Bauforschung

Vergleichende Betrachtungen zur Tragfähigkeit von Nagelverbindungen mit und ohne Rißlinienversetzung

T 2504

Fraunhofer IRB Verlag

I

T 2504

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstelungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

RUHR-UNIVERSITÄT BOCHUM

Fakultät für Bauingenieurwesen Lehrstuhl für Baukonstruktionen, Ingenieurholzbau und Bauphysik Prof. Dr.-Ing. E. Reyer

Vergleichende Betrachtungen zur Tragfähigkeit von Nagelverbindungen mit und ohne Rißlinienversetzung

von

Eckhard Reyer und Peter Linzner

Durchgeführt im Auftrage der Entwicklungsgemeinschaft Holzbau (EGH) in der Deutschen Gesellschaft für Holzforschung e.V. (DGfH) und gefördert durch das Institut für Bautechnik, Berlin RUHR-UNIVERSITÄT BOCHUM · PROF. DR.-ING. E. REYER Lehrstuhl für Baukonstruktionen mit Ingenieurholzbau und Konstrukt. Bauphysik

KURZ - INHALTSVERZEICHNIS

1	Einleitung1	
2	Ziel des Forschungsvorhabens 2	
3	Vorversuche (Spaltversuche ohne statische Belastung, Holzfeuchte u = 14 %)	
4	Hauptversuche (Holzfeuchte u = 10 %) 26	
5	Langzeitversuche	
6	Nachträgliche Spaltversuche 138	
7	Zusammenfassende vergleichende Bewertung und Empfehlung 143	
8	Zusammenfassung 146	
9	Anhang 149	

(Ausführliches Inhaltsverzeichnis nachfolgend)

INHALTSVERZEICHNIS

1	Einle	eitung	L
2	Ziel	des Forschungsvorhabens 2	2
3	Vorve Holz:	ersuche (Spaltversuche ohne statische Belastung, feuchte u = 14 %)	3
	3.1 3.2	Ziel der Vorversuche Untersuchte Parameter	3 5
		3.2.1 Nageldurchmesser	55577
	3.3	Versuchsdurchführung und Versuchsergebnisse	3
		<pre>3.3.1 Allgemeines</pre>	3
	3.4	Beurteilung der Ergebnisse 23	3
		<pre>3.4.1 Einfluß der Jahrringweite (eng/weit)</pre>	* * *
		parallel zur Faser 25 3.4.6 Vergleich der Nagelung (versetzt/unversetzt) 25	5 5
4	Haupt	tversuche (Holzfeuchte u = 10 %)	\$
	4.1 4.2	Ziel der Hauptversuche 26 Versuchsdurchführung 26	5
		 4.2.1 Allgemeines	\$ 7
		von Versuch I2,4	1
	4.3 F	Parameter der Hauptversuche 42)
		 4.3.1 Nageldurchmesser, -form, -länge	
	·	Nagelanzahl hintereinander	

4.4	Zuasto	4.3.4.4 4.3.4.5 3probeköj	Druckfestigkeit Tabellen "Holzeigenschaften" rper mit innenliegender Mindestholzdicke	46 48
69, 10 [,] 10	(zweiso	chnittige	e Verbindung)	55
	4.4.1 4.4.2 4.4.3	Allgeme: Mittelho Seitenho	ines Dlz	55 55 55
4.5	Zugsto (einscl	3probekön nnittige	rper mit außenliegender Mindestholzdicke Verbindung)	56
	4.5.1 4.5.2 4.5.3	Allgeme: Seitenho Mittelho	ines olz olz	56 56 56
4.6	Auswert	tung der	Hauptversuche	58
	4.6.1	Allgeme	ines	58
		4.6.1.1	Auswertungsstufe I: Auswertung der einzelnen Versuche Auswertungsstufe II: Zusammenfassung der Auswertungserergebnisse aller	58
		A 6 1 3	Versuche einer Serie	59
		7 0 U 0 2 0 J	der Auswertungsergebnisse aller Serien	60
	4.6.2	Zugstoß holzdic}	brobekörper mit innenliegender Mindest- Ke (zweischnittige Verbindung)	60
		4.6.2.1 4.6.2.2	Ergebnisse aus der Auswertungsstufe II (Ergebnisse aller Versuche einer Serie) Ergebnisse aus der Auswertungsstufe III (Zusammenfassung der Ergebnisse aller	60
	4.6.3	Zugstoßr Mindesth	Serien)	5 a 77
		4.6.3.1 4.6.3.2	Ergebnisse aus der Auswertungsstufe II (Ergebnisse aller Versuche einer Serie) Ergebnisse aus der Auswertungsstufe III (Zusammenfassung der Ergebnisse aller Serien)	77 89
	4.6.4	Zusatzve innenlie Verbindu	ersuche:Zugstoßprobekörper mit egender Mindestholzdicke (zweischnittige ungen)	90
	-	4.6.4.1 4.6.4.2	Ergebnisse aus der Auswertungsstufe II (Ergebnisse aller Versuche einer Serie) Ergebnisse aus der Auswertungsstufe III (Zusammenfassung der Ergebnisse aller Serien)	90 97
4.7	Verglei	chende E	ewertung ("versetzt"/"unversetzt") der	~ '
	Hauptve	rsuche		98
	4.7.1	Allgemei	nes	98

.

4.7.2 Basistabellen (Tab.4.7.2/1, 4.7.2/2, 4.7.2/3) mit Erläuterungen für die vergleichende Bewertung 99 4.7.3 Vergleich der Zugstoßprobekörper mit innenliegender Mindestholzdicke (zweischnittige Verbindung) 104 4.7.3.1 Spaltbarkeit..... 104 4.7.3.2 C-Modul bzw. Verschiebung..... 105 4.7.3.2.1 Nagel 3,8*130, glatt..... 105 4.7.3.2.2 Nagel 4,2*120, glatt..... 107 4.7.3.2.3 Nagel 3,8*121, gerillt..... 109 4.7.3.2.4 Nagel 4,6*146, glatt..... 111 4.7.3.3 Quotient Nu/zul N (Sicherheitsfaktor) 113 4.7.3.3.1 Nagel 3,8*130, glatt..... 113 4.7.3.3.2 Nagel 4,2*120, glatt..... 113 4.7.3.3.3 Nagel 3,8*121, gerillt..... 114 4.7.3.3.4 Nagel 4,6*146, glatt..... 114 4.7.3.4 Absolute Versagenshäufigkeit..... 115 4.7.3.4.1 Nagel 3,8*130, glatt..... 115 4.7.3.4.2 Nagel 4,2*120, glatt..... 115 4.7.3.4.3 Nagel 3,8*121, gerillt..... 116 4.7.3.4.4 Nagel 4,6*146, glatt..... 116 4.7.4 Vergleich der Zugstoßprobekörper mit außenliegender Mindestholzdicke (einschnittige Verbindung) 117 4.7.4.1 Spaltbarkeit..... 117 4.7.4.1.1 Nagel 3,8*130, glatt..... 117 4.7.4.1.2 Nagel 4,2*120, glatt..... 118 4.7.4.1.3 Nagel 3,8*121, gerillt..... 119 4.7.4.1.4 Nagel 4,6*146, glatt..... 120 4.7.4.2 C-Modul bzw. Verschiebung..... 120 4.7.4.2.1 Nagel 3,8*130, glatt..... 120 4.7.4.2.2 Nagel 4,2*120, glatt..... 122 4.7.4.2.3 Nagel 3,8*121, gerillt..... 124 4.7.4.3 Quotient Nu/zul N (Sicherheitsfaktor) 127 4.7.4.3.1 Nagel 3,8*130, glatt..... 127 4.7.4.3.2 Nagel 4,2*120. glatt..... 127 4.7.4.3.3 Nagel 3,8*121, gerillt..... 128 4.7.4.4 Absolute Versagenshäufigkeit..... 129 4.7.4.4.1 Nagel 3,8*130, glatt..... 129 4.7.4.4.2 Nagel 4,2*120, glatt..... 129 4.7.4.4.3 Nagel 3,8*121, gerillt..... 130 4.7.4.4.4 Nagel 4,6*146, glatt..... 130

5	Langzeitversuche	31
	5.1 Allgemeines/Zielsetzungen	31 31 32 33
	5.4.1 Rißbildung 13 5.4.2 Zeitabhängige Verformungen 13 5.4.3 Ermittlung der Bruchlast (bzw. des Quotienten Nu/zul N) nach vorangegangener Langzeitbe-	33 33
	lastung von 1,5 \star zul N	;4
6	Nachträgliche Spaltversuche 13	38
	6.1 Allgemeines136.2 Versuchsdürchführung13	38 39
	6.2.1 Versuch 1	19 10 10 10 11 11 12 12
7	Zusammenfassende vergleichende Bewertung und Empfehlung 14	13
	7.1 Beurteilung der Spaltneigung und des Trag- und Verformungsverhaltens 14	13
	7.1.1 Ergebnisse aus den Vorversuchen (Kap. 3)	3
	Einschlagfeuchte u= 10 % (Kap. 4) 14 7.1.3 Ergebnisse aus den nachträglichen Spaltver-	13
	suchen mit Einschlagfeuchte u= 14 % (Kap. 6) 14	4
	versuchen mit Einschlagfeuchte u= 10 % (Kap. 6) 14	4
	7.2 Zusammenfassende Empfehlung 14	5
8	Zusammenfassung 14	6
9	Anhang14	9
	- Kraft-Weg Diagramme für alle Versuche	

- Fotodokumentation der Versuche

• •

۰,

1 Einleitung

Nach DIN 1052, Teil 2, Ausgabe 1988, sind Nägel um den halben Nageldurchmesser abwechselnd gegenüber der Nagelrißlinie versetzt anzuordnen.

Der Grundgedanke dieser versetzten Nagelanordnung liegt in der Reduzierung der Spaltgefahr des Holzes in Faserrichtung. Bei konventioneller Nagelung von Hand mit dem Hammer führt das Versetzen der Nägel zwar zu einem gewissen Mehraufwand, es bereitet jedoch keine grundsätzlichen Schwierigkeiten.

Anders ist die Situation bei maschineller Nagelung mit Handnageleintreibgeräten. Da hierbei die Arbeitsgeschwindigkeit ca. 4mal größer ist und die Nagelapparate relativ schwer sind, wird ein versetztes Eintreiben der Nägel nur sehr ungerne – möglichst überhaupt nicht – ausgeführt. Hinzu kommt, daß der Einsatz von Hilfskräften bei der einfacher ausführbaren unversetzten Nagelung erleichtert wird.

Im vorliegenden Bericht wird das Trag-, Verformungs-, und Spaltverhalten maschinell genagelter Anschlüsse mit unversetzter Nagelung in der Rißlinie der mit versetzter Nagelung gegenübergestellt. Darüber hinaus werden Vorschläge zur Bemessung maschinell unversetzt genagelter Verbindungen erarbeitet.

Sämtliche durchgeführten Vor- und Hauptversuche wurden vorher im Detail in Abstimmung mit dem zuständigen Arbeitsausschuß der EGH/DGfH festgelegt. Hierfür fand zur Festlegung der Vorversuche eine Arbeitsausschußsitzung am 3. März 1988 an der Ruhr -Universität Bochum und zur Festlegung der Hauptversuche am 22. Juli 1988 im Hause der EGH/DGfH in München statt.

2 Ziel des Forschungsvorhabens

Das Ziel des Forschungsvorhabens liegt in der vergleichenden Untersuchung des Trag- und Verformungs- und Spaltverhaltens gegenüber der Rißlinie **versetzter** und **unversetzter** maschineller Nagelung und in der Erarbeitung von Vorschlägen zur Bemessung von Nagelverbindungen ohne (die in der DIN 1052 vorgeschriebene) Rißlinienversetzung bei maschineller Nagelung.

Wie weit sich die Ergebnisse auch auf eine konventionell von Hand durchgeführte Nagelung ohne Rißlinienversetzung übertragen lassen, war im Rahmen dieses Vorhabens nicht mehr Gegenstand der Untersuchungen.

Im einzelnen soll überprüft werden:

- Ob die Tragfähigkeit im Vergleich zur versetzten Nagelung besser, schlechter oder etwa gleich ist, sofern in beiden Fällen der Mindest-Nagelabstand || Fa in Kraftrichtung nach DIN 1052 vorliegt.
- Ob im Falle einer geringeren Tragfähigkeit diese durch einen größeren Nagelabstand kompensiert werden kann und wie groß dieser Nagelabstand sein müßte, so daß etwa gleiche Tragfähigkeit wie bei versetzter Nagelung mit Mindest-Nagelabstand nach DIN 1052 auftritt.
- Ob sich für unversetzte Nagelung aufgrund der Spaltgefährdung obere Grenzen für den Nageldurchmesser ergeben, sofern die unversetzte Nagelung sich überhaupt als geeignet zeigt.

Darüber hinaus sollte in Langzeitversuchen überprüft werden, ob sich – zeitabhängig – ein unterschiedliches Verformungsverhalten und/oder unterschiedliches Rißverhalten zwischen versetzter und unversetzter Nagelung einstellt.

Die Untersuchungen erstrecken sich auf den Anwendungsbereich einund zweischnittiger Holz-Holz-Nagelverbindungen, bei denen die Nägel maschinell mit einem Druckluft-Streifennagler in das Holz ohne Vorbohrung eingetrieben werden.

<u>3 Vorversuche (Spaltversuche ohne statische Belastung,</u> <u>Holzfeuchte u = 14 %)</u>

3.1 Ziel der Vorversuche

In den Vorversuchen sollten zunächst die Spaltempfindlichkeit bzw. die Spaltgefährdung bei versetzter und unversetzter Nagelung mit maschinellen Eintreibgeräten untersucht werden. Es handelte sich dabei um reine Spalt-Tests ohne statische Belastung. Dabei wurden folgende Eintreibgeräte für nachstehend aufgeführte Nageldurchmesser verwendet:

Nagel- ϕ 3,1 mm , glattschaftig und gerillt:

Preßluftnagler (Paslode Streifennagler, Typ 5350/90 S) (siehe Bild 3.1/1)

Nagel- ϕ 3,8 mm , glattschaftig:

Preßluftnagler (Paslode Streifennagler, Typ SCN 50) (siehe Bild 3.1/2)

Nagel- ϕ 6,0 mm , glattschaftig:

Preßluft-Meißelhammer (Black und Decker USA) (siehe Bild 3.1/3)

Alle 3 Eintreibgeräte werden mit Preßluft betrieben. Bei den beiden Streifennaglern der Firma Paslode wird der Nagel mit **einem** Schlag eingetrieben, wogegen bei dem Meißelhammer der Nageleintrieb sukzessiv erfolgt.

Bild 3.1/1: Paslode Streifennagler Typ 5350/90 S

Bild 3.1/2: Paslode Streifennagler, Typ SCN 50

Bild 3.1/3: Black und Decker Meißelhammer

3.2 Untersuchte Parameter

3.2.1 Nageldurchmesser

φ	3,1	mm	(glattschaftig,	1	=	90	mm)
φ	3,8	mm	(glattschaftig,	1		130	mm)
φ	6,0	mm	(glattschaftig,	1	=	180	mm)

zusätzlich:

 ϕ 3,1 mm (gerillt , 1 = 90 mm)

3.2.2 Holzeigenschaften

- a.) Jahrringweite (weit: etwa \geq 4 mm, eng: \leq 2 mm), s. Bild 3.2.2/1
- b.) Jahrringlagen (stehend / liegend) siehe Bild 3.2.2/1

Bild 3.2.2/1: Jahrringweite (eng/weit) und Jahrringlage (stehend/liegend)

3.2.3 Holzfeuchtigkeit

- Holzfeuchte u = 14 %

- Holzfeuchte u = 24 - 28 %

- Holzfeuchte variabel: u = 24 - 28 % (Holzfeuchte zum Einschlagzeitpunkt) und anschließend Trocknung auf u = 14 % (hierbei erfolgt zusätzlich Beobachtung etwaiger Rißbildung nach dem Einschlagen während der Trocknung)

Darüber hinaus weitere Trocknung auf u = 8,5 % und Beobachtung über einen Zeitraum von 2 Jahren, ob sich nachträglich eine Spaltbildung einstellt.

<u>3.2.4 Holzdicken</u>

für Nagel- ϕ 3,1 mm und 3,8 mm : 24 mm (= Mindestholzdicke) für Nagel- ϕ 6,0 mm : 50 mm (= Mindestholzdicke)

(Holzbreite bei allen Vorversuchen b = 100 mm)

3.2.5 Nagelabstände

a.) Nagelabstände untereinander in Faserrichtung
 Nagel-φ 3,1 mm und 3,8 mm: (10 - 12,5 - <u>15</u> - <u>17,5</u> - <u>20</u>) * d_n
 Nagel-φ 6,0 mm : (12 - 15 - 18 - <u>21</u> - <u>24</u>) * d_n

Mit den unterstrichenen Abständen wurden keine Versuche mehr durchgeführt, weil bei 12,5 d_n selbst in trockenem (u = 14%) und engringigem Holz kaum noch ein Spalten festzustellen war. Mit den punktiert unterstrichenen Abständen wurden keine Versuche mehr durchgeführt, da bei 18 d_n (bei versetzter <u>und</u> unversetzter Nagelung im engringigem trockenen Holz) noch so breite Spalte auftraten, daß mehrere der Nägel lose und von Hand herausziehbar waren.

b.) Nagelabstände untereinander senkrecht zur Faser für alle Nägel 5 d_n

c.) Sonstiges

Der Abstand zum Hirnende betrug 15 d_n. Wenn der Abstand untereinander \parallel Faser > 15 d_n wurde, wurde dieser Abstand auch zum Hirnende zugrunde gelegt.

- Anzahl der Nägel hintereinander: 4

- Anzahl der Reihen : 2

(einige Stichproben auch mit 3 bzw. 5 Reihen)

3.2.6 Anzahl der miteinander vernagelten Bretter

Beim Eintreiben der Nägel in trockenes Holz (u = 14 %) wurde in vorgeschalteten Tastversuchen festgestellt, daß das Spaltverhalten mehrerer miteinander vernagelter Bretter bis Nageldurchmesser 3,8 mm und ab 12,5 d_n Nagelabstand praktisch gleich dem Spaltverhalten des Einzelbrettes ist.* Gleiches gilt bezüglich des Spaltverhaltens halbtrockenen Holzes mit u = 24 - 28 % zum Einschlagzeitpunkt.

^{*}Anmerkung: Andere Ergebnisse bei u = 10 %:

Bei den in Kap. 4 durchgeführten Hauptversuchen und in Kap. 6 durchgeführten nachträglichen Spaltversuchen zeigte sich bei einer Holzfeuchte von u = 10 % zum Eintreibzeitpunkt, daß sich eine besonders große Spaltneigung immer dann im Brett mit Mindestholzdicke einstellte, wenn dieses in der Nageleindringfolge als erstes durchstoßen wurde oder dieses als Einzelbrett vorhanden war (Näheres s. Kap 4 und 6).

Anmerkungen zur Durchführung der Versuche

a. Spaltversuche an Einzelbrettern:

Die Spaltversuche wurden zunächst generell an Einzelbrettern mit Mindestholzdicke und u = 14 % und u = 24 - 28 % durchgeführt. Das Arbeiten mit Einzelbrettern hatte folgende Vorteile:

- Am Einzelbrett konnte das unterschiedliche Spaltverhalten an Ein- und Austrittsseite beobachtet werden.
- Einflüsse aus Schräg-Verlauf der Nägel wie bei Vernagelung mehrerer Bretter miteinander kaum vermeidbar - wurden damit ausgeschlossen.

b. Spaltversuche an drei miteinander vernagelten Brettern:

Zusätzlich zu den Spaltversuchen an Einzelbrettern (Mindestholzdicke t= 24 mm) wurde das Spaltverhalten von jeweils drei miteinander vernagelten Brettern (Mindestholzdicke t= 24 mm) mit u = 24 - 28 % (Holzfeuchte zum Einschlagzeitpunkt) beim Trocknen auf u = 14 % untersucht.

3.3 Versuchsdurchführung und Versuchsergebnisse

3.3.1 Allgemeines

Es wurden unter Berücksichtigung der entscheidenden Parameter durchgeführt:

a.) 67 Versuche mit Nägeln, ϕ 3,8 mm (glattschaftig)

b.) 60 Versuche mit Nägeln, ϕ 6,0 mm (glattschaftig)

- c.) 14 Ergänzungs-Versuche mit Nägeln, ϕ 3,1 mm (glattschaftig)
- d.) 13 Ergänzungs-Versuche mit Nägeln, ϕ 3,1 mm (gerillt)
- e.) 12 Ergänzungs-Versuche in jeweils drei miteinander vernagelten Brettern mit den Nageldurchmessern 3,8 mm und 6,0 mm (glattschaftig)

3.3.2 Darstellung der Versuchsergebnisse in Tabellenform

			Auswertung	gsprotokoll d	ler Spaltvers	uche	
Nagel:3	8*130	Holzfe	uchte: u = 14 % Holzdicke: t= 2,4 cm				Tab.3.3.2/1
Abat	and II	Angohl d	engri	Lngig	weit	ringig	Demostleur gen
ADSTAND		Versuche	stehend	liegend	stehend	liegend	Bellerkungen
versetzt	10,0 d _n	13	- ¹ 0 0 0	*	0 + + +	and	¹ siehe Bild 3.3.2/1 a,b
unversetzt	10,0 d _n	15	* ² * - 0	* * 0	0 + + +	+ + 0	² siehe Bild 3.3.2/2 a,b
versetzt	12,5 d _n	10	+ + 3+ +	- 0 0 0	+	• •	³ siehe Bild 3.3.2/3 a,b
unversetzt	12,5 d _n	12	- + + +	- 0 ⁴ 0 +	+	0	⁴ siehe Bild 3.3.2/4 a,b
versetzt	15,0 d _n						
unversetzt	15,0 d _n		nan yana af 1990 ayan da mangang sa shakayan da mangang sa karanan	99 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199			
versetzt	17,5 d _n		andre andre – F. Mittaland andre andre all de Mittaland andre yn de Mittaland				
unversetzt	17,5 d _n	4		ann an Anna Anna Anna Anna Anna Anna Anna Anna Ann			
versetzt	20,0 d _n						
unversetzt	20,0 d _n					an an fai sha an	
		<u>Σ</u> 50			n di Balanca ya ya 11 Ministra ya Katala na katala na katala na katala na katala na katala katala ministra kat		}_∤dn

- + ohne Spaltrisse oder mit sehr feinen ($c \le 0,5$ mm) Spaltrissen nur auf der Austrittseite um den Nagel mit $[0 \le 1 \le 30$ mm]
- o feine ($c \le 0,5$ mm) Spaltrisse nur auf der Austrittseite um den Nagel mit [30 mm $\le 1 \le 50$ (+70)mm]
- breitere (0,5 mm \le c \le 2,0 mm) Spaltrisse auf Ein- und Austrittseite um den Nagel und mit [70 mm \le l \le 200 mm]
- * sehr breite Spaltrisse (c≥ 2,0 mm) auf der Ein- und Austrittseite um den Nagel und mit {l≥ 100 mm} oder Auseinanderbrechen der Holzprobe

U

Q

5mm neben dem Nagel

Bild 3.3.2/1 a: Nagel-Eintrittseite

Bild 3.3.2/1 b: Nagel-Austrittseite

Bild 3.3.2/1: Versetzte Nagelung mit Nagel 38*130 und Nagelabstand 10 dn || Fa.

- Spaltversuch mit breiteren Spaltrissen von 0,5 mm \leq c \leq 2,0 mm auf Ein- und Austrittsseite um den Nagel und Rißlängen von 70 mm l \leq 200 mm

- Jahrringweite bzw. -lage: engringig, stehend
- Weitere Angaben zum Versuch sowie Definition von c und l s. Tabelle 3.3.2/1

Bild 3.3.2/2 a: Nagel-Eintrittseite

Bild 3.3.2/2 b: Nagel-Austrittseite

Bild 3.3,2/2: Unversetzte Nagelung mit Nagel 38*130 und Nagelabstand 10 dn || Fa.

- Spaltversuch mit sehr breiten Spaltrissen von c ≥ 2,0 mm auf Ein- und Austrittseite um den Nagel (oder Auseinanderbrechen der Holzprobe) und Rißlängen von l ≥ 100 mm.
- Jahrringweite bzw. -lage: engringig, stehend
- Weitere Angaben zum Versuch sowie Definitionen von c und l s. Tabelle 3.3.2/1

Bild 3.3.2/3 a: Nagel-Eintrittseite

Bild 3.3.2/3 b: Nagel-Austrittseite

Bild 3.3.2/3: Versetzte Nagelung mit Nagel 38*130 und Nagelabstand 12,5 dn || Fa.

- Spaltversuch ohne Spaltrisse oder mit sehr feinen Spaltrissen (c \leq 0,5 mm) nur auf der Austrittseite um den Nagel und Rißlängen von 0 \leq 1 \leq 30 mm.
- Jahrringweite bzw. -lage: engringig, stehend.
- Weitere Angaben zum Versuch sowie Definitionen von c und 1 s. Tabelle 3.3.2/1

Bild 3.3.2/4 a: Nagel-Eintrittseite

Bild 3.3.2/4 b: Nagel-Austrittseite

Bild 3.3.2/4: Unversetzte Nagelung mit Nagel 38*130 und Nagelabstand 12,5 dn || Fa.

- Spaltversuch mit nur feinen Spaltrissen (c \leq 0,5 mm) nur auf der Austrittseite um den Nagel und Rißlängen von 30 mm \leq 1 \leq 50 (÷ 70) mm.
- Jahrringweite bzw. -lage: engringig, liegend.
- Weitere Angaben zum Versuch sowie Definition von c und l s. Tabelle 3.3.2/1

			Auswertun	gsprotokoll d	ler Spaltvers	uche	
Nagel:3	8*130	Holzfe	uchte: $u = 2$	Tab.3.3.2/2			
Abet	and II	Angahl d	engr	ingig	weit	ringig	Pomorkungor
ADStand		Versuche	stehend	liegend	stehend	liegend	bemerkungen
versetzt	10,0 d	n 3	3990	· · · ·		+ +	
unversetzt	10,0 d	n 4	0			- + +	
versetzt	12,5 d	n 2			+	+	
unversetzt	12,5 d	n 5			+ + + +	4	
versetzt	15,0 d	n 1			+		
unversetzt	15,0 d	n 2			+ +		
versetzt	17,5 d	n					
unversetzt	17,5 d	n					
versetzt	20,0 d	n					
unversetzt	20,0 d	n					
		Σ 17					

\$

- + ohne Spaltrisse oder mit sehr feinen ($c \le 0,5$ mm) Spaltrissen nur auf der Austrittseite um den Nagel mit $[0 \le 1 \le 30$ mm]
- o feine ($c \le 0.5$ mm) Spaltrisse nur auf der Austrittseite um den Nagel mit [30 mm $\le 1 \le 50$ (+70)mm]
- breitere (0,5 mm ≤ c ≤ 2,0 mm) Spaltrisse auf Ein- und Austrittseite um den Nagel und mit [70 mm ≤ 1 ≤ 200 mm]
- * sehr breite Spaltrisse ($c \ge 2,0$ mm) auf der Ein- und Austrittseite um den Nagel und mit [$l \ge 100$ mm] oder Auseinanderbrechen der Holzprobe

5 mm neben dem Nagel

Auswertungsprotokoll der Spaltversuche

Nagel:60*180

Holzfeuchte: u = 14 %

Holzdicke: t= 5,0 cm

Tab.3.3.2/3

 $\overline{\mathbf{n}}$

Abstand		Angahl d	engringig weitringig		ringig	Romorkungen	
		Versuche	stehend	liegend	stehend	liegend	Bemerkungen
versetzt	12,0 d _n	11	* ¹ *(-)(-)0	googi damu	- 0 +		¹ siehe Bild 3.3.2/5 a,b
unversetzt	12,0 d _n	6	(*) * ² -		* *	annan an 1999 an 1997 ann an 1997 an 1	² siehe Bild 3.3.2/6 a,b
versetzt	15,0 d _n	10	* (-)(-) 0	* *	00+	+	
unversetzt	15,0 d _n	12	(*) * *	*	0000	+ +	
versetzt	18,0 d _n	2		*3*	*****	ananan ay kang pang ang ang ang ang ang ang ang ang ang	³ siehe Bild 3.3.2/7a,b
unversetzt	18,0 d _n	9	(0)	*4* * * * _		+ +	⁴ siehe Bild 3.3.2/8a,b
versetzt	21,0 d _n						
unversetzt	21,0 d _n						
versetzt	24,0 d _n						
unversetzt	24,0 d _n						
		Σ 50					

() Werte aus einer bisher nicht erwähnten Vor- Vorversuchserie (Holzdicke t = 5.5 cm)

- + ohne Spaltrisse oder mit sehr feinen (c \le 0,8 mm) Spaltrissen nur auf der Austrittseite um den Nagel mit [0 \le 1 \le 45 mm]
- o feine ($c \le 0,5$ mm) Spaltrisse nur auf der Austrittseite um den Nagel mit [45 mm $\le 1 \le 80$ (+ 100)mm]
- breitere (0,8 mm \le c \le 2,0 mm) Spaltrisse auf Ein- und Austrittseite um den Nagel und mit [80 mm \le l \le 250 mm]
- * sehr breite Spaltrisse (c≥ 2,0 mm) auf der Ein- und Austrittseite um den Nagel und mit {l≥ 100 mm} oder Auseinanderbrechen der Holzprobe

Bild 3.3.2/5 a: Nagel-Eintrittseite

Bild 3.3.2/5 b: Nagel-Austrittseite

Bild 3.3.2/5: Versetzte Nagelung mit Nagel 60*180 und Nagelabstand 12 dn || Fa

- Spaltversuch mit sehr breiten Spaltrissen von c ≥ 2,0 mm auf Ein- und Austrittseite um den Nagel (oder Auseinanderbrechen der Holzprobe) und Rißlängen von l ≥ 100 mm.
- Jahrringweite bzw. -lage: engringig, stehend
- Weitere Angaben zum Versuch sowie Definition von c und l s.Tabelle 3.3.2/3

Bild 3.3.2/6 a: Nagel-Eintrittseite

Bild 3.3.2/6 b: Nagel-Austrittseite

Bild 3.3.2/6: Unversetzte Nagelung mit Nagel 60*180 und Nagel-abstand 12 dn $\mid\mid$ Fa.

