Bauforschung

Verbesserung der Genauigkeit der Tragfähigkeitsangaben für Rammbzw. Verdrängungspfähle im Zuge der Neubearbeitung der DIN 4026 unter Berücksichtigung von EC 7

T 2472

Fraunhofer IRB Verlag

T 2472

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstelungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

Abschlußbericht zum Forschungsvorhaben des Instituts für Bautechnik Az. IV 1-5-499/87

VERBESSERUNG DER GENAUIGKEIT DER TRAGFÄHIG-KEITSANGABEN FÜR RAMM- BZW. VERDRÄNGUNGSPFÄHLE IM ZUGE DER NEUBEARBEITUNG DER DIN 4026 UNTER BERÜCKSICHTIGUNG VON EC 7

PROF. DR.-ING. E. FRANKE INSTITUT FÜR GRUNDBAU, BODEN- UND FELSMECHANIK TECHNISCHE HOCHSCHULE DARMSTADT

INHALTSVERZEICHNIS

.

1	EINLEITUNG	1
2	ERMITTLUNG VON EMPIRISCHEN DATEN FÜR SPITZEN- UND MANTELWIDERSTAND	2
2.1	Trennung von Gesamtwiderstandssetzungslinie Q(s) in Mantel- und Spitzenwiderstandssetzungs- linie Q _r (s) bzw. Q _s (s)	2
2.2	Das Berechnungsprogramm "CALIT"	4
2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	Annahmen für die Kurvenverläufe Berechnungsablauf Erprobung des Berechnungsprogramms Interpretation des Balkendiagramms Bestimmung des Mantelwiderstands Q _{rg} und der Grenz- setzung s _{rg}	4 5 7 8
3	VERGLEICH DER EINZELPFAHLERGEBNISSE	9
3.1	Spitzenwiderstand	9
3.2	Mantelwiderstand	10
4	ERMITTLUNG DER BEMESSUNGSPARAMETER	10
4.1	Spitzenwiderstand $\sigma_{g}(s)$	10
4.2	Mantelwiderstand T _{mf}	4
4.2.1 4.2.2	Grenzmantelreibung τ _{mf} Grenzsetzung s _{rg} des Mantelwiderstands Q _{rg}	11 12

.

Abschluβbericht zum Forschungsvorhaben des Instituts für Bautechnik Az. IV 1-5-499/87

Verbesserung der Genauigkeit der Tragfähigkeitsangaben für Ramm- bzw. Verdrängungspfähle im Zuge der Neubearbeitung der DIN 4026 unter Berücksichtigung von EC 7

1 EINLEITUNG

Auf Grund der Kenntnis, daß die Baugrundeigenschaften durch die Herstellung eines Gründungspfahles verändert werden, ist der Grundgedanke der deutschen Pfahlnormen, das Tragverhalten eines Einzelpfahles nicht mit theoretischen Methoden auf der Grundlage von Bodenkennwerten zu ermitteln, sondern möglichst durch Probebelastungen zu bestimmen. Häufig stehen die Kosten für eine Probebelastung aber im Mißverhältnis zu den Bauwerkskosten. Zudem sind für Vorentwürfe Angaben über das mögliche Pfahltragverhalten erforderlich. Daher werden empirisch ermittelte Angaben in den derzeit gültigen Pfahlnormen DIN 4014 (3/1990) und DIN 4026 (8/1975) zur Verfügung gestellt.

Die Überprüfung der DIN 4026 (8/1975) ergab, daß sich die dort gemachten Angaben bei Anwendung der Tabelle 8 in DIN 1054 (11/1976) nicht als hinreichend sicher erwiesen. Dadurch und auch durch die Berücksichtigung von EC 7 wurde eine Neufassung der Tragfähigkeitsangaben für Ramm- bzw. Verdrängungspfähle erforderlich.

Analog zu DIN 4014 (3/1990) sollten auch für Rammpfähle empirische Angaben für den Pfahlspitzenwiderstand $\sigma_{\rm s}(s)$ und den Pfahlmantelwiderstand $\tau_{\rm m}(s)$ gemacht werden, so daß die Ermittlung einer Widerstandssetzungslinie für jeden Einzelpfahl mit diesen Angaben gemäß Bild 1.1 (entspricht Bild 3, DIN 4014) möglich ist.

2 BRMITTLUNG VON EMPIRISCHEN DATEN FÜR SPITZEN- UND MANTELWIDERSTAND

Um Informationen über $\sigma_s(s)$ und $\tau_m(s)$ zu erhalten, wurden Unterlagen von 350 ausgeführten Probebelastungen an Rammpfählen zusammengetragen. Zur Auswertung dieser Probebelastungsergebnisse sind neben der Angabe der Widerstandssetzungslinie auch Informationen über den Baugrundaufbau und die Baugrundfestigkeit erforderlich. In Bild 2.1 sind die Mindestanforderungen an den Ergebnisumfang einer Probebelastung zusammengestellt. Da nur ein kleiner Anteil der zur Verfügung stehenden Probebelastungen so vollständig dokumentiert war, wurden zunächst nur solche gut dokumentierten Fälle zur Auswertung herangezogen. Die damit erhaltenen Ergebnisse bezüglich $\sigma_s(s)$ und $\tau_m(s)$ wurden dann zur besseren Adjustierung auf alle übrigen Daten angewendet.

2.1 Trennung von Gesamtwiderstandssetzungslinien Q(s) in Mantel - und Spitzenwiderstandssetzungslinien Q_r(s) bzw. Q_s(s)

Im Gegensatz zu Bohrpfählen liegen für Rammpfähle nur sehr wenige Probebelastungsergebnisse vor, bei denen die Spitzenwiderstandskraft $Q_{\rm S}({\rm s})$ und die Mantelwiderstandskraft $Q_{\rm r}({\rm s})$ getrennt gemessen wurden. Eine Analyse solcher Ergebnisse war somit nicht möglich. Es mußte also zu Beginn der Untersuchungen zunächst ein Verfahren entwickelt werden, um eine gemessene Widerstandssetzungslinie obs Q(s) in die beiden Anteile $Q_{\rm s}({\rm s})$ und $Q_{\rm r}({\rm s})$ aufzuspalten. Bereits VAN WEELE (1957) und andere haben das ohne durchschlagenden Erfolg versucht. Grundlage des im Rahmen dieser Forschung verwendeten Verfahrens zu Trennung in Mantel- und Spitzenwiderstand ist die in Bild 2.2 dargestellte Annahme über die unterschiedliche Gestalt der Arbeitslinien für die beiden Widerstandsanteile. Wie in Bild 2.2 zu erkennen ist, wird für Setzungen, die größer als die zur Mobilisierung der Grenzmantelkraft erforderlichen sind, d.h. bei

$$s > s_{rg}$$
 (2.1)

mit $Q_r(s \ge s_{rg}) \approx Q_{rg} = const$ (2.2)

der Verlauf des Gesamtlast Q(s) nur noch durch Qs (s) bestimmt.

$$Q(s \ge s_{rg}) = Q_{rg} + Q_s \quad (s \ge s_{rg}) \tag{2.3}$$

Mit zunächst geschätzten und dann immer besser adjustierten Funktionen Q_s (s) und Q_r (s) bzw. Q_{rg} und s_{rg} können also die Funktionsparameter ermittelt werden, mit denen die gemessene Lastsetzungslinie Q(s) möglichst genau dargestellt werden kann.

Um die Genauigkeit der ermittelten Funktionsparameter zu prüfen, wird eine mit diesen Parametern berechnete Lastsetzungslinie cal Q(s) mit der gemessenen Linie obs Q(s) verglichen. Zu diesem Zweck wird Abweichung Y(s) bestimmt,

$$Y(s) = \frac{obs Q(s) - cal Q(s)}{obs Q(s)}$$
(2.4)

und eine Minimierung der Abweichungsfläche

$$\int_{s=0}^{s} Y(s) ds = Minimum \qquad (2.5)$$

gefordert.

Um die Lastsetzungslinie Q(s) in die Anteile Q_s (s) und Q_r (s) aufzuspalten und die Funktionsparameter zu ermitteln, wurde ein Computer-Programm erarbeitet, das im folgenden beschrieben wird.

A.

2.2 Das Berechnungsprogramm "CALIT"

2.2.1 Annahmen für die Kurvenverläufe

Wie im vorangegangenen Abschnitt erläutert, müssen zur Trennung einer Lastsetzungslinie obs Q(s) in die beiden Anteile Q_s (s) und Q_r (s) sinnvolle Annahmen für die Kurvenverläufe getroffen werden.

Für die Darstellung der Pfahlfu β kraftsetzungslinie wird eine Potenzfunktion der Form

$$s = a + b \cdot Q_s \quad (2.6)$$

angesetzt. Dabei wird, abweichend von der üblichen Schreibweise Q(s) hier die Setzung s als Funktion der Belastung Q dargestellt, da s die gesuchte Zielgröße ist. Im Rahmen der erreichbaren Genauigkeit ist dieser Wechsel der abhängigen und der unabhängigen Variablen von untergeordneter Bedeutung.

Mit dem Parameter a in Gl. 2.6 kann eine Verschiebung des Ursprungs der Pfahlfußkraftlinie entlang der s- Achse berücksichtigt werden. Dabei entspricht a > 0 einer möglichen Kraftschlußsetzung, wie sie bei Bohrpfählen beobachtet wurde, während a < 0 einen schon vor der Probebelastung vorhandenen Spitzendruck z.B. auf Grund residualer Spannungen infolge elastischer Stauchungen beim Rammen des Pfahles kennzeichnet (Bild 2.4). Die Parameter b und c sind Funktionen der Bodenart und der Bodenfestigkeit.

Für die Pfahlmantelkraftsetzungslinie wird ein bilinearer Verlauf gemäß Bild 2.2 angenommen. Dies bedeutet, daß bei bekannten Parametern der Grenzmantelkraft (Q_{rg} und s_{rg}) mit Gl. 2.3 für $s \ge s_{rg}$ eine Pfahlfußkraftsetzungslinie ermittelt werden kann. Für diese Linie können dann durch lineare Regression zwischen s- und Q_s (s)- Werten im doppeltlogarithmischen Koordinatensystem die Parameter a, b und c in Gl. 2.6 ermittelt werden.

2.2.2 Berechnungsablauf

Aus Abschnitt 2.2.1 geht hervor, daß zur Ermittlung der Pfahlfßkraftsetzungslinie Q_s (s) sowohl die Grenzmantelkraft Q_{rg} als auch die Grenzsetzung s_{rg} nach Gl. 2.2 bekannt sein müssen. Dies ist jedoch, falls bei einer Probebelastung die beiden Widerstandsanteile nicht getrennt gemessen wurden, nicht der Fall. Somit muß der Knickpunkt der Mantelkraftsetzungslinie (Q_{rg}, s_{rg}) iterativ bestimmt werden.

Dazu werden im ersten Berechnungsschritt durch die Auswertung von Zugversuchen ein unterer und ein oberer Grenzwert Q_{rg} (min) und Q_{rg} (max) für die Mantelkraft festgelegt, zwischen denen cal Q_{rg} variiert werden soll (Bild 2.5).

Außerdem wird ein Variationsbereich -a \div +a für den in Bild 2.4 dargestellten Parameter a der Pfahlfußkraftsetzungslinie definiert. Mit Gl. 2.7 wird dann für den Bereich s \ge srg der Verlauf der Q_s(s)- Kurve für jedes cal Qrg innerhalb des Variationsbereichs Qrg (min) \le cal Qrg \le Qrg (max) wie folgt ermittelt.

$$Q_s(s) = obs Q(s) - cal Q_{rg} \qquad (2.7)$$

Die Grenzsetzung s_{rg} für die zwischen Q_{rg} (min) und Q_{rg} (max) gewählte Mantelkraft cal Q_{rg} wird zunächst bei der Setzung definiert, bei der Gl. 2.7 die Bedingung Q_s (s) = 0 erfüllt. Das Wertepaar, bestehend aus der Potenzfunktion Q_s (s) und s_{rg} wird als "erstes berücksichtigtes Wertepaar" bezeichnet.

Für jede mögliche Kombination von mindestens 4 aufeinander folgenden Meßpunkten mit s \geq srg (in folgenden kurz mit

genähert durch Gl. 2.7 (Bild 2.6), werden dann für jeden Berechnungsschritt mit cal Q_{rg} - Werten und mit gewähltem a die Parameter b und c der Gl. 2.6 durch lineare Regression bestimmt.

Für jede Berechnungsschleife mit cal Q_{rg} - Werten zwischen $Q_{rg}(min)$ und $Q_{rg}(max)$ und weiter "Wertepaare", die sich bei a ungleich Null für a- Werte zwischen a(min) und a(max) ergeben, werden die Größen Q_{rg} , a, b und c ermittelt, für die sich bei Addition der ermittelten Widerstandslinien cal Q_{rg} und cal $Q_{s}(s)$ für $s \ge s_{rg}$ die geringste Abweichung zwischen der gemessenen und der berechneten Widerstandssetzungslinie ergibt.

Ergebnis dieser iterativen Berechnung sind Balkendiagramme mit den Größen a, b und c in Abhängigkeit von der Setzung des ersten berücksichtigten Wertepaares wie sie in den Anlagen 1.1 und 2.1 für die erste Berechnungsschleife, d.h. mit dem "1. berücksichtigten Wertepaar" (s.o.) dargestellt sind.

2.2.3 Erprobung des Berechnungsprogramms

Da, wie bereits erwähnt, für Verdrängungspfähle kaum Probebelastungen mit getrennter Messung von Spitzen- und Mantelwiderstand zur Verfügung stehen, wurde das Programm zunächst durch die Auswertung von Bohrpfählen erprobt, für die getrennte Meßergebnisse vorlagen.

Exemplarisch sind in Anlagen 1.1 und 2.1 die Ergebnisprotokolle von 2 Bohrpfählen zusammengestellt, die als repräsentativ angesehen werden können.

Der Pfahl "Leininger Berg 1" in Anlage 1 wurde der Veröffentlichung SCHMIDT/HETTLER (1989) entnommen. Es handelt sich um einen Bohrpfahl mit 1,2 m Durchmesser und einer Länge von 10 m in tertiärem Sand. Die Probebelastung des Pfahls "R 83" in Anlage 2 zugrunde liegt, wurde von WEISS (1983) veröffentlicht. Dieser Bohrpfahl hat einen Durchmesser von 1,2 m und bindet mit einer Länge von 8,4 m in Fein- und Mittelsand ein. Die Anlagen 1.1 und 2.1 zeigen jeweils das Balkendiagramm (s. Abschnitt 2.2.2), das Ergebnis der "CALIT"- Berechnung ist. Auf den Anlagen 1.2 und 2.2 sind dann die gemessenen und die mit den ermittelten $\sigma_{\rm S}({\rm s})$ - und $\tau_{\rm m}({\rm s})$ - Werten gezeichnete Widerstandssetzungslinien dargestellt.

