Bau<u>forschung</u>

Rechenmodelle zur Ermittlung der Tragfähigkeit für die Verbindung Ankerkörper-Beton von Spannverfahren

T 2586/1

[†] Fraunhofer IRB Verlag

T 2586/1

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstelungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

INSTITUT FÜR BAUSTOFFE, MASSIVBAU UND BRANDSCHUTZ

AMTLICHE MATERIALPRÜFANSTALT FÜR DAS BAUWESEN

TU BRAUNSCHWEIG

RECHENMODELLE ZUR ERMITTLUNG DER TRAGFÄHIGKEIT FÜR DIE VERBINDUNG ANKERKÖRPER - BETON VON SPANNVERFAHREN

Prof. Dr.-Ing. F. S. Rostásy Dipl.-Ing. P. Holzenkämpfer

Dezember 1991

Forschungsbericht Gefördert vom Institut für Bautechnik, Anstalt des öffentlichen Rechts, Berlin

FACHGEBIETE UND ABTEILUNGEN

INSTITUT FÜR BAUSTOFFE, MASSIVBAU UND BRANDSCHUTZ

AMTLICHE MATERIALPRÜFANSTALT FÜR DAS BAUWESEN

TU BRAUNSCHWEIG

RECHENMODELLE ZUR ERMITTLUNG DER TRAGFÄHIGKEIT FÜR DIE VERBINDUNG ANKERKÖRPER - BETON **VON SPANNVERFAHREN**

Prof. Dr.-Ing. F. S. Rostásy Dipl.-Ing. P. Holzenkämpfer

Dezember 1991

Forschungsbericht Gefördert vom Institut für Bautechnik, Anstalt des öffentlichen Rechts, Berlin

Inhaltsverzeichnis

- 1 Einleitung
- 2 Prüfung der Verbindung Ankerkörper-Beton und Anforderungen nach IfBt-Richtlinien
- 2.1 Notwendigkeit
- 2.2 Versuchskörper
- 2.3 Beton des Versuchskörpers, Festigkeitsanforderungen
- 2.4 Prüfung
- 2.5 Anforderungen
- 3 Vorgehen bei der Erarbeitung von Modellen zur rechnerischen Beschreibung des Tragverhaltens der Verbindung Ankerkörper-Beton
- 4 Tragverhalten teilflächenbelasteter Körper
- 4.1 Beschreibung des Tragverhaltens
- 4.2 Ermittlung der Spannungen im ungerissenen Zustand
- 4.2.1 Allgemeine Bemerkungen
- 4.2.2 Methoden der Spannungsermittlung
- 4.2.3 Vergleichende Darstellung von Ergebnissen
- 4.3 Ermittlung der Gesamtspaltzugkraft
- 5 Bruchmodelle
- 5.1 Vorbemerkungen
- 5.2 Rechenmodell des Betondruckbruchs
- 5.3 Rechenmodelle des Versagens im Krafteinleitungsbereich unbewehrter Betonkörper
- 5.3.1 Überblick über Rechenmodelle
- 5.3.2 Das Wurm/Daschner-Modell für den unbewehrten Körper
- 5.3.3 Das Hawkins-Modell
- 5.3.4 Das Shao-Huai-Modell
- 5.3.5 Das RVEM-Konzept
- 5.3.6 Bewertung der Modelle
- 5.4 Rechenmodelle des Versagens im Krafteinleitungsbereich bewehrter Körper
- 5.4.1 Vorbemerkung
- 5.4.2 Das Szabo-Modell
- 5.4.3 Das Shao-Huai-Modell
- 5.4.4 Das MC 90-Modell