- Spaltversuch mit sehr breiten Spaltrissen von c \geq 2,0 mm auf Ein- und Austrittseite um den Nagel (oder Auseinanderbrechen der Holzprobe) und Rißlängen von l \geq 100 mm.

- Jahrringweite bzw. -lage: engringig, stehend
- Weitere Angaben zum Versuch sowie Definition von c und l s. Tabelle 3.3.2/3

Bild 3.3.2/7 a: Nagel-Eintrittseite

Bild 3.3.2/7 b: Nagel-Austrittseite

Bild 3.3.2/7: Versetzte Nagelung mit Nagel 60*180 und Nagelabstand 18 dn || Fa.

- Spaltversuch mit sehr breiten Spaltrissen von c \geq 2,0 mm auf Ein- und Austrittseite um den Nagel (oder Auseinanderbrechen der Holzprobe) und Rißlängen von l \geq 100 mm.

- Jahrringweite bzw. -lage: engringig, liegend
- Weitere Angaben zum Versuch sowie Definition von c und l s. Tabelle 3.3.2/3

Bild 3.3.2/8 a: Nagel-Eintrittseite

Bild 3.3.2/8 b: Nagel-Austrittseite

Bild 3.3.2/8: Unversetzte Nagelung mit Nagel 60*180 und Nagelabstand 18 dn || Fa.

- Spaltversuch mit sehr breiten Spaltrissen von c ≥ 2,0 mm auf Ein- und Austrittseite um den Nagel (oder Auseinanderbrechen der Holzprobe) und Rißlängen von 1 ≥ 100 mm
- Jahrringweite bzw. -lage: engringig, liegend
- Weitere Angaben zum Versuch sowie Definition von c und l s. Tabelle 3.3.2/3

			Auswertun	gsprotokoll	der Spaltvers	uche	
Nagel:60	0*180	Holzfe	uchte: u = 2	Tab.3.3.2/4			
Abot		Dagah J d	engr	ingig	weit	ringig	
ADSU		Versuche	stehend	stehend liegend		liegend	Bemerkungen
versetzt	12,0 d _r	3		*	+	0	
unversetzt	12,0 d _r	2	gentementen fotoennen die genteelinken kan die en een oorgegende bestelingen van d	*		0	
versetzt	15,0 d _r	1		+			
unversetzt	15,0 d _r	4		0	0 +	+	
versetzt	18,0 d _r	1					
unversetzt	18,0 d _r	A					
versetzt	21,0 d _r	A					
unversetzt	21,0 d _r						
versetzt	24,0 d _r						
unversetzt	24,0 d _r						
-		Σ 10		<u>.</u>		-	ł-ł dn

- + ohne Spaltrisse oder mit sehr feinen ($c \le 0,8$ mm) Spaltrissen nur auf der Austrittseite um den Nagel mit $\{0 \le 1 \le 45$ mm]
- feine ($c \le 0,5$ mm) Spaltrisse nur auf der Austrittseite um den Nagel mit [45 mm $\le 1 \le 80$ (+ 100)mm]
- breitere (0,8 mm ≤ c ≤ 2,0 mm) Spaltrisse auf Ein- und Austrittseite um den Nagel und mit [80 mm ≤ l ≤ 250 mm]
- * sehr breite Spaltrisse ($c \ge 2,0$ mm) auf der Ein- und Austrittseite um den Nagel und mit [$l \ge 100$ mm] oder Auseinanderbrechen der Holzprobe

20

5 mm neben dem Nagel

			Auswertun	gsprotokoll	der Spaltvers	ıche	mah 2 2 2 /r
Nagel:3	1*90	Holzfe	uchte: u = 1	4 8	Holzdicke: t	= 2,4 cm	Tab.3.3.2/5
Abstand		Depekl d	engr	ingig	weit	ringig	D
		Versuche	stehend	liegend	stehend	liegend	Bemerkungen
versetzt	10,0 d _n	2	* *				
unversetzt	10,0 d _n	4	* * 0 +				
versetzt	12,5 d _n	3	- 0 +				
unversetzt	12,5 d _n	5	000+	*a)			
versetzt	15,0 d _n						
unversetzt	15,0 d _n						
versetzt	17,5 d _n						
unversetzt	17,5 d _n						
versetzt	20,0 d _n						
unversetzt	20,0 d _n						
		$\sum 14$				General Constant of Constant 	⊾, dn

- + ohne Spaltrisse oder mit sehr feinen ($c \le 0,5$ mm) Spaltrissen nur auf der Austrittseite um den Nagel mit $[0 \le 1 \le 30$ mm]
- feine ($c \le 0.5$ mm) Spaltrisse nur auf der Austrittseite um den Nagel mit [30 mm $\le 1 \le 50$ (+70)mm]
- breitere (0,5 mm ≤ c ≤ 2,0 mm) Spaltrisse auf Ein- und Austrittseite um den Nagel und mit [70 mm ≤ 1 ≤ 200 mm]
- * sehr breite Spaltrisse (c ≥ 2,0 mm) auf der Ein- und Austrittseite um den Nagel und mit [l ≥ 100 mm] oder Auseinanderbrechen der Holzprobe
- a) Es wurden fünf Nagelreihen angeordnet, dabei zeigten vier Nagelreihen feine Spaltrisse (Symbol o) und eine Nagelreihe führte zum Auseinanderbrechen der Probe (Symbol *)

 \sim

			Auswertun	gsprotokoll d	er Spaltvers	uche		7
Nagel:3	1*90 ger	illt Holz	zfeuchte: u _l	= 14 %	Holzdicke:	t= 2,4 cm	Tab.3.3.2/6	
Destand		Angahl d	engr	ingig	weit	ringig		-
	und II	Versuche	stehend	liegend	stehend	liegend	Beillerkungen	-
versetzt	10,0 d _n	6		+ 0 + +		+ +		-
unversetzt	10,0 d _n	7		00000	*****	+ +		
versetzt	12,5 d _n							-
unversetzt	12,5 d _n							
versetzt	15,0 d _n		ни жана англикатан англикатан англикатан англикатан англикатан англикатан англикатан англикатан англикатан анг					
unversetzt	15,0 d _n							-
versetzt	17,5 d _n							-
unversetzt	17,5 d _n							
versetzt	20,0 d _n							-
unversetzt	20,0 d _n							
		∑ 13		L <u></u>	L	<u>I</u>	. Liqu	1

- + ohne Spaltrisse oder mit sehr feinen ($c \le 0,5$ mm) Spaltrissen nur auf der Austrittseite um den Nagel mit $[0 \le 1 \le 30$ mm]
- feine ($c \le 0.5$ mm) Spaltrisse nur auf der Austrittseite um den Nagel mit [30 mm $\le 1 \le 50$ (+70)mm]
- breitere (0,5 mm ≤ c ≤ 2,0 mm) Spaltrisse auf Ein- und Austrittseite um den Nagel und mit [70 mm ≤ l ≤ 200 mm]
- * sehr breite Spaltrisse ($c \ge 2,0$ mm) auf der Ein- und Austrittseite um den Nagel und mit [$l \ge 100$ mm] oder Auseinanderbrechen der Holzprobe

3.4 Beurteilung der Ergebnisse

3.4.1 Einfluß der Jahrringweite (eng/weit)

Wie erwartet, zeigte sich die größere Spaltgefährdung bei engringigem Holz.

<u>siehe:</u> Tab.3.3.2/1, Tab.3.3.2/3, Tab.3.3.2/6 Diese Aussage gilt gleichermaßen für versetzte als auch für unversetzte Nagelung.

3.4.2 Einfluß der Jahrringlage (stehend/liegend)

Es war nicht in allen Fällen ein eindeutiger Unterschied in der Spaltgefährdung zwischen liegender und stehender Jahrringlage feststellbar.

Bei Nagel- ϕ = 3,8 mm (Tab.3.3.2/1) zeigte sich mit liegenden und bei Nagel- ϕ = 6,0 mm (Tab.3.3.2/3) mit stehenden Jahrringen eine etwas größere Spaltgefährdung.

Diese Aussage gilt gleichermaßen für versetzte als auch für unversetzte Nagelung.

3.4.3 Einfluß der Holzfeuchte zum Einschlagzeitpunkt

Untersucht wurden:

- a.) trockene Einzelbretter mit Holzfeuchte zum Einschlagzeitpunkt von u = 14 %.
 Dicke der Bretter t = 24 mm bei Nägeln φ 3,1 und 3,8 und t = 50 mm bei Nägeln φ 6,0 mm.
- b.) halbtrockene Einzelbretter mit Holzfeuchte zum Einschlagzeitpunkt von u = 24 - 28 %. Dicke der Bretter t = 24 mm bei Nägeln ϕ 3,1 und 3,8 und t = 50 mm bei Nägeln ϕ 6,0 mm

c.) halbtrockene, jeweils drei miteinander vernagelte Bretter mit Holzfeuchte zum Einschlagzeitpunkt von u = 24 - 28 %. Nur Versuche mit Nägeln ϕ 3,1 und 3,8 mm; Dicke der Bretter 24 mm

Die größte Spaltgefährdung ergab sich erwartungsgemäß bei a.). Diese Aussage gilt gleichermaßen für versetzte als auch für unversetzte Nagelung.

3.4.4 Einfluß der Trocknung

Bei den unter 3.4.3 b.) und c.) genannten Versuchen wurde zusätzlich die Rißentwicklung beim Trocknen von u =24 - 28 % (Holzfeuchte zum Einschlagzeitpunkt der Nägel) auf u = 14 % kontinuierlich beobachtet.

Bei den Einzelbrettern nach Abschnitt 3.4.3 b.) konnte keine Vergrößerung der Spaltgefährdung durch die Trocknung festgestellt werden, d.h. es stellen sich auch während des Trocknungsvorganges keine zusätzlichen Spaltungen gegenüber dem Einschlagzeitpunkt ein.

Bei den jeweils drei miteinander vernagelten Brettern nach Abschnitt 3.4.3 c.) war eine leichte Zunahme der Spaltgefährdung durch Trocknung festzustellen, die aber geringer als die Spaltgefährdung der Proben unter Abschnitt 3.4.3 a.) war. Diese Aussage gilt gleichermaßen für die versetzte als auch für die unversetzte Nagelung.

Die etwas geringere Spaltgefährdung bei drei miteinander vernagelten Brettern im Vergleich zu Einzelbrettern kann auf die, durch die Vernagelung entstehende, gegenseitige Stützung der drei Bretter untereinander in Richtung senkrecht Fa zurückgeführt werden.

Beobachtung des Spaltverhaltens bei weiterer Trocknung auf u = 8,5%

Selbst bei weiterer Trocknung der Holzproben von u = 14 % auf u = 8,5 % und einem anschließenden Beobachtungszeitraum von 2 Jahren konnte weder bei den Holzproben die eine Einschlagfeuchte von u = 14 % noch bei den Holzproben die eine Einschlagfeuchte von u = 24- 28 % hatten eine Zunahme der Spaltbildung festgestellt werden.

3.4.5 Einfluß von Nageldurchmesser und Nagelabstand Fa

Die Nageldurchmesser 3,1 und 3,8 mm ergaben bei Abständen von 10 d_n noch erkennbare Spaltgefährdung und zwar sowohl bei versetzter als auch bei unversetzter Nagelung, vgl. Abschn. 3.4.6. Erst bei Abständen ab 12,5 d_n konnte eine Spaltbildung nicht mehr oder kaum noch beobachtet werden.

Der Nageldurchmesser 6,0 mm ergab noch – sowohl versetzt als auch unversetzt, vgl. Abschn. 3.4.6 – bei Abständen von 18 d_n in den meisten Fällen so breite Spaltbildung, daß jeweils mehrere Nägel von Hand herausziehbar waren.

Die geringste Spaltneigung zeigte eindeutig der gerillte Nagel. Tastversuche mit Durchmesser 3,1 mm ergaben unter ungünstigsten Voraussetzungen (trockenes Holz mit u = 14 %, enge Jahrringlage) keine oder kaum noch wahrnehmbare Spaltbildung bei Abständen von 10 d_n (s. Tabelle 3.2.2/6), sowohl versetzt als auch unversetzt. Der glattschaftige Nagel mit Durchmesser 3,1 mm zeigte größere Spaltneigung (s. Tab. 3.3.2/5).

Sämtliche Aussagen gelten sowohl für versetzte als auch für unversetzte Nagelung.

3.4.6 Vergleich Nagelung versetzt/unversetzt

Sehr große Unterschiede in der Spaltgefährdung im Vergleich zwischen versetzter und unversetzter Nagelung konnten bei den durchgeführten Versuchen mit dem Nagel ϕ 3,1 und 3,8 mm nicht festgestellt werden.

<u>4 Hauptversuche (Holzfeuchte u = 10 %)</u>

4.1 Ziel der Hauptversuche

Durch die Hauptversuche sollte festgestellt werden, ob das Tragund Verformungsverhalten bei versetzter und unversetzter Nagelung gleich ist.

Hierzu wurde in Abstimmung mit dem Arbeitsausschuß eine Versuchstechnik gewählt, die den direkten Vergleich zwischen "versetzt" und "unversetzt" unter weitgehendem Ausschluß der Einflüsse aus der Holzstruktur des Prüfkörpers zuläßt. Die Prüfung von versetzter und unversetzter Nagelung erfolgte an **einem** Probekörper.

4.2 Versuchsdurchführung

4.2.1 Allgemeines

Alle Versuchskörper wurden maschinell genagelt. Die Nagelung erfolgte an Zugstoßprobekörpern mit innenliegenden Mindestholzdicken (zweischnittige Verbindungen) und Zugstoßprobekörpern mit außenliegenden Mindestholzdicken (einschnittige Verbindungen) mit glattschaftigen Nägeln 3,8*130 mm, 4,2*120 mm und 4,6*146 mm und mit gerillten Nägeln 3,8*121 mm. Es wurden dabei Streifennagler der Firma Paslode* benutzt.

Insgesamt wurden 133 Versuche mit Zugstoßprobekörpern mit innenliegenden Mindestholzdicken (zweischnittige Verbindungen) und 57 Versuche mit Zugstoßprobekörpern mit außenliegenden Mindestholzdicken (einschnittige Verbindungen) durchgeführt. Der Vergleich Handnagelung mit Maschinennagelung erfolgte in Tastversuchen.

Die Anzahl gleichartiger Versuche für die statistische Auswertung betrug mindestens fünf.

* Die Verfasser danken der Firma Paslode für die kostenlose Bereitstellung der Paslode - Streifennagler sowie der Nägel

4.2.2 Versuchsbezeichnung

- Feuchtigkeitsbereich:
 Holzfeuchte zum Einschlagzeitpunkt u₁: 10 %
 Holzfeuchte zum Prüfzeitpunkt u₁: 10 %
 Stichproben:
 Holzfeuchte zum Einschlagzeitpunkt u₂: 26 ± 2 %
 Holzfeuchte zum Prüfzeitpunkt u₂: 10 %
 Stichproben:
 Holzfeuchte zum Einschlagzeitpunkt u₃: 20 ± 2 %
 Holzfeuchte zum Prüfzeitpunkt u₃: 20 ± 2 %
- Nageldurchmesser: 3,8 4,2 4,6 glatt 3,8 gerillt
- Probekörper mit innenliegender Mindestholzdicke (2-schnittig)
- Probekörper mit außenliegender Mindestholzdicke (1-schnittig)

BEZEICHNUNG DER VERSUCHSSERIEN

3ter Probekörper der Serie III 2-schnittig (innenliegende Mindestholzdicke) Serie III

Versuchsserienbezeichnung

Probekörper mit innenliegender Mindestholzdicke (2-schnittig)

Versuchsserie	Kurzbezeichnung
Serie I2 Na-ø 3,8 mm;10 d _n ;glatt;2-schn.;u1	I2,1-11
Serie II2 Na-ø 3.8 mm:12.5 d.:glatt:2-schn.:u1	II2,1-9
Serie III2 Na-ø 3.8 mm:15 d.:glatt:2-schn.:u1	III2,1-7
Serie IV2	IV2,1-6
Serie VI2	VI2,1-6
Serie VII2	VII2,1-7
Serie VIII2	VIII2,1-8
Na-ø 3,8 mm;15 d _n ;gerillt;2-schn.;ul Serie XI2	XI2,1-6
Na-ø 4,2 mm;10 d _n ;glatt;2-schn.;ul Serie XII2	XII2,1-7
Na-ø 4,2 mm;12,5 d _n ;glatt;2-schn.;u1 Serie XIII2	XTTT2.1-6
Na-ø 4,2 mm;15 d _n ;glatt;2-schn.;ul	
Serie XIV2 Na-ø 4,2 mm;17,5 d _n ;glatt;2-schn.;ul	XIV2,1-5
Serie XVII2	XVII2,1-7
---	------------
Na-ø 4,6 mm;15 d _n ;glatt;2-schn.;ul	
Serie XVIII2	XVIII2,1-5
Na-ø 4,6 mm;18 d _n ;glatt;2-schn.;ul	
х.	
Serie XIX2	IXX2,1-6
Na-ø 4,6 mm;21 d _n ;glatt;2-schn.;u1	
Serie XX2	XX2,1-5
Na-ø 4,6 mm;24 d _n ;glatt;2-schn.;u1	

Probekörper mit außenliegender Mindestholzdicke (1-schnittig)

Versuchsserie	Kurzbezeichnung
Serie Il	I1,1 - 5
Na-ø 3,8 mm;10 d _n ;glatt;1-schn.;ul	
Serie II1	II1,1-5
Na-ø 3,8 mm;12,5 d _n ;glatt;1-schn.;ul	
Serie III1	III1,1-5
Na-ø 3,8 mm;15 d _n ;glatt;1-schn.;u1	
Serie IV1	IV1,1-7
Na-ø 3,8 mm;17,5 d _n ;glatt;1-schn.;ul	
Serie VII1	VII1,1-5
Na-ø 3,8 mm;12,5 d _n ;gerillt;1-schn.;u1	·
Serie VIII	VIII 1-5
Na-ø 3,8 mm;15 d _n ;gerillt;1-schn.;ul	* + + + + + + - >

29

Serie IX1 Na-ø 3,8 mm;17,5 d _n ;gerillt;1-schn.;u1	IX1,1-5
Serie XIII1 Na-ø 4,2 mm;15 d _n ;glatt;1-schn.;ul	XIII1,1-5
Serie XIV1 Na-ø 4,2 mm;17,5 d _n ;glatt;1-schn.;u1	XIV1,1-5
Serie XV1 Na-ø 4,2 mm;20 d _n ;glatt;1-schn.;ul	XV1,1-6
Serie XVIII1 Na-ø 4,6 mm;18 d _n ;glatt;1-schn.;ul	XVIII1,1-5

Zusatzversuche:

Probekörper mit innenliegender Mindestholzdicke (2-schnittig)

Serie Z1	Z1,1-6
Feuchteänderung;Na-ø 3,8;gerillt;2-schn.;u2	
Abstand: 15 d _n	
Serie Z2	Z2,1-5
Feuchteänderung;Na-ø 3,8;glatt;2-schn.;u2	
Abstand: 15 d _n	
Serie Z3	Z3,1-5
Feuchteänderung;Na-ø 3,8;gerillt;2-schn.;u3	
Abstand: 15 d _n	
Serie Z4	Z4,1-5
Feuchteänderung;Na-ø 3,8;glatt;2-schn.;u3	
Abstand: 15 d _n	
Serie Z5	Z5,1-5
Handnagelung;Na-ø 3,8;glatt;2-schn.;ul	
Abstand: 15 d _n	

30

Serie Z6
Langzeitversuch
Abstand: 15 d_n ;Na-ø 3.8;glatt;
2-schnittig;u₁;
Belastung: 1,5 * zul P

Serie Z7 Langzeitversuch Abstand: 15 d_n ;Na-ø 3.8;glatt; 2-schnittig;u₁; Belastung: 1,0 * zul P

4.2.3 Versuchssteuerung und Meßtechnik

Die Kurzzeitversuche wurden nach ISO 6891 (1983) unter Aufzeichnung der Last-Zeitfunktionen (Bild 4.2.3/1) und der Last-Verschiebungsfunktionen (Bild 4.2.3/2) durchgeführt. Die Versuchsdauer betrug für jeden Versuch ca. 10 bis 15 Minuten.

Bild 4.2.3/1: Last-Zeitfunktion nach ISO 6891

31

Z6,1-3

Z7,1-3

Bild 4.2.3/2: Last-Verschiebungsfunktion nach ISO 6891

Zur Steuerung des Versuchsablaufs in Einklang mit den Bedingungen der ISO 6891 nach Bild 4.2.3/1 wurde ein spezielles Programm geschrieben.

Versuchsablauf:

- Eingabe der geschätzten Maximallast F_{est} (Die Abschätzung erfolgte rechnerisch gestützt.)
 F_{est} = geschätzte Maximallast Die tatsächliche (d.h. im Versuch erhaltene) Maximallast wird hier mit "Pmax" bezeichnet. Wenn vor Erreichen der Maximallast eine Verschiebung von ≥ 15 mm auftritt, wird die bei 15 mm vorliegende Last als "Pmax" angesetzt.
- Festlegung der Randwerte der Last-Zeit-Funktion nach Bild 4.2.3/1
- Belastung im Einklang mit Bild 4.2.3/1:
 - Kraftgesteuerter Versuch mit Kraftsteigerung bis zum 0,4 F_{est} mit 0,2 F_{est} pro Minute ± 25 %
 - Nach Erreichen von 0,4 F_{est} Konstanthaltung der Last für 30 s Erläuterung: Nach ISO 6891 dienen diese 30 s Konstanthaltung dazu, die

Lastrichtung zu ändern und nicht dazu, Kriecheffekte mit zu erfassen.

- Danach Reduzierung der Last auf 0,1 F_{est}
- Nach Erreichen von 0,1 F_{est} Konstanthaltung der Last für 30 s

32

(zu den 30 s, siehe Erläuterung zuvor)

- Dann kraftgesteuerter Versuch mit Laststeigerung bis 0,7 $\rm F_{est}$ mit 0,2 $\rm F_{est}$ pro Minute ± 25 %
- Nach Erreichen von 0,7 F_{est} Wegsteuerung des Versuchs so, daß die Maximallast Pmax (Bruchlast, "ultimate load" oder ein Weg von 15 mm) innerhalb von 3 bis 5 Minuten erreicht wird. Die Wegsteuerung erfolgte mit konstanter Verformungsgeschwindigkeit von 2-3 mm pro Minute.
- Wenn die im Versuch erhaltene Maximallast Pmax um mehr als 20 % vom geschätzten Wert F_{est} abweicht, wird der Versuch wiederholt, mit neuem Wert F_{est} = Pmax aus dem vorherigen Versuch.

Bild 4.2.3/3: Versuchskörper mit Anordnung der Wegaufnehmer zur Messung von Weg 1, Weg 2, Weg 3, Weg 4

Die Messung der Verformungen (Wege) zwischen Mittel- und Seitenholz erfolgte mit vier ohmschen Wegaufnehmern (Messwert bis 50 mm).Der Aufbau der Versuchskörper mit versetzter und unversetzter Nagelung und die Anordnung der vier Wegaufnehmer (Wege 1 bis 4) gehen aus Bild 4.2.3/3 hervor. Es wurden jeweils mit zwei Wegaufnehmern die Verschiebung der versetzten (Beispiel s. Bild 4.2.4/1; Weg 1 und 2), und mit den anderen beiden Wegaufnehmern die Verschiebung der unversetzten Nagelung (Beispiel s. Bild 4.2.4/1; Weg 3 und 4), gemessen. Zusätzlich wurde die Kraft und der Kolbenweg des Zylinders aufgenommen (Beispiel s. Bild 4.2.4/1; Kraft und Weg). Die Aufnahme der Messwerte erfolgte alle 2,5 Sekunden.

4.2.4 Exemplarische Darstellung von Versuchsaufzeichnungen und -auswertung am Beispiel von Versuch 12,4

Zur Beschreibung der unmittelbar aus den Versuchen erhaltenen Daten erfolgt deren Darstellung exemplarisch für Versuch I2,4 durch Aufzeichnung des Kraft-Zeit- und Weg-Zeit-Diagramms aller gemessenen Kanäle, s. Bild 4.2.4/1.

Die anschließenden Auswertungsschritte sind:

- Aufzeichnung des Kraft-Verformungsdiagramms für versetzte Nagelung (Bild 4.2.4/2)
- Aufzeichnung des Kraft-Verformungsdiagramms für unversetzte Nagelung (Bild 4.2.4/3)
- Auswertungsprotokoll/Tabellenzusammenstellung: Angabe der Versagensart // Wege bei Pmax, Pmax/3, zul P Kräfte P bei Weg w = 0,75; 1,0; 1,5; 3,0; 4,0 und 5,0 mm Verschiebungsmodul C nach ISO 6891 ermittelt Verschiebungsmodul C_{DIN} nach DIN 1052/T2 berechnet [s. Versuch I2,4 Auswertungsprotokoll /Tabellenzusammenstellung (Bild 4.2.4/4)]

Bild 4.2.4/1: Versuch I2,4: Kraft-Zeit- und Weg-Zeit-Diagramm der einzelnen gemessenen Kanäle. Kraft= Kolbenkraft; Weg = Kolbenweg; Weg 1 und Weg 2: Wege bei versetzter Nagelung (vergl. Bild 4.2.3/3)

Weg 3 und Weg 4: Wege bei unversetzter Nagelung (vergl. Bild 4.2.3/3)

In Bild 4.2.4/2 ist exemplarisch die Kraft-Verformungskurve für die versetzte Nagelung in Versuch I2,4 aus dem Mittel von Weg 1 und Weg 2 dargestellt.

35

Bild 4.2.4/2: Versuch I2,4: Kraft-Verformungsdiagramm für die versetzte Nagelung. In diesem Falle trat Versagen bei der versetzten Nagelung auf.

Bild 4.2.4/3 zeigt exemplarisch die (zu Bild 4.2.4/2) zugehörige Kraft-Verformungskurve für die unversetzte Nagelung in Versuch I2,4 aus dem Mittel von Weg 3 und Weg 4. Da jeweils mit **einem** Probekörper zwei Nagelverbindungen – auf der einen Seite versetzt und auf der anderen Seite unversetzt – genagelt wurden, kann nur die Aussage über die Maximallast und das Versagen derjenigen der beiden Verbindungen gemacht werden (versetzt oder unversetzt), die als erstes versagt. In diesem Beispiel (Bilder 4.2.4/2 und 4.2.4/3) hat die versetzte Nagelung (Bild 4.2.4/2) versagt. In Bild 4.2.4/3 nimmt nach Erreichen der Maximallast der unversetzten Nagelung aus Bild 4.2.4/3 die Verformung nicht mehr zu, sondern bleibt konstant. Dementsprechend findet nur in Bild 4.2.4/2 eine Verformungszunahme bei gleichzeitigem Kraftabfall statt.

Bild 4.2.4/3: Versuch I2,4: Kraft-Verformungsdiagramm für die unversetzte Nagelung. In diesem Falle trat Versagen bei der versetzten Nagelung auf.

Bild 4.2.4/4 zeigt das zugehörige Auswertungsprotokoll zu dem Versuch I2,4 in einer Tabellenzusammenstellung.

Versuch I2,4: Auswertungsprotokoll/Tabellenzusammenstellung

Nagel		3.8	*	130	mm	;	n=	8	;	zweischnittig	î	glatt
-------	--	-----	---	-----	----	---	----	---	---	---------------	---	-------

Tabelle 1:

Versager	n im Berei	Pma	ax:	
ver- setzt	unver- setzt	Holz	Pmax vor 15 mm	Pmax bei 15 mm
Х			Х	

Tabelle 2:

Tabelle 3:

Nagelabstände:			
	unter- einander	zum Rand	
	10.0 dn	1.5*10.0 dn	
a∥	38.0 mm	57.0 mm	
	5 dn	5 dn	
a∸	19.0 mm	19.0 mm	

Weg w in Abhängigkeit von der Kraft P:							
		Weg w					
	Kraft	ver- setzt	unver- setzt	Stoßauf weitung			
	kN	mm	mm	mm			
Pmax	20.86	5.53	3.75	9.28			
Pmax/3	7.01	.23	.18	.41			
zulP	8.37	.29	.24	.53			

Tabelle 4:

Kraft P in Abhängigkeit von Weg w					
	Wog	Kraft	größen		
	weg	ver- setzt	unver- setzt		
	mm	kN	kN		
P0,75	0.75	13.92	14.11		
P1,00	1.00	15.44	15.90		
P1,50	1.50	17.23	17.72		
P3,00	3.00	19.56	20.13		
P4,00	4.00	20.25	* * * * *		
P5,00	5.00	20.81	****		

Tabelle 5:

Verschiebungsmodul C						
491 - 444 F. C. H. C.	Verschiebungsmodul					
	ver- unver- setzt setzt					
	N/mm N/mm					
Cges	23794.7 28535.9					
С	1487.2 1783.5					
C-Modul nach DIN 1052, T.2						
C _{DIN}	N 1376.8					
Versuchsdauer:						
12 Min. 55 Sek.						