2.2.4 Interpretation des Balkendiagramms

Auf der Abzisse des Balkendiagramms (Anlagen 1.1 und 2.1) ist die Setzung s $_{ra}$ des "ersten berücksichtigten Wertepaares" gemäß Abschnitt 2.2.2 dargestellt, das für die Berechnungsschleife mit a = 0 verwendet wurde. Dieses erste Wertepaar ist für alle Kombinationen innerhalb eines Blocks gleich. Auf der Ordinate a, b werden die jeweils ermittelten Parameter С und aufgetragen, deren Ergebniswerte mit den verwendeten Punktekombinationen wechseln.

<u>Hinweis:</u> Da zunächst mit der Annahme a = 0 gerechnet wurde, erscheint a auf der Ordinate der Anlagen 1.1 und 2.1 nicht.

Da per Definitionen die ermittelten Parameter der Spitzenwiderstandsfunktion für s \geq s_{rg} von den jeweils gewählten Punktekombinationen unabhängig sein müssen, dies jedoch nur dann der Fall ist, wenn der Pfahlfußwiderstand ideal einer Potenzfunktion genügt, werden zur Bestimmung der cal Q_s(s)-Linie die Variablen in Gl. 2.6 durch Mittelwertbildung über die berechneten Punktekombinationen ermittelt.

Bei der Analyse der Balkendiagramme fällt auf, daß die Streuung des Exponenten c in Abhängigkeit von der zugrunde gelegten Punktekombination wesentlich geringer ist als die Streuung des Koeffizienten b. Während für c der Variationskoeffizient bei etwa 20% liegt, erreicht er für den Koeffizienten b Werte bis 70%, wenn der gesamte berechnete Bereich zur Mittelwertbildung herangezogen wird. Augenfällig ist jedoch, daß fast alle erstellten Balkendiagramme zwei oder mehr Teilbereiche mit deutlich unterschiedlichen Größen des Koeffizienten b zeigen. Für den Bohrpfahl "Leininger Berg 1" kann eine Unterteilung bei

s = 42,1 mm vorgenommen werden. Bei Pfahl "R 83" zeigt sich diese Teilung bei s = 21,9 mm. Zur Mittelwertbildung für a, b und c werden in den weiteren Berechnungsschleifen nur die Werte eines solchen Teilbereiches verwendet. Verwendet werden die a,b und c- Werte, mit denen die Gl. 2.8 (s.Abschnitt 2.2.5) die besten Ergebnisse liefert.

2.2.5 Bestimmung des Mantelwiderstands Q_{rg} und der Grenzsetzung s_{rg}

Nach Analyse und Interpretation der Balkendiagramme der Anlage 1.1 und 2.1 sind für jeden Einzelpfahl die Parameter a,b und c und damit der Verlauf der Spitzenwiderstandssetzungslinie nach Gl. 2.6 bekannt. Dabei wurden die Größen Q_{rg} und s_{rg} der bilinearen Mantelwiderstandslinie zur Ermittlung des Balkendiagramms zunächst geschätzt. Im nächsten Schritt wird nun für jeden Pfahl die zur ermittelten Spitzenwiderstandssetzungslinie cal $Q_s(s)$ gehörende Mantelwiderstandslinie berechnet. Mit Gl. 2.7.a

$$\operatorname{cal} Q_{rg} = \operatorname{obs} Q(s) - \operatorname{cal} Q_{s}(s)$$
 (2.7.a)

und der Bedingung nach Gl.(2.2) wird Q_{rg} berechnet. Mit der bekannten cal $Q_s(s)$ - Linie und Q_{rg} wird dann s_{rg} solange variiert, bis für jeden einzelnen Pfahl die Abweichung gemäß Gl.(2.4) zwischen der gemessenen obs Q(s)- Linie und der nach Gl.(2.8) berechneten cal Q(s)- Linie

$$\operatorname{cal} Q(s) = \operatorname{cal} Q_s(s) + \operatorname{cal} Q_r(s)$$
 (2.8)

minimal wird.

Somit sind nach Abschluß der "CALIT"- Berechnung für jeden Einzelpfahl die Verläufe der Spitzen- und des Mantelwiderstandskraft bekannt. Die Anlagen 1.2 und 2.2 zeigen für die hier vorgestellten Beispiele jeweils die gemessenen und die durch Analyse mit dem "CALIT"- Programm ermittelten Widerstandssetzungsverläufe.

3 VERGLEICH DER EINZELPFAHLERGEBNISSE

Mit dem im vorigen Abschnitt beschriebenen Berechnungsablauf wurde für jeden Einzelpfahl die gemessene Widerstandssetzungslinie obs Q(s) in die beiden Anteile Spitzenwiderstandskraft $Q_s(s)$ und Mantelwiderstandskraft $Q_r(s)$ aufgespalten. Um ein für alle Pfähle gültiges Bemessungskonzept entwickeln zu können, müssen nun diese Einzelpfahlergebnisse miteinander verglichen und ihre Abhängigkeiten z.B. von der Bodenart und Bodenfestigkeit und vom Pfahltyp ermittelt werden.

Bei der Anwendung des Berechnungsprogrammes "CALIT" wurden alle Betrachtungen bisher für die Widerstandskräfte $Q_s(s)$ und $Q_r(s)$ durchgeführt. Da aber mit

$$Q_{s}(s) = \sigma_{s}(s) \cdot A_{s}$$
(3.1)

$$Q_{r}(s) = \Sigma \tau_{mi}(s) \cdot A_{mi} \qquad (3.2)$$

bzw.

$$Q_{rq}(s \ge s_{rq}) = \Sigma \tau_{mf}(i) \cdot A_{m}(i) \qquad (3.2.a)$$

die Widerstandskraft von der Pfahlgeometrie abhängt, müssen aus den ermittelten Parametern für die Widerstandskräfte Q_{rg} und $Q_s(s)$ in die entsprechenden Parameter für die Spannungen $\sigma_s(s)$ und τ_{mf} berechnet werden. Dann werden diese Ergebnisse in Abhängigkeit von der Pfahlgeometrie, der Bodenart und der Bodenfestigkeit analysiert, um daraus Bemessungsvorschläge zu entwickeln.

3.1 Spitzenwiderstand

Es sind nun den Parametern a,b und c der Spitzenwiderstandskraft $Q_s(s)$ nach Gl. 2.6 entsprechende Parameter gemäß Gl. 3.3 zu ermitteln.

$$\mathbf{s} = (\mathbf{a}^* + \mathbf{b}^* \cdot \boldsymbol{\sigma_s}^{\mathbf{C}^*}) \cdot \mathbf{A_s}$$
(3.3)

Da Gl. 2.6

$$s = a + b \cdot Q_{s}^{C} = a + b \cdot (\sigma_{s}(s) \cdot A_{s})^{C}$$
(2.6a)
$$= a + b \cdot A_{s}^{C} \cdot \sigma_{s}(s)^{C}$$

geschrieben werden kann, folgt aus Koeffizientenvergleich

$$b^* = b \cdot A_s^C \tag{3.5}$$

$$c^* = c$$
 (3.6)

3.2 Mantelwiderstand

Zur Ermittlung des Grenzmantelwiderstands Q_{rg} wird gemäß Gl. 3.2.a die Grenzmantelreibung τ_{mf} benötigt. Wie üblich wird die Größe von τ_{mf} in Abhängigkeit vom Sondierwiderstand q_s angegeben, so daß die Grenzmantelreibung der einzelnen Bodenschichten für jeden Einzelpfahl nach Gl. 3.7 aus dem "CALIT"-Ergebnis für Q_{rg} bestimmt werden kann :

$$\tau_{mf}(i) = \frac{Q_{rg} \cdot q_s(i) \cdot A_m(i)}{\Sigma q_s(i) \cdot A_m(i)}$$
(3.7)

<u>Hinweis</u>: Bei Stahlpfählen aus H- Profilen wird für die Mantelfläche A_m die Fläche der Stahlabwicklung verwendet.

4 ERMITTLUNG DER BEMESSUNGSPARAMETER

4.1 Spitzenwiderstand $\sigma_{g}(s)$

Beim Vergleich der Einzelpfahlergebnisse zeigte sich im Unterschied zu den Bohrpfählen, daß die ermittelte Konstante a in Gl. 2.6 bzw. a^{*} in Gl. 3.3 in der Regel sehr klein ist. Bei den meisten der analysierten Probebelastungen ergab sich a \approx 0, so daß diese Größe im weiteren nicht mehr berücksichtigt wird.

Für die beiden anderen Parameter (b^{*} und c) wurde untersucht, ob diese von der Pfahlgeometrie oder der Baugrundfestigkeit abhängen.

Für die drei wichtigsten Pfahltypen (Stahlbeton-Fertigpfähle, Ortbeton-Rammpfähle und Stahlpfähle ohne Flügel od. Backenbleche) ist in den Bildern 4.1 bis 4.6 zum einen der Koeffizient b^{*} und zum anderen der Exponent c jeweils in Abhängigkeit von der Pfahlbreite und der Sondierfestigkeit des Bodens am Pfahlfuß aufgetragen.

Die zu der jeweiligen Punktnumerierung gehörenden Pfähle sind in den Pfahllisten in Anlage 3 zusammengestellt.

Wie aus den Bildern ersichtlich ist, sind die Parameter der Spitzenwiderstandsfunktion nach Gl. 3.3 sowohl vom Pfahlquerschnitt als auch von der Sondierfestigkeit im Rahmen der erreichbaren Genauigkeit als unabhängig zu betrachten. Es gibt aber eine offensichtliche Abhängigkeit vom Pfahltyp.

Für die Entwicklung von Bemessungsvorschlägen wird zunächst mit den aus den Bildern 4.1 bis 4.6 bestimmten Mittelwerten für b^{*} und c gerechnet.

4.2 Mantelwiderstand

4.2.1 Grenzmantelreibung T_{mf}

Mit der Annahme nach Gl. 3.7 wurde für jeden Einzelpfahl die Grenzmantelreibung $\tau_{mf}(i)$ der Bodenschichten i am Pfahlschaft bestimmt, um dann den Faktor k ermitteln zu können.

 $\tau_{\rm mf} = k \cdot q_{\rm s} \tag{4.1}$

Nachdem sich bereits für den Spitzenwiderstand eine Abhängigkeit vom Pfahltyp gezeigt hat, werden die drei wichtigsten Pfahltypen auch bei dieser Untersuchung getrennt betrachtet.

In den Bildern 4.7, 4.8 und 4.9 sind die nach Gl. 3.10 berechneten Werte $\tau_{\rm mf}$ als Funktion der Sondierfestigkeit $q_{\rm S}$ dargestellt.

Die gestrichelte Linie gilt für die Mittelwerte, während die durchgezogene Linie einen gemäß der Fehlerbetrachtung in Abschnitt 4.3 ermittelten Zusammenhang zwischen dem Grenzmantelwiderstand τ_{mf} und der Sondierfestigkeit q_s zeigt.

In Anlage 4 sind die in diesen Bildern verwendeten Pfähle aufgelistet.

Es zeigt sich erwartungsgemäß, daß der ermittelte Faktor k in Gl. 4.1 bei den Ortbeton- Rammpfählen deutlich größer ist als bei den Stahl- bzw. Stahlbeton- Fertigpfählen.

4.2.2 Grenzsetzung s_{ra} des Mantelwiderstands Q_{ra}

Nachdem in Abschnitt 4.2.1 der Grenzmantelwiderstand τ_{mf} in Abhängigkeit von der Sondierfestigkeit q_s ermittelt worden ist, kann nach Gl. 3.2.a die Widerstandskraft Q_{rg} berechnet werden. Zur vollständigen Bestimmung der bilinearen $Q_r(s)$ - Linie ist noch die Grenzsetzung s_{rg} erforderlich.

Im Rahmen der hier durchgeführten Analysen wurde eine mögliche Abhängigkeit von s_{rg} nach Abschnitt 2.2.5 von der Pfahlgeometrie (Pfahllänge und Pfahldurchmesser), vom Grenzmantelwiderstand Q_{rg} und vom Pfahltyp untersucht. Für die zugrunde gelegte Datenbasis ist s_{rg} von den oben genannten Faktoren unabhängig und kann in erster Näherung als Konstante $s_{rg} = 5$ mm definiert werden. Dieses Ergebnis stimmt mit den Angaben von COYLE/SULEIMAN (1967), VESIC (1975) und BERINGEN et al. (1979) überein, die für s_{rg} Werte zwischen 3 mm und maximal 10 mm nennen.

4.3 Fehlerbetrachtung

Mit den in den Abschnitten 4.1 und 4.2 bestimmten empirischen Mittelwerten der Parameter für Spitzendruck und Mantelreibung wurden "künstliche" Lastsetzungslinien cal Q(s) gemäß Gl. 2.8 berechnet und mit den tatsächlich gemessenen Linien obs Q(s) verglichen. Dabei zeigte sich, daß die Ortbeton- Rammpfähle mit diesen Werten im Mittel eine negative Abweichung Y aufwiesen, d.h. überschätzt wurden, während die Stahlbeton- Fertigpfähle unterschätzt wurden.

Ausgehend von den mit dem Programm "CALIT" berechneten Werten für b^* , c, τ_{mf} und s_{rg} wurden diese Parameter nun solange variiert, bis die Abweichung Y nach Gl. 2.2 im Mittel Null wurde.

Das Ergebnis dieser Variation ist der in Tabelle 1 zusammengestellte Bemessungsvorschlag für Verdrängungspfähle, die in einer neuen, DIN 4026 folgenden Regelungsfassung aufgenommen werden sollen.

Die dort angegebenen Werte gelten für Pfähle mit Längen von 8 m bis 30 m und Profilweiten (bzw. Seitenlängen, bzw. Durchmessern) von ca. 0,5 m, deren Pfahlfuß in den sogenannten "ausreichend tragfähigen Baugrund" (mit $q_s \ge 10$ MPa, s. DIN 4026, Beiblatt, zu 8.1.1.1 und 8.1.1.2) einbindet, und die auf herkömmliche Weise gerammt wurden.

Spitzenwiderstand [MN] :

$$Q_{s}(s) = A_{s} \cdot \begin{bmatrix} s \\ b^{*} \end{bmatrix}$$

(4.2)

mit As = Fußfläche [m²]
 (für H- Profile : umrissene Fläche)
s = Setzung [mm]

Mantelwiderstand [MN]

 $Q_{rg}(s \ge s_{rg}) = \Sigma \tau_{mf}(i) \cdot A_{m}(i) \qquad (3.2.a)$

mit $A_m = Mantelfläche [m²]$

(für H- Profile : Fläche der Stahlabwicklung)

	Spitzendruck os		Mantelreibung τ	
Pfahltyp	b* [mm*m ² c/MNc]	с [-]	τ _{m f} [MN/m ²]	Srg [mm]
Ortbeton- Rammpfähle	0.55	1.55	0.004* qs	5
Stahlpfähle ohne Flügel oder Backenbleche	0.65	1.9	0.002* qs	5
Stahlbeton - Fertigpfahl	0.25	1.63	0.003* q₅	5

Tabelle 1 : Bemessungsparameter

<u>Hinweis:</u> Der Spitzendruck σ_s (s) für Stahlpfähle ohne Flügel gilt auch für H- Profile und Kasten- oder Rohrprofile. Im Rahmen der Streuungen ist kein unterschiedliches Tragverhalten zu beobachten.Für alle Pfahltypen gelten diese Angaben in erster Näherung für rollige und für bindige Böden.