- 5.5 Einfluß der Schwächung des Versuchskörpers durch den Spannkanal
- 5.6 Einfluß der Ankerkörper- und Ankerbüchsengeometrie bei Verankerungen mit Ankerplatten
- 5.6.1 Hawkins-Ansatz
- 5.6.2 Modifizierter Ansatz zur Berücksichtigung der Ankerplattensteifigkeit
- 5.6.3 Überschlägige Berücksichtigung der Ankerplattensteifigkeit
- 5.7 Rechenmodell zur Ermittlung der Erstrißkraft
- 5.8 Näherungsansatz für ein Rißmodell
- 5.8.1 Ziel und Vorgehen
- 5.8.2 Die Versuchsbeobachtung
- 5.8.3 Näherungsansatz für die mittlere, gesamte Zugkraft
- 5.8.4 Ansatz für die mittlere Stahldehnung des höchstbeanspruchten Wendelganges oder Bügels
- 5.8.5 Ansatz für die Rißbreite
- 5.8.6 Überprüfung der Rißmodelle und Kalibrierung
- 6 Ableitung charakteristischer Werte der Tragfähigkeit
- 6.1 Zusammenstellung der Versuchsdaten und -ergebnisse
- 6.2 Basis der statistischen Auswertung
- 6.3 Statistische Auswerteverfahren
- 6.4 Ermittlung von charakteristischen Werten der Tragfähigkeit
- 6.4.1 Vorgehen
- 6.4.2 Charakteristische Drucktragfähigkeit im unteren, schwach bewehrten Teil der Verbindung
- 6.4.3 Charakteristische Tragfähigkeit des Krafteinleitungsbereichs der Verbindung Plattenverankerung - Beton
- 6.4.4 Zusammenfassende Auswertung
- 6.4.5 Tragfähigkeit des Krafteinleitungsbereichs der Verbindung Mehrflächenverankerung - Beton
- 7 Ableitung charakteristischer Werte der Erstrißkraft
- 8 Zusammenfassung
- 9 Literatur
- 10 Anhang

Bezeichnungen

Allgemeines

exp	:	Versuch						
rechn	:	rechnerisch						
zul	•	zulässig						
erf	•	erforderlich						
max	e 8	maximal						
min	•	minimal						
φ	:	Winkel der inneren Reibung						

Körperabmessungen und -querschnittswerte

a	:	größere Seitenlänge des Versuchskörpers							
b	:	kleinere Seitenlänge des Versuchskörpers							
h	:	Höhe des Versuchskörpers bis zur Unterkante des Ankerkörpers							
a ₁	:	Seitenlänge des Ankerkörpers parallel zur Seitenlänge a							
b ₁	:	Seitenlänge des Ankerkörpers parallel zur Seitenlänge b							
a ₁ ′	•	effekt. Seitenlänge a, unter Berücks. der Ankerkörpersteifigkeit							
b ₁ ′	•	effekt. Seitenlänge b_1 unter Berücks. der Ankerkörpersteifigkeit							
r _o	e 0	Radius des Ankerkörperlochs							
ru	•	Radius des Spannkanals unterhalb der Zusatzbewehrung							
r _h	•	Hüllrohrradius							
А	•	Querschnittsfläche des Versuchskörpers							
A _n	•	Nettoquerschnittsfläche des Versuchskörpers, $A_n = A - \pi r_{\mu}^2$							
A ₁	•	Querschnittsfläche des Ankerkörpers							
A _{1n}	e c	Nettoquerschnittsfläche des Ankerkörpers, $A_{1n} = A_1 - \pi r_0^2$							
A' ₁	e ¢	effekt. A ₁ unter Berücksichtigung der Ankerkörpersteifigkeit							
A' _{1n}	•	effekt. A _{in} unter Berücksichtigung der Ankerkörpersteifigkeit							
t	•	Dicke des Ankerkörpers							
t _s	•	Dicke des Ankerkörpers, bei der er als "steif" anzusehen ist							
d _d	:	Durchmesser eines runden Druckstempels							
d	:	Kantenlänge eines quadratischen Druckstempels							
A _k	:	von Querbewehrung umschlossene Betonquerschnittsfläche							

5

A

: von der Wendelbewehrung umschlossene Betonquerschnittsfläche,

$$A_{w} = \frac{\pi a_{w}^{2}}{4}$$

 ${\rm A}_{\rm b\ddot{u}}$

: von der Bügelbewehrung umschlossene Betonquerschnittsfläche, A_{bü} = a_{bü} b_{bü}