Bild 4.2.4/4: Ausgabeprotokoll in Tabellenform zu Versuch I 2,4

Erläuterungen zur Vorseite (Bild 4.2.4/4): Versuch I2,4: Auswertungsprotokoll/Tabellenzusammenstellung

- Zu Tabelle	1	<u>:</u>
versetzt	:	Versagen der Verbindung mit versetzter Nagelung
		(Nagelversagen, Aufspalten des Holzes in der
		Nagelrißlinie).
unversetzt	•	Versagen der Verbindung mit der unversetzten
		Nagelung (Nagelversagen oder Aufspalten des Holzes
		in der Nagelrißlinie).
Holz	4 2	Versagen des Holzquerschnittes außerhalb der
		Bereiche der Nagelverbindung. Hiermit ist das reine
		Holzversagen aufgrund von Astschwächungen mit
		Durchriß quer zur Faser gemeint.
Pmax vor	•	Erreichen der Maximallast vor einer Verschiebung
15 mm		des einzelnen Anschlusses von 15 mm.
Pmax bei	:	Bei Erreichen einer Verschiebung des einzelnen
15 mm		Anschlusses von 15 mm erfolgt der Abbruch des
		Versuches. Die vorhandene Last wird als Maximallast
		Pmax angesetzt.

- Zu Tabelle 2:

Angabe der Nagelabstände senkrecht und parallel zur Faser untereinander und zum Rand. Der Abstand zum Rand parallel zur Faser wurde immer mit dem 1,5-fachen Wert des Abstandes parallel zur Faser untereinander festgelegt.

- Zu Tabelle 3:

Angabe von Pmax (= im Versuch erreichte Maximallast), Pmax/3 und zul P (nach DIN 1052) sowie die zugehörigen Verschiebungen (Wege) der Verbindung mit versetzter Nagelung, der Verbindung mit unversetzter Nagelung und - als Summe aus beiden Wegen - die Stoßaufweitung.

- Zu Tabelle 4:

Hier werden zu bestimmten vorgegebenen Wegen (0,75 mm; 1,0 mm; 1,5 mm; 3,0 mm; 4,0 mm und 5,0 mm) die zugehörigen Kraftgrößen P für die versetzte und unversetzte Nagelung angegeben. Bei den mit "*****" bezeichneten Kraftgrößen wird die vorgegebene Verschiebung (Weg) nicht erreicht.

- Zu Tabelle 5:

Hier werden die Verschiebungsmoduln für die versetzte und unversetzte Nagelung angegeben. Darin bedeuten:

- Cges : Gesamtverschiebungsmodul aller Nägel für die Verbindung mit versetzten Nägeln bzw. für die Verbindung mit unversetzten Nägeln, ausgewertet nach ISO 6891
- C : Verschiebungsmodul des Einzelnagels für die versetzte und unversetzte Nagelung, ausgewertet nach ISO 6891
- C_{DIN} : Verschiebungsmodul, berechnet nach DIN 1052, Teil 2, Tabelle 13, als Vergleichswert

Die Verschiebungsmoduln Cges und C für die versetzte und unversetzte Nagelung wurden durch Versuchsauswertung nach ISO 6891 wie folgt berechnet:

- I. Berechnung der modifizierten Verschiebung (Weg) $w_{mod} = 4/3*(w_{04}-w_{01})$ (w_{01} bzw. w_{04} = Wege bei 0,1*F_{est} bzw. 0,4*F_{est})
- II. Berechnung des Verschiebungsmoduls $C = 0,4*F_{est}/w_{mod}$

Hinweis auf den Anhang (Abschnitt 9)

Im Anhang (Abschnitt 9) wurde aus Platzgründen auf die Darstellung der AUSWERTUNGSPROTOKOLLE/TABELLENZUSAMMENSTELLUNGEN entsprechend der Muster-Angaben auf Seite 38 für die Versuche verzichtet. Es wurden jedoch für alle Versuche die zugehörigen KRAFT-WEG-DIAGRAMME entsprechend den Muster-Angaben in den Bildern 4.2.4/2 und 4.2.4/3 auf den Seiten 36 und 37 für versetzte und unversetzte Nagelung angegeben.

4.2.5 Versuchsaufbau

Die Prüfung wurde ausschließlich unter Zug und reiner Längsbelastung für ein- und zweischnittige Nagelverbindungen durchgeführt. Die Lasteinleitung erfolgte mit einem Prüfzylinder PL 630 N (Nennkraft 630 kN) der Firma Carl Schenck. Der grundsätzliche Versuchsaufbau ist am Beispiel eines Zugstoßprobekörpers mit innenliegender Mindestholzdicke (zweischnittige Verbindung) in Bild 4.2.5/1 dargestellt.

Bild 4.2.5/1: Versuchsaufbau: hier Prüfung eines Zugstoßprobekörpers mit innenliegender Mindestholzdicke (zweischnittige Verbindung)

41

42

4.3 Parameter der Hauptversuche

4.3.1 Nageldurchmesser, -form, -länge

Es wurden nur Nägel der Firma Paslode mit den entsprechenden Nageleintreibgeräten benutzt.Die Zugfestigkeit der Nägel wurde im Versuch bestimmt. Die Nägel erfüllten die Bedingung nach einer Zugfestigkeit von ≥ 600 MN/m² gemäß DIN 1052/T2 Abschnitt 6.2.

Typ 1: glatter Nagel

Durchmesser: 3,8 mm Länge : 130 mm Zugfestigkeit im Versuch (i.M. aus 3 Versuchen): 752 N/mm² Nageleintreibgerät: Paslode Streifennagler Typ SCN 50 Maximaler Druck 8 bar

Typ 2: glatter Nagel Durchmesser: 4,2 mm Länge : 120 mm Zugfestigkeit im Versuch (i.M. aus 3 Versuchen): 634 N/mm² Nageleintreibgerät: Paslode Streifennagler Typ SCN 50 Maximaler Druck 8 bar

Bild 4.3.1/1: Paslode Streifennagler Typ SCN 50

Typ 3: gerillter Nagel Durchmesser: 3,8 mm Länge : 121 mm Zugfestigkeit im Versuch (i.M. aus 3 Versuchen): 705 N/mm² Nageleintreibgerät: Paslode Streifennagler Typ GN 131 Maximaler Druck 8 bar

Bild 4.3.1/2: Paslode Streifennagler Typ GN 131

Typ 4: glatter Nagel

Durchmesser: 4,6 mm Länge : 146 mm Zugfestigkeit im Versuch (i.M. aus 3 Versuchen): 736 N/mm² Nageleintreibgerät: Paslode Streifennagler Typ GN 161 S Maximaler Druck 8 bar

Bild 4.3.1/3: Paslode Streifennagler Typ GN 161 S

4.3.2 Nagelabstände untereinander || zur Faser

```
Typ 1 / 2 (\phi 3,8 mm / \phi 4,2 mm, glatt): (10 - 12,5 - 15 - 17,5) d<br/>nTyp 3 (\phi 3,8 mm, gerillt): (10 - 12,5 - 15 - 17,5) d<br/>nTyp 4 (\phi 4,6 mm, glatt): (15 - 18 - 21 - 24) d<br/n</td>
```

```
4.3.3 Randabstände || und \perp zur Faser, Abstände untereinander \perp zur<br/>Faser, Nagelreihen, Nagelanzahl hintereinanderFolgende Randbedingungen wurden bei allen Versuchen eingehalten:a) Randabstände zum belasteten Rand || Fa:= 1,5 x Abstand || Fab) Randabstände \perp Fa.:5 d<sub>n</sub> (nach DIN 1052/T2)c) Abstände untereinander \perp Fa.:5 d<sub>n</sub> (nach DIN 1052/T2)d) Nagelreihen:r = 2e) Nagelanzahl hintereinander:n = 4
```

4.3.4 Ermittlung der Holzeigenschaften: Rohdichte, Holzfeuchtigkeit, Druckfestigkeit

4.3.4.1 Allgemeines

Bei den verwendeten Prüfkörpern handelte es sich um Fichtenholz (picea abies) der Güteklasse II. Für die Bestimmung der verschiedenen Holzeigenschaften (Rohdichte, Holzfeuchtigkeit und Druckfestigkeit) wurden stichprobenartig von jeder vorhandenen Jahrringweite (1-7 mm) 3 Proben auf die o.g. Eigenschaften hin untersucht (insgesamt 21 Proben).

Die Ergebnisse der 21 Proben sind im Abschnitt 4.3.4.5 in den Tabellen 4.3.4.5/1 bis 4.3.4.5/6 dargestellt und bilden die Basis für die Auswertungen in den Abschnitten 4.3.4.2 bis 4.3.4.4. Die Jahrringangaben (stehend/liegend und eng/weit) für die Versuche nach ISO 6891 wurden zu jedem Versuch notiert. Sie sind aber kein Versuchsparameter.

Die Angaben über Rohdichte, Holzfeuchte und Druckfestigkeit (Abschnitt 4.3.4.2 bis 4.3.4.4) geben lediglich Einblick in die Eigenschaften des verwendeten Holzes, sie sind jedoch keine Versuchsparameter. Die Bestimmung der Rohdichte erfolgte nach DIN 52182. Dabei ergab sich eine Darr-Rohdichte von 0,32 g/cm³ bei einer Jahrringweite von 7 mm und von 0,43 g/cm³ bei einer Jahrringweite von 1 mm. Bild 4.3.4.2/1 zeigt die Abhängigkeit der Darr-Rohdichte von der Jahrringweite.

Bild 4.3.4.2/1: Darr-Rohdichte in Abhängigkeit der Jahrringweite

4.3.4.3 Holzfeuchtigkeit

Die Bestimmung der Holzfeuchtigkeit der 21 Proben erfolgte nach DIN 52183 (Darrprobe). Es wurde eine Holzfeuchtigkeit von u \leq 10 % festgestellt.

Bei der Durchführung der Kurz-Zeit-Versuche nach ISO 6891 erfolgte die Holzfeuchtemessung nicht über Darrprobe nach DIN 52183 sondern über eine elektrische Widerstandsmessung mit dem GANN-Gerät "Hydromette HTR 300" für jeden Versuchskörper. Tastversuche mit einer Einschlagfeuchte von u= 24-28 % und einer Prüffeuchte von u= 10 %, sowie mit einer Einschlag- und Prüffeuchte von u= 18-22 % fanden ebenfalls statt (s. Zusatzversuche in Abschn. 4.6.4).

4.3.4.4 Druckfestigkeit

Die Druckfestigkeit parallel zur Faser wurde nach DIN 52185 bestimmt. Die Bestimmung erfolgte unter der vorhandenen Feuchte in Abhängigkeit von der Jahrringweite. Bild 4.3.4.4/1 zeigt einen Probekörper (Abmessungen 20*25*60 mm) in der Prüfmaschine.

Bild 4.3.4.4/1: Versuch zur Bestimmung der Druckfestigkeit

Die Druckfestigkeiten lagen i.M. zwischen 37,76 N/mm² (Jahrringweite 7 mm) und 62,47 N/mm² (Jahrringweite 1 mm). Der Zusammenhang zwischen der Druckfestigkeit und der Jahrringweite ist in Bild 4.3.4.4/2 dargestellt. Daraus resultierend ist ebenfalls ein sehr guter linearer Zusammenhang zwischen der Druckfestigkeit und der Darr-Rohdichte festzustellen (Bild 4.3.4.4/3).

Druckfestigkeit in Abhängigkeit der Jahrringweite

Bild 4.3.4.4/2: Druckfestigkeit in Abhängigkeit der Jahrringweite

Druckfestigkeit in Abhängigkeit der Darr-Rohdichte

Bild 4.3.4.4/3: Druckfestigkeit in Abhängigkeit der Darr-Rohdichte

4.3.4.5 Tabellen "Holzeigenschaften"

Versuche mit Jahrringweite 1,0 mm

Versuch	1,1	1,2	1,3
Jahrring- weite [mm]		1,0	
Abmessungen (Feuchtprobe) mm*mm*mm	20,4*24,3*60,2	20,5*24,4*60,2	20,8*24,2*60,3
[mm ²]	495,72	500,20	503,36
[cm ³]	29,842	30,112	30,353
[d] d ^N	13,10	13,76	14,11
ρ _N [g/cm ³]	0,439	0,457	0,465
Abmessungen (Darrprobe) mm*mm*mm	20,0*23,8*60,2	20,0*23,7*60,2	20,1*23,6*60,2
A ₀ 2]	476,0	474,0	476,37
[cm ³]	28,655	28,535	28,677
[d] d ⁰	11,93	12,51	12,85
ρ ₀ [g/cm ³]	0,416	0,438	0,436
Feuchtig- keitsgehalt [%]	9,8	10,0	10,0
Druckkraft [kN]	29,27	32,26	32,91
Druckfestig- keit [N/mm ²]	59,04	64,49	65,38

Tabelle 4.3.4.5/1: Ergebnisse für Rohdichte, Feuchtegehalt und Druckfestigkeit bei einer Jahrringweite von 1 mm.

Versuche mit Jahrringweite 2,0 mm

Versuch	2,1	2,2	2,3	
Jahrring- weite [mm]		2,0		
Abmessungen (Feuchtprobe) mm*mm*mm	20,7*24,2*60,4	20,6*24,3*60,0	20,6*24,1*60,2	
[mm ²]	500,94	500,58	496,46	
[cm ³]	30,257	30,035	29,887	
[a] a ^N	13,77	14,20	13,32	
ρ_{N} [g/cm ³]	0,455	0,473	0,446	
Abmessungen (Darrprobe) mm*mm*mm	Abmessungen (Darrprobe) 20,1*23,8*60,3 mm*mm*mm		20,0*23,7*60,2	
^A 02 [mm ²]	478,38	473,62	474,00	
V ₀ 3]	28,846	28,417	28,535	
[d] d0	12,48	12,88	12,10	
$\rho_0 \ [g/cm^3]$	0,433	0,453	0,424	
Feuchtig- keitsgehalt [%]	10,3	10,2	10,1	
Druckkraft [kN]	30,57	32,95	30,21	
Druckfestig- keit [N/mm ²]	60,73	65,82	60,85	

Tabelle 4.3.4.5/2: Ergebnisse für Rohdichte, Feuchtegehalt und Druckfestigkeit bei einer Jahrringweite von 2 mm.

Versuche mit Jahrringweite 3,0 mm

Versuch	3,1	3,2	3,3	
Jahrring- weite [mm]		3,0		
Abmessungen (Feuchtprobe) mm*mm*mm	20,5*25,0*60,4	20,7*25,0*60,3	20,5*24,7*60,3	
[mm ²]	512,50	517,50	506,35	
[cm ³]	30,955	31,205	30,533	
[a] a ^N	13,03	13,90	12,84	
$\rho_{N_{g/cm^3}}$	ρ _N [g/cm ³] 0,421		0,421	
Abmessungen (Darrprobe) mm*mm*mm	Abmessungen (Darrprobe) 20,0*24,4*60,4 mm*mm*mm		20,1*24,1*60,3	
A ₀ 2 [mm ²]	488,00	497,35	484,41	
[cm ³]	29,475	29,990	29,210	
[a] a ⁰	11,86	12,91	11,93	
ρ ₀ [g/cm ³]	0,402	0,430	0,408	
Feuchtig- keitsgehalt [%]	Feuchtig- keitsgehalt 9,9 [%]		7,6	
Druckkraft [kN]	29,26	32,33	28,17	
Druckfestig- keit [N/mm ²]	57,09	62,47	55,63	

Tabelle 4.3.4.5/3: Ergebnisse für Rohdichte, Feuchtegehalt und Druckfestigkeit bei einer Jahrringweite von 3 mm.

Versuche mit Jahrringweite 4,0 mm

Versuch	4,1	4,2	4,3	
Jahrring- weite [mm]		4,0		
Abmessungen (Feuchtprobe) mm*mm*mm	20,7*24,8*60,4	20,8*24,6*60,2	20,7*24,3*60,4	
A _{N2} [mm ²]	513,36	511,68	503,01	
[cm ³]	31,007	30,803	30,281	
[d] d ^N	13,10	12,44	14,06	
$\rho_{N_{[g/cm^3]}}$	ρ _N [g/cm ³] 0,422		0,464	
Abmessungen (Darrprobe) 20,3*24,4*60,4 mm*mm*mm		20,3*24,3*60,2	20,7*23,7*60,4	
^A 02 [mm ²]	495,32	493,29	490,59	
[cm ³]	29,917	29,696	29,632	
[d] d0	12,06	11,60	13,03	
ρ ₀ [g/cm ³]	0,403	0,391	0,440	
Feuchtig- keitsgehalt [%]	Feuchtig- keitsgehalt 8,6 [%]		7,9	
Druckkraft [kN]	28,35	28,87	(*Ast) 26,26	
Druckfestig- keit [N/mm ²]	55,22	56,42	52,21	

Tabelle 4.3.4.5/4: Ergebnisse für Rohdichte, Feuchtegehalt und Druckfestigkeit bei einer Jahrringweite von 4 mm.

Versuche mit Jahrringweite 5,0 mm

Versuch	5,1	5,2	5,3	
Jahrring- weite [mm]		5,0		
Abmessungen (Feuchtprobe) mm*mm*mm	20,7*24,5*60,2	20,8*24,6*60,3	20,9*24,9*60,4	
^A N ²]	507,15	511,68	520,41	
[cm ³]	30,530	30,854	31,433	
[a] a ^N	10,21	13,10	11,89	
$\rho_{N}_{[g/cm^3]}$	ρ _N [g/cm ³] 0,334		0,378	
Abmessungen (Darrprobe) 20,5*24,0*60,2 mm*mm*mm		20,5*24,0*60,3	20,7*24,4*60,4	
A ₀ [mm ²]	492,00	492,00	505,08	
V ₀ [cm ³]	29,618	29,668	30,507	
[a] a ⁰	9,51	12,17	10,94	
ρ ₀ [g/cm ³]	0,321	0,410	0,359	
Feuchtig- keitsgehalt 7,4 [%]		7,6	8,7	
Druckkraft 21,55 [kN]		27,43	21,10	
Druckfestig- keit 42,49 [N/mm ²]		53,60	40,55	

Tabelle 4.3.4.5/4: Ergebnisse für Rohdichte, Feuchtegehalt und Druckfestigkeit bei einer Jahrringweite von 5 mm.

- -

Versuche mit Jahrringweite 6,0 mm

Versuch	6,1	6,2	6,3	
Jahrring- weite [mm]		6,0		
Abmessungen (Feuchtprobe) mm*mm*mm	20,8*25,0*60,2	20,9*24,6*60,4	20,6*24,3*60,3	
[mm ²]	520,00	514,14	500,58	
[cm ³]	31,304	31,054	30,185	
[a] a ^N	12,52	10,71	12,50	
ρ _N [g/Cm ³] 0,400		0,345	0,414	
Abmessungen (Darrprobe) 20,5*24,6*60,2 mm*mm*mm		20,7*24,1*60,4	20,4*24,0*60,3	
A ₀ [mm ²]	504,30	498,87	489,60	
[cm ³]	30,359	30,132	29,523	
[a] a ⁰	11,49	9,93	11,62	
ρ ₀ [g/cm ³]	0,378	0,330	0,394	
Feuchtig- keitsgehalt 9,0 [%]		7,9	7,6	
Druckkraft [kN]	Druckkraft 18,36 [kN]		23,57	
Druckfestig- keit [N/mm ²]	35,30	41,62	47,10	

Tabelle 4.3.4.5/5: Ergebnisse für Rohdichte, Feuchtegehalt und Druckfestigkeit bei einer Jahrringweite von 6 mm.

~

Versuche mit Jahrringweite 7,0 mm

Versuch	7,1	7,2	7,3	
Jahrring- weite [mm]		7,0		
Abmessungen (Feuchtprobe) mm*mm*mm	20,8*24,7*60,2	20,6*25,0*60,8	20,7*24,9*56,3	
^A N2]	513,76	515,00	515,43	
[cm ³]	30,928	31,312	29,019	
[a] a ^N	10,19	10,36	10,16	
ρ _N [g/Cm ³] 0,329		0,331	0,350	
Abmessungen (Darrprobe) mm*mm*mm	20,2*24,3*60,2	20,4*24,4*60,8	20,7*24,4*56,3	
A ₀ [mm ²]	A ₀ [mm ²] 490,86		505,08	
V ₀ 3 [cm ³]	29,550	30,264	28,436	
[a] a ⁰	9,47	9,68	9,45	
$\rho_0^{[g/cm^3]}$	ρ ₀ [g/cm ³] 0,320		0,332	
Feuchtig- keitsgehalt 7,6 [%]		7,0	7,5	
Druckkraft 20,14 [kN]		19,50	18,83	
Druckfestig- keit 39,20 [N/mm ²]		37,86	36,53	

Tabelle 4.3.4.5/6: Ergebnisse für Rohdichte, Feuchtegehalt und Druckfestigkeit bei einer Jahrringweite von 7 mm.

<u>4.4 Zugstoßprobekörper mit innenliegender Mindestholzdicke</u> (zweischnittige Verbindung)

4.4.1 Allgemeines

Das Ziel der Untersuchungen bei den Zugstoßprobekörpern mit innenliegenden Mindestholzdicken (zweischnittige Verbindungen) lag in der Ermittlung der Tragfähigkeit im spaltgefährdeten Mittelholz. Die Zugstoßprobekörper wurden auf der einen Seite versetzt und auf der anderen Seite unversetzt genagelt, so daß der direkte Vergleich zwischen versetzt und unversetzt sofort bei jedem einzelnen Versuch möglich war (Bild 4.4/1 und 4.4/2). Das Mittelholz des Zugstoßprobekörpers wurde aus einem einzigen Holz, das am Stoßpunkt getrennt war, hergestellt.

Um eine praxisgerechte schnelle Herstellung der Verbindung zu realisieren, wurden die Nägel nicht abwechselnd von beiden Seiten eingetrieben, sondern lediglich von einer Seite.

4.4.2 Mittelholz

Planmäßige Durchführung der Versuche mit Mindestholzdicken a_m nach DIN 1052 für das Mittelholz

für Na- ϕ 3,8 mm: min $a_m = 24$ mm für Na- ϕ 4,2 mm: min $a_m = 26$ mm für Na- ϕ 4,6 mm: min $a_m = 30$ mm

4.4.3 Seitenholz

Die Dicke des Seitenholzes a_s wurde in Abhängigkeit von der Nagellänge unter der Bedingung der Mindesteinschlagtiefe 8 d_n (für glatte und gerillte Nägel bei Zweischnittigkeit) bestimmt.

Bild 4.4/1: Prinzipskizze Versuchskörper (zweischnittige Verbindung)

4.5 Zugstoßprobekörper mit außenliegender Mindestholzdicke (einschnittige Verbindung)

4.5.1 Allgemeines

Das Ziel der Untersuchungen bei den Zugstoßprobekörpern mit außenliegenden Mindestholzdicken (einschnittige Verbindungen) lag in der Ermittlung der Tragfähigkeit im spaltgefährdeten Seitenholz. Die Zugstoßprobekörper wurden auf der einen Seite versetzt und auf der anderen Seite unversetzt genagelt, so daß der direkte Vergleich zwischen versetzt und unversetzt sofort bei jedem einzelnen Versuch möglich war (Bild 4.5/1 und 4.5/2). Die Seitenhölzer des Zugstoßprobekörpers wurden aus einem einzigen Holz, das an den Stoßpunkten getrennt war, hergestellt.

4.5.2 Seitenholz

Planmäßige Durchführung der Versuche mit Mindestholzdicken a_s nach DIN 1052 für das Seitenholz

für Na- ϕ 3,8 mm: min a_s = 24 mm für Na- ϕ 4,2 mm: min a_s = 26 mm für Na- ϕ 4,6 mm: min a_s = 30 mm

4.5.3 Mittelholz

Die Dicke des Mittelholzes a_m wurde in Abhängigkeit von der Nagellänge unter der Bedingung der Mindesteinschlagtiefe 8 d_n (für gerillte Nägel) und 12 d_n (für glatte Nägel) bestimmt.

Bild 4.5/1: Prinzipskizze Versuchskörper (einschnittige Verbindung)

Bild 4.4/2: Zugstoßprobekörper mit innenliegender Mindestholzdicke (zweischnittige Verbindung)

Bild 4.5/2: Zugstoßprobekörper mit außenliegender Mindestholzdicke (einschnittige Verbindung)

4.6 Auswertung der Hauptversuche

4.6.1 Allgemeines

Die Auswertung der umfangreichen Versuchsdaten erfolgt in drei aufeinanderfolgenden Auswertungsstufen: Auswertungsstufen I, II und III.

Die Versuchsbezeichnungen: s. Abschnitt 4.2.2

4.6.1.1 Auswertungsstufe I: Auswertung der einzelnen Versuche

Auswertungsstufe I besteht aus den in Abschnitt 4.2.4 detalliert beschriebenen Auswertungsschritten, die hier nochmals stichwortartig genannt werden:

- Aufzeichnung des Kraft-Verformungsdiagramms für versetzte Nagelung. Exemplarische Darstellung in Bild 4.2.4/2
- Aufzeichnung des Kraft-Verformungsdiagramms für unversetzte Nagelung. Exemplarische Darstellung in Bild 4.2.4/3
- Erstellung eines Auswertungsprotokolls/Tabellenzusammensetzung. Exemplarische Darstellung in Bild 4.2.4/4 mit den Tabellen 1 bis 5
 - Tabelle 1: Angabe, wo Versagen eintrat (versetzt,

unversetzt, Holz) und Angabe, ob $P_{max} = Bruchlast oder P_{max} = Last bei 15 mm$ Verschiebung (wenn 15 mm Verschiebung vor der Bruchlast erreicht wird)

Tabelle 2: Angabe der im Versuch verwendeten Nagelabstände

Tabelle 3: Angabe von P_{max}, P_{max}/3, zul P und die zugehörigen Verschiebungen bei versetzter und unversetzter Nagelverbindung sowie die Summe der beiden Verschiebungen als Stoßaufweitung.

P_{max} = Maximallast (= Bruchlast bzw. Last bei 15 mm Verschiebung)

Pmax/3= 1/3 der Kurzzeitbruchlast
willkürlich gewählter Vergleichswert zu
zul P

zul P = zulässige Belastung der Verbindung nach DIN 1052 bei versetzter Nagelung. zul P dient als Vergleichswert zu P_{max} bzw. P_{max}/3. Die zugehörigen Wege dienen zur Beurteilung der Steifigkeit der Verbindungen. U.a. ist die Aussage, ob 1,50 mm Weg bei zul P eingehalten wurde, informativ.

Tabelle 4: Angabe der Lasten P bei einer Verschiebung (Weg) von 0,75/1,00/1,50/3,00/4,00/5,00 mm, separat für versetzte und unversetzte Nagelung. Die Verschiebungen (Wege) 0,75 ... 5,00 wurden willkürlich gewählt. Die Lasten P in Abhängigkeit von den Verschiebungen ermöglichen u.a. eine Beurteilung der Steifigkeit der Verbindungen. Z.B. ist der Vergleich der Verschiebungen (Wege) zwischen versetzter und unversetzter Nagelung und die Größe der Last P bei 1,5 mm Verschiebung (P1,50) informativ.

Tabelle 5: Angabe des Verschiebungsmoduls (ausgewertet nach ISO 6891) für die Gesamtverbindung (C_{ges}) und für den Einzelnagel (C) - separat für versetzt und unversetzt - und des Einzelnagels (C_{DIN}), berechnet nach DIN 1052 T2.

<u>Aufzeichnungen der Auswertungsstufe I</u>

<u>Exemplarisch</u> liegen die Aufzeichnungen in Abschnitt 4.2.4 vor. Summarisch werden für jeden Versuch die Kraft-Verformungsdiagramme für versetzte und unversetzte Nagelung im Anhang angegeben.

4.6.1.2 Auswertungsstufe II: Zusammenfassung der Auswertungsergebnisse aller Versuche einer Serie

Aus den Ergebnissen der Auswertungsstufe I (s. Abschnitt 4.6.1.1) werden die Ergebnisse der Auswertungsstufe II gewonnen. Die Ergebnisse der Auswertungsstufe II liegen für <u>alle Versuche</u> <u>einer Serie</u> in Tabellenform vor.

Hierbei werden angegeben:

- Maximallast P_{max} und zugehörige Verschiebung w_{max} sowie An-

gaben darüber, wo Versagen eintrat (versetzt, unversetzt, Holz)

- Kräfte P bei 1,5 mm Verschiebung w und Verschiebungen w bei zul P (Bedeutung von zul P -> s. Abschnitt 4.6.1.1)

Aufzeichnungen der Auswertungsstufe II:

s. Abschnitte 4.6.2.1, 4.6.3.1 und 4.6.4.1

```
4.6.1.3 Auswertungsstufe III: Zusammenfassung der
Auswertungsergebnisse aller Serien
```

Aus den Ergebnissen der Auswertungsstufe II (s.Abschnitt 4.6.1.2) werden die Ergebnisse der Auswertungsstufe III gewonnen. Hierbei werden angegeben:

- Mittelwert der Maximallast P_{max} pro Nagelscherfläche, getrennt für versetzte und unversetzte Nagelung
- Quotient P_{max}/zul P pro Nagelscherfläche, getrennt für versetzte und unversetzte Nagelung.

