einen Trägerstoß IPE 200. Die sich für einen ungestoßenen Vergleichsträger rechnerisch ergebenden $\mathscr{G}^*_{\mathrm{Ri},\mathrm{k}}$ sind wiederum gegenübergestellt. Die Rechnung geht hierbei davon aus, daß die Träger im gesamten Mittenbereich zwischen den beiden Lasteinleitungsstellen guerkraftfrei ist. Infolge des Trägereigengewichtes ist dies nur näherungsweise korrekt. Das vorhandene Moment im von den Stoßlaschen beeinflußten Bereich ist daher in Wirklichkeit nicht konstant. Dieser zwar im Rahmen der Meßgenauigkeit liegende Einfluß geht mit in die Versuchsergebnisse ein. Trotzdem zeigen die Kurven $\mathcal{Y}_{\text{Vi,k}}$ eine wesentlich breitere Streuung als die rechnerischen Kurven $\mathcal{G}_{\text{Ri,k}}$. Insbesondere die Kurven Y v13, 14 und Yv12, 15 zeigen z. T. Streuungen, die verdeutlichen, daß man sich im Bereich der Meßgenauigkeit der Versuchseinrichtung befindet.

Bei der Ermittlung der aus den Relativverformungen r_{ik} ermittelten Drehfedersteifigkeiten C_{DSt} wurden daher durch lineare Interpolation zwischen r_{11} , 16 und r_{10} , 17 auf das Ende der Flanschlasche bezogen. Auf den Bildern 36 und 37 sind die aus den Mittendurchsenkungen V_{20} und die aus den r_{ik} ermittelten Drehfedersteifigkeiten C_D und C_{DSt} für die Versuche I bis IV gegenübergestellt. Es zeigt sich bis zur Elastischen Grenz-last eine gute Übereinstimmung beider Ergebnisse. Die Abweichung beträgt maximal rund 15 %. Im Bereich der Traglast unterscheiden sich die beiden Kurven C_D und C_{DSt} stärker. Die Drehfedersteifigkeit C_D ist, so wie sie hier ermittelt wurde, nicht unabhängig von der Stützweite 1 des Versuchsträgers. Die

- 8 -

Drehfedersteifigkeit \mathbf{C}_{DSt} hingegen ist unabhängig von der Stützweite.

- 8 -

Bei der auf die IPE 400 folgenden Versuchsreihe mit Biegeträgern aus IPE 200-Profilen, wurde im Stoß zusätzlich zu den Messungen, wie sie auf Bild 18, angegeben sind noch bei jeder Laststufe der im Bereich des oberen bzw. unteren Trägerflansches auftretende Spalt gemessen. Bild 38 zeigt die Ergebnisse der Spaltaufmessungen in Abhängigkeit vom Stoßmoment M_{I-I} . Man erkennt, daß bei den nicht planmäßig vorgespannten Verbindungen mit teilweiser Vorspannung 0,5 \cdot F_V der Schrauben und 1,0 bzw. 2,0 mm Lochspiel bereits bei Gebrauchslast der Spalt im oberen Flansch zu Null wird und sich somit ein neues lokales Tragsystem ausbildet.

Aus den Spaltaufmessungen lassen sich wiederum - Ebenbleiben der Endquerschnitte vorausgesetzt - Verdrehwinkel \mathcal{G}_{Sp} bzw. Drehfedersteifigkeiten C_{DSp} in Abhängigkeit vom Stoßmoment ermitteln. Das Bild 39 zeigt exemplarisch für einen Versuch den Verdrehwinkel \mathcal{G}_{Sp} .

Auf den Bildern 40 bis 42 sind die ermittelten Drehfedersteifigkeiten C_D , C_{DSt} und C_{DSp} in Abhängigkeit vom Stoßmoment M_{I-I} für die Versuche an den IPE200-Trägern dargstellt. Obwohl C_D von der Trägerlänge abhängig ist, während C_{DSt} und C_{DSp} davon unabhängig sind, ergibt sich eine gute Übereinstimmung der Drehfedersteifigkeiten. Die Abweichung beträgt im Bereich der Gebrauchslast rund 15 %.

Die Bilder 43 und 44 zeigen in tabellarischer Zusammenstellung die an den Biegeträgern ermittelten Drehfedersteifigkeiten.

B. Untersuchungen an zugbeanspruchten Einschraubenverbindungen

Neben den Biegeträgerstößen wurden Zugversuche an Einschraubenverbindungen durchgeführt, um die Übertragung der Ergebnisse auf andere geometrische Stoß- und Anschlußverhältnisse vorzubereiten.

B. 1. Versuchskörper der "Einschraubenzugversuche", Ver-

suchsparameter und -Anzahl

Auf Bild 45 sind die beiden untersuchten Formen der Einschraubenverbindung angegeben. Während bei der Versuchskörperform A infolge der einschnittigen Ausführung des Stoßes stets eine rechnerische Exzentrizität e = $(t_{7} + t_{1}) / 2$ zwischen den Wirkungslinien der Kraft im Zugblech mit der Dicke tz und dem Laschenblech mit der Dicke t $_{\rm L}$ auftritt, wurde bei Versuchskörperform B ein Profil U 180 als Stoßlasche verwendet, bei welchem stets die Schenkel so abgearbeitet wurden, daß die rechnerische Exzentrizität e zu Null wurde. Einen Überblick über die wichtigsten Versuchsparameter gibt

Lfd. Nr.	Versuchs- körper Nr.	Stahlgüte n. DIN 17100	Schrauben n. DIN 6914 (10.9)	Achsiale Vorspg.d. Schrauben n.DIN18800 Teil 1	Dicke der Zug- bleche [mm]	Dicke der Lasche bzw. der Steg- dicke des [-Profils [mm]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	AIa AIb AIIa AIIb AIIIa AIIIb AIVa AIVb AVa AVb AVI BIa BIb BIc BIIa BIIb	St 37 "' "' "' "' "' "' "' "' "' "'	M2O " " " " M16 " " " " " " " " " " " " " "	0,5*F " " " " " " " " " " " "	12 12 8 8 12 12 8 8 8 8 8 8 8 12 12 12 12 8 8 8	8 8 8 12 12 12 8 8 8 8 8 8 8 8 8 8 8 8 8

die nachfolgende Tabelle.

- 9 -

Die Berührflächen der miteinander verschraubten Teile wurden entfettet und mit der Drahtbürste vom Flugrost befreit. Die Schrauben wurden im leicht geölten Zustand eingebracht.

Beim Zusammenbau der Einzelteile des Versuchskörpers wurde nicht speziell auf das Anliegen des Schraubenschaftes im Schraubenloch geachtet, sondern lediglich auf einen möglichst geraden Zusammenbau.

Auf den Bildern 47 bis 51 sind die wichtigsten Angaben zur tatsächlichen Geometrie und zu den tatsächlich vorhandenen Festigkeitseigenschaften der Versuchskörper und der Verbindungsmittel angegeben. Die vorgefundenen geometrischen Größen und die Festigkeitskenngrößen liegen im Rahmen der zuständigen Toleranz- bzw. Werkstoffnormen.

Eine Zusammenfassung von Versuchsparametern gibt Bild 52.

Die spezielle Form des Versuchskörpers bedingt, daß mit einem Versuch stets zwei Einschraubenverbindungen untersucht werden.

Je Parametervariante wurden mindestens zwei Versuche durchgeführt. Hierbei wurde für Schrauben M20 - 10.9 die Abhängigkeit der Nachgiebigkeit der Verbindung von der rechnerischen Exzentrizität und für Schrauben M16 - 10.9 die Abhängigkeit vom Lochspiel untersucht.

Untersucht wurden 16 Prüfkörper. Dies ergab insgesamt 16x2=32 Last-Verschiebungskurven.

B. 2. Belastungsanordnung und Belastungsfolge

Die Versuchskörper wurden in eine stationäre Zugprüfmaschine eingebaut und stufenweise belastet. Nach jeder Laststufe wurde, wie bei den Biegeträgerversuchen, entlastet und die Meßeinrichtung abgelesen. Damit wurde auch die Erfassung des bleibenden Verformungsanteiles möglich. Alle Be- und Entlastungen wurden quasistatisch vorgenommen. Während der Lesung sorgte eine Konstanthaltung für gleiches Lastniveau. Der Fehler bei der Lastaufbringung liegt bei rund \pm 0,1 kN.

- 10 -

Als erreichbare Maximallast wurde jene Last definiert, bei der infolge rasch zunehmender Verformung des Versuchskörpers die Prüfmaschine nicht mehr in der Lage war, die Last zu steigern bzw. zu halten.

B. 3. Anordnung der Messtellen

Die Anordnung der Meßuhren zur Aufnahme der Last-Verformungskurven der in einem Versuch gemeinsam untersuchten beiden Einschraubenverbindungen zeigt Bild 46. Es wurden wiederum Weguhren U1 bis U12 mit einer Genauigkeit von 10^{-2} Millimetern eingesetzt und darüberhinaus die Spaltmessungen s₉ und s₁₁ mittels Schublehre mit einer Meßgenauigkeit von rund 10^{-1} Millimetern durchgeführt.

Die Messungen an den Stellen U1, U3, U4 und U6 sowie die Spaltmessungen s₉ und s₁₁ ergeben die für die Verbindung wichtigsten Meßdaten. Diese Meßdaten sind kontrollierbar über die Werte der Meßuhren U9 und U11 bzw. auch über die Meßuhren U2 und U5. Das Schiefstellen des Schraubenschaftes im Schraubenloch läßt sich über die Meßstellen U2 und U8 bzw. U5 und U10 näherungsweise erfassen. Die Meßuhren U7 und U12 schließlich sollen Daten über das "Eingraben" des Schraubenkopfes und der Muttern bzw. der darunterliegenden Beilagscheiben in die zu verbindenden Bleche geben.

B. 4. Messergebnisse

Auf den <u>Bildern 53 bis 59</u> sind die <u>Last-Verschiebungskurven</u> der <u>Meßstellen U1, U3, U4 und U6</u> für die Versuche AIa bis BIIb dargestellt. Hierbei wurde bei den zusammengehörigen Meßwerten U1 und U3 sowie U4 und U6 durch arithmetische Mittelbildung der Einfluß eventuellen ungewollten Schrägzugs ausgeschaltet (Verschiebung U13 und U46). Aus den Darstellungen ist ersichtlich, daß i. a. bei Lasten bis zu rund 30 % der Gebrauchslast ein sehr steiler linearer Anstieg

- 11 -

der Last-Verformungskurve vorhanden ist. In diesem Bereich kann offensichtlich von einer Kraftübertragung über Reibung in den Berührflächen ausgegangen werden. Danach stellt sich in der Regel bis zur Lasthöhe von rund 70 % der Gebrauchslast ein flacher Bereich der Last-Verformungskurve ein. Dies ist das Gebiet der Schlupfauslösung, wobei je nach Lage des Schraubenschaftes im Schraubenloch sehr unterschiedliche Schlupfbeträge auftreten. Es trat daher nur in einigen Fällen der volle rechnerisch mögliche Schlupf ein. Auf Bild 158 sind Angaben zu den wirklich aufgetretenen Schlupfbeträgen in Prozent des maximal möglichen Schlupfes gemacht.

Nach dem Auslösen des Schlupfes und dem Anliegen der Schrauben in den Leibungsflächen zeigt sich je nach Versuchsparameter wieder ein steilerer Anstieg der Last-Verformungskurve. Die Verbindung wird wieder steifer. Hierbei zeigen zusammengehörige Kurven sehr ähnliche Steigungen.

Auf den <u>Bildern 89 bis 103</u> sind noch die <u>elastischen und blei-</u> benden Anteile der Verschiebungen U13 und U46 dargestellt. Die oben geschilderten Eigenschaften der Last-Verformungskurven werden dadurch noch deutlicher.

Die Ergebnisse der Spaltmessungen s9 und s_{11} zeigen bei arithmetischer Mittelbildung (Verschiebung $s_{9,11}$) qualitativ und betragsmäßig gut zu den Kurven U13 und U46 passende Last-Verformungskurven, wenn man beachtet, daß stets die doppelte Verschiebung gemessen wird. Die <u>Bilder 73 bis 88</u> geben diese Kurven wieder, wobei wieder die elastischen und die bleibenden Verschiebungsanteile zusätzlich angegeben sind.

Die Last-Verschiebungskurven U7 und U12, welche das Eingraben des Schraubenkopfes oder der Mutter bzw. der darunterliegenden Beilagscheiben in das zu verbindende Blech erfassen sollen, weisen selbstverständlich viel kleinere Verformungsbeträge auf. Eine Auswirkung der Schlupfzone ist i. a. bei den Kurven nicht zu erkennen. Die <u>Bilder 60 bis 72</u> geben die Werte für die durchgeführten Versuche an. Die Messungen U7 und U12 wurden bei den Versuchen AVI, AVb und BIc nicht durchgeführt. Die <u>Schiefstellung des Schraubenschaftes</u> in den Schraubenlöchern der zu verbindenden Bleche sollte, wie erwähnt, mit Hilfe der Meßuhren U2 und U8 bzw. U5 und U10 erfaßt werden. Die <u>Bilder 104 bis 135</u> zeigen diese Last-Verschiebungskurven wiederum ausgespalten in elastische und bleibende Verformungsanteile. Für die Meßuhren U8 und U10 ergeben sich hierbei Kurven, welche zunächst zunehmende Verformungen und dann trotz Laststeigerung abnehmende Verformungen aufweisen, um schließlich wieder bei entsprechenden Laststufen anwachsende Verformungen zu zeigen. Dies ist auf die Verkrümmung des Versuchskörpers bei dieser einschnittigen Ausführung zurückzuführen. Der Effekt wird noch durch die "Zeigerwirkung" der Meßuhrenhalterung sowie der Meßwiderlager verstärkt.

Schließlich sind auf den <u>Bildern 136 bis 142</u> noch die <u>Last-</u> <u>Verformungskurven für die Meßuhren U9 und U11</u> angegeben. Diese Messungen wurden nicht bei allen Versuchskörpern durchgeführt. Die Ergebnisse zeigen wiederum gute Übereinstimmung mit den entsprechenden Kurven U13 bzw. U46, wenn man berücksichtigt, daß jeweils der doppelte Wert gemessen wird.

Für die Berücksichtigung der Nachgiebigkeit von Stößen und Anschlüssen bei statischen Berechnungen müssen aus den Last-Verformungskurven belastungsabhängige Federsteifigkeiten ermittelt werden.

Aus den Last-Verformungskurven s_{9.11} wurde daher einmal exemplarisch die jeweilige Federsteifigkeit zwischen zwei Laststufen ermittelt. Sie wird im folgenden als inkrementelle Federsteifigkeit i_Cs9,11 bezeichnet. Die Bilder 143 bis 147 zeigen diese inkrementellen Federsteifigkeiten. Die Verformung des ungestoßenen Zugstabes entsprechender Länge wurde bei der Ermittlung der Federsteifigkeit bereits abgezogen. Diese inkrementellen Federsteifigkeiten müßten streng genommen für das möglichst exakte Nachempfinden der Last-Verschiebungskurven, sukzessive, entsprechend dem Lastzuwachs in die statische Berechnung einbezogen werden. Der entstehende Berechnungsaufwand wäre einerseits sehr groß und andererseits zeigen die Verläufe der inkrementellen Federsteifigkeiten erhebliche Größenschwankungen und Streuungen.

- 14 -

Es liegt daher nahe, <u>konstante Federsteifigkeiten bis zu</u> <u>ausgeprägten Belastungsgrenzen</u> wie der Gebrauchslast bzw. der Traglast zu extrapolieren.

Auf den <u>Bildern 148 bzw. 151</u> sind diese Federsteifigkeiten, ermittelt aus den Messungen $s_{9,11}$, und auf den <u>Bildern 152</u> <u>bis 155</u> jene, ermittelt aus den Messungen U13, angegeben. Die Verformungen des ungestoßenen Vergleichsstabes wurden jeweils abgezogen.

Die Ergebnisse wurden jeweils für den Lastfall H und HZ aufgetragen.

Bild 148 zeigt für Schrauben M16 - 10.9 die Abhängigkeit der nicht schlupfbereinigten Federsteifigkeiten ^C_Es_{9,11} und ^C_{\$9,11} von der Größe des Lochspieles. Man erkennt, daß ein Absinken der Federsteifigkeit mit zunehmendem Lochspiel eintritt. Die Abweichungen in den Einzelergebnissen ^C_Es_{9,11} sind jedoch erheblich.

Bild 150 zeigt den gleichen Zusammenhang wie Bild 148, lediglich wurden nun die Verschiebungen um den tatsächlich auftretenden Schlufpbetrag reduziert. Diese nun "schlupfbereinigten" Federsteifigkeiten ${}_{E}^{C}$ und ${}_{S9,11}^{C}$ zeigen nur noch eine sehr geringfügige Abnahme bei zunehmendem Lochspiel. Die Einzelergebnisse streuen nur noch wenig. Trotzdem werden die Ergebnisse von Bild 148 die Praxis besser wiedergeben.

Die Bilder 149 und 151 zeigen die entsprechenden Zusammenhänge für Schrauben M2O - 10.9 lediglich in Abhängigkeit von der rechnerischen Exzentrizität e. Es zeigt sich mit zunehmender Exzentrizität eine Zunahme der Steifigkeit. Dies dürfte vermutlich auf Verkantungseffekte im Spalt, welche dann bei der Schublehrenlesung mit enthalten waren, zurückzuführen sein. Die Ergebnisse der genaueren Messungen U13 und U46 belegen dies.

Wie bereits erwähnt, geben die Bilder 152 bis 155 die entsprechenden Zusammenhänge wieder. Es wurden nun jedoch die Messungen U13 zugrundegelegt. Neben den Verformungen für den ungestoßenen Vergleichsstab entsprechender Länge wurden nun auch noch die Verformungen infolge der Zeigerwirkung der Uhrenhalterungen bzw. Widerlager von den Meßwerten abgezogen. Bild 164 zeigt die Struktur für die elastisch-plastische Finit-Element-Rechnung zur Ermittlung des Zeigeranteiles.

Die so aus den Messungen U13 ermittelten Federsteifigkeiten E^{C}_{U13} , C_{U13} sowie E^{C}_{U13} und C_{U13} entsprechen denen aus den Messungen s_{9,11} ermittelten Verläufen gut. Lediglich bei der Abhängigkeit von der rechnerischen Exzentrizität e ergibt sich nun bei Zunahme von e eine Abhahme der Federsteifigkeit.

Die <u>Bilder 156 und 157</u> geben tabellarische <u>Zusammenstellung</u> <u>der ermittelten Federsteifigkeiten</u> für die untersuchten Parameter bei Schrauben M16 - und M20 - 10.9.

Bild Bild 159 schließlich gibt eine Zusammenstellung der durch arithmetische Mittelbildung der Federsteifigkeiten C $_{s_{9,11}}$, C $_{U13}$ und C $_{U46}$ bzw. *C $_{s_{9,11}}$, *C $_{U13}$ und *C $_{U46}$ gewonnenen Federsteifigkeiten C $_{m}$ und C $_{m}^{*}$ für Schrauben M16 - und M20 - 10.9.

Auf den Bildern 160 bis 163 sind diese Ergebnisse wieder für Schrauben M16 - 10.9 in Abhängigkeit vom Lochspiel und für Schrauben M20 - 10.9 in Abhängigkeit von der rechnerischen Exzentrizität aufgetragen.

Mit zunehmendem Lochspiel sinkt im Fall "nicht schlupfbereinigt" die Federsteifigkeit ab. Für den Fall "schlupfbereinigt" ist keine deutliche Abhängigkeit zu erkennen.

Zusammenfassung

Alle untersuchten Biegeträgerstöße wurden als Laschenstöße mit Schrauben der Güte 10.9 bei Verwendung als Scher-Lochleibungsverbindung ausgeführt. Diese Verbindungs- und Schraubenart wurde auch bei den Versuchskörpern für die zugbeanspruchten Einschraubenverbindungen angewendet.

Für die in der Praxis häufig vorkommenden Fälle 0,5 · F_V achsiale Vorspannung der Schraube sowie 1,0 mm oder 2,0 mm Lochspiel ergaben sich sowohl für die Drehfedersteifigkeiten wie auch für die Senkfedersteifigkeiten bereits bei Be-

- 15 -

lastungen unterhalb der Gebrauchslast Werte, welche den Einfluß der Stöße und Anschlüsse auf die Steifigkeit einer Stahlkonstruktion deutlich aufzeigen.

Bis zum Erreichen der elastischen Grenzlast nahmen die Federsteifigkeiten für die oben angegebenen Fälle i. a. ab, zeigten dann jedoch bis zur plastischen Grenzlast keine großen Veränderungen mehr.

Die Streuungen der ermittelten Federsteifigkeiten bei nominal gleichen Versuchsparametern waren erheblich. Dies ist teilweise auf die Auswirkung des Schlupfes zurückzuführen. Dieser wurde nicht durch spezielle Maßnahmen beim Zusammenbau der Bauteile gesteuert. Aufgrund der Verhältnisse der Stahlbaupraxis erscheint dies sinnvoll.

Diese Streuungen zeigen auch, daß der statistischen Bewertung der Ergebnisse große Bedeutung zukommt. Wegen der geringen Anzahl der bisherigen Versuche kann jedoch noch keine statistisch ausreichend fundierte Aussage gemacht werden. Ebenso kann der in den bisherigen Versuchen gewählte enge Parameterbereich noch nicht als bereichsdeckend angesehen werden.

Die Federsteifigkeiten wurden jeweils nur unter der Wirkung einer einzelnen Schnittgröße - Biegemoment oder Normalkraft ermittelt. Die wirkliche Beanspruchung eines Stahlbauteiles besteht jedoch häufig aus der Kombination mehrerer Schnittgrößen. Dies hat Einfluß auf die lokale Tragsystembildung im Stoß und somit auch auf die dann von mehreren Schnittgrößen abhängige Dreh- oder Senkfedersteifigkeit. Entsprechende Untersuchungen stehen noch aus.

Der Lehrstuhlinhaber:

Mun

(O.Prof.Dipl.-Ing. F.Nather)

Der Sachbearbeiter:

G. Flesson.

(Dr.-Ing. G. Klassen)

Zusammenstellung der Bilder

- Bild 1: Trägerstoß IPE 400 Versuchskörper
- Bild 2: Trägerstoß IPE 200 Versuchskörper
- Bild 3: Zusammenstellung von Kenngrößen der Versuchskörper für die Biegeträgerversuche
- Bild 4: Trägerstoß IPE 400 Lage der Meßstellen zur Aufnahme der tatsächlichen Geometrie der Stöße
- Bild 5: Trägerstoß IPE 400 Zusammenstellung der tatsächlichen Geometrie
- Bild 6: Trägerstoß IPE 200 Lage der Meßstellen zur Aufnahme der tatsächlichen Geometrie der Stöße
- Bild 7: Trägerstoß IPE 200 Zusammenstellung der tatsächlichen Geometrie
- Bild 8: Trägerstoß IPE 400 Ergebnisse des statischen Zugversuchs nach DIN 50146 an Zugproben E nach DIN 50125 (Stahl St 37-2)
- Bild 9: Trägerstoß IPE 200 Ergebnisse des statischen Zugversuchs nach DIN 50146 an Zugproben E nach DIN 50125 (Stahl St 37-2)
- Bild 10: Angaben zur tatsächlichen Geometrie der Stichproben von Schrauben, Muttern und Scheiben
- Bild 11: Angaben zur Vickershärte der Stichproben von Schrauben, Muttern und Scheiben
- Bild 12: Trägerstoß IPE 400 Beispiel für die tatsächliche Geometrie eines Schraubenlochbildes (Lochabstände)
- Bild 13: Trägerstoß IPE 400 Beispiel für die tatsächliche Geometrie eines Schraubenlochbildes (Lochdurchmesser - zugehörig zu Bild 12)
- Bild 14: Trägerstoß IPE 200 Beispiel für die tatsächliche Geometrie eines Schraubenlochbildes (Lochabstände)
- Bild 15: Trägerstoß IPE 200 Beispiel für die tatsächliche Geometrie eines Schraubenlochbildes (Lochdurchmesser - zugehörig zu Bild 14)
- Bild 16: Ansicht des eingebauten Versuchskörpers
- Bild 17: Trägerstoß IPE 400 Anordnung der Meßuhren
- Bild 18: Trägerstoß IPE 200 Anordnung der Meßuhren
- Bild 19: Trägerstoß IPE 400 Zusammenstellung der Gesamtdurchsenkungen in Trägermitte für die Versuche I bis IV
- Bild 20: Trägerstoß IPE 200 Zusammenstellung der Gesamtdurchsenkungen in Trägermitte für die Versuche V bis VIII
- Bild 21: Trägerstoß IPE 400 Tabellarische Zusammenstellung der gemessenen Vertikalverschiebungen in Trägermitte und in den Lasteinleitungspunkten (bleibende und elastische Verschiebungsanteile) für die Versuche I bis IV
- Bild 22: Trägerstoß IPE 200 Tabellarische Zusammenstellung der gemessenen Vertikalverschiebungen in Trägermitte und in den Lasteinleitungspunkten (bleibende und elastische Verschiebungsanteile) für die Versuche V bis VIII
- Bild 23: Trägerstoß IPE 400 Darstellung der gemessenen Relativverformungen im Stoßbereich (Versuchskörper Nr. Ia: $0, 5 \cdot F_v$; $\Delta d= 1, 0$ mm)
- Bild 24: Trägerstoß IPE 200 Darstellung der gemessenen Relativverformungen im Stoßbereich (Versuchskörper Nr. Va: $0, 5 \cdot F_v$; $\Delta d= 1, 0$ mm)
- Bild 25: Erläuterung möglicher Meßfehler bei der Messung der Relativverschiebungen infolge unvermeidbarer Unsymmetrien
- Bild 26: Trägerstoß IPE 400 Tabellarische Zusammenstellung der gemessenen, gemittelten Relativverformungen im Stoßbereich

- Bild 27: Trägerstoß IPE 200 Tabellarische Zusammenstellung der gemessenen, gemittelten Relativverformungen im Stoßbereich
- Bild 28: Trägerstoß IPE 400 Beispiel für die Verformungsanteile des gemessenen Verdrehwinkels Ψ (Versuch Ia: $\Delta d=$ 1,0 mm; 0,5·F_y)
- Bild 29: Trägerstoß IPE 200 Beispiel für die Verformungsanteile des gemessenen Verdrehwinkels φ (Versuch Va: $\Delta d=$ 1,0 mm; 0,5·F_u)
- Bild 30: Trägerstoß IPE 400 Abhängigkeit des Verdrehwinkels $\varphi_{max,v}$ vom Biegemoment M_{I-I} für die Versuche I bis IV
- Bild 31: Trägerstoß IPE 200 Abhängigkeit des Verdrehwinkels $\Psi_{max,v}$ vom Biegemoment M_{I-I} für die Versuche V bis VIII
- Bild 32: Trägerstoß IPE 400 Drehfedersteifigkeiten c_D errechnet aus Mittendurchsenkung V₂₀
- Bild 33: Trägerstoß IPE 200 Drehfedersteifigkeiten c_D errechnet aus Mittendurchsenkung V₂₀
- Bild 34: Trägerstoß IPE 400 Gegenüberstellung des Verlaufes der Drehwinkel $\varphi_{\text{Ri,K}}^{\star}$ und $\varphi_{\text{Vi,K}}$ für Versuch Ia (0,5·F_v; $\Delta d=$ 1,0 mm)
- Bild 35: Trägerstoß IPE 200 Gegenüberstellung des Verlaufes der Drehwinkel Ψ_{R}^{\star} i,K und Ψ_{V} i,K für Versuch Va (0,5·F_V; $\Delta d=$ 1,0 mm)
- Bild 36: Trägerstoß IPE 400 Gegenüberstellung der Drehfedersteifigkeiten c_D ermittelt aus der Mittendurchsenkung V_{20} und c_D St errechnet aus der gemittelten gemessenen Relativverschiebung r_{iK} für Versuch Ia und Ib (Δ d= 1,0 mm; o,5·F_v)
- Bild 37: Trägerstoß IPE 400: Gegenüberstellung der Drehfedersteifigkeiten c_D ermittelt aus der Mittendurchsenkung V₂₀ und c_{D St} errechnet aus der gemttelten gemessenen Relativverschiebung r_{iK} für die Versuche II bis IV