Bewehrung

d _{sw}	•	Wendelstabdurchmesser							
d _{sbü}	•	Bügelstabdurchmesser							
0 _w	•	Abstand zwischen der Oberkante des Versuchskörpers und dem Beginn der Wendelbewehrung							
o _{bü}	4 0	Abstand zwischen der Oberkante des Versuchskörpers und dem Beginn der Bügelbewehrung							
٦,	:	Höhe, über die sich die Wendelbewehrung erstreckt							
1 _{bü}	:	Höhe, über die sich die Bügelbewehrung erstreckt							
a _w	:	Durchmesser der Wendel							
a _{bü}	:	Schenkellänge des Bügels parallel zur Seitenlänge a							
b _{bü}	•	Schenkellänge des Bügels parallel zur Seitenlänge b							
s _w	:	Ganghöhe der Wendel							
s _{bü}	•	Achsabstand der Bügel							
A	•	Querschnittsfläche des Wendelstabes							
A _{sbü}	e 4	Querschnittsfläche des Bügelstabes							

Kennwerte für Festigkeit

Stah1

β ₇ :		Zugfestigkeit	,
------------------	--	---------------	---

- β_s : Streckgrenze
- E_s : Elastizitätsmodul

Beton

ß _w	:	Würfeldruckfestigkeit, erm. n. DIN 1048 (200 mm Kantenlänge)
В _{WN}	:	Nennwert der Würfeldruckfestigkeit
Յ _{Wm}	0 9	mittlere Festigkeit einer Würfelserie
B _{WA}	•	mittl. Festigkeit einer Begleitwürfelserie, erm. bei Versuchsbeginn
В _{WE}	•	mittl. Festigkeit einer Begleitwürfelserie, erm. bei Versuchsende

- β_p : Prismendruckfestigkeit
- β_c : Zylinderdruckfestigkeit ϕ 150 mm
- β_{b7} : zentrische Zugfestigkeit
- β_{S7} : Spaltzugfestigkeit

Kräfte und Spannungen

- F : Kraft
- F_u : Bruchkraft
- F_r : Erstrißkraft
- q₁ : Teilflächenpressung
- q₁₁₁ : Teilflächenpressung beim Bruch

Indizes

- m : mittlere(r)
- k : charakteristisch
- b : Beton
- s : Stahl
 - : Riß

r

- w : Wendel
- bü : Bügel
- 1 : sich auf den Ankerkörper beziehend
- P1 : sich auf den Ankerkörper beziehend
- u : Bruch
- n : netto
- N : Nennwert

Bezogene Werte

- μ : geometrischer volumetrischer Bewehrungsgrad
- *ω* : mechanischer volumetrischer Bewehrungsgrad

1 EINLEITUNG

Die allgemeine bauaufsichtliche Zulassung eines Spannverfahrens erfordert Eignungsversuche. Bei diesen Versuchen ist u.a. die sog. Verbindung Ankerkörper – Beton zu untersuchen, die einen modellhaften Ausschnitt der Krafteinleitungszone im Bauwerk darstellt. Mit dem Versuch an der Verbindung Ankerkörper – Beton sollen Aussagen über das Verhalten des Betons der Verankerungszone und des Ankerkörpers hinsichtlich Tragfähigkeit und Versagensart, Verformung und Rißbildung gewonnen werden. Das Verhalten wird von zahlreichen geometrischen werkstoffabhängigen und konstruktiven Parametern bestimmt.

Weil eine beantragte Reihe von Verankerungen aus wirtschaftlichen Gründen meist nur mit wenigen Versuchen belegt wird, verbleibt bei der Beurteilung eine Aussageunsicherheit. Diese Aussageunsicherheit wird kompensiert durch die Erfahrung der Sachverständigen, durch Vergleich mit anderen Ergebnissen, also durch Aspekte aus dem Bereich "Vorinformation".

Diese Situation einer verbleibenden Aussageunsicherheit liegt auch bei der Beurteilung anderer Zulassungsgegenstände vor. Aus diesem Grund hat das Institut für Bautechnik (IfBt) eine Richtlinie über "Grundlagen zur Beurteilung von Baustoffen, Bauteilen und Bauarten im Prüfzeichen- und Zulassungsverfahren" [145] auf dem Fundament der GRUSIBAU [146] erarbeitet. In ihr werden statistische Methoden vorgelegt, mit denen aus Stichproben begrenzten Umfangs charakteristische Werte des Verhaltens abgeleitet werden können. Eine wesentliche Rolle spielen dabei Rechenmodelle, mit denen der begrenzte Stichprobenumfang kompensiert werden kann.