Aufzeichnungen der Auswertungsstufe III

- s. Abschnitt 4.6.2.2, 4.6.3.2 und 4.6.4.2
- <u>4.6.2 Zugstoßprobekörper mit innenliegender Mindestholzdicke</u> (zweischnittige Verbindung)

<u>4.6.2.1 Ergebnisse aus der Auswertungsstufe II</u> (Ergebnisse aller Versuche einer Serie)

Es folgen Tabellen für die Versuchsserien

12	II2
III2	IV2
VI2	VII2
VIII2	XI2
XII2	XIII2
XIV2	XVII
XVIII2	IXX2
XX2	

Weitere Informationen zur Auswertungsstufe II in Abschnitt 4.6.1.2. 61

Tabelle 4.6.2.1/1: Versuchsserie I2 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 130 mm, Anzahl: n = 8, 2-schnittig, glatt

Versuch	Vor	Bruchwerte			
_	sagen	Pmax	in kN	w Pmax	
<u>له.</u>	^)	gesamt	pro Nagel- scherfläche	[mm]	
2,1	v	15,38	0,96	1,63	
2,2	V	23,84	1,49	8,83	
2,3	U	15,47	0,97	2,22	
2,4	v	20,86	1,30	5,53	
2,5	Н	11,56			
2,6	Н	12,60			
2,7	U	15,40	0,96	3,08	
2,8	v	15,66	0,98	3,68	
Fortsetzung der Tabelle nächste Seite					

Bruchwerte Pmax und zugehörige Verschiebung wpmax

zulässige Belastung

Ein: zul	zel P	Lna =	age 0	el ,525	kN
Gesa	amt	:ve	eri	oindu	ung
zul	P	=	8	,40	kN

<u>Nagelabstände</u>

zum Rand

a	15	dn
a_{\perp}	5	dn

untereinander

a	10 dn
a⊥	5 dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unver	setzt	verse	etzt			
Ŧ	P _{1,50}	^w zul P	P _{1,50}	^W zul P			
cake L	[kN]	[mm]	[kN]	[mm]			
2,1	*****	0,62	15,13	0,71			
2,2	16,05	0,34	15,98	0,37			
2,3	14,59	0,38	****	0,28			
2,4	17,72	0,24	17,23	0,29			
2,5	****	0,42	****	0,35			
2,6	11,82	0,69	* * * * *	0,06			
2,7	13,31	0,52	13,89	0,46			
2,8	14,11	0,40	14,79	0,22			
Fortsetzung der Tabelle nächste Seite							

Kräfte P bei w=1,5 mm und Verschiebung w bei zul P

***** : Wert der Verschiebung wurde nicht erreicht

Tabelle 4.6.2.1/2: Versuchsserie I2 Kräfte P und Verschiebungen w der Gesamtverbindung (Fortsetzung)

Nagel: 3,8 * 130 mm, Anzahl: n = 8, 2-schnittig, glatt

43					
Versuch	T 7 = 22	Bruchwerte			
	sagen	P _{max} :	[₩] Pmax		
L T	*)	gesamt	pro Nagel- scherfläche	[mm]	
2,9	U	27,21	1,70	9,43	
2,10	v	17,20	1,08	9,77	
2,11	н	15,32			
		anarana ang kang kang kang kang kang kang ka			

Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

zulässige Belastung

Ein:	ze]	Lna	age	el	kN
zul	P	=	0,	525	
Gesa	amt	zve	erk	oindu	ıng
zul	P		8,	,40	kN

Nagelabstände

zum Rand

a	T	15	dn
a⊥		5	dn

untereinander

a	10	dn
a⊥	5	dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Kräfte	Pt	ei	w=1	,5	mm	und	Verschie	ebung w	bei	zul	Р

Versuch	unvers	setzt	versetzt	
Ţ	P _{1,50}	^W zul P	P _{1,50}	^w zul P
<u>لم</u>	[kN]	[mm]	[kN]	[mm]
2,9	21,36	0,21	18,99	0,23
2,10	15,46	0,35	14,45	0,43
2,11	****	0,29	****	0,11

***** : Wert der Verschiebung wurde nicht erreicht

63

Tabelle 4.6.2.1/3: Versuchsserie II2 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 130 mm, Anzahl: n = 8, 2-schnittig, glatt

		A 14546/X			
Versuch	Vor	Bruchwerte			
	sagen	Pmax	in kN	WPmax	
ماد ماد -	~)	gesamt	pro Nagel- scherfläche	[mm]	
2,1	V	21,27	1,33	8,23	
2,2	U	15,32	0,96	1,48	
2,3	U	22,63	1,41	4,79	
2,4	U	19,9	1,24	5,92	
2,5	U	14,4	0,90	9,76	
2,6	Н	14,02			
2,7	· U	26,20	1,64	14,42	
2,8	v	24,23	1,51	9,72	
2,9	v	18,00	1,13	2,14	

Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

zulässige Belastung

Ein2 zul	zel P	nac = (ge D,S	L 525	kN
Gesa	amt	vei	rb:	indu	ing
zul	P	= {	3,4	40	kN

Nagelabstände

zum Rand

a	19	dn
a_{\perp}	5	dn

untereinander

a	12,5dn
a⊥	5 dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung Kräfte P bei w= 1,5 mm und Verschiebung w bei zul P

Versuch	unver	setzt	verse	etzt		
тт	P _{1,50}	WzulP	P _{1,50}	WzulP		
	[kN]	[mm]	[kN]	[mm]		
2,1	16,03	0,22	17,18	0,16		
2,2	15,25	0,27	****	0,24		
2,3	keiı	ne Dater	n vorhand	len		
2,4	kei	keine Daten vorhanden				
2,5	keii	ne Dater	n vorhand	len		
2,6	****	0,21	****	0,47		
2,7	15,46	0,29	14,18	0,47		
2,8	18,36	0,15	16,56	0,16		
2,9.	16,63	0,22	17,58	0,13		

***** : Wert der Verschiebung wurde nicht erreicht

64

Tabelle 4.6.2.1/4: Versuchsserie III2 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 130 mm, Anzahl: n = 8, 2-schnittig, glatt

Versuch	T7 50	Bruchwerte			
	sagen	Pmax	in kN	^W Pmax	
	*)	gesamt	pro Nagel- scherfläche	[mm]	
2,1	U	22,86	1,43	7,64	
2,2	v	20,96	1,31	6,24	
2,3	V	23,16	1,45	8,82	
2,4	V	21,99	1,37	8,93	
2,5	Н	15,01			
2,6	υ	20,33	1,27	7,52	
2,7	U	22,81	1,43	9,82	

Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

zulässige Belastung

Ein:	zelr	agel	5 kN
zul	P =	0,52	
Gesa	$\operatorname{P} =$	erbino	iung
zul		8,40	kN

Nagelabstände

zum Rand

a	22,5dn
a⊥	5 dn

untereinander

a	15,0dn
a⊥	5 dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unversetzt		versetzt		
III	P _{1,50}	^W zul P	P _{1,50}	^W zul P	
	[kN]	[mm]	[kN]	[mm]	
2,1	keine Daten vorhanden				
2,2	15,39	0,41	14,87	0,48	
2,3	13,01	0,51	12,77	0,58	
2,4	15,42	0,36	14,12	0,41	
2,5	13,62	0,47	13,77	0,50	
2,6	15,81	0,27	15,26	0,29	
2,7	14,07	0,25	15,20	0,39	
Tabelle 4.6.2.1/5: Versuchsserie IV2 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 130 mm, Anzahl: n = 8, 2-schnittig, glatt

Versuch	Vor]	Bruchwerte	Ð
T 77	sagen	P _{max}	in kN	w _{Pmax}
ΤV	^)	gesamt	pro Nagel- scherfläche	[mm]
2,1	Н	15,24		
2,2	v	23,04	1,44	10,98
2,3	v	27,01	1,69	12,63
2,4	υ	22,18	1,39	8,34
2,5	ע∕ע	30,76	1,92	14,76
2,6	U	23,73	1,48	7,43

Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

zulässige Belastung

Ein:	zeln	agel	kN
zul	P =	0,525	
Gesa	amtv	erbind	ung
zul	P =	8,40	kN

<u>Nagelabstände</u>

zum Rand

a	26	dn
$a_{\!\scriptscriptstyle \perp}$	5	dn

untereinander

a	17,5dn
a_{\perp}	5 dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unve	rsetzt	vers	etzt
TTT	P _{1,50}	^w zul P	P _{1,50}	^W zul P
TA	[kN]	[mm]	[kN]	[mm]
2,1	****	0,43	****	0,39
2,2	15,57	0,37	15,38	0,39
2,3	15,63	0,34	16,42	0,35
2,4	16,28	0,30	17,19	0,29
2,5	15,73	0,38	15,57	0,43
2,6	18,10	0,08	16,36	0,31

Kräfte P bei w=1,5 mm und Verschi	iebung y	v bei	zul	P
-----------------------------------	----------	-------	-----	---

Tabelle 4.6.2.1/6: Versuchsserie VI2 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 121 mm, Anzahl: n = 8, 2-schnittig, gerillt

Versuch	Vor-	-	Bruchwert	3
ಭಾಗ್ರಾ ಮ್ಯಾ	sagen	Pmax	in kN	Wpmax
AT	^)	gesamt	pro Nagel- scherfläche	[mm]
2,1	v	25,60	1,60	8,43
2,2	v	18,88	1,18	4,52
2,3	v	22,05	1,38	9,32
2,4	U	15,89	0,99	1,23
2,5	U	15,65	0,98	6,95
2,6	U	16,90	1,06	2,70

Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

zulässige Belastung

Ein: zul	zel P	Lna =	agel 0,52	25	kN
Gesa	amt	:ve	erbin	ndu	ng
zul	P	=	8,40)	kN

Nagelabstände

zum Rand

a	15	dn
a⊥	5	dn

untereinander

a	10	dn
a_{\perp}	5	dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unve	rsetzt .	verse	etzt
vr	P _{1,50}	^w zul P	P _{1,50}	^W zul P
V -4.	[kN]	[mm]	[kN]	[mm]
2,1	18,49	0,17	17,15	0,29
2,2	16,33	0,47	15,21	0,43
2,3	16,80	0,09	15,02	0,24
2,4	15,38	0,37	****	0,29
2,5	12,02	0,57	****	0,24
2,6	15,23	0,22	15,16	0,22

Kräfte P bei w=1,5 mm und Verschiebung w bei zul P

Tabelle 4.6.2.1/7: Versuchsserie VII2 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 121 mm, Anzahl: n = 8, 2-schnittig, gerillt

Versuch	\$7.0.20]	Bruchwerte	3
	sagen	Pmax	in kN	^W Pmax
ATT	*)	gesamt	pro Nagel- scherfläche	[mm]
2,1	U	23,09	1,44	6,76
2,2	U	13,20	0,83	2,67
2,3	v	32,13	2,01	13,28
2,4	v	27,11	1,69	11,07
2,5	v	17,18	1,07	2,34
2,6	v	18,21	1,14	4,06
2,7	U	18,65	1,17	3,02

zulässige Belastung

Ein: zul	ze] P	Lna =	age 0,	el 525	kN
Gesa	amt	:ve	erk	indu	ung
zul	P	=	8,	40	kN

Nagelabstände

zum Rand

a	19	dn
a⊥	5	dn

untereinander

a	12,5dn
a_{\perp}	5 dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unve	rsetzt	verse	etzt
<u>و</u> ر و و و و و و و و و و و و و و و و و و	P _{1,50}	^W zul P	P _{1,50}	^W zul P
V V V	[kN]	[mm]	[kN]	[mm]
			a laurean gana ann ann ann ann ann ann ann ann	
2,1	15,62	0,43	15,10	0,43
2,2	2,2 11,50		12,68	0,53
2,3	16,31	0,40	14,56	0,50
2,4	2,4 15,64		14,04	0,22
2,5	****	0,18	15,62	0,39
2,6	17,40	0,17	15,28	0,40
2,7	15,82	0,32	17,49	0,22

***** : Wert der Verschiebung wurde nicht erreicht

Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

Tabelle 4.6.2.1/8: Versuchsserie VIII2 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 121 mm, Anzahl: n = 8, 2-schnittig, gerillt

Versuch	Ver- sagen *)	I	Bruchwerte	3
		Pmax	in kN	W _{Pmax}
VIII		gesamt	pro Nagel- scherfläche	[mm]
2,1	U	19,18	1,20	6,57
2,2	v	22,24	1,39	7,22
2,3	U	18,62	1,16	5,39
2,4	v	24,94	1,56	8,78
2,5	U	26,67	1,67	7,83
2,6	U	27,14	1,70	6,33
2,7	v	29,01	1,81	9,62
2,8	v	33,05	2,07	9,90

Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

zulässige Belastung

Einz	zel	lna	age	el	kN
zul	P	=	0,	525	
Gesa	amt	=	erk	oindu	ung
zul	P		8,	,40	kN

Nagelabstände

zum Rand

a	22,5dn
a⊥	5 dn

untereinander

a]	.5	dn
a⊥		5	dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unve	rsetzt	verse	etzt
17 T T	P _{1,50}	^W zul P	P _{1,50}	^W zul P
VIII	[kN]	[mm]	[kN]	[mm]
2,1	15,24	0,41	16,14	0,35
2,2	13,12	0,67	13,52	0,53
2,3	13,49	0,57	15,03	0,44
2,4	13,46	0,56	13,45	0,44
2,5	13,47	0,56	13,47	0,44
2,6	16,96	0,28	18,60	0,15
2,7	19,16	0,11	18,52	0,13
2,8	17,34	0,38	16,22	0,43

Kräfte P bei w=1,5 mm und Verschiebung w bei zul P

Tabelle 4.6.2.1/9: Versuchsserie XI2 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 4,2 * 120 mm, Anzahl: n = 8, 2-schnittig, glatt

r	r	T			
Versuch	Vor-	Bruchwerte			
w r	sagen	Pmax	WPmax		
A1	~)	gesamt	pro Nagel- scherfläche	[mm]	
2,1	U	12,69	0,79	1,83	
2,2	U	16,73	1,05	2,63	
2,3	U	16,91	1,06	1,01	
2,4	Н	19,75			
2,5	U	18,49	1,16	4,13	
2,6	U	15,36	0,96	4,93	

Bruchwerte P _{max}	und	zugehörige	Verschiebung	Wpmax
-----------------------------	-----	------------	--------------	-------

zulässige Belastung

Einze zul P	lnage = 0,	21 625	kN
Gesam zul P	tverk	oindu),0	ıng kN

Nagelabstände

zum Rand

a	15	dn
a⊥	5	dn

untereinander

a	10	dn
a⊥	5	dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unve	rsetzt	ver	setzt
VT	P _{1,50}	^w zul P	P _{1,50}	^W zul P
A.L.	[kN]	[mm]	[kN]	[mm]
2,1	12,42	0,59	****	0,35
2,2	15,88	0,36	16,47	0,35
2,3	16,69	0,24	****	0,27
2,4	****	0,21	****	0,18
2,5	16,85	0,22	****	0,13
2,6	14,99	0,49	13,25	0,64

Kräfte P bei w=1,5 mm und Verschiebung w bei zul P

 Tabelle 4.6.2.1/10: Versuchsserie XII2 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 4,2 * 120 mm, Anzahl: n = 8, 2-schnittig, glatt

Versuch		Bruchwerte			
	ver- sagen	P _{max} :	in kN	WPmax	
XT T	*)	*) gesamt		[mm]	
2,1	Probe	für Versuch unbrauchbar			
2,2	v	15,22	0,95	0,49	
2,3	V	16,27	1,02	1,14	
2,4	Н	10,64			
2,5	U	20,42	1,28	11,70	
2,6	V	22,88	1,43	7,85	
2,7	V	17,54 1,10		1,85	

Bruchwerte Pmax und zugehörige Verschiebung wpmax

zulässige Belastung

Einz zul	ze] P	lna =	agel 0,625	kN
 Gesa	amt	:ve	erbindu	ung
zul	P	=	10,0	kN

Nagelabstände

zum Rand

a	19	dn
a⊥	5	dn

untereinander

a	12,5dn
a⊥	5 dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Kräfte	P	bei	w=1,5	5 mm	und	Verschiebung	W	bei	zul	P

Versuch	unvei	rsetzt	ver	setzt
XII	P _{1,50}	^W zul P	P _{1,50}	^w zul P
	[kN]	[mm]	[kN]	[mm]
		×		
2,1	gespa	alten be:	i unverse	etzt
2,2	****	0,28	15,06	0,12
2,3	****	0,17	15,46	0,27
2,4	****	0,17	****	0,26
2,5	19,46	0,12	19,67	0,10
2,6	17,88	0,0	15,59	0,40
2,7	****	0,19	17,21	0,32

Tabelle 4.6.2.1/11: Versuchsserie XIII2 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 4,2 * 120 mm, Anzahl: n = 8, 2-schnittig, glatt

Versuch	Vor-]	Bruchwerte	Э
شکه مکه مخه	sagen	P _{max} :	in kN	w _{Pmax}
****	~)	gesamt	pro Nagel- scherfläche	[mm]
2,1	U	28,13	1,76	6,16
2,2	U	17,95	1,12	2,09
2,3	v	19,98	1,25	2,08
2,4	v	16,87	1,05	1,4
2,5	Probe	für Versu	uch unbrau	uchbar
2,6	U	28,26	1,77	8,98

Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

zulässige Belastung

Einz	ze:	Lna	age	21	kN
zul	P	=	0,	625	
Gesa	amt	cve	≥rk	oind	ung
zul	P		10),0	kN

Nagelabstände

zum Rand

a	22,5dn
a⊥	5 dn

untereinander

a	15 dn
a⊥	5 dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unve	rsetzt	verse	etzt		
VTTT	P _{1,50}	^w zul P	P _{1,50}	^w zul P		
****	[kN]	[mm]	[kN]	[mm]		
2,1	19,58	0,19	19,86	0,22		
2,2	17,43	0,11	****	0,23		
2,3	19,93	0,19	19,44	0,25		
2,4	* * * * *	0,26	16,33	0,20		
2,5	gespa.	gespalten bei vers unversetzt				
2,6	20,78	0,18	22,72	0,15		

Kräfte P bei w=1,5 mm und Verschiebung w bei zul P

Tabelle 4.6.2.1/12: Versuchsserie XIV2 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 4,2 * 120 mm, Anzahl: n = 8, 2-schnittig, glatt

Versuch	Vor-	Bruchwerte				
27 7 27	sagen	P _{max}	in kN	w _{Pmax}		
AT A	^)	gesamt	pro Nagel- scherfläche	[mm]		
2,1	v	30,63	1,91	8,63		
2,2	v	30,36	1,90	9,08		
2,3	V	26,29	1,64	9,45		
2,4	V/U	26,00	1,63	8,12		
2,5	v	27,08	1,69	6,78		

Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

zulässige Belastung

 Ein: zul	zel P	lna =	agel 0,625	kN
Gesa zul	amt P	=	erbindu 10,0	ung kN

Nagelabstände

zum Rand

a	26	dn
a⊥	5	dn

untereinander

a	17,5dn
a⊥	5 dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unve	rsetzt	ver	setzt		
VTV	P _{1,50}	^W zul P	P _{1,50}	w _{zul} P		
AT A	[kN]	[mm]	[kN]	[mm]		
2,1	18,97	0,29	19,64	0,0		
2,2	20,05	0,18	20,34	0,06		
2,3	20,89	0,01	19,06	0,27		
2,4	17,24	0,05	16,31	0,42		
2,5	24,27	0,50	24,21	0,45		
			THE STREET STREET STREET			

Kräfte	P	bei	w = 1	.,5	mm	und	V	erschiebung	W	bei	zul	P
--------	---	-----	-------	-----	----	-----	---	-------------	---	-----	-----	---

Tabelle 4.6.2.1/13: Versuchsserie XVII2 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 4,6 * 146 mm, Anzahl: n = 8, 2-schnittig, glatt

Versuch	17	Bruchwerte				
1949 * *	sagen	P _{max} :	in kN	W _{Pmax}		
VATT	~)	gesamt	pro Nagel- scherfläche	[mm]		
2,1	υ	14,03	0,88	1,24		
2,2	U	13,81	0,86	2,32		
2,3	v	14,55	0,91	1,22		
2,4	υ	21,40	1,34	1,40		
2,5	υ	18,30	1,14	1,47		
2,6	v	18,19	1,14	1,31		
2,7	U	19,08	1,19	1,18		

Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

zulässige Belastung

	Ein2 zul	zel P	lna =	ige 0,	1 725	kN
And a second	Gesa	amt	:ve	≥rb	indu	ing
	zul	P	=	11	,6	kN

Nagelabstände

zum Rand

a	22,5dn
a⊥	5 dn

untereinander

a	15 dn
a⊥	5 dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unve	rsetzt	ver	setzt
	P _{1,50}	^W zul P	P _{1,50}	^W zul P
VATT	[kN]	[mm]	[kN]	[mm]
2,1	13,50	0,66	****	0,42
2,2	13,00	0,65	****	0,34
2,3	****	0,43	14,41	0,27
2,4	21,00	0,26	21,36	0,28
2,5	18,30	0,34	* * * * *	0,26
2,6	17,81	0,57	18,17	0,01
2,7	18,87	0,15	****	0,02

Kräfte P bei w=1,5 mm und Verschiebung w bei zul P

Tabelle 4.6.2.1/14: Versuchsserie XVIII2 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 4,6 * 146 mm, Anzahl: n = 8, 2-schnittig, glatt

IIIdA -			~			
Versuch	T/ a se	Bruchwerte				
	ver- sagen	P _{max}	P _{max} in kN			
XATTT	*)	gesamt	pro Nagel- scherfläche	[mm]		
2,1	U	16,77	1,05	4,19		
2,2	U	19,09	1,19	2,46		
2,3	U	15,20	0,95	1,37		
2,4	v	19,68	1,23	2,26		
2,5	U	24,17	1,51	3,26		
	- -					

Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

zulässige Belastung

Einz zul	zel P	.na =	ngel 0,72	25	kN
Gesa	amt	:ve	erbir	ıdı	ıng
zul	P	=	11,6	5	kN

<u>Nagelabstände</u>

zum Rand

a	27	dn
a⊥	5	dn

untereinander

a	18	dn
$a_{\!\!\perp}$	5	dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unvei	rsetzt	vers	setzt
هک شک شک ملک محمد محمد محمد محمد	P _{1,50}	^W zul P	P _{1,50}	^W zul P
VATT	[kN]	[mm]	[kN]	[mm]
a ann an Arland agus an Arnan an Arna a				and a second
2,1	16,72	0,50	16,21	0,52
2,2	16,99	0,52	17,33	0,50
2,3	15,10	0,74	****	0,28
2,4	****	0,21	19,15	0,33
2,5	22,64	0,29	20,83	0,35

Kräfte P bei w=1,5 mm und Verschiebung w bei z	uľ	P
--	----	---

Tabelle 4.6.2.1/15: Versuchsserie XIX2 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 4,6 * 146 mm, Anzahl: n = 8, 2-schnittig, glatt

Versuch	1703	Bruchwerte			
25 2 58	sagen	Pmax	in kN	[₩] Pmax	
	*)	gesamt	pro Nagel- scherfläche	[mm]	
2,1	υ	19,97	1,25	1,69	
2,2	U	23,02	1,44	3,94	
2,3	v	24,25	1,52	3,22	
2,4	U	13,99	0,87	1,42	
2,5	U	25,33	1,58	4,71	
2,6	v	18,79	1,17	2,78	

Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

zulässige Belastung

Ein:	zel	Lna	agel	kN
zul	P	=	0,725	
Gesa	amt	=	erbind∪	ung
zul	P	=	11,6	kN

Nagelabstände

zum Rand

a	31,5dn
a⊥	5 dn

untereinander

a	2	1	dn
a⊥		5	dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unvei	rsetzt	vers	setzt
VTV	P _{1,50}	^W zul P	P _{1,50}	^w zul P
A17	[kN]	[mm]	[kN]	[mm]
2,1	19,64	0,27	****	0,29
2,2	21,12	0,23	20,82	0,11
2,3	24,10	0,23	20,99	0,31
2,4	****	0,31	****	0,26
2,5	23,03	0,09	22,37	0,19
2,6	18,64	0,20	17,52	0,51

Tabelle 4.6.2.1/16: Versuchsserie XX2 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 4,6 * 146 mm, Anzahl: n = 8, 2-schnittig, glatt

Versuch	17.0 m]	Bruchwerte	2
49 19	sagen	P _{max}	in kN	WPmax
XX	*)	gesamt	pro Nagel- scherfläche	[mm]
2,1	U	26,98	1,69	5,84
2,2	v	21,46	1,34	2,40
2,3	U	22,24	1,39	6,27
2,4	v	23,04	1,44	7,73
2,5	U	19,69	1,23	1,94

Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

zulässige Belastung

Einz	re]	lna	age	1	kN
zul	P	=	0,	725	
Gesa	amt	:ve	erb	ind	ung
zul	P	=	11	,6	kN

Nagelabstände

zum Rand

a	36	dn
a⊥	5	dn

untereinander

a	24	dn
a⊥	5	dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unvei	rsetzt	vers	setzt
vv	P _{1,50}	^W zul P	P _{1,50}	^W zul P
<u>A</u> A	[kN]	[mm]	[kN]	[mm]
2,1	21,71	0,00	21,51	0,20
2,2	****	0,19	20,95	0,28
2,3	19,46	0,26	19,48	0,25
2,4	21,92	0,20	17,85	0,45
2,5	19,65	0,31	****	0,00
			anna a chuig a gu anna a chuig a fea	ANTAL COLOURS AND A COLOUR AND A COLOUR AND

Kräfte P bei w=1,5 mm und Verschiebung w bei zul P

Versuch liegend dicke 1	he mit in der Mindo (zweischn 2	nnen- estholz- nittig) 3	ve:	rsetzt	6	u . 7	nversetzt 8	9	Holzdurchr des Anschl (Versagen 10	iß außerhalb ußbereiches durch Ast) 11
Nagel	Abstand Fa	Anzahl Versuchs körper	Versagens- häufigkeit	Mittelwert der Max.*) -Last Nu	<u>Nu</u> zulN	Versagens- häufigkeit	Mittelwert der Max.*) -Last Nu	<u>Nu</u> zulN	Versagens- häufigkeit	Mittelwert der MaxLast
3,8*130 glatt	10,0 d _n 12,5 d _n 15,0 d _n 17,5 d _n	11 9 7 6	5 3 3 3	1,16 1,32 1,38 1,68	>2,25 2,52 2,63 3,21	3 5 3 3	1,21 1,23 1,38 1,60	2,31 >2,41 2,63 >3,13	3 1 1 1	13,16 14,02 15,01 15,24
		33	14			14			6	
3,8*121 gerillt	10,0 d _n 12,5 d _n 15,0 d _n	6 7 8	3 4 4	1,39 1,48 1,71	2,64 2,81 3,25	3 3 4	1,01 1,15 1,43	>2,28 >2,54 >2,99		
		21	11			10				
4,2*120 glatt	10,0 d _n 12,5 d _n 15,0 d _n 17,5 d _n	6 7 6 5	0 4 3 1) 5	 1,13 1,15 1,75	>1,91 >1,85 >2,22 2,81	5 21) 41) 1	1,00 1,28 1,55 1,63	1,91 2,05 2,48 >2,77	1 1	19,75 10,64
		24	12			12			2	
4,6*146 glatt	15,0 d _n 18,0 d _n 21,0 d _n 24,0 d _n	7 5 6 5	2 1 2 2	1,03 1,23 1,35 1,39	>1,47 1,70 1,86 >1,96	5 4 4 3	1,08 1,18 1,29 1,44	1,49 >1,64 >1,80 1,98		
		23	7.			16				

1) 1 Probekörper in der Nagelrißlinie beim Einschlagen gespalten. Nicht im Kurz-Zeit Versuch getestet.

76 ω

Ergebnisse aus der Auswertungsstufe III

4. 5 N N

(Zusammenfassung der Ergebnisse aller Serien)

- 4.6.3 Zugstoßprobekörper mit außenliegender Mindestholzdicke (einschnittige Verbindungen)
- 4.6.3.1 Ergebnisse aus der Auswertungsstufe II (Ergebnisse aller Versuche einer Serie)

Es folgen die Tabellen für die Versuchsserien I1 III III III VII VIII VIII XIII XIVI XVIII

Weitere Informationen zur Auswertungsstufe II in Abschnitt 4.6.1.2.

