Bau<u>forschung</u>

Untersuchung der Auswirkung der Vereisung auf die Tragsicherheit abgespannter Maste

T 2285

¹ Fraunhofer IRB Verlag

T 2285

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

Untersuchung der Auswirkung der Vereisung auf die Tragsicherheit abgespannter Maste

Prof. Dr.-Ing. U. Peil, Dipl.-Ing. H. Nölle

Lehrstuhl für Stahl- und Leichtmetallbau Universität Karlsruhe Kaiserstr. 12

November 1990

Auftraggeber

Institut für Bautechnik Reichpietschufer 72 - 76 1000 Berlin 30

,

Inhaltsverzeichnis

1	Einleitung	1
2	Rechenverfahren	5
3	Lösungsweg 3.1 Allgemeines 3.2 Zur Parameterauswahl 3.2.1 Mastgeometrie 3.2.1.1 Zahl der Abspannungen 3.2.1.2 Abspannführung 3.2.1.3 Mastschaft 3.2.2 Seilabspannung 3.2.2.1 Allgemeines	6 6 6 7 8 10
	3.2.2.2 Vorspanngrad 3.2.2.3 Abspannseile	10 11 12
	3.2.2.4 Kurzbezeichnung der Geometrie 3.2.3 Belastung 3.2.3.1 Staudruckgesetz, Windlast	12 14 14
	 3.2.3.2 Windrichtungen	15 16 16 17 20
4	Vorgehensweise bei der Parameterstudie	23
5	Ergebnisse	25
6	Auswirkung auf die Normungsarbeit	32
7	Zusammenfassung	33
8	Literaturzusammenstellung	34

1 Einleitung

In nahezu jedem Winter werden Schäden und Bauwerkseinstürze gemeldet, die auf die Auswirkung von Vereisung zurückgeführt werden können /13/. Bekannte Beispiele hierfür sind Freileitungsmasten, die durch Torsionsbeanspruchung infolge Bruch der vereisten Leiter versagen. Vereisung in Zusammenwirkung mit Windbelastung ist für eine Reihe Einstürzen von abgespannten Masten im Ausland (England, Finnland) verantwortlich /1,2/.

Bei der Berechnung abgespannter Maste wird nach der zur Zeit gültigen Norm DIN 4131 (Stählerne Antennentragwerke) und auch nach dem Entwurf der DIN 4131 (8.89) der Vereisungslastfall in der Regel durch einen Eisansatz gleicher Dicke an jedem Bauteil berücksichtigt. Hierdurch wird das zusätzliche Gewicht und die Vergrößerung des Windwiderstandes näherungsweise erfaßt. Wegen der geringen Wahrscheinlichkeit des Zusammentreffens von voller Vereisung und vollem Wind darf nach den geltenden Normen der Staudruck auf 75% des vollen Wertes reduziert werden.

Es zeigt sich, daβ bei den heute überwiegend gebauten Gittermasten der Eislastfall mit reduzierter Windbelastung in der Regel der Bemessungsfall ist, wenn Vereisung zu berücksichtigen ist.

Der nach den Normen zugrundegelegte Eisansatz ist als Verkehrslast einzustufen, d.h. der Eisansatz müßte so angesetzt werden, daß er er für das untersuchte Bauteil ungünstig wirkt. Dies bedeutet für die Berechnungspraxis jedoch einen unzumutbaren Arbeitsaufwand, so daß man sich damit begnügt, gleichmäßige Vereisung an jedem Bauteil des Mastschaftes und an den Pardunen anzusetzen. Dies entspricht jedoch nicht der Wirklichkeit. Die durch den Wind transportierten unterkühlten Regentropfen treffen die dem Wind zugewandten (luvseitigen) Seile etwa senkrecht zur Sehne, an diesen Seilen entstehen sehr starke Eiswalzen. Die dem Wind abgewandten (leeseitigen) Seile liegen etwa parallel zur Fallrichtung der Regentropfen und vereisen deshalb wesentlich geringer. Der Mastschaft vereist ebenfalls stärker auf der dem Wind zugewandten Seite. Durch die ungleiche Vereisung entsteht starkes Ungleichgewicht zwischen den Seilkräften einer Abspannebene, der Mastschaft wird zusätzlich auf Biegung beansprucht /3/.

Die entstehenden Ungleichgewichtskräfte am Mastschaft werden nun durch den gleichzeitig wirkenden Staudruck des Windes erheblich verstärkt. Die luvseitigen Seile mit Eiswalzen und demzufolge großen Windangriffsflächen werden zusätzlich durch den Staudruck belastet, die leeseitigen Seile werden durch den Wind angehoben, sie werden entlastet (Bild 1). Dies kann bei bestimmten Parameterfällen dazu führen, daß sich der Abspannpunkt gegen den Wind verschiebt.

Bild 1 Unsymmetrische Vereisung der Pardunen

Da die luvseitigen Seile bei Windrichtung "in die Gabel" den Mastschaft quer zum Wind stützen, wird die Steifigkeit dieser Querstützung durch den entstehenden größeren Durchhang geringer, der Mast kann durch Knicken in Querrichtung versagen.

Eine genauere Untersuchung der Auswirkung der vorab beschriebenen Effekte auf das Tragverhalten abgespannter Masten ist aus Gründen der Tragwerkssicherheit geboten, zumal die Auftretenswahrscheinlichkeit von stärkerer Vereisung größer ist als die der maximalen Windbelastung.

Parallel zu den bisher diskutierten Auswirkungen der als statisch wirkend angenommenen Windlast sind auch die dynamischen Auswirkungen erheblich. Durch die veränderte Masse der einzelnen Kabel und die daraus folgenden Änderungen der dynamischen Eigenschaften ergeben sich erhebliche Veränderungen der mechanischen Übertragungsfunktion des Bauwerkes mit Auswirkung auf das Antwortverhalten des Mastes unter bölgem Wind oder Erregung durch Kármánnsche Wirbel.

Darüber hinaus können die Seile durch den Eisansatz aerodynamisch instabil werden, es kommt zu selbsterregten (Galloping) Schwingungen mit großen Amplituden /5/. Durch die veränderte Masse von Mast und Seilen sind auch Verschiebungen der Eigenfrequenzen derart möglich, daß es zu kopfpunkterregten Parameterschwingungen der Seile kommen kann. Fragen dieser Art sind nicht Gegenstand dieses Forschungsvorhabens.

Bei der Weiterentwicklung der DIN 4131 mit Zielrichtung auf die "Grundlagen für die Festlegung von Sicherheitsanforderungen für bauliche Anlagen" ergeben sich für die statische Berechnung unangemessene Forderungen, wenn man nicht durch Parameterstudien Kombinationen von Vereisungszuständen mit geringerer resultierender Bauwerksbeanspruchung von vornherein ausschließen kann.

Mit Hilfe ausführlicher Parameterstudien ist das Verhalten von abgespannten Masten unter symmetrischer und unsymmetrischer Vereisung untersucht worden. Hierbei sind über 6000 Parameterfälle behandelt worden. Dabei wurden unterschiedliche Vereisungsstärken vorgegeben, die tatsächlich zu erwartenden Eisdicken für Bauwerke abzuschätzen, ist nicht Gegenstand dieses Vorhabens.

Es ergibt sich eine gute Übersicht über die Beanspruchung von abgespannten Masten unter Eis- und Windlast, die Ergebnisse sind in Kapitel 5 und 6 zusammengefaβt, danach lassen sich Empfehlungen für die Berücksichtigung unsymmetrischer Eislasten geben.

Es zeigte sich, daß für die in der Bundesrepublik Deutschland in der Regel zu erwartenden Vereisungsstärken (bls zu 6 cm) bei der Berechnung und Bemessung von Masten auf eine Berücksichtigung von Lastfällen mit unsymmetrischer Vereisung verzichtet werden kann. Für Bauwerke, bei denen mit höheren Vereisungsstärken gerechnet werden muß, kann es jedoch zu erheblichen Vergrößerungen der Beanspruchung besonders des Mastschaftes kommen, die Parameterstudie hier, in welcher Größenordnung sich die zeigt Spannungserhöhungen bewegen und welche Lastfallkombinationen ihnen zugrunde liegen.

2 Rechenverfahren

Der statischen Berechnung der Maste liegt für den Mastschaft die Elastizitätstheorie II. Ordnung zugrunde. Die Seile gehorchen der nichtlinearen Seilgleichung und damit ebenfalls einer Theorie II. Ordnung. Das verwendete Rechenverfahren ist die Deformationsmethode in der Aufbereitung des Verfahrens der Steifigkeitsmatrizen. Die Grundlagen sind ausführlich in /7,8,9,10/ geschildert und werden hier nicht weiter erläutert.

Bei der Berechnung werden dem Vorspannzustand die einfachen Seilgewichte zugeordnet. Alle Lasten werden dagegen mit dem Sicherheitsbeiwert γ multipliziert, auch das Gewicht der Seile. So würde ein Mast ohne Belastung aus Wind und Eis beim Durchrechnen andere Seilkräfte als im Vorspannzustand haben, da das Eigengewicht in diesem Lastfall auf den γ - fachen Wert erhöht wird.

Es wurde die Möglichkeit vorgesehen, durch iteratives Vorgehen die Seilquerschnittsflächen oder die Seilvorspannungen so zu verändern, daß der Mastschaft unter Belastung an den Abspannpunkten beliebige vorgebbare Verformungen annimmt.

Für die bei der umfangreichen Parameterstudie große Anzahl der durchzuführenden Rechenläufe wurde der Rechenablauf weitgehend automatisiert. Bei der iterativen Berechnung der Seilflächen und bei der Berechnung der Zustandsgrößen der einzelnen Lastfälle wurde die Iteration gedämpft, da sonst in einigen Fällen keine Konvergenz erzielt worden wäre.

Das Rechenprogramm wurde um einige Bausteine erweitert, die während des Rechenablaufs die für die Auswertung benötigten signifikanten Beanspruchungswerte in gesonderte Dateien ausgeben.

3 Lösungsweg

3.1 Allgemeines

Zur Lösung der gestellten Aufgabe werden umfangreiche Parameterstudien durchgeführt. Hierbei wird versucht, den Parameterraum so weit aufzuspannen, daß alle üblichen Maste innerhalb der untersuchten Parameterschar liegen. Hierbei ergeben sich zwangsläufig Parameterkombinationen, die nicht baupraktisch sinnvoll sind. Dies zeigt sich in der Regel daran, daß die entsprechenden Maste schon beim Lastfall Wind (ohne Eis) durch Instabilitäten versagen. Diese Fälle wurden dann nicht weiter untersucht.

3.2 Zur Parameterauswahl3.2.1 Mastgeometrie3.2.1.1 Zahl der Abspannungen

Die in der Praxis vorkommende Zahl der Abspannungen bewegt sich üblicherweise zwischen eins und sechs, wobei Maste mit sechs Abspannungen bereits seltene, exponierte Bauwerke darstellen.

Maste mit lediglich einer Abspannung sind für die hier zu untersuchenden Fälle von untergeordnetem Interesse, die Auswirkungen einer Parameteränderung sind verhältnismäßig einfach abzuschätzen, bzw. aus den Ergebnissen eines zweifach abgespannten Mastes ableitbar.

Aus diesem Grunde wurde folgende Anzahl von Abspannungen den Untersuchungen zugrunde gelegt:

- 2fach
- 4fach abgespannte Maste
- 6fach

Die Abspannführung wurde so festgelegt, daß stets zwei Seile an einem gemeinsamen Fundament angeknüpft sind. (Bild 2)

Bild 2 Abspannführung der untersuchten Maste

Eine Abspannführung mit parallelen Seilen und dann notwendigen Einzelfundamenten wurde nicht zugrunde gelegt, da eine solche Führung wegen der Vielzahl der Fundamente und der oft enstehenden größeren Mastnormalkräfte in der Regel zu unwirtschaftlichen Lösungen führt /18/.

Da der Winkel, in dem die Abspannseile zum Mastschaft hin angeordnet werden, die horizontale Stützung des Abspannpunktes wesentlich beeinflußt, werden drei unterschiedliche Winkel der Abspannführungen vorgesehen. Es wird unterschieden zwischen einer

- flachen Führung
- mittleren Führung
- steilen Führung.

Die mittlere Führung entspricht der in Bild 2 dargestellten. Die oberen Seile an einem gemeinsamen Fundament schließen hierbei mit der Horizontalen einen Winkel von $\alpha = 55^{\circ}$ (tan $\alpha = 1.4$) ein. Die flache Führung hat einen doppelt so großen Fundamentabstand (tan $\alpha = 0.7$) und ist damit als baupraktischer Grenzfall anzusehen. Die steile Führung hat Fundamentabstände von 2/3 der mittleren Führung (tan $\alpha = 2.1$)

3.2.1.3 Mastschaft

Der Mastschaft wird über die ganz Höhe mit konstantem Querschnitt und konstanter Windangriffsfläche ausgebildet. Es gilt also

> - $E \cdot I = \text{const}$ - $E \cdot F = \text{const}$ über die Höhe - $c \cdot F = \text{const}$

Diese Festlegung ist zweckmäßig, weil hierdurch die Zahl der zu untersuchenden Parameter stark reduziert werden kann. Eine zusätzliche Untersuchung verschiedener Querschnittsabstufungen hätte die (ohnehin schon sehr große) Parameterzahl praktisch unüberschaubar werden lassen. Die Festlegung ist aber im Regelfall auch zulässig, da später im Rahmen der Auswertung nicht absolute Spannungen, sondern die prozentualen Spannungsveränderungen in einem Querschnitt verglichen werden. Die Änderungen weichen bei einem Schaft mit konstantem und nichtkonstantem Querschnitt nur gering voneinander ab.

Der Schaftquerschnitt wird quadratisch mit über die Höhe unveränderlichen Abmessungen vorgesehen.

Die Abstände der Abspannpunkte untereinander sind mit $\alpha = 80$ m konstant festgelegt. An der Mastspitze wird ein Kragarm von der Länge $l_x = 0, 3 \cdot \alpha = 24$ m vorgesehen.

Die Querschnittswerte wurden zunächst dreifach verändert. Es wurden baupraktisch übliche Trägheitsmomente für einen

- weichen Mastschaft
- mittelsteifen Mastschaft
- steifen Mastschaft

gewählt. Im Verlauf der Berechnung der einzelnen Parameterfälle zeigte sich, daβ bei 4- und 6-fach abgespannten Masten und stärkerer Vereisung die gewählten Steifigkeiten nicht ausreichten, daraufhin wurden noch drei weitere, größere Mastschaftsteifigkeiten untersucht, sie werden im folgenden vereinfacht mit X, Y und Z bezeichnet.

Die Windwiderstandsbeiwerte $c_f \cdot A$ sind dem jeweiligen Schafttyp zugeordnet, sie werden nicht variiert, da eine baupraktische, logische Zuordnung zwischen Maststeifigkeit und $c_f \cdot A$ - Wert besteht. Die zugrunde gelegten Schaftwerte wurden in Anlehnung an bestehende Bauwerke bestimmt und sind Tabelle 1 zu entnehmen.

	<i>I</i> [m ⁴]	F [m²]	c,·A [m²/m]	<i>g</i> [kN/m]
weich	0,040	0,080	1,5	12,8
mittel	0,150	0,100	4,5	16,0
steif	0,440	0,122	8,0	19,5
x	0,750	0,165	11,0	26,4
Y	1,270	0,190	13,2	30,0
Z	2,160	0,240	15,4	38,4

Tabelle 1Qerschnittswerte

3.2.2 Seilabspannung

3.2.2.1 Allgemeines

Um einen Vergleich der Ergebnisse der unterschiedlich abgespannten Systeme zu ermöglichen, ist es erforderlich, daβ zunächst gleiche Voraussetzungen für alle Systeme zugrunde gelegt werden. Dies ist notwendig, weil durch die Wahl der Seilquerschnittsflächen oder der Seilvorspannung dem System nahezu beliebige Beanspruchungszustände eingeprägt werden können.

Im Rahmen dieses Vorhabens wurde - wie oft in der Praxis - so vorgegangen, daß die Seilquerschnittflächen derart festgelegt werden, daß bei gleichbleibendem Vorspanngrad (vergl. Kap. 3.2.2.2) alle Abspannpunkte unter maximaler Windbelastung (ohne Eis) auf einer um den Fußpunkt gedrehten Geraden mit dem Winkel ψ = 0.01 liegen (Bild 3). Der Biegemomentenverlauf des Schaftes entspricht dann dem eines Durchlaufträgers auf starren Stützen.

Bild 3 Mast unter voller Windlast

Das Tragverhalten abgespannter Maste hängt in hohem Maße von der Höhe der Vorspannung der Abspannseile ab, da durch die Vorspannung der Durchhang der Pardunen in Abhängigkeit vom Seilgewicht verändert wird. Die Größe des Seildurchhanges bestimmt in erster Linie die Steifigkeit der horizontalen Stützung des jeweiligen Abspannpunktes, da unter Belastung zunächst der Durchhang aus dem Seil gezogen wird.