Die Bilder 4.10 bis 4.12 zeigen die Abweichung Y zwischen den gemessenen und den mit dem in Tabelle 1 angegebenen Bemessungsvorschlag berechneten Widerstandssetzungslinien.

4.4 Erweiterung des Bemessungsvorschlages

Neben den drei oben genannten Pfahltypen finden zwei weitere Stahlpfahlarten häufige Anwendung

4.4.1 Stahlpfähle mit Backenblechen

Für diese Pfahlart können die Berechnungsparameter der Stahlpfähle ohne Flügel oder Backenbleche übernommen werden. Die Abweichung zwischen der gemessenen obs Q(s)- Linie und der berechneten cal Q(s)- Linie liegen im Rahmen der auch für diese Pfähle ermittelten Abweichungen.

4.4.2 Stahlpfähle mit Flügeln

Auch hier können im Rahmen der beobachteten Abweichungen die Parameter der Stahlpfähle verwendet werden, wenn für die Berechnung der Widerstandskräfte folgende Flächen angesetzt werden :

4.4.2.1 Fuβfläche A_g

Wenn die Flügel unmittelbar oberhalb vom Pfahlfuß angeordnet und lang genug sind, kann die umrissene Fläche des Gesamtquerschnitts gemäß Bild 4.13 angesetzt werden.

Wenn die Flügel einen Abstand zum Pfahlfuß haben, ist wie bei den H- Stahlpfählen nur die umrissene Fläche des verwendeten Profils anzusetzen.

4.4.2.2 Mantelfläche Am

Hier wird wie üblich, aber eigentlich im Widerspruch zum Pfropfenbildungsvorgang, im Bereich der Flügel die abgewickelte Stahlfläche des Gesamtquerschnitts gemäß Bild 4.14 zur Berechnung des Mantelwiderstands angesetzt.

5 SICHERHEITSBETRACHTUNGEN

5.1 Bemessung von Pfählen nach dem Prinzip der Grenzzustände

Nach diesem Prinzip werden zwei praktisch relevante Grenzzustände betrachtet :

> Grenzzustand 1 : Tragwerksversagen Grenzzustand 2 : Verlust der Gebrauchstauglichkeit

Für Pfähle werden Grenzzustände (GZ) an Hand bestimmter Setzungen bzw. Setzungsdifferenzen definiert :

- Der Grenzzustand 1 tritt bei Setzungen s_f = 0,1•D ein, oder bei Setzungen, die mit Setzungsdifferenzen ∆s verbunden sind, welche Bruch im Tragwerk infolge Zwangsverbiegung zur Folge haben.
- Der Grenzzustand 2 tritt bei entsprechend großen Setzungen oder Setzungsdifferenzen ein.

Die Anwendung einer Bemessungsmethode nach dem Prinzip der Grenzzustände setzt somit die Kenntnis der Widerstandssetzungslinie Q(s) voraus. Diese muß mit den setzungsabhängigen Funktionen des Spitzen- und des Mantelwiderstands, $\sigma_{s}(s)$ bzw. $\tau_{m}(s)$ gemäß Gl. 5.1 ermittelt werden.

cal Q(s) =
$$\sigma_s(s) \cdot A_s + \tau_m(s) \cdot A_m$$
 (5.1)
= cal Q_s(s) + cal Q_r(s)

Wie üblich wird eine Wechselwirkung zwischen Spitzendruck und Mantelreibung vernachlässigt.

Der Nachweis gegen Versagen im Grenzzustand 1 wird dann im Falle der Begrenzung bei $s_f = 0,1 \cdot D$ (Bruch im Boden der Pfahlumgebung, früher GZ 1A) gemäß Gl. 5.2 geführt.

zul Q =
$$\frac{Q_g}{\eta} = \frac{Q(0,025 \cdot D = s_{bl})}{\eta}$$
 (5.2a)

$$Q_{d} = \frac{Q_{f}}{\gamma_{M}} = \frac{Q(0, 1 \cdot D)}{\gamma_{M}}$$
(5.2b)

Index d bedeutet Bemessungswert

- Qg n
- ist der sogenannte Grenzwert nach DIN 4026 und DIN 1054 ist der globale, deterministische (empirisch deterministische) Sicherheitswert

Υ_M

ist der probabilistische Teilsicherheitswert der Widerstandsseite.

Anmerkung:

Bisher wurden globale Sicherheitsbeiwerte η verwendet, die einerseits einen hinreichenden Abstand zum Bruchzustand gewährleisten, andererseits auch die Streuung der Widerstände (Bodeneigenschaften) unschädlich machen sollten.Dazu wurde bisher für den Grenzzustand 1 ein η - Wert von 2 gewählt, unabhängig davon, ob das Versagen durch Bruch im Boden oder durch zu große Setzungen verursacht wird. Für den Grenzzustand 2 galt bisher ein Sicherheitsbeiwert von 1.

5.1.1 Konstante Teilsicherheitswerte

Für Sicherheitsbetrachtungen gemäß den Eurocodes werden Teilsicherheitsbeiwerte γ auf alle "Basisvariablen" (= Einflußparameter) angewendet. Es wurde diskutiert, für Pfähle in diesem Sinne unterschiedliche konstante Teilsicherheitswerte γ_s für den Spitzenwiderstand und γ_r für den Mantelwiderstand einzuführen, wobei diese Beiwerte in Abhängigkeit der jeweiligen Streuungen und des untersuchten Grenzzustands zu definiert wären. Wie FRANKE (1991) nachgewiesen hat, ist die Verwendung solcher Teilsicherheitswerte, getrennt für Spitzen- und Mantelwiderstand nicht praktikabel. Es zeigt sich, daß die Teilsicherheitsbeiwerte von der Pfahlgeometrie A_s/A_m bzw. von Q_s/Q_r abhängen und zudem setzungsabhängig ermittelt werden müßten. Daher ist es zweckmäßig, einen Teilsicherheitsbeiwert γ_M wie in Gl. 5.2b erst auf die Summe von

$$Q(0,1 \cdot D) = Q_{r}(0,1 \cdot D) + Q_{s}(0,1 \cdot D)$$
(5.3)

anzuwenden.

β

5.1.2 Probabilistische Sicherheitsbetrachtungen

Bei dieser Betrachtung muß

$$Q_d \ge S_d \tag{5.4}$$

nachgewiesen werden. Q ist der Einzelpfahlwiderstand, S ist die Einwirkung.

Der Bemessungswert der Pfahlwiderstands Q_d wird hier mit folgender Gleichung für jeden Einzelpfahl mit anderen A_s - und A_m -Werten ermittelt :

$$Q_{d} = m_{\sigma s} \cdot (1 - \widetilde{\alpha} \cdot \alpha_{s} \cdot \beta \cdot V_{\sigma s}) \cdot A_{s} + m_{\tau m} \cdot (1 - \widetilde{\alpha} \cdot \alpha_{m} \cdot \beta \cdot V_{\tau m}) \cdot A_{m} \geq S_{d}$$
(5.5)

m bedeutet Mittelwert

α berücksichtigt den Einfluß der Einwirkungsseite

α_{s,m} sind voneinander abhängige Wichtungsfaktoren des Einflusses von Spitzen- und Mantelwiderstand

 $v_{\sigma s}$ und $v_{\tau m}$ sind die Variationskoeffizienten von Spitzen- und Mantelwiderstand

ist der Sicherheitsindex

5.1.3 Fazit der grundsätzlichen Überlegungen zu den Sicherheitsnachweisen

Wie die obigen Betrachtungen gezeigt haben, müssen zukünftig verschiedene Grenzzustände untersucht werden, die nur in Abhängigkeit von der Pfahlsetzung definiert sind. Dies setzt, wie schon gesagt, die Kenntnis der nicht- linearen Widerstandssetzungslinie Q(s) voraus. Liegt die Widerstandssetzungslinie vor, kann man die in den Eurocodes vorgesehenen Sicherheitsnachweise gemäß Gl. 5.2 führen, und die Bemessungswerte berechnen.

Die Anwendung konstanter Teilsicherheitsbeiwerte, getrennt auf Spitzen- und Mantelwiderstand, ist nicht praktikabel.

Diesen Ergebnissen Rechnung tragend, kann die Verwendung der Gl. 5.2 nur durch einen summarischen Vergleich mit den Ergebnissen nach der in Abschnitt 5.1.2 kurz skizzierten β - Methode gerechtfertigt werden. Dabei wird untersucht, welche bisher verwendeten Sicherheitswerte η dem probabilistischen Sicherheitsindex $\beta = 4,7$ entsprechen, wenn zul Q nach Gl. 5.2a mit dem genaueren Wert Q_d nach Gl. 5.5 verglichen wird in der Form

$$\frac{Q_d \text{ nach Gl. 5.2}}{Q_d \text{ nach Gl. 5.5}}$$
(5.6)

Um das zu tun, wird wie im folgenden Abschnitt gezeigt verfahren.

BEGRÜNDUNG EINES KONSTANTEN Y_M- WERTES NACH GL. 5.5 MITTELS DER PROBABILISTISCHEN METHODE

6.1 Ermittlung des Bemessungswerts Q_d auf probabilistischer Grundlage

In der Grenzzustandsgleichung (Gl.5.4)sei

$$R_d = Q_d(s) \tag{6.1}$$

Der Bemessungswert Q_d würde sich dann bei Annahme einer Normalverteilung für Q(s) ergeben zu

$$Q_d(s) \le \overline{Q}(s) - \widetilde{\alpha} \cdot \beta \cdot \sigma_0$$
 (6.2)

Dabei sind

$$Q(s) = Q_s(s) + Q_r(s)$$

 $\overline{Q}(s) = Mittelwert von Q(s)$

Nach den Regeln der Statistik ergibt sich die dabei verwendete Standardabweichung $\sigma_{Q(s)}$ von Q(s) aus den Standardabweichungen des Spitzen- und des Mantelwiderstands $\sigma_{\sigma s(s)}$ und $\sigma_{\tau m}$ wie folgt

$$\sigma_{Q(s)} = \sqrt{(\sigma_{\sigma s} \cdot A_s)^2 + (\sigma_{\tau m} \cdot A_m)^2}$$
(6.3)

In folgenden soll jedoch realitätsnaher von einer logarithmischen Verteilung für Q(s) ausgegangen werden, die zudem die Kenntnis von α_s und α_m nach Gl. 5.5 entbehrlich macht.

Die logarithmische Normalverteilung ist definiert durch

$$f[Q(s)] = \frac{1}{\sqrt{2\pi \cdot \zeta_Q} \cdot Q(s)} \cdot \exp \left[\frac{1}{2} \frac{\ln Q(s) - \lambda_Q}{\zeta_Q}\right] \quad (6.4)$$

Für die logarithmische Normalverteilung nach Gl. 6.4 ist die Standardabweichung

$$\zeta_{Q(s)} = \sqrt{\ln (1 + V_{Q(s)}^2)}$$
 (6.5)

und der Mittelwert

$$\lambda_{Q(s)} = \ln Q(s) - \frac{1}{2} \cdot \zeta_{Q(s)}$$
 (6.6)

Der in Gl. 6.5 einzusetzende Variationskoeffizient $V_{Q(s)}$ ist

$$V_{Q(s)} = \frac{\sqrt{(\sigma_{\sigma s} \cdot A_s)^2 + (\sigma_{\tau m} \cdot A_m)^2}}{\sigma_s(s) \cdot A_s + \tau_m \cdot A_m}$$
(6.7)

$$= \sqrt{\frac{V_{\sigma s}^{2}}{\left(1+\frac{\bar{Q}_{r}(s)}{\bar{Q}_{s}(s)}\right)^{2}} + \frac{V_{\tau m}^{2}}{\left(1+\frac{\bar{Q}_{s}(s)}{\bar{Q}_{r}(s)}\right)^{2}}}$$

Das heißt, zur Berechnung von Q_d nach Gl. 6.2 sind die Variationskoeffizienten des Spitzenwiderstands $V_{\sigma s}$ und des Mantelwiderstands $V_{\tau m}$ erforderlich. Wenn diese Werte bekannt sind, kann der Bemessungswert Q_d unter Verwendung der Berechnungswerte aus Tabelle 1 problemlos werden aus

$$Q_{d}(s) \leq \exp \left[\lambda_{Q(s)} - \tilde{\alpha} \cdot \beta \cdot \zeta_{Q(s)} \right]$$
 (6.8)

wobei im Grenzzustand 1 (bzw. 1A) für $s = 0,1 \cdot D$ einzusetzen ist.

6.2 Streuung des Spitzenwiderstands $\sigma_{s}(s)$

Um Informationen über die Streuung des Spitzenwiderstands zu erhalten, wurden die mit "CALIT" ermittelten $\sigma_s(s)$ - Verläufe für Pfähle, deren Pfahlfuß in vergleichbarem Baugrund stehen, analysiert.

Da in Abschnitt 4.1 eine Abhängigkeit des Spitzenwiderstands vom Pfahltyp festgestellt wurde, werden auch hier zunächst die Pfahltypen getrennt betrachtet.

Lediglich für Ortbeton- Rammpfähle und für Stahlpfähle ohne Flügel oder Backenbleche sind genug vergleichbare Pfähle vorhanden, um eine Abschätzung des Variationskoeffizienten zu ermöglichen.

Für Ortbeton- Rammpfähle, die mit dem Pfahlfuß in Sand mit einer Sondierfestigkeit $q_s = 15 \text{ MN/m}^2$ einbinden, ergibt sich $V_{\sigma s} = 0,16$. Bei einer Sondierfestigkeit von 20 MN/m² ist der Variationskoeffizient 0,2.Bei den Stahlpfählen deren Pfahlfuß ebenfalls in Sand mit einer Festigkeit $q_s = 17,5$ bis 20 MN/m² ergibt sich $V_{\sigma s}$ zu 0,21.

Die Variationskoeffizienten sind in erster Näherung setzungsunabhängig, und im weiteren wird

$$V_{\sigma S} = 0,2$$
 (6.9)

für alle Pfahltypen angesetzt.

6.3 Streuung des Mantelwiderstands τ_{mf}

Auch für den Mantelwiderstand wird zunächst die Streuung in Abhängigkeit vom Pfahltyp untersucht. Hierzu steht lediglich für rollige Böden mit einer Sondierfestigkeit zwischen 15 und 20 MN/m² eine ausreichende Datenbasis zur Verfügung.