Tabelle 4.6.3.1/1: Versuchsserie I1 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 130 mm, Anzahl: n = 8, 1-schnittig, glatt

Bruchwerte	Pmay	und	zugehörige	Versch	iebung	Wpmax
			0 0			

Versuch	¥7.0 X		Bruchwert	9
	sagen	Pmax	in kN	w Pmax
ulle «	*)	gesamt	pro Nagel- scherfläche	[mm]
1,1	Probe	für Vers	uch unbra	uchbar
1,2	Probe	für Vers	uch unbra	uchbar
1,3	v	11,49	0,72	3,66
1,4	Probe	für Vers	uch unbra	uchbar
1,5	Probe	für Vers	uch unbra	uchbar

zulässige Belastung

Einzelnagel zul P = 0,5	25 kN
Gesamtverbi	ndung
zul P = 8,4	0 kN

Nagelabstände

zum Rand

a	15	dn
a⊥	5	dn

untereinander

a	10 dn
a⊥	5 dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Kräfte	P	bei	w=1,5	5 mm	und	Verschiebung	w bei	i zul	P
--------	---	-----	-------	------	-----	--------------	-------	-------	---

Versuch	unvei	rsetzt	versetzt				
Ŧ	P _{1,50}	^w zul P	P _{1,50}	Wzul	P		
de	[kN]	[mm]	[kN]	[mm]			
1,1	gespal	lten bei unver	versetzt	t und			
1,2	gespalten bei unversetzt						
1,3	****	0,20	10,91 0,78				
1,4	gespal	lten bei unver	versetzt	= und			
1,5	gespal	Lten bei unver	versetzt rsetzt	z und			

Tabelle 4.6.3.1/2: Versuchsserie III Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 130 mm, Anzahl: n = 8, 1-schnittig, glatt

Bruchwerte P _{max}	und	zugehörige	Verschiebung	^w Pmax
-----------------------------	-----	------------	--------------	-------------------

Versuch	Vor	Bruchwerte						
مائد مائيا	sagen	P_{max}	in kN	w _{Pmax}				
.	^)	gesamt	pro Nagel- scherfläche	[mm]				
1,1	Probe	für Versu	uch unbrau	ıchbar				
1,2	v	19,57	1,22	5,58				
1,3	V/U	13,81	0,863	3,69				
1,4	Probe	für Versı	uch unbrau	ıchbar				
1,5	Probe	für Versu	ich unbrau	lchbar				

zulässige Belastung

Ein:	zel	.na	agel	kN
zul	P	=	0,525	
Gesa	amt	:ve	erbindu	ng
zul	P	=	8,40	kN

Nagelabstände

zum Rand

a	19	dn
a⊥	5	dn

untereinander

a	12,5dn
a⊥	5 dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Krä	ifte	P	bei	w=	1,5	mm	und	Verschiebung	W	bei	zul	P
-----	------	---	-----	----	-----	----	-----	--------------	---	-----	-----	---

Versuch	ersuch unversetzt verset				
TT	P _{1,50}	^W zul P	P _{1,50}	^W zul P	
	[kN]	[mm]	[kN]	[mm]	
1,1	gesı ur	palten be nd unvers	ei verset setzt	zt	
1,2	18,71	0,16	15,42	0,30	
1,3	13,13	0,33	13,03	0,42	
1,4	gesp	palten be	ei unvers	setzt	
1,5	gesp	palten be	ei unvers	setzt	

Tabelle 4.6.3.1/3: Versuchsserie III1 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 130 mm, Anzahl: n = 8, 1-schnittig, glatt

B	rucl	hwerte	Pmax	und	zuge	hörige	V	ersch	iel	oung	WPn	nax
---	------	--------	------	-----	------	--------	---	-------	-----	------	-----	-----

Versuch	57 - 20	Bruchwe					
alite alite alite	ver- sagen	P _{max}	in kN	Wpmax			
┺┺┺	*)	gesamt	pro Nagel- scherfläche	[mm]			
1,1	v	25,63	1,60	12,23			
1,2	Probe für Versuch unbrauchbar						
1,3	Probe	für Versu	ich unbrau	ıchbar			
1,4	U	13,14	0,82	2,42			
1,5	Probe	für Versu	ich unbrau	ıchbar			
				-			
			2000/10/10/10/10/10/10/10/10/10/10/10/10/				

zulässige Belastung

Einz zul	ze] P	Lna =	agel 0,1	1 525	kN
Gesa	amt	:Ve	erb:	indu	ing
zul	P	=	8,4	40	kN

Nagelabstände

zum Rand

a	22,5dn
a⊥	5 dn

untereinander

a	15 dn
a⊥	5 dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unvei	rsetzt	vers	setzt		
***	P _{1,50}	^w zul P	P _{1,50}	^W zul P		
***	[kN]	[mm]	[kN]	[mm]		
1,1	17,60	0,22	16,95	0,15		
1,2	gespalten bei versetzt					
1,3	gespa	gespalten bei unversetzt				
1,4	11,45	0,71	12,87	0,52		
1,5	gespalten bei unversetzt					
	×					
			a o gel an			

Kräfte P bei w=1,5 mm und Verschiebung w bei zul P

Tabelle 4.6.3.1/4: Versuchsserie IV1 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 130 mm, Anzahl: n = 8, 1-schnittig, glatt

Versuch	Ver	Bruchwerte			
***	sagen *)	P_{max}	P _{max} in kN		
ΤV		gesamt	pro Nagel- scherfläche	[mm]	
1,1	U	27,08	1,70	8,41	
1,2	U	15,18	0,95	18,84	
1,3	U	20,82	1,30	19,23	
1,4	U	31,24	1,95	17,39	
1,5	U	18,51	1,16	5,42	
1,6	U	15,49	0,97	4,43	
1,7	U	14,76	0,92	3,88	

Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

zulässige Belastung

Einz zul	ze] P	Lna =	age 0,	el 525	kN
Gesa	amt	:ve	erk	oindu	ng
zul	P	=	8,	40	kN

Nagelabstände

zum Rand

a	26 dn
a⊥	5 dn

untereinander

a	17,5dn
a⊥	5 dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unve	rsetzt	versetzt	
	P _{1,50}	^W zul P	P _{1,50}	Wzul P
τv	[kN]	[mm]	[kN]	[mm]
1,1	1,117,751,212,231,315,241,417,47		18,83	0,14
1,2			****	0,17
1,3			17,63	0,22
1,4			20,41	0,00
1,5	1,5 14,95		18,25	0,15
1,6	12,55	0,59	* * * * *	0,22
1,7	12,81	0,54	14,67	0,40

Kräfte P bei w=1,5 mm und Verschiebung w bei zul P

Tabelle 4.6.3.1/5: Versuchsserie VII1 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 121 mm, Anzahl: n = 8, 1-schnittig, gerillt

181 64 / A.				
Versuch	TI - 20]	Bruchwerte	9
ಪ್ರೇಮಿಕ ಕಾರ್ಮಾಂಡ್ ಸಂ	sagen *)	P _{max}	w _{Pmax}	
ATT		gesamt	pro Nagel- scherfläche	[mm]
1,1	v	17,05	1,07	5,51
1,2	V	14,05	0,88	3,93
1,3	v	20,39	1,27	14,49
1,4	Probe	für Vers	uch unbrau	lchbar
1,5	Probe	für Vers	uch unbrau	ıchbar

Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

zulässige Belastung

Ein:	zel	lna	age	≥l	kN
zul	P	=	0,	,525	
Gesa	amt	:ve	erk	oind	ung
zul	P	=	8,	,40	kN

Nagelabstände

zum Rand

a	19	dn
a⊥	5	dn

untereinander

a	12,5dn
a⊥	5 dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

	<i>′</i>			
Versuch	unver	rsetzt	ver	setzt
WTT	P _{1,50}	^W zul P	P _{1,50}	^W zul P
***	[kN]	[mm]	[kN]	[mm]
1,1	****	0,00	11,87	0,76
1,2	****	0,21	11,28	0,73
1,3	18,21	0,07	15,26	0,23
1,4	gespa	alten bei	unverse	etzt
1,5	gespa	alten bei	i unverse	etzt
NAME TAMAN DE LA CALENCIA DE LA CAL			an ba'n a' yw ar on ar an ar an bran ar	