Eine sinnvolle Maßgröße für den Vorspanngrad stellt das Verhältnis des senkrecht zur Seilsehne gemessenen Seildurchhangs f zur Seilsehnenlänge s dar. Im Rahmen der vorliegenden Parameterstudie wurden drei unterschiedliche Vorspanngrade ausgewählt:

	hohe	Vorspannung	f/s = 1/120
	mittlere	Vorspannung	f/s = 1/80
singing.	niedrige	Vorspannung	f/s = 1/40

Der Wert für die niedrige Vorspannung stellt einen baupraktischen Grenzfall dar. Da aber gerade für geringe Vorspannung die nichtlinearen Effekte groß sind, wurde, um Einflüsse dieser Art einzufangen, bewußt ein sehr niedriger Wert gewählt.

Die zugehörige Vorspannkraft S_o ergibt sich damit zu

$$S_0 = \frac{g \cdot \cos \alpha \cdot s^2}{8 \cdot f} = \frac{g \cdot \alpha}{8} \cdot \frac{s}{f}$$

mit

g =Seilgewicht (kN/m)

 α = radialer Abstand des unteren vom oberen Seilanknüpfungspunkt

s = Seilsehnenlänge

f = Seildurchhang senkrecht zur Seilsehne.

Das Problem ist statisch bestimmt, da die Vorspannkraft S_0 kraftgesteuert am Bauwerk eingestellt wird.

3.2.2.3 Abspannselle

Die Flächen der Abspannseile bestimmen nach dem Hookschen Gesetz ebenfalls die Steifigkeit des Einzelseiles und damit auch die horizontale Steifigkeit der Abspannpunkte. Im Rahmen dieses Forschungsvorhabens wurde keine unabhängige Veränderung der Querschnittsflächen vorgenommen, diese wurde vielmehr so bestimmt, daß die Abspannpunkte unter voller Windlast unter Einhaltung des gewählten Vorspanngrades auf einer geraden Linie liegen (vergl. 3.2.2.1), hierbei wurde eine Abweichung von 2% zugelassen. Die Veränderung der Seilgewichte und -durchmesser und damit auch der Windangriffsflächen der Seile aufgrund der Veränderung der Seilflächen wurden bei dem hier notwendigen iterativem Vorgehen berücksichtigt.

Bei der Festlegung wurde

- Lastfall "Wind in die Gabel"
- Vorspannkraft mit $\gamma = 1,0$ im Mastschaft abgesetzt, vorausgesetzt.

Für jeden in Anlage 1 angegebenen, globalen Mastgeometriefall wurde die Bestimmung der Seilflächen für die drei Vorspanngrade hoch, mittel und niedrig wie beschrieben vorgenommen.

Die Seilgewichte und Seildurchmesser entsprechen den ermittelten Seilflächen, dies führt zu Seilabmessungen, die z.T. nicht im Handel erworben werden können. Die Seilwerte sind in den Anlagen 2 bis 29 dokumentiert. Da für für alle drei Seile einer Abspannebene die gleichen Seile angesetzt wurden, entspricht jede Zeile dem Seiltyp der betreffenden Abspannung. Die Abspannebenen sind von unten nach oben durchnumeriert.

3.2.2.4 Kurzbezeichnung der Geometrie

Wie vorab beschrieben, werden bezüglich der Geometrie 4 Parameter variiert. Für die Berechnung wurden Datensätze für jeden Geometrietyp mit einer Bezeichnung erzeugt, aus der die jeweilige Geometrie ersichtlich ist.

Der erste Buchstabe gibt die Mastschaftsteifigkeit an:

- W für den weichen
- M für den mittelsteifen Mastschaft
- S für den steifen
- X
- Y für die drei besonders steifen Ausführungen (Z: stärkster Schaft)
- Z

Der zweite Buchstabe steht für die Vorspannung:

6 279	Η	für	hohe Voi	spannung	(f/s		120)
cmmo-	М	für	mittlere	Vorspannung	(f/s	1000- 4000	80)
480y	Ν	für	niedrige	Vorspannung	(f / s		40)

An dritter Stelle steht eine Ziffer, sie gibt die Anzahl der Abspannebenen (2,4 oder 6) an.

Der letzte Buchstabe beschreibt die Abspannführung:

-	S	für	steile	
970 9	М	für	mittlere	Abspannführung
-	F	für	flache	

Die Kurzbezeichnung WN4S steht also für einen Mast mit

- weichem Mastschaft
- niedriger Seilvorspannung
- 4 Abspannebenen und
- steiler Seilführung.

3.2.3 Belastung

3.2.3.1 Staudruckgesetz, Windlast

Für das Staudruckgesetz wurde der Ansatz der DIN 4131 4.2.1 verwendet. Hiernach ergibt sich der Staudruck in Abhängigkeit mit der Höhe zu

 $q = q_0 + 0,003 \cdot h$ [kN/m²]

der Grundstaudruck wurde einheitlich mit $q_0 = 0,95$ [kN/m²] festgelegt, h gibt die Höhe in Metern an.

Für die Lastfälle mit Vereisung wurde der Staudruck gemä β DIN 4131 auf 75% reduziert, es ergibt sich

 $q = q_{0,R} + 0,00225 \cdot h$

mit $q_{0,R} = 0,7125 [kN/m^2]$

Die auf das Bauwerk wirkende Windlast ergibt sich zu

 $w = q \cdot c_{+} \cdot A$

Hierin ist c_f der sogenannte Formbeiwert oder aerodynamischer Kraftbeiwert, A ist die vom Wind getroffene Fläche.

Im Rahmen dieser Untersuchung wird der Wert $c_f \cdot A$ konstant über die Höhe angesetzt, die Zahlenwerte sind Tabelle 1 (Kap. 3.2.1.3) zu entnehmen. Einzelwindlasten, wie z.B. Wind auf Parabolspiegel, Antennen etc. wurden nicht berücksichtigt.

3.2.3.2 Windrichtungen

Es wurden vier unterschiedliche Windrichtungen untersucht. Diese führen im Regelfall zu maximalen Schaftbeanspruchungen bzw. zu maximalen Seilkräften.

Bild 4 untersuchte Windrichtungen

3.2.3.3 Vereisung

3.2.3.3.1 Allgemeines

Über die zu erwartenden maximalen Eisdicken in der Bundesrepublik Deutschland liegen nur unzureichende Kentnisse vor /6,13,14,15/. Die auftretenden Vereisungen sind neben bestimmten globalen klimatischen Bedingungen auch stark von örtlichen topographischen Bedingungen abhängig. Nach /16/ ensteht Vereisung im Allgemeinen bei folgenden Bedingungen

- a) Nebel, bei Windstille (Reif) und leichtem Wind (Raureif). Die enstehenden Eisablagerungen haben eine lockere Struktur (nadel-, schuppen- oder federförmig) mit einer Dichte von 0,5 bis 2,0 [kN/m³].
- b) Unterkühlte Nebel- und Wolkentröpfchen, bei mäßigen bis frischem Wind. Allgemein werden diese Ablagerungen mit Rauhfrost bezeichnet. Es handelt sich um eine ziemlich feste, weiße, körnige Masse mit einer Dichte von 3,0 bis 7,0 [kN/m³].
- c) Unterkühltem Regen oder sehr dichtem Nebel bei starkem Wind. Die Ablagerungen sind glasig, festhaftend und haben eine Dichte von 7,0 bis 9,0 [kN/m³].

Der Eisansatz nach b) und c) wächst gegen die Windrichtung und kann nach /16/ einseitig extreme Längen bis zu 2 m erreichen (sogenannte Eisfahnen), wegen der hohen Eisdichte und gleichzeitig auftretenden starken Winden ist besonders Fall c) für die Standsicherheit von Bauwerken von Interesse.

Im Bauingenieurwesen wird allerdings in der Regel mit gleichmäßigem, radialem Eisansatz an jedem Einzelteil gerechnet (sog. Radialeis). Nach /16/ ist diese vereinfachende Annahme in den meisten Fällen gerechtfertigt, Vergleichsrechnungen zeigen eine akzeptable Übereinstimmung bei der Ermittlung der Windwiderstandsflächen. An einigen Bauteilen, zum Beispiel an Antennenkabeln, werden häufig annähernd rotationssymmetrische Eiswalzen beobachtet, hier ist die Annahme von Radialeis zutreffend.

Die Schichtdicken solcher Eiswalzen überschreiten in einigen Fällen 5 bis 6 cm,

in einer von der Deutschen Bundespost herausgegebenen "Eiskarte" der Bundesrepuplik Deutschland sind etwa 5% der Gesamtfläche als Gebiete mit mehr als 3 cm Schichtdicke bei Rauheis- und Raureifbeobachtungen an Fernmeldeleitungen in den Jahren 1951 bis 1959 gekennzeichnet.

Über die genaue zu erwartende Vereisung von Bauwerken in der BRD läßt sich aufgrund des derzeitigen Kenntnisstandes nur schwer etwas aussagen, dies ist auch nicht Gegenstand dieses Vorhabens. Hierin werden nur die Auswirkungen von vorgegebener Vereisung auf die Standsicherheit abgespannter Maste untersucht.

3.2.3.3.2 Angesetzte Vereisung

Im Rahmen der vorliegenden Parameterstudie wird mit einem Radialeisansatz gerechnet. Dabei werden vier unterschiedliche Eisdicken angesetzt:

3 cm
6 cm
12 cm
24 cm (als Extremfall)

Die Eisdichte wird mit 7,5 [kN/m³] angenommen. Dieser Wert ist z.B. auch den Lastannahmen der VDE 0210, Dez. 85 zugrundegelegt. Der Windwiderstandsbeiwert c_f für die vereisten Pardunen wird wie für die unvereisten Seile zu 1,2 gesetzt. Der $c_f \cdot A$ -Wert des Mastschaftes wird durch den Eisansatz in Abhängigkeit von der Steifigkeit prozentual vergrößert. Bei niedrigen Mastschaftsteifigkeiten liegen in der Regel filigranere Strukturen vor, bei denen die auf den unvereisten Zustand bezogenen prozentualen Vergrößerungen der Windflächen durch Vereisung größer ausfallen als bei den gedrungeneren Strukturen der steifen Maste. Nach der Auswertung einiger exemplarischer Beispiele wurden folgende Windflächenvergrößerungen zugrundegelegt:

Diese prozentuale Erhöhung wird solange vorgenommen, bis der dadurch errechnete $c_f \cdot A$ -Wert den Wert 2,0 · A_u (A_u ist Umrißfläche) überschreitet, in diesem Falle ist der Mast aerodynamisch "geschlossen", und der Wert 2,0 · A_u wird maßgebend. Dieses Vorgehen steht im Einklang mit der EDIN 4131 (8.89).

Für die vereisten *Seile* ergeben sich die Eislasten aus den jeweiligen Seildurchmessern, der radialen Eisdicke und der Eisdichte.

Bei der Vereisung des *Mastschaftes* wurde zunächst unterschieden zwischen symmetrischer und halbseitiger Vereisung. Die halbseitige Vereisung wurde bei unsymmetrischer Vereisung der Seile auf der entsprechenden Seite angesetzt, sie führt zu zusätzlichen Biegemomenten im Mastschaft (Streckenlängsmomente M_s), das zusätzliche Eigengewicht g_s ist dagegen nur halb so groß wie bei der symmetrischen Vereisung.

Solche halbseitigen Vereisungen treten. überwiegend bei relativ engmaschigen Strukturen oder geschlossenen Querschnitten (wie Rohrmantelmasten auf), bei den hier zugrundegelegten Gittermasten wird in der Regel weitgehende symmetrische Vereisung auftreten.

Eine annähernd das ganze Parameterfeld abdeckende Vorstudie zeigte, daß die durch halbseitige Vereisung gegenüber der symmetrischen Vereisung stark reduzierte Vertikallast den Mastschaft so weit entlastet, daß dieser Lastfall nicht maßgebend wurde. In der endgültigen Parameterstudie wurde dann nur der Fall der symmetrischen Vereisung des Schaftes (aber unsymmetrischer Vereisung der Pardunen) untersucht. Die Lasten sind in den Tabellen 2 und 3 zusammengefaßt.

,

Mastschaft g Eis g E is g Ets g Eis [kN/m] [kN/m][kN/m] [kN/m]6,0 Eisdicke 3,0 12,0 24,0 W 2,70 5,40 10,80 21,60 М 5,40 10,80 21,60 43,20 16,20 S 8,10 32,40 64,80 Х 39,20 9,80 19,60 78,40 Y 12,00 23,90 47,80 95,70 Ζ 28,20 56,50 14,10 112,90

Tabelle 2Mastschaft: vertikale Eislasten

Tabelle 3 Mastschaft: $c_f \cdot A$ –Werte des vereisten Schaft

Mastschaft	c _f · A	c ₁ · A	c, · A	c₁ · A
	[m²/m]	[m²/m]	[m²/m]	[m²/m]
Eisdicke	3,0	6,0	12,0	24,0
W	2,17	2,85	3,68	4,16
M	5,85	7,04	7,28	7,76
S	9,20	10,12	10,24	10,48
X	11,12	11,24	11,48	11,96
Y	13,32	13,44	13,68	14,16
Z	15,52	15,64	15,88	16,36

Lehrstuhl für Stahl- Leichtmetallbau, Uni Karlsruhe, Prof. Dr.-Ing. U. Peil

SEITE 19

3.2.3.4 Zugrundegelegte Lastfallkombinationen

Um die rechnerischen Auswirkungen der angesetzten Vereisungen abschätzen zu können, wurde für jede Parameterkombination aus

- Mastschaftsteifigkeit,
- Vorspanngrad,
- Zahl der Abspannungen und
- Abspannführung

zunächst ein Lastfall gerechnet, bei dem der volle Staudruck (Windrichtung "in die Gabel", $\omega = 0^{\circ}$) und keine Vereisung angesetzt wurde. Die Seilparameter wurden so eingestellt, daß bei diesem Lastfall die Abspannpunkte auf einer Geraden liegen, der Lastfall erhält die Bezeichnung "1000".

48 weitere Lastfälle (1001 bis 1048) behandeln dann die vereiste Situation mit reduziertem Staudruck. Wie vorab beschrieben, wurden 4 Windrichtungen untersucht. Für jede Windrichtung wurde zunächst der Fall der symmetrischen Vereisung und dann zwei Lastfälle mit unsymmetrischer Vereisung gerechnet. Dabei wurden auch Fälle untersucht, in denen die Vereisung nicht auf der dem Wind zugewandten Seite lag, so wurden auch Wettersituationen berücksichtigt, bei denen sich die Windrichtung gegenüber der bei der Vereisung vorliegenden Situation änderte (vergl. Bild 5).

a) Vereisungssituation b) Windrichtung mit max. Staudruck

Bild 5: Berücksichtigte Wettersituationen

Eine Übersicht über die gewählten Kombinationen aus Windrichtung und vereisten Seilebenen ist in Bild 6 ersichtlich. Jeder dieser Fälle wurde dann für 4 unterschiedliche Eisdicken untersucht. Die einzelnen Parameter sind in Tabelle 4 angegeben.

symmetrische

unsymmetrische

Vereisung

Bild 6: Kombinationen aus Windrichtung und vereisten Seilebenen (vereiste Seilebenen: fetter Strich)

Lastfall	Windricht.	Eisdicke	vereiste Seile
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{array}{c} 0\\ 0\\ 3\\ 3\\ 3\\ 6\\ 6\\ 6\\ 12\\ 12\\ 12\\ 12\\ 24\\ 24\\ 24\\ 24\\ 24\\ 24\\ 24\\ 24\\ 24\\ 2$	$\begin{array}{c} & - \\ & 1,2,3 \\ & 2,3 \\ & 1 \\ & 1,2,3 \\ & 2,3 \\ & 1 \\ & 1,2,3 \\ & 2,3 \\ & 1 \\ & 1,2,3 \\ & 2,3 \\ & 1 \\ & 1,2,3 \\ & 2,3 \\ & 1,2,3 \\ & 2,3 \\ & 3 \\ & 1,2,3 \\ & 2,3 \\ & 3 \\ & 1,2,3 \\ & 2,3 \\ & 3 \\ & 1,2,3 \\ & 2 \\ & 1,3 \\ & 1,2,3 \\ & 2 \\ & 1,3 \\ & 1,2,3 \\ & 2 \\ & 1,3 \\ & 1,2,3 \\ & 2 \\ & 1,3 \\ & 1,2,3 \\ & 2 \\ & 1,3 \\ & 1,2,3 \\ & 2 \\ & 1,3 \\ & 1,2,3 \\ & 2 \\ & 1,3 \\ & 1,2,3 \\ & 2 \\ & 2 \\ & 1,3 \\ & 1,2,3 \\ & 2 \\ & 1,3 \\ & 1,2,3 \\ & 2 \\ & 1,3 \\ & 1,2,3 \\ & 2 \\ & 1,3 \\ & 1,2,3 \\ & 2 \\ & 1,3 \\ & 1,2,3 \\ & 2 \\ & 1,3 \\ & 1,2,3 \\ &$
1046 1047 1048	-90 -90 -90	24 24 24	1,2,3 2 3

Tabelle 4 Übersicht über die Lastfallkombinationen

4 Vorgehensweise bei der Parameterstudie

Eine Übersicht über die untersuchten Parameterfälle der Mastgeometrie gibt die Tabelle in Anlage 1. Man erkennt, daß für alle untersuchten Maste mit 2, 4 und 6 Abspannungen die Seilführung (steil, mittel, flach) variiert wurde. Jede sich daraus ergebende Geometrie wurde dann durch Veränderung der Seilflächen und -vorspannung für hohe, mittlere und niedrige Vorspannung untersucht.