- Bild 38: Trägerstoß IPE 200 Zusammenstellung der Spaltverschiebungen Δ_{ob} und Δ_{un} für die Versuche V bis VIII
- Bild 39: Trägerstoß IPE 200 Gegenüberstellung von $\Psi_{p1,v}$ ermittelt aus V₂₀und Ψ_{sch} ermittelt aus den Spaltverschiebungen Δ_{ob} und Δ_{un} (Versuch Va: $\Delta d= 1, o mm;$ $o, 5 \cdot F_v$)
- Bild 40: Trägerstoß IPE 200 Gegenüberstellung der Drehfedersteifigkeiten c_D , c_D St und c_D Sp für die Versuche Va und Vb ($\Delta d= 1$, 0 mm; 0,5·F_y)
- Bild 41: Trägerstoß IPE 200 Gegenüberstellung der Drehfedersteifigkeiten c_D , c_D St und c_D Sp für die Versuche VIa und VIb ($\Delta d= 2,0$ mm; $0,5 \cdot F_v$)
- Bild 42: Trägerstoß IPE 200 Gegenüberstellung der Drehfedersteifigkeiten c_D, c_D St ^{und} c_D Sp ^{für} die Versuche VII, VIIIa und VIIIb
- Bild 43: Trägerstoß IPE 400 Tabellarische Zusammenstellung der Drehfedersteifigkeiten c_D und c_{D St} für die Versuche I bis IV
- Bild 44: Trägerstoß IPE 200 Tabellarische Zusammenstellung der Drehfedersteifigkeiten c_D, c_D St ^{und} c_D Sp für die Versuche V bis VIII
- Bild 45: Versuchskörperform A und B für die Einschraubenzugversuche
- Bild 46: Anordnung der Meßuhren für Einschraubenzugversuche
- Bild 47: Lage der Meßstellen zur Aufnahme der tatsächlichen Geometrie der Versuchskörper für die Einschraubenzugversuche
- Bild 48: Zusammenstellung der tatsächlichen Geometrie der Versuchskörper für die Einschraubenzugversuche

- Bild 49: Ergebnisse des statischen Zugversuchs nach DIN 50146 an Zugproben E nach DIN 50125 (St 37-2) für die Versuchskörper der Einschraubenzugversuche
- Bild 50: Angaben zur tatsächlichen Geometrie der Stichproben von Schrauben, Muttern und Scheiben der Größe M 16
- Bild 51: Angaben zur Vickershärte der Stichproben von Schrauben, Muttern und Scheiben der Größe M 16
- Bild 52: Zusammenstellung von Kenngrößen der Versuchskörper für die Einschraubenzugversuche
- Bild 53: Last-Verschlebungs-Kurven U_{13} und U_{46} für die Versuche AIa und AIb
- Bild 54: Last-Verschiebungs-Kurven U_{13} und U_{46} für die Versuche AIIa und AIIb
- Bild 55: Last-Verschiebungs-Kurven ${\rm U}^{}_{13}$ und ${\rm U}^{}_{46}$ für die Versuche AIIIa und AIIIb
- Bild 56: Last-Verschiebungs-Kurven U_{13} und U_{46} für die Versuche AIVa und AIVb
- Bild 57: Last-Verschiebungs-Kurven U_{13} und U_{46} für die Versuche AVa, AVb und AVI
- Bild 58: Last-Verschiebungs-Kurven U_{13} und U_{46} für die Versuche BIa, BIb und BIc
- Bild 59: Last-Verschiebungskurven U_{13} und U_{46} für die Versuche BIIa und BIIb
- Bild 60: Last-Verschiebungs-Kurven U_7 und U_{12} für Versuch AIa Bild 61: Last-Verschiebungs-Kurven U_7 und U_{12} für Versuch AIb Bild 62: Last-Verschiebungs-Kurven U_7 und U_{12} für Versuch AIIa Bild 63: Last-Verschiebungs-Kurven U_7 und U_{12} für Versuch AIIb Bild 64: Last-Verschiebungs-Kurven U_7 und U_{12} für Versuch AIIIa Bild 65: Last-Verschiebungs-Kurven U_7 und U_{12} für Versuch AIIIa Bild 65: Last-Verschiebungs-Kurven U_7 und U_{12} für Versuch AIIIb Bild 66: Last-Verschiebungs-Kurven U_7 und U_{12} für Versuch AIIIb Bild 66: Last-Verschiebungs-Kurven U_7 und U_{12} für Versuch AIVa Bild 67: Last-Verschiebungs-Kurven U_7 und U_{12} für Versuch AIVa

Bild	68:	Last-Verschiebungs-Kurven	U ₇ und U ₁₂ für Versuch AVa
Bild	69:	Last-Verschiebungs-Kurven	U ₇ und U ₁₂ für Versuch BIa
Bild	7o:	Last-Verschiebungs-Kurven	U ₇ und U ₁₂ für Versuch BIb
Bild	71:	Last-Verschiebungs-Kurven	U ₇ und U ₁₂ für Versuch BIIa
Bild	72:	Last-Verschiebungs-Kurven	U ₇ und U ₁₂ für Versuch BIIb
Bild	73:	Last-Verschiebungs-Kurven	S _{9,11} für Versuch Ala
Bild	74:	Last-Verschiebungs-Kurven	S _{9,11} für Versuch AIb
Bild	75:	Last-Verschiebungs-Kurven	S _{9,11} für Versuch Alla
Bild	76:	Last-Verschiebungs-Kurven	S _{9,11} für Versuch AIIb
Bild	77:	Last-Verschiebungs-Kurven	S _{9,11} für Versuch AIIIa
Bild	78:	Last-Verschiebungs-Kurven	S _{9,11} für Versuch AIIIb
Bild	79:	Last-Verschiebungs-Kurven	S _{9,11} für Versuch AIVa
Bild	80:	Last-Verschiebungs-Kurven	S _{9,11} für Versuch AIVb
Bild	81:	Last-Verschiebungs-Kurven	S _{9,11} für Versuch AVa
Bild	82:	Last-Verschiebungs-Kurven	S _{9.11} für Versuch AVb
Bild	83:	Last-Verschiebungs-Kurven	S _{9,11} für Versuch AVI
Bi1d	84:	Last-Verschiebungs-Kurven	S _{9,11} für Versuch BIa
Bild	85:	Last-Verschiebungs-Kurven	S _{9,11} für Versuch BIb
Bild	86:	Last-Verschiebungs-Kurven	S _{9,11} für Versuch BIc
Bild	87:	Last-Verschiebungs-Kurven	S _{9,11} für Versuch BIIa
Bild	88:	Last-Verschiebungs-Kurven	S _{9.11} für Versuch BIIb
Bild	89:	Elastische und bleibende A	Anteile der Verschiebungen
		U_{13} und U_{46} bei Versuch A	[a

- Bild 90: Elastische und bleibende Anteile der Verschiebungen U_{13} und U_{46} bei Versuch AIb
- Bild 91: Elastische und bleibende Anteile der Verschiebungen U_{13} und U_{46} bei Versuch AIIa
- Bild 92: Elastische und bleibende Anteile der Verschiebungen U_{13} und U_{46} bei Versuch AIIb

- Bild 93: Elastische und bleibende Anteile der Verschiebungen U $_{13}$ und U $_{46}$ bei Versuch AIIIa
- Bild 94: Elastische und bleibende Anteile der Verschiebungen U_{13} und U_{46} bei Versuch AIIIb
- Bild 95: Elastische und bleibende Anteile der Verschiebungen U₁₃ und U₄₆ bei Versuch AIVa
- Bild 96: Elastische und bleibende Anteile der Verschiebungen U₁₃ und U₄₆ bei Versuch AIVb
- Bild 97: Elastische und bleibende Anteile der Verschiebungen U_{13} und U_{46} bei Versuch AVa
- Bild 98: Elastische und bleibende Anteile der Verschiebungen U $_{13}$ und U $_{46}$ bei Versuch AVb
- Bild 99: Elastische und bleibende Anteile der Verschiebungen U_{13} und U_{46} bei Versuch BIa
- Bild 100: Elastische und bleibende Anteile der Verschiebungen U $_{13}$ und U $_{46}$ bei Versuch BIb
- Bild 101: Elastische und bleibende Anteile der Verschiebungen U₁₃ und U₄₆ bei Versuch BIc
- Bild 1o2: Elastische und bleibende Anteile der Verschiebungen U₁₃ und U₄₆ bei Versuch BIIa
- Bild 103: Elastische und bleibende Anteile der Verschiebungen U $_{13}$ und U $_{46}$ bei Versuch BIIb
- Bild 104: Last-Verschiebungs-Kurven U_2 und U_8 für Versuch AIa

Bild 105: Last-Verschiebungs-Kurven U_5 und U_{10} für Versuch AIa

- Bild 106: Last-Verschiebungs-Kurven U_2 und U_8 für Versuch AIb
- Bild 107: Last-Verschiebungs-Kurven U_5 und U_{10} für Versuch AIb
- Bild 108: Last-Verschiebungs-Kurven U_2 und U_8 für Versuch AIIa
- Bild 109: Last-Verschiebungs-Kurven U₅ und U₁₀ für Versuch AIIa
- Bild 11o: Last-Verschiebungs-Kurven U₂ und U₈ für Versuch AIIb
- Bild 111: Last-Verschiebungs-Kurven U₅ und U₁₀ für Versuch AIIb

Bild	112:	Last-Verschiebungs-Kurven	U ₂	und	U ₅ für Versuch AIIIa
Bild	113:	Last-Verschiebungs-Kurven	U ₅	und	U ₁₀ für Versuch AIIIa
Bild	114:	Last-Verschiebungs-Kurven	U ₂	und	U ₈ für Versuch AIIIb
Bild	115:	Last-Verschiebungs-Kurven	U ₅	und	U ₁₀ für Versuch AIIIb
Bild	116:	Last-Verschiebungs-Kurven	U ₂	und	U ₈ für Versuch AIVa
Bild	117:	Last-Verschiebungs-Kurven	U ₅	und	U ₁₀ für Versuch AIVa
Bild	118:	Last-Verschiebungs-Kurven	U ₂	und	U ₈ für Versuch AIVb
Bild	119:	Last-Verschiebungs-Kurven	U ₅	und	U ₁₀ für Versuch AIVb
Bild	120:	Last-Verschiebungs-Kurven	U ₂	und	U ₈ für Versuch AVa
Bild	121:	Last-Verschiebungs-Kurven	U ₅	und	U _{lo} für Versuch AVa
Bild	122:	Last-Verschiebungs-Kurven	U ₂	und	U ₈ für Versuch AVb
Bild	123:	Last-Verschiebungs-Kurven	U ₅	und	U ₁₀ für Versuch AVb
Bild	124:	Last-Verschiebungs-Kurven	U ₂	und	U ₈ für Versuch AVI
Bild	125:	Last-Verschiebungs-Kurven	บ ₅	und	U _{lo} für Versuch AVI
Bild	126:	Last-Verschiebungs-Kurven	U ₂	und	U ₈ für Versuch BIa
Bild	127:	Last-Verschiebungs-Kurven	U ₅	und	U ₁₀ für Versuch BIa
Bild	128:	Last-Verschiebungs-Kurven	U ₂	und	U ₈ für Versuch BIb
Bild	129:	Last-Verschiebungs-Kurven	U ₅	und	U ₁₀ für Versuch BIb
Bild	130:	Last-Verschiebungs-Kurven	U ₂	und	U ₈ für Versuch BIc
Bild	131:	Last-Verschiebungs-Kurven	U ₅	und	U ₁₀ für Versuch BIc
Bild	132:	Last-Verschiebungs-Kurven	U ₂	und	U ₈ für Versuch BIIa
Bild	133:	Last-Verschiebungs-Kurven	U ₅	und	U ₁₀ für Versuch BIIa
Bild	134:	Last-Verschiebungs-Kurven	U ₂	und	U ₈ für Versuch BIIb
Bild	135:	Last-Verschiebungs-Kurven	U ₅	und	U ₁₀ für Versuch BIIb
Bild	136:	Last-Verschiebungs-Kurven	U ₉	und	U ₁₁ für Versuch AIa
Bild	137:	Last-Verschiebungs-Kurven	U ₉	und	U ₁₁ für Versuch AIIa
Bild	138:	Last-Verschiebungs-Kurven	U ₉	und	U ₁₁ für Versuch AIIIa
Bild	139:	Last-Verschiebungs-Kurven	U ₉	und	U ₁₁ für Versuch AIVb

Bild	140:	Last-Ver	schiebung	s-Kurven	Ug	und	U ₁₁	für	Versuch	AVa
------	------	----------	-----------	----------	----	-----	-----------------	-----	---------	-----

- Bild 141: Last-Verschiebungs-Kurven U_9 und U_{11} für Versuch AVI
- Bild 142: Last-Verschiebungs-Kurven U_{0} und U_{11} für Versuch BIc
- Bild 143: Inkrementelle Federsteifigkeiten ⁱC_{S9,11} für die Versuche AIa bis AIIIb
- Bild 144: Inkrementelle Federsteifigkeiten ⁱC_{S9,11} für die Versuche AIVa bis AVb
- Bild 145: Inkrementelle Federsteifigkeiten ⁱC_{S9.11} für Versuch AVI
- Bild 146: Inkrementelle Federsteifigkeiten ⁱCS9,11 für die Versuche BIa bis BIc
- Bild 147: Inkrementelle Federsteifigkeiten ⁱC_{S9,11} für die Versuche BIIa bis BIIb
- Bild 148: Anhängigkeit der nicht schlupfbereinigten Federsteifigkeiten E^CS9,11 ^{und C}S9,11 ^{vom Lochspiel für Schrauben} M 16-10.9
- Bild 149: Abhängigkeit der nicht schlupfbereinigten Federsteifigkeiten E^CS9,11 ^{und C}S9,11 ^{von} der rechnerischen Exzentrizität für Schrauben M 20- 10.9
- Bild 150: Abhängigkeit der schlupfbereinigten Federsteifigkeiten *CS9.11 und *CS9.11 vom Lochspiel für Schrauben M16-10.9
- Bild 151: Abhängigkeit der schlupfbereinigten Federsteifigkeiten ^{*}C_{S9,11} und ^{*}C_{S9,11} von der rechnerischen Exzentrizität für Schrauben M 20- 10.9
- Bild 152: Abhängigkeit der nicht schlupfbereinigten Federstiefigkeiten _EC_{U13} und C_{U13} vom Lochspiel für Schrauben M 16-10.9
- Bild 153: Abhängigkeit der nicht schlupfbereinigten Federsteifigkeiten _EC_{U13} und C_{U13} von der rechnerischen Exzentrizität für Schrauben M 20- 10.9
- Bild 154: Abhängigkeit der schlupfbereinigten Federsteifigkeiten ${}_{E}^{*}C_{U13}$ und ${}^{*}C_{U13}$ vom Lochspiel für Schrauben M 16- 10.9

- Bild 155: Abhängigkeit der schlupfbereinigten Federsteifigkeiten ^{*}C_{U13} und ^{*}C_{U13} von der rechnerischen Exzentrizität für Schrauben M 20- 10.9
- Bild 156: Zusammenstellung der in den Zugversuchen an Einschraubenverbindungen ermittelten Federsteifigkeiten für Schrauben M 16- 10.9
- Bild 157: Zusammenstellung der in den Zugversuchen an Einschraubenverbindungen ermittelten Federsteifigkeiten für Schrauben M 20- 10.9
- Bild 158: Zusammenstellung der wirklich aufgetretenen Schlupfbeträge bezogen auf die maximal möglichen Schlupfbeträge für die Einschraubenzugversuche
- Bild 159: Zusammenstellung der aus den Messungen $S_{9,11}$, U_{13} und U_{46} durch arithmetische Mittelbildung errechneten Federsteifigkeiten C_m und C_m^{\star} für Schrauben M 16- 10.9 und Schrauben M 20- 10.9
- Bild 160: Abhängigkeit der nicht schlupfbereinigten Federsteifigkeiten C_m vom Lochspiel für Schrauben M 16- 10.9
- Bild 161: Abhängigkeit der nicht schlupfbereinigten Federsteifigkeiten C_m von der rechnerischen Exzentrizität für Schrauben M 20- 10.9
- Bild 162: Abhängigkeit der schlupfbereinigten Federsteifigkeiten C_m^{\bigstar} vom Lochspiel für Schrauben M 16- 10.9
- Bild 163: Abhängigkeit der schlupfbereinigten Federsteifigkeiten C^{**x**}_m von der rechnerischen Exzentrizität für Schrauben M 20-10.9
- Bild 164: Struktur zur Ermittlung des "Zeigeranteiles" aus der Weguhrenbefestigung mit Hilfe elastisch- plastischer Finit-Element-Rechnung

Zusammenstellung verwendeter Bezeichnungen

A. Biegeträgerversuche

h ₁ , h ₂	[mm]	Gemessene Profilhöhen bei IPE 400 und IPE 200
b ₁ bis b ₄	[mm]	Gemessene Flanschbreiten bei IPE 400 und IPE 200
t ₁ bis t ₁₆	[mm]	Gemessene Flanschdicken bei IPE 400 und IPE 200
t _{L1} bis t _{L16}	[mm]	Gemessene Dicken der Stoßlaschen bei IPE 400 und IPE 200
S ₁ bis S ₈	[mm]	Gemessene Stegdicke des Profils bei IPE 400 und IPE 200
S _{L1} bis S _{L8}	[mm]	Gemessene Dicke der linken Steglasche bei IPE 400 und IPE 200
S _{R1} bis S _{R8}	[mm]	Gemessene Dicke der rechten Steglasche bei IPE 400 und IPE 200
b _{L1} bis b _{L4}	[mm]	Gemessene Breite der Flanschlasche bei IPE 400 und IPE 200
h _{L1} , h _{L2}	[mm]	Gemessene Höhe der linken Steglasche bei IPE 400 und IPE 200
h _{R1} , h _{R2}	[mm]	Gemessene Höhe der rechten Steglasche bei IPE 400 und IPE 200
Ulo bis U24	[]	Bezeichnung der Weguhren zur Erfassung der Verschiebungen

HR ₁ bis HR ₃	[]	Bezeichung der Rollenmeßgeräte zur Er- fassung der Verschiebungen
V ₂₀	[mm]	Gemessene vertikale Durchsenkung in Trä- germitte
f	[mm]	Rechnerische Durchsenkung des ungestoßenen Vergleichsträgers in Trägermitte
V ₂₃ , V ₂₄	[mm]	Gemessene vertikale Durchsenkung des Trä- gers in den Lasteinleitungspunkten
V ₂₃ , 24	[mm]	Arithmetisches Mittel der Durchsenkungen des Trägers in den Lasteinleitungspunkten
r ₁₀ bis r ₁₇	[mm]	Gemessene Relativverformungen im Stoßbe- reich des Trägers
r _{i,k}	[mm]	Arithmetisches Mittel zusammengehöriger gemessener Relativverformungen r _i und r _k
∆ob	[mm]	Spaltbreite im Stoß im Bereich des oberen Flansches
[∆] un	[mm]	Spaltbreite im Stoß im Bereich des unteren Flansches
^M I-I	[kNm]	Moment in Trägermitte
$^{\Delta}$ d	[mm]	Lochspiel
F _v	[kN]	Achsiale Vorspannung der Schraube nach DIN 18, Teil 1
^M el	[kNm]	Elastisches Grenzmoment des ungestoßenen Trägers

XII

M _{pl}	[kNm]	Vollplastisches Moment des ungestoßenen Vergleichsträgers
φ _{max,v}	[rad]	Verdrehwinkel der Ersatzdrehfeder im Stoß,ermittelt aus dem Gesamtbetrag V _{20ges} : der gemessenen vertikalen Durchsenkung in Trägermitte
φ [*] rechn.	[rad]	Verdrehwinkel der Ersatzdrehfeder im Stoß,ermittelt aus f der rechnerischen Durchsenkung des ungestoßenen Vergleichs- trägers in Trägermitte
φ _{St}	[rad]	Verdrehwinkel allein infolge der Aus- wirkung des Stoßes
φ _{pl,v}	[rad]	Verdrehwinkel ermittelt aus dem gemessenen bleibenden Anteil V _{20p1} der vertikalen Durchsenkung in Trägermitte
φ el,v	[rad]	Verdrehwinkel ermittelt aus dem gemessenen elastischen Anteil der Stoßauswirkung
φ [*] _{R i,k}	[rad]	Verdrehwinkel an den Stellen i bzw. k des Stoßbereiches, ermittelt aus konstan- tem Momentenverlauf am ungestoßenen Ver- gleichsträger
φ [*] V i,k	[rad]	Verdrehwinkel an den Stellen i bzw. k des Stoßberreiches, ermittelt aus den gemes- senen Relativverformungen r _{i,k} im Stoß- bereich des Trägers
φ _{sp}	[rad]	Verdrehwinkel in Stoßmitte, ermittelt aus den Spaltbreiten

XIII

c _D	[kNm/rad]	Drehfedersteifigkeit, ermittelt aus der Mittendurchsenkung V ₂₀ des Trägers, abzüglich der rechnerischen Mittendurch- senkung des ungestoßenen Vergleichsträ- gers
c _{DSt}	[kNm/rad]	Drehfedersteifigkeit, ermittelt aus den gemessenen, gemittelten Relativverfor- ^{mungen r} i,k
c _{DSp}	[kNm/rad]	Drehfedersteifigkeit, ermittelt aus den Spaltbreiten A _{ob} und A _{un}

B. Zugbeanspruchte Einschraubenverbindungen

tz	[mm]	Dicke des Zugbleches (eingespannt in Spannbacken der Zugprüfmaschine)
t _L	[mm]	Dicke des Laschenbleches
S	[mm]	Stegdicke des U-Profils bei Versuchs- körperform B
^b _R	[mm]	Abgearbeitete Schenkellänge des U-Profils entsprechend den Erfordernissen der rech- nerischen Exzentrizität
b_{Z1} bis b_{Z4}	[mm]	Gemessene Breite des Zugbleches
^b L1, ^b L2	[mm]	Gemessene Breite des Laschenbleches
t_{L1} bis t_{L4}	[mm]	Gemessene Dicke des Laschenbleches
t_{Z1} bis t_{Z8}	[mm]	Gemessene Dicke des Zugbleches

XIV

h₁, h₂ Gemessene Höhe des U-Profils [mm] d_{L1} , d_{L2} [mm] Gemessene Schraubenlochdurchmesser im Laschenblech d_{Z1} , d_{Z2} [mm] Gemessene Schraubenlochdurchmesser im Zugblech b_{R1} bis b_{R4} Gemessene abgearbeitete Schenkellänge [mm] des U-Profils U_1 bis U_{12} [] Bezeichnung der Weguhren zur Erfassung der Verschiebungen ^S₉, ^S₁₁ Bezeichnung der Meßstelle der Schub-] [1ehrenmessung [mm] Rechnerische Exzentrizität der Mittelе linien von Zug- und Laschenblech U_1 bis U_{12} [mm] Gemessene Verschiebungen an den zugehörigen Weguhren (=U_{1ges} bis U_{12ges}) [mm] Arithmetisches Mittel zusammengehöriger U_{i.k} Verschiebungen (=U_{i,k ges}) ^S₉, ^S₁₁ [mm] Gemessene Verschiebungen an den Meßstellen S_q und S_{11} ^S9,11 Arithmetisches Mittel der gemessenen [mm] Verschiebungen S_9 und S_{11} (=S_{9,11 ges}) max Δd theor. Theoretisch maximal mögliches Lochspiel [mm] bei Verbindung von zwei Blechen

XV

vorh. Δd_v	[mm]	Tatsächlich im Versuch aufgetretener Schlupfbetrag
zul Q _{SL}	[kN]	Zulässige übertragbare Schraubenkraft bei Beanspruchung auf Abscheren nach DIN 18800, Teil 1
zul Q ₁	[kN]	Zulässige übertragbare Schraubenkraft bei Beanspruchung auf Lochleibung nach DIN 18800, Teil 1
^u i pl	[mm]	Bleibender Verschiebungsanteil von u _i
^u i el	[mm]	Elastischer Verschiebungsanteil von u _i
^S 9,11 pl	[mm]	Bleibender Verschiebungsanteil von ^S 9,11
S 9,11 el	[mm]	Elastischer Verschiebungsanteil von ^S 9,11
ⁱ C _{S9,11}	[kN/mm]	Inkrementelle Federsteifigkeit, ermit- telt aus der Verschiebung S _{9,11ges} ab- züglich der Längung des ungestoßenen Zugstabes entsprechender Abmessung (Inkrement = eine Laststufe)
E ^C S9,11	[kN/mm]	Bis zur Gebrauchslast bzw. Traglast kon- stant angenommene Federsteifigkeit, er- mittelt aus der Verschiebung S ₉ ,11ges abzüglich der Längung des ungestoßenen Zugstabes entsprechender Abmessung - Einzelergebnis
C _{S9,11}	[kN/mm]	Wie bei _E C _{S9,11} , jedoch arithmetisches Mittel zusammengehöriger Versuche

XVI

* E ^C S9,11	[kN/mm]	Wie bei C _{S9,11} , jedoch zusätzlich tat- sächlich aufgetretener Schlupfbetrag ab- gezogen
* _C S9,11	[kN/mm]	Wie bei [*] EC _{S9,11} , jedoch arithmetisches Mittel zusammengehöriger Versuche
Е ^С И13	[kN/mm]	Wie bei _E C _{S9,11} , jedoch ermittelt aus Verschiebung U ₁₃ anstelle von S _{9,11}
C _{U13}	[kN/mm]	Wie bei _E C _{U13} , jedoch arithmetisches Mit- tel zusammengehöriger Versuche
¥CU13	[kN/mm]	Wie bei _E C _{U13} , jedoch zusätzlich tatsäch- lich aufgetretener Schlupfbetrag abgezo- gen
*C _{U13}	[kN/mm]	Wie bei ${}_{\mathrm{E}}^{\mathbf{x}}\mathrm{C}_{\mathrm{U13}}$, jedoch arithmetisches Mit- tel zusammengehöriger Versuche
e ^C U46	[kN/mm]	Wie bei _E C _{S9,11} , jedoch ermittelt aus Ver- schiebung U ₄₆ anstelle von S _{9,11}
C _{U46}	[kN/mm]	Wie bei _E C _{U46} , jedoch arithmetisches Mittel zusammengehöriger Versuche
₽ ^ж СU46	[kN/mm]	Wie bei _E C _{U46} , jedoch zusätzlich tat- sächlich aufgetretener Schlupfbetrag ab- gezogen
*с _{U46}	[kN/mm]	Wie bei ^x C _{U46} , jedoch arithmetisches Mit- tel zusammengehöriger Versuche
C _m	[kN/mm]	Federsteifigkeit errechnet als arithme- tisches Mittel der Federsteifigkeiten ^C S9,11, C _{U13} und C _{u46} (ohne Schlupfbe- reinigung