Kräfte P bei w=1,5 mm und Verschiebung w bei zul P

 Tabelle 4.6.3.1/6: Versuchsserie VIII1 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 121 mm, Anzahl: n = 8, 1-schnittig, gerillt

~~~					
Versuch	More	]	Bruchwert	9	
	sagen	Pmax	P _{max} in kN		
ATTA	~)	gesamt	pro Nagel- scherfläche	[ mm ]	
1,1	v	23,05	1,44	12,89	
1,2	V	28,49	1,78	11,06	
1,3	v	19,34	1,21	6,71	
1,4	- V	15,85	0,99	1,90	
1,5	V	24,59	1,54	13,08	

#### Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

#### zulässige Belastung

Eir	zel	lna	age	∍1	kN
zul	P	=	0,	,525	
Ges	amt	:ve	≥rk	oindu	ing
zul	. P	=	8,	,40	kN

#### Nagelabstände

#### zum Rand

a	22,5dn		
$\mathbf{a}_{\!\perp}$	5 dn		

#### untereinander

a	15 dn
a	5 dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unve	rsetzt	vers	setzt
WTYT	P _{1,50}	^W zul P	P _{1,50}	wzul P
VIII	[ kN ]	[ mm ]	[kN]	[ mm ]
1,1	17,29	0,15	13,67	0,39
1,2	17,53	0,01	14,22	0,06
1,3	15,99	0,23	12,03	
1,4	****	0,17	13,16	0,26
1,5	17,59	0,14	12,75	0,53
		×		

#### Kräfte P bei w=1,5 mm und Verschiebung w bei zul P

Tabelle 4.6.3.1/7: Versuchsserie IX1 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 121 mm, Anzahl: n = 8, 1-schnittig, gerillt

Versuch	Vor-	]	Bruchwerte	5
<b>T</b> 35	sagen	P _{max}	in kN	W _{Pmax}
TY	*)	gesamt	pro Nagel- scherfläche	[ mm ]
1,1	U	12,16	0,76	2,27
1,2	U	29,59	1,85	12,30
1,3	U	11,38	0,71	2,72
1,4	U	16,51	1,03	6,77
1,5	V	28,00	1,75	11,34

Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

#### zulässige Belastung

Ein:	zel	.na	nge	el	kN
zul	P	=	0,	525	
Gesa	amt	:ve	erk	indu	ıng
zul	P	=	8,	40	kN

#### Nagelabstände

#### zum Rand

and the second se	a	26 dn	
And in the other designs of th	a⊥	5 dn	

#### untereinander

a	17,5dn
a⊥	5 dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unve	rsetzt	verse	etzt
τ¥	P _{1,50}	^W zul P	P _{1,50}	^W zul P
10	[ kN ]	[ mm ]	[kN]	[mm]
1,1	11,27	0,94	****	0,17
1,2	13,76	0,23	17,61	0,13
1,3	10,09	0,23 ***	****	0,65
1,4	13,99 0,00	16,14	0,13	
1,5	14,02	0,68	11,60	0,79

#### Kräfte P bei w=1,5 mm und Verschiebung w bei zul P

 Tabelle 4.6.3.1/8: Versuchsserie XIII1 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 4,2 * 120 mm, Anzahl: n = 8, 1-schnittig, glatt

## Bruchwerte $P_{max}$ und zugehörige Verschiebung $w_{Pmax}$

Versuch	Vor-	I	Bruchwerte	9
VTTT	sagen	P _{max}	in kN	WPmax
A111	*)	gesamt	pro Nagel- scherfläche	[ mm ]
1,1	U	8,06	0,50	3,72
1,2	Probe	für Versu	ich unbrau	ıchbar
1,3	Probe	für Versu	uch unbrau	ıchbar
1,4	Probe	für Versı	uch unbrau	ıchbar
1,5	Probe	für Versı	uch unbrau	uchbar

#### zulässige Belastung

Ein:	zel	Lna	agel	kN
zul	P	=	0,625	
Gesa	amt	=	erbindu	ung
zul	P		10,0	kN

#### Nagelabstände

#### zum Rand

a	22,5dn
a⊥	5 dn

#### untereinander

a	15 dn
a⊥	5 dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Kräfte P bei w	=1,5 mm u	nd Verschie	bung w bei	zul P		
Versuch	unvei	rsetzt	versetzt			
áiðtochte eddo edda	P _{1,50}	1,50 ^W zul P		^W zul P		
<b>VTTT</b>	[ kN ]	[ mm ]	[kN]	[ mm ]		
1,1	6,79	0,00	****	0,00		
1,2	gespalten bei unversetzt					
1,3	gespa	alten bei	i unverse	etzt		
1,4	gespalten bei versetzt und unversetzt					
1,5	gespalten bei versetzt und unversetzt					

Tabelle 4.6.3.1/9: Versuchsserie XIV1 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 4,2 * 120 mm, Anzahl: n = 8, 1-schnittig, glatt

	and the second	·····		
Versuch	Vor-	]	Bruchwerte	e
<del>ህ</del> ም ም ዋ ም	sagen	Pmax	in kN	w _{Pmax}
<b>VT</b> A	~)	gesamt	pro Nagel- scherfläche	[ mm ]
1,1	U	11,24	0,70	2,66
1,2	U	23,94	1,50	14,52
1,3	U	23,86	1,49	12,06
1,4	U	13,30	0,83	2,20
1,5	U	18,77	1,17	15,54

## Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

#### zulässige Belastung

Einz zul	zel P	nac = C	<b>je</b> l ),6	25	kN
Gesa	nmt	ver	bi	ndu	ing
zul	P	= 1	0,	0	kN

#### <u>Nagelabstände</u>

zum Rand

a	26	dn
$a_{\perp}$	5	dn

#### untereinander

a	17,5dn
a⊥	5 dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unve	unversetzt v		setzt
VTV	P _{1,50}	^W zul P	P _{1,50}	^w zul P
	[ kN ]	[ mm ]	[ kN ]	[ mm ]
1,1	9,52	1,71	11,20	1,10
1,2	16,40	0,26	20,59	0,23
1,3	17,62	0,23	17,26	0,43
1,4	12,27	0,77	****	0,57
1,5	14,23	0,54	****	0,22
	14,01	0,70	16,35	0,51

#### Kräfte P bei w=1,5 mm und Verschiebung w bei zul P

Tabelle 4.6.3.1/10: Versuchsserie XV1 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 4,2 * 120 mm, Anzahl: n = 8, 1-schnittig, glatt

BIIGAA			-	~~~~	
Versuch	Vor	Bruchwerte			
<b>68</b> 66	sagen	Pmax	P _{max} in kN		
~~	~)	gesamt	pro Nagel- scherfläche	[ mm ]	
1,1	v	15,77	0,99	8,26	
1,2	U	20,00	1,25	5,70	
1,3	U	22,61	1,41	13,30	
1,4	U	22,16	1,39	11,24	
1,5	U	22,79	1,42	13,18	
1,6	U	21,85	1,37	13,81	

Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

#### <u>zulässige Belastung</u>

and the second	Ein: zul	ze] P	Lna =	agel 0,625	kN
the second s	Gesa	amt	:ve	erbind	ung
	zul	P	=	10,0	kN

#### <u>Nagelabstände</u>

zum Rand

a	30	dn
a⊥	5	dn

untereinander

a	20	dn
a⊥	5	dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unve	rsetzt	ver	setzt
777	P _{1,50}	^w zul P	P _{1,50}	^W zul P
A V	[ kN ]	[ mm ]	[kN]	[ mm ]
1,1	13,54	0,70	13,65	0,57
1,2	17,44	0,23	14,69	0,72
1,3	15,33	0,17	17,32	0,44
1,4	16,25	0,13	15,55	0,64
1,5	13,82	0,10	16,94	0,50
1,6	15,82	0,06	18,18	0,22
-				

Kräfte P	' bei	w=1,5	mm	und	Verschiebung	w bei	zul	P
----------	-------	-------	----	-----	--------------	-------	-----	---

Tabelle 4.6.3.1/11: Versuchsserie XVIII1 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 4,6 * 146 mm, Anzahl: n = 8, 1-schnittig, glatt

Bruchwerte Pmax	und zugehörige	Verschiebung wpmax

Versuch	Vor-		1	Brud	chwerte	9
VUTTT	sagen		P _{max}	in	kN	w _{Pmax}
VATT	^)	ges	samt	pro Nagel- scherfläch		e [mm]
			5000,0000,000,000,000,000,000,000,000		ni na faran (da talan na na matikan si na karan na	
1,1	Probe	für	Vers	ıch	unbrau	ıchbar
1,2	Probe	für	Versu	lch	unbrau	ıchbar
1,3	Probe	für	Versu	ıch	unbrau	ıchbar
1,4	Probe	für	Versu	ıch	unbrau	ıchbar
1,5	Probe	für	Vers	lch	unbrau	ıchbar
			NY 36-Tableton MCCorrentingen ker		annan an a	
an an Anna an A					ne and an and an and an and an a	
			*************			

zulässige Belastung

Ein:	zel	.na	uge	1	kN
zul	P	=	0,	725	
Gesa	amt	:ve	erb	indu	ung
zul	P	=	11	,6	kN

<u>Nagelabstände</u>

#### zum Rand

a	27	dn
a⊥	5	dn

#### untereinander

a	18	dn
a⊥	5	dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Kräfte l	P bei	w=1,5	5 mm	und	Verschiebung w	bei zul l	Ρ
----------	-------	-------	------	-----	----------------	-----------	---

			0				
Versuch	unvei	rsetzt	vers	setzt			
VUTTT	P _{1,50}	^w zul P	P _{1,50}	Wzul	P		
۵۵۵ ۲ هه هه هه ا	[kN]	[ mm ]	[kN]	[ mm ]			
					onor an an an		
1,1	gespalten bei unversetzt und versetzt						
1,2	gespa	alten bei	i unverse	etzt			
1,3	gespa	alten bei	i unverse	etzt			
1,4	gespa ur	alten bei nd verset	i unverse zt	etzt	<b>******</b>		
1,5	gespa	alten bei	i unverse	etzt			
•							

Versuche mit außen- liegender Mindestholz- dicke (einschnittig)		v	versetzt			unversetzt			iß außerhalb ußbereiches durch Ast)	
1	2	3	4	5	6	7	8	9	10	
Nagel	Abstand    Fa	Anzahl Versuchs körper	Versagens- häufigkeit	Mittelwert der Max.*) -Last Nu	<u>Nu</u> zulN	Versagens- häufigkeit	Mittelwert der Max.*) -Last Nu	<u>Nu</u> zulN	Versagens- häufigkeit	Mittelwert der MaxLast
3,8*130 glatt	10,0 d _n 12,5 d _n 15,0 d _n 17,5 d _n	5 5 5 7	4 ³⁾ 31) 21) 0	0,72 1,04 1,60 	1,37 1,98 3,05 >2,43	44) 43) 32) 7	 0,86 0,82 1,28	>1,37 >1,86 >2,31 2,43		
······		21	9			18				
3,8*121 gerillt	12,5 d _n 15,0 d _n 17,5 d _n	5 5 5	3 5 1	1,07 1,39 1,75	2,04 2,65 3,33	2 ²⁾ 0 4	 1,09	>2,04 >2,65 >2,32		
		15	9			6				
4,2*120 glatt	15,0 d _n 17,5 d _n 20,0 d _n	5 5 6	2 ²⁾ 0 1	  0,99	>0,96 >1,82 >2,09	5 ⁴ ) 5 5	0,50 1,14 1,37	0,96 1,82 2,19		
		16	3			15				à
4,6*146 glatt	18,0 d _n	5	22)			₅ 5)		antak atatan		
		5	2	2005 Ealty		5		1000 Wate		

- 1) 1 Probekörper beim Einschlagen gespalten. Nicht im Kurz-Zeit-Versuch getestet.
- 2) 2 Probekörper beim Einschlagen gespalten. Nicht im Kurz-Zeit-Versuch getestet.
- 3) 3 Probekörper beim Einschlagen gespalten. Nicht im Kurz-Zeit-Versuch getestet.
- 4) 4 Probekörper beim Einschlagen gespalten. Nicht im Kurz-Zeit-Versuch getestet.
- 5) 5 Probekörper beim Einschlagen gespalten. Nicht im Kurz-Zeit-Versuch getestet.

68

4.6

w  $\mathbb{N}$  <u>4.6.4</u> Zusatzversuche: Zugstoßprobekörper mit innenliegender <u>Mindestholzdicke (zweischnittige Verbindungen)</u>

<u>Anmerkung:</u> Es wurden 6 Serien Zusatzversuche aus folgendem Gründen gefahren:

- a) Einfluß der Holzfeuchtigkeit zum Einschlag- und Prüfzeitpunkt
- b) Vergleich von Maschinen- und Handnagelung
- c) Einfluß einer Langzeitbeanspruchung auf den Kurz-Zeit Bruchversuch

#### 4.6.4.1 Ergebnisse aus der Auswertungsstufe II (Ergebnisse aller Versuche einer Serie)

Es folgen die Tabellen für die Versuchserien
Z1 Einschlagfeuchte u = 26 % Prüffeuchte u = 10 %
Z2 Einschlagfeuchte u = 26 % Prüffeuchte u = 10 %
Z3 Einschlagfeuchte u = 20 % Prüffeuchte u = 20 %
Z4 Einschlagfeuchte u = 20 % Prüffeuchte u = 20 %
Z5 Handnagelung
Z6 Langzeitversuch mit 1,5 zul N über 3500 Stunden
(≈145 Tage), dann Kurz-Zeit Bruchversuch, weitere

Angaben zum Langzeitversuch in Abschnitt 5

Weitere Informationen zur Auswertungsstufe II in Abschnitt 4.6.1.2.

Tabelle 4.6.4.1/1: Versuchsserie Z1 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 121 mm, Anzahl: n = 8, 2-schnittig, gerillt

Versuch	Vor	]	Bruchwerte	9
	sagen	Pmax	in kN	WPmax
277	*)	gesamt	pro Nagel- scherfläche	[ mm ]
1,1	v	12,73	0,80	2,62
1,2	v	18,01	1,13	7,98
1,3	v	18,75	1,17	10,54
1,4	v	17,16	1,07	3,71
1,5	v	18,94	1,18	9,52
1,6	v	16,25	1,02	10,96

## Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

#### zulässige Belastung

Ein:	ze]	lna	agel	kN
zul	P	=	0,525	
Gesa	amt	=	erbind	ung
zul	P		8,40	kN

#### <u>Nagelabstände</u>

#### zum Rand

a	22,5dn
$a_{\perp}$	5 dn

#### untereinander

a	15 dn
a⊥	5 dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unve	rsetzt	vers	etzt
17.1	P _{1,50}	^w zul P	P _{1,50}	wzul P
41	[ kN ]	[ mm ]	[ kN ]	[ mm ]
1,1	12,18	0,59	10,52	0,88
1,2	14,99	0,00	14,99	0,63
1,3	14,04	0,22	11,93	0,77
1,4	14,21	0,35	13,31	0,53
1,5	14,05	0,01	12,35	0,59
1,6	13,92	0,87	13,90	0,64

Kräfte P bei w=1,5 mm und Versc	chiebung w bei zul H	>
---------------------------------	----------------------	---

Nagel 3,8*121 mm gerillt Prüffeuchte 10 % Einschlagfeuchte 26 %

Tabelle 4.6.4.1/2: Versuchsserie Z2 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 130 mm, Anzahl: n = 8, 2-schnittig, glatt

Versuch		· ]	Bruchwerte	3	
	Ver- sagen	P _{max} :	P _{max} in kN		
42	*)	gesamt	pro Nagel- scherfläche	[ mm ]	
2,1	U	21,77	1,36	9,02	
2,2	v	15,25	0,95	11,10	
2,3	V/U	20,44	1,28	8,37	
2,4	U	14,68	0,92	5,90	
2,5	v	18,84	1,18	9,48	
				an a	

## Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

#### zulässige Belastung

Ein:	zel	na	ge	1	kN
zul	P	=	0,	525	
Gesa	amt	ve	rb	indu	ıng
zul	P	=	8,	40	kN

#### Nagelabstände

zum Rand

a	22,5dn
a⊥	5 dn

untereinander

a	15	dn
$a_{\perp}$	5	dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unvei	rsetzt	ver	setzt
7.2	P _{1,50}	^W zul P	P _{1,50}	^w zul P
## &c	[ kN ]	[ mm ]	[ kN ]	[ mm ]
2,1	14,44	0,29	14,09	0,50
2,2	14,39	0,26	10,10	0,85
2,3	14,06	0,33	13,57	0,52
2,4	9,63	1,08	12,07	0,69
2,5	14,71	0,17	13,86	0,24
			,	
			ц - ун Рол Галан и ул на со	
	ананан талан та			

#### Kräfte P bei w=1,5 mm und Verschiebung w bei zul P

Nagel 3,8*130 mm glatt Einschlagfeuchte 26 % Prüffeuchte 10 %

Tabelle 4.6.4.1/3: Versuchsserie Z3 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 121 mm, Anzahl: n = 8, 2-schnittig, gerillt

Versuch	Vor	]	Bruchwerte	9
30	sagen	P _{max}	in kN	WPmax
23	*)	gesamt	pro Nagel- scherfläche	[ mm ]
3,1	v	11,61	0,73	4,94
3,2	v	12,64	0,79	6,12
3,3	U	13,51	0,84	8,83
3,4	v	11,77	0,74	15,68
3,5	v	14,60	0,91	7,03

Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

#### zulässige Belastung

Ein:	zel	lna	agel	kN
zul	P	=	0,525	
Gesa	amt	cve	erbindu	ıng
zul	P		8,40	kN

#### Nagelabstände

zum Rand

a	22,5d	n
a⊥	5 d:	n

untereinander

a	15	dn
a⊥	5	dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unve	rsetzt	verse	etzt
80	P _{1,50}	^W zul P	P1,50	^W zul P
23	[kN]	[ mm ]	[ kN ]	[ mm ]
3,1	9,65	0,77	9,36	1,14
3,2	10,38	0,54	8,95	1,30
3,3	10,41	0,29	10,88	0,60
3,4	8,94	1,30	6,85	3,26
3,5	11,58	0,45	10,92	0,55
	-			

Kräfte	P	bei	w = 1.	.5	mm	und	Ver	rschie	bung	w	bei	zul	P
--------	---	-----	--------	----	----	-----	-----	--------	------	---	-----	-----	---

Nagel 3,8*121 mm gerilltEinschlagfeuchte 20 %Prüffeuchte20 %

Tabelle 4.6.4.1/4: Versuchsserie Z4 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 130 mm, Anzahl: n = 8, 2-schnittig, glatt

Versuch	Vor-	Bruchwerte			
. 17 4	sagen	Pmax	in kN	w _{Pmax}	
2143	^)	gesamt	pro Nagel- scherfläche	[ mm ]	
4,1	v	12,95	0,81	7,55	
4,2	υ	14,40	0,90	10,26	
4,3	v	13,05	0,82	3,39	
4,4	U	10,17	0,64	16,38	
4,5	v	10,54	0,66	2,86	

Bruchwerte P_{max} und zugehörige Verschiebung w_{Pmax}

#### zulässige Belastung

Ein:	ze:	lna	age	≥1	kN
zul	P	=	0,	,525	
Gesa	amt	:ve	erk	oind	ung
zul	P	=	8,	,40	kN

#### <u>Nagelabstände</u>

zum Rand

a	22,5dn
$a_{\perp}$	5 dn

untereinander

a	15	dn
a⊥	5	dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unve	rsetzt	versetzt		
<b>7</b> .4	P _{1,50}	^w zul P	P _{1,50}	^W zul P	
40 3	[ kN ]	[ mm ]	[ kN ]	[ mm ]	
4,1	11,35	0,48	10,52	0,90	
4,2	11,25	0,32	10,80	0,67	
4,3	12,33	0,16	11,40	0,60	
4,4	kein	ne Daten	vorhande	∋n	
4,5	****	0,01	9,82	0,87	
	an a				

#### Kräfte P bei w=1,5 mm und Verschiebung w bei zul P

Nagel 3,8*130 mm glatt Einschlagfeuchte 20 % Prüffeuchte 20 %

Tabelle 4.6.4.1/5: Versuchsserie 25 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 130 mm, Anzahl: n = 8, 2-schnittig, glatt

Versuch	Vor-	Bruchwerte				
DE	sagen	P _{max} :	in kN	w Pmax		
45	~)	gesamt	pro Nagel- scherfläche	[ mm ]		
5,1	V/U	20,08	1,26	8,40		
5,2	U	22,68	1,42	3,80		
5,3	U	18,31	1,14	2,61		
5,4	U	29,79	1,86	9,56		
5,5	U	21,17	1,32	7,76		
		an a				

Bruchwerte  $P_{max}$  und zugehörige Verschiebung  $w_{Pmax}$ 

#### <u>zulässige Belastung</u>

Ein:	ze.	Lna	age	el	kN
zul	P	=	0,	525	
Gesa	amt	tve	erk	oindu	ng
zul	P	=	8,	40	kN

#### Nagelabstände

zum Rand

a	22,5dn
a⊥	5 dn

#### untereinander

a	15	dn
a⊥	5	dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unve	rsetzt	vers	setzt
75	P _{1,50}	^w zul P	P _{1,50}	^W zul P
23	[kN]	[ mm ]	[kN]	[ mm ]
5,1	13,95	0,52	14,61	0,27
5,2	18,35	0,16	19,02	0,01
5,3	16,81	0,28	17,70	0,13
5,4	16,90	0,18	17,32	0,10
5,5	17,15	0,19	17,21	0,01

Kräfte P bei w=1,5 m	m und Verschie	oung w bei zul P
----------------------	----------------	------------------

Nagel 3,8*130 mm glatt Einschlagfeuchte 10 % Prüffeuchte 10 % Handnagelung

Tabelle 4.6.4.1/6: Versuchsserie Z6 Kräfte P und Verschiebungen w der Gesamtverbindung

Nagel: 3,8 * 130 mm, Anzahl: n = 8, 2-schnittig, glatt

Versuch	Vor-	I	Bruchwerte	9
7.6	sagen	P _{max}	in kN	[₩] Pmax
20	~ ,	gesamt	pro Nagel- scherfläch	e [mm]
6,1	v	25,52	1,60	9,15
6,2	U	15,24	0,95	1,87
6,3	ע/ט	16,35	1,02	1,25
~				
an na ann an Aonaichtean ann ann ann ann ann ann ann ann ann		generalisti in seconda de la seconda de m La seconda de la seconda de		
n Chefelder - M. S. C. and an Mar and an and a star for the North Star Constant and an an an an and an				

Bruchwerte Pmax und zugehörige Verschiebung wpmax

zulässige Belastung

Ein:	ze:	lna	agel	kN
zul	P	=	0,525	
Gesa	ami		erbindu	ung
zul	P		8,40	kN

#### <u>Nagelabstände</u>

zum Rand

a	22,5dn
a⊥	5 dn

untereinander

a	15	dn
a⊥	5	dn

*) U: Versagen bei unversetzter Nagelung

V: Versagen bei versetzter Nagelung

H: Holz-Versagen: Holzdurchriß außerhalb der Verbindung durch Astschwächung

Versuch	unvei	rsetzt	ver	setzt
76	P _{1,50}	^w zul P	P _{1,50}	^w zul P
	[ kN ]	[ mm ]	[kN]	[ mm ]
6,1	17,81	0,34	16,41	0,81
6,2	12,71	1,24	****	0,56
6,3	15,89	0,43	16,08	0,05
			and a second and a second s	

Nagel 3,8*130 mm glatt Langzeitversuch mit 1,5 zul N, dann Kurz-Zeit Bruchversuch

Langzeitversuch über 3500 Stunden (≈145 Tage), vergl. Abschnitt 5

Zusatzversuche mit innen	liegender brittig)		v	ersetzt			unverset:	zt
1	2	3	4	5	6	7	8	9
Serie	Abstand    Fa	Anzahl Versuchs körper	Versagens- häufigkeit	Mittelwert der Max -Last Nu	<u>Nu</u> zulN	Versagens- häufigkeit	Mittelwert der Max -Last Nu	<u>Nu</u> zulN
Z1 Nagel 3,8*121 mm gerillt Einschlagfeuchte 26 % Prüffeuchte 10 %	15,0 dn	6	6	1,06	2,02	0	-	>2,02
Z2 Nagel 3,8*130 mm glatt Einschlagfeuchte 26 % Prüffeuchte 10 %	15,0 dn	5	3	1,14	>2,22	3	1,19	2,26
Z3 Nagel 3,8*121 mm gerillt Einschlagfeuchte 20 % Prüffeuchte 20 %	15,0 dn	5	4	0,79	>1,83	1	0,84	1,92
Z4 Nagel 3,8*130 mm glatt <b>Einschlagfeuchte 20 %</b> <b>Prüffeuchte 20 %</b>	15,0 dn	5	3	0,76	1,74	2	0,77	1,76
Z5 Nagel 3,8*130 mm glatt Einschlagfeuchte 10 % Prüffeuchte 10 % <b>Handnagelung</b>	15,0 dn	5	1	1,26	>2,68	5	1,43	2,73
Z6 ^{**} Nagel 3,8*130 mm glatt Langzeitversuch mit 1,5 zul N, dann Kurz- Zeit Bruchversuch	15,0 dn	3	2	1,31	2,50	2	0,99	>2,19

* Abminderung von zul N durch Feuchteeinfluß um 1/6 ** vgl. auch Abschnitt 5.4.3

97

D.

0

12

## Auswer tungsstu fe h-----Zusa

(71) Y) 3 D 3 17 aus n С ٦. D 4 xj Ď 7 n 31 'n . ا ~ tzversuche

4 lon <u>Ergebnisse</u>

#### 4.7 Vergleichende Bewertung ("versetzt"/"unversetzt") der Hauptversuche

#### 4.7.1 Allgemeines

Die vergleichende Bewertung erfolgt getrennt für Zugstoßprobekörper mit innenliegender Mindestholzdicke (zweischnittige Verbindung, Abschnitt 4.7.3) und für Zugstoßprobekörper mit außenliegender Mindestholzdicke (einschnittige Verbindung, Abschnitt 4.7.4). Um Abschnitt 4.7 geschlossen beurteilen zu können, wurden in Abschn. 4.7.2 nochmals die Ergebnisse aller Serien in den Tabellen 4.7.2/1, 4.7.2/2, 4.7.2/3 dargestellt, wie bereits in den Abschnitten 4.6.2.2, 4.6.3.2 und 4.6.4.2.

Für die vergleichende Bewertung werden 4 Kriterien benutzt:

Kriterium 1: Spaltbarkeit

Kriterium 2: C-Modul bzw. Verschiebung

Kriterium 3: Quotient Nu/zul N ("Sicherheitsfaktor")

Kriterium 4: Absolute Versagenshäufigkeit

Wie bereits beschrieben (s. Abschn. 4.4 und 4.5), ließ jeder Zugprobekörper die gleichzeitige Prüfung von <u>versetzter</u> und <u>unver-</u> <u>setzter</u> Verbindung zu, da er auf der einen Seite versetzt und auf der anderen Seite unversetzt genagelt wurde und aus einem einzigen am Stoßpunkt zerschnitten Brett hergestellt war. Damit lagen die gleichen Versuchsvoraussetzungen (z.B gleiche Temperatur, Holzfeuchte, Holzstruktur, selbst gleicher Vibrationseinfluß des Prüfzylinders) für "versetzt" und "unversetzt" vor.

Der große Vorteil der hier verwendeten Zugstoßprobekörper liegt in der Möglichkeit des dir ekten Vergleiches aller vorgenannten Kriterien innerhalb eines Versuches.

Der einzige Nachteil bei der <u>gleichzeitigen</u> Prüfung von "versetzt" und <u>"unversetzt"</u> an <u>einem</u> Probekörper lag darin, daß sich nicht für <u>beide</u> Verbindungen die Bruchlast bestimmen ließ. Bei den Zugversuchen war es nach dem Versagen einer Seite ("versetzt" oder "unversetzt") nicht möglich, den anderen Versuchskörperabschnitt für sich weiter zu prüfen, da die Probekörper meist so zerstört waren, daß sie nicht mehr eingespannt werden konnten (keine hinreichende Einspannlänge). Es gilt jedoch, daß die Bruchlast desjenigen Versuchskörperabschnittes ("versetzt" oder "unversetzt"), der nicht zuerst versagt hat, <u>mindestens</u> so groß ist wie die Bruchlast desjenigen, der zuerst versagt hat.

Versuc liegen dicke	he mit in der Minde (zweischn	nnen- estholz- nittig)	ve	rsetzt		u	nversetzt		Holzdurchr des Anschl (Versagen	iß außerhalb ußbereiches durch Ast)
1	2	3	4	5	6	• 7	8	9	10	11
Nagel	Abstand    Fa	Anzahl Versuchs körper	Versagens- häufigkeit	Mittelwert der Max.*) -Last Nu	<u>Nu</u> zulN	Versagens- häufigkeit	Mittelwert der Max.*) -Last Nu	<u>Nu</u> zulN	Versagens- häufigkeit	Mittelwert der MaxLast
3,8*130 glatt	10,0 d _n 12,5 d _n 15,0 d _n 17,5 d _n	11 9 7 6	5 3 3 3	1,16 1,32 1,38 1,68	>2,25 2,52 2,63 3,21	3 5 3 3	1,21 1,23 1,38 1,60	2,31 >2,41 2,63 >3,13	3 1 1 1	13,16 14,02 15,01 15,24
· · · · ·		33	14			14			6	
3,8*121 gerillt	10,0 d _n 12,5 d _n 15,0 d _n	6 7 8	3 4 4	1,39 1,48 1,71	2,64 2,81 3,25	3 3 4	1,01 1,15 1,43	>2,28 >2,54 >2,99		
		21	11			10				
4,2*120 glatt	10,0 d _n 12,5 d _n 15,0 d _n 17,5 d _n	6 7 6 5	0 4 3 1) 5	 1,13 1,15 1,75	>1,91 >1,85 >2,22 2,81	51) 41) 1	1,00 1,28 1,55 1,63	1,91 2,05 2,48 >2,77	1 1	19,75 10,64
		24	12			12			2	
4,6*146 glatt	$15,0 d_{n} \\ 18,0 d_{n} \\ 21,0 d_{n} \\ 24,0 d_{n} \\ 1000$	7 5 6 5	2 1 2 2	1,03 1,23 1,35 1,39	>1,47 1,70 1,86 >1,96	5 4 4 3	1,08 1,18 1,29 1,44	1,49 >1,64 >1,80 1,98		
		23	7			16				

*) Maximallast pro Nagel-Scherfläche

1) 1 Probekörper in der Nagelrißlinie beim Einschlagen gespalten. Nicht im Kurz-Zeit Versuch getestet.

66

 $\sim$ 1 4 -2/2 10

Basistabellen (Tabellen die ₽. -1 |N /3) mit

4 1 N
Versuche mit außen- liegender Mindestholz- dicke (einschnittig) 1   2   3		v 4	ersetzt	6	unversetztHolzdurchrif des Anschluf (Versagen dr7891010		iß außerhalb ußbereiches durch Ast) 11			
Nagel	Abstand    Fa	Anzahl Versuchs körper	Versagens- häufigkeit	Mittelwert der Max.*) -Last Nu	<u>_Nu</u> zulN	Versagens- häufigkeit	Mittelwert der Max.*) -Last Nu	<u>Nu</u> zulN	Versagens- häufigkeit	Mittelwert der MaxLast
3,8*130 glatt	10,0 d _n 12,5 d _n 15,0 d _n 17,5 d _n	5 5 5 7	$4^{3})$ 31) 21) 0	0,72 1,04 1,60	1,37 1,98 3,05 >2,43	44) 43) 32) 7	0,86 0,82 1,28	>1,37 >1,86 >2,31 2,43		
		21	9			18				r'
3,8*121 gerillt	12,5 d _n 15,0 d _n 17,5 d _n	5 5 5	3 5 1	1,07 1,39 1,75	2,04 2,65 3,33	2 ²⁾ 0 4	1,09	>2,04 >2,65 >2,32		
		15	9			6				
4,2*120 glatt	15,0 d _n 17,5 d _n 20,0 d _n	5 5 6	2 ²⁾ 0 1	 0,99	>0,96 >1,82 >2,09	5 ⁴ ) 5 5	0,50 1,14 1,37	0,96 1,82 2,19		
		16	3			15				
4,6*146 glatt	18,0 d _n	5	22)			₅ 5)		ent 030		
		5	2			5	<b>65</b> 60 <b>6</b> 050	CONC. CAND		

*) Maximallast pro Nagel-Scherfläche

- 1) 1 Probekörper beim Einschlagen gespalten. Nicht im Kurz-Zeit-Versuch getestet.
- 2) 2 Probekörper beim Einschlagen gespalten. Nicht im Kurz-Zeit-Versuch getestet.
- 3) 3 Probekörper beim Einschlagen gespalten. Nicht im Kurz-Zeit-Versuch getestet.
- 4) 4 Probekörper beim Einschlagen gespalten. Nicht im Kurz-Zeit-Versuch getestet.
- 5) 5 Probekörper beim Einschlagen gespalten. Nicht im Kurz-Zeit-Versuch getestet.

Tabelle 4.7.2/2: Ergebnisse für Versuche mit außenliegender **Mindestholzdicke** (einschnittige Verbindung)

Erläuterung zu den Tabellen 4.7.2/1 und 4.7.2/2

~ ~ .	_		
Spalte	1	9 9	Nageldurchmesser, Nagellänge, Nageltyp
Spalte	2	•	Nagelabstand parallel zur Faser untereinander
Spalte	3	¢ 9	Anzahl der Versuchskörper, die pro Serie geprüft
			wurden.
Spalte	4	6 9	Absolute Versagenshäufigkeit bei versetzter
			Nagelung.
Spalte	5	0 0	Mittelwert der Maximallast Nu pro Nagelscherfläche
			für die versetzte Nagelung.
Spalte	6	• •	Quotient Nu/zulN. Zur sprachlichen Abkürzung der
			Beschreibung wird der Quotient vereinfacht als
			"Sicherheitsfaktor" bezeichnet.
Spalte	7	6 6	Absolute Versagenshäufigkeit bei unversetzter
			Nagelung.
Spalte	8	¢ 6	Mittelwert der Maximallast Nu pro Nagelscherfläche
			für die versetzte Nagelung.
Spalte	9	<b>4</b> 6	Quotient $\overline{N}u/zulN$ . "Sicherheitsfaktor" (s.o.)
Spalte	10	):	Absolute Versagenshäufigkeit bei Holzversagen. Mit
			Holzversagen ist hier ein Holzdurchriß außerhalb
			des untersuchten Anschlußbereiches gemeint,
			infolge einer Astschwächung.
Spalte	11		Mittelwert der Maximallast bei Holzversagen.

#### Ergänzende Erläuterungen zu Spalte 6 und 9 für das Symbol ">":

Bei der Berechnung des "Sicherheitsfaktors" sind einige Werte in Spalte 6 bzw. 9 mit dem ">"-Zeichen versehen. Dieses bedeutet, daß für die betreffende Versuchsserie <u>mindestens</u> dieser "Sicherheitsfaktor" gilt. Hierbei wurde anteilmäßig der "Sicherheitsfaktor" der anderen versagenden (versetzten bzw. unversetzten) Nagelung mitberücksichtigt. Dieses Prinzip wurde nur bei der Berechnung des kleineren der beiden "Sicherheitsfaktoren" bei "versetzt" und "unversetzt" vorgesehen. Das Prinzip läßt sich einfacher an einem Beispiel erklären:

 Würde man nur die Versager bei versetzter Nagelung zugrunde legen, so ergäbe sich Mittelwert der Max. Last Nu= 1,16 kN

"Sicherheitsfaktor" 
$$\frac{\overline{Nu}}{zul N} = \frac{1,16}{0,525} = 2,21$$

 Hier wurde jedoch folgendermaßen ausgewertet:
 Da bei der unversetzten Nagelung 3 Probekörper zuerst versagt haben, kann für die versetzte Nagelung <u>mindestens</u> der gleiche "Sicherheitsfaktor" wie für die unversetzte Nagelung angesetzt werden.
 Damit ergibt sich:

"Sicherheitsfaktor"  $\frac{5*2,21+3*2,31}{5+3} = 2,25$ 

Da für die vorgenannten 3 Probekörper <u>mindestens</u> 2,31 ansetzbar waren, d.h. da >2,31 gilt, wird auch geschrieben

>2,25.

#### Ergänzende Erläuterung zu den Spalten 3, 4 und 7

Bei einigen Versuchen ergibt die Summe der absoluten Versagenshäufigkeit aus versetzter (Spalte 4) und unversetzter (Spalte 7) Nagelung einen größeren Wert als die Gesamtzahl aller Versuchskörper (Spalte 3). Dies liegt darin begründet, daß einige Versuchskörper gleichzeitig bei versetzter und unversetzter Nagelung versagten und damit doppelt gezählt wurden. Beispiel: Tabelle 4.7.2/1, Nagel 4,2*120 mm, glatt, Abstand 17,5 d_n

> absolute Versagenshäufigkeit "versetzt" (Spalte 4) 5 absolute Versagenshäufigkeit "unversetzt" <u>(Spalte 7) 1</u> Summe 6 Gesamtanzahl der Versuchskörper (Spalte 3) 5

> > 6>5, d.h. 1 Versuch wurde doppelt gezählt.

Zusatzversuche mit innenliegender Mindestholzdicke (zweischnittig)			versetzt			unversetzt			
1	2	3	4	5	6	7	8	9	
Serie	Abstand    Fa	Anzahl Versuchs körper	Versagens- häufigkeit	Mittelwert der Max. -Last Nu	<u>Nu</u> zulN	Versagens- häufigkeit	Mittelwert der Max -Last Nu	<u>Nu</u> zulN	
Zl Nagel 3,8*121 mm gerill Einschlagfeuchte 26 % Prüffeuchte 10 %	t 15,0 dn	6	6	1,06	2,02	0		>2,02	
Z2 Nagel 3,8*130 mm glatt Einschlagfeuchte 26 % Prüffeuchte 10 %	15,0 dn	5	3	1,14	>2,22	3	1,19	2,26	
Z3 Nagel 3,8*121 mm gerill <b>Einschlagfeuchte 20 %</b> <b>Prüffeuchte 20 %</b>	t 15,0 dn	5	4	0,79	>1,83	1	0,84	1,92	
Z4 Nagel 3,8*130 mm glatt Einschlagfeuchte 20 % Prüffeuchte 20 %	15,0 dn	5	3	0,76	1,74	2	0,77	1,76	
Z5 Nagel 3,8*130 mm glatt Einschlagfeuchte 10 % Prüffeuchte 10 % <b>Handnagelung</b>	15,0 dn	5	1	1,26	>2,68	5	1,43	2,73	
Z6 ^{**} Nagel 3,8*130 mm glatt Langzeitversuch mit 1,5 zul N, dann Kurz- Zeit Bruchversuch	15,0 dn	3	2	1,31	2,50	2	0,99	>2,19	

\$

* Abminderung von zul N durch Feuchteeinfluß um 1/6 ** vgl. auch Abschnitt 5.4.3

103

Tabelle 4.7.2/3: Ergebnisse für Zusatzversuche mit außenliegender Mindestholzdicke (zweischnittige Verbindung)

In Tabelle 4.7.2/3 sind alle durchgeführten zusätzlichen Tastversuche aufgeführt. Alle Versuche wurden zweischnittig und mit einem Nagelabstand von 15 d_n parallel zur Faser untereinander durchgeführt. Diese zusätzlichen Tastversuche sollten klären:

- Nageltragfähigkeit (gerillte und glatte Nägel) bei hoher Einschlagfeuchte (26 %) und niedriger Prüffeuchte (10 %). Serien Z1 und Z2.
- Nageltragfähigkeit (gerillte und glatte Nägel) bei höherer Feuchte (Einschlag- und Prüffeuchte 20 %). Serien Z3 und Z4.
- Nageltragfähigkeitsvergleich zwischen (bisher untersuchten)
   Maschinennagelung und Handnagelung.
   Serie Z5
- Nageltragfähigkeit im Kurz-Zeit Bruchversuch nach vorangegangener Langzeitbelastung mit 1,5* zul N Serie Z6

Tabelle 4.7.2/3 ist nach gleichem Schema wie Tabelle 4.7.2/1 und 4.7.2/2 aufgebaut, entsprechende Erläuterungen siehe Abschnitt 4.7.2.1.