Für die Ortbeton- Rammpfähle ergibt sich $V_{\tau mf} = 0,22$, für die Stahlpfähle ohne Flügel ist $V_{\tau mf} = 0,2$ und für die Stahlbeton-Fertigpfähle 0,18.

Auch für den Mantelwiderstand wird somit ein vom Pfahltyp unabhängiger Variationskoeffizient

$$V_{\rm rmf} = 0,2$$
 (6.10)

gewählt.

Mit den bekannten Variationskoeffizienten $V_{\sigma s}$ und $V_{\tau m f}$ kann der Bemessungswert Q_d nach Gl. 6.8 berechnet werden.

6.4 Vergleiche entsprechend Gl. 5.6

Es wird untersucht, welcher konstante Teilsicherheitswert γ_{M} auf der Widerstandsseite einem Soll- Sicherheitsindex β = 4,7 entspricht.

6.4.1 Vergleichsweise Verwendung der Grenztragfähigkeit Q_g nach DIN 4026 (8/1975) in Gl. 6.12

Der Vergleich wird für den Grenzzustand 1A durchgeführt. Verglichen wird der Wert Q_d nach Gl. 5.2a und der probabilistische Wert Q_d nach Gl. 6.8 als Referenzwert gemäß Gl. 5.6. Dieser Vergleich wurde für 54 Pfähle verschiedener Typen und Abmessungen durchgeführt, die in der Pfahlliste in Anlage 5 zusammengestellt sind.

Die Q_g - Werte in Gl. 5.2a wurden nach dem in DIN 4026 (8/1975) festgelegten Kriterium für die Grenztragfähigkeit bestimmt. Dazu wurden für die gemessenen Widerstandssetzungslinien gemäß Bild 2 der DIN 4026 die Last ermittelt, die eine bleibende Setzung des Pfahles von 0,025 D hervorruft, und die zur Grenztragfähigkeit Q_g gehörende Grenzsetzung aus der Widerstandssetzungskurve abgelesen. Für diese Setzung wurde dann mit den Angaben aus Tab.1 in Abschnitt 4 die Tragfähigkeit nach dem neu entwickelten Bemessungsvorschlag errechnet, und der Bemessungswert Q_d nach Gl. 6.8 bestimmt.

Da bei der Berechnung des Referenzwertes Q_d nach Gl. 6.8 zur Berücksichtigung der Einwirkungen $\tilde{\alpha} = 0,8$ verwendet wurde, istum Vergleichbarkeit mit der bisherigen Vorgehensweise herzustellen- nun statt $\eta = 2$ in Gl. 5.2a einzuführen

$$\Pi (\text{neu}) = \frac{\Pi (\text{alt})}{\gamma} = \frac{2}{1,35...1,5}$$
(6.11)
= 1,5...1,33 ≈ 1,4

Dabei ergibt sich 1,4 als Mittelwert der $\gamma_{\rm F}$ - Werte für ständige und nicht ständige Einwirkungen.

Statt Gl. 5.2a wird im folgenden also verwendet

$$Q_{d1A} = \frac{Q_g}{\eta \text{ (neu)}} \tag{6.12}$$

In Bild 5.1 ist der Vergleich der beiden Bemessungswerte dargestellt. Es zeigt sich, daß der Quotient

$$\frac{Q_{d1A} \text{ nach Gl.}(6.12) \text{ mit } \eta_{(neu)} = 1,4}{Q_{d} \text{ nach Gl.}(6.8) \text{ mit } \beta = 4,7}$$
(6.13)

größer als 1 ist. Das heißt, die Anwendung der Angaben in DIN 4026 (8/1975) führt unter Verwendung eines Sicherheitsbeiwertes $\eta = 2$ zu größeren Bemessungslasten als das neu entwickelte Bemessungskonzept.

6.4.2 Vergleichsweise Verwendung der Bruchlast $Q_g = Q (0,1D)$ in Gl. 6.12

Die Definition der Grenztragfähigkeit, wie sie bisher in der DIN 4026 festgelegt ist, muß sehr als konservativ betrachtet werden. Bei Anwendung des Kriteriums $s_{bl} = 0,025$ D ergeben sich nur sehr kleine Setzungsdifferenzen Δ s zwischen benachbarten Pfählen.

$$\Delta s = 0, 5...1 \text{ mm}$$
 (6.14)

Wenn das weltweit am meisten verbreitete Kriterium der Grenztragfähigkeit nach Gl. 6.15 angewendet wird,

$$Q_{\rm g} = Q \ (0, 1 \cdot D)$$
 (6.15)

ergeben sich für Verdrängungspfähle mit den üblichen Abmessungen (D = 30...40 cm) mit der Annahme nach FRANKE (1982)

$$\Delta s/s = 1/4 \tag{6.16}$$

Setzungsdifferenzen von etwa

f

$$\Delta s = 2...2,5 \text{ mm}$$
 (6.17)

die auch weit auf der sicheren Seite liegen.

Für 17 der für den Vergleich in Abschnitt 5.3 verwendeten Pfähle war eine sinnvolle Extrapolation der Widerstandssetzungslinie bis s/D = 0,1 möglich. Diese Pfähle sind in Anlage 6 zusammengestellt.

Bild 6.2 zeigt für diese Pfähle den Vergleich der Bemessungswerte Q_d gemäß Gl. 6.13, der schon eher gestattet zu verstehen, daß die bisherige Pfahlbemessung mit $\eta = 2$ berechtigt war.

6.5 Fazit der Sicherheitsbetrachtungen unter 6.4

Als Ergebnis der Untersuchungsergebnisse der Bilder 6.1 und 6.2 ist zusammenfassend zu sagen, daß man trotz der prinzipiellen Nichtkonsistenz der konstanten Sicherheitsbeiwerte η und γ auf der einen und der Ergebnisse der β - Methode auf der anderen Seite erstere doch näherungsweise unabhängig vom Verhältnis des Pfahlmantel- zum Pfahlfußwiderstand anwenden und beibehalten kann. Die neuen Angaben über das Lastsetzungsverhalten in Tabelle 1 sollten in der Nachfolgeregelung zur DIN 4026 aufgenommen werden, und zwar in Verbindung mit der Definition größerer Bruchsetzungsangaben von mindestens s = 0,1.D.

ľ

LITERATURVERZEICHNIS

APPENDINO, M. (1977) Analysis of data from instrumented driven piles Proc. 9. ICSMFE, Tokyo 1977, Vol.I, p. 359-370

BARRETT,A.J. et al. (1985) Back analysis of test piles driven into estuarine sand Proc. 11. ICSMFE, San Francisco 1985, Vol. III, p. 1347-1352

BERGDAHL,U. / WENNERSTRAND,J. (1976) Bearing capacity of driven friction piles in loose sand Proc. 6. ECSMFE, Wien 1976, Vol. 1.2, S. 355-360

BERINGEN, F.L. et al. (1979)

Results of loading tests on driven piles in sand Recent developments in the design and construction of piles, ICE London, p. 153-165

BRIAUD,J.L. / TUCKER,L.M. (1988) Measured and predicted axial response of 98 piles Proc. ASCE (11), GT 9, Sept. 1988, p. 984-1001

BUSTAMANTE, M.G. / GIANESELLE, L. (1991)

Predicting the bearing capacity of sheet piles under vertical load Proc. 4. int. DFI- Conference, Stresa 1991, Vol.1, p. 185-192

COYLE, H.M. / SULAIMAN, J.H. (1967) Skin friction for steel piles in sand Proc. ASCE (93), SM 6, Nov. 1967, p. 261-278

D'APPOLONIA,E. / ROMUALDI,J.P. (1963) Load transfer in end- bearing steel H- piles Proc. ASCE (89), SM 2, March 1963, p. 1-25

DE BEER,E. et al. (1979)
 Prediction of the bearing capacity of displacement piles,
 penetrating into a very dense sand layer, from CPT- results
 Proc. 7. ECSMFE, Brighton 1979, Vol. III, p. 51-59

FRANKE, E. (1982) Abschnitt 2.11 "Pfähle" Grundbau-Taschenbuch, 3. Auflage 1982, Teil 2, S.459-540 FRANKE, E. (1989) Die Entwicklung der Tragfähigkeitsangaben in den deutschen Pfahlnormen Bautechnik (66), Heft 11/1989, S. 365-371 FRANKE, E. (1990 a)The EUROCODE- safety approach as applied to foundations Key-note lecture to the 9. Danube- European CSMFE, Budapest 1990, p. 173-182 FRANKE, E. (1990 b) Verbesserung der Angaben über die vertikale Pfahltragfähigkeit in der geplanten DIN 1054, Teil 5 "Pfahlgründungen"; Teil 2 Abschlußbericht zum Forschungsauftrag des Inst. für Bautechnik Berlin, Az. IV 1-4-411/8 FRANKE, E. (1991) EUROCODE- safety approach as applied to single piles Proc. 4. int. DFI- Conference, Stresa 1991, Vol. 1, p. 13-18 GREGERSEN, O.S. et al. (1973) Load tests on friction piles in loose sand Proc. 8. ICSMFE, Moskau 1973, Vol. 2.1, p. 109-117 HAMZA, M.M. (1991) Short and long term shaft resistance of driven instrumented piles in soft clay Proc. 4. int. DFI- Conference, Stresa 1991, Vol. 1, p. 579-585 JOSHI, R.C. et al. (1989) Skin friction distribution along driven piles Proc. 12. ICSMFE, Rio de Janeiro 1989, Vol. 2., p. 929-932 POULOS, H.G. / DAVIS, E.H. (1968) The settlement behaviour of single axially loaded incompressible piles in sand Geotechnique (18), 1968, p. 351-371

SCHMIDT,H.G. / HETTLER,A. (1989)
Probebelastung an zwei Großbohrpfählen im Bereich einer
Verwerfungszone
Bautechnik (66), Heft 6/1989, S. 181-186

VAN IMPE,W.F. / VAN DEN BROECK,M. / THOOFT,K. (1988) End and shaft bearing capacity of piles eveluated separatly out of static pile loading test results Proc. 1. int. Seminar on Deep Foundations on Bored and Auger Piles; Ghent 1988, Ghent State Unsiversity, p. 489-498

VAN WEELE, A.F. (1957)

A methode of separating the bearing capacity of a test pile into skin- friction and point- resistance Proc. 4. ICSMFE, London 1957, Vol. II, p. 76-80

VESIC, A. (1975)

Principles of pile foundation design Soil mechanics series no. 38, March 1975, Duke University Durham, North Carolina

WEBER,L. / DE BEER,E. (1988)

Prediction of the load- settlement behaviour of steel Hpiles from the results of CPT- tests Proc. 2. ISOPT, Orlando 1988, p. 1043-1049

WEISS,K. / HANACK,S. (1983)

Der Einfluß der Lagerungsdichte des Bodens und der Herstellungsart von Großbohrpfählen auf deren Tragfähigkeit Mitteilungen der Degebo, Berlin, Heft 35

Darmstadt, den 10.12.1991

Sachbearbeiterin:

Í

ľ

Í

H. Cet

(Dipl.-Ing. M.Ehlers) ·

perla

(Prof.Dr.-Ing. E.Franke)

Bild 1.1: Konstruktion einer Widerstandssetzungslinie auf der Grundlage empirisch ermittelter Spitzendruck- und Mantelreibungswerten nach Bild 3, DIN 4014 (3/1990)

Bild 2.1:

Mindestanforderung an den Ergebnisumfang einer Probebelastung hinsichtlich der Auswertbarkeit

Bild 2.2a: Einfluß der unterschiedlichen Gestalt der Arbeitslinien von Spitzen- und Mantelwiderstand auf die Form der Widerstandssetzungslinie

Bild 2.2b: Bilineare Annäherung der Linie der Pfahlmantelwiderstandskraft

Bild 2.3: Definition der Begriffe obs Q, cal Q und Abweichungen Y

Bild 2.4: Verschiebung der Q_S(s)- Linie entlang der s- Achse, Definition des Parameters a in Gl.(2.6)

ł

ì

Bild 2.5: Grenzwerte für die Variation von Q_{rq}

Bild 2.6: Mögliche Kombinationen von mindestens 4 aufeinanderfolgenden Messpunkten zur Berechnung der Parameter b ,c

Bild 4.1a: b^{*} als Funktion der Pfahlbreite für Stahlbeton-Fertigpfähle

Bild 4.1b: c als Funktion der Pfahlbreite für Stahlbeton-Fertigpfähle

Bild 4.2a: b^{*} als Funktion der Sondierfestigkeit für Stahlbeton - Fertigpfähle

Bild 4.2b: c als Funktion der Sondierfestigkeit für Stahlbeton-Fertigpfähle

Bild 4.3a: b^{*} als Funktion der Pfahlbreite für Ortbeton-Rammpfähle

*Bild 4.3*b : c als Funktion der Pfahlbreite für Ortbeton-Rammpfähle

Bild 4.4a: b^{*} als Funktion der Sondierfestigkeit für Ortbeton-Rammpfähle

Bild 4.4b: c als Funktion der Sondierfestigkeit für Ortbeton-Rammpfähle

Bild 4.5b: c als Funktion der Pfahlbreite für Stahlpfähle ohne Flügel od. Backenbleche

Bild 4.6a: b^{*} als Funktion der Sondierfestigkeit für Stahlpfähle ohne Flügel od. Backenbleche

Bild 4.6b: c als Funktion der Sondierfestigkeit für Stahlpfähle ohne Flügel od. Backenbleche

Bild 4.7: Abhängigkeit des Mantelwiderstands τ_{mf} von der Sondierfestigkeit q_s für Stahlbeton-Fertigpfähle

Bild 4.8: Abhängigkeit des Mantelwiderstands $\tau_{\rm mf}$ von der Sondierfestigkeit ${\rm q}_{\rm S}$ für Ortbeton- Rammpfähle

Bild 4.9: Abhängigkeit des Mantelwiderstands τ_{mf} von der Sondierfestigkeit q_s für Stahlpfähle ohne Flügel

Bild 4.10: Häufigkeitsverteilung der Abweichung Y [%] für Stahlbeton- Fertigpfähle

ľ

Bild 4.11: Häufigkeitsverteilung der Abweichung Y [%] für Ortbeton- Rammpfähle

ľ

Í

Ť

Bild 4.12: Häufigkeitsverteilung der Abweichung Y [%] für Stahlpfähle ohne Flügel oder Backenbleche

ľ

ť

ŕ

Bild 4.13: Mittelwerte der Abweichungen Y [%]

Bild 4.14: Fußfläche A_s für Stahlpfähle mit Flügeln am Pfahlfuß

Bild 4.15: Mantelfläche ${\rm A}_{\rm m}$ im Bereich der Flügel

Bild 6.1: Verhältnis zwischen Q_{d1A} nach Gl.(6.12) und Q_d nach Gl.(6.13) für Grenzlastkriterium nach DIN 4026

Bild 6.2: Verhältnis zwischen Q_{d1A} nach Gl.(6.12) und Q_d nach Gl.(6.13) für Grenzlastkriterium $Q_g = Q(0,1 D)$

Kss a 📕 O , Koefub , Exp.a

.