Im vorliegenden Bericht werden vorhandene Rechenmodelle zur Vorhersage der Tragfähigkeit der Verbindung Ankerkörper – Beton zusammengestellt, diskutiert und ggf. modifiziert. Die Eignung einiger Rechenmodelle wird dann über den Vergleich mit Versuchsergebnissen bewertet.

Die Untersuchung der Eignung von Rechenmodellen ist nötig, um bei stets begrenztem Versuchsumfang

- mit Hilfe der Statistik zu schlüssigen Aussagen zu gelangen und um
- den vorhandenen Erfahrungsbereich zu erweitern, zu sichern und zu dokumentieren.

2 PRÜFUNG DER VERBINDUNG ANKERKÖRPER – BETON UND ANFORDERUNGEN NACH IfBt-RICHTLINIEN

2.1 Notwendigkeit

Der Vergleich zwischen Versuchsergebnissen und den heute verfügbaren Rechenmodellen zeigt, daß die rechnerische Vorhersage der Tragfähigkeit, ganz besonders aber des Verformungsverhaltens unter Dauervorspannung nur recht unzuverlässig gelingt. Aus diesem Grunde wird die Eignung der Verbindung allenthalben durch Versuche nachgewiesen, Rechenmodellen werden allenfalls unterstützende Aufgaben zugedacht.

In der Bundesrepublik Deutschland erfolgt die Eignungsprüfung nach IfBt-Richtlinien [1], [2] sowie nach Festlegungen des SVA [3-5]. Hierauf wird im folgenden eingegangen.

2.2 Versuchskörper

Der Versuchskörper ist in Bild 2.1 dargestellt.

Bild 2.1: Versuchskörper nach [1]

Er stellt einen modellhaften Ausschnitt aus dem Tragwerk dar, der als Krafteinleitungszone angesehen werden kann. Seine Seitenabmessungen entsprechen den Kleinstwerten der Achsabstände der Verankerungen im Bauwerk für die jeweilige Betonfestigkeitsklasse.

2.3 Beton des Versuchskörpers, Festigkeitsanforderungen

Der Beton des Versuchskörpers soll in seiner Zusammensetzung, Verdichtung usw. einem in der Praxis üblichen Beton für Spannbetonbauwerke entsprechen. Der Versuchskörper ist stehend oder liegend zu betonieren und nach DIN 1048 zu lagern.

Die Prüffestigkeit des Betons richtet sich nach der beantragten Betonfestigkeitsklasse. Sie wird durch Erhärtungsprüfung an 20 cm-Begleitwürfeln festgestellt. Die Würfeldruckfestigkeit soll betragen:

zu	Beginn	der	Prüfung:	β _{wa}	<u>≤</u> 0	,8 В _{WN}	(2.1)
am	Ende	der	Prüfung:	ßwf	<u><</u>	B _{WN}	(2.2)

2.4 Prüfung

Die Prüfung erfolgt entweder im Dauerstandversuch oder im Druckschwellversuch. Die Belastung erfolgt kraftgesteuert in Laststufen. Nach Abschluß der Laststufen wird der Körper stetig bis zum Bruch belastet. In der Regel wird der sog. Druckschwellversuch durchgeführt, da hierbei auf lange Standzeiten verzichtet werden kann und somit die Prüfung eines Versuchskörpers nur wenige Stunden in Anspruch nimmt. Beim Druckschwellversuch ist als Oberlast F^0 die zulässige Vorspannkraft beim kurzfristigen Überspannen nach DIN 4227, als Unterlast 0,15 F^0 aufzubringen. Durch die zyklische Belastung wird eine deutliche Ausprägung der Risse erreicht. Die Vergleichbarkeit von Dauerstand- und Druckschwellversuch wird in [6] gezeigt.