# <u>4.7.3 Vergleich der Zugstoßprobekörper mit innenliegender</u> <u>Mindestholzdicke (zweischnittige Verbindung)</u>

### 4.7.3.1 Spaltbarkeit

Die Spaltbarkeit bei den Zugstoßprobekörpern mit innenliegender Mindestholzdicke (zweischnittige Verbindung) konnte nicht direkt visuell auf ganzer Anschlußlänge verfolgt werden, da das zu untersuchende Brett als Mittelholz (Mindestholzdicke) zwischen den beiden (wesentlich dickeren) Seitenhölzern lag. Spaltrisse im Mittelholz außerhalb der Seitenhölzer konnten bei keinem der Versuchskörper festgestellt werden. Man kann aber davon ausgehen, daß selbst im Anschlußbereich keine oder kaum Risse auftraten (gutes Tragverhalten). Dies wurde auch durch die zusätzlichen Tastversuche bestätigt. Hier zeigte sich ein eindeutig geringeres Spaltverhalten immer dann, wenn der Nagel zuerst durch ein "dickes" und dann durch ein "dünnes" (Mindestholzdicke) Brett eingetrieben wurde (entspricht der Nagelung bei den zweischnittigen Versuchen). Der umgekehrte Fall, also zuerst ein "dünnes" und dann ein "dickes" Brett, zeigte bei einem Feuchtigkeitsbereich von u = 10 % eine viel größere Spaltneigung (entspricht der Nagelung bei den einschnittigen Versuchen).

#### 4.7.3.2 Verschiebungsmodul C bzw. Verschiebung

### 4.7.3.2.1 Nagel 3,8*130 mm, glatt

#### VERSCHIEBUNGSMODUL C

Abstand	Mittelwert C- versetzt	-Modul in N/mm unversetzt
10.0 d _n 12.5 d _n 15.0 d _n 17.5 d _n	1770 1991 1180 1268	1331 2140 1356 1181
Summe i.M.	1552	1502

Tabelle 4.7.3.2.1/1 Verschiebungsmodul C: Mittelwerte von C bei verschiedenen Nagelabständen und Summe im Mittel aus allen Versuchen unabhängig vom Nagelabstand

Verschiebungsmodul C nach DIN 1052 C_{DIN}= 1377 N/mm

### Allgemeine Aussagen zu Tabelle 4.7.3.2.1/1:

- Die Schwankungsbreite von C ist relativ groß
- Der Verschiebungsmodul C ist praktisch unabhängig vom Nagelabstand
- Die Summe im Mittel aus allen Versuchen liegt mit C= 1552 N/mm (versetzt) und C= 1502 N/mm (unversetzt) etwas oberhalb von C_{DIN}= 1377 N/mm (DIN 1052/T2, Tab. 13)

Vergleichende Bewertung: Betrachtung der Summen i.M.

1552 N/mm <-> 1502 N/mm "versetzt" "unversetzt"

Abweichnung

 $\frac{(1552 - 1502)}{1502} * 100 = 3,3 \%$ 

Im vorliegenden Fall ist "versetzt" 3,3 % steifer als "unversetzt"



Nagelabstand parallel zur Faser

----- versetzt ----- unversetzt

Bild 4.7.3.2.1/1: Vergleich der Kraft  $\overline{P}$  bei Weg w = 1,5 mm für versetzte und unversetzte Nagelung. Nagel 3,8*130 mm; zweischnittig; glatt

Vergleichende Bewertung: praktisch kein Unterschied zwischen "versetzt" und "unversetzt".

### ■ VERSCHIEBUNG: Weg w bei zul P = 8,40 kN



Nagelabstand parallel zur Faser

------ versetzt ------ unversetzt

Bild 4.7.3.2.1/2: Mittelwert der Verschiebung w bei zul P = 8,40 kN für versetzte und unversetzte Nagelung. Nagel 3,8*130 mm; zweischnittig; glatt

**Vergleichende Bewertung:** praktisch kein Unterschied zwischen "versetzt" und "unversetzt".

■ VERSCHIEBUNG: Kraft P bei Weg w = 1,5 mm

#### 4.7.3.2.2 Nagel 4,2*120 mm, glatt

### VERSCHIEBUNGSMODUL C

Abstand	Mittelwert C- versetzt	-Modul in N/mm unversetzt
10.0 d _n 12.5 d _n 15.0 d _n 17.5 d _n	2201 2353 3218 1318	2362 2882 3161 2443
Summe i.M.	2273	2712

Tabelle 4.7.3.2.2/1 Verschiebungsmodul C: Mittelwerte von C bei verschiedenen Nagelabständen und Summe im Mittel aus allen Versuchen unabhängig vom Nagelabstand

Verschiebungsmodul C nach DIN 1052 C_{DIN}= 1479 N/mm

### Allgemeine Aussagen zu Tabelle 4.7.3.2.2/1:

- Die Schwankungsbreite von C ist relativ groß
- Der Verschiebungsmodul C ist praktisch unabhängig vom Nagelabstand
- Die Summe im Mittel aus allen Versuchen liegt mit C= 2273 N/mm (versetzt) und C= 2712 N/mm (unversetzt) oberhalb von C_{DTN}= 1479 N/mm (DIN 1052/T2, Tab. 13)

Vergleichende Bewertung: Betrachtung der Summen i.M.

2273 N/mm <-> 2712 N/mm "versetzt" "unversetzt"

Abweichnung (2712 - 2273) $2273 \times 100 = 19,3 \%$ 

Im vorliegenden Fall ist "unversetzt" 19,3 % steifer als versetzt.

P bei 1,5 mm [kN] 25 20 15 10 5 0 12,5 dn 15,0 dn 17,5 dn 10,0 dn versetzt 14,86 16,6 19.51 19.91 15,37 18,67 19,43 20,28 unversetzt

Nagelabstand parallel zur Faser

-*- versetzt ---- unversetzt

Bild 4.7.3.2.2/1: Vergleich der Kraft  $\overline{P}$  bei Weg w = 1,5 mm für versetzte und unversetzte Nagelung. Nagel 4,2*120 mm; zweischnittig; glatt

**Vergleichende Bewertung:** praktisch kein Unterschied zwischen "versetzt" und "unversetzt".

■ VERSCHIEBUNG: Weg w bei zul P = 10,00 kN



Nagelabstand parallel zur Faser

Bild 4.7.3.2.2/2: Mittelwert der Verschiebung  $\bar{w}$  bei zul P = 10,00 kN für versetzte und unversetzte Nagelung. Nagel 4,2*120 mm; zweischnittig; glatt

**Vergleichende Bewertung:** praktisch kein Unterschied zwischen "versetzt" und "unversetzt".

■ VERSCHIEBUNG: Kraft P bei Weg w = 1,5 mm

### 4.7.3.2.3 Nagel 3,8*121 mm, gerillt

#### VERSCHIEBUNGSMODUL C

Abstand	Mittelwert C- versetzt	-Modul in N/mm unversetzt
10.0 d _n 12.5 d _n 15.0 d _n	1835 1762 1658	1894 2034 1394
Summe i.M.	1752	1774

Tabelle 4.7.3.2.3/1 Verschiebungsmodul C: Mittelwerte von C bei verschiedenen Nagelabständen und Summe im Mittel aus allen Versuchen unabhängig vom Nagelabstand

Verschiebungsmodul C nach DIN 1052 C_{DIN}= 1377 N/mm

### Allgemeine Aussagen zu Tabelle 4.7.3.2.3/1:

- Die Schwankungsbreite von C ist relativ groß
- Der Verschiebungsmodul C ist praktisch unabhängig vom Nagelabstand
- Die Summe im Mittel aus allen Versuchen liegt mit C= 1752 N/mm (versetzt) und C= 1774 N/mm (unversetzt) oberhalb von C_{DIN}= 1377 N/mm (DIN 1052/T2, Tab. 13)

Vergleichende Bewertung: Betrachtung der Summen i.M.

1752 N/mm <-> 1774 N/mm "versetzt" "unversetzt"

Abweichnung

 $\frac{(1774 - 1752)}{1752} * 100 = 1,3 \%$ 

Im vorliegenden Fall ist "unversetzt" 1,3 % steifer als versetzt.

# DUL C

P bei 1,5 mm [kN] 20 15 10 5 0 12,5 dn 15,0 dn 10,0 dn 14.97 15.62 15,64 versetzt 15,28 unversetzt 15,71 15,38

■ VERSCHIEBUNG: Kraft P bei Weg w = 1,5 mm

Nagelabstand parallel zur Faser

--*- versetzt

Bild 4.7.3.2.3/1: Vergleich der Kraft  $\overline{P}$  bei Weg w = 1,5 mm für versetzte und unversetzte Nagelung. Nagel 3,8*121 mm; zweischnittig; gerillt

Vergleichende Bewertung: praktisch kein Unterschied zwischen
"versetzt" und "unversetzt".

■ VERSCHIEBUNG: Weg  $\overline{w}$  bei zul P = 8,40 kN



Nagelabstand parallel zur Faser

Bild 4.7.3.2.3/2: Mittelwert der Verschiebung  $\overline{w}$  bei zul P = 8,40 kN für versetzte und unversetzte Nagelung. Nagel 3,8*121 mm; zweischnittig; gerillt

<u>Vergleichende Bewertung:</u> geringfügiger Unterschied zwischen "versetzt" und "unversetzt".

### 4.7.3.2.4 Nagel 4,6*146 mm, glatt

#### VERSCHIEBUNGSMODUL C

Abstand	Mittelwert C- versetzt	-Modul in N/mm unversetzt
$ \begin{array}{c} 15.0 \ d_{n} \\ 18.0 \ d_{n} \\ 21.0 \ d_{n} \\ 24.0 \ d_{n} \end{array} $	3085 2159 2325 2491	2155 1634 2265 2863
Summe i.M.	2515	2229

Tabelle 4.7.3.2.4/1 Verschiebungsmodul C: Mittelwerte von C bei verschiedenen Nagelabständen und Summe im Mittel aus allen Versuchen unabhängig vom Nagelabstand

Verschiebungsmodul C nach DIN 1052 C_{DIN}= 1573 N/mm Allgemeine Aussagen zu Tabelle 4.7.3.2.4/1:

- Die Schwankungsbreite von C ist relativ groß
- Der Verschiebungsmodul C ist praktisch unabhängig vom Nagelabstand
- Die Summe im Mittel aus allen Versuchen liegt mit C= 2515 N/mm (versetzt) und C= 2229 N/mm (unversetzt) oberhalb von C_{DTN}= 1573 N/mm (DIN 1052, T2, Tab. 13)

Vergleichende Bewertung: Betrachtung der Summen i.M.

2515 N/mm <-> 2229 N/mm "versetzt" "unversetzt"

Abweichung (2515 - 2229)2229 * 100 = 12,8 %

Im vorliegenden Fall ist "versetzt" 12,8 % steifer als "unversetzt".



■ VERSCHIEBUNG: Kraft P bei Weg w = 1,5 mm

Bild 4.7.3.2.4/1: Vergleich der Kraft P bei Weg w = 1,5 mm für versetzte und unversetzte Nagelung. Nagel 4,6*146 mm; zweischnittig; glatt

**Vergleichende Bewertung:** praktisch kein Unterschied zwischen "versetzt" und "unversetzt".

## WERSCHIEBUNG: Weg $\overline{w}$ bei zul P = 11,60 kN



Nagelabstand parallel zur Faser

#### ----- versetzt

Bild 4.7.3.2.4/2: Mittelwert der Verschiebung  $\overline{w}$  bei zul P = 11,60 kN für versetzte und unversetzte Nagelung. Nagel 4,6*146 mm; zweischnittig; glatt

<u>Vergleichende Bewertung:</u> Im Mittel ist der Unterschied gering. Bei Nagelabständen von 15 d_n und 24 d_n größere Unterschiede.





Nagelabstand parallel zur Faser

Bild 4.7.3.3.1/1: Quotient  $\overline{N}u/zul N$  ("Sicherheitsfaktor") für versetzte und unversetzte Nagelung; zul N = 0,525 kN; Nagel 3,8*130 mm; zweischnittig; glatt

Vergleichende Bewertung: praktisch kein Unterschied zwischen "versetzt" und "unversetzt".

4.7.3.3.2 Nagel 4,2*120, glatt



Nagelabstand parallel zur Faser

----- versetzt ----- unversetzt

Bild 4.7.3.3.2/1: Quotient Nu/zul N ("Sicherheitsfaktor") für versetzte und unversetzte Nagelung;zul N = 0,625 kN; Nagel 4,2*120 mm; zweischnittig; glatt <u>Vergleichende Bewertung:</u> geringer Unterschied, "unversetzt" liegt etwas oberhalb versetzt.

4.7.3.3.3 Nagel 3,8*121, gerillt



Nagelabstand parallel zur Faser

----- versetzt

Bild 4.7.3.3.3/1: Quotient Nu/zul N ("Sicherheitsfaktor") für versetzte und unversetzte Nagelung; zul N = 0,525 kN; Nagel 3,8*121 mm; zweischnittig; gerillt

Vergleichende Bewertung: größerer Unterschied, "versetzt" liegt oberhalb "unversetzt".

4.7.3.3.4 Nagel 4,6*146, glatt



Nagelabstand parallel zur Faser

----- versetzt ----- unversetzt

Bild 4.7.3.3.4/1: Quotient  $\overline{N}u/zul N$  ("Sicherheitsfaktor") für versetzte und unversetzte Nagelung; zul N = 0,725 kN; Nagel 4,6*146 mm; zweischnittig; glatt

<u>Vergleichende Bewertung:</u> praktisch kein Unterschied zwischen "versetzt" und "unversetzt".



### 4.7.3.4 Absolute Versagenshäufigkeit

versetzte Nagelung 🛛 🖾 unversetzte Nagelung

Bild 4.7.3.4.1/1: Absolute Versagenshäufigkeit für versetzte und unversetzte Nagelung; Nagel 3,8*130 mm; zweischnittig; glatt Vergleichende Bewertung: kein auffälliger Unterschied zwischen "versetzt" und "unversetzt": Bei 10 d_n mehr Versager bei "versetzt", bei 12,5 d_n mehr Versager bei "unversetzt" (<< Z U F A L L >>). Bei 15 d_n, 17,5 d_n und bei "Summe aus allen Versuchen" völlige Übereinstimmung von "versetzt" und

### 4.7.3.4.2 Nagel 4,2*120, glatt



🖬 versetzte Nagelung 🛛 🕅 unversetzte Nagelung

Bild 4.7.3.4.2/1: Absolute Versagenshäufigkeit für versetzte und unversetzte Nagelung; Nagel 4,2*120 mm; zweischnittig; glatt

Vergleichende Bewertung: Im Prinzip kein auffälliger Unterschied zwischen "versetzt" und "unversetzt": Zwar bei 10 d_n alle Versager bei "unversetzt", bei 12,5 d_n und 17,5 d_n mehr Versager bei "versetzt" (<< Z U F A L L >>). Bei "Summe aus allen Versuchen" völlige Übereinstimmung von "versetzt" und "unversetzt"



versetzte Nagelung unversetzte Nagelung

Bild 4.7.3.4.3/1: Absolute Versagenshäufigkeit für versetzte und unversetzte Nagelung; Nagel 3,8*121 mm; zweischnittig; gerillt

Vergleichende Bewertung: praktisch kein Unterschied zwischen "versetzt" und "unversetzt".

### 4.7.3.4.4 Nagel 4,6*146, glatt



versetzte Nagelung unversetzte Nagelung

Bild 4.7.3.4.4/1: Absolute Versagenshäufigkeit für versetzte und unversetzte Nagelung; Nagel 4,6*146 mm; zweischnittig; glatt

<u>Vergleichende Bewertung</u>: Bei allen Nagelabständen (15 d_n, 18 d_n, 21 d_n, 24 d_n) jeweils etwa doppelt so viele Versager bei "unversetzt" im Vergleich zu "versetzt".

# <u>4.7.4 Vergleich der Zugstoßprobekörper mit außenliegender</u> <u>Mindestholzdicke (einschnittige Verbindung)</u>

Die hier verwendeten Prüfkörper zeigten eine sehr hohe Spaltneigung bei "versetzt" und "unversetzt", so daß viele Verbindungen wegen vorausgegangenen Spaltens beim Eintreiben der Nägel anschließend nicht mehr geprüft werden konnten. Die größere Spaltneigung geht zurück auf:

- niedrige Holzfeuchte beim Einschlagen ("Einschlagfeuchte"
  u = 10 %)
  und
  - "dünnes Brett oben" (d.h. zuerst durchnageltes Brett hatte Mindestholzdicke bzw. Prüfkörper mit außenliegenden Mindestholzdicken).

Die (relativ wenigen) für die statische Prüfung verbliebenen Versuchskörper zeigen in den Ergebnissen größere Streubreiten als die Ergebnisse in Abschnitt 4.7.3 (Prüfkörper mit innenliegenden Mindestholzdicken), da auch bei mehreren statisch geprüften Verbindungen eine Riß-Vorschädigung (Vor-Spaltung) nicht auszuschließen war.

#### 4.7.4.1 Spaltbarkeit

#### 4.7.4.1.1 Nagel 3,8*130 mm, glatt

<u>Abstand 10  $d_n$ </u>: Von 5 Probekörpern waren 4 für den statischen Versuch durch Spaltung nach dem Eintreiben der Nägel unbrauchbar.

- 4* Spaltung bei "unversetzt"

- 3* Spaltung bei "versetzt"

**Vergleichende Bewertung:** Anzahl Spaltung "versetzt" zu Spaltung "unversetzt" 3:4.

Bemerkung: Etwa gleich ungünstiges Verhalten bei "versetzt" und "unversetzt".

Selbst der einzig geprüfte Probekörper zeigte durchgehende kleine Spaltrisse von 0,5 mm bei der versetzten Nagelung. Deshalb sind die Ergebnisse für die statistische Auswertung nicht verwendbar (siehe Tab. 4.6.3.2/1).

<u>Abstand 12,5 d_n</u>: Von 5 Probekörpern waren 3 für den statischen Versuch durch Spaltung nach dem Eintreiben der Nägel unbrauchbar. - 3* Spaltung bei "unversetzt"

- 1* Spaltung bei "versetzt"

<u>Vergleichende Bewertung:</u> Anzahl Spaltung "versetzt" zu Spaltung "unversetzt" 1:3.

Bemerkung: Ungünstiges Spaltverhalten bei "versetzt" und "unversetzt", jedoch bessere Ergebnisse bei versetzt.

<u>Abstand 15,0 d_n</u>: Von 5 Probekörpern waren 3 für den statischen Versuch durch Spaltung nach dem Eintreiben der Nägel unbrauchbar.

- 3* Spaltung bei "unversetzt"

- 1* Spaltung bei "versetzt"

Vergleichende Bewertung: Anzahl Spaltung "versetzt" zu Spaltung "unversetzt" 1:3.

Bemerkung: Ungünstiges Spaltverhalten bei "versetzt" und "unversetzt", jedoch bessere Ergebnisse bei "versetzt".

Abstand 17,5 d_n: Von 5 Probekörpern waren alle für den statischen Versuch brauchbar.

**Vergleichende Bewertung:** keine oder kaum noch Spaltneigung bei "versetzt" und "unversetzt" feststellbar.

### 4.7.4.1.2 Nagel 4,2*120 mm, glatt

<u>Abstand 15,0 d_n</u>: Von 5 Probekörpern waren 4 für den statischen Versuch durch Spaltung nach dem Eintreiben der Nägel unbrauchbar. - 4* Spaltung bei "unversetzt"

- 2* Spaltung bei "versetzt"

Vergleichende Bewertung: Anzahl Spaltung "versetzt" zu Spaltung "unversetzt" 2:4.

Bemerkung: Ungünstiges Spaltverhalten bei "versetzt" und "unversetzt", jedoch bessere Ergebnisse bei "versetzt". Selbst der einzig geprüfte Probekörper zeigte durchgehende kleine Spaltrisse bei der unversetzten Nagelung: Diese führten zu der sehr niedrigen Bruchlast (unterhalb von zul N s. Tab. 4.6.3.1/8)

<u>Abstand 17,5 d_n</u>: Von 5 Probekörpern waren alle für den statischen Versuch brauchbar.

 keine Spaltung bei "versetzt" und "unversetzt", jedoch kleinere Rißneigung in 2 Fällen bei "unversetzt" andeutungsweise erkennbar.

**Vergleichende Bewertung:** "versetzt" und "unversetzt" gleichermaßen geeignet, ggf. leicht erhöhte Rißgefährdung bei "unversetzt".

<u>Abstand 20,0 d_n:</u> Von 5 Probekörpern waren alle für den statischen Versuch brauchbar.

- keine Spaltung bei "versetzt" und "unversetzt"

**Vergleichende Bewertung:** keine oder kaum noch Spaltneigung bei "versetzt" und "unversetzt" feststellbar.

#### 4.7.4.1.3 Nagel 3,8*121 mm, gerillt

<u>Abstand 12,5 d_n</u>: Von 5 Probekörpern waren 2 für den statischen Versuch durch Spaltung nach dem Eintreiben der Nägel unbrauchbar. - 2* Spaltung bei "unversetzt"

- keine Spaltung bei "versetzt"

Vergleichende Bewertung: Der zahlenmäßige Vergleich Spaltung "versetzt" zu Spaltung "unversetzt" 0:2.

Bemerkung: Tatsächlich liegt jedoch der Eindruck vor, daß hier ähnliche Verhältnisse vorliegen wie beim Nagel 3,8 * 130 mm, glatt Abstand 12,5 d_n (s. Abschn. 4.7.4.1.1), da andeutungsweise in 2 Fällen eine leichte Rißbildung bei "versetzt" erkennbar ist.

<u>Abstand 15,0 d</u>_n: Von 5 Probekörpern waren alle für den statischen Versuch brauchbar.

<u>Vergleichende Bewertung:</u> keine oder kaum noch Spaltneigung bei "versetzt" und "unversetzt" feststellbar.

<u>Abstand 17,5 d</u><u>n</u>: Von 5 Probekörpern waren alle für den statischen Versuch brauchbar.

**Vergleichende Bewertung:** keine oder kaum noch Spaltneigung bei "versetzt" und "unversetzt" feststellbar.

#### 4.7.4.1.4 Nagel 4,6*146 mm, glatt

Aufgrund der Spaltergebnisse mit Nagel 4,2* 120 mm bei einem Abstand von 15  $d_n$  (s. Abschn. 4.7.4.1.2) wurde beim Nagel 4,6*146 mm erst mit einem Nagelabstand von 18  $d_n$  die Untersuchung begonnen. <u>Abstand 18,0  $d_n$ :</u> Von 5 Probekörpern waren alle 5 für den statischen Versuch durch Spaltung nach dem Eintreiben der Nägel unbrauchbar.

- 5* Spaltung bei "unversetzt"

- 2* Spaltung bei "versetzt"

Vergleichende Bewertung: Anzahl Spaltung "versetzt" zu Spaltung "unversetzt" 2:5.

Bemerkung: Bei Nagel 4,6*146 mm deutlich größere Spaltneigung bei "unversetzt" gegenüber "versetzt". Nagel 4,6*146 mm ungeeignet für "unversetzt".

### 4.7.4.2 Verschiebungsmodul C bzw. Verschiebung

#### 4.7.4.2.1 Nagel 3,8*130 mm, glatt

■ VERSCHIEBUNGSMODUL C^{*)}

	Abstand	Mittelwert C- versetzt	-Modul in N/mm unversetzt
	10.0 d _n 12.5 d _n 15.0 d _n 17.5 d _n	1477 1948 2021	2218 1502 1314
A 10 Y NO TO THE REAL PROPERTY OF	Summe i.M.	1815	1678

Tabelle 4.7.4.2.1/1 Verschiebungsmodul C: Mittelwerte von C bei verschiedenen Nagelabständen und Summe im Mittel aus allen Versuchen unabhängig vom Nagelabstand

Verschiebungsmodul C nach DIN 1052 C_{DIN}= 688 N/mm <u>Allgemeine Aussagen zu Tabelle 4.7.4.2.1/1:</u>

- Die Schwankungsbreite von C ist relativ groß

^{*)}Bei der Berechnung nach DIN 1052, T2, Tab.13 ist der Verschiebungsmodul C der zweischnittigen Verbindung pro Scherfläche doppelt so groß wie der der einschnittigen Verbindung. Dieses bestätigt sich bei den Versuchswerten im Vergleich der Mittelwerte nicht. Die Mittelwerte der Verschiebungsmoduln C der einschnittigen Verbindungen sind ungefähr gleich den Mittelwerten der zweischnittigen Verbindungen. Dies liegt darin begründet, daß die Einzelwerte der einschnittigen Verbindungen, bei den wenigen durchgeführten Versuchen, sehr große Streuungen zeigten (z.B. nur 2 Versuche bei Nagelabstand 12,5 d_n, davon bei "versetzt": zum einem C = 2306 N/mm, zum andererm C = 648 N/mm [i.M. c = 1477 N/mm] und bei "unversetzt": zum einem C = 3558 N/mm, zum andererm C = 878 N/mm [i.M. c = 2218 N/mm].

- Der Verschiebungsmodul C ist praktisch unabhängig vom Nagelabstand
- Die Summe im Mittel aus allen Versuchen liegt mit C= 1815 N/mm (versetzt) und C= 1678 N/mm (unversetzt) weit oberhalb von C_{DIN}= 688 N/mm (DIN 1052/T2, Tab. 13)

Vergleichende Bewertung: Betrachtung der Summen i.M.

1815 N/mm <-> 1678 N/mm "versetzt" "unversetzt" Abweichnung (1815 - 1678) 1678 * 100 = 8,6 %

Im vorliegenden Fall ist "versetzt" 8,6 % steifer als "unversetzt".

• VERSCHIEBUNG: Kraft  $\overline{P}$  bei Weg w = 1,5 mm



Nagelabstand parallel zur Faser

-*- versetzt ----- unversetzt

Bild 4.7.4.2.1/1: Vergleich der Kraft P bei Weg w = 1,5 mm für versetzte und unversetzte Nagelung. Nagel 3,8*130 mm; einschnittig; glatt

**Vergleichende Bewertung:** Abweichungen alternierend:

- bei 12,5 d_n  $\overline{P}_{ver} < \overline{P}_{unv}$
- bei 15,0 d_n  $\overline{P}_{ver} \sim \overline{P}_{unv}$
- bei 17,5 d_n  $\overline{P}_{ver} > \overline{P}_{unv}$

w bei zulP [mm] 1 0.8 0,6 0.4 0.2 0 10,0 dn 12,5 dn 15,0 dn 17,5 dn versetzt 0,36 0,34 0.22 unversetzt 0,25 0,47 0,41

WERSCHIEBUNG: Weg w bei zul P = 8,40 kN

Nagelabstand parallel zur Faser

---- unversetzt

Bild 4.7.4.2.1/2: Mittelwert der Verschiebung  $\overline{w}$  bei zul P = 8,40 kN für versetzte und unversetzte Nagelung. Nagel 3,8*130 mm; einschnittig; glatt

----- versetzt

Vergleichende Bewertung: Abweichungen alternierend:

la a i	10 5	2	catality.		
pei	12,5	an	^w ver	>	^w unv

- bei 15,0 d_n  $\overline{w}_{ver} < \overline{w}_{unv}$
- bei 17,5 d_n  $\overline{w}_{ver} < \overline{w}_{unv}$

### 4.7.4.2.2 Nagel 4,2*120 mm, glatt

■ VERSCHIEBUNGSMODUL C (siehe Fußnote auf Seite 120)

Abstand	Mittelwert C· versetzt	-Modul in N/mm unversetzt
12.5 dn 15.0 dn 17.5 dn	 1814 1255	1346 2591
Summe i.M.	1535	1969

Tabelle 4.7.4.2.2/1 Verschiebungsmodul C: Mittelwerte von C bei verschiedenen Nagelabständen und Summe im Mittel aus allen Versuchen unabhängig vom Nagelabstand Verschiebungsmodul C nach DIN 1052 C_{DIN}= 739 N/mm Allgemeine Aussagen zu Tabelle 4.7.4.2.2/1

- Die Schwankungsbreite von C ist relativ groß
- Der Verschiebungsmodul C ist praktisch unabhängig vom Nagelabstand
- Die Summe im Mittel aus allen Versuchen liegt mit C = 1535 N/mm (versetzt) und C= 1969 N/mm (unversetzt) weit oberhalb von C_{DTN} = 739 N/mm (DIN 1052/T2, Tab. 13)

Vergleichende Bewertung: Betrachtung der Summen i.M.

1535 N/mm <-> 1969 N/mm "versetzt" "unversetzt"

Abweichnung (1969 - 1535)1535 * 100 = 28,3 %

Im vorliegenden Fall ist "unversetzt" 28,3 % steifer als versetzt.

■ VERSCHIEBUNG: Kraft P bei Weg w = 1,5 mm



Nagelabstand parallel zur Faser

----- versetzt ----- unversetzt

Bild 4.7.4.2.2/1: Vergleich der Kraft  $\overline{P}$  bei Weg w = 1,5 mm für versetzte und unversetzte Nagelung. Nagel 4,2*120 mm; einschnittig; glatt

<u>Vergleichende Bewertung:</u> geringfügiger Unterschied zwischen "versetzt" und "unversetzt". "Versetzt" liegt etwas oberhalb von "unversetzt". w bei zulP [mm] 0,8 0,6 0,4 0,2 0 15,0 dn 17,5 dn 20,0 dn versetzt 0,51 0,27 0,7 0,52

Nagelabstand parallel zur Faser

----- versetzt ----- unversetzt

Bild 4.7.4.2.2/2: Mittelwert der Verschiebung  $\overline{w}$  bei zul P = 10,00 kN für versetzte und unversetzte Nagelung. Nagel 4,2*120 mm; einschnittig; glatt

<u>Vergleichende Bewertung:</u> geringfügiger Unterschied zwischen "versetzt" und "unversetzt". Verschiebungen bei "versetzt" liegen etwas oberhalb von "unversetzt".

### 4.7.4.2.3 Nagel 3,8*121 mm, gerillt

VERSCHIEBUNGSMODUL C (siehe Fußnote auf Seite 120)

Abstand	Mittelwert C· versetzt	-Modul in N/mm unversetzt
12.5 d _n 15.0 d _n 17.5 d _n	1265 1176 1515	2398 2410 795
Summe i.M.	1318	1867

Tabelle 4.7.4.2.3/1 Verschiebungsmodul C: Mittelwerte von C bei verschiedenen Nagelabständen und Summe im Mittel aus allen Versuchen unabhängig vom Nagelabstand

Verschiebungsmodul C nach DIN 1052  $C_{DIN} = 688 \text{ N/mm}$ 

#### Allgemeine Aussagen zu Tabelle 4.7.4.2.3/1:

- Die Schwankungsbreite von C ist relativ groß

■ VERSCHIEBUNG: Weg  $\overline{w}$  bei zul P = 10,00 kN

- Der Verschiebungsmodul C ist praktisch unabhängig vom Nagelabstand
- Die Summe im Mittel aus allen Versuchen liegt mit C = 1318 N/mm (versetzt) und C= 1867 N/mm (unversetzt) oberhalb von C_{DIN} = 688 N/mm (DIN 1052/T2, Tab. 13)

Vergleichende Bewertung: Betrachtung der Summen i.M.

1318 N/mm <-> 1867 N/mm "versetzt" "unversetzt"

Abweichnung 
$$(1867 - 1318)$$
  
 $1318$   $* 100 = 41,7 %$ 

Im vorliegenden Fall ist "unversetzt" 41,7 % steifer als versetzt.

VERSCHIEBUNG: Kraft P bei Weg w = 1,5 mm



Nagelabstand parallel zur Faser

Bild 4.7.4.2.3/1: Vergleich der Kraft  $\overline{P}$  bei Weg w = 1,5 mm für versetzte und unversetzte Nagelung. Nagel 3,8*121 mm; einschnittig; gerillt

Vergleichende Bewertung: Abweichungen alternierend:

- bei 12,5 d_n  $\overline{P}_{ver} < \overline{P}_{unv}$
- bei 15,0 d_n  $\overline{P}_{ver} < \overline{P}_{unv}$
- bei 17,5 d_n  $\overline{P}_{ver} > \overline{P}_{unv}$

VERSCHIEBUNG: Weg  $\overline{w}$  bei zul P = 8,40 kN



Nagelabstand parallel zur Faser

----- versetzt

Bild 4.7.4.2.3/2: Mittelwert der Verschiebung  $\overline{w}$  bei zul P = 8,40 kN für versetzte und unversetzte Nagelung. Nagel 3,8*121 mm; einschnittig; gerillt

Vergleichende Bewertung: Abweichungen alternierend:

- bei 12,5 d_n  $\overline{w}_{ver} > \overline{w}_{unv}$
- bei 15,0 d_n  $\overline{w}_{ver} > \overline{w}_{unv}$
- bei 17,5 d_n  $\overline{w}_{ver} < \overline{w}_{unv}$

4.7.4.3 Quotient Nu/zul N ("Sicherheitsfaktor")



Nagelabstand parallel zur Faser

versetzt unversetzt

Bild 4.7.4.3.1/1: Quotient  $\overline{N}u/zul N$  ("Sicherheitsfaktor") für versetzte und unversetzte Nagelung; zul N = 0,525 kN; Nagel 3,8*130 mm; einschnittig; glatt

Vergleichende Bewertung: praktisch kein Unterschied zwischen "versetzt" und "unversetzt". Nur bei 15 dn besitzt "versetzt" wesentlich höheren "Sicherheitsfaktor".

4.7.4.3.2 Nagel 4,2*120, glatt



Nagelabstand parallel zur Faser

versetzt ----- unversetzt

Bild 4.7.4.3.2/1: Quotient  $\overline{Nu}/zul N$  ("Sicherheitsfaktor") für versetzte und unversetzte Nagelung; zul N = 0,625 kN; Nagel 4,2*120 mm; einschnittig; glatt **Vergleichende Bewertung:** praktisch kein Unterschied zwischen "versetzt" und "unversetzt".

#### 4.7.4.3.3 Nagel 3,8*121, gerillt



Nagelabstand parallel zur Faser

#### ----- versetzt ------ unversetzt

Bild 4.7.4.3.3/1: Quotient  $\overline{N}u/zul N$  ("Sicherheitsfaktor") für versetzte und unversetzte Nagelung; zul N = 0,525 kN; Nagel 3,8*121 mm; einschnittig; gerillt

<u>Vergleichende Bewertung</u>: praktisch kein Unterschied zwischen "versetzt" und "unversetzt". Nur bei 15 dn besitzt "versetzt" wesentlich höheren "Sicherheitsfaktor".





versetzte Nagelung 🛛 🖾 unversetzte Nagelung

Bild 4.7.4.4.1/1: Absolute Versagenshäufigkeit für versetzte und unversetzte Nagelung; Nagel 3,8*130 mm; einschnittig; glatt <u>Vergleichende Bewertung:</u> Bei den Abständen 10 d_n, 12,5 d_n und 15 d_n etwa gleiches Verhalten bei "versetzt" und "unversetzt". Lediglich bei 17,5 d_n waren alle Versager bei "unversetzt" aufgetreten (<< Zufall >>), dadurch ergibt sich in der "Summe aller Versuche", daß doppelt so viele Versager bei "unversetzt" im Vergleich zu "versetzt" vorliegen.

4.7.4.4.2 Nagel 4,2*120, glatt Anzahl der Probekörper 15 14 12 10 8 5 5 6 đ. 2 2 0 0 Versuche mit Versuche mit Versuche mit Summe aller 15,0 dn 17.5 dn 20,0 dn Versuche Nagelabstand parallel zu Faser

versetzte Nagelung unversetzte Nagelung
Bild 4.7.4.4.2/1: Absolute Versagenshäufigkeit für versetzte und
unversetzte Nagelung; Nagel 4,2*120 mm; einschnittig; glatt
<u>Vergleichende Bewertung:</u> Bei allen Nagelabständen (15,0 d_n,
17,5 d_n und 20 d_n) mehr als doppelt so viele Versager bei
"unversetzt" im Vergleich zu "versetzt".



4.7.4.4.3 Nagel 3,8*121, gerillt

versetzte Nagelung unversetzte Nagelung

Bild 4.7.4.4.3/1: Absolute Versagenshäufigkeit für versetzte und unversetzte Nagelung; Nagel 3,8*121 mm; einschnittig; gerillt **Vergleichende Bewertung:** In der "Summe aller Versuche" 50 % mehr Versager bei "versetzt" im Vergleich zu "unversetzt". Bei den Abständen 12,5 d_n und 15 d_n mehr Versager bei "versetzt", bei 17,5 d_n mehr Versager bei "unversetzt".

4.7.4.4.4 Nagel 4,6*146, glatt



Wersetzte Nagelung unversetzte Nagelung Bild 4.7.4.4.4/1: Absolute Versagenshäufigkeit für versetzte und unversetzte Nagelung; Nagel 4,6*146 mm; einschnittig; glatt Vergleichende Bewertung: Beim einzig untersuchten Nagelabstand von 18 dn mehr als doppelt so viele Versager bei "unversetzt" im Vergleich zu "versetzt".

### 5 Langzeitversuche

### 5.1 Allgemeines/Zielsetzungen

Die durchgeführten Langzeitversuche erstreckten sich über einen Zeitraum von jeweils 145 Tagen. Die Zugstoßprobekörper mit innenliegenden Mindestholzdicken (zweischnittige Verbindungen) wurden, wie unter 4.4 beschrieben, auf der einen Seite versetzt und auf der anderen Seite unversetzt genagelt.

Es wurden zwei Versuchsreihen mit 3 Probekörpern untersucht, die sich nur durch eine unterschiedliche Laststufe auszeichneten. Der grundsätzliche Versuchsaufbau ist in Bild 5.3/1 dargestellt. Bei den Versuchen wurden die zeitabhängigen Verschiebungen kontinuierlich aufgezeichnet und das auftretende Rißverhalten untersucht.

- Zielsetzungen: Feststellung, ob sich unterschiedliches Rißverhalten bei "versetzt" und "unversetzt" zeigt
  - Feststellung, ob sich unter Langzeitbelastung unterschiedliches Verformungsverhalten bei "versetzt" und "unversetzt" zeigt.