Für die sich ergebenden 150 Geometrien wurden, um eine Vergleichbarkeit der Ergebnisse zu gewährleisten, die Seilfächen und die Seilvorspannungen so eingestellt, daβ die Abspannpunkte für den Lastfall Wind "in die Gabel" (ohne Eis) auf einer Geraden liegen (vergl. 3.2.2.1).

Beim 6-fach abgespannten Mast mit weichem Schaft oder steiler Abspannführung traten Instabilitätsfälle auf, der Mastschaft knickt auf Grund seiner geringen Steifigkeit zwischen den Abspannungen aus, diese Parameterfälle ergaben sich aufgrund der Parametervariation, sie sind praktisch nicht von Interesse.

Für die 142 verbleibenden Parameterfälle wurden dann jeweils 49 Lastfälle mit unterschiedlichen Wind- und Eislastkombinationen berechnet und ausgewertet (siehe Kap. 3.2.3), insgesamt wurden über 6000 Parameterfälle untersucht.

Bei der Ermittlung des Einflusses unsymmetrischer Vereisung wurde davon ausgegangen, daβ der Fall symmetrischer Vereisung vom Statiker nach wie vor berechnet wird. Die maximalen Beanspruchungen aus symmetrischer Vereisung und ungünstiger Windlast wurden als Bezug zugrunde gelegt. Durch Gegenüberstellung der Ergebnisse aus symmetrischer und unsymmetrischer Vereisung ergibt sich dann unmittelbar der Fehler, der bei Vernachlässigung des Lastfalles mit unsymmetrischer Vereisung auftritt. Für die Auswertung wurden die

- maximalen Seilkräfte eines jeden Seiles und die
- maximalen Absolutwerte der Eckstielspannungen für jeden Knotenpunkt des Mastschaftes

für die verschiedenen Lastfälle jeder Vereisungsstärke getrennt für die symmetrischen und unsymmetrischen Vereisungslastfälle bestimmt, einander gegenübergestellt und die prozentualen Abweichungen ermittelt.

In der Auswertung wurden die jeweiligen Maximalwerte eines Querschnittes bzw. eines Seiles miteinander verglichen, d.h. die Spannungsveränderungen jedes Knotenpunktes und die Seilkraftveränderungen eines jeden Seiles ausgewertet. In den Anlagen 30 bis 39 sind exemplarisch einige solche Gegenüberstellungen abgedruckt, hierbei wurden Beispiele ausgesucht, bei denen die Vergrößerung der Spannungen infolge unsymmetrischer Vereisung mehr als 10 % beträgt. Die größten prozentualen Abweichungen entlang der Mastachse werden im folgenden als "maximale örtliche Spannungsveränderungen" bezeichnet. Diese sind für alle untersuchten Geometrien für die vier verschiedenen Eisdicken in den Anlagen 40 bis 51 angegeben.

Es wurden nur die Vereisungsstärken ausgewertet, bei denen alle symmetrischen Lastfälle einer Mastgeometrie kein Stabilitätsversagen aufwiesen, für die Maste mit niedriger Mastschaftsteifigkeit konnten daher nur geringe Eisdicken untersucht werden. Hierbei wurde wieder von der plausiblen Annahme ausgegangen, daβ der symmetrische Vereisungsfall vom Statiker nachgewiesen wurde, der Mast also hierunter stabil ist.

5 Ergebnisse

Die Auswertung der Parameterstudie ergibt, daß die aus unsymmetrischer Vereisung resultierenden örtlichen Spannungen und Seilkräfte in der Regel kleiner sind als die aus symmetrischer Vereisung gleicher Eisdicke. Dies folgt daraus, daß die durch unsymmetrische Vereisung verringerten Lasten zu kleineren Normalkräften im Mastschaft führen.

Für einzelne Querschnitte kann es allerdings zu einer Vergrößerung der Beanspruchung kommen, die Querschnittsabstufung des Mastschaftes kann hierdurch stark beeinflußt werden.

Örtliche Vergrößerungen der Eckstielspannungen von mehr als 10 % wurden nur bei großen Eisdicken beobachtet, bei Lastfallkombinationen aus Eis und Wind, wie sie in Bild 7 dargestellt sind.

Bild 7: Lastfälle mit unsymmetrischer Vereisung der Seile

Die Vergrößerung der Eckstielspannungen rührt daher, daß die oberen, sehr viel längeren Seile aufgrund ihrer hohen Eislast den Mast stärker in Vereisungsrichtung ziehen als die unteren (Bild 8), der Mastschaft wird stark gebogen und erhält höhere Biegemomente. Dieser Effekt macht sich besonders bei flacher Seilführung bemerkbar. In Bild 8 ist der Effekt dargestellt, die Verformungen sind überhöht abgebildet.

Bild 8: Verformungsfigur zum Lastfall Bild 7 b)

Bei symmetrischer Eislast (Bild 9) bleibt der Mastschaft fast gerade, die Biegebeanspruchung des Schaftes ist niedriger.

Bild 9: Verformungsfigur bei symmetrischer Vereisung

Die Zunahme der Eckstielspannungen aus unsymmetrischer gegenüber symmetrischer Vereisung wächst im Regelfall mit der Elsdicke, und zwar für flachere Abspanngeometrien stärker als für steilere. In den Bildern 10, 11 und 12 sind für ausgewählte Geometrien die maximalen prozentualen Spannungszuwächse über die Elsdicke aufgetragen. Als typisches Beispiel ausgewählt wurde ein 4-fach abgespannter Mast mit der Mastschaftsteifigkeit Y. Bild 10 zeigt die Ergebnisse für hohe, Bild 11 für mittlere und Bild 12 für niedrige Seilvorspannung. In jedem Bild sind die Ergebnisse für flache, mittlere und steile Abspannführung einander gegenübergestellt. Dieser Mast zeigt ein für abgespannte Maste typisches Verhalten, einige andere untersuchte Geometrien weichen in ihrem Verhalten wegen der Nichtlinearitäten vom Regelfall ab.

Bild 10: maximale örtliche Eckstielspannungszuwächse, Mastgeometrie YH4S, YH4M, YH4F

Bild 11: maximale örtliche Eckstielspannungszuwächse, Mastgeometrie YM4S, YM4M, YM4F

Bild 12: maximale örtliche Eckstielspannungszuwächse, Mastgeometrie YN4S, YN4M, YN4F

Die Bilder zeigen, daß es insbesondere bei flacher Seilführung für einzelne Knotenpunkte zu Vergrößerungen der Spannungen durch unsymmetrischen Eisansatz kommt.

Die maximale örtliche Zunahme der Eckstielspannungen für kleine Eisdicken ist gering, so ergeben sich bei 3 cm Eisansatz nur in 2 von 128 untersuchten Geometrievarianten Spannungsvergrößerungen über 3 % (MH6F 3,13%, MH4S 5,16%). Bei einer angesetzten Vereisung von 6 cm und 122 untersuchten Geometrien gab es einen Fall mit einer Spannungsvergrößerung von 5.23 % (MN4F), 17 Geometrien wiesen Vergößerungen der Eckstielspannungen zwischen 3 und 5 % auf.

Bei geringen Eisdicken ist der Einfluß der unsymmetrischen Vereisung offensichtlich unkritisch und braucht bei der Bemessung nicht berücksichtigt zu werden. Bei 12 und 24 cm Eisansatz kommt es zu größeren Veränderungen der maßgebenden Spannungen. Für diese Vereisungsstärken kann demnach eine Bemessung, der nur die Untersuchung von Lastfällen mit symmetrischer Vereisung zugrunde liegt, auf der unsicheren Seite liegen.

Für 18 untersuchte Geometrien kommt es zu Vergrößerungen der Eckstielspannungen um mehr als 10 %, 17 davon treten bei Geometrien mit flacher Abspannführung auf, in einem Fall liegt eine Geometrie mit steiler Abspannführung und niedrigem Vorspanngrad vor (vergl. Anlagen 30 bis 39). Diesen 18 Fällen liegen Geometrien zugrunde, die als baupraktischen Grenzfall anzusehen sind, in solchen Fällen wird für die sichere Bemessung die Untersuchung von Lastfällen mit unsymmetrischem Eisansatz erforderlich.

Der in der Parameterstudie aufgetretene Größtwert betrug 45% (vergl. Anlage 31). Diese hohen Vergrößerungsfaktoren ergeben sich aber nur für Knotenpunkte, die unter symmetrischer Eislast geringere Beanspruchungen aufweisen, für solche Punkte macht sich eine Verschiebung der Orte hoher Biegebeanspruchung prozentual besonders stark bemerkbar. Die Auswirkung dieses Effektes wird in der Regel nicht so stark sein, da diese Bereiche häufig überbemessen sind.

Zusammenfassend sind die Ergebnisse in Tabelle 5 dargestellt.

Vereisungs- stärke	3 cm	6 cm	12 cm	24 cm
Anzahl der ausgewerteten Geometrien	128	122	103	79
prozentu <mark>aler</mark> Spannungs- zuwachs	5-10%, >10%	5-10%, >10%	5-10%, >10%	5-10%, >10%
Zahl des Auftretens	1 0	1 0	27 3	34 15

Tabelle 5: Übersicht über die aufgetretenen Spannungsvergrößerungen

Die maximalen Seilkräfte nehmen bei unsymmetrischer gegenüber symmetrischer Vereisung in der Regel leicht ab, durch die Verschiebung der Abspannpunkte in Richtung der Seile mit der größten Eislast kommt es zu einer Entlastung der Seile. Bei manchen Geometrievarianten (insbesondere bei flacher Abspannführung, in seltenen Fällen auch bei steiler Führung) kommt es für einzelne Seile zu einer Vergrößerung der maximal auftretenden Seilkraft, der größte festgestellte Zuwachs beträgt 5,7%.

Zusätzlich zu der zuvor erläuterten Auswertung wurde noch eine zweite Auswertung durchgeführt, bei der die maximalen Eckstielspannungen aus symmetrischer und unsymmetrischer Vereisung unabhängig vom Ort ihres Auftretens, also nicht knotenpunktbezogen, verglichen wurden. In dieser Auswertung wurden also nur die absoluten aufgetretenen Größtwerte der Eckstielspannungen und Seilkräfte untersucht, diese Untersuchung ergab folgendes Ergebnis:

Betrachtet man den auftretenden Maximalwert für eine Eckstielspannung oder eine Seilkraft unabhängig vom Ort ihres Auftretens, ist der gefundene Gröβtwert der Spannungen des Mastschaftes für unsymmetrische Vereisung in der Regel kleiner als für symmetrische Vereisung. Ebenso nehmen in der Regel die maximalen

Seilkräfte ab. Für einige Geometrien kam es zu einer geringfügigen Vergrößerung der Beanspruchungen, die in der Parameterstudie aufgetretene maximale Vergrößerung der Spannungen betrug 3,1 % und bei den Seilkräften 1,2 %.

An dieser Stelle sei noch einmal darauf hingewiesen, daß sich die durchgeführte Untersuchung auf Gittermaste bezieht. Für Rohrmantelmaste ist der Lastfall "Wind und Eis" in der Regel nicht maßgebend, bei diesem Masttyp vergrößern sich der $c_f \cdot A$ -Wert und die vertikalen Lasten des Mastschaftes nicht so stark wie beim Gittermast, wegen der gleichzeitigen Reduzierung des Bemessungsstaudruckes kommt es zu einer niedrigeren Beanspruchung des Mastes. Wird die vorgenannte Lastfallkombination in speziellen Fällen aber maßgebend, so ist das vorab geschilderte Verhalten der Gittermaste auf die Rohrmantelmaste übertragbar, da die geschilderten Spannungsvergrößerungen im wesentlichen aus der unsymmetrischen Vereisung der Pardunen resultieren.

6 Auswirkung auf die Normungsarbeit

Für die statische Berechnung von abgespannten Masten kann im Hinblick auf zu untersuchende Lastfälle durch Vereisung bei gleichzeitig wirkendem Wind folgende Empfehlung gegeben werden:

Für radiale Vereisungsdicken bis zu 6 cm kann auf die Berechnung von Lastfällen mit unsymmetrischen Eisansatz verzichtet werden, hier ergeben sich zwar unter Umständen höhere Beanspruchungen des Mastschaftes (ca. 5%), sie liegen aber im Rahmen der üblichen Rechengenauigkeiten und sind damit durch den für die Berechnung vorgesehenen Sicherheitsbeiwert abgedeckt.

Bei Standorten, für die mit noch höherer Vereisung zu rechnen ist, muß bei abgespannten Masten mit ungewöhnlich flacher Seilführung für einzelne Schnitte mit teilweise erheblich höheren Beanspruchungen gerechnet werden. Eine Bemessung, die den Mastschaftquerschnitt an den aus Lastfällen mit symmetrischer Eislast bestimmten Verlauf der Schnittgrößen anpaßt, wird in einzelnen Querschnitten zu geringe Querschnittsabmessungen ermitteln. Für eine sichere und wirtschaftliche Bemessung ist es dann erforderlich, Lastfälle mit unsymmetrischer Vereisung mit zu untersuchen.
7 Zusammenfassung

Der vorliegende Forschungsbericht beschreibt umfangreiche Parameteruntersuchungen an abgespannten Masten. Es soll der Einfluß unsymmetrischer Vereisung des Mastes bei gleichzeitig wirkender Windlast auf die Beanspruchung des Bauwerkes untersucht werden.

Die Wahl der Eingangsparameter für die Untersuchung wird ausführlich erläutert und begründet.

Es zeigte sich, daβ es nur bei sehr starker zu erwartender Vereisung erforderlich ist, Lastfälle mit ungleicher Vereisung der Pardunen zu untersuchen.

Prof. Dr.-Ing. U. Peil

In. Red

Dipl.-Ing. H. Nölle V. Mile

Lehrstuhl für Stahl- Leichtmetallbau, Uni Karlsruhe, Prof. Dr.-Ing. U. Peil

8 Literaturzusammenstellung

- 1. The collapse of the Ylläs-mast. The statement of the board of inquiry. Helsinki 1972.
- 2. BSI Code of basic data for the design of buildings, chapter V part 2 (wind loading) 1972. Hier Hinweis auf Einsturz des Mastes Emelymoor.
- Davenport, A.G. : Interaction of ice and wind loading on guyed towers.
 int. workshop on atmospheric icing of structures. Vancouver, 6.-8.5.86
- Lehtonen, P., J. Laiho : Ice- and windload measurements on a TV-Mast in Finland. 2. int. workshop on atmospheric icing of structures. 19.-21.6.84, Trondheim
- 5. Novak, M., Davenport, A.G., Tanaka, H. : Vibration of towers due to galloping of iced cables. Journ. Struct. Div. 1978, 457-473.
- 6. Leibfried, W., Mors, H.: Versuchsanlage Hornisgrinde, Eislast, Seilschwingungen, Windbelastung, Ausschwingversuch. Versuchsbericht der Badenwerk AG, in Zusammenarbeit mit der Fa. BBC AG, Mannheim. 1964.
- Peil, U. : Das abgespannte Tragwerk. In: Berichtsband "Seile und Bündel im Bauwesen", Herausgeber : Beratungsstelle für Stahlverwendung, Düsseldorf. 1981.
- Scheer, J., Peil, U. : Zum Ansatz von Vorspannung und Windlast bei abgespannten Masten. Bauingenieur 60 (1985) 185-190.
- Scheer, J., Peil, U. : Zur Berechnung von Tragwerken mit Seilabspannungen, insbesondere mit gekoppelten Seilabspannungen. Bauingenieur 59 (1984) 273-277.
- Peil, U. : Zur Berechnung von Vorhangantennen. In: Festschrift J. Scheer, Herausgeber: Inst. für Stahlbau TU Braunschweig, 1987.

Lehrstuhl für Stahl- Leichtmetallbau, Uni Karlsruhe, Prof. Dr.-Ing. U. Peil

- 11. Recommendations for the design of guyed masts. Herausgeber: IASS 1979
- Petersen, Ch.: Abgespannte Maste und Schornsteine. Bauingenieur-Praxis, Heft 76, Berlin, Düsseldorf, München: Verlag Wilhelm Ernst & Sohn. 1970.
- Kiβig, H. : Gefärdung aus Eisbehang. Bauplanung Bautechnik 42, Heft 4, (1986), 177-178.
- 14. Anders, H. : Der Einflu β von Nebelfrostablagerungen an Antennenträgern. Technische Mitteilungen RFZ 12 (1968) 1, 13-17.
- Gäbler , H. : Definition und Klassifizierung der Nebelfrostablagerungen. Technische Mitteilungen RFZ 7 (1963) 3, 138-144.
- Fecke, G. : Auswertung von Wettergutachten des Deutschen Wetterdienstes, 1985, unveröffentlicht.
- 17. Kolbig, J., Becker, T. : Untersuchungen der regionalen Unterschiede im Auftreten von Nebelfrost. Zeitschrift für Meteorologie 20 (1968), 148-160.
- 18. Scheer, J., Peil, U. : Multi guyed masts. In: Masts and towers for radio and television 109-113. IASS-Symposium Bratislava 1981

Lehrstuhl für Stahl- Leichtmetallbau, Uni Karlsruhe, Prof. Dr.-Ing. U. Peil

,

.