Andage A. A

Kss a 💻 O , Kaef. b , Exp. c

Anhage 2.1

Anlage

5. 19

Auswertung der Calit- Brgebnisse für Stahlbeton- Fertigpfähle

Pfahlliste zu Bild 4.1

Spitzenwiderstandsparameter und Pfahlgeometrie

Nr.	Pf.Nr.	Breite [mm]	Hôhe [mm]	L(Boden) [m]	a	b	С	b* b*Af^c
1	sb143	340.00	340.00	7.50	0.00	2.43	1.22	0.17
2	sb161	400.00	400.00	10.50	1.55	26.27	2.54	0.25
3	sb162	400.00	400.00	12.00	1.37	5.25	1.84	0.18
4	sb165	340.00	340.00	11.20	0.00	8.60	1.86	0.16
5	sb167	340.00	420.00	22.50	3.85	4.29	1.42	0.27
6	sb168	340.00	420.00	22.50	0.00	3.85	1.15	0.41
7	sb191	340.00	340.00	8.75	0.00	6.58	1.85	0.12
8	sb223	400.00	400.00	25.50	1.36	4.73	1.24	0.49
9	sb224	350.00	350.00	27.00	0.00	4.76	1.14	0.43
10	sb225	350.00	350.00	12.00	0.50	2.67	1.63	0.09
11	sb226	300.00	300.00	16.00	0.47	4.12	1.25	0.20
12	sb227	340.00	340.00	19.80	0.00	3.39	1.36	0.18
13	sb229	380.00	420.00	16.57	2.23	6.53	2.20	0.12
14	sb230	340.00	340.00	7.70	2.84	9.74	2.20	0.08
15	sb231a	340.00	340.00	17.00	2.00	10.90	2.27	0.08
16	sb232	380.00	380.00	16.75	0.60	2.36	1.64	0.10
17	sb233	340.00	340.00	12.70	0.00	3.77	1.26	0.25
18	sb234	340.00	340.00	13.20	0.00	3.90	1.37	0.20
19	sb237	400.00	400.00	16.50	2.00	3.87	1.82	0.14
20	sb241	340.00	340.00	15.00	2.36	20.66	2.53	0.09
21	sb242	340.00	340.00	10.80	1.15	14.21	1.75	0.33
22	sb243	340.00	380.00	13.80	2.02	4.35	1.38	0.26
23	sb244	340.00	340.00	13.60	1.23	6.40	1.58	0.21
24	sb245	340.00	380.00	13.10	1.71	4.13	1.46	0.21

Mittelwert

a b 1.14 6.99 1.67 0.21

þ*

C

Auswertung der Calit- Ergebnisse für Stahlbeton- Fertigpfähle

Pfahlliste zu Bild 4.2

Spitzenwiderstandsparameter und Bodenfestigkeit am Pfahlfuß

Nr.	Pf.Nr.	Festigk. [MN/m²]	a	b	C	Breite [mm]	Höhe (mn)	b*=blf^c b*
1	sb161	4.00	1.55	26.27	2.54	400.00	400.00	0.25
2	sb162	6.50	1.37	5.25	1.84	400.00	400.00	0.18
3	sb225	10.00	0.50	2.67	1.63	350.00	350.00	0.09
4	sb241	12.50	2.36	20.66	2.53	340.00	340.00	0.09
5	sb143	15.00	0.00	2.43	1.22	340.00	340.00	0.17
6	sb234	15.00	0.00	3.90	1.37	340.00	340.00	0.20
7	sb237	15.00	2.00	3.87	1.82	400.00	400.00	0.14
8	sb239	15.00	2.17	7.86	2.21	320.00	rund	0.03
9	sb233	25.00	0.00	3.77	1.26	340.00	340.00	0.25
10	sb232	25.00	0.60	2.36	1.64	380.00	380.00	0.10
11	sb223	30.00	1.36	4.73	1.24	400.00	400.00	0.49
12	sb224	30.00	0.00	4.76	1.14	350.00	350.00	0.43
13	sb147	30.00	0.00	2.47	1.74	350.00	350.00	0.06

Auswertung der Calit- Brgebnisse für Ortbeton- Pfähle

-#0

Pfahlliste zu Bild 4.3

Spitzenwiderstandsparameter und Pfahlgeometrie

Nr.	Pf.Nr.	Breite [mm]	Långe [m]	Fläche [m²]	a	b	С	b* b*Af^c
1	ob2	470.00	21.30	0.17	0.00	6.47	1.24	0.74
2	ob3	800.00	7.00	0.50	0.00	2.93	2.68	0.46
3	ob4	470.00	21.80	0.17	0.00	5.05	1.45	0.40
4	ob5	570.00	22.00	0.26	0.00	6.44	1.22	1.22
5	ob6	570.00	22.00	0.26	0.00	3.85	1.31	0.64
6	ob9	570.00	18.00	0.26	1.11	2.17	1.19	0.43
7	ob14	750.00	21.00	0.44	0.00	1.57	2.22	0.26
8	ob16	600.00	17.50	0.28	0.00	2.53	2.11	0.18
9	ob18	620.00	16.00	0.30	0.00	3.05	2.32	0.19
10	ob20	470.00	16.75	0.17	0.00	2.93	1.83	0.12
11	ob23	470.00	17.00	0.17	3.38	3.81	1.77	0.17
12	ob25	650.00	25.40	0.33	1.93	1.80	2.80	0.08
13	ob26	550.00	25.00	0.24	1.83	12.15	2.39	0.39
14	ob27	550.00	26.80	0.24	0.00	2.96	1.75	0.24
15	ob28	650.00	27.00	0.33	0.00	2.62	1.52	0.49
16	ob29	650.00	25.20	0.33	0.00	3.25	1.13	0.93
17	ob30	650.00	26.20	0.33	0.00	1.72	1.42	0.36
18	ob31	559.00	20.80	0.25	0.00	5.60	1.63	0.57
19	ob32	550.00	23.60	0.24	0.00	5.04	1.55	0.54
20	ob33	750.00	29.80	0.44	3.80	2.86	1.54	0.81
21	ob34	750.00	28.20	0.44	0.00	5.99	1.43	1.86
22	ob35	750.00	20.40	0.44	0.00	3.13	1.33	1.06
23	ob40	650.00	18.60	0.33	6.29	7.49	3.13	0.24
24	ob41	650.00	22.40	0.33	0.00	4.12	1.72	0.62
25	ob44	750.00	15.00	0.44	0.00	2.55	1.36	0.84
26	ob45	750.00	16.00	0.44	1.47	2.49	1.42	0.78
27	ob81	600.00	18.90	0.28	2.07	1.96	1.33	0.37
28	ob82	600.00	16.20	0.28	0.00	2.46	1.52	0.36
29	ob84	550.00	15.00	0.24	2.35	2.59	1.93	0.16
30	ob86	600.00	19.20	0.28	0.00	1.68	1.55	0.24
31	ob87a	550.00	11.50	0.24	2.11	4.58	1.42	0.60
32	ob87b	550.00	11.50	0.24	2.55	3.23	1.49	0.38
33	ob88	600.00	16.10	0.28	2.94	1.67	1.80	0.17
34	ob92a	600.00	15.80	0.28	1.79	2.21	1.82	0.22
35	ob107	620.00	17.75	0.30	2.22	5.58	1.52	0.90

Mittelwert

b 3.73 1.02

а

Anlage 3.3

ķ

b×

1.71 0.51

С

Auswertung der Calit- Brgebnisse für Ortbeton- Pfähle

Pfahlliste zu Bild 4.4 Spitzenwiderstandsparameter und Bodenfestigkeit am Pfahlfuß

								b*=bAf^c
Nr.	PfNr	Pestigk. [MN/nº]	â	b	Ċ	D (Fuß) [m n]	F(Fuß) [n²]	þ×
1	ob18	10.00	0.00	3.05	2.32	620.00	0.3019	0.189
2	ob84	10.00	2.35	2.59	1.93	550.00	0.2376	0.162
3	ob9	10.00	1.11	2.17	1.19	570.00	0.2552	0.427
4	ob3	10.00	0.00	2.93	2.68	800.00	0.5027	0.464
5	ob31	12.50	0.00	5,60	1.63	559.00	0.2454	0.567
ĥ	oh 32	12.50	0.00	5.04	1.55	550.00	0.2376	0.543
, 7	ob87a	12.50	2.11	4.58	1.42	550.00	0.2376	0.595
8	ob87b	12.50	2.55	3.23	1.49	550.00	0.2376	0.379
0	1.6.4	4 5 4 4		1 0 5				
ų -	1800	15.00	2.07	1.96	1.33	600.00	0.2827	0.365
10	ob34	15.00	0.00	5.99	1.43	750.00	0.4418	1.862
11	0035	15.00	0.00	3.13	1.33	750.00	0.4418	1.056
12	ob92a	15.00	1.79	2.21	1.82	600.00	0.2827	0.222
13	ob82	15.00	0.00	2.46	1.52	600.00	0.2827	0.361
14	ob23	15.00	3.38	3.81	1.77	470.00	0.1735	0.172
15	ob25	20.00	1.93	1.80	2.80	650.00	0.3318	0.082
16	ob6	20.00	0.00	3.85	1.31	570.00	0.2552	0.643
17	ob88	20.00	2.94	1.67	1.80	600.00	0.2827	0.172
18	ob107	20.00	2.22	5.58	1.52	620.00	0.3019	0.904
19	ob20	20.00	0.00	2.93	1.83	470.00	0.1735	0.119
20	ohh	20.00	0.00	6.44	1 22	570.00	0.2552	1.217
21	ab29	20.00	0.00	3.25	1.13	650.00	0.3318	0.934
22	ohá	20.00	0 00	5.05	1 45	470 00	0 1735	0.398
23	ah40	20.00	6.20	7 49	1 1 1	650 00	0 3318	0 237
24	ch?	20.00	0.00	6 A7	1 24	470 00	0.3310	0.237
25	oh45	20.00	1 47	2 10	1 42	750.00	0 4/18	0 781
25	0030	20.00	1.37	10 16	1.94	550.00	0.2310	0.707
20	0020 0516	20.00	0.00	16.1J 0 R2	6.	500.00	0.2010	0.352
20	obli	20.00	0.00	4.00	4.11 1 70	650 00	0.202/	0.170
20	0041	20.00	0.00	4.16	1.14	030.00	0.0010	0.010
29	ob30	22.50	0.00	1.72	1.42	650.00	0.3318	0.359
30	ob44	25.00	0.00	2.55	1.36	750.00	0.4418	0.840
31	ob14	25.00	0.00	1.57	2.22	750.00	0.4418	0.256
32	ob27	25.00	0.00	2.96	1.75	550.00	0.2376	0.239
33	ob28	25.00	0.00	2.62	1.52	650.00	0.3318	0.490
34	ah86	30.00	0.00	1.68	1.55	600.00	0.2827	0.237
35	ob33	30.00	3,80	2.86	1.54	750 00	0.4418	0.813
50	~~~~	54.444	J & V V	<i>□</i> •00	7 * 2 3	100100	A.1110	0.013
			â	b	с			b *
	Mittelwe	rt	1.02	3.73	1.71			0.51

Aniazz G.4

Auswertung der Calit- Brgebnisse für Stahlpfähle ohne Flügel oder Backenbleche

Pfahlliste zu Bild 4.5 Spitzenwiderstandsparameter und Pfahlgeometrie

Nr.	Pf.Nr.	St.Pl. Ím²l	Breite [mm]	Höhe [mm]	Länge [n]	a	b	C	b× b×Af^c
	so7a	0.0252	460.00	700.00	19.20	2.48	2.97	1.95	0.33
2	soba	0.0113	360.00	379.00	19.10	0.00	4.00	1.38	0.26
3	so8b	0.0112	360.00	379.00	19.10	0.00	4.99	1.27	0.40
4	so8c	0.0326	460.00	1000.00	19.10	0.00	1.41	1.39	0.48
5	so13	0.2890	380.00	800.00	25.10	2.44	3.41	1.66	0.47
6	sol4	0.0340	380.00	900.00	25.20	0.00	3.46	1.17	0.99
n i	sc16	0.0163	351.00	384.70	24.40	0.00	3.40	1.27	0.27
8	so18	0.0158	354.00	381.00	29.00	2.53	6.02	1.38	0.38
9	so126	0.0179	380.00	400.00	8.30	0.00	2.79	1.32	0.23
10	so129	0.0550	771.00	938.00	15.20	0.67	1.73	1.45	1.08
11	so137a	0.0121	220.00	1000.00	4.10	0.00	4.31	1.60	0.38
12	so144	0.0121	220.00	1000.00	4.10	0.00	4.11	1.34	0.54
13	so146	0.0132	348.00	380.00	11.75	0.90	4.71	1.42	0.27
14	so169	0.0485	340.00	1050.00	16.00	0.00	2.22	1.03	0.77
15	so170	0.0485	340.00	1050.00	16.00	0.00	1.38	1.11	0.44
16	so181	0.0158	350.00	380.00	29.00	0.00	5.32	1.21	0.46
17	so188	0.0307	460.00	1000.00	10.80	4.33	2.71	1.19	1.08
18	so192	0.0109	300.00	320.00	14.00	0.00	6.08	1.34	0.26
19	so201	0.0520	671.00	938.00	14.10	2.00	1.84	2.18	0.67
20	so203	0.0520	671.00	938.00	10.25	2.38	3.30	2.16	1.21
21	so207	0.0176	508.00	508.00	10.20	6.00	18.30	2.95	0.34
22	so248	0.0101	304.00	320.00	22.65	0.00	13.48	1.24	0.75
23	so249	0.0245	460.00	700.00	14.10	1.54	8.75	1.79	1.15
24	so250	0.0245	460.00	700.00	21.50	2.46	5.57	2.05	0.55
25	so251	0.0245	460.00	700.00	21.50	0.00	8.07	1.58	1.35
26	so261	0.0122	304.00	320.00	22.40	0.00	11.03	1.23	0.63
27	so268	0.0122	304.00	320.00	17.90	0.00	9.59	1.57	0.25
28	so272	0.0195	380.00	600.00	13.80	1.81	9.38	2.04	0.46
29	so275	0.0122	304.00	320.00	11.10	1.60	24.02	1.94	0.26
30	so276	0.0195	380.00	600.00	9.15	1.09	14.81	1.67	1.25
31	so280	0.0361	500.00	1100.00	23.30	0.00	1.85	1.37	0.82
32	so282	0.0223	470.00	536.00	22.15	0.00	11.44	1.85	0.89
33	so283	0.0158	200.00	800.00	11.80	2.04	10.00	1.90	0.31
34	so285	0.0125	260.00	534.00	24.40	0.00	7.98	1.22	0.72
			Mittelwer	te		а	b	с	b*

1.01 6.60 1.57 0.61

Ania, 22 3.5

÷

Auswertung der Calit - Brgebnisse für Stahlpfähle ohne Flügel oder Backenbleche

المعري المحسب والعا

Pfahlliste zu Bild 4.6

Spitzenwiderstandsparameter und Bodenfestigkeit am Pfahlfuß

Nr.	Pf.Nr.	Pestak.	a	b	с	Breite	Hôhe	b* = b*Af^c b*
1	so282	10.0	0.00	11.44	1.85	470.00	536.00	0.89
2	so144	12.5	0.00	4.11	1.34	220.00	1000.00	0.54
3	so146	12.5	0.90	4.71	1.42	348.00	380.00	0.27
4	so129	12.5	0.67	1.73	1.45	771.00	938.00	1.08
5	so206	14.0	0.00	1.65	1.27	914.00	914.00	1.31
6	so170	15.0	0.00	1.38	1.11	340.00	1050.00	0.44
7	so126	15.0	0.00	2.79	1.32	380.00	400.00	0.23
8	so13	15.0	2.44	3.41	1.66	380.00	800.00	0.47
9	so248	15.0	0.00	13.48	1.24	304.00	320.00	0.75
10	so188	17.5	4.33	2.71	1.19	460.00	1000.00	1.08
11	so137a	17.5	0.00	4.31	1.60	220.00	1000.00	0.38
12	so201	17.5	2.00	1.84	2.18	671.00	938.00	0.67
13	so7a	17.5	2.48	2.97	1.95	460.00	700.00	0.33
14	so280	19.0	0.00	1.85	1.37	500.00	1100.00	0.82
15	so282	20.0	2.77	5.04	2.06	500.00	1100.00	1.47
16	so247b	20.0	3.21	263.25	3.46	304.00	320.00	0.08
17	so247a	20.0	2.25	32.96	2.33	304.00	320.00	0.14
18	so169	22.0	0.00	2.22	1.03	340.00	1050.00	0.77
19	so8a	40.0	0.00	4.00	1.38	360.00	379.00	0.26
20	so8b	40.0	0.00	4.99	1.27	360.00	379.00	0.40
21	so8c	40.0	0.00	1.41	1.39	460.00	1000.00	0.48
	Mittelwerte		ā	b	C			b*
		•	1.00	17.73	1.61			0.61

ş

Anlage 4 - 1

Ermittlung der Grenzmantelreibung Tau Stahlbeton- Fertigpfähle

* ..