2.5 Anforderungen

Um für die Beanspruchung des Betons eine ausreichende Sicherheit gegen Versagen und das Auftreten schädlicher Rißbreiten zu gewährleisten, werden in [4] folgende Anforderungen an ein bedingungsgemäßes Versuchsergebnis gestellt:

- Bei der Erstbelastung darf kein Riß vor der Laststufe 0,4 F_{N} auftreten.
- Die maximale Rißbreite beim erstmaligen Erreichen der Oberlast darf höchstens 0,10 mm betragen.
- Im letzten Lastwechsel darf die maximale Rißbreite bei Unterlast nicht größer als 0,10 mm sein.
- Der Verlauf der Längsdehnung ist aufzutragen. Die Zunahme der Längsdehnungen muß abklingen.
- Die erforderliche Bruchlast muß betragen:

 $erfF_{\mu} \ge 1.8 \text{ zul F}$ (2.3)

mit zul F, der zulässigen Vorspannkraft nach DIN 4227.

Vorstehende Anforderung gilt für den Fall, daß zum Zeitpunkt der Bruchbelastung des Versuchskörpers die Betondruckfestigkeit $\beta_{WE} = \beta_{WN}$ ist. Ist die ermittelte Betondruckfestigkeit β_{WE} im Versuch geringer als die Nennfestigkeit, wird die Hochrechnung der Bruchlast F_u im Verhältnis der Würfeldruckfestigkeiten um max. ca. 10 % zugelassen. Somit wird die Anforderung Gl. (2.3) modifiziert zu:

$$erfF_{u} \ge 1.8 \text{ zul } F \frac{B_{WE}}{B_{WN}}$$
(2.4)

 $\geq 1,6$ (2.5)

- Ort und Art des Versagens im Versuch sind festzustellen.

3 VORGEHEN BEI DER ERARBEITUNG VON MODELLEN ZUR RECHNERISCHEN BESCHREIBUNG DES TRAGVERHALTENS DER VERBINDUNG ANKERKÖRPER – BETON

Sollen Rechenmodelle das Tragverhalten des Versuchskörpers zutreffend und umfassend beschreiben, so müssen sie folgendes leisten:

- Beschreibung des Versagens infolge Betondruckbruch im unteren, schwach bewehrten Teil des Versuchskörpers
- Beschreibung des Versagens im oberen Teil des Versuchskörpers
- Ermittlung der Erstrißlast

- Ermittlung der Rißbreite bei Erreichen der ersten Oberlast sowie bei Unterlast im letzten Lastwechsel
- Erfassung des Stabilisierungsverhaltens von Betondehnungen und Rißbreiten
- Ermittlung der Ankerkörperverformung sowie dessen Einsenkung in den Beton.

Aufgrund des komplexen Tragverhaltens im Krafteinleitungsbereich sowie der zum Teil sehr unterschiedlichen, konstruktiven Ausbildung der Ankerkörper und der Verankerungszone bei den einzelnen Vorspannsystemen erscheint eine rechnerische Erfassung, insbesondere der drei zuletzt genannten Punkte außerordentlich schwierig. Man wird deshalb in Zukunft auf Eignungsversuche nicht verzichten können, insbesondere dann, wenn eine wirtschaftliche Dimensionierung der Verankerung gewünscht wird. Mit Hilfe von Rechenmodellen kann jedoch der Versuchsumfang reduziert werden. Weiterhin können Rechenmodelle für Vorüberlegungen bei der Dimensionierung der Verankerungszone hilfreich sein oder zur Umrechnung bereits zugelassener Systeme auf z.B. andere Betongüten oder höhere zulässige Vorspannkräfte dienen.

Im folgenden Abschnitt wird zunächst das Tragverhalten eines teilflächenbelasteten Körpers, das sich beim Übergang vom ungerissenen in den gerissenen Zustand ändert, beschrieben. Auf die Versagensmechanismen bei unbewehrten und bewehrten Körpern wird eingegangen. Abschnitt 4.2 beschreibt aus der Literatur bekannte Methoden zur Ermittlung von Spannungen und Spaltzugkräften im ungerissenen Zustand. Die Methoden werden vergleichend gegenübergestellt und diskutiert. Dies ist notwendig, da für die Bestimmung der Erstrißlast die Kenntnis der Spannungsverhältnisse im ungerissenen Zustand unerläßlich ist. Für die Entwicklung von Rechenmodellen zur Ermittlung von Rißbreiten ist die Kenntnis der Last, bei der der Erstriß auftritt, erforderlich. Modelle zur rechnerischen Bestimmung der Erstrißlast und der Tragfähigkeit werden im Abschnitt 5 behandelt. Im weiteren werden ausgewählte Rechenmodelle anhand von zusammengestellten Versuchsergebnissen überprüft, und es wird eine statistische Auswertung vorgenommen.