Abs	pannung	Mastschaft					
Zahl	Führung	weich	mittel	steif	x	Y	Z
	flach	x	x	x	x	x	x
2	mittel	x	x	x	x	x	x
	steil	х	x	x	x	x	x
	flach	x	x	x	х	x	X
4	mittel	x	x	x	х	x	x
	steil	x	х	х	х	x	х
	flach	instabil	х	х	х	x	х
6	mittel	instabil	х	х	Х	X	x
	steil	instabil	instabil	х	Х	х	х

Parameterübersicht Mastgeometrie

.

So	i	1	w	ρ	r	ŕ	0	*	
20	T	Ŧ	44	c	Ł	v	c	٠	

Geometr	ie: MH6M				
Ebene	E [kN/m²]	F [m²]	g [kN/m]	d [m]	SO [kN]
1 2 3 4 5 6	1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0025 0.0041 0.0028 0.0039 0.0032 0.0026	0.219 0.354 0.243 0.337 0.282 0.228	0.057 0.072 0.060 0.070 0.064 0.058	357 584 813 1133 1420 1146
Geometr	ie: MH6F				
Ebene	Ε	F	g	d	S0
1 2 3 4 5 6	1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0020 0.0018 0.0016 0.0017 0.0018 0.0013	0.172 0.153 0.138 0.149 0.154 0.111	0.050 0.047 0.045 0.047 0.047 0.040	580 517 939 1005 1575 1132
Geometr	ie: MM6M				
Ebene	E	F	g	d	S0
1 2 3 4 5 6	1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08	$\begin{array}{c} 0.0032\\ 0.0053\\ 0.0037\\ 0.0051\\ 0.0043\\ 0.0035\end{array}$	0.278 0.463 0.321 0.445 0.377 0.304	0.064 0.082 0.069 0.081 0.074 0.067	308 517 724 1008 1277 1026
Geometr	ie: MM6F				
Ebene	Е	F	g	d	S0
1 2 3 4 5 6	1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0027 0.0023 0.0021 0.0023 0.0023 0.0017	0.234 0.200 0.182 0.201 0.200 0.145	0.059 0.054 0.052 0.054 0.054 0.054	525 452 825 903 1359 985

Lehrstuhl für Stahl- und Leichtmetallbau, Universität Karlsruhe

.

Geometrie: MN6F							
Ebene	E	F	g	d	SO		
1	1.6E+08	0.0063	0.552	0.090	623		
2	1.6E + 08	0.0049	0.428	0.079	481		
3	1.6E+08	0.0042	0.368	0.073	831		
4	1.6E+08	0.0045	0.391	0.076	881		
5	1.6E + 08	0.0044	0.384	0.075	1303		
6	1.6E+08	0.0031	0.268	0.063	909		

Geometrie: SH6S

Ebene	E	F	g	d	S0
1	1.6E+08	0.0101	0.883	0.114	959
2	1.6E+08	0.0466	4.058	0.244	4432
3	1.6E+08	0.0151	1.315	0.139	2925
4	1.6E + 08	0.0246	2.143	0.177	4784
5	1.6E+08	0.0156	1.355	0.141	4549
6	1.6E + 08	0.0119	1.033	0.123	3471

Geometrie: SH6M

Ebene	Е	F	g	đ	S0
1	1.6E+08	0.0047	0.411	0.078	664
2 ·	1.6E+08	0.0085	0.740	0.104	1225
3	1.6E+08	0.0052	0.456	0.082	1537
4	1.6E+08	0.0077	0.668	0.099	2223
5	1.6E+08	0.0061	0.527	0.088	2665
6	1.6E+08	0.0049	0.423	0.079	2128

Geometrie: SH6F

Ebene	E	F	g	d	S0
1	1.6E+08	0.0035	0.302	0.067	1010
2	1.6E + 08	0.0034	0.293	0.066	975
3	1.6E+08	0.0027	0.238	0.059	1615
4	1.6E+08	0.0033	0.286	0.065	1898
5	1.6E+08	0.0031	0.273	0.063	2772
6	1.6E+08	0.0023	0.204	0.055	2043

.

Seilwerte:

Geometrie: SM6S							
Ebene	Е	F	g	đ	S0		
1	1.6E+08	0.0194	1.690	0.157	1223		
2	1.6E+08	0.0987	8.583	0.354	6243		
3	1.6E+08	0.0279	2.426	0.188	3589		
4	1.6E+08	0.0492	4.279	0.250	6358		
5	1.6E+08	0.0265	2.302	0.183	5141		
6	1.6E+08	0.0201	1.746	0.160	3923		

Geometrie: SM6M

Ebene	E	F	g	d	S0
1	1.6E+08	0.0061	0.529	0.088	587
2	1.6E+08	0.0118	1.023	0.122	1129
3	1.6E+08	0.0073	0.632	0.096	1420
4	1.6E+08	0.0105	0.914	0.116	2045
5	1.6E+08	0.0084	0.732	0.103	2465
6	1.6E+08	0.0066	0.574	0.092	1949

Geometr	ie: SM6F				
Ebene	E	F	g	d	S0
1	1.6E+08	0.0047	0.410	0.077	916
2	1.6E+08	0.0044	0.383	0.075	856
3	1.6E+08	0.0037	0.320	0.068	1453
4	1.6E+08	0.0044	0.379	0.074	1707
5	1.6E+08	0.0041	0.361	0.073	2459
6	1.6E+08	0.0031	0.266	0.062	1804

Geometr	ie: SN6M				
Ebene	Έ	F	g	d	S0
1	1.6E+08	0.0187	1.624	0.154	900
2	1.6E+08	0.0415	3.607	0.230	2000
3	1.6E+08	0.0187	1.628	0.154	1832
4	1.6E+08	0.0273	2.374	0.186	2675
5	1.6E+08	0.0195	1.698	0.158	2869
6	1.6E+08	0.0149	1.296	0.138	2191

Seilwerte:

Geometrie: SN6F

Ebene	Е	F	g	d	S0
1	1.6E+08	0.0117	1.016	0.122	1135
2	1.6E+08	0.0095	0.830	0.110	932
3	1.6E+08	0.0079	0.683	0.100	1539
4	1.6E+08	0.0085	0.743	0.104	1679
5	1.6E+08	0.0082	0.714	0.102	2433
6	1.6E + 08	0.0058	0.503	0.086	1709

XH6S

Ebene	E	F	g	đ	SO
1	1.6E+08	0.0158	1.377	0.142	1441
2	1.6E+08	0.0857	7.457	0.331	7798
3	1.6E+08	0.0224	1.952	0.169	4200
4	1.6E+08	0.0413	3.597	0.229	7758
5	1.6E+08	0.0228	1.980	0.170	6428
6	1.6E + 08	0.0172	1.495	0.148	4871

XH6M

Ebene	E	F	g	đ	S0
1	1.6E+08	0.0062	0.540	0.089	892
2	1.6E+08	0.0118	1.023	0.122	1665
3	1.6E+08	0.0073	0.632	0.096	2116
4	1.6E + 08	0.0106	0.925	0.116	3092
5	1.6E+08	0.0084	0.732	0.103	3706
6	1.6E+08	0.0066	0.574	0.092	2884

XH6F

Ebene	E	F	g	d	S0
1	1.6E+08	0.0048	0.421	0.079	1403
2	1.6E+08	0.0045	0.395	0.076	1330
3	1.6E+08	0.0039	0.337	0.070	2269
4	1.6E+08	0.0045	0.391	0.076	2614
5	1.6E+08	0.0044	0.382	0.075	3882
6	1.6E+08	0.0032	0.277	0.064	2808

Seilwe	erte:					
	XM6S					
	Ebene	E	F	g	d	SO
	1 2 3 4 5 6	1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0358 0.1745 0.0475 0.0835 0.0426 0.0305	$\begin{array}{r} 3.118\\ 15.179\\ 4.129\\ 7.265\\ 3.703\\ 2.650\end{array}$	$\begin{array}{c} 0.214 \\ 0.471 \\ 0.246 \\ 0.326 \\ 0.233 \\ 0.197 \end{array}$	2210 10717 5924 10425 8033 5749
	XM6M					
	Ebene	E	F	g	d	S0
	1 2 3 4 5 6	1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0085 0.0166 0.0102 0.0148 0.0118 0.0091	0.735 1.443 0.885 1.290 1.026 0.790	0.104 0.145 0.114 0.137 0.122 0.107	797 1578 1953 2851 3428 2629
	XM6F					
	Ebene	Е	F	g	đ	S0
	1 2 3 4 5 6	1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0065 0.0061 0.0052 0.0060 0.0059 0.0042	0.562 0.528 0.451 0.522 0.512 0.367	0.091 0.088 0.081 0.087 0.086 0.073	1254 1163 2031 2328 3441 2467
	XN6M					
	Ebene	E	F	g	đ	S0
	1 2	1.6E+08 1.6E+08	0.0264 0.0599	$2.299 \\ 5.214$	0.183 0.276	$\frac{1264}{2865}$

ocno	فسل	L	ь	u u	00
1	1.6E+08	0.0264	2.299	0.183	1264
2	1.6E+08	0.0599	5.214	0.276	2865
3	1.6E+08	0.0270	2.352	0.185	2625
4	1.6E+08	0.0389	3.388	0.223	3799
5	1.6E+08	0.0280	2.438	0.189	4102
6	1.6E+08	0.0205	1.779	0.161	3012

Lehrstuhl für Stahl- und Leichtmetallbau, Universität Karlsruhe

,

.

,

Seilwerte:

,

ANLAGE 7

XN6F					
Ebene	E	F	g	d	S0
1 2 3 4 5 6	1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0159 0.0133 0.0111 0.0118 0.0116 0.0080	$ \begin{array}{r} 1.388 \\ 1.158 \\ 0.963 \\ 1.031 \\ 1.012 \\ 0.695 \end{array} $	$\begin{array}{c} 0.143 \\ 0.130 \\ 0.119 \\ 0.123 \\ 0.122 \\ 0.101 \end{array}$	1551 1287 2162 2324 3428 2355
YH6S					
Ebene	E	F	g	d	SO
1 2 3 4 5 6	1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0214 0.1217 0.0303 0.0544 0.0293 0.0210	$ \begin{array}{r} 1.862 \\ 10.591 \\ 2.634 \\ 4.730 \\ 2.553 \\ 1.830 \\ \end{array} $	0.165 0.394 0.196 0.263 0.193 0.164	$1928 \\ 10994 \\ 5644 \\ 10124 \\ 8268 \\ 5933$
YH6M					
Ebene	E	F	g	d	SO
1 2 3 4 5 6	1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0080 0.0148 0.0090 0.0131 0.0104 0.0080	0.698 1.286 0.786 1.138 0.904 0.692	0.101 0.137 0.107 0.129 0.115 0.101	$ \begin{array}{r} 1103 \\ 2095 \\ 2605 \\ 3779 \\ 4517 \\ 3410 \\ \end{array} $
YH6F					
Ebene	E	F	g	đ	SO
1 2 3 4 5 6	1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08	$\begin{array}{c} 0.0057\\ 0.0058\\ 0.0044\\ 0.0059\\ 0.0051\\ 0.0040\end{array}$	0.495 0.507 0.379 0.510 0.444 0.344	$\begin{array}{c} 0.085\\ 0.086\\ 0.074\\ 0.086\\ 0.081\\ 0.071 \end{array}$	1660 1657 2554 3341 4440 3375

.

Seilwerte:

YM6S

Ebene	E	F	g	d	S 0
1	1.6E+08	0.0513	4.463	0.256	3159
2	1.6E+08	0.2588	22.512	0.574	15942
3	1.6E+08	0.0638	5.553	0.285	8128
4	1.6E+08	0.1163	10.116	0.385	14818
5	1.6E+08	0.0554	4.822	0.266	10746
6	1.6E+08	0.0387	3.366	0.222	7479

YM6M

11.6E+080.01040.9020.11596221.6E+080.02071.8030.163196431.6E+080.01251.0910.126240041.6E+080.01821.5860.152349351.6E+080.01451.2610.136417961.6E+080.01100.9570.1183143	Ebene	E	F	g	d	S0
2 1.6E+08 0.0207 1.803 0.163 1964 3 1.6E+08 0.0125 1.091 0.126 2400 4 1.6E+08 0.0182 1.586 0.152 3493 5 1.6E+08 0.0145 1.261 0.136 4179 6 1.6E+08 0.0110 0.957 0.118 3143	1	1.6E+08	0.0104	0.902	0.115	962
3 1.6E+08 0.0125 1.091 0.126 2400 4 1.6E+08 0.0182 1.586 0.152 3493 5 1.6E+08 0.0145 1.261 0.136 4179 6 1.6E+08 0.0110 0.957 0.118 3143	2	1.6E+08	0.0207	1.803	0.163	1964
41.6E+080.01821.5860.152349351.6E+080.01451.2610.136417961.6E+080.01100.9570.1183143	3	1.6E+08	0.0125	1.091	0.126	2400
51.6E+080.01451.2610.136417961.6E+080.01100.9570.1183143	4	1.6E+08	0.0182	1.586	0.152	3493
6 1.6E+08 0.0110 0.957 0.118 3143	5	1.6E+08	0.0145	1.261	0.136	4179
	6	1.6E+08	0.0110	0.957	0.118	3143

YM6F

Ebene	E	F	g	đ	S0
1	1.6E+08	0.0077	0.668	0.099	1478
2	1.6E+08	0.0076	0.662	0.098	1456
3	1.6E+08	0.0059	0.516	0.087	2325
4	1.6E+08	0.0077	0.669	0.099	2957
5	1.6E+08	0.0068	0.593	0.093	4013
6	1.6E+08	0.0052	0.452	0.081	2991

YN6M

Ebene	E	F	g	d	S0
1	1.6E+08	0.0336	2.926	0.207	1588
2	1.6E+08	0.0774	6.736	0.314	3662
3	1.6E+08	0.0344	2.996	0.209	3330
4	1.6E+08	0.0492	4.284	0.250	4747
5	1.6E+08	0.0352	3.059	0.211	5131
6	1.6E+08	0.0254	2.209	0.180	3680

Lehrstuhl für Stahl- und Leichtmetallbau, Universität Karlsruhe

,

ANLAGE 9

Seilwerte:					
YN6F					
Ebene	E	F	g	d	SO
1 2 3 4 5 6	1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0193 0.0166 0.0130 0.0149 0.0139 0.0098	$1.676 \\ 1.442 \\ 1.135 \\ 1.299 \\ 1.206 \\ 0.855$	0.157 0.145 0.129 0.138 0.133 0.112	1856 1606 2546 2917 4074 2864
ZH6S					
Ebene	E	F	g	d	S0
1 2 3 4 5 6	1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08	$\begin{array}{c} 0.0215\\ 0.1151\\ 0.0315\\ 0.0556\\ 0.0317\\ 0.0223\end{array}$	$1.874 \\10.014 \\2.742 \\4.838 \\2.762 \\1.943$	$\begin{array}{c} 0.166 \\ 0.383 \\ 0.200 \\ 0.266 \\ 0.201 \\ 0.169 \end{array}$	1932 10279 5854 10262 8913 6308
ZH6M					
Ebene	E	F	g	đ	S0
1 2 3 4 5 6	1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0092 0.0169 0.0102 0.0149 0.0121 0.0089	0.802 1.471 0.889 1.298 1.056 0.773	$\begin{array}{c} 0.108 \\ 0.147 \\ 0.114 \\ 0.138 \\ 0.124 \\ 0.106 \end{array}$	1264 2366 2966 4341 5310 3861
ZH6F					
Ebene	E	F	g	d	S0
1 2 3 4 5 6	1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08	$\begin{array}{c} 0.0064 \\ 0.0073 \\ 0.0048 \\ 0.0069 \\ 0.0061 \\ 0.0045 \end{array}$	0.554 0.632 0.418 0.602 0.527 0.395	0.090 0.096 0.078 0.094 0.088 0.076	1844 2045 2787 3949 5222 3885

Lehrstuhl für Stahl- und Leichtmetallbau, Universität Karlsruhe

.

.