 $C_m^{\mathbf{x}}$

[kN/mm] Federsteifigkeit errechnet als arithmetisches Mittel der Federsteifigkeiten *C_{S9,11}, *C_{U13} und *C_{U46} (mit Schlupfbereinigung)

Bild 1 Trägerstoß IPE 400 - Versuchskörper

Bild 2 Trägerstoß IPE 200 - Versuchskörper

200

Nummer	Träger-	Stahlgüte	Schrauben	Schrauben-	Loch-	Achsiale Vor-	Darstellung	Angaben zur	Angaben zu
des	profi1	des 'Pro-	nach DIN	güte nach	spie1	spannung der	des Ver-	tatsächli-	den tat-
Ver-	nach	fils und	6914	DIN 267		Schraube F _v	suchskör-	chen Geome-	sächlichen
suchs-	DIN	der Laschen				n. DIN 18800,	pers auf	trie auf	Werkstoff-
körpers	1025	nach DIN				Teil 1	Bild	Bild	eigenschaf-
		17100							ten auf
` .					(mm)				Bild
Ιa	IPE 400	St 37- 2	M 20	10.9	1,0	o,5•F _V	1	4,5,10,12,13	8,11
IЬ	IPE 400	St 37- 2	M 20	10.9	1,0	o,5•F _V	1	4,5,10,12,13	8,11
II	IPE 400	St 37- 2	M 20	10.9	1,0	1,0.F _V	1	4,5,10,12,13	8,11
III	IPE 400	St 37- 2	M 20	10.9	2,0	o,5 •F _V	1	4,5,10,12,13	8,11
IV	IPE 400	St 37- 2	M 20	10.9	0,3	1,0.F _V	1	4,5,10,12,13	8,11
				و، العالم العالم العالم العالم المعالم (العالم					
V a	IPE 200	St 37- 2	M 12	10.9	1,0	o,5•F _V	2	6,7,10,14,15	9,11
V b	IPE 200	St 37- 2	M 12	10.9	1,0	o,5•F _V	2	6,7,10,14,15	9,11
VI a	IPE 200	St 37- 2	M 12	10.9	2,0	o,5•F _V	2	6,7,10,14,15	9,11
VI b	IPE 200	St 37- 2	M 12	10.9	2,0	0,5•F _V	2	6,7,10,14,15	9,11
VII	IPE 200	St 37- 2	M 12	10.9	1,0	$1, 0 \cdot F_V$	2	6,7,10,14,15	9,11
VIII a	IPE 200	St 37- 2	M 12	10.9	2,0	1,0.F _V	2	6,7,10,14,15	9,11
VIII b	IPE 200	St 37- 2	M 12	10.9	2,0	1,0.F _V	2	6,7,10,14,15	9,11

Bild 3 Zusammenstellung von Kenngrößen der Versuchskörper für die Biegeträgerversuche

Bild 4 Trägerstoß IPE 400 – Lage der Meßstellen zur Aufnahme der tatsächlichen Geometrie der Stöße

		Ver	suchskö	rper N	Ir.		Ve	ersuchsk	örper	Nr.	
Geo- metri- sche Größe	Ia	ΙЪ	II	III	IV	Geo- metri sche Größe	Īa	Ιъ	II	III	IV
h h1 h2	400,5 401,2	401,1 400,4	400,6 400,7	400,5 400,2	401,5 400,2	SL1 SL2	5,30 5,20 5,40	5,22 5,45	4,98 5,02 4,98	5,02 5,02	5,30 5,32 5,35
b ₁ b ₂ b ₃ b ₄	180,2 180,5 181,1 181,2	179,8 180,7 179,6 180,8	178,8 179,8 180,0 179,0	180,0 179,6 180,0 179,7	180 180,8 181,4 180,8	SL3 SL4 SL5 SL6 SL7 SL8	5,20 5,50 5,50 5,20 5,20	5,45 5,15 5,40 5,18 5,40	5,05 5,02 5,02 5,18 5,20	5,15 5,18 5,02 5,02 5,00	5,05 5,02 5,05 5,12 5,12
t123456780 t56780	12,87 13,22 13,16 12,73 13,00 13,18 12,90 13,18 12,74	13,24 12,76 12,75 13,09 13,30 12,90 12,95 13,15 13,30	13,28 12,96 13,40 13,00 13,35 13,40 13,15 13,00 13,10	13,22 13,12 13,45 13,00 13,35 13,42 13,12 13,00 12,88	12,60 13,15 13,16 12,81 13,05 13,28 13,35 13,50 12,76	SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR6 SR7 SR8	5,00 4,98 4,98 5,20 5,20 5,50 5,50 5,50 5,00	5,18 5,44 5,20 5,22 5,35 5,40 5,45 5,40	5,22 5,12 5,02 5,02 4,98 4,98 5,02 5,02	4,98 5,00 5,12 5,02 5,05 5,35 5,35 5,40	5,12 5,00 5,22 5,02 5,35 5,40 5,12 5,02
t_{10} t_{11} t_{12} t_{13} t_{14}	13,05 13,17 12,55 13,10 13,30 13,00	12,83 12,83 13,18 13,18 13,25 13,35	12,40 13,40 13,25 13,30 13,10 13,15	13,12 13,22 13,30 13,15 13,10 13,22	13,35 13,23 12,64 12,85 13,15 13,35	b bL1 bL2 bL3 bL3 bL4	180,4 180,6 180,0 180,4	180,6 180,4 180,4 180,2	180,4 180,2 180,2 180,2	180,6 180,4 180,4 180,0	180,6 180,6 180,4 180,4
t ¹⁵ 16	13,18	13,20	13,40	13,02	13,02	h _{L1} h _{L2}	320 320	320,5 319,5	321 320,5	320,5 320,0	320,5 320,5
tL1 tL2 tL3	15,00 15,20 15,10 15,30	15,02 15,13 15,18 14,96	15,13 14,98 15,20 15,17	15,00 15,02 15,12 15,10	14,98 15,00 15,06 15,02	h _{R1} h _{R2}	320,5 319,5	320,5 320	320,5 321	320,5 321	321 321
tL4 tL5 tL7 tL8 tL10 tL11 tL12 tL13 tL13 tL14 tL15 tL16	15,30 15,10 15,10 15,00 15,10 15,00 15,00 15,20 14,90 15,00 15,10	15,04 15,13 15,05 15,19 15,13 15,05 14,96 15,04 14,90 14,98 15,00 15,10	15,14 14,98 15,00 15,12 15,20 15,22 15,24 15,20 14,98 15,20 15,20 15,20 15,20	15,20 15,15 15,00 15,12 15,20 15,22 15,24 15,20 14,98 15,22 15,22 15,22 15,22	15,00 15,02 15,04 15,12 15,10 15,20 15,20 15,20 15,20 15,12 15,20 15,24	Alle Erlän siehe	Maßang uterung e Bild	aben in en zur : 4	[mm] Lage den	r Meßpun	nkte
S12345 S345 S67 S8	8,90 8,90 8,80 8,90 8,70 8,70 8,70 8,70	8,80 8,80 8,90 8,90 9,00 8,90 9,00 9,00	9,00 8,90 9,00 9,00 8,90 8,90 8,90	9,00 9,00 8,90 9,00 9,00 8,90 8,90 8,90	8,80 8,90 8,90 8,80 8,90 8,90 8,80 8,90						

Bild 5 Trägerstoß IPE 400 – Zusammenstellung der tatsächlichen Geometrie

Bild 6 Trägerstoß IPE 200 – Lage der Meßstellen zur Aufnahme der tatsächlichen Geometrie der Stöße

	Versuchskörper Nr.										
Geome- trische Größe	Va	⊽Ъ	VIa	VIЪ	VII	VIIIa	VIIIP				
^h 1 h2	199,3 199,1	200,4 199,2	199,2 199,2	201 201	200,4 200	199,4 198,8	201 200,4				
b1 b2 b3 b4	100,7 100,5 100,9 100,6	100,6 100,5 100 100,3	100,8 100,6 100,7 100,6	100,5 101,2 101,2 100,4	100,2 100,4 100,6 100,8	100,2 100,6 100,8 100,4	100,2 100,8 100,8 100,2				
12345678901123456 1123451 11111111111111111111111111111111111	8,40 8,13 8,13 8,32 8,34 8,20 8,22 8,28 8,28 8,28 8,28 8,13 8,12 8,15 8,12 8,15	8,47 8,10 8,32 8,31 8,31 8,314 8,40 8,44 8,40 8,44 8,40 8,42 8,32 8,32 8,32 8,33 8,42 8,33 8,42 8,33 8,34 8,32 8,33 8,34 8,34 8,34 8,32 8,33 8,34 8,34 8,34 8,34 8,34 8,34 8,34	8,20 8,54 8,20 8,20 8,29 8,23 8,32 8,38 8,50 8,42 8,40 8,42 8,46 8,42	8,49 8,46 8,83 8,13 8,74 8,05 8,43 8,43 8,43 8,45 8,45 8,48 8,52 8,48 8,52 8,46 8,52 8,46 8,52 8,46 8,52 8,46 8,52 8,49 8,49 8,45 8,45 8,45 8,45 8,45 8,45 8,55 8,55	8,42 8,46 8,24 8,28 8,40 8,42 8,44 8,46 8,44 8,46 8,48 8,40 8,50 8,48 8,44	8,32 8,38 8,28 8,28 8,28 8,20 8,25 8,25 8,25 8,26 8,32 8,36 8,48 8,44 8,44 8,44	8,24 8,26 8,28 8,30 8,32 8,40 8,42 8,36 8,40 8,38 8,40 8,38 8,440 8,38 8,440 8,38 8,52 8,26 8,32				
tu tu tu tu tu tu tu tu tu tu tu tu tu t	10,05 10,04 10,05 10,03 10,05 10,04 10,02 10,00 10,10 10,10 10,09 10,08 10,08 10,08	9,92 10,01 10,02 9,91 10,02 10,02 10,02 10,02 10,04 10,09 10,07 10,09 10,09 10,04	10,06 10,05 10,05 10,02 10,02 10,02 10,02 10,02 10,04 10,06 10,06 10,05 10,07 10,04 10,05 10,04 10,05	10,07 10,05 10,07 10,04 10,04 10,06 10,06 10,06 10,06 10,06 10,06 10,06 10,06 10,06	10,11 10,12 10,10 10,06 10,06 10,06 10,06 10,08 10,03 10,10 10,03 10,06 10,06 10,06	10,11 10,12 10,08 10,09 10,06 10,06 10,06 10,06 10,03 10,10 10,03 10,03 10,08 10,08 10,08	9,98 10,02 10,12 10,10 10,08 10,09 10,08 10,08 10,08 10,06 10,06 10,08 10,08 10,08 10,08 10,08 10,08				
S1 S2 S3 S4 S5 S6 S7 S8	5,70 5,70 5,70 5,70 5,80 5,80 5,80	5,70 5,70 5,75 5,70 5,90 5,90 6,00 6,00	5,80 6,00 5,90 5,80 5,90 5,90 6,00 5,90	5,70 5,70 5,75 5,75 5,60 5,90 5,90 6,00	5,70 5,70 5,70 5,75 5,75 5,95 5,70 5,70	5,80 5,90 5,95 6,00 6,05 5,80 5,90 5,90	5,70 5,70 5,80 5,85 5,90 5,90 5,90 5,80				
SL1 SL2 SL3 SL4 SL5 SL6 SL6 SL7 SL8	5,06 4,91 4,89 4,93 4,91 4,90 4,94 4,94	4,91 4,91 4,90 4,93 4,94 4,95 4,95 4,95 4,95	4,90 4,30 4,89 4,90 4,91 4,90 4,91 4,91	4,90 4,91 4,90 4,91 4,92 4,94 4,96 4,92	4,92 4,91 4,92 4,92 4,96 4,94 4,94 4,94	5,00 4,96 4,98 5,00 4,98 4,94 4,96 4,96	4,98 4,96 4,96 4,94 4,94 4,98 4,98 5,00				
SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8	4,96 4,92 4,93 4,90 4,92 4,92 4,92 4,94	3,90 4,89 4,91 4,90 4,90 4,92 4,91 4,90	4,91 4,90 4,91 4,91 4,90 4,92 4,90 5,00	4,90 4,91 4,91 4,91 4,90 4,92 4,90 4,92	4,91 4,93 4,92 4,92 4,90 4,93 4,91 4,91	4,98 4,93 4,95 4,94 4,93 4,93 4,92 4,95 4,98	4,92 4,85 5,87 4,92 4,93 4,95 4,95 4,95 4,98				
$\begin{array}{c} {}^{b}_{L1}\\ {}^{b}_{L2}\\ {}^{b}_{L3}\\ {}^{b}_{L4}\end{array}$	100,0 100,2 100,2 100,1	100,2 100,4 100,4 100,1	100,6 100,4 100,6 100,4	100,4 100,6 100,8 100,8	100,6 100,6 100,6 100,6	100,8 100,8 100,6 100,4	100,4 100,2 100,2 100,2				
hL1 hL2	149,5 149,2	149,6 149,9	149,2 149,6	149,5 151,2	149,6 149,6	149,8	150,2 150,0				
h _{R1}	149,5 149,5	149,5 150,0	149,2	149,3 150,0	149,4 149,8	149,7 149,8	150,0 149,8				

Alle Maßangaben in [mm] Erläuterungen zur Lage der Meßpunkte siehe Bild 6

Bild 7 Trägerstoß IPE 200 – Zusammenstellung der tatsächlichen Geometrie

Lage der Probenent- nahmestelle	Proben- nummer	Beschreibung der Entnahme- stelle	Material verwendet für Versuchskör- per Nr.	Streck- grenze β _s (kN/cm ²)	Zugfestig- keit β _z (kN/cm ²)	Bruch- dehnung δ ₅ (%)
	1α 1β 1γ 1δ	IPE 400, Flansch oben " " unten " Steg oben " " unten	Ia, Ib	41,56 40,25 43,75 40,30	51,02 50,32 50,96 53,25	39,0 35,0 40,0 34,3
Υ b/6 IPE 400 - 6	2 α 2 β 2 γ 2 δ	IPE 400, Flansch oben " " unten " Steg oben " " unten	II, III	36,89 36,13 37,38 36,16	48,64 49,04 48,78 49,17	34,0 34,2 34,1 34,0
$ = \frac{b}{b} + \frac$	3α 3β 3γ 3δ	IPE 400, Flansch oben " " unten " Steg oben " " unten	IV	30,68 30,38 34,35 34,91	46,68 46,8 9 47,63 47,82	30,5 30,0 30,6 30,6
Laschenblech	4ε 5ε 6ε	Flanschlasche in Walzrichtg " "	Ia,Ib,II,III,IV	32,09 31,88 32,33	42,88 42,58 42,37	39,0 41,3 38,8
ε Walz- richtung	7ε 7 <u>ς</u> 8ε 8τ	Steglasche in Walzrichtg. "senkr. Walzr. Steglasche in Walzrichtg. "senkr. Walzr.	Ia,Ib,II,III,IV Ia,Ib,II,III,IV	28,39 24,60 25,20 26,66	35,37 35,11 36,17 35,84	35,8 36,7 43,4 33,9

Bild 8 Trägerstoß IPE 400- Ergebnisse des statischen Zugversuchs nach DIN 50146 an Zugproben E nach DIN 50125 (St 37-2)

Lage der Probenent- nahmestelle	Proben- nummer	Beschreibung der Entnahme- stelle	Material verwendet für Versuchskör- per Nr.	Streck- grenze β_{s}	Zugfestig- keit β_z	Bruch- dehnung δ_5
a	1α 1β 1γ	IPE 200, Flansch oben " " unten " Steg oben	Va, Vb, VIa, VIb	(KN/Cm) 28,57 34,89 34,13	40,26 43,52 42,33	(%) 43,8 31,7 31,6
Y b/6	1δ 2α	" " unten IPE 200, Flansch oben		31,62	39,74 41,75	45,0
	2β 2γ 2δ	" " unten ", Steg oben " " unten	VII, VIIIa, VIIIb	33,00 29,20 32,12	41,01 39,50 43,10	30,5 31,0 30,5
Laschenblech	3ε 4ε 5ε	Flanschlasche in Walzrichtg. " "	Va, Vb, VIa, VIb, VII, VIIIa, VIIIb	30,45 29,94 31.82	44,77 43,64 44,29	43,8 47,5 43,8
Walz-	6ε 6ς	Steglasche in Walzrichtg. "senkr. Walzr.	Va, Vb, VIa, VIb, VII, VIIIa, VIIIb	35,32 36,91	47,02 46,70	35,0 22,0
ε Γ Γ Γ Γ Γ	7ε 7ς	Steglasche in Walzrichtg. " senkr. Walzr.	Va, Vb, VIa, VIb, VII, VIIIa, VIIIb	36,81 34,89	45,85 46,91	35,1 16,0

Bild 9 Trägerstoß IPE 200- Ergebnisse des statischen Zugversuchs nach DIN 50146 an Zugproben E nach DIN 50125 (St 37-2)

Darstellung der Bezeichnungen	Verbindungs-	Geometri-		Gemes	sener	Wert	: bei	Probe	Nr.	(n	.m.)		Arithm.	Sollwert
am Verbindungsmittelteil	mittel	sche Größe	1	2	3	4	5	6	7	8	Э	10	Mittel aus Nr.1-10	nach DIN
	Sechskant- schraube M 20 n. DIN 6914	d ₁ d ₂	20,9 31,3 9,6	21,1 31,8	20,9 31,9	20,9 31,7	20,9 31,8	20,9 31,2	20,9 31,7	20,9 31,7 9,7	20,9 31,5	21,0 31,6	20,93 31,62 0,74	21 30 9.8
	Schaft- und Gewinde nach DIN 7968	k S	12,7 31,6	12,9 31,8	12,8 31,6	12,9 31,5	12,9 31,8	12,9 31,8	12,7 31,6	13,0 31,6	12,8 31,6	12,9 31,6	12,85 31,65	13 32
Linsenkuppe noch Wohl des Herstellers zulässig 10° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5	Sechskant- schraube M 20 n. DIN 6914	d d 2 c k s	19,8 31,0 0,8 12,7 31,8	19,9 31,0 0,3 12,7 31,6	19,8 31,2 0,3 12,9 32,0	19,9 31,2 0,5 12,9 31,9	19,9 31,2 0,7 13,0 31, 9	19,8 31,1 0,7 12,9 32,0	19,9 31,0 0,6 13,0 31,8	19,9 31,0 0,5 12,8 31,3	19,9 31,1 0,8 13,1 31,9	19,8 31,0 0,6 13,2 31,5	19,86 31,08 0,58 13,92 31,77	20 30 0,8 13 32
	Sechskant- schraube M 12 n. DIN 6914	d ₁ d ₂ c k s	11,6 20,1 0,3 7,9 21,9	11,5 20,1 0,3 7,8 22,0	11,5 20,2 0,4 7,8 21,6	11,6 20,0 0,5 7,9 21,7	11,5 20,2 0,2 8,1 21,7	11,5 20,1 0,2 7,9 21,6	11,5 20,1 0,2 8,0 21,9	11,6 20,1 0,3 7,8 21,9	11,5 20,2 0,3 7,7 21,5	11,5 20,1 0,2 7,8 21,7	11,53 20,12 0,32 7,87 21,75	12 20 0,4 8 22
	Sechskant- mutter M 20 n. DIN 6915	m S	15,5 31,0	15,5 31,0	15,5 31,2	15,6 31,1	15,4 31,1	15,4 31,0	15,5 30,9	15,6 31,0	15,5 31,1	15,5 31,0	15,50 31,04	16 32
Kennzeichnung	Sechskant- mutter M 12 n. DIN 6915	m S	9,8 21,4	9,9 21,4	9,9 21,5	9,8 21,4	9,9 21,4	10,0 21,4	-9,9 21,5	9,9 21,5	9,9 21,4	10,0 21,4	9,90 21,43	10 22
Est for the former of the form	Scheibe 21 n. DIN 6916	^d 1 ^d 2 s	21,4 35,7 3,9	21,5 35,7 3,8	21,4 35,9 3,8	21,4 35,6 3,8	21,7 35,7 3,6	21,4 35,8 3,9	21,5 35,7 3,8	21,5 35,6 3,9	21,4 35,7 3,9	21,4 35,6 3,8	21,46 35,70 3,82	21 37 4
ta hieraring	Scheibe 13 n. DIN 6916	d ₁ d ₂ s	13,2 23,5 2,9	13,3 23,6 2,8	13,4 24,4 2,9	13,5 24,3 2,8	13,6 23,6 2,9	13,4 24,2 2,8	13,3 23,5 3,0	13,5 24,2 2,8	13,7 24,3 2,8	13,3 23,9 2,8	13,42 23,95 2,85	13 24 3

Bild 10 Angaben zur tatsächlichen Geometrie der Stichproben von Schrauben, Muttern und Scheiben

Meßstelle für die Verbindungs- Härteprüfung mittel		Ergebnisse der Vickershärteprüfung HV 30 nach DIN S0133 und daraus Zugfestigkeit nach DIN 50150 (Mittelwert aus 3 Messungen) Stichprobe Nr. 1 2 3						Arithm aus Nr	1. Mittel 1. 1-3	Sollwert nach DIN 267		
		HV 30 (kN	β_z /cm ²)	HV 30 (kN	β_z /cm ²)	HV 30 (kN	β_z /cm ²)	HV 30 (kn	β_z 1/cm ²)	HV 30 (k	β _z N/cm ²)	
Linsenkuppe noch Wohl des Herstellers zulössig	Sechskant- schraube M 2o n. DIN 6914, Schaft und Gewinde nach DIN 7968	32,9	 106,0	31,5	101,0	33,4	 107,0	32,6	104,7	min= 28,0 max= 37,0	min= 100 max= 120	
	Sechskent- schraube M 20 n. DIN 6914	34,5	111,0	31,6	101,0	34,8	112,0	33,6	108,0	min= 28,0 max= 37,0	min= 100 max= 120	
	Sechskant- schraube M 12 n. DIN 6914	35,7	114,0	35,7	114,0	34,7	112,0	35,4	113,3	min= 28,0 max= 37,0	min= 100 max= 120	
	Sechskant- mutter M 20 n. DIN 6915	22,0	70,5	31,0	99,5	29,3	94,0	27,4	88,0	min= 27,2 max= 35,3	min= 104	
Kennzeichnung	Sechskant- mutter M 12 n. DIN 6915	27,7	89,0	25,9	83,5	25,2	81,0	26,3	84,5	min= 27,2 max= 35,3	min= 104	
	Scheibe 21 n. DIN 6916	36,0	115,5	33,6	108,0	34,4	111,0	34,7	111,5	min= 29,5 max= 35,0	min= 63 max= 86	
Es Her steller seichen (auf Uhrerseiter)	Scheibe 13 n. DIN 6916	39,6	127,0	39,7	127,0	39,7	127,0	39,7	127,0	min= 29,50 max= 35,0	min= 63 max= 86	

Bild 11 Angaben zur Vickershärte der Stichproben von Schrauben, Muttern und Scheiben

Bild 12 Trägerstoß IPE 400 – Beispiel für die tatsächliche Geometrie eines Schraubenlochbildes (Lochabstände)

Bild 13 Trägerstoß IPE 400 – Beispiel für die tatsächliche Geometrie eines Schraubenlochbildes (Lochdurchmesser-zugehörig zu Bild 12)

Bild 14 Trägerstoß IPE 200 - Beispiel für die tatsächliche Geometrie eines Schraubenlochbildes (Lochabstände)

Bild 15 Trägerstoß IPE 200 – Beispiel für die tatsächliche Geometrie eines Schraubenlochbildes (Lochdurchmesser-zugehörig zu Bild 14)

Bild 16 Ansicht des eingebauten Versuchskörpers

Bild 17 Trägerstoß IPE 400 - Anordnung der Meßuhren

Bild 18 Trägerstoß IPE 200 - Anordnung der Meßuhren

Bild 19 Trägerstoß IPE 400 – Zusammenstellung der Gesamtdurchsenkungen in Trägermitte für die Versuche I-IV

			Gemes	Seite ve.	rschieb	ungen i	ո լատոյ	Det nes	LSLUIG	r (KN)				
Nr. des Versuchs u. Parameter	Verschie- bungsan- teil	P=15	30	45	60	75	90	105	120	135	150	165	180	P=195
Ia	V V20ges V20el 20pl	2,00 1,90 0,10	4,60 3,80 0,80	10,60 5,80 4,80	20,90 7,70 13,20	27,90 9,60 18,30	34,70 11,50 23,20	39,40 13,50 25,90	44,10 15,40 28,70	48,70 17,30 31,40	52,80 19,20 33,60	60,40 21,20 39,20	71,80 23,10 48,70	-, -, -,
Lochspiel Ad = 1,0 [mm] Vorspg. = 0,5 · F _V	V V23,24ges V23,24e1 V23,24e1 23,24p1	1,87 1,82 0,05	4,24 3,86 0,38	9,05 7,85 1,20	18,10 9,09 9,01	23,54 9,72 13,82	28,38 11,28 17,10	32,50 11,90 20,60	36,31 26,71 21,50	39,91 14,90 25,01	43,49 17,29 26,20	49,68 17,54 32,14	59,13 20,01 39,12	-, -,
Ib	V V20ges V20e1 20p1	2,00 1,70 0,30	7,00 4,00 3,00	21,60 6,00 15,60	24,40 8,70 15,70	31,20 10,60 20,60	35,00 12,90 22,10	40,10 14,20 25,90	43,10 15,30 27,80	46,70 18,90 27,80	50,40 20,60 29,80	56,20 22,40 32,70	66,80 25,50 41,30	-, -, -,
Lochspiel $\Delta d = 1,0 $ [mm] Vorspg. = 0,5 \cdot F _V	V v23,24ges v23,24e1 v23,24p1	1,91 1,67 0,24	5,86 4,54 1,32	16,83 5,73 11,10	19,60 7,96 11,64	25,02 10,32 14,70	28,70 12,39 16,31	34,74 14,50 20,24	35,98 15,77 20,21	38,59 17,22 21,27	42,62 19,71 22,91	46,22 20,97 25,25	55,64 23,04 32,60	-, -, -,
II	V V ²⁰ ges V ²⁰ el 20pl	3,00 1,00 2,00	5,30 3,30 2,00	7,60 5,40 2,20	10,00 7,40 2,60	13,40 9,60 3,80	24.90 11,90 13,00	31,70 13,90 17,80	41,30 16,50 24,80	48,00 19,30 28,70	52,90 21,30 31,60	57,30 22,60 34,70	67,90 25,20 42,70	-, -,
Lochspiel Ad = 1,0 [mm] Vorspg. = 1,0 [·] F _V	V v23,24ges v23,24e1 v23,24e1 23,24p1	2,65 0,93 1,72	4,78 2,98 1,80	7,04 5,12 1,92	9,03 7,01 2,02	12,01 9,07 2,94	21,01 12,22 9,79	26,40 13,26 13,14	31,94 15,75 16,19	37,41 18,19 19,22	45,78 20,89 24,89	49,11 22,43 26,68	57,66 25,08 32,58	-, -,
III	V V ²⁰ ges V ²⁰ el 20pl	1,40 1,40 0	3,50 3,50 0	6,60 6,50 0,10	16,50 7,50 9,00	25,40 9,40 16,00	36,00 10,90 25,10	43,60 13,60 30,00	47,40 15,40 32,00	51,70 17,90 33,80	55,80 19,80 36,00	61,20 24,00 37,20	69,60 24,80 44,80	92,50 29,80 62,70
Lochspiel Ad = 2,0 [mm] Vorspg. = 0,5 · F _V	V V23,24ges V23,24e1 23,24p1	1,35 1,35 0	3,40 3,30 0,10	6,20 5,30 0,90	13,70 7,00 6,70	20,60 8,80 11,80	29,20 10,50 18,70	35,20 12,70 22,50	38,40 14,50 23,90	42,00 16,60 25,40	45,70 18,50 27,20	50,20 20,50 29,70	57,10 22,90 34,20	75,00 26,80 48,20
IV	V V20ges V20el 20pl	2,44 1,37 1,07	4,67 3,40 1,27	6,88 5,46 1,42	8,17 6,69 1,48	11,56 9,64 1,92	14,65 11,80 2,85	18,50 13,87 4,63	25,27 17,27 8,00	32,52 18,33 14,19	-, -, -,	-, -, -,	-, -,	-, -, -,
Lochspiel Ad = 0,3 [mm] Vorspg. = 1,0 ° F _V	V V23,24ges V23,24e1 23,24p1	2,29 1,28 1,01	4,36 3,17 1,19	6,40 5,12 1,28	8,50 6,13 1,37	10,70 8,95 1,75	13,45 10,96 2,49	16,75 12,86 3,89	22,47 15,01 7,46	28,86 16,94 11,92	-, -, -,	-, -,	-, -, -,	-, -, -,