Pfahlliste zu Bild 4.7

Pf.Nr.	Umfang [m]	L Boden [m]	Baugrund	Mächt. [m]	Festigk. [MN/m²]	Qra [MN]	Tau [MN/œ²]
						0.14	0 0 0 0 0 0
sb143	1.36	7.50	Sand Sand	3.75 3.75	7.50	0.11	0.0092
sb147	1.40	16.00	Feinsand	7.30	8.00	0.31	0.0053
			Grobsand	5.30	30.00		0.0197
			ronmergei	3.40	33.00		0.0230
sb161	1.60	10.50	Sand	4.00	1.00	0.41	0.0080
			Sand	2.00	3.00		0.0240
			Sand	2.00	6.00		0.0480
			Sand	2.50	4.00		0.0320
sb162	1.60	12.00	Sand	6.00	2.00	0.25	0.0074
			Sand	6.00	5.00		0.0186
sb223	1.60	25.50	Klei/Schlick	15.10	0.00	0.36	0.0000
			Feinsand	7.60	20.00		0.0203
			Mittelsand	2.80	25.00		0.0253
sb225	1.40	12.00	Auff.	3.60	5.00	0.16	0.0071
			Feinsand	8.40	7.50		0.0106
sb232	1.52	16.75	Auffüla.	5.80	7.50	0.38	0.0182
			Schluff/Klei	4.30	2.50		0.0061
			Torf	4.90	1.00		0.0024
			Mittelsand	1.75	25.00		0.0607
sb233	1.36	12.70	Auffülla.	5.80	8.00	0.08	0.0052
			Klei	1.90	5.00		0.0032
			Torf	3.60	2.00		0.0013
			Mittelsand	1.40	20.00		0.0129
sb234	1.36	13.20	Peinsand	3.80	5.00	0.15	0.0045
			schluf.Sand	1.70	2.00		0.0018
			Feinsand	7.70	13.00		0.0117
sb237	1.60	16.50	Sandauffúlc.	8.10	4.00	0.91	0.0213
			Schlick	1.20	2.00		0.0107
			Sand	7.20	10.00		0.0533
sb239	1.00	19.00	Sand	7.80	3.00	0.18	0.0037
	* * * *		Klei	0.40	3.00		0.0037
			Feinsand	7.80	10.00		0.0122
			Mittelsand	3.00	15.00		0.0183
	Pf.Nr. sb143 sb147 sb161 sb162 sb223 sb223 sb232 sb233 sb234 sb237 sb239	Pf.Nr. Umfang sb143 1.36 sb147 1.40 sb161 1.60 sb162 1.60 sb223 1.60 sb225 1.40 sb232 1.52 sb233 1.36 sb233 1.36 sb234 1.36 sb237 1.60 sb239 1.00	Pf.Nr. Umfang [m] L Boden [m] sb143 1.36 7.50 sb147 1.40 16.00 sb161 1.60 10.50 sb162 1.60 12.00 sb223 1.60 25.50 sb223 1.60 12.00 sb223 1.60 12.00 sb223 1.60 12.00 sb232 1.52 16.75 sb233 1.36 12.70 sb234 1.36 13.20 sb237 1.60 16.50 sb239 1.00 19.00	Pf.Nr.Umfang [m]L Boden [m]Baugrund [m]sb1431.367.50Sand Sand Sandsb1431.367.50Sand Grobsand Tonmergelsb1611.4016.00Feinsand Grobsand Tonmergelsb1611.6010.50Sand Sand Sand Sand Sandsb1621.6012.00Sand Sand Sand Sandsb2231.6025.50Klei/Schlick Feinsand Mittelsandsb2251.4012.00Auff. Feinsand Mittelsandsb2321.5216.75Auffülg. Klei Torf Mittelsandsb2331.3612.70Auffülg. Klei Torf Mittelsandsb2341.3613.20Peinsand schluf.Sand Feinsandsb2371.6016.50Sandauffülg. Schlick Sandsb2391.0019.00Sand Klei Feinsand	Pf.Nr. Umfang L Boden Baugrund Mächt. sb143 1.36 7.50 Sand 3.75 sb143 1.36 7.50 Sand 3.75 sb147 1.40 16.00 Feinsand 7.30 sb161 1.60 10.50 Sand 3.75 sb161 1.60 10.50 Sand 4.00 sb161 1.60 10.50 Sand 2.00 Sand 2.00 Sand 2.00 Sand 2.50 Sand 2.50 sb162 1.60 12.00 Sand 6.00 sb223 1.60 25.50 Klei/Schlick 15.10 Feinsand 7.60 Mittelsand 2.80 sb225 1.40 12.00 Auff. 3.60 Schluff/Klei 4.30 Torf 4.90 Mittelsand 1.75 Schluff/Klei 4.30 sb233 1.36 12.70 Auffülg. 5.80	Pf.Nr. Umfang [m] L Boden [m] Baugrund [m] Mächt. [m] Festigk. [m] sb143 1.36 7.50 Sand 3.75 3.75 7.50 sb147 1.40 16.00 Feinsand Grobsand 5.30 30.00 sb147 1.40 16.00 Feinsand Grobsand 2.00 7.30 8.00 sb161 1.60 10.50 Sand 2.00 3.40 35.00 sb162 1.60 12.00 Sand 2.00 2.00 3.00 sb162 1.60 12.00 Sand 2.00 6.00 2.00 sb162 1.60 12.00 Sand 2.80 2.80 25.00 sb223 1.60 25.50 Klei/Schlick Mittelsand 15.10 0.00 sb232 1.52 16.75 Auffülg. Schluff/Klei 4.30 2.50 sb233 1.36 12.70 Auffülg. Klei 5.80 8.00 sb234 1.36 13.20 Peinsand 7.70 3.60 2.00 sb234 1.36 13.20	Pf.Nr. Umfang L Boden Baugrund Hächt. Festigk. Org sb143 1.36 7.50 Sand 3.75 7.50 0.11 sb147 1.40 16.00 Feinsand 7.30 8.00 0.31 sb147 1.40 16.00 Feinsand 7.30 8.00 0.31 sb141 1.60 10.50 Sand 4.00 1.00 0.41 sb161 1.60 10.50 Sand 2.00 3.00 5.30 30.00 sb162 1.60 12.00 Sand 2.00 6.00 2.00 0.25 sb162 1.60 12.00 Sand 6.00 2.00 0.36 Feinsand 7.60 20.00 Mittelsand 2.80 25.00 0.36 sb223 1.60 12.00 Auff. 3.60 5.00 0.16 sb232 1.52 15.75 Auffülg. 5.80 7.50 0.38 Schluff/Kiei

Ar=2,0= -. 1

÷

 Pf.Nr.	Umufang (m.)	[Boden [n]	Baugrund	Mächt. [m]	Pestigk. [MN/m²]	Qrg [MN]	Tau [MN/m²]
sb240	1.36		15.00	Torf hum Sand	5.20		0.22	
				Mittelsand	6.00	8.00		0.0102
sb241	1.36		16.00	Torf	5.80	0.00	0.52	0.0000
				hum.Sand Mittelsand	4.70 5.50	4.00 8.00		0.0244 0.0487

*

Portsetzung : Pfahlliste zu Bild 4.7

Ermittlung der Grenzmantelreibung Tau Ortbeton- Rammpfähle

Pfahlliste zu Bild 4.8

Pf.Nr.	Unfanç [m]	L Boden [m]	Baugrund	Mācht. [m]	Festigk. [MN/m²]	Qrg [MN]	Tau (MN/nº)
ob2	1.32	21.30	Auffüllung Klei	5.00 15.00	5.00 1.00	0.33	0.0190 0.0038
			Feinsand	1.30	20.00		0.0758
ob4	1.32	21.80	Auffüllung	5.00	5.00	0.38	0.0205
			Klel Roincand	15.10			0.0041
			I STUDOWA	1.50	20.00		0.0022
ob5	1.60	22.00	Auffüllung	5.00	5.00	0.87	0.0339
			Klel Roincand	15.00	20 00		0.0068 0 1358
			leinpanu	2.00	20.00		0.1000
ob6	1.60	22.00	Aŭffüllung	5.00	5.00	0.50	0.0195
			Klei	15.00	1.00		0.0039
			Feinsand	2.00	20.00		0.0780
ob9	1.60	18.00	Luft	0.30	0.00	.0.47	0.0000
			Sand	18.00	10.00		0.0164
ob16	1.60	17.50	Auffüllung	7.50	15.00	1.71	0.0699
			Klei	2.50	2.00		0.0093
			Sand	7.50	15.00		0.0699
ob17	1.32	11.00	Auffüllung	5.00	10.00	1.43	0.1020
			Bauschutt	2.50	5.00		0.0510
			Mittelsand	3.50	12.50		0.1275
ob18	1.60	16.00	Klei	10.00	5.00	0.82	0.0234
			Feinsand	6.00	10.00		0.0467
ob19	1.32	15.50	Auffüllung	3.00	10.00	0,99	0.0968
			Klei	10.00	1.00		0.0097
			Feinsand	2.50	15.00		0.1452
ob20	1.32	16.75	Peinsand	5.00	15.00	0.61	0.0375
			Mittelsand	10.00	7.50		0.0187
			Mittelsand	1.75	20.00		0.0500

Anlage 7.2

Portsetzung : Pfahlliste zu Bild 4.8

Pf.Nr.	Unfang (n)	L Boden [m]	Baugrund	Måcht. [m]	Pestigk. [MN/m²]	Qrg [MN]	Tau [MN/m²]
ob22	1.32	16.00	Klei	12.50	4.00	0.71	0.0210
			Mittelsand	3.50	15.00		0.0787
ob23	1.32	17.00	Mittelsand	5.00	7.50	0.79	0.0412
			Klei	4.00	1.00		0.0055
			Mittelsand	7.00	7.50		0.0412
			Grobsand	1.00	15.00		0.0824
ob25	1.60	25.40	Schluff	7.50	1.00	0.85	0.0043
			Feinsand	5.00	7.50		0.0323
			Schluff	10.00	2.00		0.0086
			Feinsand	2.90	20.00		0.0863
cb2f	1.32	25.00	Schluff	7.50	1.00	0.70	0.0046
			Feinsand	5.00	?.50		0.0346
			Schluff	10.00	2.00		0.0092
			Peinsand	2.50	20.00		0.0923
oh27	1.32	26.80	Schluff	7.50	1.00	0.26	0.0013
020	1.00		Feinsand	5.00	4.50	_	0.0060
			Schluff/Torf	10.00	2.00		0.0027
			Feinsand	4.30	22.50		0.0302
ob28	1.60	27.00	Schluff	7.50	1.00	0.50	0.0021
			Feinsand	5.00	4.50		0.0093
			Schluff/Torf	10.00	2.00		0.0041
			Feinsand	4.50	22.50		0.0464
ob29	1.60	25.20	Schluff	12.50	1.00	0.33	0.0012
		20100	Mittelsand	12.70	12.50		0.0150
0430	1 60	26 20	Schluff	10 50	1 00	0 4 0	0 0014
0030	1.00	60.20	Mittolcand	10 00	12 50	V.J.	0.0019
			Roincand	10.00	20.00		0.0101
			I CINDUNU	J . 19	20.00		0.0202
ob31	1.32	20.80	Schluff	8.00	1.00	0.47	0.0027
			Schluff	4.50	5.00		0.0133
			Mittelsand	8.30	12.50		0.0332
ob32	1.32	23.60	Schluff	8.00	1.00	0.52	0.0023
			Schluff	4.50	5.00		0.0116
			Mittelsand	11.10	12.50		0.0291
ob33	1.60	29.80	Schluff	10.00	2.00	1.30	0.0068
			Schluff	11.00	4.00		0.0135
			Feinsand	8.80	20.00		0.0676

de-

Fortsetzung : Pfahlliste zu Bild 4.8

Pf.Nr.	Umfang [m]	L Boden [m]	Baugrund	Mächt. [m]	Pestigk. [MN/m²]	Qrg [MN]	Tau (MN/o²)
ob34	1.92	28.20	Schluff	15.00	1.00	1.53	0.0065
			Ton Feinsand	10.00 3.20	7.50 10.00		0.0491 0.0654
ob35	1.92	20.40	Schluff Schluff Ton	10.00 7.50 2.90	1.00 7.50 15.00	1.09	0.0052 0.0389 0.0777
ob40	1.60	18.60	Mudde Feinsand	15.00 3.60	2.50 20.00	1.24	0.0177 0.1414
ob41	1.60	22.40	Mudde Feinsand	15.00 7.40	2.50 20.00	1.02	0.0086 0.0686
ob43	1.76	13.00	Feinsand Mittelsand	8.00 5.00	5.00 25.00	1.62	0.0279 0.1395
ob44	1.76	15.00	Feinsand Mittelsand	8.00 7.00	5.00 25.00	0.84	0.0111 0.0555
ob45	1.92	16.00	Klei Mittelsand	11.00 5.00	4.00 20.00	1.08	0.0157 0.0783
ob46	1.32	13.30	Schluff Feinsand	4.00 9.30	1.00 7.50	0.90	0.0092 0.0694
ob81	1.60	18.90	Schlick Sand/Schluff Sand	9.90 5.00 4.00	5.00 10.00 15.00	1.34	0.0262 0.0524 0.0787
ob82	1.50	16.20	Klei/Sand Klei Peinsand Sand/Kies	2.50 5.00 2.50 6.20	12.50 1.00 10.00 12.50	1.55	0.0872 0.0070 0.0697 0.0872
ob85	1.60	19.20	Peinsand Grobsand	15.00 4. 20	10.00 25.00	2.31	0.0565 0.1413
ob86	1.60	19.20	Mittelsand Feinsand Grobsand	5.00 10.00 4.20	10.00 7.50 25.00	0.25	0.0068 0.0051 0.0170