Seilwerte:

Ebene	Е	F	g	d	SO
1	1.6E+08	0.0397	3.451	0.225	2420
2	1.6E+08	0.2179	18.956	0.527	13396
3	1.6E+08	0.0575	5.006	0.271	7309
4	1.6E+08	0.1011	8.799	0.359	12863
5	1.6E + 08	0.0534	4.645	0.261	10352
6	1.6E+08	0.0364	3.164	0.215	7033

ZM6M

Ebene	E	F	g	d	S0
1	1.6E+08	0.0118	1.030	0.123	1102
2	1.6E+08	0.0232	2.020	0.172	2173
3	1.6E+08	0.0142	1.238	0.135	2723
4	1.6E+08	0.0208	1.808	0.163	3971
5	1.6E+08	0.0168	1.461	0.146	4848
6	1.6E+08	0.0123	1.066	0.125	3542

ZM6F

Ebene	E	F	g	d	S0
1	1.6E+08	0.0086	0.747	0.105	1664
2	1.6E+08	0.0093	0.811	0.109	1796
3	1.6E+08	0.0066	0.575	0.092	2576
4	1.6E+08	0.0091	0.790	0.107	3539
5	1.6E+08	0.0080	0.697	0.101	4724
6	1.6E+08	0.0059	0.516	0.087	3479

ZN6M

Ebene	E	F	g	d	S0
1	1.6E+08	0.0372	3.236	0.218	1756
2	1.6E+08	0.0802	6.979	0.320	3794
3	1.6E+08	0.0392	3.414	0.223	3796
4	1.6E+08	0.0537	4.673	0.261	5199
5	1.6E+08	0.0398	3.466	0.225	5818
6	1.6E+08	0.0278	2.418	0.188	4073

Lehrstuhl für Stahl- und Leichtmetallbau, Universität Karlsruhe

¢

ANLAGE 11

Seilwerte:					
ZN6F					
Eben	e E	F	g	d	S0
1 2 3 4 5 6	1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0214 0.0200 0.0143 0.0180 0.0160 0.0113	$ \begin{array}{r} 1.863 \\ 1.737 \\ 1.246 \\ 1.568 \\ 1.391 \\ 0.985 \end{array} $	0.165 0.160 0.135 0.151 0.143 0.120	2067 1933 2803 3510 4692 3339
Geom	etrie: WH4M				
Eben	e E	F	g	d	S0
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0008 0.0010 0.0009 0.0008	0.068 0.090 0.076 0.073	0.032 0.036 0.033 0.033	112 149 257 239
Geom	etrie: WH4F				
Eben	e E	F	g	d	S0
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0007 0.0005 0.0005 0.0004	0.059 0.047 0.048 0.034	0.030 0.026 0.026 0.022	201 155 323 230
Geom	etrie: WM4S				
Ebene	e E	F	g	d	SO
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0013 0.0026 0.0020 0.0020	0.115 0.223 0.171 0.178	0.041 0.057 0.050 0.051	85 165 256 268
Geome	etrie: WM4M				
Ebene	e E	F	g	d	SO
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0010 0.0013 0.0011 0.0010	0.084 0.111 0.097 0.088	0.0 35 0.040 0.038 0.036	92 124 219 194

.

•

.

,

Seilwerte:

WM4F					
Ebene	E	F	g	đ	S0
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0009 0.0007 0.0007 0.0005	0.079 0.059 0.063 0.044	0.034 0.029 0.030 0.025	177 131 280 201
WN4M					
Ebene	E	F	g	d	S0
$1\\2\\3\\4$	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0021 0.0028 0.0022 0.0019	0.187 0.247 0.189 0.169	0.052 0.060 0.053 0.050	105 140 214 191
WN4F					
Ebene	Е	F	g	d	S0
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0021 0.0014 0.0014 0.0009	0.180 0.118 0.119 0.080	0.051 0.042 0.042 0.034	204 132 269 180
MH4S					
Ebene	E	F	g	d	SO
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0033 0.0077 0.0051 0.0050	$0.291 \\ 0.671 \\ 0.442 \\ 0.432$	0.065 0.099 0.080 0.079	314 740 980 963
MH4M					
Ebene	E	F	g	d	S0
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0023 0.0034 0.0028 0.0024	0.201 0.295 0.240 0.213	0.054 0.066 0.059 0.056	326 490 795 715

,

Seilwerte:					
MH4F					
Ebene	E	F	g	d	SO
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0020 0.0017 0.0016 0.0012	0.170 0.149 0.142 0.107	$0.050 \\ 0.047 \\ 0.046 \\ 0.040$	571 498 964 718
MM4S					
Ebene	E	F	g	d	S0
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0041 0.0105 0.0067 0.0066	0.360 0.915 0.579 0.577	0.073 0.116 0.092 0.092	$262 \\ 674 \\ 863 \\ 861$
MM4M					
Ebene	E	F	g	d	S0
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0029 0.0042 0.0036 0.0031	0.248 0.369 0.309 0.273	$0.060 \\ 0.073 \\ 0.067 \\ 0.063$	272 410 684 612
MM4F					
Ebene	E	F	g	d	S0
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0025 0.0022 0.0022 0.0016	0.222 0.195 0.189 0.142	0.057 0.053 0.053 0.046	501 431 854 634
MN4S					
Ebene	E	F	g	d	SO
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0134 0.0424 0.0182 0.0184	1.170 3.692 1.583 1.602	0.131 0.233 0.152 0.153	432 1364 1187 1203

	Α	Ν	LA	GE	14
--	---	---	----	----	----

.

~		٠	•							
S	A	1	1	w	ρ	r	T.	ρ	٠	
~	~	А.	٠		÷		e a	C	٠	

MN4M					
Ebene	Е	F	g	d	S 0
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0068 0.0109 0.0074 0.0066	0.595 0.947 0.642 0.575	0.093 0.118 0.097 0.092	331 530 726 648
MN4F					
Ebene	Е	F	g	d	SO
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0062 0.0044 0.0044 0.0030	$0.540 \\ 0.386 \\ 0.381 \\ 0.265$	0.089 0.075 0.075 0.062	610 433 863 598
SH4S					
Ebene	E	F	g	d	S0
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0067 0.0165 0.0100 0.0092	0.579 1.437 0.872 0.799	0.092 0.145 0.113 0.108	616 1563 1923 1778
SH4M					
Ebene	Е	F	g	d	S0
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0041 0.0065 0.0051 0.0044	$0.355 \\ 0.569 \\ 0.440 \\ 0.385$	0.072 0.091 0.080 0.075	583 933 1453 1273
SH4F					
Ebene	E	F	g	d	S0
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0034 0.0031 0.0030 0.0022	0.298 0.268 0.258 0.192	0.066 0.063 0.061 0.053	1002 896 1747 1282

Lehrstuhl für Stahl- und Leichtmetallbau, Universität Karlsruhe

.

1

Seilwerte:						
SM4S						
Ebene 1 2 3 4	E 1.6E+08 1.6E+08 1.6E+08 1.6E+08	F 0.0083 0.0232 0.0137 0.0127	g 0.724 2.021 1.192 1.107	d 0.103 0.172 0.132 0.127	S0 528 1467 1771 1644	
SM4M						
Ebene	E	F	g	d	S0	
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0051 0.0083 0.0065 0.0057	0.446 0.724 0.569 0.500	0.081 0.103 0.091 0.086	493 798 1271 1120	
SM4F						
Ebene	E	F	g	d	S0	
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0046 0.0040 0.0040 0.0029	$0.396 \\ 0.345 \\ 0.344 \\ 0.251$	0.076 0.071 0.071 0.061	892 771 1550 1137	
SN4S						
Ebene	E	F	g	d	SO	
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0352 0.1204 0.0443 0.0421	3.065 10.478 3.856 3.664	0.212 0.392 0.237 0.231	1111 3826 2854 2714	
SN4M						
Ebene	E	F	g	d	SO	
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0131 0.0226 0.0146 0.0126	1.140 1.967 1.272 1.097	0.129 0.170 0.136 0.127	631 1090 1419 1229	

,

Sei	1 W	er	te	•
-----	-----	----	----	---

SN4F					
Ebene	Е	F	g	d	S0
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0109 0.0083 0.0081 0.0056	0.945 0.720 0.701 0.483	0.118 0.103 0.101 0.084	$1062 \\ 804 \\ 1574 \\ 1093$
XH4S					
Ebene	E	F	g	d	S0
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0090 0.0240 0.0137 0.0126	0.786 2.090 1.192 1.094	0.107 0.175 0.132 0.126	842 2239 2607 2355
XH4M					
Ebene	E	F	g	d	S0
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0058 0.0092 0.0070 0.0059	0.506 0.798 0.610 0.517	0.086 0.108 0.094 0.087	811 1285 2016 1721
XH4F					
Ebene	E	F	g	d	S0
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0048 0.0042 0.0042 0.0030	$0.417 \\ 0.364 \\ 0.361 \\ 0.260$	0.078 0.073 0.073 0.062	1398 1220 2435 1752
XM4S					
Ebene	E	F	g	d	S 0
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0118 0.0341 0.0191 0.0172	1.024 2.966 1.663 1.498	0.122 0.208 0.156 0.148	727 2129 2448 2203

.

Seilwerte:						
XM4M						
Ebene	Ε	F	g	đ	S0	
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0072 0.0117 0.0090 0.0077	0.629 1.016 0.787 0.672	0.096 0.122 0.107 0.099	671 1099 1752 1505	
XM4F						
Ebene	Е	F	g	d	S0	
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0063 0.0055 0.0055 0.0040	$0.548 \\ 0.479 \\ 0.480 \\ 0.346$	0.090 0.084 0.084 0.071	1221 1063 2153 1553	
XN4S						
Ebene	E	F	g	d	SO	
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0530 0.1831 0.0648 0.0585	$\begin{array}{r} 4.614 \\ 15.931 \\ 5.640 \\ 5.086 \end{array}$	$0.260 \\ 0.483 \\ 0.287 \\ 0.273$	$1649 \\ 5715 \\ 4143 \\ 3736$	
XN4M						
Ebene	E	F	g	d	SO	
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0183 0.0318 0.0205 0.0171	1.591 2.771 1.784 1.487	0.153 0.201 0.162 0.147	873 1521 1998 1662	
XN4F						
Ebene	Е	F	g	d	S0	
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0149 0.0116 0.0111 0.0077	1.294 1.006 0.968 0.671	0.138 0.121 0.119 0.099	1450 1119 2189 1510	

Lehrstuhl für Stahl- und Leichtmetallbau, Universität Karlsruhe

.

,

.

Seilwerte:	

Y	H4	1S

11110					
Ebene	E	F	g	d	S0
$1\\2\\3\\4$	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0115 0.0304 0.0168 0.0150	1.000 2.646 1.466 1.302	0.121 0.197 0.146 0.138	1034 2776 3234 2880
YH4M					
Ebene	E	F	g	d	SO
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0070 0.0112 0.0084 0.0072	0.611 0.971 0.735 0.623	0.095 0.119 0.104 0.095	992 1569 2433 2078
YH4F					
Ebene	E	F	g	d	SO
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0058 0.0051 0.0050 0.0036	$0.504 \\ 0.441 \\ 0.436 \\ 0.315$	0.086 0.080 0.080 0.088	1651 1461 2920 2107
YM4S					
Ebene	E	F	g	d	S 0
$\begin{array}{c}1\\2\\3\\4\end{array}$	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0147 0.0430 0.0238 0.0209	1.283 3.737 2.070 1.818	$0.137 \\ 0.234 \\ 0.174 \\ 0.163$	906 2659 3036 2662
YM4M					
Ebene 1 2 3 4	E 1.6E+08 1.6E+08 1.6E+08 1.6E+08	F 0.0088 0.0143 0.0109 0.0093	g 0.768 1.244 0.952 0.813	d 0.106 0.135 0.118 0.109	S0 810 1338 2118 1816

Lehrstuhl für Stahl- und Leichtmetallbau, Universität Karlsruhe

.

. •

,

.

.

Seilwerte:						
YM4I	.					
Eber 1 2 3 4	E 1.6E+08 1.6E+08 1.6E+08 1.6E+08	F 0.0075 0.0066 0.0066 0.0048	g 0.656 0.578 0.578 0.418	d 0.098 0.092 0.092 0.078	S0 1460 1283 2591 1878	
YN4S						
Eben 1 2 3 4	e E 1.6E+08 1.6E+08 1.6E+08 1.6E+08	F 0.0696 0.2397 0.0853 0.0723	g 6.052 20.851 7.419 6.291	d 0.298 0.552 0.329 0.303	S0 2146 7438 5424 4606	
YN4M	1					
Eben 1 2 3 4	e E 1.6E+08 1.6E+08 1.6E+08 1.6E+08	F 0.0224 0.0391 0.0256 0.0207	g 1.949 3.400 2.223 1.803	d 0.169 0.223 0.180 0.162	S0 1063 1855 2464 2009	
YN4F	N					
Eben	e E	F	g	d	S0	
$1 \\ 2 \\ 3 \\ 4$	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0178 0.0141 0.0134 0.0094	1.546 1.223 1.169 0.816	0.150 0.134 0.131 0.109	$ \begin{array}{r} 1727 \\ 1357 \\ 2639 \\ 1833 \\ \end{array} $	
ZH4S						
Eben	e E	F	g	d	S0	
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0133 0.0342 0.0193 0.0172	1.161 2.977 1.679 1.494	0.130 0.209 0.157 0.148	1191 3111 3673 3281	

,

Seilwe	rte:					
	ZH4M					
	Ebene	Е	F	g	d	S0
	$\frac{1}{2}$ $\frac{3}{4}$	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0079 0.0131 0.0097 0.0081	0.688 1.142 0.843 0.705	0.100 0.129 0.111 0.102	1089 1804 2816 2342
	ZH4F					
	Ebene	E	F	g	d	S0
	1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0066 0.0060 0.0060 0.0040	0.573 0.520 0.519 0.352	0.092 0.087 0.087 0.072	1882 1709 3480 2378
	ZM4S					
	Ebene	E	F	g	d	S0
	1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0171 0.0477 0.0270 0.0237	$1.484 \\ 4.147 \\ 2.347 \\ 2.059$	0.147 0.246 0.185 0.173	1031 2917 3424 2997
	ZM4M					
	Ebene	E	F	g	d	S0
	1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0101 0.0167 0.0127 0.0105	0.876 1.453 1.102 0.915	0.113 0.146 0.127 0.116	933 1554 2449 2029
	ZM4F					
	Ebene	Ε	F	g	d	SO
	1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0087 0.0078 0.0078 0.0054	0.760 0.677 0.681 0.473	0.105 0.100 0.100 0.083	1682 1495 3065 2124

Lehrstuhl für Stahl- und Leichtmetallbau, Universität Karlsruhe

,

,

Seilwerte:					
ZN4S					
Ebene	E	F	g	d	S0
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0738 0.2520 0.0946 0.0764	$\begin{array}{r} 6.418 \\ 21.923 \\ 8.234 \\ 6.649 \end{array}$	0.307 0.567 0.347 0.312	2253 7743 5996 4840
ZN4M					
Ebene	Ε	F	g	d	S0
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0254 0.0435 0.0296 0.0230	2.211 3.787 2.574 2.002	0.180 0.235 0.194 0.171	1202 2061 2851 2226
ZN4F					
Ebene	E	F	5	d	SO
1 2 3 4	1.6E+08 1.6E+08 1.6E+08 1.6E+08	0.0205 0.0164 0.0158 0.0107	1.786 1.428 1.378 0.928	0.162 0.145 0.142 0.116	1989 1580 3106 2082
WH2S					
Ebene	E	F	g	d	SO
1 2	1.6E+08 1.6E+08	0.0010 0.0014	0.084 0.122	$\begin{array}{c} 0.035\\ 0.042 \end{array}$	92 137
WH2M					
Ebene	E	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0008 0.0008	0.066 0.067	$\begin{array}{c} 0.031 \\ 0.031 \end{array}$	110 110
WH2F					
Ebene	Е	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0007 0.0004	$0.059 \\ 0.036$	0.029 0.023	199 122

,

,

WM2S					
Ebene	E	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0012 0.0018	$\begin{array}{c} 0.102 \\ 0.153 \end{array}$	0.039 0.047	75 113
WM2M					
Ebene	E	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0009 0.0009	0.080 0.081	0.034 0.035	89 90
WM2F					
Ebene	Е	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0009 0.0005	0.078 0.045	0.034 0.026	177 103
WN2S					
Ebene	E	F	g	d	S0
1 2	1.6E+08 1.6E+08	$0.0026 \\ 0.0046$	$0.227 \\ 0.404$	0.058 0.077	85 152
WN2M					
Ebene	E	F	g	d	S0
$\frac{1}{2}$	1.6E+08 1.6E+08	0.0020 0.0020	$\begin{array}{c} 0.172\\ 0.171\end{array}$	0.050 0.050	97 96
WN2F					
Ebene	Е	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0020 0.0010	0.178 0.087	0.051 0.036	202 98
MH2S					
Ebene	E	F	g	d	S0
$\frac{1}{2}$	1.6E+08 1.6E+08	0.0030 0.0042	0.259 0.362	0.062 0.073	286 401

,

•

ANLAGE 23

.