Gemessene Verschiebungen in [mm] bei Laststufe P [kN]

V₂₀ [≙] Durchsenkung in Trägermitte; V_{23,24} [≙] arithm. Mittel der Durchsenkungen in den Lasteinleitungspunkten V_{ges} [≙] Gesamtverschiebung; V_{pl} [≙] bleibender Verschiebungsanteil; V_{el} [≙] elastischer Verschiebungsanteil

Bild 21 Trägerstoß IPE 400 – Tabellarische Zusammenstellung der gemessenen Vertikalverschiebungen in Trägermitte und in den Lasteinleitungspunkten (bleibende und elastische Verschiebungsanteile) für die Versuche I bis IV

		Geme	ssene	Vers	chieb	ungen	in [nm] be	i Last	stufe P [kN]
Nr.des Versuchs u. Parameter	Verschiebgs Anteil	P=10	20	30	40	50	60	70	75	P=80
Va	V 20 ges	1,20	2,70	7,60	16,90	24,50	28,20	31,00	34,40	
	V _{20 el}	1,00	2,20	3,30	4,40	5,70	7,00	7,90	9,00	
	V 20 pl	0,20	0,50	4,30	12,50	18,80	21,20	23,10	25,30	
Lochspiel∆d=1,0mm	V 23,24ges	1,20	2,44	6,21	12,58	17,84	20,57	23,00	25,78	
Vorspg. =0,5·F _V	V 23,24el	1,04	2,10	3,07	4,13	4,70	5,58	7,11	8,01	
	V _{23,24p1}	0,16	0,34	3,14	8,45	13,14	14,99	15,89	17,77	
VЪ	V ₀₀	1,30	2,60	4,40	18,40	21,70	31,30	35,00	39,30	
	V _{20 ol}	1,00	2,20	3,20	4,50	5,70	6,70	7,70	8,50	
	V 20 pl	0,30	0,40	1,20	13,90	16,00	24,60	27,30	30,80	
LochspielAd=1.0mm	V _{oo} ou	1,52	2,68	4,19	13,32	15,81	22,06	24,38	27,07	
Vorspg. =0,5.F.	23,24ges V _{23,24ges}	1,15	2,12	3,09	4,10	4,62	5,80	6,87	7,66	
, i i i i i i i i i i i i i i i i i i i	V _{23 240} 1	0,37	0,56	1,10	9,22	10,19	16,26	17,51	19,41	
		1. 140	0 70	10, 40	00.00	00.00	20.50	20.00	11 60	50 50
Vla	V ₂₀ ges	1,40	2,70	12,40	26,80	29,80	32,50	35,80	41,60	9 20
	V20 el V	0 10	2,40	3,00 8 80	22 00	23 80	25 60	29.00	32.80	4 1.30
	20 pl	0,10	0,00	0,00	22,00	20,00	20,00	20,00		
LochspielAd=2,0mm	V _{23,24ges}	1,38	2,52	9,25	19,15	21,34	24,07	26,99	30,58	37,40
vorspg. =0,5'f	v23,24el	1,33	2,28	3,29	11, 75	15 07	17 21	10 55	22 77	7,30 29 H2
	23,24pl	0,05	0,24	5,90	14,75	15,97	17,21	19,55	22,11	
VID	V 20 ges	1,00	2,20	3,20	4,70	6,80	11,80	23,80	30,90	
	V 20 el	1,00	2,10	3,10	4,30	5,30	6,50	7,70	8,30	
	V _{20 pl}	0	0,10	0,20	0,40	1,50	5,30	16,10	22,60	
Lochspiel∆d=2,0mm	V 23.24765	1,04	2,10	3,16	4,33	5,57	9,68	17,96	23,35	
Vorspg. =0,5.F	V 23,24e1	0,99	2,00	2,98	3,99	4,45	5,92	6,94	7,48	
	V _{23,24p1}	0,05	0,10	0,18	0,34	1,12	3,76	11,02	15,87	
VTT	v	1.30	2.70	4.70	20.70	29.70	33,10	36.60	40.20	46.70
	20 ges V	1,20	2,20	4,20	5,30	5,50	6,40	7,70	8,40	9,00
/*. /*.	20 ei V 20 pl	0,10	0,50	0,50	15,40	24,20	26,70	28,90	31,80	37,70
LochspielAd=1.0mm	V.	1.21	2.41	4.09	14.87	20.94	23,61	26.33	29.15	34,26
Vorspg. = $1,0$ F.	23,24ges	1,08	2,09	3,13	4,18	4,98	6,00	6,90	7,50	8,04
10 - V	23,24e1 V	0,13	0,32	0,96	10,69	15,96	17,61	19,35	21,65	26,22
VIIIa	23,24p1									
, i i i u	V ₂₀ ges	1,80	3,00	4,30	6,10	14,80	26,80	30,80	35,70	46,50
	V _{20 el}	1,70	2,80	3,90	4,70	6,20 0 60	7,20	7,80	8,60	11,30 25,20
	^v 20 pl	0,10	0,20	0,40	1,40	0,00	19,00	23,00	27,10	55,20
Lochspiel∆d=2,0mm	V _{23,24ges}	1,59	2,66	3,87	5,40	11,33	19,74	23,21	26,84	35,73
Vorspg. =1,0.FV	V _{23,24e1}	1,57	2,61	3,59	4,47	5,94	6,63	7,40	7,85	8,57
	V _{23,24p1}	0,02	0,05	0,28	0,93	5,89	13,11	15,81	18,99	27,16
VIIID	V ₂₀	1,00	2,30	3,60	5,20	7.70	11.70	36.40	40.70	53,70
	V ges	1,00	2,20	3,30	4,10	5,30	6,30	7,90	8,40	12,00
	V 20 Pl	0	0,10	0,30	1,10	2,40	5,40	28,50	32,30	41,70
LochspielAd=2.0mm	Vac ou	1.04	2,14	3,30	4.77	6,68	10,43	25,27	28,70	40.70
Vorspg. =1,0.F.,	23,24ges V _{02,04} ,2	1,04	2,05	3,01	3,99	4,97	5,95	7,08	7,63	8,24
- · · v	V _{23 2401}	0	0,09	0,29	0,78	1,71	4,48	18,19	21,07	32,46
	~~, ~ PI	L		L	L		L	L		

v₂₀ ≘ Durchsenkung in Trägermitte

 $v_{23,24}^{-}$ arithm. Mittel der Durchsenkungen in den Lasteinleitungspunkten

Vges ê Gesamtverschiebung

V_{el} V_{pl} ê elastischer Verschiebungsanteil

ŝ bleibender Verschiebungsanteil

Bild 22: Trägerstoß IPE 200 - Tabellarische Zusammenstellung der gemessenen Vertikalverschiebungen in Trägermitte und in den Lasteinleitungspunkten (bleibende und elastische Verschiebungsanteile) für die Versuche V bis VIII

Bild 25 Erläuterung möglicher Meßfehler bei der Messung der Relativverschiebungen infolge unvermeidbarer Unsymmetrien

		Gemes	sene g	emitt	elte R	elativ	verfo	rmunge	n in (mm] be	i Last	stufe	P [kN	1
Nr. des Versuchs und Parameter	Verschiebungs- anteil	P = 15	30	45	60	75	90	105	120	135	150	165	180	P = 195
	r 13,14ges 13,14e1 13.14p1	0	0,001	0,045	0,1125	0,1500	0,2025 0,0015 0,2010	0,2350	0,2650	0,2875	0,2950	0,4000	0,5400	-
I a LochspielAd=1,0[mm] Yorspg. =0.5'F	r 12,15ges r12,15el	0,001	0,011	0,155	0,4275	0,5875	0,7050 0,0025 0,7025	0,7925	0,8600	0,9150	0,9400	1,0800	1,2650	-
Wegen geändertem Versuchsablauf nur	r11,16ges r11,15el r11.16pl	0,0025	0,023	0,250	0,7350	1,0075	1,1600 0,0055 1,1545	1,2625	1,3400	1,3875	1,3900	1,5150	1,7300	-
eine Zwischenent- lastung bei P = 90 [kN]	r10,17ges r10,17e1 r10,17p1	0,009	0,0405	0,3425	1,0650	1,4500	1,7350 0,0075 1,7275	1,9500	2,1350	2,2725	2,3400	2,5700	2,9500	-
	r 13,14ges 13,14e1 r 13,14p1	0,005 0,005 0	0,020 0,020 0	0,125 0 0,125	0,125 0 0,125	0,125 0 0,125	0,215 0,005 0,210	0,250 0,005 0,245	0,255 0,010 0,245	0,270 0,015 0,255	0,285 0,005 0,280	0,315 0,010 0,305	0,490 0,005 0,485	- - -
I b LochspielAd=1,0[mm]	r 12,15ges r 12,15el r 12,15pl	0,010 0,005 0,005	0,075 0,025 0,050	0,460 0,015 0,445	0,465 0,015 0,450	0,615 0,025 0,590	0,700 0,030 0,870	0,820 0,025 0,795	0,830 0,030 0,800	0,875 0,035 0,840	0,910 0,015 0,895	0,985 0,020 0,965	1,140 0,035 1,105	-
Vorspg. =0,5 r _y	r 11,16ges r 11,16el r 11,16pl	0,015 0,005 0,010	0,150 0,005 0,145	0,800 0,060 0,740	0,800 0,050 0,750	1,010 0,065 0,955	1,165 0,055 1,110	1,315 0,050 1,265	1,320 0,055 1,265	1,355 0,065 1,290	1,415 0,035 1,380	1,460 0,030 1,430	1,615 0,100 1,515	-
	r 10,17ges r 10,17el r 10,17pl	0,020 0,015 0,005	0,225 0,060 0,165	1,145 0,070 1,075	1,145 0,070 1,075	1,535 0,085 1,450	1,705 0,075 1,630	2,020 0,085 1,935	2,075 0,095 1,980	2,150 0,085 2,065	2,235 0,110 2,125	2,395 0,115 2,280	2,830 0,085 2,745	-
	r 13,14ges r 13,14el r 13,14el r 13,14pl	0,003 0 0,003	0,005 0,004 0,001	0,006 0,005 0,001	0,010 0,008 0,002	0,027 0,010 0,017	0,104 0,012 0,092	0,150 0,010 0,140	0,252 0,010 0,242	0,294 0,012 0,282	0,315 0,011 0,304	0,328 0,011 0,317	0,423 0,006 0,417	-
II LochspielAd=1,0[mm] Vorspi, =1.0.F.	r 12,15ges 12,15el r 12,15pl	0,002 0 0,002	0,004 0,002 0,002	0,005 0,003 0,002	0,011 0,007 0,004	0,078 0,015 0,063	0,315 0,008 0,307	0,467 0,009 0,458	0,685 0,012 0,873	0,787 0,010 0,777	0,833 0,014 0,319	0,367 0,021 0,346	0,975 0,027 0,948	- -
······	r 11,16ges r 11,16e1 r 11,16p1	0,001 0,001 0	0,011 0,002 0,009	0,014 0,005 0,009	0,018 0,008 0,010	0,094 0,008 0,086	0,588 0,008 0,550	0,788 0,014 0,774	1,108 0,019 0,089	1,225 0,030 1,195	1,249 0,032 1,217	1,248 0,076 1,172	1,335 0,084 1,251	
	r 10,17ges r 10,17el r 10,17pl	0,003 0,002 0,001	0,009 0,008 0,001	0,018 0,007 0,011	0,045 0,008 0,037	0,154 0,009 0,145	0,883 0,023 0,860	1,240 0,023 1,217	1,773 0,058 1,715	2,024 0,065 1,959	2,120 0,088 2,032	2,268 0,137 2,131	2,549 0,142 2,407	-
	r13,14ges r13,14e1 r13,14p1	0 0 0	0 0 0	000	0,090 0,080 0,010	0,110 0,020 0,090	0,210 0,080 0,130	0,280 0,050 0,230	0,300 0,010 0,290	0,310 0,010 0,300	0,320 0 0,320	0,320 0 0,320	0,450 0,040 0,410	0,580 0,160 0,420
III Lochspiel∆d∓2.0[mm]	^r 12,15ges ^r 12,15e1 ^r 12,15p1	0 0 0	0 0 0	0,040 0,040 0	0,300 0,250 0,050	0,470 0,160 0,310	0,800 0,320 0,480	0,980 0,170 0,810	1,030 0,050 0,980	1,070 0,040 1,030	1,100 0,030 1,070	1,130 0,020 1,110	1,170 0,040 1,130	1,380 0,160 1,220
Vorspg. =0,5°F _V	r11,16ges r11,16el r11,16pl	0 0 0	0 0 0	0,070 0,060 0,010	0,500 0,440 0,060	0,840 0,330 0,510	1,410 0,560 0,850	1,710 0,300 1,410	1,790 0,070 1,720	1,840 0,040 1,800	1,870 0,030 1,840	1,900 0,020 1,880	1,920 0,010 1,910	2,130 0,150 1,980
	r10,17ges r10,17e1 r10,17p1	0 0 0	0,020 0,010 0,010	0,100 0,090 0,010	0,730 0,630 0,100	1,160 0,520 0,640	1,950 0,830 1,120	2,460 0,470 1,990	2,600 0,240 2,360	2,710 0,170 2,540	2,830 0,190 2,640	2,940 0,210 2,730	3,160 0,290 2,870	3,770 0,630 3,140
	r _{13,14} ges r _{13,14} el r _{13,14} pl	0,003 0 0,003	0,005 0,002 0,003	0,005 0,005 0	0,008 0,005 0,003	0,008 0,008 0	0,010 0,007 0,003	0,018 0,008 0,010	0,030 0,010 0,020	0,028 0,008 0,020			-	-
IA	r12,15ges r12,15el r12,15pl	0,003 0,003 0	0,003 0,003 0	0,003 0,003 0	0,010 0,005 0,005	0,008 0,005 0,003	0,025 0,015 0,010	0,050 0,017 0,030	0,083 0,010 0,073	0,080 0,017 0,063			- - -	
Lochspieldd=0,3[mm] Vorspg. =1,0°F _V	^r 11,16ges ^r 11,16el ^r 11,16pl	000	0,003 0,003 0	0,003 0,003 0	0,008 0,008 0	0,018 0,010 0,008	0,015 0,012 0,003	0,053 0,025 0,028	0,100 0,030 0,070	0,073 0,023 0,050		- - -	- -: -	-
	r 10,17ges r 10,17el r 10,17pl	0,003 0 0,003	0,010 0,005 0,005	0,010 0,007 0,003	0,015 0,010 0,005	0,025 0,015 0,010	0,063 0,020 0,043	0,135 0,030 0,105	0,255 0,037 0,218	0,308 0,058 0,250				-

----- ·

Bild 26: Trägerstoß IPE 400 - Tabellarische Zusammenstellung der gemessenen gemittelten Relativverformungen im Stoßbereich

		Gemess	sene gemi	ttelte Re	lativver	formunge	n in mm	bei La	iststufe	P kN
Mr.des Versuchs und Parameter	Verschiebungs- anteil	P≈10	20	30	40	· 50	60	70	75	30
	-13,14ges -13,14e1 -13,14p1	0000	0,0075 0,0050 0,0025	0,050 0,045 0,005	0,290 0,005 0,285	0,415 0,005 0,410	0,445 0,005 0,440	0,455 0,005 0,450	0,470 0,005 0,465	-
V a LochspielAd=1,0 [mm] Vorspg. =0,5 F.	512,15ges 512,15el 512,15pl	0,0025 0,0025 0	0,015 0 0,015	0,260 0,0075 0,2525	1,0150 0,0125 1,0025	1,535 0,030 1,505	1,690 0,025 1,665	1,700 0,025 1,695	1,790 0,035 1,755	
	11,16ges 11,16e1 11,16p1	0,010 0,010 0	0,0475 0,0225 0,0250	0,5075 0,0475 0,4600	1,680 0,105 1,585	2,550 0,100 2,450	2,850 0,055 2,795	2,365 0,130 2,335	3,195 0,180 3,015	-
	r10,17ges r10,17e1 r10,17p1	0,0275 0,0225 0,0050	0,0 850 0,0500 0,0350	0,7600 0,1450 0,6150	2,275 0,145 2,130	3,560 0,150 3,265	3,975 0,230 3,745	4,160 0,250 3,910	4,505 0,305 4,200	-
	r 13,14ges 13,14e1 13,14p1	0 5 0	0,0025 0,0025 0	0,0175 0,0025 0,0150	0,3725 0,0025 0,3700	0,4175 0,0025 0,4150	0,5875 0 0,5875	0,6250 0,0025 0,6225	0,8500 0,0050 0,5450	-
v 5 Lochspiel∆d=1,0 [mm] Vorspg. =0,3°F _v	12.15ges 12.15el 12.15el 12.15pl	0,0025 0,0025 0	0,0075 0,0025 0,0050	0,0525 0,0025 0,0500	1,0875 0,0100 1,0775	1,2300 0,0125 1,2175	1,9075 0,0175 1,8900	1,9550 0,0050 1,9500	1,9900 0,0075 1,3825	
	r11,16ges r11,16el r11,16pi	0,0100 0,0050 0,0050	0,0300 0,0150 0,0150	0,1150 0,0350 0.0800	1,3300 0,0600 1,7700	2,0900 0,0825 2,0075	3,2150 0,1000 3,1150	3,3750 0,1175 3,2575	3,5200 0,1400 3,3800	-
1	710,17ges 710,17el 710,17pl	0,025 0,015 0,010	0,0700 0,0500 0,0200	0,2000 0,0800 0,1200	2,5450 0,1380 2,4070	2,9525 0,1880 2,7545	4,3100 0,2230 4,0870	4,3600 0,2430 4,3170	4,8550 0,2950 4,5600	-
	r 13,14ges r 13,14e1 r 13,14p1	0 0 0	0,0050 0,0025 0,0025	0,1650 0 0,1650	0,5650 0,0100 0,3550	0,6250 0 0,6250	0,5650 0,0050 0,3600	0,7050 0 0,7050	0,7350 0,0050 0,7300	0,7700 0,0050 0,7650
VL a LochspielAd=2,0 [mm] Vorspg. =0,5.F.,	r 12,15ges r 12,15e1 r 12,15p1	0,0050 0 0,0050	0,0200 0,0025 0,0175	0,5700 J 0,5700	1,5950 2,0100 1,6850	1,3350 0,0150 1,3200	1,3100 0,0150 1,8950	2,0000 0,0200 1,3800	2,0800 0,0200 2,0600	2,1500 0,0100 2,1400
	r 11,16ges r 11,16e1 r 11,16p1	0,0250 0,0200 0,0050	0,0450 0,0200 0,0250	1,1800 0,0450 1,1350	2,9600 0,0800 2,8800	3,2000 0,0850 3,1150	3,3800 0,1100 3,2700	3,5450 0,1450 3,5000	3,8950 0,1500 3,7450	4,2300 0,1450 4,0850
	r 10,17ges r 10,17ei r 10,17pi	0,0250 0,0200 0,0050	0,0 850 0,0500 0,0350	1,5800 0,0950 1,5850	4,2150 0,1550 4,0600	4,5200 0,1900 4,3300	4,7900 0,2300 4,5600	5,2000 0,2850 4,9150	5,6150 0,3050 5,3100	6,2200 0,2850 5,9350
	r 13,14ges r 13,14el r 13,14el 13,14pl	0,0025 0,0025 0	0,0050 0,0025 0,0025	0,0235 0,0035 0,0190	0,4985 0,0110 0,4875	0,6450 0,0125 0,5325	0,6975 0,0075 0,6900	0,7225 3,0065 0,7160	0,7410 0,0085 0,7325	0,7550 0,0050 0,7500
VorspielAd=2,0 [mm] Vorspiel = 0,5°F.,	r 12,15ges r 12,15el r 12,15pl	0,0050 0,0010 0,0040	0,0165 0,0105 0,0060	0,0780 0,0040 0,0740	1,3715 0,0390 1,3325	2,0500 0,0135 2,0325	2,1920 0,0325 2,1595	2,2480 0,0400 2,2080	2,3035 0,2010 2,3025	2,3350 0,0050 2,3300
	r 11,16ges r 11,16e1 r 11,16e1 r 11,16p1	0,0100 0,0060 0,0040	0,0200 0,0030 0,0170	0,1500 0,0350 0,1150	2,1150 0,0435 2,0725	3,1850 0,0585 3,1085	3,3535 0,0830 3,2705	3,5930 0,0920 3,5010	3,7735 0.0950 3,6785	3,9685 0,1100 3,3585
	r r 10,17ges r 10,17e1 r 10,17p1	0,0250 0,0200 0,0050	0,0750 0,0450 0,0300	0,2550 0,0850 0,1700	3,0000 0,1050 2,8950	4,4650 0,1600 4,3050	4,8350 0,1700 4,6650	5,1450 0,2300 4,9150	5,4900 0,2700 5,2350	5,9250 0,2750 5,5500
AII	"13,14ges "13,14e1 "13,14p1	0 0 0	0 0 0	0,0025 0,0025 0	0,0300 0,0250 0,0050	0,0275 0,0075 0,0200	0,2050 0,0100 0,1950	0,7000 0,0125 0,6875	0,3225 0,0125 0,8100	-
LochspielAd=1,0 [mmm] Vorspg. =1,0 [.] F _V	r 12,15ges r 12,15e1 r 12,15p1	0 0 0	0,0050 0 0,0050	0,0050 0,0025 0,0025	0,0125 0 0,0125	0,0725 0,0025 0,0700	0,2050 0,0025 0,2025	0,7000 0,0025 0,8975	9,8275 0,0050 0,8225	
	711,16ges 711,16e1 711,16e1 711,16e1	ე,0050 ე,0050 ა	0,0125 0,0100 0,0025	0,0300 0,0275 0,0025	0,0600 0,0325 0,0275	0,1800 0,0625 0,1175	0,3425 0,0575 0,4850	1,5150 0,0900 1,5250	2,0550 0,0925 1,3625	-
	710,17ges 710,17e1 710,17p1	0,0200 0,0150 0,0050	0,0550 0,0450 0,0100	0,0900 0,0625 0,0275	0,1500 0,1000 0,0500	0,3600 0,1450 0,2350	1,0150 0,1775 0,8375	2,7450 0,2250 2,5200	3,4500 0,2450 3,2050	-
VITT -	^r 13,14ges ^r 13,14e1 ^r 13,14p1	0 0 0	0,0025 0,0025 0	0,0085 0,0040 0,0045	0,0275 0,0065 0,0210	0,1650 0,0100 0,1550	0,4325 0,0150 - 0,4175	0,4650 0,0150 0,4500	0,4980 0,0160 0,4820	0,3100 0,0150 0,4950
LochspielAd=2,0 [mm] Vorspg. =1,0°Fy	r 12,15ges r12,15el r12,15pl	0,0035 0,0010 0,0025	0,0095 0,0070 0,0025	0,0150 0,0130 0,0020	0,0710 0,0160 0,0550	0,5875 0,0340 0,5535	1,3450 0,0475 1,2975	1,4225 0,0465 1,3760	1,5095 0,0880 1,4215	1,5850 0,0950 1,4900
	^r 11,16ges [°] 11,16e1 [°] 11,16p1	0,0140 0,0090 0,0050	0,0285 0,0185 0,0100	0,0600 0,0255 0,0335	0,1735 0,0460 0,1275	2,0500 0,0925 1,9575	2,4190 0,0910 2,3280	2,6985 0,1145 2,5840	2,9420 0,1255 2,3165	3,0950 0,0810 3,0340
	r10,17ges r10,17e1 r10,17p1	0,0225 0,0175 0,0050	0,0550 0,0425 0,0125	0,1150 0,0700 0,0450	0,2650 0,0925 0,1725	1,5170 0,1525 1,4645	3,5900 0,2190 3,3710	3,3680 0,2500 3,7180	4,3560 0,2510 4,1050	5,2450 0,5000 4,6450
VITT	r13,14ges r13,14e1 r13,14p1	0 0 0	0,0015 0,0015 0	0,0025 0,0025 0	0,0225 0,0080 0,0145	0,0400 0,0050 0,0350	0,1050 0,1050	0,9675 0,0100 0,9575	0,9780 0,0150 0,9630	1,4800 0,4300 0,9900
VILL D LochspielAd=2,0 [mm] Vorspg. =1,0°F _u	² 12,15ges ^{12,15e1} ^{12,15p1}	0 0 0	0,0050 0,0025 0,0025	0,0085 0,0040 0,0045	0,0525 0,0025 0,0500	0,1150 0,0050 0,1100	0,3125 0,0075 0,3050	2,4650 0,0150 2,4500	2.4375 0,0250 2,4125	2,4550 0,5050 1,9500
• •	r.1,16ges r11,16e1 11,16p1	0,0065 0,0065 0	0,0150 0,0100 0,0050	0,0350 0,0215 0,0135	0,1200 0,0450 0,0750	0,2375 0,0575 0,1800	0,5775 0,0845 0,4950	1,3300 0,4950 0,3350	1,4000 0,5000 0,3000	1,5000 0,6500 0,9500
	r10,17ges r10,17e1 r10,17p1	0,0250 0,0175 0,0075	0,0550 0,0460 0,0090	0,1850 0,0750 0,1100	0,2150 0,1100 0,1050	0,4100 0,1550 0,2550	0,9125 0,2075 0,7050	4,8150 0,2500 5,3650	5,3900 0,2575 5,8325	6,6350 0,2150 6,4200

Bild 27: Trägerstoß IPE 200 – Tabellarische Zusammenstellung der gemessenen gemittelten Relativverformungen im Stoßbereich

Bild 28 Trägerstoß IPE 400 – Beispiel für die Verformungsanteile des gemessenen Verdrehwinkels φ (Versuchskörper Ia: $\Delta d = 1.0 \text{ mm}$; $0.5 \cdot F_v$)

Bild 30 Trägerstoß IPE 400 – Abhängigkeit des Verdrehwinkels φ_{max,v} vom Biegemoment M_{I-I} für die Versuche I bis IV

Bild 31 Trägerstoß IPE 200 – Abhängigkeit des Verdrehwinkels $\phi_{max,v}$ vom Biegemoment M_{I-I} für die Versuche V bis VIII

Bild 33 Trägerstoß IPE 200 – Drehfedersteifigkeiten c_D errechnet aus Mittendurchsenkung V₂₀

Bild 34 Trägerstoß IPE 400 – Gegenüberstellung des Verlaufes der Drehwinkel $\varphi_{R,i,k}^{*}$ und $\varphi_{V,i,k}$ für Versuch Ia ($0.5 \cdot F_V$; $\Delta d = 1.0 \text{ mm}$)