¥

Anlage 4 - 2

Pf.Nr.	Unfang (n)	L Boden [m]	Baugrund	Màcht. [m]	Festiak. [MN/m²]	Qrg (MN)	Tau [MN/mº]
		. 400 Bat aya gan Ma Kaji yar Ga Ga					
ob87a	1.32	11.50	Mittelsand	6.70	10.00	0.70	0.0560
			Klei	2.80	1.00		0.0056
			Feinsand	2.00	12.50		0.0700
ob87b	1.32	11.50	Mittelsand	6.70	10.00	0.96	0.0767
			Klei	2.80	1.00		0.0077
			Feinsand	2.00	12.50		0.0959
ob88	1.60	16.10	Feinsand	2.60	4.00	1.36	0.0343
			Klei/Torf	6.60	1.00		0.0086
			Mittelsand	3.30	3.00		0.0257
			Feinsand	3.60	20.00		0.1717
oh92a	1.5*	15.80	Auffüllung	5.00	7.50	0.78	0.0408
		10000	Klei/Schlick	5.00	2.50		0.0136
			Schluff	3.00	1.00		0.0054
			Mittelsand	2.80	15.00		0.0817
ob107	1.51	17.75	Auffüllung	5.30	2.50	0.56	0.0137
		1	Klei	6.10	1.00		0.0055
			Feinsand	2.30	10.00		0.0547
			Torf	3.00	1.50		0.0082
			Feinsand	1.05	20.00		0.1095

Fortsetzung : Pfahlliste zu Bild 4.8

ng na kanala na sana ang kanala na kanala na kanala na kanala na kanala na kanala. Na kanala n

Ermittlung der Grenzmantelreibung Tau Stahlpfähle ohne Flügel oder Backenbleche

.

Pfahlliste zu Bild 4.9

Pt.Nr.	Profil	St.Abwick. [m]	t.Abwick. L Boden Baugrun [[]] []]		Mächt. [m]	Festigk. [MN/m²]	Qrg [MN]	Tau [MN/œ ^z]
s 06	Psp 40L	2.32	14.23	Sand Klei Sand	1.84 2.95 9.44	4.00 3.00 8.00	0.51	0.00959 0.00719 0.01917
so7a	Psp702	3.23	19.20	Schlick Mittelsand Sand	8.70 5.50 5.00	5.00 12.50 17.50	0.78	0.00604 0.01511 0.02116
so8a	Pst 370/88	2.25	19.10	Auffüllg Schlick Grobsand	13.70 1.00 4.40	10.00 0.00 8.00	0.16	0.00413 0.00000 0.00330
so8b	Pst 370/88	2.25	19.10	Auffüllg Schlick Grobsand	13.70 1.00 4.40	10.00 0.00 8.00	0.24	0.00619 0.00000 0.00496
sc13	Psp 800s	3.12	25.10	Feinsand Mittelsand Mittelsand Mittelsand Sand/Steine	4.00 3.00 5.00 4.00 9.10	2.00 8.00 4.00 10.00 15.00	0.96	0.00269 0.01077 0.00529 0.01347 0.02020
so126	Psp 400s	2.34	8.30	Ton Mittelsand Grobsand	2.20 3.00 3.10	2.50 .3.00 15.00	0.40	0.00701 0.00841 0.04203
so129	DB Psp 700	5 4.25	15.20	Feinsand Mittelsand	8.70 • 6.50	$\begin{array}{c} 2.50\\ 12.50\end{array}$	0.50	0.00286 0.01428
so137a	DB Lars. 21	1 2.50	4.10	Sand	4.10	10.00	0.11	0.01073
so146	Pst 350/12	2.15	11.75	Sand Sand Ton	3.65 5.00 3.10	2.50 12.50 12.50	0.43	0.00453 0.02265 0.02265
so170	DB Hoe. 21	5 3.05	16.00	Sand	16.00	15.00	0.28	0.00574
so188	Psp 1002	3.79	10.80	Gesch.mer. Feinsand	3.00 7.80	8.00 38.00	1.02	0.00672 0.03192

Anlag2 4,3

Anlage 4 - 3

Fortsetzung : Pfahlliste zu Bild 4.9

Pf.Nr.	Profil	St.Abwick. (m)	L Boden [m]	Baugrund	Mācht. [m]	Festigk. [MN/m²]	Qrg [MN]	Tau [MN/m²]
so201	DB Psp 6001	J	14.10	Sand	14.10	7.50	1.33	
so206	914 Rohr	2.87	25.00	Schluff	6.50	0.50	0.67	0 00049
			20100	Grobsand	7.50	14.00	0.01	0.01360
				Ton	3.00	2.00		0.00194
				Peinsand	2.00	21.00		0.02041
				Ton	6.00	14.00		0.01360
so246	Psp 300	1.81	22.00	Auffüllg	2.60	1.00	0.44	0.00134
				Klei/Torf	6.95	0.50		0.00067
				Peinsand	2.30	10.00		0.01341
				Mittelsand	10.15	15.00		0.02011
so247a	Psp 300	1.81	22.00	Auffüllg	2.60	1.00	0.26	0.00079
				Klei/Torf	6.95	0.50		0.00040
				Feinsand	2.30	10.00		0.00792
				Hittelsand	10.15	15.00		0.01188
so247b	Psp 300	1.81	25.75	Auffüllg	2.60	1.00	0.34	0.00079
				Klei/Torf	6.95	0.50		0.00040
				Feinsand	.2.30	10.00		0.00791
				Mittelsand	13.90	15.00		0.01186
so248	Psp 300	1.81	22.65	Klei/Torf	9.20	1.00	0.33	0.00095
				Fein-Mit.Sand	8.00	12.50		0.01194
				Kies	5.45	15.00		0.01432
so280	Hoe. LK 23	3.24	23.30	Auffüllç	8.30	2.50	0.31	0.00139
	(580)			Klei	5.40	1.00		0.00056
				Torf	2.10	1.50		0.00084
				Mittelsand	7.50	19.00		0.01058
so281	Hoe. Lk 23	3.24	22.00	Auffüllg	10.20	5.00	0.70	0.00441
	(680)			Mittelsand	5.00	15.00		0.01323
				Feinsand	6.80	17.50		0.01543
so282	LP 24	1.78	22.15	Sand	3.85	2.00	0.32	0.00220
				Klei/Torf	3.00	1.00		0.00110
				Feinsand	15.30	10.00		0.01098

÷

Anlage 5-1

Pfahlliste zu Bild 6.1

Aus den gem. LSL wurde nach dem DIN- Kriterium die Grenzlast und die Grenzsetzung für jeden Pfahl ermittelt. (sblb. = 0.025 Df)

Für die so ermittelte Setzung sg wurd mit dem Benessungsvorschlag Os(sg) und Or bzw. O(sg) berechnet.

L

									Logarithmische Verteilung Rom -Wort Od mit & -4 7				
			DIN 402	б	Bem-Ver:	5.			Normal-	Demwe	ιι γα μ	11 5 -4.1	
Nr.	Pfahl	λs [m²]	SC (2121)	Qg (MN)	Qs (MN)	Qr [MN]	Qr/Qs	Q (mn)	Vą	Vą	nq	(MN) Óg	
1	sb142	0.116	13.50	1.40	1.34	0.03	0.02	1.37	0.196	0.194	0.218	0.60	
2	sb147	0.122	7.00	2.50	0.95	1.34	1.42	2.29	0.144	0.143	0.757	1.25	
3	sb162	0.160	5.50	1.08	1.07	0.20	0.19	1.21	0.171	0.170	0.106	0.59	
4	sb223	0.122	24.40	3.10	2.04	1.07	0.53	3.72	0.148	0.147	1.240	1.99	
5	sb225	0.122	17.70	1.90	1.67	0.34	0.20	2.01	0.170	0.168	0.614	0.98	
6	sb232	0.144	20.00	2.86	2.12	0.47	0.22	2.59	0.168	0.167	0.868	1.27	
7	sb233	0.116	13.00	2.40	1.24	0.37	0.30	1.61	0.161	0.160	0.396	0.82	
8	sb234	0.116	15.00	2.40	1.43	0.50	0.35	1.92	0.157	0.156	0.574	0.99	
ġ	sb235	0.086	0.30	1.42	0.78	0.22	0.28	1.21	0.162	0.161	0.110	0.61	
10	sb237	0.160	21.70	2.68	2.47	0.51	0.21	2.99	0.169	0.168	1.011	1.46	
11	sb238	0.086	17.20	1.67	1.15	0.39	0.34	1.85	0.158	0.157	0.537	0.95	
12	sb239	0.080	17.00	1.41	1.07	0.57	0.53	1.93	0.148	0.147	0.584	1.03	
13	sb240	0.116	13.00	1.04	1.31	0.57	0.44	1.72	0.152	0.151	0.467	0.90	
14	sb241	0.116	13.40	1.30	1.33	0.26	0.20	1.59	0.170	0.169	0.379	0.77	
15	ob2	0.173	22.50	3.00	1.90	0.35	0.18	3.31	0.172	0.171	0.752	1.12	
16	ob3	0.503	23.80	3.50	5.71	0.21	0.04	5.92	0.193	0.191	1.683	2.62	
17	cb4	0.173	21.00	3.00	1.82	0.46	0.25	2.28	0.165	0.164	0.742	1.14	
18	ob5	0.255	30.30	4.50	3.43	0.51	0.15	3.94	0.176	0.175	1.284	1.87	
Ŧġ	ob6 ·	0.255	24,96	4.50	2.99	0.51	0.17	3.50	9.173	0.172	1.167	1.68	
20	ob9	0.255	10.80	4.00	1.74	1.15	0.66	2.98	0.144	0.144	1.020	1.62	
21	obl6	0.283	29.00	5.60	3.65	1.47	0.40	5.12	0.154	0.153	1.557	2.67	
22	obl8	0.302	25.00	3.25	3.54	0.70	0.20	4.25	0.170	0.169	1.362	2.07	
23	ob19	0.173	25.00	2.90	2.04	0.41	0.20	2.44	0.170	0.169	0.808	1.19	
24	ob20	0.173	24.00	3.50	1.98	0.98	0.49	2.96	0.149	0.148	1.011	1.57	
25	ob22	0.173	17.00	1.90	1.59	0.54	0.34	2.13	0.158	0.157	0.678	1.09	
26	ob23	0.173	17.50	2.90	1.62	0.58	0.36	2.19	0.156	0.155	0.706	1.13	
27	ob24	0.173	20.40	2.70	1.79	0.78	0.44	2.56	0.152	0.151	0.864	1.35	
28	ob25	0.332	16.50	2.80	2.99	0.79	0.26	3.78	0.164	0.163	1.248	1.89	
29	ob26	0.238	13.20	1.70	1.85	0.61	0.33	2.45	0.158	0.157	0.817	1.25	
30	ob27	0.238	15.00	2.60	2.00	0.77	0.38	2.78	0.155	0.154	0.946	1.44	
31	ob28	0.332	11.90	2.80	2.29	0.97	0.42	3.26	0.153	0.152	1.106	1.71	
32	ob29	0.332	15.00	4.00	2.80	1.10	0.39	3.90	0.154	0.153	1.284	2.03	
33	ob30	0.332	10.60	4.00	2.24	1.36	0.61	3.59	0.146	0.145	1.206	1.94	
34	ob31	0.238	10.00	1.80	1.54	0.71	0.46	2.25	0.151	0.150	0.736	1.19	
35	ob32	0.238	16.30	2.40	2.12	0.90	0.43	3.02	0.152	0.152	1.029	1.58	
36	ob35	0.442	35.00	7.00	6.44	0.84	0.13	7.28	0.178	0.177	1.897	3.42	

Friday: 5

Anlage 5-1

Fortsetzung : Pfahlliste zu Bild 6.1

Logarithmische Verteilung Bem.-Wert Od mit B =4.7

.