Seilwerte:					
MH2M					
Ebene	E	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0022 0.0022	0.195 0.193	0.053 0.053	320 324
MH2F					
Ebene	E	F	g	d	SO
1	1.6E+08 1.6E+08	0.0020 0.0012	$0.177 \\ 0.107$	0.051 0.040	596 362
MM2S					
Ebene	E	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0035 0.0053	0.303 0.457	0.067 0.082	224 336
MM2M					
Ebene	E	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0027 0.0027	$0.235 \\ 0.236$	0.059 0.059	260 265
MM2F					
Ebene	E	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0027 0.0015	0.233 0.135	0.058 0.044	525 303
MN2S					
Ebene	Е	F	g	d	S0
1 2	1.6E+08 1.6E+08	$0.0084 \\ 0.0160$	$0.735 \\ 1.392$	$\begin{array}{c} 0.104 \\ 0.143 \end{array}$	271 515
MN2M					
Ebene	E	F	g	đ	S0
$\frac{1}{2}$	1.6E+08 1.6E+08	0.0060 0.0061	$0.523 \\ 0.529$	0.088 0.088	$\frac{293}{294}$

.

,

Seilwerte:					
MN2F					
Ebene	E	F	g	d	SO
$\frac{1}{2}$	1.6E+08 1.6E+08	$0.0062 \\ 0.0031$	$0.543 \\ 0.269$	$0.089 \\ 0.063$	611 302
SH2S					
Ebene	Е	F	g	d	SO
$\frac{1}{2}$	1.6E+08 1.6E+08	$0.0055 \\ 0.0074$	$0.478 \\ 0.644$	0.084 0.097	524 698
SH2M					
Ebene	Е	F	g	d	S0
$\frac{1}{2}$	1.6E+08 1.6E+08	0.0040 0.0039	$0.351 \\ 0.340$	0.072 0.070	579 564
SH2F					
Ebene	E	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0036 0.0022	0.315 0.188	0.068 0.052	1028 623
SM2S					
Ebene	E	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0065 0.0092	0.566 0.803	0.091 0.108	413 587
SM2M					
Ebene	E	F	g	d	SO
1 2	1.6E+08 1.6E+08	0.0048 0.0048	$\begin{array}{c} 0.420 \\ 0.414 \end{array}$	0.079 0.078	467 457
SM2F					
Ebene	E	F	g	d	SO
$\frac{1}{2}$	1.6E+08 1.6E+08	0.0047 0.0027	$0.411 \\ 0.235$	0.078 0.059	927 530

Lehrstuhl für Stahl- und Leichtmetallbau, Universität Karlsruhe

,

c

Seilwerte:					
SN2S					
Ebene	E	F	g	d	SO
1 2	1.6E+08 1.6E+08	$0.0163 \\ 0.0310$	$\begin{array}{c} 1.414 \\ 2.695 \end{array}$	0.144 0.199	514 981
SN2M					
Ebene	E	F	g	d	SO
1 2	1.6E+08 1.6E+08	0.0110 0.0110	0.954 0.958	0.118 0.118	530 528
SN2F					
Ebene	E	F	g	d	SO
$\frac{1}{2}$	1.6E+08 1.6E+08	0.0112 0.0055	$0.975 \\ 0.479$	0.119 0.084	1091 539
XH2S					
Ebene	E	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0079 0.0099	0.690 0.863	0.101 0.112	743 904
XH2M					
Ebene	E	F	g	đ	SO
1 2	1.6E+08 1.6E+08	0.0057 0.0053	0.493 0.462	0.085 0.082	809 745
XH2F					
Ebene	E	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0050 0.0029	0.431 0.255	0.080 0.061	$\begin{array}{r}1438\\855\end{array}$
XM2S					
Ebene	E	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0092 0.0123	0.803 1.071	0.108 0.125	561 760

8

Seilwerte:					
XM2M					
Ebene	E	F	g	đ	S0
1 2	1.6E+08 1.6E+08	0.0068 0.0064	0.595 0.559	0.093 0.090	633 597
XM2F					
Ebene	Ε	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0066 0.0038	0.570 0.327	0.091 0.069	1275 730
XN2S					
Ebene	E	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0230 0.0413	2.003 3.597	0.171 0.229	716 1295
XN2M					
Ebene	E	F	g	d	S0
1 2	1.6E+08 1.6E+08	$0.0153 \\ 0.0148$	1.327 1.287	$\begin{array}{c} 0.140\\ 0.137\end{array}$	724 703
XN2F					
Ebene	Е	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0151 0.00 76	1.315 0.65 8	0.139 0.098	1473 732
YH2S					
There		n	-	d	50

SO E F g d Ebene 1 1.6E+08 0.0094 0.821 0.110 853 2 1.6E+08 0.0111 0.967 0.119 1025 YH2M E g d S0 Ebene F 1 1.6E+08 0.0069 0.605 0.094 958 2 1.6E+08 0.0061 0.531 0.088 846

,

.

Seilwerte:					
YH2F					
Ebene	E	F	g	đ	S0
1 2	1.6E+08 1.6E+08	0.0060 0.0035	0.522 0.305	0.087 0.067	1707 1004
YM2S					
Ebene	E	F	g	d	SO
1 2	1.6E+08 1.6E+08	0.0115 0.0147	$\begin{array}{c} 1.002\\ 1.278\end{array}$	$0.121 \\ 0.137$	690 891
YM2M					
Ebene	Е	F	g	d	S0
$\frac{1}{2}$	1.6E+08 1.6E+08	0.0086 0.0076	$0.749 \\ 0.660$	0.105 0.098	790 720
YM2F					
Ebene	Е	F	g	d	SO
$\frac{1}{2}$	1.6E+08 1.6E+08	0.0079 0.0045	$0.684 \\ 0.389$	0.100 0.075	$\frac{1513}{853}$
YN2S					
Ebene	Е	F	g	d	SO
1 2	1.6E+08 1.6E+08	$0.0282 \\ 0.0490$	$\begin{array}{c} 2.456\\ 4.261\end{array}$	$0.190 \\ 0.250$	870 1521
YN2M					
Ebene	E	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0185 0.0175	$1.607 \\ 1.523$	0.153 0.149	871 827
YN2F					
Ebene	E	F	g	d	S0
1 2	1.6E+08 1.6E+08	0.0181 0.0090	1.576 0.787	0.152 0.107	1761 872

Lehrstuhl für Stahl- und Leichtmetallbau, Universität Karlsruhe

.

.

Seilwerte:						
ZH2S						
Ebene	E	F	g	d	S 0	
1 2	1.6E+08 1.6E+08	$0.0112 \\ 0.0126$	$0.977 \\ 1.096$	0.120 0.127	$1005\\1159$	
ZH2M						
Ebene	E	F	g	d	S0	
1 2	1.6E+08 1.6E+08	0.0079 0.0070	0.690 0.605	0.101 0.094	1107 966	
ZH2F						
Ebene	E	F	g	d	S0	
1 2	1.6E+08 1.6E+08	0.0070 0.0041	$0.609 \\ 0.355$	0.095 0.072	1988 1160	
ZM2S						
Ebene	Е	F	g	d	S0	
1 2	1.6E+08 1.6E+08	$0.0135 \\ 0.0163$	$\begin{array}{c} 1.171\\ 1.418\end{array}$	$\begin{array}{c} 0.131 \\ 0.144 \end{array}$	803 989	
ZM2M						
Ebene	Е	F	g	d	S0	
1 2	1.6E+08 1.6E+08	0.0098 0.0087	0.854 0.755	0.112 0.105	901 807	
ZM2F						
Ebene	E	F	g	d	S 0	
1 2	1.6E+08 1.6E+08	0.0092 0.0052	0.799 0.457	0.108 0.082	1757 987	
ZN2S						
Ebene	E	F	g	d	S0	
1 2	1.6E+08 1.6E+08	0.0328 0.0542	$2.853 \\ 4.712$	$0.204 \\ 0.263$	1001 1667	

Lehrstuhl für Stahl- und Leichtmetallbau, Universität Karlsruhe

,

ANLAGE 29

٠

.

.

Seilwe	erte:					
	ZN2M					
	Ebene	E	F	g	d	S0
	1 2	1.6E+08 1.6E+08	0.0215 0.0199	1.872 1.735	0.166 0.159	1009 936
	ZN2F					
	Ebene	E	F	g	d	S0
	$\frac{1}{2}$	1.6E+08 1.6E+08	0.0217 0.0106	1.890 0.919	0.166 0.116	2091 1022

Lehrstuhl für Stahl- und Leichtmetallbau, Universität Karlsruhe

.

ANLAGE 30

Zuordnung der Punkte der Sannungsausgabe zur Mastgeometrie: (siehe Anlagen 31 bis 39)

(Bei 4-fach abgespannten Masten werden die Spannungen dem Bild entsprechend für die Punkte 1 bis 16 ausgegeben)

%]

Eckstielspannungen [N/mm²] aus symmetrischer und unsymmetrischer Vereisung:

MH4F

Eisdicke 12 cm	1			
Punkt	max.Spannung	symm./	'unsymm. vereist	delta
1	450.3	27 /	438.66	-2.58
2	450.3	29 /	438.69	-2.58
3	333.	54 /	351.54	5.40
4	330.5	27 /	352.88	6.85
5	253.	98 /	271.22	6.79
6	253.	98 /	271.22	6.79
7	388.	40 /	404.41	4.12
8	391.3	22 /	405.32	3.60
9	174.9	96 /	254.18	45.28
10	174.	96 /	254.19	45.28
11	256.	36 /	244.69	-4.55
12	253.	91 /	238.79	-5.95
13	184.	49 /	181.24	-1.76
14	184.	50 /	181.25	-1.76
15	95.8	89 /	101.14	5.48
16	97.1	71 /	99.22	1.55

MM4F

Eisdicke 12	cm	,		
Punkt	max.Spannung	symm./	unsymm. vereist	delta [%]
1	452.	.00 /	444.46	-1.67
2	452.	01 /	444.53	-1.65
3	346.	95 /	356.57	2.77
4	342.	89 /	357.37	4.22
5	243.	46 /	280.60	15.26
6	243.	46 /	280.60	15.26
7	371.	09 /	391.03	5.37
8	372.	61 /	390.73	4.86
9	175.	56 /	253.70	44.51
10	175.	56 /	253.70	44.51
11	241.	83 /	234.91	-2.86
12	237.	11 /	226.30	-4.56
13	190.	.04 /	188.14	-1.00
14	190.	04 /	188.16	-0.99
15	94.	10 /	100.52	6.82
16	93.	04 /	95.55	2.70

.

MN4F				
Elsalcke 12	cm			
Punkt	max.Spannung	symm	./unsymm. ve	reist delta [%]
1	452	.05 /	457.55	1.22
2	452	06 /	457.62	1.23
2	105	05 /	400.02	1.20
3	400.	.40 /	400.92	-1.07
4	395.	.65 /	396.90	0.32
5	267.	.34 /	295.31	10.46
6	267.	.34 /	295.30	10.46
7	340	.20 /	367.31	7.97
8	336.	.70 /	362.10	7.54
9	233.	.61 /	279.68	19.72
10	233	.61 /	279.68	19.72
11	260	.44 /	247.51	-4.96
12	247	.08 /	238.53	-3.46
13	193	.03 /	191.37	-0.86
14	193	.03 /	191.38	-0.85
15	97.	.52 /	103.83	6.47
16	88.	.67 /	91.60	3.30

SH4F

Eisdicke 24 cm

Punkt	max.Spannung	sym	m./u	insymm. vereist	delta	[%]
1	612	.74	/	616.84	0.67	
2	612	.76	/	616.90	0.68	
3	567	.76	/	527.65	-7.06	
4	545	.47	/	522.87	-4.14	
5	501	.17	/	482.41	-3.74	
6	501	.17	1	482.41	-3.74	
7	562	.04	/	609.47	8.44	
8	549	.28	/	594.54	8.24	
9	347	.75	/	401.03	15.32	
10	347	.75	/	401.07	15.33	
11	355	.43	/	374.03	5.23	
12	329	.59	/	337.38	2.36	
13	214	.23	1	221.18	3.24	
14	214	.23	1	221.19	3.25	
15	116	.16	1	127.95	10.15	
16	95	.34	/	100.13	5.02	

Lehrstuhl für Stahl- und Leichtmetallbau, Universität Karlsruhe

.

SN4F				
Elsdicke 24	cm			
Punkt	max.Spannung	symm.	/unsymm. vereist	delta [%]
1	667	.70 /	675.29	1.14
2	667	.70 /	675.35	1.15
3	626	.61 /	589.19	-5.97
4	599	.68 /	575.80	-3.98
5	481	.74 /	475.06	-1.39
6	481.	.74 /	475.06	-1.39
7	515.	.24 /	577.64	12.11
8	490.	.94 /	550.95	12.22
9	373.	.20 /	409.17	9.64
10	373.	.20 /	409.17	9.64
11	357	.33 /	338.78	-5.19
12	308.	.88 /	289.25	-6.36
13	241.	.88 /	233.14	-3.61
14	241.	.88 /	233.17	-3.60
15	126.	.03 /	137.67	9.24
16	83.	.06 /	89.52	7.78

YM6F

Eisdicke 24 cm

Punkt	max.Spannung	syn	nm./u	insymm.	vereist	delta	[%]
1	887	00	1	848 5	7	-4 33	
2 2	007	00	1	040.0		4.00	
<u>ث</u> 0	007	.01	1,	040.0	0	-4.02	
3	830	.03	1,	704.0	9	-8.01	
4	818.	.49	1	/ 50.2	:4	-1.01	
5	736	.93	1	702.6	6	-4.65	
6	736	.94	/	702.7	1	-4.64	
7	754.	.22	/	761.7	'8	1.00	
8	742.	.59	1	749.5	0	0.93	
9	623	.47	1	585.0	3	-6.17	
10	623	.47	1	585.1	5	-6.15	
11	618	.40	/	564.7	7	-8.67	
12	589	.99	1	555.4	2	-5.86	
13	498	.62	/	499.0	2	0.08	
14	498	.63	1	499.0	2	0.08	
15	538	.84	/	586.9	2	8.92	
16	514	.47	1	558.4	6	8.55	
17	345	.30	/	390.2	2	13.01	
18	345.	.30	1	390.2	3	13.01	
19	322	.39	/	356.3	1	10.52	
20	284.	92	1	310.3	5	8.93	
21	219.	68	1	225.7	9	2.78	
22	219.	69		225.8	0	2.78	
23	112	36	1	115.2	7	2.59	
21	60	92	1	75.0	9	7 30	
₩ -2	03.	5 6.0	1	10.0	5	1.03	
.

,

ZH6F					
Eisdicke 24	cm			dalen	[0/]
Punkt	max.Spannung	symm./uns	symm. vereist	dena	ניי) ניין
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\end{array} $	$\begin{array}{c} 764\\ 764\\ 725\\ 712\\ 655\\ 655\\ 655\\ 684\\ 677\\ 557\\ 557\\ 557\\ 537\\ 516\\ 435\\ 435\\ 479\\ 463\\ 299\\ 300\\ 287\\ 260\\ 174\\ 174\\ 174\\ 93\\ 60\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	738.92 739.00 674.63 670.30 634.66 634.72 689.00 681.56 545.63 545.73 507.76 479.52 438.97 439.03 520.57 501.66 337.44 337.53 319.50 285.61 188.64 188.64 93.68 63.62	$\begin{array}{c} -3.38\\ -3.37\\ -7.00\\ -5.88\\ -3.15\\ -3.14\\ 0.65\\ 0.57\\ -2.17\\ -2.16\\ -5.50\\ -7.22\\ 0.86\\ 0.87\\ 8.59\\ 8.21\\ 12.48\\ 12.51\\ 10.99\\ 9.65\\ 7.84\\ 7.83\\ -0.14\\ 5.63\end{array}$	
ZM6F Eisdicke 24	cm				
Punkt	max.Spannung	symm./uns	symm. vereist	delta	[%]
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\end{array} $	$\begin{array}{c} 786\\ 786\\ 744\\ 729\\ 665\\ 665\\ 684\\ 675\\ 562\\ 562\\ 544\\ 521\\ 440\\ 440\\ 475\\ 454\\ 296\\ 289\\ 256\\ 181\\ 181\\ 98\\ 58\end{array}$.03 / .03 / .12 / .38 / .38 / .38 / .03 / .03 / .02 / .02 / .02 / .73 / .41 / .43 / .43 / .43 / .49 / .50 / .19 / .08 / .93 / .94 / .44 / .75 /	757.43 757.51 691.17 684.08 642.70 642.75 692.91 683.80 544.75 544.85 508.31 483.70 440.79 440.79 519.71 496.57 337.30 327.	$\begin{array}{c} -3.64\\ -3.63\\ -7.12\\ -6.21\\ -3.41\\ -3.40\\ 1.30\\ 1.29\\ -3.07\\ -3.06\\ -6.69\\ -7.23\\ 0.08\\ 0.07\\ 9.34\\ 9.23\\ 13.76\\ 13.76\\ 10.67\\ 9.64\\ 5.07\\ -1.51\\ 6.16\end{array}$	

ANLAGE 35

.