  - Ermittlung der Kurzzeit-Bruchlast nach ISO 6891 (bzw des Quotienten Nu/zul N) nach vorangegangener Langzeitbelastung von 1,5 * zul N

### 5.2 Krafteinleitung

Die Krafteinleitung erfolgte über geeichte Gewindestangen, die mit DMS-Streifen versehen waren. Dabei wurde die Kraft über die Dehnung der Gewindestangen mit DMS-Streifen gemessen. Die Dehnung wurde in DIGIT an einem Meßgerät (Digital Transducer CA 310) abgelesen. Durch die Eichkurven der Gewindestangen konnte so die gemessene Dehnung in eine Kraft umgerechnet werden. Die Kraft und die Verformungen wurden in der Anfangsphase der Versuche stündlich und beim späteren Abklingen der Verformungen täglich kontrolliert. Der auftretende Kraftabfall durch den Verformungszuwachs wurde durch das Nachziehen der Gewindestangen kompensiert. Oben angeordnete Tellerfederstapel, deren Federkennlinien einen degressiven Verlauf hatten, verringerten zusätzlich den auftretenden Kraftabfall.

### 5.3 Versuchsreihen

Die beiden Versuchsreihen unterscheiden sich nur durch ihre Laststufen:

- Versuchsreihe 1: belastet mit 1,0 * zul P = 8,40 kN

- Versuchsreihe 2: belastet mit 1,5 * zul P = 12,60 kNAnsonsten galt für beide Versuchsreihen: Nagel 3,8 * 130 mm, glatt ; Verbindung: zweischnittig Nagelanzahl: n = 8 ; Nagelabstand: 15 d_n ; Holzfeuchte: u = 10 %



Bild 5.3/1 : Prinzipskizze der Dauerstandversuche: Es können jeweils 3 Proben gleichzeitig untersucht werden

5.4 Auswertung der Langzeitversuche

### 5.4.1 Rißbildung

An allen 6 Versuchskörpern konnte während des ganzen Beobachtungszeitraumes, selbst unter 1,5facher Belastung, keine Rißbildung festgestellt werden. Dies gilt sowohl für die versetzte als auch für die unversetzte Nagelung.

#### 5.4.2 Zeitabhängige Verformungen

Der zeitliche Verlauf der Verformungen ist in den Bildern 5.4.2/1 (Belastung 1,0 * zul P = 8,40 kN) und 5.4.2/2 (Belastung 1,5 * zul P = 12,60 kN) dargestellt. Die Tabelle 5.4.2/1 zeigt die Anfangsverformung zur Zeit t = 0 Stunden und die Endverformung zur Zeit t = 3480 Stunden für beide Laststufen. Es handelt sich dabei jeweils um die Mittelwerte aus drei Versuchen.

	1,0 * zul P				1,5	* zul P
	versetzt [mm]	unversetzt [mm]			versetzt [mm]	unversetzt [mm]
f _o t=0 h	0,25	0,25		f _o t=0 h	0,59	0,53
ft t=3480 h	0,73	0,69		f _t t=3480 h	2,40	2,58

Tabelle 5.4.2/1: Anfangs- und Endverformung für die versetzte und unversetzte Nagelung

### Vergleichende Bewertung:

Bei direktem Vergleich der Anfangs- und Endverformungsgrößen der versetzten und unversetzten Nagelung ist kein gravierender Unterschied erkennbar. Unter den Belastungen 1,0 * zul P (s. Bild 5.4.2/1 a) und 1,5 * zul P (s. Bild 5.4.2/2 a) sind die Verformungen der versetzten und unversetzten Nagelung nahezu identisch, vgl. auch Tabelle 5.4.2/1. Obwohl bei jedem Versuch die versetzte und unversetzte Nagelverbindung mit Holz aus demselben Brett - das zuvor lediglich an der Stoßstelle getrennt wurde - hergestellt wurden, sind die vorhandenen geringen Unterschiede in den Verformungen mit Sicherheit nicht auf die unterschiedliche Nagelung (versetzt, unversetzt), sondern auf die Strukturunterschiede des Holzes zurückzuführen.

Dieses wird unter anderem auch durch die unterschiedlichen Verformungen bei gleicher Nagelung mit je drei unterschiedlichen Proben in den Bildern 5.4.2/1 b), 5.4.2/1 c) und 5.4.2/2 b), 5.4.2/2 c) belegt.

# 5.4.3 Ermittlung der Bruchlast (bzw des Quotienten Nu/zul N) nach vorangegangener Langzeitbelastung von 1,5 * zul N

	versetzt	unversetzt
Nagel 3,8 *130 mm,glatt Abstand    Fa: 15 d _n Holzfeuchte u = 10 %	Nu zulN	Nu zulN
* Kurz-Zeit Bruchversuch	2,63	2,63
Langzeitversuch mit ** 1,5 zul N, dann Kurz- Zeit Bruchversuch	2,50	>2,19

Tabelle 5.4.3/1: Vergleich des Quotienten Nu/zul N zwischen Kurz-Zeit Bruchversuch und Kurz-Zeit Bruchversuch nach Langzeitversuch mit 1,5 zul N

#### Vergleichende Bewertung:

- bei "versetzt" : 2,50 <-> 2,63 etwa gleiches Verhalten

- bei "unversetzt": >2,19 <-> 2,63 geringfügige Unterschiede

vgl. Tabelle 4.6.2.2/1 und 4.7.2/1

^{**}vgl. Tabelle 4.6.4.2/1 und 4.7.2/3





Bild 5.4.2/1: Zeitlicher Verlauf der Verformungen; Laststufe
1,0 * zul P. a) Mittelwerte versetzte und unversetzte Nagelung
b) Einzelwerte "versetzt" c) Einzelwerte "unversetzt"


Belastung: 1,5 * zul P = 12,60 kN Nagel 3,8*130 mm, glatt, 2-schnittig Nagelanzahl n = 8, Nagelabstand 15 dn

Bild 5.4.2/2 : Zeitlicher Verlauf der Verformungen; Laststufe
1,5 * zul P. a) Mittelwerte versetzte und unversetzte Nagelung
b) Einzelwerte "versetzt" c) Einzelwerte "unversetzt"



## Bild 5.4.2/3:

Dauerstandversuchskörper mit innenliegender Mindestholzdicke (zweischnittige Verbindung) im Dauerstandversuchsrahmen



## Bild 5.4.2/4:

Dauerstandversuchskörper mit innenliegender Mindestholzdicke (zweischnittige Verbindung) nach Beendigung des Langzeitversuches im Kurz-Zeit-Versuch nach ISO 6891

## 6 Nachträgliche Spaltversuche

## 6.1 Allgemeines

Aufgrund der sehr unterschiedlichen Spaltergebnisse bei den Hauptund Vorversuchen waren zur Klärung der aufgetretenen Fragen noch zusätzliche Spaltversuche erforderlich.

Zusammengefaßt lassen sich die Fakten aus den Vorversuchen (Kap. 3) und aus den Hauptversuchen (Kap. 4) wie folgt darstellen:

## Ergebnis aus den Vorversuchen (Kap. 3):

Kaum oder sehr geringe Spaltneigung (Einzelbrettversuche mit einer Holzfeuchte von u = 14 %) bei Nageldurchmesser  $\leq$  3,8 mm und einem Nagelabstand von  $\geq$  12,5 d_n. Unter diesen Randbedingungen ist praktisch kein Unterschied in der Spaltneigung zwischen versetzter und unversetzter Nagelung festzustellen.

## Ergebnis aus den Hauptversuchen (Kap. 4):

a) Kaum oder sehr geringe Spaltneigung mit innenliegenden ^{*)} Mindestholzdicken (zweischnittigen Verbindungen mit einer Holzfeuchte von u = 10 %) bei Nageldurchmesser  $\leq$  4,2 mm und einem Nagelabstand von  $\geq$  12,5 d_n. Unter diesen Randbedingungen ist praktisch kein Unterschied in der Spaltneigung zwischen versetzter und unversetzter Nagelung festzustellen.

b) Größere Spaltneigung als unter a) bei außenliegenden ^{**)} Mindestholzdicken (einschnittige Verbindungen mit einer Holzfeuchte von u = 10 %) selbst bei Nageldurchmesser von nur 3,8 mm und einem Nagelabstand von ≥ 12,5 d_n. Diese größere Spaltneigung wurde sowohl bei "versetzt" als auch bei "unversetzt" festgestellt. Im Vergleich miteinander zeigte sich jedoch bei "unversetzt" eine noch größere Spaltneigung als bei "versetzt".

Durch die nachträglichen Spaltversuche sollte zum einen der Einfluß der Holzfeuchtigkeit -speziell zum Vergleich bei u =14 % und u = 10%- zum Zeitpunkt des Eintreibens der Nägel und zum

138

^{*)} D.h. beim Eintreiben des Nagels wird zuerst ein dickeres Brett durchschlagen und erst danach das Brett mit Mindestholzdicke. Im Abschnitt 6.2 wird die <u>innenliegende Mindestholzdicke</u> mit <u>Mindestholzdicke "unten"</u> simuliert und bezeichnet.

^{**)} D.h. beim Eintreiben des Nagels wird zuerst das Brett mit Mindestholzdicke und dann ein dickeres Brett durchschlagen. Im Abschnitt 6.2 wird die <u>außenliegende Mindestholzdicke</u> mit <u>Mindestholzdicke</u> "oben" simuliert und bezeichnet.

anderen der Einfluß der Lage der Mindestholzdicke, "innenliegend" oder "außenliegend", auf die Spaltneigung geklärt werden. Zum anderen sollte zusätzlich überprüft werden, ob ein Unterschied zwischen Hand- und Maschinennagelung bezüglich der Spaltneigung besteht. Die Versuchskörper der nachträglichen Spaltversuche wurden statisch nicht mehr geprüft: Die Hauptversuche haben gezeigt, daß immer dann mit gutem Tragverhalten gerechnet werden kann, wenn nach dem Eintreiben der Nägel (vor der statischen Belastung) keine oder kaum Spaltrisse erkennbar waren. Diese Aussage gilt gleichermaßen für "versetzt" als auch für "unversetzt".

## 6.2 Versuchsdurchführung

- 6.2.1 Versuch 1
- Maschinennagelung
- Holzfeuchte u = 14 %
- Nagel 3,8*130 mm; glatt
- Nagelabstand 12,5 dn
- Mindestholzdicke "oben" (zuerst durchnagelt)
- Anzahl der Versuche 5

## Vergleichende Bewertung:

- 5 Versuche "versetzt":
- 5 Versuche "unversetzt":

davon keine Spaltrisse davon keine Spaltrisse

- 6.2.2 Versuch 2
- Handnagelung
- Holzfeuchte u = 14 %
- Nagel 3,8*130 mm; glatt
- Nagelabstand 12,5 dn
- Mindestholzdicke "oben" (zuerst durchnagelt)
- Anzahl der Versuche 5



- 5 Versuche "versetzt": 5 Versuche "unversetzt":
- davon keine Spaltrisse davon keine Spaltrisse





#### 139

## 6.2.3 Versuch 3

- Maschinennagelung
- Holzfeuchte u = 10 %
- Nagel 3,8*130 mm; glatt
- Nagelabstand 12,5 dn
- Mindestholzdicke "oben" (zuerst durchnagelt)
- Anzahl der Versuche 5

## Vergleichende Bewertung:

- 5 Versuche "versetzt":
- 5 Versuche "unversetzt":

## 6.2.4 Versuch 4

- Maschinennagelung
- Holzfeuchte u = 10 %
- Nagel 3,8*130 mm; glatt
- Nagelabstand 12,5 dn
- Mindestholzdicke "unten" (zuletzt durchnagelt)
- Anzahl der Versuche 5

## Vergleichende Bewertung:

5 Versuche "versetzt": davon keine Spaltrisse 5 Versuche "unversetzt": davon keine Spaltrisse Bemerkung: Durch leichten Nagelschräglauf im dickeren Holz war kaum noch ein Unterschied in der Position zwischen "versetzt" und "unversetzt" auf der Nagelaustrittseite zu erkennen.

## 6.2.5 Versuch 5

- Handnagelung
- Holzfeuchte u = 10 %
- Nagel 3,8*130 mm; glatt
- Nagelabstand 12,5 dn
- Mindestholzdicke "oben" (zuerst durchnagelt)
- Anzahl der Versuche 5

## Vergleichende Bewertung:

- 5 Versuche "versetzt":
- 5 Versuche "unversetzt":



davon 3x deutliche Spaltrisse

12,5

1.5

12,5 dn

12,5 dn

davon 2x deutliche Spaltrisse

davon 3x deutliche Spaltrisse

112,5

d'n

1,5

12,5 dn

versetzt

00

unversetzt

Sdn

Sdn

Sdn

## 6.2.6 Versuch 6

- Handnagelung
- Holzfeuchte u = 10 %
- Nagel 3,8*130 mm; glatt
- Nagelabstand 12,5 dn
- Mindestholzdicke "unten" (zuletzt durchnagelt)
- Anzahl der Versuche 5

## Vergleichende Bewertung:

5 Versuche "unversetzt":

5 Versuche "versetzt": davon 1x deutlicher Spaltriß davon keine Spaltrisse

Es gilt die gleiche Bemerkung wie bei Versuch 4 (Abschnitt 6.2.4)

## 6.2.7 Versuch 7

- Maschinennagelung
- Holzfeuchte u = 10 %
- Nagel 3,8*130 mm; glatt
- Nagelabstand 12,5 dn
- Mindestholzdicke "unten" und "oben"
- Anzahl der Versuche 5

## Vergleichende Bewertung:

- 5 Versuche "versetzt":
- 5 Versuche "unversetzt":



12,5

dn

12,5 dn

12,5 |

dn

12,5

dn

1,5 12,5dn

versetzt

unversetzt

davon 2x deutliche Spaltrisse "oben" keine Spaltrisse "unten" davon 2x deutliche Spaltrisse "oben" davon 1x deutlicher Spaltriß "unten"



- Handnagelung
- Holzfeuchte u = 10 %
- Nagel 3,8*130 mm; glatt
- Nagelabstand 12,5 dn
- Mindestholzdicke "unten" und "oben"
- Anzahl der Versuche 5

## Vergleichende Bewertung:

- 5 Versuche "versetzt":
- 5 Versuche "unversetzt":



davon 2x deutliche Spaltrisse "oben" davon 1x deutlicher Spaltriß "unten" davon 2x deutliche Spaltrisse "oben" keine Spaltrisse "unten"

141

Sdn

Sdn

Sdn





## 7 Zusammenfassende vergleichende Bewertung und Empfehlung

## 7.1 Beurteilung der Spaltneigung und des Trag- und Verformungsverhaltens

## 7.1.1 Ergebnisse aus den Vorversuchen (Kap. 3)

- a. bei Einschlagfeuchte u = 14 % mit Nageldurchmesser  $d_n \leq 3,8$  mm und Nagelabstand  $\geq 12,5$   $d_n$
- b. bei Einschlagfeuchte u = 14 % und anschließender Trocknung auf u = 8,5 % mit Nageldurchmesser d_n ≤ 3,8 mm und Nagelabstand ≥ 12,5 d_n
- c. bei Einschlagfeuchte u = 24 28 % und anschließender Trocknung auf u = 14 % und weiter auf u = 8,5 % mit Nageldurchmesser d_n  $\leq 3,8$  mm und Nagelabstand  $\geq 12,5$  d_n

## qünstige Ergebnisse:

 geringe Spaltneigung
 etwa gleiche Spaltneigung bei "versetzt" und "unversetzt"

# <u>günstige Ergebnisse:</u> - wie unter a.

(keine Erhöhung der Spaltneigung gegenüber a., auch nicht nach 2-jähriger Standzeit mit u = 8,5 %)

## <u>günstige Ergebnisse:</u>

- wie unter a. und b.

7.1.2 Ergebnisse aus den Hauptversuchen mit Einschlagfeuchte u = 10 % (Kap. 4)

a. Versuche mit Mindestholzdicke außenliegend (einschnittig) mit Nageldurchmesser d_n ≤ 3,8 mm und Nagelabstand ≥ 12,5 d_n

## ungünstige Ergebnisse:

- große Spaltneigung Mehrere Probekörper mit Mindestholzdicke brachen bereits beim Eintreiben der Nägel auseinander bzw. zeigten breite Spaltrisse
- Versuche mit den nicht auseinandergebrochenen Proben zeigten Rißvorschädigung und ungünstiges Tragverhalten
- "versetzt" und "unversetzt" zeigten deutliche Spaltneigung. Bei "unversetzt" größere Spaltneigung als bei "versetzt"

- b. Versuche mit Mindestholzdicke innenliegend (zweischnittig) mit Nageldurchmesser d_n ≤ 3,8 mm und Nagelabstand ≥ 12,5 d_n
- <u>qünstige Ergebnisse:</u>
- gutes Trag- und Verformungsverhalten und daraus Rückschluß auf (visuell nicht kontrollierbare) geringe Spaltneigung
- etwa gleiches Tragverhalten bei "versetzt" und "unversetzt"

7.1.3 Ergebnisse aus den nachträglichen Spaltversuchen mit Einschlagfeuchte u = 14 % (Kap. 6)

a. Versuche mit Mindestholzdicke außenliegend bzw. Mindestholzdicke "oben" mit Nageldurchmesser d_n ≤ 3,8 mm und Nagelabstand ≥ 12,5 d_n günstige Ergebnisse: - keine Spaltneigung bei "versetzt" und "unversetzt" festgestellt

7.1.4 Ergebnisse aus den nachträglichen Spaltversuchen mit Einschlagfeuchte u = 10 % (Kap. 6)

a. Versuche mit Mindestholzdicke **außenliegend** bzw. Mindestholzdicke "oben" mit Nageldurchmesser d_n ≤ 3,8 mm

und Nagelabstand  $\geq$  12,5 d_n

b. Versuche mit Mindestholzdicke innenliegend bzw. Mindestholzdicke "unten" mit Nageldurchmesser  $d_n \leq 3,8$  mm und Nagelabstand  $\geq 12,5$   $d_n$ 

## <u>ungünstige Ergebnisse:</u>

- große Spaltneigung - etwa gleiche Spalt-
- neigung bei "versetzt" und "unversetzt"
- <u>günstige Ergebnisse:</u>
- keine Spaltbildung bei "versetzt" und "unversetzt" festgestellt.
  Allerdings ist im Brett mit Mindestholzdicke "unten" bezüglich der Position der Nägel wegen faserbeinflußten Schräglaufs des Nagels kein Unterschied mehr festzustellen.

c. Versuche mit 2 miteinander vernagelten Mindestholzdicken mit Nageldurchmesser  $d_n \le 3,8$  mm und Nagelabstand  $\ge 12,5$  d_n

ungünstige Ergebnisse beim oberen Brett wie unter a. <u>günstige Ergebnisse</u> beim unteren Brett

wie unter b.

d. Versuche mit 3 miteinander vernagelten Mindestholzdicken mit Nageldurchmesser d_n ≤ 3,8 mm und Nagelabstand ≥ 12,5 d_n ungünstige Ergebnisse beim oberen Brett wie unter a. <u>günstige Ergebnisse</u> beim unteren Brett wie unter b.

## 7.2 Zusammenfassende Empfehlung

- 1. Wenn die Einschlagfeuchte u  $\ge$  14 % beträgt ist die Spaltneigung bei Nageldurchmesser  $\le$  3,8 mm und einem Nagelabstand von  $\ge$  12,5 d_n gering und verändert sich nicht bei anschließender Trocknung des Holzes auf bis zu u = 8,5 %
- 2. Da keine Spaltschädigung des Holzes Voraussetzung für gutes anschließendes Trag- und Verformungsverhalten ist, wird aus den Abschnitten 7.1.1 bis 7.1.4 folgende Empfehlung abgeleitet:

bei unversetzter Nagelung ist einzuhalten:

- Nageldurchmesser  $\leq$  3,8 mm
- Nagelabstand || Fa untereinander ≥ 12,5 d_n
- Nagelabstand zum belasteten Rand || Fa  $\geq$  1,5 * 12,5 d_n
- Mindestholzfeuchte zum Einschlagzeitpunkt u  $\geq$  14 %

Unter diesen Voraussetzungen kann bei unversetzter Nagelung wie bei versetzter Nagelung nach DIN 1052/T2 bemessen werden, da praktisch keine Unterschiede im Trag-, Verformungs-, und Spaltverhalten im Vergleich zur versetzten Nagelung mehr auftreten.

## 8 Zusammenfassung

Das Ziel des Forschungsvorhabens lag in der vergleichenden Untersuchung des Trag-, Verformungs-und Spaltverhaltens gegenüber der Rißlinie versetzter und unversetzter maschineller Nagelung und in der Erarbeitung von Vorschlägen zur Bemessung von Nagelverbindungen ohne (die in der DIN 1052 vorgeschriebene) Rißlinienversetzung bei maschineller Nagelung.

Sämtliche Versuchskörper waren maschinell (Streifennagler bei ø 3,1 mm bis 4,6 mm, Meißelhammer bei ø 6 mm) genagelt. Die Nägel hatten folgende Durchmesser und Beschaffenheit:

- 3,1 mm, glatt und gerillt
- 3,8 mm, glatt und gerillt
- 4,2 mm, glatt
- 4,6 mm, glatt
- 6,0 mm, glatt

Folgende Versuchsreihen wurden durchgeführt:

- a) <u>Vorversuche</u>: reine Spaltversuche ohne statische Belastung bei einer Holzfeuchte von 14 %
- b) <u>Hauptversuche</u>: Spalt- und statische Versuche Beobachtung des Spaltverhaltens (10 % Holzfeuchte zum Einschlagzeitpunkt) und anschließend statische Belastung nach ISO 6891 mit innenliegenden Mindestholzdicken (zweischnittige Verbindungen) und außenliegenden Mindestholzdicken (einschnittige Verbindungen) bei einer Holzfeuchte von 10 %
- c) <u>Zusatzversuche</u>:
  - statische Belastung nach ISO 6891 mit innenliegenden Mindestholzdicken (zweischnittige Verbindungen) mit unterschiedlichen Holzfeuchten zum Einschlag- und Prüfzeitpunkt. Zweck: Einfluß der Holzfeuchtigkeit zum Einschlagzeitpunkt und zum Prüfzeitpunkt auf das Trag- und Verformungsverhalten.
  - Vergleich zwischen Maschinen- und Handnagelung
  - Ermittlung der Bruchlast im Kurz-Zeitversuch nach vorangegangener Langzeitbelastung mit 1,5 * zul N

- d) <u>Langzeitversuche</u>: statische Belastung mit 1,0 * zul P und 1,5 * zul P mit innenliegenden Mindestholzdicken (zweischnittige Verbindungen) bei einer Holzfeuchte von **10** %
- e) <u>Nachträgliche Spaltversuche</u>: Spaltversuche ohne statische Belastung bei Holzfeuchten von **10** und **14** %

Aufgrund der Ergebnisse dieser Versuchsreihen kann für eine unversetzte Nagelung die folgende Empfehlung ausgesprochen werden:

bei unversetzter Nagelung ist einzuhalten:

- Nageldurchmesser  $\leq$  3,8 mm
- Nagelabstand || Fa untereinander  $\geq$  12,5 d_n
- Nagelabstand zum belasteten Rand || Fa  $\geq$  1,5 * 12,5 d_n

Mindestholzfeuchte zum Einschlagzeitpunkt u ≥ 14 %
 Wenn möglich, keine Verwendung von Mindestholzdicken
 Unter diesen Voraussetzugen kann bei unversetzter Nagelung
 wie bei versetzter Nagelung nach DIN 1052/T2 bemessen
 werden, da praktisch keine Unterschiede im Trag-,
 Verformungs-, und Spaltverhalten im Vergleich zur ver-

Darüberhinaus kann festgestellt werden:

setzten Nagelung mehr auftreten.

 a) Für Nägel mit einem Nageldurchmesser von 4,2 mm ist eine unversetzte Nagelung nur beschränkt zu empfehlen, da geringe Spaltneigung und damit gute Tragfähigkeitseigenschaften erst bei größerem Nagelabstand (≥ 17,5 d_n) untereinander auftreten.
 Unterschiede im Trag-, Verformungs- und Spaltverhalten zwischen "versetzt" und "unversetzt" sind nur geringfügig.

- b) Für Nägel mit einem Nageldurchmesser von ≥ 4,6 mm ist eine unversetzte Nagelung nicht zu empfehlen (vgl. Kap. 4.7). Unterschiede im Trag-, Verformungs- und Spaltverhalten zwischen "versetzt" und "unversetzt" sind hier im Vergleich zu a zugunsten von "versetzt" ausgeprägter.
- c) Der Vergleich von Maschinennagelung und Handnagelung ergab praktisch keine Unterschiede in Bezug auf die Spaltneigung (vgl. Kap 6) und auf das Trag- und Verformungsverhalten (vgl. Abschn.4.6.4).

Bochum, Juli 1991

## RUHR-UNIVERSITÄT BOCHUM

Fakultät für BauingenieurwesenLehrstuhl für Baukonstruktionen, Ingenieurholzbau und BauphysikProf. Dr.-Ing. E. ReyerD 4630 BochumUniversitätstrasse 150

Prof. Dr.-Ing. E Reyer

Dipl.-Ing. P. Linzner

# 9 Anhang

Kraft - Weg Diagramme für alle Versuche

Fotodokumentation der Versuche

Seite A1 bis A160

Seite A161 bis A165







12.00

6.8

8 .00

2.00

4.00

6.00

8.00

10.00

12.00

Weg w (Mittelw. a. 3 u. 4) [mm]

14.00

16.00



- A2 -



- A3 -





- A4 -





- A5 -



- A6 -





- A7 -





## - A8 -



- A9 -





- A10 -





- All -





## - A12 -





## - A13 -





- A14 -





## - A15 -





- Al6 -





#### - A17 -



## - A18 -

Weg w (Mittelw. a, 3 u. 4) [mm]



- A19 -





## - A20 -



- A21 -





## - A22 -




- A23 -





- A24 -







## - A26 -









## - A28 -





- A29 -





- A30 -





## - A31 -





#### - A32 -









## - A34 -





.

### - A35 -





- A36 -





#### - A37 -





## - A38 -





- A39 -







## - A40 -





#### - A41 -





- A42 -





- A43 -





- A44 -



8. 8

8

. 00

2.00

4.00

5.00

8.00

10.00

12.00

Weg v (Mittelv. a. 3 u.4) [mm]

14.00

16.00





8.00

10.00

12.00

Veg v (Mittelv. a. 3 u.4) [mm]

14.00

16.00

2.00

4.00

6.00

.00

## - A46 -





## - A47 -





### - A48 -





.





- A50 -







## - A52 -

Weg w (Mittelw. a. 3 u. 4) [mm]





- A53 -





## - A54 -





- A55 -







- A57 -



- A58 -




# - A59 -





# - A60 -





#### - A61 -



Weg w (Mittelw. a. 3 u.4) [mm]

- A62 -





- A63 -





# - A64 -





# - A65 -





#### - A66 -





- A67 -





- A68 -



- A69 -





# - A70 -





# - A71 -





- A72 -





#### - A73 -



# - A74 -





# - A75 -





#### - A76 -





## - A77 -





#### - A78 -





# - A79 -





- A80 -





# - A81 -





#### - A82 -









# - A84 -





## - A85 -





- A86 -





- A87 -



## - A88 -







.00

2.00

4.00

6.00

8.00

10.00

12.00

Weg v (Mittelv. a. 3 u. 4) [mm]

14.00

16.00

# - A90 -





- A91 -





## - A92 -





- A93 -








- A95 -





- A96 -



#### - A97 -





#### - A98 -









### - A100 -





#### - A101 -





#### - A102 -





#### - A103 -

# - A104 -

Ruhr-Universität Bochum • Prof. Dr. - Ing. E. Reyer Lehrstuhl für Baukonstruktionen mit Ingenieurholzbau und konstruktiver Bauphysik







#### - A105 -





#### - A106 -





# - A107 -





# - A108 -





# - A109 -





# - Allo -





# - A111 -





#### - A112 -





### - A113 -

## - A114 -

Ruhr-Universität Bochum - Prof. Dr. - Ing. E. Reyer Lehrstuhl für Baukonstruktionen mit Ingenieurholzbau und konstruktiver Bauphysik









# - A115 -





- A116 -





# - A117 -





# - All8 -









# - A120 -





#### - A121 -





- A122 -





- A123 -





# - A124 -



80,00 24.00 Kraft P [kN] 18, 00 12.00 6.00 8 2.00 4.00 6.00 8.00 00 10.00 12.00 14.00 16.00 Weg w ( Mittelw, a. 3. u.4.) [





۰

# - A126 -





- A127 -





# - A128 -





- A129 -





# - A130 -




#### - A131 -





### - A132 -





- A133 -





# - A134 -





#### - A135 -





#### - A136 -





- A137 -





#### - A138 -





### - A139 -





- A140 -





# - A141 -





- A142 -





# - A143 -





#### - A144 -





- A145 -



- A146 -





# - A147 -





- A148 -





# - A149 -





# - A150 -









- A152 -





#### - A153 -





- A154 -



#### - A155 -

# - A156 -

Ruhr-Universität Bochum Prof. Dr. - Ing. E. Reyer Lehrstuhl für Baukonstruktionen mit Ingenieurholzbau und konstruktiver Bauphysik









#### - A157 -





# - A158 -



2.00 4.00 5.00 8.00 10.00 12.00 14.00 15.00 Weg v [Mittelv. a. 3 u. 4) [mm]

8

.00

#### - A159 -





# - A160 -



Bild 9/1: Computeranlage zur Versuchssteuerung, Meßwerterfassung und Datenverarbeitung



Bild 9/2: Zugstoßprobekörper mit außenliegender Mindestholzdicke (einschnittige Verbindung): Gleichzeitiges Versagen von "versetzt" und "unversetzt".



Bild 9/3: Zugstoßprobekörper mit außenliegender Mindestholzdicke (einschnittige Verbindung): Versagen bei "unversetzt".



Bild 9/4: Zugstoßprobekörper mit außenliegender Mindestholzdicke (einschnittige Verbindung): Versagen bei "versetzt".



Bild 9/5: Holzversagen bei Zugstoßprobekörper mit innenliegender Mindestholzdicke (zweischnittige Verbindung): Holzdurchriß außerhalb der Verbindung durch Astschwächung



Bild 9/6: Prüfzylinder mit eingebauten Zugstoßprobekörper mit innenliegender Mindestholzdicke (zweischnittige Verbindung)



Bild 9/7: Ohmscher Wegaufnehmer zur Meßwerterfassung der Verschiebung w (Weg 4).



Bild 9/8: Meßuhrenanordnung zur Meßwerterfassung der Verschiebung w bei den Dauerstandversuchskörpern mit innenliegender Mindestholzdicke (zweischnittige Verbindung).



Bild 9/9: Versuch zur Bestimmung der Nagelzugfestigkeit (Nagel und Einspannvorrichtung).



Bild 9/10: Nagelstreifen für die Magazinierung der Paslode Streifennagler: Nagel 3,8 * 130 mm; glatt 3,8 * 121 mm; gerillt und Nagel 4,6 * 146 mm; glatt von Eckhard Reyer, Prof. Dr.-Ing. und Peter Linzner, Dipl.-Ing.

# Kurzfassung

Das Ziel des Forschungsvorhabens lag in der vergleichenden Untersuchung des Trag-, Verformungs-und Spaltverhaltens gegenüber der Rißlinie versetzter und unversetzter maschineller Nagelung und in der Erarbeitung von Vorschlägen zur Bemessung von Nagelverbindungen ohne die in der DIN 1052 vorgeschriebene Rißlinienversetzung bei maschineller Nagelung. Aufgrund der Ergebnisse kann für eine unversetzte Nagelung die folgende Empfehlung ausgesprochen werden:

- Nageldurchmesser  $d_n \le 3.8 \text{ mm}$
- Nagelabstand || Fa untereinander ≥ 12,5 d_n
  Nagelabstand zum belasteten Rand || Fa ≥ 1,5 12,5 d_n
- Mindestholzfeuchte zum Einschlagzeitpunkt u  $\ge 14 \%$
- Wenn möglich, keine Verwendung von Mindestholzdicken

Unter diesen Voraussetzungen kann bei unversetzter Nagelung wie bei versetzter Nagelung nach DIN 1052/T2 bemessen werden, da praktisch keine Unterschiede im Trag-, Verformungs-, und Spaltverhalten im Vergleich zur versetzten Nagelung mehr auftreten.

# Comparative study of the load carrying capacity of nailed joints oriented in a line parallel to the grain and staggered along the grain.

# from Eckhard Reyer, Prof. Dr.-Ing. and Peter Linzner, Dipl.-Ing.

# Abstract

The present research work is a comparative study about the behavior of nailed joints oriented in a line parallel to the grain and staggered along the grain. The comparison included the load carrying capacity, the deformations and the splitting of both nailed joints systems. The nails in both systems were driven using nailing guns. Moreover, a procedure for the design of nailed joints oriented in a line parallel to the grain is proposed. In this design procedure, the following boundary conditions must be fulfilled:

- Diameter of the nail  $d_n \le 3.8 \text{ mm}$
- Spacing between adjacent nails in any one line parallel to grain  $\ge 12.5 d_n$
- End distance parallel to grain  $\ge 1.5 \cdot 12.5 d_n$  Minimum wood moisture at the time of driving in the nails  $u \ge 14 \%$

- It is recomended to use thicknesses greater than the minimum allowed wood thickness Under these boundary conditions, the design of nailed joints oriented in a line parallel to grain, follow the same design procedure as nailed joints staggered along the grain (according to DIN 1052/T2)

# Réflexions comparées eu égard à la force portante d'assemblages par clouage avec et sans quinconçage de trace de fissure

### par Eckhard Reyer, Prof. Dr. Ing. et Peter Linzner, Dipl. Ing.

# Version abrégée

Ce projet de recherche avait pour but l'étude comparée de la tenue de force portante, de déformation et de fissuration en face de la trace de fissure de clouage mécanique en quinconce ou non, ainsi que l'éboration de propositions pour le dimensionnement des assemblages par clouage sans quiconçage préscrit par DIN 1052 (=normes de l'industrie allemande) sous clouage mécanique. A base des résultats obtenus il convient un clouage non en quinconce en cas de:

- - diamètre de clou de  $d_n \le 3,8 \text{ mm}$
  - espacement des clous || fibre de bois ≥ 12,5 d_n espacement de clous vers le bord chargé || Fa ≥1,5 12,5 d_n

  - taux d'humidité minimum du bois au moment de clouage u  $\stackrel{\scriptstyle \sim}{\geq}$  14 %
  - Si possible, ne pas utiliser des épaisseurs minimum de bois

Sous ces conditions préalables on peut dimensionner selon DIN 1052/T2 lors le clouage en quinconce ainsi que non, car, en effet, il n'y a presque plus de différence quant au comportement de force portante, de déformation et de fissuration en comparaisant avec celui sous clouage en quinconce.

T2506