Bild 38 Trägerstoß IPE 200 – Zusammenstellung der Spaltverschiebungen Δ_{ob} und Δ_{un} für die Versuche V bis VIII

Laschenston mit SL-Verbindung

Träger und Stoßlaschen ; Stahl St 37

Bild 39 Trägerstoß IPE 200 – Gegenüberstellung von $\varphi_{pl,v}$ ermittelt aus V_{20} und φ_{sp} ermittelt aus den Spaltverschiebungen Δ_{ob} und Δ_{un} (Versuch Va: $\Delta d = 1.0 \text{ mm}$; $0.5 \cdot F_v$)

Δ_{ob}, Δ_{un}s. Bild 38

Bild 40 Trägerstoß IPE 200 – Gegenüberstellung der Drehfedersteifigkeiten c_D , c_{DSt} und c_{DSp} für die Versuche V a und V b ($\Delta d = 1.0 \text{ mm}$; $0.5 \cdot F_V$)

Laschenstoß mit SL-Verbindung

Träger und Stofilaschen : Stahl St 37 Schrauben : M 12 Güte 10,9 Berührflächen : Entfettet und mit Handbürste vom Flugrost befreit

∆d € Lochspiel

F, nach DIN 18800 / Teil 1

$$M_{1-1} = c_0 \cdot \Psi_{St}$$

$$\Psi_{St} = 2 \cdot arc tg [(V_{20} - f)/l_1]$$

co aus Mittendurchsenkung ¥20 :

c_D = M₁₋₁/[2arctg {(V₂₀-f)/l₁}]

c_{DSt} aus gemittelten Relativverschiebungen rik :

$$c_{DSt} = M_{J-1} / [\varphi_{V_{i,k}} - \varphi_{R_{i,k}}^{*}]$$

$$\varphi_{V_{i,k}} = \frac{2 r_{i,k}}{x i,k} ; \qquad \varphi_{R_{i,k}}^{*} = \frac{M_{J-1}}{EJ} + x_{i,k}$$
hier: $x_{i,k} = 135$ mm (Ende Flanschlasche

$$r_{i,k} = r_{12,15} + (r_{11,16} - r_{12,15}) + 27/63$$

s. z.B. Bild 27

$$c_{\text{DSp}}$$
 aus Spaltverschiebungen Δ_{ob} , Δ_{un} :
 $c_{\text{DSp}} = M_{1-1} / \Psi_{\text{Sp}} = M_{1-1} / [2 \cdot \text{arc sin} (\frac{\Delta_{ob} + \Delta_{un}}{2 \cdot h})]$
 Δ_{ob} , Δ_{un} s. Bild 38

Bild 41 Trägerstoß IPE 200 – Gegenüberstellung der Drehfedersteifigkeiten c_D , c_{DSt} und c_{DSp} für die Versuche VI a und VI b ($\Delta d = 2.0 \text{ mm}$; $0.5 \cdot F_v$)

Laschenstoß mit SL-Verbindung

Träger und Stofflaschen : Stahl St 37 Schrauben : M 12 Güte 10.9 Berührflächen : Entfettet und mit Handbürste vom Flugrost befreit

Fy nach DIN 18800 / Teil 1

 $M_{1-1} = c_0 \cdot \varphi_{St}$ $\Psi_{St} = 2 \cdot arc tg [(V_{20} - f)/l_1]$

cp aus Mittendurchsenkung V20 :

 $c_{B} = M_{I-I} / [2 \operatorname{arc} tg \{ (V_{20} - f) / l_{1} \}]$

c_{DSt} aus gemittetten Relativverschiebungen rik :

$$c_{0St} = M_{1-1} / [\varphi_{V_{i,k}} - \varphi_{R_{i,k}}^{*}]$$

$$\varphi_{V_{i,k}} = \frac{2r_{i,k}}{x_{i,k}} ; \quad \varphi_{R_{i,k}}^{*} = \frac{M_{1-1}}{E} + x_{i,k}$$

hier : x_{i.k} = 135 mm { Ende Flanschlasche }

$$r_{i,k} = r_{12,15} + (r_{11,16} - r_{12,15}) + 27/63$$

s. z.B. Bild 27

$$c_{0Sp}$$
 aus Spattverschiebungen Δ_{ob} , Δ_{un} :
 $c_{0Sp} = M_{I-1} / \Psi_{Sp} = M_{I-1} / [2 \cdot arc sin (\frac{\Delta_{ob} + \Delta_{un}}{2 \cdot h})]$

Bild 42 Trägerstoß IPE 200 – Gegenüberstellung der Drehfedersteifigkeiten c_D, c_{DSt} und c_{DSp} für die Versuche VII, VIII a und VIII b

		En	nittelt	e Drehf	ederst	eifigke	it [kN	m/rad]	bei La	ststufe	P[kN]	(→ M []	:Nm])	
Nr. des Ver- suchs und Parameter	Art der er- mittelten Drehfeder- steifigkeit	P = 15 M = 30	30 60	45 90	60 120	75 150	90 180	105 210	120 240	135 270	150 300	165 330	180 360	P = 195 M = 390
Ia ∆d = 1,0 mm 0,5 • F _V	$C_{\rm D}$ / 10^2 $C_{\rm DSt}$ / 10^2	3750,00 ∞	1034,00 4950,00	257,00 339,00	125,00 136,00	113,00 128,00	103,00 123,00	111,50 131,00	115,00 135,00	118,00 146,50	123,00 160,00	116,00 160,00	101,50 152,00	-
Ib ∆d = 1,0 mm 0,5 • F _V	$C_{\rm D}$ / 10 ² $C_{\rm DSt}$ /10 ²	4687,50 16535,00	260,00 305,00	78,00 89,50	98,50 120,00	95,50 112,00	105,50 120,50	108,50 119,50	113,50 133,50	126,50 145,00	132,50 155,50	129,50 160,00	113,00 150,00	-
II ∆d = 1,0 mm 1,0 ° F _V	$C_{\rm D}$ / 10^2 $C_{\rm DSt}$ / 10^2	6850,00 14020,00	5660,00 8403,00	3320,00 6520,00	714,00 3476,00	545,50 1152,00	185,50 236,00	158,50 196,00	125,30 157,00	121,00 156,00	122,50 166,00	125,50 173,50	110,50 170,00	-
III ∆d = 2,0 mm 0,5 ° F _V	$C_{\rm D}$ / 10^2 $C_{\rm DSt}$ / 10^2	294,12 ∞	223,05 ∞	190,27 743,78	100,00 119,89	81,21 89,21	68,75 63,77	66,23 61,34	69,63 66,96	71,80 73,28	73,93 80,11	74,14 86,73	71,12 93,60	57,98 91,37
IV ∆d = 0,3 mm 1,0 • F _V	$C_{\rm D} / 10^2$ $C_{\rm DSt} / 10^2$	7812 , 00 ∞	5900,00 ∞	4070 , 00 ∞	3448 , 00 ∞	1096,50 9404,00	796,50 3937,50	573,00 2041,50	334,00 1205,70	244,00 1166,50	-	-	-	-

Bild 43: Trägerstoß IPE 400 – Tabellarische Zusammenstellung der Drehfedersteifigkeiten C_D und C_{DSt} für die Versuche I bis IV

		Ermi stuf	ttelte Ee P [k	Drehfeo N] (→ N	lersteit 4 [kNm])	Eigkeit	[kNm/r	ad] bei	Last.	-
Nr.des Ver- suchs und Parameter	Art der er- mittelten Drehfeder- Steifigkeit	P = 10 M = 7,5	20 15,0	30 22,5	40 30,0	50 37,5	60 45,0	70 52,5	75 56,25	P = 80 M = 60
Va	C _D / 10 ²	270,00	140,00	29,00	13,60	11,00	12,00	12,70	12,20	-
∆d =1,0 mm	$C_{\rm DSp}/10^2$	80	æ	37,50	15,00	11,00	12,50	14,00	15,00	-
0,5 · F _V	$C_{\rm DSt}/10^2$	80	8	45,40	15,50	13,00	14,00	16,00	16,00	-
VЪ	$C_{\rm D} / 10^2$	170,00	168,00	100,00	12,00	13,00	10,00	11,00	10,00	-
∆d =1,0 mm	$C_{\rm DSp}/10^2$	80	8	112,50	13,60	14,40	10,90	12,50	12,80	· -
0,5 · F _V	C _{CSt} /10 ²	80	œ	454,30	14,50	16,00	12,30	13,90	14,40	-
VI a	C _D / 10 ²	170,00	140,00	83,00	10,40	8,80	9,60	10,30	10,00	9,00
∆d '=2,0 mm	$C_{\rm DSp}/10^2$	80	ao	167,00	11,00	9,60	11,20	12,40	12,60	12,50
0,5 · F _V	$C_{\rm DSt}/10^2$	80	` ∞	238,50	12,20	10,00	11,40	12,60	13,00	13,40
VI b	$C_{\rm D} / 10^2$	121,00	100,00	14,00	7,60	8,70	9,80	10,20	9,60	8,20
∆d =2,0 mm	$C_{\rm DSp}/10^2$	80	œ	18,70	8,00	9,60	11,20	12,50	12,80	13,30
0,5 • F _V	$C_{\rm DSt}^{\rm SSp}/10^2$	00	80	17,30	9,00	10,40	11,90	13,00	13,30	13,20
VII	$C_{\rm D}^{}$ / 10 ²	937,50	750,00	450,00	333,00	136,00	47,00	18,00	14,00	-
∆d =1,0 mm	$C_{\rm DSp}/10^2$	œ	œ	œ	80	250,00	82,00	23,90	20,00	-
1,0 · F _V	$C_{\rm DSt}/10^2$	200	xo	œ	œ	597,20	111,20	34,00	28,90	-
VIII a	$C_{\rm D} / 10^2$	940,00	570,00	110,00	92,50	22,50	12,50	12,80	11,60	9,10
∆d =2,0 mm	$C_{\rm DSp}/10^2$	œ	œ	225,00	150,00	25,90	16,40	15,40	16,00	17,10
1,0 · F _V	$C_{DSt}/10^{2}$	∞	œ	œ	513,90	32,90	16,60	18,20	18,00	18,40
VIII b	$C_{\rm D} / 10^2$	80	405,00	400,00	184,00	87,00	47,50	10,00	10,00	7,60
∆d =2,0 mm	$C_{\rm DSp}/10^2$	∞	20	œ	œ	250,00	100,00	11,80	12,50	13,00
1,0 • F _V	$C_{\rm DSt}/10^2$	œ	∞	œ	1057,00	273,80	88,00	22,50	21,10	25,40

Bild 44: Trägerstoß IPE 200 - Tabellarische Zusammenstellung der Drehfedersteifigkeit C_D, C_{DSt} und C_{DSp} für die Versuche V bis VIII

Versuchskörperform B

Bild 45 Versuchskörperform A und B für die Einschraubenzugversuche

U ≙ Weguhr S ≙ Messung mit Schublehre

Bild 46

Anordnung der Meßuhren für Einschraubenzugversuche

46

Versuchskörperform B

Versuchskörperform A

6 1 2

Bild 47 Lage der Meßstellen zur Aufnahme der tatsächlichen Geometrie der Versuchskörper für die Einschraubenzugversuche

					(Gemes	sene	e geo	metr	isch	e Grä	öße i	in [mn	n] (La	ige de	er Mei	stell	en S	Bil	.d 47)					
Nr. des Versuchs- körpers	t _{L1}	t _{L2}	t _{L3}	t _{L4}	t _{Z1}	t _{Z2}	t _{Z3}	t _{Z4}	t ₂₅	t _{Z6}	t _{Z7}	t _{Z8}	^b L1 bzw. h ₁	^b L2 bzw. h ₂	^b z1	b _{Z2}	^b z3	^b Z4	d'i	d _{L2}	d _{Z1}	d _{Z2}	^b R1	^b R2	^b R3	^b R4
AIa AIb	7,9 7,9	7,9 8,0	7,9 8,0	7,9 8,0	12,3 12,2	12,2 12,3	12,3 12,2	12,4 12,4	12,3 12,2	12,3 12,3	12,2 12,2	12,2 12,2	99,8 99,8	99,9 100,0	99,9 99,9	100,0 100,0	99,8 99,9	99,8 99,9	21,8 21,9	22,0 22,0	22,0 21,9	21,9 21,9	-	-	- -	-
AIIa AIIb	7,9 7,9	8,0 7,8	7,9 7,9	7,9 7,9	7,9 7,9	7,9 8,0	7,9 7,9	8,0 8,0	8,0 7,9	7,9 7,9	7,9 7,8	8,0 8,0	99,6 99,7	99,7 99,8	99,7 99,9	99,6 99,8	99,7 99,8	100,0 99,9	22,0 21,9	22,0 22,1	21,9 22,0	21,8 22,1		-	-	-
AIIIa AIIIb	12,3 12,3	12,2 12,3	12,4 12,2	12,3 12,2	12,4 12,3	12,3 12,2	12,3 12,3	12,3 12,3	12,3 12,3	12,3 12,3	12,2 12,3	12,2 12,2	99,9 100,0	99,9 99,9	99,8 100,0	99,9 100,0	100,0 99,0	99,9 100,0	21,9 22,2	21,8 22,0	21,8 22,1	21,8 22,1	-	-	-	
AIVa AIVb	7,9 7,8	7,8 7,9	7,8 7,9	7,9 8,0	7,9 7,9	7,9 7,9	7,9 7,8	7,9 7,8	7,8 7,9	7,9 7,9	7,9 7,8	8,0 7,9	99,7 99,8	99,7 99,7	99,8 99,8	99,7 99,8	99,8 99,8	99,7 99,9	17,8 17,9	17,7 17,8	17,6 17,8	17,7 17,8	-	- -	-	-
AVa AVb	7,7 7,9	7,7 7,8	7,9 7,8	7,9 7,9	7,8 7,8	7,9 7,8	8,0 7,8	8,0 7,9	8,0 7,9	7,9 7,9	7,9 7,9	8,0 7,9	99,9 99,8	99,8 99,9	99,9 100,0	99,8 100,0	99,9 99,9	99,8 99,9	17,1 17,1	17,0 17,0	17,1 17,0	17,1 17,1		- -		-
AVI	7,9	7,9	7,9	8,0	8,0	7,9	7,9	7,9	7,8	7,9	7,8	7,8	100,0	99,9	99,9	99,9	99,8	99,8	17,1	17,3	17,3	17,3	-	-	-	-
BIa BIb BIc	8,2 8,1 8,2	8,1 8,1 8,2	8,3 8,2 8,3	8,1 8,2 8,3	7,9 7,9 7,8	7,9 7,9 7,8	8,0 7,9 7,8	8,0 7,9 7,9	7,9 7,9 7,9	7,8 7,8 8,0	7,8 7,9 7,9	8,0 7,9 8,0	179,3 179,6 179,7	179,7 179,7 179,7	99,9 99,9 99,8	99,8 99,8 99,8	99,9 99,8 99,8	99,9 99,9 99,8	22,0 22,0 22,1	2,1 21,9 22,1	22,1 22,0 22,1	22,1 22,0 22,0	53,1 53,0 53,2	53,3 53,1 53,0	53,3 53,0 53,0	53,0 53,2 53,1
BIIa BIIb	8,2 8,2	8,2 8,2	8,3 8,3	8,3 8,2	7,9 7,9	7,9 7,9	7,9 7,9	7,8 8,0	7,8 7,8	7,8 7,9	7,8 7,9	7,8 7,9	179,6 179,6	179,6 179,7	99,9 99,9	100,0 100,0	100,0 100,0	100,0 99,9	22,0 22,1	22,1 22,2	22,2 22,0	22,2 22,1	55,3 55,8	55,5 55,5	55,5 55,5	55,7 55,7

E.

.

Bild 48: Zusammenstellung der tatsächlichen Geometrie der Versuchskörper für die Einschraubenzugversuche.

Lage der Probenentnahmestelle	Proben- nummer	Beschreibung der Ent- nahmestelle	Material verwendet für Ver- suchskör- per Nr.	Streck- grenze ^ß s (kN/cm ²)	Zugfestig- keit ß _Z (kN/cm ²)	Bruch- dehnung ^{\$} 10 (\$)
	1 a.	[18o Stegmitte		36,23	49,49	30,0
	2 a	[180 Stegmitte	BIa, BIb	36,63	48,91	24,3
β	3α	[180 Stegmitte	B Ic,	44,26	50,65	25,7
<u> </u>	4β	[180 Flansch oben	B IIa,	32,28	46,39	30,6
	5γ	[180 Flansch unten	B IIb	32,69	47,03	30,0
[180	6β	[180 Flansch oben		32,69	44,94	30,0
Blech	78	Blech t= 12 in Walz. richtung	A Ia, A Ib,	30,90	41,82	37,7
	85	" t= 12 "	A IIIA, A IIIb, B Ia,	30,36	42,80	36,7
	96	" t= 12 "	B ID, B IC	30,40	41,40	35,5
Blech	1οε	Blech t= 8 in Walz- richtung	AIa, AIb, AIIa, AIIb,	39,28	44,93	35,7
$\tau = 0$ $\varepsilon = 0$ $H = 0$ Walzrichtg.	11 ε	" t= 8 "	A IVa, A IVb, A Va, A Vb,	33,04	43,64	35,7
<u> </u> <u>b/2</u> <u>b/2</u>	12ε	" t= 8 "	A VI, BIIA, BIID	33,04	43,93	37,1

Bild 49 Ergebnisse des statischen Zugversuchs nach DIN 50146 an Zugproben E nach DIN 50125 (St 37-2) für die Versuchskörper der Einschraubenzugversuche

Darstellung der Bezeichnungen	Verbindungs_	Geometri_	Gen	essene	r Wert	bei P	robe l	ir. (#	um)				Arithm.	Sollwert
am Verbindungsmitteltell	mittel	sche Größe	1	2	3	4	5	6	7	8	9	10	Nr. 1 - 10	(mm)
Linsenhuppe noch Wohl des Herstellers zulössig 30- 5- 6- 4 - Kenn Zeichnung	Sechskant- schraube M 16 n. DIN 6914, Schaft und Gewinde nach DIN 7968 Sechskant- schraube M 16 n. DIN 6914	d 1 d 2 c k s d 1 d 2 c k s	16,9 25,8 0,8 10,0 26,5 15,8 25,8 0,7 10,2 26,9	16,9 26,0 0,8 10,1 26,6 15,9 25,3 0,6 10,2 26,8	16,9 26,0 9,8 26,7 15,9 25,5 0,6 10,1 26,9	16,8 26,0 0,7 9,8 26,6 15,8 25,4 0,8 10,0 26,9	16,9 26,4 0,8 10,0 26,6 15,7 25,3 0,7 10,0 26,7	16,9 26,0 0,8 10,0 26,6 15,9 25,2 0,7 10,1 26,7	16,9 26,5 0,8 10,3 26,7 16,9 25,4 0,5 10,1 26,9	16,8 26,0 0,8 10,1 26,6 15,9 25,5 0,6 10,3 26,8	16,9 26,0 0,8 10,1 26,6 15,9 25,4 0,6 10,3 26,8	16,8 26,2 0,8 10,0 26,7 15,9 25,2 0,5 10,2 26,7	16,87 20,09 0,79 10,02 26,62 15,96 25,4 0,64 10,15 26,81	17 25 0,6 10 27 16 25 0,6 10 27
roo m - Kennzeithnung	Sechskant- mutter M 16 nach DIN 6915	យ ខ	12,9 26,5	12,8 26,6	12,9 26,8	12,8 26,5	12,8 26,5	12,7 26,6	13,0 26,5	12,7 26,6	12,7 26,5	12,8 26,6	12,81 26,57	13 27
Est States and And And States and An	Scheibe 17 nach DIN 6914	d ₁ d ₂ s	17,4 30,2 3,9	17,4 30,0 4,1	17,3 30,2 4,0	17,1 30,1 4,0	17,7 30,3 4,0	17,3 30,2 3,9	17,5 30,3 3,9	17,5 30,1 4,0	17,7 30,3 4,0	17,7 30,3 4,0	17,46 30,2 3,98	17 30 4

Bild 50 Angaben zur tatsächlichen Geometrie der Stichproben von Schrauben, Muttern und Scheiben der Größe M16

Meßstelle für die Härteprüfung	Verbindungs- mittel	Erg HV Z (der Vi DIN 50 keit n ert aus	ckersha 133 und ach DIN 3 Mess	irteprii darau 50150 ungen)	fung s	Arith aus	m.Mittel Nr. 1-3	Soll D	wert nach IN 267	
											1 · · · · · · · · · · · · · · · · · · ·
		HV 30	β_z	HV 30	β_z	HV 30 (k	β _z N/cm ²)	HV 30	β_z	HV 30	β_z
Linsenhuppe noch Wohl des Herstellers zulössig	Sechskant- schraube M 20 n. DIN 6914, Schaft und Gewinde nach DIN 7968	32,7	109,5	33,3	112,5	32,7	109,5	32,9	110,5	min= 28,0 max= 37,0	min= 100 max= 120
	Sechskant- schraube M 16 n. DIN 6914	33,7	112,8	32,9	112,5	33,3	112,5	33,3	112,6	min≖ 28,o max≃ 37,o	min= 100 max= 120
Hennzeichnung	Sechskant- mutter M 16 n. DIN 6915	31,3	106,0	30,6	103,0	30,6	103,0	30,83	104,0	min= 27,2 max= 35,3	min= 104
Kernstichter AV Kernstichter	Scheibe 17 n. DIN 6916	31,7	109,0	31,7	 	31,8	109,0	31,7	109,9	min= 29,5 max= 35,0	min= 63 max= 86

Bild 51 Angaben zur Vickershärte der Stichproben von Schrauben, Muttern u. Scheiben der Größe M16

Nummer des Ver- suchskör- pers	Form des Versuchs- körpers	Dicke der Zugbleche t _Z [mm]	Dicke der Lasche t _L bzw. Stegdicke S des [-Profils [mm]	Klemm- länge [mm]	Rechneri- sche Ex- zentrizi- tät [mm]	Schrauben n.DIN 6914	Lochspie] ∆d [mm]	Achsiale Vorspg. F _V der Schrau- be n. DIN 18800 Teil 1	zul Ab- scherkraft n.DIN 18800 Teil 1 (LF:H) [kN]	zul Loch- leibungs- kraft n. DIN 18800 Teil 1(LF:H) [kN]	Rechnerisch ermittelte Kraft bei Fließbeginn im maßgeben- den Quer- schnitt [kN]	Angaben zur tatsächlichen Geometrie auf Bild	Angaben zu den tatsäch- lichen Werk- stoffeigen- schaften auf Bild	Stahlgüte n. DIN 17100
AIa	A	12	8	20	10	M 20	2,0	0,5·F _V	75,50	60,80	149,76	48,10	49,11	St 37
AIb	A	12	8	20	10	M 20	2,0	0,5·F _V	75,50	60,80	149,76	48,10	• 49,11	St 37
AIIa AIIb	A A	8 8	8 8	16 16	8 8	M 20 M 20	2,0 2,0	0,5°F 0,5°FV 0,5°FV	75,50 75,50	60,80 60,80	149,76 149,76	48,10 48,10	49,11 49,11	St 37 St 37
AIIIa	A	12	12	24	12	M 20	2,0	0,5.F _V	75,50	91,20	224,64	48,10	49,11	St 37
AIIIb	A	12	12	24	12	M 20	2,0	0,5.F _V	75,50	91,20	224,64	48,10	49,11	St 37
A IVa	A	8	8	16	8	M 16	2,0	0,5°F _V	48,50	48,64	157,44	48,50	49,51	St 37
A IVb	A	8	8	16	8	M 16	2,0	0,5°F _V	48,50	48,64	157,44	48,50	49,51	St 37
AVa	A	8	8	16	8	M 16	1,0	0,5.F _V	48,50	48,64	159,36	48,50	49,51	St 37
AVb	A	8	8	16	8	M 16	1,0	0,5.F _V	48,50	48,64	159,36	48,50	49,51	St 37
AVI	А	8	8	16	8	M 16	0,3	0,5°F _V	63,50	57,12	158,78	48,50	49,51	St 37
BIa BIb BIc	B B B	12 12 12	8 8 8	20 20 20	0 0 0	M 20 M 20 M 20 M 20	2,0 2,0 2,0	0,5·F _V 0,5·F _V 0,5·F _V	75,50 75,50 75,50	60,80 60,80 60,80	224,64 224,64 224,64	48,10 48,10 48,10	49,11 49,11 49,11	St 37 St 37 St 37
BIIa	B	8	8	16	0	M 20	2,0	0,5.F _V	75,50	60,80	149,76	48,10	49,11	St 37
BIIb	B	8	8	16	0	M 20	2,0	0,5.F _V	75.50	60,80	149,76	48,10	49,11	St 37

Bild 52: Zusammenstellung von Kenngrößen der Versuchskörper für die Einschraubenzugversuche

.

Bild 53 Last-Verschiebungs-Kurven U13 und U46 für die Versuche AIa und AIb

Bild 54 Last-Verschiebungs-Kurven U13 und U46 für die Versuche AIIa und AIIb

Bild 55 Last-Verschiebungs-Kurven U13 und U46 für die Versuche AIIIa und AIIIb

Bild 56 Last-Verschiebungs-Kurven U₁₃ und U₄₆ für die Versuche AIVa und AIVb

.

Bild 59 Last-Verschiebungs-Kurven U₁₃ und U₄₆ für die Versuche BIIa und BIIb

Bild 60 Last - Verschiebungs - Kurven U7 und U12 für Versuch Ia

i

:

Bild 61 Last - Verschiebungs - Kurven U7 und U12 für Versuch Ib

. .

Last – Verschiebungs – Kurven U7 und U12 für Versuch Alla

Last – Verschiebungs – Kurven U7 und U12 für Versuch AIIb

Bild 64 Last - Verschiebungs - Kurven U7 und U12 für Versuch AIIIa

Bild 65 Last - Verschiebungs - Kurven U7 und U12 für Versuch AIII b

.

Bild 67 Last - Verschiebungs - Kurven U7 und U12 für Versuch AIV b

Bild 68 Last - Verschiebungs - Kurven U7 und U12 für Versuch AVa

.