XH4F					
Eisdicke 24	cm				
Punkt	max.Spannung	symm.	/unsymm.	vereist delta	[%]
1	507	.17 /	500.2	7 -1.36	
2	507	.20 /	500.3	7 -1.35	
3	488	.71 /	457.8	1 -6.32	
4	475	.97 /	454.5	6 -4.50	
5	391	.05 /	398.4	4 1.89	
6	391	.06 /	398.4	9 1.90	
7	436	.91 /	480.7	9 10.04	
8	430	.23 /	471.2	6 9.54	
9	273	.15 /	316.3	8 15.83	
10	273	.17 /	316.3	8 15.82	
11	284	.63 /	302.1	3 6.15	
12	263	.22 /	273.2	4 3.81	
13	172	.88 /	181.1	1 4.76	
14	172	.89 /	181.1	2 4.76	
15	85.	.84 /	97.0	1 13.01	
16	68.	.35 /	73.1	1 6.96	
XM4F					
Eisdicke 24	cm				

Punkt	max.Spannung	sym	m./uns	ymm.	vereist	delta	[%]
1	525	96	1	519.0	3	-1.32	
2	525.	97	1	519.1	2	-1.30	
3	491.	97	/	465.0	6	-5.47	
4	477.	86	/	460.9	3	-3.54	
5	388.	02	/	392.7	2	1.21	
6	388.	02	/	392.7	7	1.22	
7	427.	81	/	476.5	9	11.40	
8	418.	62	/	465.0	6	11.09	
9	278.	79	/	322.2	1	15.57	
10	278.	79	/	322.2	2	15.58	
11	280.	01	/	290.3	6	3.70	
12	253.	78	/	256.6	5	1.13	
13	182.	16	/	180.9	2	-0.68	
14	182.	16	/	180.9	2	-0.68	
15	88.	66	/	99.1	5	11.83	
16	66.	07	/	70.8	4	7.22	

.

XN4F					
Eisdicke 24	cm				
Punkt	max.Spannung	sym	./	unsymm. vereist	delta [%]
1	569	.12	/	566.91	-0.39
2	569	.12	1	567.00	-0.37
3	541	.16	/	508.78	-5.98
4	518	.59	/	497.76	-4.02
5	436	.18	/	417.65	-4.25
6	436	.18	/	417.65	-4.25
7	430	.64	/	485.36	12.71
8	411	.79	/	465.16	12.96
9	326	.43	1	348.54	6.77
10	326	.43	/	348.54	6.77
11	295	.28	/	291.05	-1.43
12	253	.65	/	242.27	-4.49
13	198	.74	/	188.13	-5.34
14	198	.75	/	188.13	-5.34
15	100	.31	/	108.64	8.30
16	62	.99	1	67.75	7.56
YH4F					
Eisdicke 24	cm				
Punkt	max.Spannung	sym	.m./	unsymm. vereist	delta [%]
1	503	57	/	487 98	-3.10
1	503	50	/	488.07	-3.08
2	.102	18	1	468 51	-4.81
о Л	492	01	1	452 59	-5.71
5	394	70	',	404.17	2 40
6	394	71	1	404.24	2.41
7	422	51	'/	461.83	9.31
8	416	20	,	453.80	9.03
9	272	06	,	303.88	11.70
10	272	.08	1	303.88	11.69
11	272	.63		291.15	6.79
12	250	.20		262.87	5.06
13	165	.56	,	171.30	3.47
14	165	.57		171.31	3.47
15	89	.76	1	93.64	4.32
16	64	.05	1	67.57	5.50

Lehrstuhl für Stahl- und Leichtmetallbau, Universität Karlsruhe

ANLAGE 37

BERICHT NR.: 890556

YM4F				
Eisdicke 24	cm			
Punkt	max.Spannung	symm./u	ınsymm. verei	st delta [%]
1	521	.75 /	506 44	-2.93
2	521	.75 /	506.53	-2.92
3	494	.53 /	466.23	-5.72
4	480	.62 /	456.29	-5.06
5	395	.16 /	399.39	1.07
6	395	.19 /	399.46	1.08
7	415	.49 /	459.70	10.64
8	406	.59 /	449.66	10.59
9	281	.56 /	312.12	10.85
10	281	.59 /	312.13	10.85
11	269	.72 /	283.31	5.04
12	242	.80 /	250.52	3.18
13	174	.44 /	173.12	-0.76
14	174	.45 /	173.12	-0.76
15	93	.13 /	95.76	2.82
16	62	.44 /	66.05	5.78

YN4F

Eisdicke 24	cm			
Punkt	max.Spannung	symm./	'unsymm. ve <mark>r</mark> eist	delta [%]
1	567.3	32 /	557.36	-1.76
2	567.3	32 /	557.45	-1.74
3	539.1	17 /	501.82	-6.93
4	516.9	90 /	490.25	-5.16
5	444.0	06 /	425.08	-4.27
6	444.(06 /	425.09	-4.27
7	422.6	69 /	474.24	12.20
8	403.1	73 /	455.43	12.81
9	325.8	85 /	342.18	5.01
10	325.8	86 /	342.19	5.01
11	285.4	40 /	287.96	0.90
12	243.1	19 /	240.15	-1.25
13	192.5	29 /	183.98	-4.32
14	192.3	29 /	183.98	-4.32
15	106.1	19 /	105.02	-1.10
16	60.1	15 /	63.92	6.27

•

,

ZH4F					
Eisdicke 24	cm				
Punkt	max.Spannung	symm.,	′unsymm. v	ereist delta [%)]
1	454	.56 /	434.65	-4.38	
2	454	.63 /	434.73	-4.38	
3	441	.92 /	429.91	-2.72	
4	431	.95 /	416.81	-3.51	
5	358	.86 /	372.22	3.72	
6	358.	.90 /	372.29	3.73	
7	377.	.37 /	414.58	9.86	
8	372.	.87 /	409.11	9.72	
9	252	.29 /	283.41	12.34	
10	252	.33 /	283.49	12.35	
11	246	.04 /	268.69	9.21	
12	226	.74 /	245.14	8.12	
13	138	.55 /	148.83	7.42	
14	138	.57 /	148.84	7.41	
15	77.	.90 /	79.07	1.50	
16	52.	.01 /	54.41	4.61	

ZM4F

Eisdicke 24	cm			
Punkt	max.Spannung	symm./	unsymm. vereis	t delta [%]
1	468.	.44 /	449.15	-4.12
2	468.	.47 /	449.23	-4.11
3	445.	57 /	428.98	-3.72
4	434.	11 /	414.30	-4.56
5	358.	.96 /	367.90	2.49
6	358.	.97 /	367.96	2.50
7	369.	07 /	410.38	11.19
8	362.	26 /	403.20	11.30
9	252.	84 /	280.60	10.98
10	252.	85 /	280.60	10.97
11	238.	40 /	257.40	7.97
12	215.	29 /	229.99	6.83
13	149.	32 /	153.14	2.56
14	149.	33 /	153.15	2.56
15	81.	30 /	81.33	0.04
16	50.	88 /	53.34	4.83

ZN45				
Eisdicke 24	cm			
Punkt	max.Spannung	symm	./unsymm. ve <mark>r</mark> eist	delta [%]
1	800.	26 /	766.42	-4.23
2	800.	27 /	766.44	-4.23
3	750.	75 /	722.89	-3.71
4	728.	02 /	712.84	-2.09
5	682.	45 /	673.20	-1.36
6	682.	45 /	673.20	-1.36
7	634.	30 /	626.09	-1.29
8	457.	51 /	466.86	2.04
9	442.	55 /	438.28	-0.96
10	442.	.58 /	438.30	-0.97
11	370.	.14 /	392.50	6.04
12	306.	35 /	337.01	10.01
13	234.	.93 /	231.85	-1.31
14	234.	.93 /	231.85	-1.31
15	197.	95 /	185.33	-6.38
16	52.	25 /	54.34	4.00
7N4F				
Eisdicke 24	cm			
Dibdicite #4	CIII			
Punkt	max Spannung	symm	/unsymm. vereist	delta [%]
Punkt	max.Spannung	symm	./unsymm. vereist	delta [%]
Punkt 1	max.Spannung 510.	symm 95 /	./unsymm. vereist 495.77	delta [%] -2.97
Punkt 1 2	max.Spannung 510. 510.	symm 95 / 95 /	./unsymm. vereist 495.77 495.85	delta [%] -2.97 -2.96
Punkt 1 2 3	max.Spannung 510. 510. 481.	symm 95 / 95 / 07 /	./unsymm. vereist 495.77 495.85 448.49	delta [%] -2.97 -2.96 -6.77
Punkt 1 2 3 4	max.Spannung 510. 510. 481. 462.	symm 95 / 95 / 07 / 07 /	./unsymm. vereist 495.77 495.85 448.49 432.64	delta [%] -2.97 -2.96 -6.77 -6.37
Punkt 1 2 3 4 5	max.Spannung 510. 510. 481. 462. 401.	symm 95 / 95 / 07 / 07 / 17 /	./unsymm. vereist 495.77 495.85 448.49 432.64 393.72	delta [%] -2.97 -2.96 -6.77 -6.37 -1.86
Punkt 1 2 3 4 5 6	max.Spannung 510. 510. 481. 462. 401. 401.	symm 95 / 95 / 07 / 17 / 18 /	./unsymm. vereist 495.77 495.85 448.49 432.64 393.72 393.73	delta [%] -2.97 -2.96 -6.77 -6.37 -1.86 -1.86
Punkt 1 2 3 4 5 6 7	max.Spannung 510. 510. 481. 462. 401. 401. 373.	symm 95 / 95 / 07 / 17 / 18 / 82 /	./unsymm. vereist 495.77 495.85 448.49 432.64 393.72 393.73 422.82	delta [%] -2.97 -2.96 -6.77 -6.37 -1.86 -1.86 13.11
Punkt 1 2 3 4 5 6 7 8	max.Spannung 510. 510. 481. 462. 401. 401. 373. 357.	symm 95 / 95 / 07 / 17 / 18 / 82 / 92 /	./unsymm. vereist 495.77 495.85 448.49 432.64 393.72 393.73 422.82 407.95	delta [%] -2.97 -2.96 -6.77 -6.37 -1.86 -1.86 13.11 13.98
Punkt 1 2 3 4 5 6 7 8 9	max.Spannung 510. 510. 481. 462. 401. 401. 373. 357. 290.	symm 95 / 95 / 07 / 17 / 18 / 82 / 92 / 50 /	./unsymm. vereist 495.77 495.85 448.49 432.64 393.72 393.73 422.82 407.95 309.52	delta [%] -2.97 -2.96 -6.77 -6.37 -1.86 -1.86 13.11 13.98 6.55
Punkt 1 2 3 4 5 6 7 8 9 10	max.Spannung 510. 510. 481. 462. 401. 401. 373. 357. 290. 290.	symm 95 / 95 / 07 / 17 / 18 / 82 / 92 / 50 / 51 /	./unsymm. vereist 495.77 495.85 448.49 432.64 393.72 393.73 422.82 407.95 309.52 309.52	delta [%] -2.97 -2.96 -6.77 -6.37 -1.86 -1.86 13.11 13.98 6.55 6.54
Punkt 1 2 3 4 5 6 7 8 9 10 11	max.Spannung 510. 510. 481. 462. 401. 401. 373. 357. 290. 290. 248.	symm 95 / 95 / 07 / 17 / 18 / 82 / 92 / 50 / 51 / 85 /	./unsymm. vereist 495.77 495.85 448.49 432.64 393.72 393.73 422.82 407.95 309.52 309.52 261.92	delta [%] -2.97 -2.96 -6.77 -6.37 -1.86 -1.86 13.11 13.98 6.55 6.54 5.25
Punkt 1 2 3 4 5 6 7 8 9 10 11 12	max.Spannung 510. 510. 481. 462. 401. 401. 373. 357. 290. 290. 248. 212.	symm 95 / 95 / 07 / 07 / 17 / 18 / 82 / 92 / 50 / 51 / 85 / 17 /	./unsymm. vereist 495.77 495.85 448.49 432.64 393.72 393.73 422.82 407.95 309.52 309.52 261.92 221.38	delta [%] -2.97 -2.96 -6.77 -6.37 -1.86 -1.86 13.11 13.98 6.55 6.54 5.25 4.34
Punkt 1 2 3 4 5 6 7 8 9 10 11 12 13	max.Spannung 510. 510. 481. 462. 401. 401. 373. 357. 290. 290. 248. 212. 167.	symm 95 / 95 / 07 / 07 / 17 / 18 / 82 / 92 / 50 / 51 / 85 / 17 / 21 /	./unsymm. vereist 495.77 495.85 448.49 432.64 393.72 393.73 422.82 407.95 309.52 309.52 261.92 221.38 164.88	delta [%] -2.97 -2.96 -6.77 -6.37 -1.86 -1.86 13.11 13.98 6.55 6.54 5.25 4.34 -1.39
Punkt 1 2 3 4 5 6 7 8 9 10 11 12 13 14	max.Spannung 510. 510. 481. 462. 401. 401. 373. 357. 290. 290. 290. 248. 212. 167. 167.	symm 95 / 95 / 07 / 07 / 17 / 18 / 82 / 92 / 50 / 51 / 85 / 17 / 21 / 21 /	./unsymm. vereist 495.77 495.85 448.49 432.64 393.72 393.73 422.82 407.95 309.52 261.92 221.38 164.88 164.88	delta [%] -2.97 -2.96 -6.77 -6.37 -1.86 -1.86 13.11 13.98 6.55 6.54 5.25 4.34 -1.39 -1.39
Punkt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	max.Spannung 510. 510. 481. 462. 401. 401. 373. 357. 290. 290. 290. 248. 212. 167. 167. 95.	symm 95 / 95 / 07 / 07 / 17 / 18 / 82 / 92 / 50 / 51 / 85 / 17 / 21 / 21 / 37 /	./unsymm. vereist 495.77 495.85 448.49 432.64 393.72 393.73 422.82 407.95 309.52 309.52 261.92 221.38 164.88 164.88 90.34	delta [%] -2.97 -2.96 -6.77 -6.37 -1.86 -1.86 13.11 13.98 6.55 6.54 5.25 4.34 -1.39 -1.39 -1.39

Lehrstuhl für Stahl- und Leichtmetallbau, Universität Karlsruhe

.

ANLAGE 40

Maximale Vergrößerungen

der Eckstielspannungen del Sig [%] und der Seilkräfte del S [%]

٠

durch unsymmetrischen Eisansatz:

Ein – in den Tabellen zeigt an, für welche Vereisungstärken die jeweilige Geometrie unter symmetrischer Eislast instabil wird.

6-fach Abgespannte Maste:

	Eisdicke	3 cm	6 cm	12 cm	24 cm
Geometrie					
MH6F	del Sig del S	5.16 1.03	-		-
MM6F	del Sig del S	2.11 0.60	_		-
MN6F	del Sig del S	1.94 -0.16	-	4000 	
SH6M	del Sig del S	2.26 1.27	1.34 0.31		_
SH6F	del Sig del S	1.79 -0.09	3.10 0.04	7.04 0.63	
SM6M	del Sig del S	1.44 0.53	1.96 -0.67		
SM6F	del Sig del S	1.27 0.06	2.86 0.27	6.68 0.96	_
SN6M	del Sig del S	1.85 -0.29		-	-

ANLAGE 41

	Fiedialia	2 om	6 am	12 cm	24 om
ſ	LISUICKE	5 Citt	0 0111		24 Chi
Geometrie		a a fa a			ana ay 196 Marting Cold Anno ang
SN6F	del Sig	1.39	2.58	5.64	
enadorement di Augona da Augona	del S	0.50	0.86	1.35	
XH6M	del Sig	0.89	1.99	4.47	
	del S	0.61	-0.19	-1.92	
XH6F	del Sig	1.67	3.45	8.03	_
	del S	-0.04	-0.06	0.35	
XM6M	del Sig	1.04	2.78		-
	del S	0.07	-1.00	_	-
XM6F	del Sig	1.44	3.33	7.61	ana an
	del S	0.05	0.23	0.86	-
XN6M	del Sig	1.88	3.79		
	del S	-0.21	-0.42	-	_
XN6F	del Sig	1.60	3.24	6.13	
	del S	0.43	0.93	1.68	-
YH6S	del Sig	1.01	2.26	ne na	other
	del S	0.00	-0.40	-	-
YH6M	del Sig	0.56	1.88	4.26	
	del S	0.25	-0.65	-1.41	-
YH6F	del Sig	1.09	3.02	6.52	6.83
	del S	-0.06	0.10	0.60	0.04
YM6M	del Sig	1.07	2.66	5.41	
	del S	-0.19	-0.72	-1.24	-
YM6F	del Sig	1.01	2.73	6.17	13.01
	del S	0.14	0.42	1.16	3.24
YN6M	del Sig	1.83	4.00	7.92	Curr
	del S	-0.17	-0.37	-0.54	-
YN6F	del Sig	1.40	2.95	5.29	8.78
	del S	0.55	1.03	2.41	3.86

ANLAGE 42

.

,

	Eisdicke	3 cm	6 cm	12 cm	24 cm
Geometrie					
ZH6S	del Sig del S	0.91 -0.10	1.94 -0.25	4.23 -0.24	-
ZH6M	del Sig del S	0.60 0.06	1.78 -0.66	4.14 -1.06	9.14 -0.92
ZH6F	del Sig del S	0.86 0.01	2.78 0.24	5.14 0.89	12.51 3.12
ZM6S	del Sig del S	1.17 -0.02	3.00 0.03		_
ZM6M	del Sig del S	1.04 -0.30	2.53 -0.55	5.29 -0.87	-
ZM6F	del Sig del S	0.94 0.22	2.49 0.59	5.08 1.56	13.76 3.93
ZN6M	del Sig del S	1.53 -0.08	3.93 -0.18	7.76 -0.13	-
ZN6F	del Sig del S	1.28 0.68	2.76 1.31	5.45 3.05	9.87 5.52

Lehrstuhl für Stahl- und Leichtmetallbau, Universität Karlsruhe

.