ą

			DIN 402	6	Bem-Ver:	5.			Normal- vert.			
Nr.	Pfahl	As [n²]	sg [aa]	Qg [MN]	Qs [mn]	Qr [MN	Qr/Qs	0 [mn]	Vą	Vą	nġ	Óg (WN)
37	ob41	0.332	24.00	3.60	3.79	1.19	0.31	4.98	0.160	0.159	1.526	2.53
38	ob45	0.442	28.80	5.76	5.68	1.10	0.19	6.78	0.171	0.169	1.829	3.29
39	ob46	0.173	20.30	2.25	1.78	0.42	0.24	2.20	0.166	0.165	0.706	1.09
40	ob82	0.283	17.40	4.90	2.63	0.89	0.34	3.51	0.158	0.157	1.177	1.80
41	ob85	0.283	25.50	4.84	3.45	1.63	0.47	5.09	0.150	0.149	1.553	2.69
42	ob86	0.283	29.00	4.61	3.65	1.47	0.40	5.12	0.154	0.153	1.557	2.67
43	ob87a	0.238	13.90	2.70	1.91	0.51	0.27	2.42	0.163	0.162	0.803	1.21
44	ob87b	0.238	9.53	2.70	1.51	0.51	0.34	1.95	0.158	0.157	0.589	1.00
45	ob92a	0.283	29.40	4.30	3.68	0.57	0.15	4.26	0.175	0.174	1.362	2.03
46	ob107	0.302	13.00	2.05	2.32	0.41	0.18	2.83	0.173	0.171	0.955	1.36
47	sob	0.152	17.00	1.80	0.85	0.43	0.51	1.27	0.149	0.148	0.165	0.68
48	sc7a	0.322	17.70	2.60	1.83	1.29	0.70	3.12	0.144	0.143	1.066	1.70
49	so8c	0.460	5.75	3.00	1.45	1.18	0.81	2.63	0.142	0.141	0.895	1.44
50	sol3	0.304	7.50	2.25	1.10	1.43	1.30	2.53	0.143	0.142	0.857	1.38
51	so144	0.200	3.50	0.84	0.49	0.36	0.74	0.89	0.143	0.142	-0.188	0.49
52	so169	0.357	5.10	2.50	1.06	1.67	1.58	2.72	0.145	0.144	0.929	1.47
53	so170	0.357	4.20	2.92	0.95	1.23	1.29	2.10	0.143	0.142	0.671	1.15
54	so206	0.656	13.39	5.70	3.22	1.38	0.43	5.48	0.152	0.151	1.625	2.87
55	so246	0.097	14.30	1.15	0.50	0.56	1.31	1.16	0.143	0.142	0.077	0.63
56	so247a	0.097	12.80	0.90	0.47	0.66	1.41	1.12	0.143	0.143	0.042	0.61
57	so248	0.097	22.00	1.50	0.62	0.69	1.11	1.31	0.142	0.141	0.200	0.72
58	so280	0.550	11.50	4.20	2.51	1.11	0.44	3.62	0.152	0.151	1.211	1.90
59	so282	0.252	19.40	1.60	1.50	0.58	0.39	2.09	0.155	0.154	0.660	1.09
Anlage 6

Pfahlliste zu Bild 6.2

Widerstandssetzungslinien wurden extrapoliert bis s/D = 0.1 Grenztragfähigkeit Qg = Q(s=0.1)

aus der gem. Widerstandslinie

		Widerstandslinie		Bem-Vers.			
Nr.	Pfahl	Sợ (nn)	Qg [MN]	Qs (MN)	Qr [MN]	Qr/Qs	Q [MN]
1	sb225	35.00	2.00	2.54	0.34	0.13	2.88
2	sb234	34.00	2.40	2.35	0.50	0.21	2.85
3	sb235	33.00	1.45	1.71	0.22	0.13	1.93
4	sb237	40.00	2.95	3.60	0.51	0.14	4.11
5	sb238	33.00	1.80	1.71	0.39	0.23	2.10
6	sb239	32.00	1.44	2.01	0.57	0.28	2.58
7	sb240	34.00	1.19	2.35	0.57	0.24	2.92
8	ob4	47.00	2.78	3.05	0.46	0.15	3.51
9	ob19	47.00	3.00	3.05	0.41	0.13	3.46
10	ob22	47.00	2.09	3.05	0.54	0.18	3.59
11	ob24	47.00	2.84	3.05	0.78	0.26	3.83
12	ob46	47. 00	2.33	3.05	0.42	0.14	3.47
13	sob	38.00	1.19	1.29	0.43	0.33	1.72
14	sol44	22.00	0.94	1.40	0.36	0.26	1.76
15	so246	30.40	1.18	0.73	0.66	0.90	1.39
16	sc248	30.40	1.64	0.73	0.59	0.95	1.42
17	so282	47.00	1.71	2.39	0.58	0.24	2.97

.

.

Anlage 6

4

7 ZUSAMMENFASSUNG

Dieser Bericht befaßt sich mit der Untersuchung von Ramm- bzw. Verdrängungspfählen, die im Rahmen der Neubearbeitung der DIN 4026 unter Berücksichtigung von EC 7 erforderlich wurde. Analog zu DIN 4014 (3/1990) sollten auch für Rammpfähle empirische Angaben für den Pfahlspitzendruck σ_s (s) und die Mantelreibung τ_m (s) gemacht werden, so daß die Ermittlung einer Lastsetzungslinie für den Einzelpfahl gemäß Bild 1.1 möglich ist.

Da für Rammpfähle nur sehr wenige Probebelatungen vorliegen, bei den Pfahlfuß- und Pfahlmantelkraft Q_s(s) bzw. Q_r(s) getrennt gemessen wurden, war eine Anknüpfung an solche Messungen nicht möglich. Um Angaben über den Spitzendruck σ_s (s) und die Mantelreibung τ_m (s) machen zu können, wurde ein Computer-Programm entwickelt, das auf Grund der in Bild 2.2a dargestellten unterschiedlichen Verläufe der Arbeitslinien von Q_s(s) und Q_r(s) eine gemessene Lastsetzungslinie in diese beiden Anteile aufspaltet. Für die Pfahlfußkraft wurde eine Potenzfunktion nach Gl.(2.6) angesetzt, die Mantelreibungskraft wurde als bilinear mit den kennzeichnenden Grenz- bzw. Bruchwerten $\tau_m f$ und srg für die Setzung angenommen.

Durch die Analyse von Probebelastungen an verschiedenen Pfahltypen wurden die Funktionsparameter der Potzenfunktion $\sigma_s(s)$, sowie τ_{mf} und s_{rg} ermittelt, die Abhängigkeit dieser Größen z.B. von der Sondierfestigkeit des Baugrunds untersucht und der Bemessungsvorschlag in Tabelle 1 erarbeitet. Das so ermittelte Bemessungskonzept wurde dann an Probebelastungsergebnissen adjustiert, in dem die Abweichung zwischen den gemessenen [obs Q(s)] und den berechneten [cal Q(s)] Lastsetzungslinien minimiert wurde.

Zum Abschluß der Arbeit wird der auf probabilistischer Grundlage ermittelte Bemessungswert Q_d mit dem bisherigen Wert zul Q auf deterministischer Grundlage verglichen.

Der Bemessungswert der Pfahllast Q_d wurde bisher mit einem konstanten Sicherheitsbeiwert γ bestimmt. FRANKE (1991) hat gezeigt, daß eine Anwendung unterschiedlicher konstanter Teilsicherheitsbeiwerte auf σ_s (s) und τ_m (s) nicht praktikabel ist,

da diese Beiwerte vom Verhältnis Q_r/Q_s abhängen, so daß die Sicherheit γ_M wie bisher auf die Gesamtlast Q(s) angewendet werden muß.

Mit probabilistischen Sicherheitsbetrachtungen wird gezeigt, welche Größe ein auf die Gesamtlast Q angewendeter Teilsicherheitsbeiwert $\gamma_{\rm M}$ haben muß. Es stellt sich heraus, daß man wie schon vermutet - bisher aber mit zu niedrigen p - Werten gerechnet hat, so daß zumindest eine Herabsetzung von $\gamma_{\rm M}$ im Vergleich zu p nicht in Betracht kommt.

.

Kurzfassung des Abschluβberichts zum Forschungsvorhaben des Instituts für Bautechnik, Az. IV 1-5-499/87

VERBESSERUNG DER TRAGFÄHIGKEITSANGABEN FÜR RAMM- BZW. VERDRÄNGUNGSPFÄHLE IM ZUGE DER NEUBEARBEITUNG DER DIN 4026

1 Einleitung

Dieser Bericht befaßt sich mit der Untersuchung von Ramm- bzw. Verdrängungspfählen, die im Rahmen der Neubearbeitung der DIN 4026 unter Berücksichtigung von EC 7 erforderlich wurde.

2 Ermittlung des Spitzenwiderstands $\sigma_{n}(s)$ und des Mantelwiderstands $\tau_{m}(s)$

Da für Rammpfähle nur sehr wenig Probebelastungen vorliegen, bei denen Spitzenund Mantelwiderstandkräfte Q_S(s) bzw. Q_r(s) getrennt gemessen wurde, war eine Anknüpfung an solche Messungen nicht möglich. Um Angaben über die Widerstände $\sigma_{\rm S}(s)$ und $\tau_{\rm m}(s)$ machen zu können, wurde ein Computer-Programm entwickelt, das auf Grund der unterschiedlichen Verläufe der Arbeitslinien von Q_S(s) und Q_r(s) eine gemessene Widerstandssetzungslinie in diese beiden Anteile aufspaltet. Für den Spitzenwiderstand wurde eine Potenzfunktion angesetzt, der Mantelwiderstand wurde als bilinear mit den kennzeichnenden Grenz- bzw. Bruchwerten $\tau_{\rm mf}$ und s_{rg} für die Setzung angenommen.

Durch die Analyse von Probebelastungen an verschiedenen Pfahltypen wurden die Funktionsparameter der Potenzfunktion $\sigma_s(s)$, sowie τ_{mf} und s_{rg} ermittelt, die Abhängigkeit dieser Größen z.B. von der Sondierfestigkeit des Baugrunds untersucht und ein Bemessungsvorschlag erarbeitet. Das so ermittelte Bemessungskonzept wurde dann an Probebelastungsergebnissen adjustiert, indem die Abweichung zwischen den gemessenen und den berechneten Widerstandssetzungslinien minimiert wurde.

Sicherheitsbetrachtungen Grundsätzliches

Der Bemessungswert des Pfahlwiderstands Q_d wurde bisher mit einem konstanten Sicherheitsbeiwert η bestimmt. FRANKE (1991) hat gezeigt, daß eine Anwendung unterschiedlicher konstanter Teilsicherheitsbeiwerte auf $\sigma_s(s)$ und $\tau_m(s)$ nicht praktikabel ist, da diese Beiwerte vom Verhältnis Q_s/Q_r abhängen, so daß die Sicherheit γ_M wie bisher auf den Gesamtwiderstand Q(s) angewendet werden muß.

3.2 Ermittlung von Q_d auf probabilistischer Grundlage und Vergleich mit dem entsprechenden bisherigen Wert zul Q auf deterministischer Grundlage

Mit probabilistischen Sicherheitsbetrachtungen wird gezeigt, welche Größe ein auf den Gesamtwiderstand Q angewendeter Teilsicherheitsbeiwert γ_M haben muß. Es stellt sich heraus, daß man – wie schon vermutet – bisher aber mit zu niedrigen η – Werten gerechnet hat, so daß zumindest eine Herabsetzung von γ_M im Vergleich zu η nicht in Betracht kommt.

FRANKE, E. (1991):

EUROCODE- safety approach as applied to single piles, Proc. 4th Int. Conf. on Piling and Deep Foundations, Stresa 1991, Ed. by DFI, p. 13-18 Brief summary of the final report for the research project with Institut fur Bautechnik Az. IV 1-5-499/87

IMPROVED METHOD TO ESTIMATE THE BEARING CAPACITY OF DRIVEN PILES OR DISPLACEMENT PILES - A REVISION PROPOSED FOR DIN 4026

1 Introduction

A critical review of DIN 4026 on driven piles or displacement piles, carried out in connection with Eurocode 7 revealed that a revision is necessary.

2 Evaluation of point resistance $\sigma_{g}(s)$ and skin friction $\tau_{m}(s)$

In the case of driven piles, there are only few load test data available where the point resistance and skin friction forces are measured separately, and therefore, further analyses of these data are difficult. A computer program is developed for prediction of the two components $\sigma_s(s)$ and $\tau_m(s)$. The program assumes that the field load settlement curve consists of two parts; $Q_s(s)$ and $Q_r(s)$. A power function is applied to point resistance whereas the skin friction resistance is taken as a bilinear curve representing a limiting value of τ_{mf} at settlement of $s_{r\sigma}$.

Based on analysis of number of actual load test data for different piles, the parameters of the assumed power function for $\sigma_s(s)$ as well as the limiting skin friction resistance τ_{mf} and corresponding settlement s_{rg} have been evaluated. These parameters are adjusted by comparing the calculated load settlement curve with the actual field data till the deviation is negligible.

3 Safety approach

3.1 Principles

Hitherto the design value of the pile resistance ${\rm Q}_d$ was determined by a constant safety factor η . Franke (1991) has shown that it is not practicable to apply different constant partial safety factors to $\sigma_{\rm S}({\rm s})$ and $\tau_{\rm m}({\rm s})$, as these coefficients are dependent on the relation of ${\rm Q}_{\rm S}/{\rm Q}_{\rm r}$ and therefore a safety factor $\gamma_{\rm M}$ must be applied to the total resistance Q(s) as before.

3.2 Derivation of Q_d on probabilistic base and its comparison with the corresponding value of Q_d allowable on deterministic base

Using probabilistic safety approach, the value of partial safety factor γ_M , to be applied to total resistance Q is suggested. It is apparent that the -values used till now are unsafe and therefore a reduced value of γ_M (compared to η) is not justified.

FRANKE, E. (1989)
Die Entwicklung der Tragfähigkeitsangaben in den deutschen
Pfahlnormen
Bautechnik (66), Heft 11/1989, S. 365-371

Version abrégée du compte rendu définitif pour la mission de recherche de l'Institut für Bautechnik Az. IV 1-5-499/87

AMELIORATION DES INDICATIONS POUR PIEUX BATTUS RESP. POUR PIEUX DE DEPLACEMENT AU COURS DE LA NOUVELLE EDITION DE DIN 4026

1 Introduction

On rapporte sur l'exploration des pieux battus resp. pieux de déplacement étaient nécessaire en projet de le nouvelle édition de DIN 4026 en considération d'EC 7.

2 Evaluation de la résistance à la pointe $\sigma_{\rm g}(s)$ et de la résistance superficielle $\tau_{\rm m}(s)$

En cas de pieux battus il y en a seulement un petit nombre d'essais de chargement où la résistance á la pointe Q_s(s) et le frottement superficiel Q_r(s) sont mesurés séparément tellement que le traitement ultérieur est impossible. Pour savoir les caractéristiques des résistances $\sigma_s(s)$ et $\tau_m(s)$ on a développé un program de calcul permettant la prédiction de les deux composantes $\sigma_s(s)$ et $\tau_m(s)$. Le program suppose que la courbe tassement-résistance est composée de deux parts, Q_s(s) et Q_r(s). En cas de la résistance à la pointe on a pris une fonction de puissance et le frottement superficiel était estimé comme bilinéaire avec les valeurs d'identification Q_{rg} et s_{rg}.

Par l'analyse d'essais de chargement de différents types des pieux les paramètres de la fonction de puissance $\sigma_s(s)$ et τ_{mf} et s_{rg} sont été dérivés et leurs dépendance de la résistance de sondage et le dimensionnement était recommandé. Les paramètres sont ajustés aux essais de chargement en minimisant la divergence entre le diagramme des tassements sous charges mesuré et cela calculé.

3 L'approche de securité

3.1 Principe

;

Jusqu'à présent la valeur de la résistance du pieu Q_d est déterminée par un coéfficient de sécurité constant η . FRANKE (1991) a démontré qu'il n'est pas practicable d'appliquer des différents coéfficients de sécurité partiels sur $\sigma_s(s)$ et $\tau_m(s)$, parce que les coéfficients dépendent de la relation de Q_s/Q_r et pour cette raison on doit appliquer le coéfficient de sécurité à la résistance totale Q(s) comme par le passé.

3.2 La dérivation de Q_d sur la base probabilistic en comparaison avec la valeur correspondant Q admissible sur la base deterministic

Avec l'approche de sécurité probabilistic la valeur du coéfficient de sécurité partiel γ_M appliqué sur la résistance totale Q est recommendé. Evidemment les η -valeurs utilisées jusqu'à présent ne sont pas sûr et pour cette raison une valeur réduite de γ_M (en comparaison avec η) n'est pas justifiée.

FRANKE, E. (1989)
Die Entwicklung der Tragfähigkeitsangaben in den deutschen Pfahlnormen.
Bautechnik (66), Heft 11/1989, S. 365-371