Bild 70 Last - Verschiebungs - Kurven U7 und U12 für Versuch BIb

Bild 71 Last - Verschiebungs - Kurven U7 und U12 für Versuch BIIa

Bild 72 Last - Verschiebungs - Kurven U7 und U12 für Versuch BIIb

Bild 74 Last - Verschiebungs - Kurven Sg. 11 für Versuch Alb

the second second

١

Bild 78 Last - Verschiebungs - Kurven Sg, 11 für Versuch AIII b

Bild 79 Last - Verschiebungs - Kurven Sg. 11 für Versuch AIVa

Bild 83 Last - Verschiebungs - Kurven Sg. 11 für Versuch AVI

-

Bild 84 Last-Verschiebungs-Kurven Sg, 11 für Versuch B Ia

Bild 85 Last - Verschiebungs - Kurven Sg, 11 für Versuch BIb

Bild 87 Last - Verschiebungs - Kurven Sg, 11 für Versuch B II a

D

Bild 88 Last - Verschiebungs - Kurven Sg, 11 für Versuch B II b

Bild 89 Elastische und bleibende Anteile der Verschiebungen U $_{13}$ und U $_{46}$ bei Versuch AIa

Bild 90 Elastische und bleibende Anteile der Verschiebungen U $_{13}$ und U $_{46}$ bei Versuch AIb

Bild 91 Elastische und bleibende Anteile der Verschiebungen U $_{13}$ und U $_{46}$ bei Versuch A II a

Bild 92 Elastische und bleibende Anteile der Verschiebungen U₁₃ und U₄₆ bei Versuch AIIb

Bild 93 Elastische und bleibende Anteile der Verschiebungen U₁₃ und U₄₆ bei Versuch AIIIa

Elastische und bleibende Anteile der Verschiebungen U_{13} und U_{46} bei Bild 94 Versuch AIII b

Bild 95 Elastische und bleibende Anteile der Verschiebungen U₁₃ und U₄₆ bei Versuch A IVa

Bild 96 Elastische und bleibende Anteile der Verschiebungen U₁₃ und U₄₆ bei Versuch A IV b

Bild 97 Elastische und bleibende Anteile der Verschiebungen U $_{13}$ und U $_{46}$ bei Versuch AV a

Bild 98 Elastische und bleibende Anteile der Verschiebungen U₁₃ und U₄₆ bei Versuch AVb

Bild 99 Elastische und bleibende Anteile der Verschiebungen U₁₃ und U₄₆ bei Versuch BIa

Bitd 100 Elastische und bleibende Anteile der Verschiebungen U $_{13}$ und U $_{46}$ bei Versuch BIb

Bild 101 Elastische und bleibende Anteile der Verschiebungen U₁₃ und U₄₆ bei Versuch BIc

Bitd 102 Elastische und bleibende Anteile der Verschiebungen U₁₃ und U₄₆ bei Versuch BIIa

Bild 103 Elastische und bleibende Anteile der Verschiebungen U₁₃ und U₄₆ bei Versuch BIIb

Bild 104 Last-Verschiebungs-Kurven U_2 und U_8 für Versuch AIa

Bild 105 Last – Verschiebungs – Kurven U5 und U $_{10}$ für Versuch AIa

Bild 106 Last - Verschiebungs - Kurven U2 und U8 für Versuch AIb

Bild 107 Last-Verschiebungs-Kurven U5 und U10 für Versuch Alb

Bild 108 Last – Verschiebungs – Kurven U2 und U8 für Versuch AIIa

Bild 109 Last - Verschiebungs - Kurven U5 und U10 für Versuch Alla

Bild 111 Last - Verschiebungs - Kurven U5 und U10 für Versuch Allb

Bild 112 Last - Verschiebungs - Kurven U2 und U8 für Versuch AIIIa

Bild 114 Last - Verschiebungs - Kurven U2 und U8 für Versuch AIII b

Last - Verschiebungs - Kurven U5 und U10 für Versuch AIIIb Bild 115

Last – Verschiebungs – Kurven U2 und U8 für Versuch AIVa **Bild** 116

Bild 117 Last - Verschiebungs - Kurven U5 und U10 für Versuch AIVa

t P

Bild 118 Last - Verschiebungs - Kurven U2 und U8 für Versuch AIVb

·

Last - Verschiebungs - Kurven U5 und U10 für Versuch AIVb Bild 119

Last – Verschiebungs – Kurven U_2 und U_8 für Versuch AVa Bild 120

Bild 121 Last - Verschiebungs - Kurven U5 und U10 für Versuch AVa

Bild 122 Last - Verschiebungs - Kurven U_2 und U_8 für Versuch AVb

Bild 123 Last – Verschiebungs – Kurven U5 und U₁₀ für Versuch AV b

.

Bild 124 Last - Verschiebungs - Kurven U_2 und U_8 für Versuch AVI

Bild 125 Last - Verschiebungs - Kurven U5 und U10 für Versuch AVI

Bild 126 Last – Verschiebungs – Kurven U_2 und U_8 für Versuch BIa

Bild 128 Last – Verschiebungs – Kurven U $_2$ und U $_8$ für Versuch BIb

Bild 129 Last - Verschiebungs - Kurven U5 und U10 für Versuch BIb

129 Last-Vers

Bild 130 Last – Verschiebungs – Kurven U_2 und U_8 für Versuch BIc

Bild 131 Last - Verschiebungs - Kurven U5 und U10 für Versuch BIc

Bild 132 Last - Verschiebungs - Kurven U_2 und U_8 für Versuch BIIa

Bild 133 Last - Verschiebungs - Kurven U5 und U10 für Versuch B IIa

Bild 134 Last – Verschiebungs – Kurven U_2 und U_8 für Versuch BIIb

Bild 135 Last – Verschiebungs – Kurven U_5 und U_{10} für Versuch BIIb

Bild 136 Last - Verschiebungs - Kurven Ug und U₁₁ für Versuch Ala

Bild 137 Last - Verschiebungs - Kurven Ug und U11 für Versuch Alla

Bild 138 Last - Verschiebungs - Kurven Ug und U₁₁ für Versuch A III a

Bild 139 Last - Verschiebungs - Kurven Ug und U₁₁ für Versuch AIV b

Bild 140 Last - Verschiebungs - Kurven Ug und U₁₁ für Versuch AVa

Bild 141 Last – Verschiebungs – Kurven Ug und U $_{11}$ für Versuch AVI

Bild 142 Last - Verschiebungs - Kurven Ug und U₁₁ für Versuch BIc

ven vg una v₁₁ i

Bild 143 Inkrementelle Federsteifigkeiten ⁱc_{S9,11} für die Versuche AIa bis AIII.a

- -

Bild 148 Abhängigkeit der nicht schlupfbereinigten Federsteifigkeiten E^CS9.11 und C_{S9.11} vom Lochspiel für Schrauben M 16 – 10.9

*C_{S9.11} vom Lochspiel für Schrauben M 16 - 10.9

Bild 151 Abhängigkeit für schlupfbereinigte Federsteifigkeiten ^{*C}S9.11 und ^{*C}S9.11 von der rechnerischen Exzentrizität für Schrauben M 20-10.9

Bild 152 Abhängigkeit der nicht schlupfbereinigten Federsteifigkeiten ECU13 und CU13 vom Lochspiel für Schrauben M 16 -10.9

Bild 154 Abhängigkeit der nicht schlupfbereinigten Federsteifigkeiten ^{*}ECU13 und ^{*}CU13 vom Lochspiel für Schrauben M16-10.9

		:			Fødersteifigkeiten (kN/mm)									
					Versuchskörper AIV			chskörp	er AV	Versuchskörper AVI	Versuchskörper BII			
				M	16- 10.	9	мі	6- 10.9		H 16- 10.9	N 16	- 10.9		
					∆d≖ 2,o (wan)			1,0 (m	m)	∆d≖ 0,3 (₩₩#)	Δd≖ 2,0 (ann.)			
					o,s F _v			0,5 F _V		o,s F _v	0	,5 F _v		
					St 37-	2		St 37-2		St 37-2	S	t 37-2		
				6=	8 (88) 		e =	8 (mm)		e= 8 (num)	e= 0	(##A)		
		Last- fall	Einzel- federstei- figkeit	KIVa	AIVb	Arithm. Mittel	AVa	AVD	Arithm. Mittel	AVI = Arithm. Mittel	BIIa	8115	Arithm. Mittel	
	Bei Gebrauchs- last	н	e ^C \$9,11 e ^C u13	28,52 45,33	11,58 12,53	20,05 28,93	26,86	18,03 17,83	22,45 20,36	98,48 56,81	14,79 15,20	59,60 61,41	37,20 38,31	
			E ^C U46	23,10	11,63	17,37	34,16	16,78	25,47	105,78	17,73	63,33	40,53	
Nicht Schlupf- bereinigt		HZ	F ^C 59 11	29,30	12,47	20,89	27,66	15,41	23,54	99,10	16,26	57,33	36,80	
			E ^C U13	44,67	13,63	29,15	24,55	19,46	22,01	92,64	16,19	61,43	38,81	
			e ^C U46	24,55	12,67	18,61	35,16	18,17	26,67	103,10	19,11	64,30	41,71	
	Bci Traglast	H	F ^C S9 11	28,28	15,33	21,81	28,93	22,13	25,53	60,46	19,11	46,98	33,05	
			Е ^С U13	35,24	16,79	26,62	27,58	22,41	25,00	65,17	18,59	47,85	33,22	
			E ^C U46	25,69	15,35	20,52	33,79	21,20	27,50	67,43	22,82	50,07	36,75	
		112	E ^C S9,11	28,43	15,31	21,87	29,04	22,15	25,60	61,80	19,09	47,02	33,06	
			ь ^С и13	35,54	16,79	26,17	27,71	22,40	25,06	65,67	18,76	49,38	34,07	
			E ^C U46	25,55	15,43	20,49	34,35	21,23	27,79	71,55	23,09	51,86	37,48	
		11	*C E ^C S9.11	132,88	36,62	134,75	93,27	80,17	86,72	115,39	168,89	276,40	222,65	
	Bei Gebrauchs-		¥C E ^C U13	62,99	62,99	62,99	07,36	78,22	72,79	96,81	76,00	119,22	97,61	
			E ^C U46	46,19	52,72	49,46	45,33	61,39	53,36	405,78	160,00	148,29	154,15	
		auchs- 112	₿ ^C S9,11	103,80	01,86	102,83	79,56	75,17	77,37	113,13	143,33	172,00	157,67	
	last		Ê ^C uis	59,24	60,50	59,90	66,46	77,86	72,16	92,64	65,52	107,50	86,51	
Schlupf- bereinigt			E ^C U46	40,58	31,91	49,25	45,42	00,50	22,99	103,10	125,09	132,51	128,70	
		H	#C 59 11	51,80	53,02	52,44	52,35	49,97	51,16	63,26	62,27	73,83	68,05	
			ŘC E ^C U13	40,42	45,55	42,99	51,80	52,18	52,02	65,17	43,80	61,52	52,66	
			E ^X CU46	38,17	38,89	38,53	39,45	46,06	42,76	67,43	69,84	65,37	69,61	
	llei		#C 59,11	52,74	53,96	53,35	53,08	50,62	51,85	64,78	62,36	73,98	68,17	
	Traglast	112	E ^C U13	40,88	46,19	43,54	52,74	52,74	52,74	05,67	44,57	64,10	54,49	
			*C E U46	38,02	39,88	38,95 ·	40,27	46,71	43,49	71,55	72,08	71,67	72,18	

Bild 156 Zusammenstellung der in den Zugversuchen an Einschraubenverbindungen ermittelten Federsteifigkeiten für Schrauben M16–10.9

I					Federsteifigkeiten (kN/mun)												
					Versuchskörper AI			Versuchskörper All			Versuchskörper AIII			Versuchskörper Bl			
					M 20- 10.9			M 20- 10.9			M 20- 10.9			M 20- 10.9			
				∆ đ=	2,0 (11	m)	& d ≠	2,o (mm	n)	∆ d= 2	,o (num)	∎d≠	2,0 (mm	1)		
			l		0,5 F _v		C	9,5 F _v		. 0,	5 F _v		0	,5 F _v			
				-	St 37-2			5t 37-2		St	: 37-2		S	t 37-2			
		·			10 (mm)			, ("""		e= 12	(,467)		e= 0	(mm)			
		Last- fall	Einzel- federstei- figkeit	Ala	AIb	Arithm. Mittel	Alla	AIIb	Arithm. Mittel	AIIIa	AIIIb	Arithm. Mittel	BIa	BIb	BIC A	rithm. littel	
			E ^C S9,11	18,55	25,37	21,96	14,47	34,16	24,32	50,88	19,95	35,42	24,97	17,94	22,60	21,84	
	Bei Gebrauchs- Last	u	е ^С и1 3	16,09	28,55	22,32	11,74	73,25	42,50	65,65	22,54	44,10	17,08	17,88	20,54	18,50	
			E ^C U46	23,57	23,12	23,35	23,30	24,52	23,91	68,64	19,26	43,95	65,37	19,12	28,55	37,68	
Nicht Schlupf- bereinigt		HZ	E ^C S9,11	19,80	28,03	23,92	15,65	34,07	24,86	51,52	21,20	36,36	27,36	19,49	24,31	23,72	
			E ^C U13	16,99	23 32	25,79	13,31	07,45	40,38	70.83	20.58	45,25	18,75	20.66	31.42	20,19	
			E ^C U46	23,50	,												
	Rei Tragləst	н	r ^C co 11	21,47	29,20	25,34	16,70	29,92	23,31	43,14	23,72	33,43	32,45	23,98	28,95	28,22	
			E 39,11 E ^C U13	20,19	28,32	24,26	15,02	46,98	31,00	44,72	25,67	35,20	24,32	24,09	28,40	25,60	
			E ^C U46	26,10	25,77	25,94	23,60	22,32	22,96	48,99	22,60	35,80	61,52	27,20	35,40	41,37	
		HZ	E ^C S9,11	21,48	29,24	25,36	16,73	30,00	23,37	54,65	22,68	38,67	32,45	23,97	28,99	28,47	
			E ^C U13	20,44	28,67	24,56	15,11	48,00	31,56	66,79	25,58	46,19	24,57	24,28	28,67	25,84	
			ε ^C U46	26,81	26,13	26,47	23,85	22,19	23,01	10,12	22,11	40,42	04,50	27,52	35,90	42,00	
	Bei	Н	*C F ^C S9_11	206,10	166,58	186,34	69,89	76,00	72,95	88,82	83,89	86,36	82,72	155,90	209,66	149,43	
				96,51	65,38	80,95	56,30	73,25	64,78	65,65	48,71	57,18	168,89	152,00	148,29	156,39	
			Ê ^C U46	65,38	96,51	80,94	63,33	69,09	66,21	68,64	61,89	65,27	83,29	104,83	114,72	100,95	
	Gebrauchs-	HZ	± [#] Cs9,11	133,99	161,88	147,94	64,60	66,15	65,38	83,74	75,56	79,65	84,42	129,81	160,00	124,74	
	last		Ê ^C U13	76,44	65,52	70,98	64,30	67,45	65,88	66,41	49,15	57,17	146,38	120,70	137,60	134,89	
Schlupf- bereinigt			E ^C U46	08,80	12,92	70,01	39,03	57,33	30,30	10,83	35,44	03,14	80,34	34,2.	101,18	52,12	
		H	EC SG 11	56,02	68,00	62,01	36,01	41,59	38,80	54,62	50,63	52,63	69,60	78,90	88,34	78,95	
			£CU13	52,47	42,19	47,33	37,18	46,98	42,08	44,72	40,11	42,42	98,44	8c,12	94,83	91,13	
			Ê ^C U46	44,75	51,42	48,09	37,86	34,11	35,99	48,99	43,07	46,03	69,84	.86,13	78,30	78,09	
	Bei	!IZ	E ^C S9,11	56,24	68,34	62,29	36,21	41,78	39,00	85,88	71,24	78,56	69,73	79,08	88,96	79,26	
	Traglast		Ê ^C U13	54,32	43,00	48,66	37,80	48,00	42,90	66,79	49,07	57,93	103,20	82,56	98,29	94,68	
			Ê ^C U46	46,91	52,92	49,92	38,51	33,84	36,18	70,72	58,29	64,51	73,71	89,74	81,26	81,57	

Bild 157 Zusammenstellung der in den Zugversuchen an Einschraubenverbindungen ermittelten Federsteifigkeiten für Schrauben M20–10.9

Bild 158 Zusammenstellung der wirklich aufgetretenen Schlupfbeträge bezogen auf die maximal möglichen Schlupfbeträge für die Einschraubenzugversuche

n good with the second s

		ſ	Schrauben M 16- 10.9							
Feder- steifig- keit (kN/mm)		Last- fall	Versuchskörper AIV Δd= 2,0 (mm) 0,5 F _v St 37-2 e= 8 (mm)	Versuchskörper AV <u>Ad=</u> 1,0 (mm) 0,5 F _v St 37-2 e= 8 (mm)	Versuchskörper AVI	Versuchskörper BII $\Delta d= 2.0 \text{ (mm)}$ 0.5 F_{v} St 37-2 e= 8 (mm)				
$C_{m} = \frac{1}{3}(C_{S9,11} + C_{U13} + C_{U46})$	Ge- brauchs- last	H Hz	22,12 22,88	22,76 24,07	100,36 98,28	38,68 39,11				
nicht schlupfbe- reinigt	Trag- last	H HZ	22,78 22,84	26,01 26,15	64,35 66,34	34,87 34,87				
$C_{m}^{x} = \frac{1}{3}(C_{S9,11}^{x})^{+1}$ + $C_{U13}^{x}+C_{U46}^{x}$	Ge- braichs- last	H HZ	82,40 70,66	70,96 67,51	105,99 102,96	158,13 124,29				
schlupfbe- reinigt	Trag- last	H HZ	44,65 45,28	48,65 49,36	65,29 67,33	63,44 64,95				

	. [Schrauben M 20- 10.9									
Feder- steifig- keit (kN/mm)		Last- fall	Versuchskörper AI ∆d = 2,0 (mm) 0,5 F _v St 37-2 e= 10 (mm)	Versuchskörper AII ∆d= 2,0 (mm) 0,5 F _V St 37-2 e= 8 (mm)	Versuchskörper AIII $\Delta d = 2,0 \pmod{m}$ $0,5 F_v$ St 37-2 $e = 12 \pmod{m}$	Versuchskörper BI ∆d= 2,0 (mm) 0,5 F _v St 37-2 e= 0 (mm)					
$C_{m} = \frac{1}{3}C_{S9,11} + C_{U13} + C_{U46}$	Ge- brauchs- last	H HZ	22,54 24,12	30,24 29,90	41,16 42,44	26.01 27,70					
nicht schlupfbe- reinigt	Trag- last	H HZ	25,18 25,46	25,76 25,98	34,81 43,76	31,73 32,32					
$C_{m}^{x} = \frac{1}{3}(C_{S9,11}^{x} + C_{U13}^{x} + C_{U46}^{y})$	Ge- brauchs- last	H HZ	116,08 96,51	67,98 63,28	69,60 67,52	135,59					
schlupfbe- reinigt	Trag- last	H HZ	52,48 53,62	38,96 39,36	47,03	82,72					

Bild 159 Zusammenstellung der aus den Messungen Sg_{.11}, U₁₃ und U₄₆ durch arithmetische Mittelbildung errechneten Federsteifigkeiten C_m und C^{*}_m für Schrauben M 16–10.9 und Schrauben M 20–10.9

Bild 160 Abhängigkeit der nicht schlupfbereinigten Federsteifigkeit C_m von der rechnerischen Exzentrizität für Schrauben M16-10.9

Bild 161 Abhängigkeit der nicht schlupfbereinigten Federsteifigkeit C_m von der rechnerischen Exzentrizität für Schrauben M20-10.9

Bild 163 Abhängigkeit der schlupfbereinigten Federsteifigkeit Cm vom Lochspiel der Schrauben M20-10.9

Bild 164 Struktur zur Ermittlung des "Zeigeranteiles" aus der Weguhrenbefestigung mit Hilfe elastisch – plastischer Finit – Element – Rechnung

Anlage 2

UNTERSUCHUNGSBERICHT

Betr.: Einfluß der Nachgiebigkeiten von Stößen und Anschlüssen auf die Standsicherheit stabilitätsgefährdeter Stahlbauten.

Auftraggeber:Institut für Bautechnik, Referat IV/1, Reichpietschufer 72 - 76, 1000 Berlin 30 Vertrag vom 14.12.1979, Az.: IV/1-5-250/80

Versuchsdurchführung: Lehrstuhl für Stahlbau, TU München Arcisstr. 21, 8000 München 2

Unsere Auftragsnr.: 105a

Lehrstuhlinhaber: O.Prof.Dipl.-Ing.F.Nather Sachbearbeiter: Dr.-Ing. G. Klassen Dr.-Ing. J.-St. Kreutz

München, November 1985

Inhaltsverzeichnis:

1.	Allgemeines	3
2.	Überblick über die theoretischen Untersuchungen	3
3.	Betrachtungen zum Einfluß der Ver- bindungen auf Verformungen und Traglasten von Konstruktionen des Stahlhochbaus	5
4.	Entwicklung eines Schraubenmodells aus den Einschraubenversuchen und Anwendung auf Gesamtstöße und An- schlüsse	14
4.1	Schraubenmodell bei Finite-Element- Rechnungen für Scherlochlaibungs-Be- anspruchungen	15
4.2	Überprüfungen und Anwendungen	18
5.	Untersuchung zum Kraftverlauf in der Schraube und im angrenzenden Blechbereich	19
6.	Zusammenfassung der bisherigen Arbeiten	21
7.	Literaturverzeichnis	23

- 3 -

Zu dem hier durchgeführten Forschungsvorhaben (siehe Deckblatt) wurde im Januar 1983 ein Versuchsbericht fertiggestellt [1]. Die bisher verwendeten Mittel (ungefähr 1/3 der ursprünglich vorgesehenen Beträge) wurden weitgehend zur Erstellung von versuchstechnisch ermittelten Grunddaten verwendet. Die nachfolgend dargestellten theoretischen Untersuchungen wurden mit Hilfe von Diplomarbeiten und durch Arbeiten von beamteten Mitarbeitern des Lehrstuhls für Stahlbau der TU München erstellt. Alle anteiligen Rechen- und Papierkosten sowie die Kosten für wissenschaftliche Hilfskräfte wurden aus Lehrstuhl- bzw. Hochschulmitteln der TU München getragen.

Die nachfolgende Darstellung der Ergebnisse der theoretischen Untersuchungen entspricht (analog zu [1]) dem Stand Januar 1983. Nach diesem Zeitpunkt durchgeführte bzw. abgeschlossene theoretische Untersuchungen zur Problematik der Verbindungskonstruktionen [2, 3] wurden in diesen Bericht nicht vollständig eingearbeitet. Es wird jedoch an einigen Stellen auf diese oder andere Untersuchungen verwiesen.

2. Überblick über die theoretischen Untersuchungen

Parallel zu den im zugehörigen Versuchsbericht [1] beschriebenen Versuchen wurden theoretische Untersuchungen begonnen, die unterschiedliche Zielsetzungen haben bzw. hatten.

Zunächst sollte der Einfluß der Verbindungsnachgiebigkeit auf die Traglast und die Verformungen von einigen praktischen Stahlhochbau-Konstruktionen gezeigt werden, um die Bedeutung des Forschungsvorhabens aufzuzeigen. Hierbei wurden für die Nachgiebigkeiten überschlägige Werte angenommen.

- 4 -

- 3 -

Diese praktischen Konstruktionen sind:

- Ein mehrstöckiger Rahmen aus dem Industriebau (ebene Betrachtung),
- ein einfacher Zweigelenkrahmen mit unterschiedlichen Lagen der Stöße (ebene Betrachtung),
- ein zweischiffiger Hallenrahmen mit biegebeanspruchten Rahmenstößen und normalkraftbeanspruchten Verbandsfeldanschlüssen (räumliche Betrachtung),
- ein Verbandsfeld mit zahlreichen Konstruktionsparametern bei den Anschlüssen (räumliche Betrachtung).

Die durchgeführten Untersuchungen, die erzielten Ergebnisse und die gezogenen Schlüsse sind entsprechend dem Stand Jan. 1983 in Kapitel 3 dargestellt. Im Kapitel 4 ist die Entwicklung eines Schraubenmodells beschrieben. Dabei wurde versucht, die scher-lochlaibungsbeanspruchten Einschraubenversuche (siehe [1]) für Finite-Element-Rechnungen von Stoßbereichen aufzubereiten. Die einzelne Schraube wird dabei nur noch durch Federn beschrieben. Die Bleche werden durch räumliche Schalenelemente dargestellt.

Das Schraubenmodell wird an den durchgeführten Biegeversuchen (siehe [1]) kontrolliert. Zur zusätzlichen Kontrolle sollen noch Versuche aus der Literatur herangezogen werden.

Mit dem Schraubenmodell sollen in weiteren Untersuchungen die wichtigsten Stoßtypen nachgerechnet werden, um so teuere experimentelle Untersuchungen zu sparen. Ein Vergleich bzw. Bezug zu anderen sekundären Effekten (Material, Gründung, Lasteinleitung,...) wird sich daran anschließen, ebenso ein Vergleich mit Kopfplattenverbindungen, siehe hierzu auch [3].

Das dritte Feld der theoretischen Untersuchungen befaßt sich mit dem Spannungszustand in der Schraube und in den angrenzenden Blechbereichen; unter Einbezug der Materialnichtlinearität und der geometrischen Nichtlinearität wer-

- 5 -

den die durch räumliche Elemente und Federn beschriebenen Bauteile bei wachsender Beanspruchung betrachtet. Fragen nach dem tatsächlichen Spannungszustand um die Schraube und in ihr könnten auf diese Weise beantwortbar werden. Ein Hinweis auf die Forschungsziele ist im Kapitel 5 gegeben, siehe auch [2].

Im Kapitel 6 werden die verschiedenen Ergebnisse aus den Kapiteln 3 bis 5 zusammengefaßt.

<u>3. Betrachtungen zum Einfluß der Verbindungen auf Verformun-</u> gen und Traglasten von Konstruktionen des Stahlhochbaus

Im Rahmen einer Diplomarbeit wurde ein Teil eines Fabrikationsgebäudes ein Rahmentragwerk mit Verbänden - untersucht (Bild 1). Die Diagonalstabanschlüsse sind als Senkfedern der Federsteifigkeit c_F, die Stöße und Anschlüsse der Rahmenriegel als Drehfedern der Drehfedersteifigkeit cgangesetzt. Als Sonderfall wurden die Stützen im Fußpunkt eingespannt angenommen.

Dieses Beispiel ist für den Nachweis des Einflusses der Nachgiebigkeit der Verbindungen auf die Traglast oder die elastische Grenzlast nicht optimal (Bild 2). Das Tragwerk ist nämlilch auch im Grenzfall $c_F = 0$, $c_{\mathcal{G}} = 0$ stabil, wenn auch mit stark reduzierter Traglast. Nur, wenn gleichzeitig $c_F = c_{\mathcal{G}} = c_G = 0$, wird das System labil. In Bildmitte ist das reale System mit Federsteifigkeiten zwischen Null und Unendlich, an den Ecken mit den idealen Grenzwerten dargestellt. In der Praxis rechnet der Statiker mit dem günstigsten Grenzfall, bei dem sämtliche Federn unendlich steif sind. Dies ist im Bild rechts unten dargestellt.

Die Lastfaktoren in Abhängigkeit von c_F und c_{φ} zeigt Bild 3. Im ungünstigsten Grenzfall wird $\gamma = 0,52$. Vernachlässigt man den Schlupf, so liegen die Federsteifigkeiten der Längskraftfedern bei $c_F \stackrel{\geq}{=} 300 \text{ kN/cm}$, die der Drehfedern bei $c_{\varphi} \approx 10000 \text{ kNm}$.

- 5 -

- 6 -

Im Bild sind die Linien des Nachweises nach der E-Theorie II. Ordnung voll ausgezogen. Man erkennt, daß das Maximum der elastischen Grenzlast bei gegebenem Querschnitt nicht bei unendlich steifen Verbindungen liegt. Dies rührt daher, daß durch steifere Drehfedern die Biegemomente in den Rahmenecken vergrößert werden und damit der Bemessungspunkt wandert. Die Differenz ist nicht unwesentlich, da max $\nu = 1,79$.

Für c $\varphi = 10^6$ kNcm und c_F = 200 kN/cm wurden einige Traglastwerte nach der Fließzonentheorie errechnet. Der Lastfaktor erfährt eine wesentliche Steigerung ($v_{pl} = 1,88$ für die untersuchten Steifigkeitswerte, kein Höchstwert).

Für die Darstellung in Bild 3 stellt sich natürlich die Frage, wo die Federwerte der im Stahlbau üblichen Verbindungen liegen. Im gewählten Beispiel wurden die Stiele als durchlaufend angenommen; einige Möglichkeiten der Anschlußausbildung der Riegel an die Stiele zeigt Bild 4. Im vorliegenden Fall kämen als biegesteife Anschlüsse die Varianten 4 - 8 infrage.