4-fach Abgespannte Maste:

	Eisdicke	3 cm	6 cm	12 cm	24 cm
Geometrie					
MH4S	del Sig del S	$\begin{array}{c} 3.13 \\ 1.43 \end{array}$	-	-	-
MH4M	del Sig del S	0.89 1.88	0.71 -0.08	-	-
MH4F	del Sig del S	1.37 -0.14	3.04 -0.65	45.28 -1.18	-
MM4S	del Sig del S	2.17 0.79			_
MM4M	del Sig del S	1.19 1.11	1.25 -0.74	-	-
MM4F	del Sig del S	1.57 -0.39	3.98 -0.51	44.51 -1.21	-
MN4M ·	del Sig del S	1.37 -0.32	0.93 -1.85		-
MN4F	del Sig del S	3.13 -0.07	5.23 -0.05	19.72 -1.40	
SH4S	del Sig del S	0.21 0.34	0.26 -0.42	0.75 -2.57	
SH4M	del Sig del S	1.28 0.44	0.38 -0.98	1.22 -2.13	-
SH4F	del Sig del S	0.54 -0.31	2.06 -0.23	9.72 -0.26	15.33 -0.22

٤

ANLAGE 44

,

	<u> </u>				
	Eisdicke	3 cm	6 cm	12 cm	24 cm
Geometrie			and the state of the	and the contract of the second se	en en anten an de Management an anten an anten ante
SM4S	del Sig	0.06	0.52	1.47	dostar
	del S	-0.05	-0.93	-2.49	
SM4M	del Sig	0.67	0.37	1.48	-
	del S	0.02	-1.45	-2.05	ىيىسە بىرىمىيە بىرىمىيە بىرىمى
SM4F	del Sig	1.29	2.62	6.01	
	del S	-0.04	0.02	0.13	
SN4S	del Sig	0.24	0.89	_	_
	del S	-0.39	-0.44	enter	
SN4M	del Sig	0.62	1.25	2.96	-
	del S	-0.53	-0.82	-1.63	
SN4F	del Sig	2.72	4.93	8.70	12.22
	del S	0.26	0.83	1.35	-0.63
XH4S	del Sig	0.38	0.82	2.96	5.66
	del S	0.08	-0.63	-1.24	0.04
XH4M	del Sig	0.20	1.09	2.43	5.77
	del S	0.01	-0.95	-1.82	-3.19
XH4F	del Sig	0.75	2.68	6.22	15.83
	del S	-0.19	-0.26	-0.22	-0.03
XM4S	del Sig	0.73	1.48	3.92	-
	del S	-0.23	-0.81	-0.99	

ANLAGE 45

	Elsalcke	3 cm	6 cm	12 cm	24 cm
Geometrie				ang pang sa	
XM4M	del Sig	0.48	1.58	2.95	7.61
	del S	-0.26	-0.98	-1.84	-3.18
XM4F	del Sig	1.22	2.70	5.80	15.58
	del S	0.01	0.09	0.41	0.63
XN4S	del Sig	0.27	1.56	3.67	-
	del S	-0.14	-0.38	-0.60	
XN4M	del Sig	0.81	2.36	4.64	6.85
	del S	-0.22	-0.46	-1.17	-2.26
XN4F	del Sig	2.27	4.53	8.42	12.96
	del S	0.46	0.97	1.67	1.38
YH4S	del Sig	0.40	0.88	2.29	4.98
	del S	- 0.08	-0.79	-1.08	-0.96
YH4M	del Sig	0.23	1.10	2.49	5.82
	del S	-0.22	-0.78	-1.48	-2.60
YH4F	del Sig	0.54	1.40	3.86	11.70
	del S	-0.10	-0.07	0.24	1.31
YM4S	del Sig	0.61	1.63	3.27	6.30
	del S	-0.35	-0.89	-0.65	-0.06
YM4M	del Sig	0.55	1.14	3.12	5.73
	del S	-0.40	-0.78	-1.45	-2.43
YM4F	del Sig	1.13	2.48	5.44	10.85
	del S	0.08	0.33	0.88	2.16
YN4S	del Sig	0.26	1.56	4.11	8.62
	del S	-0.17	-0.15	-0.13	0.19
YN4M	del Sig	0.77	2.49	4.82	7.80
	del S	-0.11	-0.37	-0.66	-1.14
YN4F	del Sig	2.15	4.31	8.07	12.81
	del S	0.64	1.36	2.60	3.73

ANLAGE 46

.

	p	*			
	Eisdicke	3 cm	6 cm	12 cm	24 cm
Geometrie					
ZH4S	del Sig	0.43	0.95	2.12	4.71
	del S	-0.17	-0.85	-1.30	-1.02
ZH4M	del Sig del S	0.35 -0.24	1.30 -0.64	2.93 -1.19	6.16 - 1.64
ZH4F	del Sig	0.57	1.45	3.96	12.35
	del S	-0.04	0.05	0.53	2.09
ZM4S	del Sig	0.51	1.70	3.46	6.69
	del S	-0.39	-0.89	-0.88	-0.10
ZM4M	del Sig	0.69	1.46	3.82	6.99
	del S	-0.49	-0.62	-1.22	-1.64
ZM4F	del Sig	1.17	2.55	5.61	11.30
	del S	0.16	0.50	1.31	3.32
ZN4S	del Sig	0.47	1.74	4.88	10.01
	del S	0.10	0.11	0.40	1.15
ZN4M	del Sig	0.97	3.05	5.82	9.83
	del S	0.00	-0.13	-0.17	-0.18
ZN4F	del Sig	2.43	4.80	8.58	13.98
	del S	0.63	1.32	3.35	5.62

Lehrstuhl für Stahl- und Leichtmetallbau, Universität Karlsruhe

2-fach Abgespannte Maste:

	Findiaka	2 am	6 om	12 cm	21 am
	EISUICKE				
Geometrie					
WH2S	del Sig	2.19	4.53		-
	del S	0.58	-0.33	-	-
WH2M	del Sig	2.53	3.11		-
	del S	-0.77	-4.12	-	-
WH2F	del Sig	2.79	0.77		
	del S	0.92	-1.21	-	-
WM2S	del Sig	1.35	2.20	60 74	-
	del S	0.11	-1.22	-	
WM2M	del Sig	1.35	1.57		-
	del S	-1.10	-3.61	~	-
WM2F	del Sig	0.60	0.58	_	-
	del S	0.01	-1.26	-	aua
WN2S	del Sig	0.99	0.75	-	-
	del S	0.69	-0.81	ante de la compansión de la compa	
WN2M	del Sig	0.53	0.23	-	-
	del S	1.06	-1.46		-
WN2F	del Sig	0.67	2.29		_
	del S	-1.04	-1.32		-
MH2S	del Sig	1.38	0.74	1.22	5.38
	del S	0.49	-0.29	-3.58	-5.68
MH2M	del Sig	0.50	-0.23	-0.86	4.88
	del S	0.42	-1.09	-3.72	-3.34
MH2F	del Sig	0.15	-0.51	2.45	9.21
	del S	-0.51	-0.78	-1.52	-1.85

. *

ANLAGE 48

,

	Eisdicke	3 cm	6 cm	12 cm	24 cm
Geometrie					
MM2S	del Sig	1.00	0.67	1.63	3.58
	del S	0.27	-0.52	-3.30	-4.87
MM2M	del Sig	0.66	-0.17	-0.62	5.76
	del S	0.19	-1.30	-3.35	-2.93
MM2F	del Sig	0.50	-0.24	2.52	9.78
	del S	-0.67	-1.01	-1.80	-2.03
MN2S	del Sig	0.37	0.69	2.02	3.02
	del S	-0.62	-1.34	-2.33	-2.71
MN2M	del Sig	0.59	0.28	0.59	7.48
	del S	-0.65	-1.77	-2.73	-2.77
MN2F	del Sig	0.97	0.38	3.10	9.73
	del S	-0.70	-1.00	-1.88	-2.88
SH2S	del Sig	0.02	-0.02	-0.25	-0.89
	del S	0.04	-0.63	-1.70	-2.63
SH2M	del Sig	0.33	0.19	0.51	2.17
	del S	-0.15	-1.31	-2.39	-2.62
SH2F	del Sig	0.47	-0.24	1.46	6.11
	del S	-0.41	-0.78	-1.39	-2.12
SM2S	del Sig	0.02	-0.06	-0.14	-0.53
	del S	-0.11	-0.83	-1.34	-2.22
SM2M	del Sig	0.08	0.21	0.58	2.10
	del S	-0.31	-1.37	-2.27	-2.37
SM2F	del Sig	0.62	-0.09	1.17	6.21
	del S	-0.63	-0.96	-1.70	-2.32

,

ANLAGE 49

	generation des marches and an and a destination of the second second second second second second second second				
	Eisdicke	3 cm	6 cm	12 cm	24 cm
Geometrie					
SN2S	del Sig	0.44	0.42	1.58	3.22
	del S	-0.08	-0.11	-0.11	-1.55
SN2M	del Sig	0.39	0.21	0.45	1.99
	del S	-0.60	-0.96	-1.67	-1.71
SN2F	del Sig	0.92	0.61	1.25	5.72
	del S	-0.45	-0.71	-1.55	-2.69
XH2S	del Sig	0.00	0.03	-0.09	1.00
	del S	-0.09	-0.40	-0.55	-0.63
XH2M	del Sig	0.12	0.00	0.88	2.72
	del S	-0.34	-0.99	-1.62	-1.21
XH2F	del Sig	0.37	-0.16	2.59	7.54
	del S	-0.37	-0.78	-1.60	-2.25
XM2S	del Sig	0.08	0.00	0.00	1.63
	del S	-0.20	-0.25	-0.14	-0.06
XM2M .	del Sig	-0.02	-0.05	0.72	2.90
	del S	-0.47	-0.89	-1.60	-1.22
XM2F	del Sig	0.58	-0.05	2.20	7.33
	del S	-0.54	-1.05	-1.89	-2.59
XN2S	del Sig	0.66	1.84	3.86	6.02
	del S	0.04	0.12	0.52	0.73
XN2M	del Sig	0.47	0.67	1.81	4.18
	del S	-0.49	-0.73	-1.37	-0.70
XN2F	del Sig	0.81	0.53	1.93	6.38
	del S	-0.41	-0.96	-1.68	-2.83

ANLAGE 50

.

	Eisdicke	3 cm	6 cm	12 cm	24 cm
Geometrie					
YH2S	del Sig del S	0.00 -0.15	0.00 -0.33	-0.03 -0.02	0.74
YH2M	del Sig	0.08	-0.03	0.15	2.23
	del S	-0.41	-0.68	-1.08	-1.12
YH2F	del Sig	0.32	-0.15	1.56	5.71
	del S	-0.33	-0.69	-1.40	-1.97
YM2S	del Sig del S	0.11	-0.06 0.09	-0.05 0.66	1.62 1.86
YM2M	del Sig	-0.03	-0.06	0.25	2.60
	del S	-0.40	-0.63	-0.96	-0.91
YM2F	del Sig	0.49	-0.06	1.09	5.37
	del S	-0.44	-0.94	-1.67	-2.36
YN2S	del Sig del S	0.61 0.31	1.55 0.59	$\begin{array}{c} 3.74 \\ 1.49 \end{array}$	6.69 3.38
YN2M	del Sig	0.49	0.73	1.62	4.37
	del S	-0.32	-0.39	-0.73	-0.20
YN2F	del Sig	0.71	0.47	0.85	4.03
	del S	-0.30	-0.74	-1.42	-2.40
ZH2S	del Sig	0.00	0.00	-0.03	1.05
	del S	-0.20	-0.14	0.42	2.14
ZH2M	del Sig	0.09	0.00	0.06	2.29
	del S	-0.32	-0.46	-0.59	-0.34
ZH2F	del Sig	0.27	-0.14	1.10	3.76
	del S	-0.30	-0.62	-1.22	-1.66

Lehrstuhl für Stahl- und Leichtmetallbau, Universität Karlsruhe

	Eisdicke	3 cm	6 cm	12 cm	24 cm
Geometrie					
ZM2S	del Sig	0.14	-0.05	-0.09	1.68
	del S	0.07	0.31	1.16	3.25
ZM2M	del Sig	-0.04	-0.02	-0.05	2.75
	del S	-0.26	-0.35	-0.32	-0.12
ZM2F	del Sig	0.44	-0.07	0.42	3.24
	del S	-0.35	-0.85	-1.51	-2.22
ZN2S	del Sig	0.75	1.31	3.73	7.37
	del S	0.42	0.88	2.36	5.67
ZN2M	del Sig	0.54	0.89	1.68	4.93
	del S	-0.17	-0.21	-0.09	0.46
ZN2F	del Sig	0.68	0.50	0.18	2.12
	del S	-0.36	-0.52	-1.04	-1.90

Englische Kurzfassung:

Almost every winter there are reports on damages and building collapses due to the effect of icing. Wellknown examples are transmission towers collapsing through torsional stress due to rupture of iced cables. Icing combined with wind strain is responsible for a number of collapses of guyed masts abroad (United Kingdom, Finland).

Ice loadind based on the standards has to be rated as a traffic load, i.e. ice-loading should be calculated as having an unfavorable effect on the structural member examined. For practical calculations, however, this means an intolerable amount of work, so that it is considered sufficient to assume an even degree of icing in each component of the mast shaft and the cables. This is not realistic, however. The subcooled rain drops carried by the wind hit the windward cables roughly perpendicular. Thick ice barrels develop on these cables. The leeward cables lie roughly parallel to the direction in which the rain drops fall, and therefore suffer much less icing.

On the basis of present knowledge, it is difficult to make any statements on the exact extent of icing to be expected in Germany. Therefore, this project only calculates the effect of given icing.

This report describes what consequences the effect described above has on the stability of guyed masts. On the basis of extensive parametric studies their behaviour under the influence of symmetrical and asymmetrical icing has been examined. More then 6,000 parameter cases have been studied in this context. The result is a good survey of the strain of guyed masts under ice and wind loading. The results show that in the case of radial ice thickness up to 6 cm calculation and design of masts does not necessitate the consideration of asymmetrical icing. For buildings on which higher degrees of icing are to be expected, the strain especially on the mast shaft can be much higher. Here, the parametric study gives indications on the range of the increase of stress and on which combinations of loading cases they are based.

Französische Kurzfassung:

Presque chaque hiver on annonce des détériorations et des écroulements des structures, lesquels peuvent être ramenés à l'action du givrage. Ainsi les pylônes pour lignes électriques qui défaillissent sous la sollicitation de torsion par suite de la rupture des câbles givrés, sont des exemples bien connus. L'action combinée du givrage et de la scharge de vent est responsable d'une série d'écroulements des mâts haubanés à l'étranger (Angleterre, Finlande).

La charge équivalente à l'action de la glace proposée par les normes peut être considérée comme surcharge, c'est-à-dire que celle-ci doit être appliquée de sorte que son effet soit défavorble pour l'élément de construction considéré. Cela signifie cependant un effet fastidieux de travail quant au calcul statique (usuel); raison pour laquelle on admet un givrage uniforme de chaque élément de construction du fût de pôteau et des galhaubans. Cette démarche ne correspond cependant pas à la réalité. Les gouttes de pluie vent, transportées le tombent à surrefroidies, par peu près perpendiculairement à la sécante des câbles exposés au vent, sur lesquels un limon important de glace se forme. Les câbles sous le vent se trouvent à peu près parallèlement à la direction des gouttes de pluie et sont par conséquent moins exposés à l'action du givrage.

L'état de connaissance actuel ne permet pas de prévoir exactement les épaisseurs de givrage aux quelles on puet s'attendre en République Fédérale d'Allemagne (R.F.A.); raison pour laquelle on étudie dans ce projet les effets d'un givrage donné.

Ce présent rapport décrit l'action des effets déjà expliqués sur la stabilité statique des pylônes haubanés. Leur comportement sous l'action asymmétrique et symmétrique du givrage a été examiné à l'aide des études détaillées de plusieurs paramètres. A cet effet, 600 cas de paramètres ont été traités donnant ainsi une bonne vue d'ensemble sur la sollicitation des pylônes haubanés sous l'action de la glace au vent.

Ce rapport montre que pour les épaisseurs de givrage allant jusqu'à 6 cm, la prise en considération des cas de charge incluant un givrage asymmétrique n'est pas nécessaire pour le calcul et le dimensionnement du mât. Pour les structures auxquelles on peut s'attendre à des épaisseurs de givrage plus grandes, il peut y apparaître une augmentation très importante de la sollicitation, en particulier cell du fût de pôteau. L'étude des paramètres montre ici dans quel ordre de grandeur l'augmentation des contraintes varie ainsi que les cas de charge qui y sont associés.