Von den dargestellten Möglichkeiten ist Ziffer 6: Stirnplatte mit Steifen wohl die am wenigsten nachgiebige Verbindung. Federwerte für biegesteife Anschlüsse sind z.B. in [5] angegeben. Legt man die dortigen Angaben zugrunde, so kann für das hier anzuschließende Profil (HE 300 M) bei überstehender Kopfplatte:

 $c \circ 200000 \text{ kNm/rad}$ = 2.10⁷ kNcm/rad

bei bündiger Kopfplatte

 $c \varphi \simeq 100000 \text{ kNm/rad}$ = 1.10⁷ kNcm/rad

als Drehfedersteifigkeit angenommen werden. Betrachtet man die zugehörigen Punkte in Bild 3, so erkennt man, daß Stirnplattenanschlüsse praktisch keinen Einfluß auf die Traglast der Konstruktion haben.

- 6 -

Die Anschlüsse 4 und 7 in Bild 4 stellen Verbindungen dar, bei denen ein Anschlußteil mit Schrauben auf Abscheren und Lochlaibung beansprucht wird. Geht man nun von einer an der Stütze angeschweißten Lasche (nicht in Bild 4 dargestellt) aus, so bleiben nur die Schrauben an den Flanschen als überproportional nachgiebige Verbindungsmittel übrig. Betrachtet man nach [6] die mittleren Rechenwerte für Schlupfe und zusätzliche elastische Randverschiebungen, so ergeben sich für einen scher-lochlaibungsbeanspruchten Anschluß zwischen 0,5 und 6,4 mm Gesamtverschiebung. Bezieht man diese Verformungen auf die Profilhöhe h und die elastische Grenztragfähigkeit, so errechnen sich folgende Federsteifigkeiten:

(Profil HE 300 M)

 $\Delta s = 2s;$ $\Delta \varphi = 2s/h; \qquad M_{gr} = w \cdot \beta_{s}$ $c_{\varphi}^{min} = \frac{M_{gr}}{\Delta} = \frac{3480.24.34}{2.0,64} = 2,2.10^{6} \text{ kNcm/rad (SL-Schraubung)}$

 $c_{\varphi}^{\text{max}} = 2,8.10^7 \text{ kNcm/rad (GVP-Schraubung)}$

Betrachtet man wieder Bild 3, so zeigt sich, daß insbesondere der erste Wert in einem Bereich stark abfallender Traglast liegt; hierbei ist die Größe der Anschlußfedersteifigkeit der K-Fachwerk-Diagonalen nahezu ohne Bedeutung.

Für die Senkfedersteifigkeit c_F bezieht man die Gesamtverschiebung unter Bemessungslast wohl auf die Grenztragfähigkeit der Druckdiagonale:

$$s_{K,max} = 5,6 m$$

$$i_{min} (HE 140 B) = 3,58 cm$$

$$\lambda = \frac{560}{3,58} = 157; \qquad \omega = 4,16$$

$$D_{gr} = \frac{43.24}{4,16} = 248 kN$$

$$c_{F}^{min} = \frac{248}{0,64} = 388 kN/cm$$

$$c_{F}^{max} = \frac{248}{0,05} = 4960 kN/cm$$

- 8 -

Bild 3 zeigt bei diesen Federsteifigkeiten keine Werte mehr auf, sie liegen außerhalb der traglastrelevanten Federstifigkeit. Die reine Verbindungsmittelnachgiebigkeit ist hier also ohne Belang.

In [4] sind Überlagerungen der reinen Verbindungsmittelnachgiebigkeit mit anderen Effekten betrachtet worden. Dabei zeigte sich, daß vor allem der außermittige Anschluß von Diagonalen wegen der dadurch erzeugten Momentenbeanspruchung (siehe Bild 5) die Verbandssteifigkeit sehr stark abgemindert wird.

Da die Annahmen für mögliche Fehlhebel bzw. Nebenspannungen sehr stark von der Konstruktion und der praktischen Ausführung abhängen, kann dieser Einfluß im Rahmen einer wissenschaftlichen Arbeit nur bedingt quantifiziert werden. Mit den in Bild 5 angegebenen Beziehungen läßt sich aber für praktische Fälle ohne ungünstigste Annahmen 10 kN/cm für die Senkfedersteifigkeit errechnen. Mit diesem Wert liegt man in Bild 3 ebenfalls in einem Bereich, der Einfluß auf die Traglast des betrachteten Rahmens hat.

In Bild 6 sind noch für die beiden Parameter c $_{\rm F}$ und c_{\rm F} die seitlichen Verschiebungen des obersten Riegels dargestellt.

Weitere Einflüsse der Verbindungen auf die Traglast von Stahlhochbau-Konstruktionen wurden an dem in Bild 7 dargestellten System untersucht, [7]. Das System wurde als räumliches Gesamtsystem nach Theorie II. Ordnung untersucht. Neben dem Einfluß der Verbindungsmittel wurden zahlreiche andere Parameter in die Untersuchung mit einbezogen, z.B.:

- Auswirkung der ausgedehnten Fließzonen,
- Schubnachgiebigkeit der Rahmenecke durch Momentenumleitung,
- Eigenspannungen und Fließgrenzenunterschiede bei den verwendeten Profilen

und andere mehr.

An diesem Beispiel wurden ebenfalls zwei verschiedene Verbindungsmittelnachgiebigkeiten untersucht:

 biegebeanspruchte Verbindungsmittel bei den Stößen der biegesteifen Rahmen in den Achsen B ./. E, _ 9 -

- 8 -

 normalkraftbeanspruchte Verbindungsmittel bei den Anschlüssen der Verbandsstäbe.

Der Einfluß der biegebeanspruchten Verbindungsmittel wurde am ebenen Binder untersucht. Dabei wurde von den Extremfällen

- Kopfplattenverbindung mit HV-Schrauben als steifste und
- SL-Laschenverbindung mit Paßschrauben als nachgiebigste

Verbindung ausgegangen.

Bei der Kopfplattenverbindung wurde allgemein mit einer Drehfederkonstante c φ = 175000 kNm/rad gerechnet [5]. Dabei wurde keine Abminderung des Traglastfaktors registriert und auch die Verformungen waren nur geringfügig größer als für den Normalfall.

Bei den SL-Laschenverbindungen mußte zwischen zwei Ausführungsarten unterschieden werden. Bei der Berechnung der Drehfederkonstanten wurde von einem Wert c φ = 8000 kNm/rad für ein Profil IPE 400 ausgegangen, (siehe [1]).

Dieser Wert für cy wurde nun mit dem Verhältnis

Trägheitsmoment gesuchtes IPE-Profil Trägheitsmoment IPE 400

multipliziert.

Vorhandene Profile am ausgeführten Bauwerk:

Riegel breites Feld	IPE 450
Riegel schmales Feld	IPE 360
Außenstiele	IPE 450
Innenstiel	IPE 500

Damit errechnen sich die in Bild 8 angegebenen Werte.

Für Ausführungsart I (Stöße in den Riegeln) ergibt sich gegenüber dem Normalfall ein abgeändertes Tragverhalten: Zum einen ließ sich die Last nur bis zum Erreichen des dritten Fließgelenkes steigern (bei Einführung eines dritten Gelenkes wurde der ganze Binder instabil), zum anderen wurden trotz des geringeren Traglastfaktors (1.55) die

- 10 -

Feldmomente geringfügig größer, die Stützmomente entsprechend kleiner und die Durchbiegungen nahezu doppelt so groß. Mit einer Maximaldurchbiegung von 37 cm ist die Gebrauchsfähigkeit der Konstruktion wohl nicht mehr gegeben, da unter 1,0-fachen Lasten Verformungen zwischen 15 und 20 cm zu erwarten sind.

Bei Ausführungsart II (Stöße in den Riegeln und den Stielen) nahm der Traglastfaktor zwar nur von 1.58 auf 1.57 ab und es kam auch zur Ausbildung von drei Fließgelenken bei nahezu unveränderter Momentenverteilung wie im Normalfall, aber die Verformungen waren auch hier ähnlich groß wie bei Ausführungsart I.

Die Verformungen des Rahmens ohne Nachgiebigkeit, mit Kopfplattenstößen und beiden Anordnungen der SL-Verbindung sind in Bild 10 zusammengefaßt.

Zur Betrachtung des Einflusses der normalkraftbeanspruchten Verbingungsmittel wurde die Federsteifigkeit des Verbandsanschlusses pauschal zu

$c_F = 100 \text{ kN/cm}$

angenommen. Dieser Wert liegt zwar innerhalb des in [4] untersuchten Bereiches, wegen der schwächeren Verbandsprofile und der relativ großen Ausmittigkeit scheint der Wert für c_{r} jedoch stark auf der sicheren Seite zu liegen.

Mit dem so geschwächten Verband ergeben sich für die Binder im Lastfall "Wind auf die Giebelwand"große Querbiegemomente, die eine Interaktion mit den Hauptbiegemomenten erforderlich machen.

Insgesamt sinkt der Traglastbeiwert im Lastfall HZ von 1,47 (übliche Bemessung) auf 1,31 (Verbandsanschlüsse mit $c_F =$ = 100 kN/cm), die Verformungen wachsen etwa auf das achtfache des ursprünglichen Wertes an.

Die Grundrißverformungen sind zusammen mit dem Verband in Bild 11 dargestellt.

Zur Abrundung und genaueren Erfassung des Verbandsverhaltens unter Berücksichtigung der Verbindungsmittelnachgie-

- 10 -

- 11 -

bigkeit wurde eine weitere Diplomarbeit vergeben [8]. Hierbei wurden bei unverändertem Rahmenprofil verschiedene Verbandsparameter untersucht:

- Nachgiebigkeit der Verbandsanschlüsse
- Verband mit gekreuzten Diagonalen und Mittelblech
- Variation der Verbandsquerschnitte
- Exzentrizität zwischen Pfosten und Diagonalen des Dachverbandes
- Druckdiagonalen
- Strebenfachwerk ohne Pfosten
- Abstand der Systemlinien von Hallenrahmen und Verbandsstäben
- Anzahl der Verbandsfelder / Winkel der Diagonalen.

Bild 12 zeigt eine Ausbildung des Verbandes. Die Spannweite des Rahmens und die Einflußbreite des Verbandes wurden konstant gehalten. Zur Berücksichtigung der an den Verband angehängten Lasten werden beide Binder mit der gesamten Vertikallast des angehängten Hallenbereichs beaufschlagt. Die Steifigkeit der Riegel entspricht in Hauptund Querbiegerichtung ebenfalls der addierten Steifigkeit der Binder des ganzen Hallenbereiches. Dadurch wurde versucht, das Verhalten des Verbandes in der Gesamtkonstruktion möglichst wirklichkeitsnah zu erfassen. Es wurden folgende Verbandsparameter betrachtet:

- Nachgiebigkeit der Anschlüsse bei einfachen Diagonalen,
- Nachgiebigkeit der Anschlüsse bei gekreuzten Diagonalen mit Mittelblech,
- Variation der Verbandsquerschnitte,
- Exzentrizität zwischen Pfosten und Diagonalen des Dachverbandes,
- Dachdiagonalen auf Druck und Zug (Rundrohre),
- Verband als Strebenfachwerk ohne Pfosten,
- Abstand zwischen den Systemlinien von Hallenrahmen und Verbandsstäben,
- Winkel der Diagonalen / Anzahl der Verbandsfelder.

Besonderes Augenmerk wurde bei dieser Arbeit auf die Nachgiebigkeit der Anschlußverbindungsmittel der Verbandsstäbe gelegt. Der Betrachtung wurden die Versuche aus [1] und die Versuche von Scheer u.a. [9] zugrundegelegt.

Für scher-lochlaibungsbeanspruchte Schrauben und für die im Stahlhochbau üblichen d/t-Verhältnisse (ohne Futter) wurde folgende Beziehung zur Ermittlung der Anschlußfedersteifigkeit gefunden:

$$c = \frac{d_s}{f} \cdot \frac{t_1 + t_2}{2}$$

wobei der Schraubendurchmesser d_s in [mm] und die Blechdicken t₁ + t₂ in [mm] eingesetzt werden, und sich die Federkonstante C in [kN/mm] ergibt.

Der Faktor f ist von Schraubendurchmesser und Schraubengüte abhängig und folgender Tabelle zu entnehmen.

	M 12	M 16	M 20	M 24	M 27
4.6	8	8,5	9	9,5	10
10.9	5	6	7	8	9

Tabelle 1 Faktor f

Die Federsteifigkeit c gilt nun zunächst für Schrauben ohne Schlupf. Um den Schlupf in die Nachgiebigkeit mit einzurechnen, wird wie folgt vorgegangen:

Bezugswert für die Federsteifigkeit

Pn

P_n = 1,0 zul P_{Abscheren} " 1,5 " " 1,7 " je nach Fragestellung und Lastfall

 $f_1 = \frac{P_n}{C};$

s_n Gesamtschlupf der betrachteten Schraube (je nach Fragestellung Mittellage oder Extremlage von Löchern und Schraube); siehe hierzu [3], S. 104, Bild 47

- 12 -

 $f = f_1 + s_n$

 $c_{\text{Schlupf}} = \frac{P_n}{f} = \frac{P_n}{f_{1}+s_n};$

Bild 13 gibt für die hier als Verbandsanschluß angenommenen M20 Vergleiche zwischen den Versuchen und der Theorie an.

Es zeigte sich, daß die Auswirkung auf die Traglast durch Variation des Verbandstyps unbedeutend ist. Auch das Absinken des Traglastfaktors durch Verbindungsmittelnachgiebigkeiten und Anschlußexzentrizitäten ist nur beim Zusammenwirken aller Effekte von entscheidender Größe, maximal ca. 10 % bei größter Nachgiebigkeit durch größten Schlupf. Durch das sehr starke Anwachsen der Verschiebungen infolge Verbindungsmittelnachgiebigkeiten und Anschlußexzentrizitäten in Richtung der Querkraft des Verbandes ist die Verminderung der Schubsteifigkeit allerdings sehr groß, damit ist der Einfluß auf die kippstabilisierende Wirkung des Verbandes bedeutend.

Für die in Bemessungsverfahren für Verbandsfelder eingehende Schubsteifigkeit lassen mit den durchgeführten Untersuchungen folgende Vorschläge machen:

Für die gebräuchlichsten Fachwerkformen ergibt sich:

a)
$$S_{id} = \frac{e^2 \cdot s}{d^2 \cdot (d/EA_D + 2/C) + e^2 (e^2(e/EA_R + 2/C + a^2 \cdot e/EI_R))}$$

b)
$$S_{id} = \frac{e^2 \cdot s}{d^2/2 (d/EA_D + 2/C) + e^2 (e/EA_R + 2/C + a^2 \cdot e/EI_R)}$$

c)
$$S_{id} = \frac{e^2 \cdot s}{d^2 \cdot (d/EA_R + 2/C)}$$

mit:

C Federwert wie oben

a Fehlhebel zwischen Diagonalen und Pfostenachse und den anderen Bezeichnungen wie bei Bild 14.

- 14 -

Zusammenfassend kann festgestellt werden, daß für die untersuchten, praxisgerechten Rahmen die Traglastminderung bei Biegeknickbemessung unbedeutend scheint. Im Gegensatz zu den Traglastminderungen von ca. 10 - 20 % stehen aber Verformungen in Verbandsebene, die auf ein mehrfaches - bis zum 10-fachen - anwachsen. Das bedeutet, daß die Steifigkeit ganz erheblich abgesunken ist. Damit wird die Biegedrillknick- bzw. -kipptraglast von Riegeln oder durchlaufenden Trägern direkt beeinflußt; sie sinkt entsprechend auf~1/10 der Nenntraglast ab, der Verband ist damit für diese Beanspruchungen völlig unterbemessen.

Entsprechendes gilt auch für andere, direkt von Verbandssteifigkeiten abhängige Versagensarten.

Um einen unmittelbaren Zusammenhang zwischen den durchgeführten Versuchen mit einem praxisbezogenen Beispiel zu erhalten, werden die in Bild 15 dargestellten Rahmen betrachtet. Die Traglastkurven sind in Abhängigkeit von der Drehfedersteifigkeit in Bild 16 aufgetragen.

Aus dem Bericht [1], Bild 43, können für das gewählte Profil IPE 400 folgende Mindestdrehfedersteifigkeiten der Versuche ermittelt werden:

1	mm	Lochspiel;	0,5	F _v :	c۴ min	=	7800	kNm/rad
		"	1,0	F _V :	c ^q min	=	11000	kNm/rad
2	mm	Lochspiel;	0,5	F _v :	c۴ min	=	5800	kNm/rad
0,3	mm	Lochspiel;	1,0	F _v :	cΨ min	=	24400	kNm/rad

Vergleicht man diese Werte mit der Kurve von Bild 16, so erkennt man für die weichste Feder und das weichste System aus Bild 15 eine maximale Traglastabminderung von ca. 20 %.

<u>4. Entwicklung eines Schraubenmodells aus den Einschrauben-</u> versuchen und Anwendung auf Gesamtstöße und Anschlüsse

In [1] sind die Versuchsberichte der an unserem Lehrstuhl durchgeführten Einschraubenversuche angegeben. Dabei wurden variiert:

- Blechdicken
- Blechdickenverhältnis
- Schraubendurchmesser / Blechdicke
- Lochspiel
- Exzentrizität der Blechresultierenden

Andere Parameter jedoch, die ebenfalls in das Kraft-Verformungs-Verhalten von Verbindungen eingehen, wurden dagegen konstant gehalten:

- Reibbeiwert zwischen den Flächen durch einheitliche Vorbehandlung aller Berührungsflächen (Beseitigen des Flugrostes und Entfetten)
- Verwendung einheitlicher Schrauben der Güte 10.9 (gleiche Reibbeiwerte in den Gewindegängen, gleiche Schraubenfestigkeit)
- Fertigen der Laschen und Anschlußstücke aus St 37 (möglichst geringe Streuung der Festigkeit des Grundmaterials)
- einheitliche äußere Beanspruchung (nur Zug)
- konstante, exakte Vorspannung von 0,5 F

In Braunschweig [9] wurden am dortigen Stahlbauinstitut ähnliche Einschraubenversuche, allerdings mit ganz anderen Parametern, durchgeführt.

Aus beiden Versuchsreihen wurde das im Folgenden beschriebene Schraubenmodell entwickelt.

<u>4.1 Schraubenmodell bei Finite-Element-Rechnungen für Scher-</u> Lochlaibungs-Beanspruchungen

Die Bilder 17, 18 und 19 zeigen für die in [1] beschriebenen Einschrauben-Zugversuche die Verschiebungsdiagramme von 1/2 (s_q + s₁₁).

Bild	17:	Versuchsanordnung	A,	Schrauben	M20
Bild	18:	Versuchsanordnung	Α,	Schrauben	M16
Bild	19:	Versuchsanordnung	В,	Schrauben	M20

- 16 -

- 15 -

Vergleicht man in den Bildern gleichartige Versuchsanordnungen, so stellt man fest, daß bei gleicher Laststufe die Verformungen bis etwa zum Verhältnis 1:3 unterschiedlich sind. Bei Erreichung der Traglast verhalten sich die größten Verformungsunterschiede wie 1:2. Die Streuungen in den Kraft-Verformungslinien sind also sehr stark. Entsprechend grob ist auch das rechnerische Modell, das den Kraft-Verformungsmechanismus erfaßt.

Aus den Bildern 17, 18, 19 erkennt man in fast allen Versuchsbeispielen 4 Bereiche:

- Am Beginn der Belastung zunächst einen sehr steilen Anstieg mit geringen Verformungen. Da alle Testkörper
 0,5 F_v-vorgespannte Schrauben enthalten haben, ist dieser Anstieg wohl der zur Überwindung der Reibung aus Vorspannung erforderliche Lastwert. Die Berücksichtigung im Berechnungsmodell erfolgt entsprechend.
- Als zweiter Bereich tritt ein Bereich sehr geringer Steifigkeit auf, mit dem der tatsächlichen Schrauben-/Lochlage entsprechenden Schlupf. Wichtig ist hier allerdings, daß trotz der Einschrauben-Verbindung nirgends die Steifigkeit ganz auf Null abfällt.
- Nach Durchlaufen des Schlupfes liegt die Schraube an ihrer Laibung an, die Steifigkeit nimmt wieder erheblich zu. Diese Steifigkeit nach durchlaufendem Schlupf zeigt den Hauptunterschied zwischen einschnittiger und zweischnittiger (bzw. einschnittig-gestützter) Ausführung auf.
- Schließlich nimmt die Steifigkeit aufgrund der Blechplastizierungen vor Erreichen der Traglast der Verbindung wieder ab.

Mit Ausnahme des letzten Einflusses aus Platten- bzw. Membranspannungsplastizierungen haben die einzelnen Bereiche ihre Ursache im Schraubenverhalten.

Die Schraube wird entsprechend den drei Bereichen, durch drei Federn idealisiert, siehe Bild 20.

- 16 -

Alle drei Federn wirken zwischen den Punkten der Schraubenachse in den Blechmittelflächen, siehe Bild 21.

In die Schraubenidealisierung geht nur die Abscherbeanspruchung ein, da die Blechplastizierungen aus Lochleibung durch die das Blech darstellenden Finiten Elemente erfolgt, sofern die Beanspruchung entsprechend groß ist.

Für die Federkenngrößen werden folgende Zahlenwerte vorgeschlagen:

 $\Sigma P = P_1 + P_2 + P_3 = 0,7 \cdot A_{Schraube} = B_Z \cdot 0,58 \text{ (analog [9])}$

 $P_1 = F_v \cdot 0,3$ (tatsächlich aufgebrachte Vorspannkraft)

μ = 0,3 für unbehandelte Flächen (siehe hierzu z.B. [11, 12, 13])

$$P_3 = zul P_{Abscheren, LF-H}$$

$$P_{2} = \Sigma P - P_{1} - P_{3}$$

$$c_{1} = \frac{GA_{Q}}{t_{1}+t_{2}} \qquad t_{1}, t_{2}, d \text{ gemäß Bild 21}$$

$$c_{2} = 0, 2 \cdot c_{3} \qquad A_{Q} = 0, 7 \cdot A_{\text{Schraube}}$$

c₃ = 150 . d d in [cm] (10.9 Schrauben) c in [kN/cm]

$$c_3 = 100 . d$$

(4.6, 5.6 Schr.)

 $\Delta = \text{Lochspiel} + \frac{d}{30}$

(Mittellage vorausgesetzt)

In der Berechnung wird der in der Symmetrieebene durchtrennte Zugversuch gemäß Anlage [1] betrachtet. Die Bleche werden bei Versuchsanordnung A durch 20 Finite Schalenelemente beschrieben, die Schrauben durch die oben erläuterten Federn. Zur Berücksichtigung des Lochabzuges sind zwei verschiedene Vorgehensweisen möglich:

- 18 -

- Verminderung der Elementdicke bei gleichen Materialeigenschaften
- Herabsetzung der Streckgrenze bei unveränderter Elementdicke.

Im hier betrachteten Fall wird die Elementdicke vermindert.

Bild 22 zeigt Versuchsanordnung A,

Bild 23 Versuchsanordnung B.

Die Ergebnisse der Berechnungen sind in den Bildern 24 - 26 im selben Maßstab wie die Versuchsergebnisse in den Bildern 17 - 19 dargestellt.

<u>4.2 Überprüfungen und Anwendungen</u>

Das aus den Zugversuchen ermittelte Modell soll nun zunächst an verschiedenen Versuchen anderer Art überprüft werden.

Als erste Überprüfung dienen die ebenfalls in Anlage I durchgeführten biegebeanspruchten Versuche. In diesen Versuchen sind ausschließlich SL-beanspruchte Schrauben zur Anwendung gekommen.

In Bild 27 ist das idealisierte halbe System dargestellt, mit dem die Biegeversuche nachgerechnet werden. Die Bleche werden wieder durch Finite Schalenelemente idealisiert, zur Berücksichtigung des Lochabzuges gilt das oben gesagte unverändert.

Für die Schraubenidealisierung werden wieder pro Schraube 3 Federn angesetzt, die Berechnung der Federkenngrößen erfolgt wie oben in Abschnitt 4.1 dargestellt.

Eine Abschätzung des Einflusses der Idealisierung eines Teiles des Versuchskörpers (s. Bild 27) durch einen Stab wird in [3] angegeben; die dort aufgestellten Voraussetzungen werden eingehalten. In Bild 28 sind die Versuchskurven des IPE 200 aus Anlage I angegeben, Bild 28 zeigt die Ergebnisse der zugehörigen Nachrechnungen. In Bild 29 sind Versuchskurven und Nachrechnungen für die Versuche mit dem Profil IPE 400 angegeben.

- 18 -

- 19 -

Nachrechnungen und Versuche passen gut zusammen; eine Auswertung der Nachrechnungen bezüglich Kraftaufteilung, Blechbeanspruchungen oder Schraubenverhalten ist bisher noch nicht erfolgt. Im Rahmen der Fortsetzung der Untersuchungen ist dies jedoch geplant.

In mehreren Literaturstellen, insbesondere aus dem angelsächsischen Raum (z.B. [14 - 18]) werden Versuche an Gesamtstößen und -anschlüssen mit SL-beanspruchten Schrauben durchgeführt. Im Rahmen der Fortsetzung der Untersuchungen ist geplant, auch einige dieser ausländischen Versuche nachzurechnen.

Im Rahmen einer wissenschaftlichen Arbeit an unserem Institut [3] wurden neben einem Teil der bisher beschriebenen Untersuchungen auch andere Verbindungen untersucht.

Unter anderem wird ein dem oben angegebenen Idealisierungsverfahren entsprechendes Vorgehen für Kopfplattenverbindungen erarbeitet. Damit sind auch Untersuchungen für Mischkonstruktionen an Rahmenecken oder Firstknoten möglich. Darüberhinaus wird auch ein Vergleich mit anderen sekundären Effekten, wie Materialeigenschaften, Nachgiebigkeit der Gründung usw. in dieser Arbeit durchgeführt.

5. Untersuchung zum Kraftverlauf in der Schraube und im angrenzenden Blechbereich

Der Spannungs- und Verformungszustand einer Schraubverbindung unter Last ist dreidimensional und hochgradig nichtlinear.

Die Nichtlinearitäten lassen sich wie folgt einteilen:

- Materialnichtlinearität, begründet in den Arbeitslinien der verwendeten Stahlsorten
- geometrische Nichtlinearitäten: die Verformungen sind nicht mehr klein gegenüber den Bauteilabmessungen
- besondere Effekte wie Reibung und Schlupf.

- 20 -

Konventionelle Methoden der Baustatik oder der Mechanik sind daher nur in der Lage, mehr oder minder zutreffende Näherungslösungen anzugeben. Wie aus der Literaturübersicht zu erkennen ist, ist der Kenntnisstand auf einige Sonderfälle beschränkt.

Versuche können nur spezielle ausgewählte Schraubverbindungen untersuchen, eine Variation aller in der Praxis vorkommenden Parameter in Versuchsprogrammen ist aus wirtschaftlichen Gründen unvertretbar.

Für eine analytische Lösung kommt die Methode der Finiten Elemente in Betracht, die sich in den vergangenen Jahren bei verschiedensten Problemstellungen bewährt hat.

Für eine Berechnung nach diesem Verfahren wird eine Struktur in viele kleinere Unterstrukturen (Finite Elemente), hier Federn und dreidimensionale Kontinuumselemente, zerlegt.

Durch Iterationen lassen sich auch nichtlineare Probleme elegant lösen.

Mit einem Rechenprogramm sind Stahlbauverbindungen unterschiedlicher Wirkungsweise, wie SL- und GV-Verbindungen erfaßbar.

Von Nachteil ist, daß dreidimensionale Untersuchungen mit Finiten Elementen sehr rechenintensiv sind und auch Großcomputer an die Grenze ihrer Leistungsfähigkeit bringen können. Um genaue Ergebnisse zu erhalten, muß die Struktur in möglichst kleine Elemente zerlegt werden. Dies läßt es sinnvoll erscheinen, für den Anfang nur eine Einschraubenverindung zu untersuchen.

Durch Modifikation der Eingabedaten für das FE-Programm können Parameterstudien durchgeführt werden. Folgende Parameter einer Einschraubenverbindung können variiert werden:

- Material (Stahlgüte der Bleche, Schraubengüte, Reibbeiwert bei GV-Verbindungen)
- Geometrie (Schraubendurchmesser, Lochdurchmesser, Blechdicken und -abmessungen, Futter, Klemmlängen, Schnittigkeit)

- Schraubenvorspannung, ggf. Art ihrer Aufbringung

- Belastung der Verbindung

Durch stufenweise Erhöhung der äußeren Last können Last-Verformungs-Kurven der Einschraubverbindung ermittelt werden.

Eine erste Untersuchung zur Einzelschraube liegt inzwischen vor [2].

6. Zusammenfassung der bisherigen Arbeiten

In Kapitel 3 wurde versucht, einen Überblick über die Verbindungsmittelnachgiebigkeiten hinsichtlich der Auswirkungen auf Statik und Bemessung zu geben. Es wurde festgestellt, daß die Steifigkeit sehr stark von der Verbindungsmittelnachgiebigkeit beeinflußt ist; dies gilt für Biegesteifigkeiten von Gesamtkonstruktionen ebenso wie für Schubsteifigkeiten bei Verbandsfeldern und horizontalen Steifigkeiten von Einzeldiagonalen. Die Steifigkeitsabnahmen liegen bei Konstruktionen mit SL-Anschlüssen durchweg über 50 %, d.h. charakteristische Verformungen nehmen auf mehr als das doppelte zu. Hier ist im Fortgang der Arbeiten zu überprüfen, ob und wie die Verbindungsmittelnachgiebigkeiten bei den Nachweisen ausreichender Gebrauchsfähigkeit der Konstruktionen zu berücksichtigen sind. Interessante Hinweise hierzu gibt der EUROCODE 3 [19], z.B. die SL-Verbindungen im Hinblick auf ihre Verforwerden mungen in 5 Kategorien eingeteilt.

Im Gegensatz zur Steifigkeit ist der Einfluß der Verbindungsmittelnachgiebigkeit auf die Traglasten von Konstruktionen des Stahlhochbaus jedoch gering; dies zeigt z.B. die Vergleichsberechnung der Bilder 15 und 16. Obwohl der Rahmen D vom System und der Belastung her eine sehr weiche Konstruktion ist, ergeben die im Versuch ermittelten Federsteifigkeiten (von denen die Mindestwerte in Bild 16 eingezeichnet sind) nur eine vergleichsweise geringe Traglastminderung.

- 22 -

Auch bei einem systematischen Vergleich der Verbindungsmittelnachgiebigkeit mit anderen sekundären Effekten in [3] zeigt sich der stark verformungsvergrößernde Einfluß; dieser wirkt sich jedoch erst im Zusammenwirken mit Eigenspannungen, Gründungsnachgiebigkeiten und Rahmeneckverhalten voll durchschlagend auf die Traglast aus.

Dies bedeutet, daß nach dem derzeitigen Stand der Erkenntnisse für Traglastuntersuchungen die Verbindungsmittelnachgiebigkeit durch lineare Ersatzfedern berücksichtigt werden kann. Für Gebrauchsfähigkeitsnachweise jedoch sind umfangreiche zusätzliche Betrachtungen erforderlich.

Das in Abschnitt 4 entwickelte Schraubenmodell sollte zunächst noch an dem einen oder anderen Gesamt-Stoß-Versuch aus der Literatur überprüft werden. Danach können mit diesem Verfahren umfangreiche Parameterstudien an den Mischstößen und -anschlüssen des praktischen Stahlbaus (insbesondere Stahlhochbau: Rahmenecken mit Zuglaschen, Firststöße, SL-Laschenstöße mit Schnittgrößeninteraktion eben oder räumlich etc.) durchgeführt werden. Diese Untersuchungen ergäben wertvolle Hinweise zur Kraftaufteilung, zum Verformungsverhalten der Einzelteile und des Gesamtbauteiles. Zur Überprüfung des Verfahrens sind jedoch auch einige Versuche an Stößen und Anschlüssen, die möglichst praxisnah durchkonstruiert sind, notwendig.

Die vorhandenen Untersuchungen zum Kraftverlauf und zur tatsächlichen Beanspruchung in einer Schraube, die auf Abscheren und Lochlaibung beansprucht wird, sind an Zahl sehr gering und vom Inhalt her teilweise unbefriedigend. Auch hier sollen die theoretischen und praktischen Untersuchungen weitergeführt werden.

- 22 -

- 23 -

7. Literaturverzeichnis

- [1] Nather, F., Klassen, G.: Belastungsversuche an Biegeträgern mit geschraubten Laschenstößen sowie an zugbeanspruchten geschraubten Stabanschlüssen zur Abschätzung der Nachgiebigkeit der Stöße und Anschlüsse. Versuchsbericht Nr. 105 des Lehrstuhls für Stahlbau der TUM München, 1983
- [2] Klassen, G.: Untersuchungen zur Beanspruchung einer Einzelschraube M20 der Güte 10.9 und des unmittelbar anschließenden Stahlblechbereiches, bei Belastung senkrecht zur Schraubenachse und unterschiedlichen Vorspanngraden, in einer SL-Verbindung. In: Heft 20 der Mitteilungen aus dem Lehrstuhl für Stahlbau der TU München, 1984
- [3] Kreutz, J.-St.: Ein Beitrag zur Biegeknickbemessung von Stahlhochbaukonstruktionen mit IPE- und HE-Profilen unter Berücksichtigung sekundärer Effekte. Diss. TU München, Mitteilungen aus dem Lehrstuhl für Stahlbau der TU München, Heft 21, 1984
- [4] Diplomarbeit Nr. 125; Lehrstuhl für Stahlbau, TU München, Zimmermann, R.: Einfluß der Nachgiebigkeit von Verbindungen auf Traglast und Verformungen am Beispiel eines Rahmensystems aus dem Industriebau
- [5] Steinhardt, O., Schlaginhaufen, R.: HV-verschraubte Kopfplattenverbindungen bei biegefesten Stabwerken. Berichte des Deutschen Ausschusses für Stahlbau, Heft 24 Stahlbau-Verlags-GmbH, Köln 1961
- [6] Ad-hoc-Gruppe "Schlupf" (Steinhardt, Nather, Sedlacek, Valtinat): Protokoll der Sitzung vom 12.7.1982 in Frankfurt/Main
- [7] Diplomarbeit Nr. 126; Lehrstuhl für Stahlbau, TU München, Widmann, H.: Einflüsse auf die Traglast eines räumlichen Rahmensystems

- 24 -

- [8] Diplomarbeit Nr. 134; Lehrstuhl für Stahlbau, TU München; Deltz, C.: Untersuchung der Nachgiebigkeit eines Hallenrahmen-Verbandsfeldes
- [9] Scheer, J.; Peil, U.; Paustian, O.: Einfache Schraubenverbindungen. TU Braunschweig, Inst. f. Stahlbau, Bericht Nr. 6061 (1980)
- [10] Stahlbau-Handbuch, Band 1, 2. Auflage, S. Stahlbau-Verlags-GmbH, Köln, 1982
- [11] Fisher, J.W.; Ramseier, P.O.; Beedle, L.S.: Strength of A 440 Steel Joints Fastened with A 325 Bolts IABSE - IVBH-Abhandlungen, Band 23, 1963, S. 135 - 158
- [12] Shoukry; Haisch, W.T.: Bolted Connections with varied Hole Diameters ASCE- Journal of the struc. Div., June 1970, S. 1105 - 1118
- [13] Valtinat, G.: Der Einsatz der Feuerverzinkung im Stahlbau - im Hinblick auf Schraubenverbindungen. Eine Veröffentlichung der "Beratung Feuerverzinken"
- [14] Crawford, S.F.; Kulak, G.L.: Eccentrically loaded Bolted Connections. ASCE-Journal of the Structurals Division, March 1971, S. 765 - 783
- [15] Surtees, J.O.; Pape, E.D.: Bolt force distribution in friction grip eccentric shear joints. Proc. Inst. Civ. Engrs., Part 2, 67, September 1979, S. 801 - 816
- [16] Bahia, C.S.; Martin, L.H.: Bolt groups subject to torsion and shear. Proc. Inst. Civ. Engrs., Part 2, 69, June 1980, S. 473 - 489

- 25 -

- [17] Yura, J.A.; Frank, K.H.; Cayes, L.: Bolted Friction Connections with weathering steel. ASCE-Journal of the structural Division, November 1981, S. 2071 - 2087
- [18] Fisher, J.W.: Behaviour of Fasteners and plates with Holes. ASCE-Journal of the Struc. Division, December 1965, S. 265 - 286
- [19] EUROCODE 3 (Stahlbau) Deutsche Fassung (Druckvorlage), Aachen, 1983.

BILD 1 Aussteifung eines Fabrikationsgebäudes Rahmentragwerk und Verbände

BILD 2 SYSTEMVARIANTEN EINES RAHMENTRAGWERKES MIT VERBÄNDEN

BILD 3 AUSSTEIFUNG EINES FABRIKATIONSGEBÄUDES, VARIABLE LASTSTEIGERUNGSFAKTOREN

Einfacher Steg-Winkel

Kopfplatte

Stirnplatte ohne Steifen

T – Stücke

Doppel-Steg - Winkel

Kopf - und Fußkonsole

Stirnplatte mit Steifen

Kopfplatte mit Fußwinkel

BILD 4 STÜTZEN- UNTERZUG- VERBINDUNGEN

BILD 7 RÄUMLICHES GESAMTSYSTEM EINER ZWEISCHIFFIGEN HALLE

 $\gamma = 1,47$

- b) Verformungen der Giebelwand A mit Verbandsanschlußnachgiebugkeit
 - $\gamma = 1,31$ (geänderter Maßstab)

Verschiebung unter 1.0 - facher Belastung (Belastung siehe [8]) Überhöht

BILD 12 AUSSTEIFUNGSFELD EINER STAHLHALLE

Verbandsausführungen

BILD 17 VERSUCHSKURVEN AUS [1]

BILD 18 VERSUCHSKURVEN AUS [1]

BILD 19 VERSUCHSKURVEN AUS [1]

BILD 20 SCHRAUBENIDEALISIERUNG DURCH DREI FEDERN

BILD 22 FE- STRUKTUR ZUR NACHRECHNUNG DER ZUGVERSUCHE A

BILD 24 NACHRECHNUNG DER VERSUCHSKURVEN AUS BILD 17

Bild 25 Nachrechnung der Versuchskurven aus Bild 18

Anlage 3 zu

"Einfluß der Nachgiebigkeiten von Stößen und Anschlüssen auf die Standsicherheit stabilitätsgefährdeter Stahlbauten"

"Untersuchung des Einflusses der Verbindungsmittelnachgiebigkeit auf die Steifigkeit von Stirnplattenanschlüssen unter räumlicher Belastung".

Teilergebnis aus Diplomarbeit Nr. 167 des Lehrstuhls für Stahlbau der TU-München.

Techmer, O.

Finit-Element-Aufteilung für Nachrechnung

Anlage 3 Bild 1: Versuchsanordnung und Finit-Element-System zur Bestimmung der Federsteifigkeit $c_{\phi}(M_v, M_z)$

 $c_{\varphi}(M_y = 0.85 \cdot 150; M_z = 0.85 \cdot 9) = 127.50 / [2 \cdot arctg (0.45 / 1000)]$ $c_{\varphi}(M_y = 127.50; M_z = 7.65) = 8.12 \cdot 10^6 kN \cdot m/rad$

Anlage 3 Bild 2: Rechnerische Verformungen der Stirnplatte und errechnete Federsteifigkeiten $c_{\varphi}(M_v, M_z)$

Anlage 4: Zur Nachgiebigkeit der Stöße und Anschlüsse von Verbundkonstruktionen im Hochbau

Sachbearbeiter: Dipl.-Ing. Florian Neuner

In jüngster Zeit wurden umfangreiche Untersuchungen über den Einfluß der Nachgiebigkeit der Stöße und Anschlüsse von Verbundkonstruktionen durchgeführt. Hervorzuheben ist die Arbeit von Zandonini [1] die einen umfassenden Überblick über den derzeitigen Stand der Forschung bietet.

Die Bilder 1 und 2 zeigen Stöße von Verbundkonstruktionen die als nahezu starr, nahezu gelenkig (Bild 1) und als nachgiebig (Bild 2) eingestuft werden können. Die Übertragung eines negativen Stützmomentes durch die Verbindung nach Bild 2 erfolgt im wesentlichen durch ein Kräftepaar, bestehend aus der Zugkraft in der um die Stütze herumgeführten Bewehrung der Betonplatte und der Druckkraft des Untergurtes die über den Steg der Stütze übergeleitet wird.

Bei außenliegenden Stützen (Bild 3) besteht die Möglichkeit, mittels einer leicht auskragenden Betonkonstruktion die Bewehrung zu verankern.

Bild 1: "Starrer" und "gelenkiger" Anschluß einer Verbunddecke an eine Stütze.

Bild 2: Nachgiebiger Anschluß einer Verbunddecke an eine Stütze.

Ein Vergleich des gelenkigen Anschlusses aus Bild 1 mit dem Anschluß in Bild 2 zeigt, daß mit einem relativ geringen konstruktiven Mehraufwand eine erhebliche Einspannwirkung erzielt wird, die sowohl die Gebrauchstauglichkeit als auch die Tragsicherheit der gesamten Konstruktion erhöht. Bei rahmenartigen Bauteilen kann deshalb unter Umständen auf zusätzliche Aussteifungen verzichtet werden.

Bild 3: Nachgiebiger Anschluß an eine Außenstütze

Zur rechnerischen Ermittlung des Tragverhaltens sind Kenntnisse über die Momenten-Verdrehungsbeziehung (kurz: M- ϕ Beziehung) der Anschlüsse erforderlich. Nach [1] wird die M- ϕ Beziehung im wesentlichen durch folgende Faktoren bestimmt:

1.) Einflüsse aus der Betonplatte:

- Mitwirkende Breite der Platte
- Verteilung, Grad und Streckgrenze der Bewehrung
- Art des Verbundes (starr oder nachgiebig)
- Anschluß der Betonplatte an die Stütze bei außenliegenden Stützen
- Art der Platte (durchgehend massiv oder mit Profilblechen als Schal- und Bewehrungselemente)
- Verhältnis der Steifigkeiten zwischen Betonplatte und Stahlbauteilen
- Zugfestigkeit des Betons
- 2.) Einflüsse aus den Verbindungsmitteln:
- Art der Verbindungsmittel
- Größe und Festigkeit der Verbindungsmittel
- Anordnung der Verbindungsmittel, insbesonders in der Zugzone
- Schlupf

3.) Einflüsse aus dem Stahlträger und der Stütze:

- Örtliches Tragverhalten der Stütze im Bereich der Lasteinleitung
- Schubverformungen des Trägersteges
- Ausbildung der Stütze (Stahl oder Verbund)
- Vertikalbeanspruchung der Stütze
- Örtliche Plastizierungen des Trägers im Bereich des Druckflansches und des angrenzenden Steges.
- 4.) Einflüsse auf die Rotationskapazität der Verbindung:
- Plastizierfähigkeit der Bewehrung
- Örtliches Stabilitätsversagen des Stützensteges
- Örtliches Stabilitätsversagen des Trägers im Bereich des Druckflansches und des angrenzenden Steges.

Eine genauere Bestimmung der M- ϕ Beziehung gelingt im allgemeinen nur mit Hilfe umfangreicher numerischer oder experimenteller Untersuchungen.

Die Schwierigkeit bei der numerischen Untersuchung liegt in der Erfassung des komplexen Tragverhaltens und Zusammenspiels der einzelnen Bauteile. So sind, trotz des hohen Kostenaufwands und der nur bedingt möglichen Verallgemeinerung einzelner Versuchsergebnisse, Untersuchungen im Labor die zur Zeit zuverlässigste und verbreiteste Methode zur Beschreibung der M- ϕ Beziehung.

Als Zusammenfassung internationaler Versuchsergebnisse wird von Zandonini der in Bild 4 dargestellte qualitative Verlauf der M- ϕ Beziehung angegeben. Dieser kann im wesentlichen in drei Abschnitte eingeteilt werden. Der erste, elastische Bereich ist gekennzeichnet durch zwei verschiedene Steifigkeiten (K₁ und K₁) die sich aus dem ungerissenen oder gerissen Zustand der Betonplatte ergeben. Der zweite, inelastische Abschnitt stellt sich bei ca. 75-80 % des plastischen Grenzmomentes ein. Die Abflachung der Arbeitslinie wird durch das Erreichen der Streckgrenze der Bewehrung, dem Beginn von Plastizierungen in Teilen des Stahlträgers oder der Verbindungsmittel, Schlupf in den Kontaktflächen oder durch ein Schubversagen des Stützensteges hervorgerufen. Wenig ausgeprägt geht der zweite Abschnitt in einen dritten Abschnitt über, der durch weitergehende Plastizierungen bestimmt wird.

Bild 5 zeigt exemplarisch die von Benussi et al. [2] bestimmten Arbeitslinien eines Knotenpunktes. Der Träger, ein IPE 300, ist mit einer 1.0 m breiten und 0.12 m dicken Stahlbetonplatte über Kopfbolzendübel gekoppelt. Der Bewehrungsgrad beträgt 0,71 % in den Versuchen SJA-10 / SJB-10 und 1,21 % in den Versuchen SJA-14 / SJB-14. Deutlich ist zu erkennen, daß sowohl der Bewehrungsgrad als auch die Art der Ausbildung des Stahlanschlußes erheblichen Einfluß auf den Verlauf der M- ϕ Beziehung ausüben.

<u>Bild 4:</u> Qualitativer Verlauf der M- ϕ Beziehung

Bild 5: Versuchsergebnisse von Benussi et. al. (1986).

Die bisher, meist im angelsächsischen Raum, durchgeführten Untersuchungen von nachgiebigen Verbundstößen dienten in erster Linie dazu Erkenntnisse über das prinzipielle Tragverhalten derartiger Konstruktionen zu gewinnen. Sie reichen nicht aus um Bemessungsregeln für Stöße und Rahmen angeben zu können. In der Deutschen und Europäischen Normung [3,4] wird deshalb nur die Anwendung starrer oder gelenkiger Verbindungen ausführlich geregelt, während die Ausführung halbsteifer Verbindungen ausdrücklich erlaubt, aber nicht näher erläutert ist (EC 4: Abschnitt 4.1.2.3, DIN 18800 T2: 5.3.2).

Zur Steigerung der Wettbewerbsfähigkeit von Stahlverbundkonstruktionen wäre es dringend erforderlich, durch systematische Untersuchungen Bemessungskonzepte für nachgiebige Stöße zu schaffen und in den Normen zu verankern.

Literatur:

- [1] Narayanan, R.; Structural Connections. Stability and Strength. Elsevier Applied Science. London 1989. Kapitel 3: Semi-Rigid Composite Joints, von R. Zandonini.
- [2] Benussi, F.; Puhali, R.; Zandonini, R. Exprimental analysis of semirigid connections in composite frames. Proc. Int. Conf. on Steel Structures: Recent Research Advances and Their Applications to Design, Budva, Yugoslavia, September 1986.
- [3] DIN 18800 T. 2, Normvorlage August 1989.
- [4] Eurocode 4, Entwurf Oktober 1984, Abschnitt 4.1.2.3.

Anlage 5 zu "Einfluß der Nachgiebigkeiten von Stößen und Anschlüssen auf die Standsicherheit stabilitätsgefährdeter Stahlbauten"

Kurzfassung einiger Berechnungsergebnisse der Diplomarbeit von A. FELKEL (Nr. 171 des Lehrstuhls für Stahlbau der TU-München)

Anhand eines ausgeführten Beispieles (s. Bild 1), allerdings mit für die Diplomarbeit erhöhten Verkehrslasten, sollten die Auswirkungen der Bemessungsnormen DIN 18800 (incl. DIN 4114) Ausg. 3.81, E DIN 18800, Ausg. 3.88 und EUROCODE 3, Stand 7.88 gegenübergestellt werden. Hierbei wurden auch die Nachgiebigkeiten der bündigen Stirnplattenanschlüsse bei der Berechnung durch Drehfedern berücksichtigt.

Das angenommene statische System und die $\gamma = 1,0$ -fachen Lasten sind auf Bild 1 angegeben. Die Stäbe wurden jeweils zusätzlich in rund 75 cm lange Stababschnitte unterteilt. Bei den plastischen Berechnungen wurde die Länge der Abschnitte auf rund 35 cm verkleinert.

Obwohl ein Nachweis nach Theorie I. Ordnung zulässig wäre, wurde zur besseren Vergleichsmöglichkeit generell die Berechnung nach Theorie II. Ordnung durchgeführt.

Folgende Lastfälle wurden untersucht:

a. Nach DIN 18800, 3.81 bzw. DIN 4114, T.2, Ri. 10.2:

\mathbf{LF}	"H,W"	:	1,71 (G+P+W+S/2)	G	Ê	1,0-fache	Eigenlast
LF	"H,s"	:	1,71.(G+P+W/2+S)	Ρ	Â	11	Verkehrs- last
LF	"HZ"	:	1,50 (G+P+W+S)	W	Ê	11	Windlast
				S	ê	88	Schneelast

b. Nach E DIN 18800, 3.88 und EUROCODE 3, 7.88:

LF "alle" : 1,35 · (G+P+S+W) LF "g+p" : 1,35 · G+1,5 · P LF "g+w" : 1,35 · G+1,5 · (W+S/2) LF "g+s" : 1,35 · G+1,5 · (S+W/2) Blatt - 2 - Anlage 5 zu "Einfluß der Nachgiebigkeiten von Stößen und Anschlüssen auf die Standsicherheit stabilitätsgefährdeter Stahlbauten"

Als Schiefstellungen der Stützen wurden angesetzt:

Beim Nachweis nach DIN 18800, 3.81 bzw. DIN 4114, T.2, Ri. 10.2 bzw. DASt-Ri 008

 ψ = 1/300 in beiden Stockwerken (keine Angabe in Ri. 10.2)

Beim Nachweis nach E DIN 18800, 3.88:

Unteres Stockwerk $\psi_0 = 1/400$

Oberes Stockwerk $\psi_0 = 1/490$

Beim Nachweis nach EUROCODE 3, 7.88:

 ψ = 1/276 in beiden Stockwerken

Vorkrümmungen der Stäbe waren nicht anzusetzen.

Auf Bild 3 sind die errechneten, möglichen Lasterhöhungsfaktoren f für die Grenzbeanspruchung getrennt nach Vorschrift und Nachweisverfahren angegeben.

Man erkennt, daß die Berücksichtigung der Nachgiebigkeit der Stirnplattenanschlüsse zu einer Vergrößerung der Faktoren f, d.h. zu einer Erhöhung der rechnerischen Tragfähigkeit führt.

Die unterschiedlichen f-Faktoren nach E DIN 18800 und Eurocode 3 sind vor allem auf die von einander abweichenden anzusetzenden Streckgrenzen (240/235 N/mm²) zurückzuführen.

Nachdem sich mit den nachgiebigen Anschlüssen auch die Verformungen vergrößern, sind auf Bild 4 für den Fall der nachgiebigen Anschlüsse die entstehenden maximalen Verformungen bei den jeweiligen Vergrößerungsfaktoren, sowie der Laststeigerungsfaktoren bei Erreichen der zulässigen Grenzverformung, also für den Gebrauchstauglichkeitsnachweis angegeben.

Man erkennt, daß bei dem Verfahren "plastisch-plastisch", (hier nach Fließzonentheorie gerechnet) bei allen drei Vorschriften der Gebrauchstauglichkeitsnachweis maßgebend wird, wenn man als Grenzverformung h/500 ansetzt.

Alle Rechnungen wurden mit der an der TU-München installierten Programmkette SET durchgeführt.

Anlage zu DA 171

Anlage 5 Bild 1: Tragsystem des Erweiterungsbaues

Lehrstuhl für Stahlbau der Techn. Universität München

The Effect of Semi-Rigid Connections on the Ultimate Limit State of Stability-Influenced Steel Structures

Final Report of Research - Work Part 1 - Abstract

Most of today - computation in statics assumes that the connections of a steel-structure can be assessed as pinned or rigid. Both assumptions are rarely approved by real structures. So nominal rigid connections in fact yield and lead to an increase of deformations, which finally may produce insufficient stability and serviceability. For splice joints of bending girders with shear-bearing-type connections rotational stiffnesses were determined by experiment. Five splice joints of IPE 400 and seven of IPE 200 profiles were tested. Already at service load the girders had twice the middle-deflection as analized for an unspliced comparison-girder. In order to get translatorial spring stiffnesses of shear-bearing-type connections too and to apply the results of the tested splice joints to other geometric conditions, 16 one-bolt-tension-tests with normal force loading were carried out.

By connecting three springs in series and by idealizing the connection with finite elements it was possible to simulate the rotational stiffnesses of the bending girders sufficiently and to include other geometric conditions too.

The determined spring stiffnesses were used as input data for parametric studies on practical steel buildings with yielding connections. Thus the rotational and translatorial spring stiffnesses in a multi-storey frame (plane analysis) was varied and the effect of the varying position of the splices in structures in а was tested а two-hinged frame (plane analysis). At a two-nave-hall-frame with bending stressed frame splices and normal load stressed bracing connections, as well as at a bracing-field with numerous construction parameters of the connections, three-dimensional analysis' were carried out. The results showed that the stiffness of the

Page - 2 -

construction was reduced up to 50 % and that the decisive deformations may double. However the maximum capacity loads still were not reduced so much.

The example of an existing building whose height was increased by two further storeys, demonstrated that the consideration of semi-rigid-connections produced an increasing effect on the maximum capacity load inspite of considering the serviceability regulations of Eurocode 3.

The consideration of yielding connections therefore is not only an improvement of realistic assumptions in statics but an economic advantage as well.

Further experimental determinations of stress-dependant spring stiffnesses and efforts in determining the rotational capacities of steel-composite joints too, seem to be desirable.

Lehrstuhl für Stahlbau der Techn. Universität München

Juillet 1990

L'influence des flexibilités des assemblages sur la stabilité des charpentes Rapport final du travail de recherche - Rassemblement

1' Les plusieures calculations statiques supposent aue assemblages sont rigides ou articulés. Souvent ces hypothèses ne sont pas realisées par la construction. Ainsi assemblages nominels rigides ont des flexibilités qui augmentent les déformations stabilité et et influencent la la utilité pratique.

Pour rechercher la rigidité reelle des assemblages avec couvre joint, douze poutres fléchies (IPE 400 et IPE 200) étaient testés. Déja à charge de service les poutres indiquaient la fléche double d'une poutre sans assemblages avec couvre joint. Aussi 16 un-boulon-essai-de-traction étaient exécutés.

Les rigidités des ressorts étaient employées dans plusieures calculations des charpentes. On voit que la rigidité de la construction peut diminuer à 50 %. Les deformations decisives se doublent. Mais les capacités de charge ne sont diminuées correspondant.

Par exemple on pouvait montrer à une charpente pour surélévation realisée, que la consideration des assemblages flexibles fait augmonter la capacité portante calculée. Les réglements de Eurocode 3 étaient pris en considération.