4 TRAGVERHALTEN TEILFLÄCHENBELASTETER KÖRPER

4.1 Beschreibung des Tragverhaltens

Die Vorspannkraft wird über den Ankerkörper des Spannglieds konzentriert, also über Teilflächenpressungen, in den Beton eingeleitet. Bild 4.1 zeigt qualitativ den Verlauf der Trajektorien der Hauptspannungen in einer teilflächenbelasteten Scheibe im Zustand I. Man erkennt, daß sich die Kraftausbreitung im wesentlichen im oberen Scheibenbereich mit der Höhe h \approx a abspielt. Dort entstehen in gewisser Tiefe von der Unterkante der Ankerplatte normal zur Beanspruchungsachse gerichtete Querzugspannungen σ_y [7].

Mit der Ermittlung des Spannungsfeldes im ungerissenen Körper haben sich viele Arbeiten befaßt. Für die Beurteilung des Verformungsverhaltens und der Tragfähigkeit der Verbindung Ankerkörper – Beton besitzen Arbeiten, die den ungerissenen Zustand voraussetzen, nur einen untergeordneten Wert. Schließlich ist davon auszugehen, daß in der Krafteintragungzone feine Risse vorliegen. Zustand I-Modelle können bestenfalls die Erstrißbildung voraussagen, ab dann sind sie nicht mehr gültig.

Bild 4.1: Verlauf der Hauptspannungstrajektorien [7]

12

Die Querzugspannung σ_y im Zustand I hängt von vielen Parametern ab. Nach [8] bildet sich im Bereich der größten Spannungen σ_y ein erster mittiger Riß, Bild 4.2. Damit ist aber auch beim unbewehrten Körper die Tragfähigkeit noch nicht erschöpft.

Mit Steigerung der Kraft bilden sich weitere, strahlenförmige Risse unterhalb der Ankerplatte. Im von diesen Rissen durchsetzten Bereich plastiziert der Beton, ein Bruchkeil bildet sich. Dieser Bruchkeil spaltet den Körper.

Beim bewehrten Versuchskörper ist der Abstand von der Erstrißkraft bis zur Tragfähigkeit größer als beim unbewehrten Körper. Auch nach Bildung eines Bruchkegels bzw. einer -pyramide im Inneren des Körpers ist eine Kraftsteigerung - in Abhängigkeit von der umschlingenden Bewehrung noch möglich.

Bild 4.2: Bruchbild einer teilflächenbelasteten Scheibe [9]

4.2 Ermittlung der Spannungen im ungerissenen Zustand

4.2.1 Allgemeine Bemerkungen

Die Kenntnis des Spannungsverlaufs im Kraftausbreitungsbereich ist zum besseren Verständnis des Tragverhaltens notwendig. Sie bildet die Grundlage für Rechenmodelle zur Ermittlung der Erstrißlast sowie des Ortes des Auftretens des Erstrisses. Zahlreiche Veröffentlichungen - [7 - 12], [14 - 80] befassen sich mit der Ermittlung der Spannungen in teilflächenbelasteten Körpern. Auf ihre Darstellung muß hier verzichtet werden. Zusammenfassende Übersichten zu wichtigen Arbeiten werden in [7], [50] und [57] gegeben. Im folgenden werden die Methoden der Spannungsermittlung kurz angesprochen.

4.2.2 Methoden der Spannungsermittlung

Einfache Näherungslösungen

Mörsch [14] untersuchte 1924 die Beanspruchung der Gelenkquader von Dreigelenkbogenbrücken und gibt einfache Beziehungen zur Ermittlung der maximalen Spaltzugspannung sowie der Gesamtspaltzugkraft für teilflächenbelastete Scheiben an. Gaynor [58] entwickelte Beziehungen für die Ermittlung der Spaltzugspannungen und der Gesamtspaltzugkraft von teilflächenbelasteten Scheiben. Außerdem macht er Angaben zur Ermittlung der Gesamtspaltzugkraft von durch quadratische Ankerplatten teilflächenbelastete Prismen im Bereich von 0,3 $\leq a_i/a \leq 0,7$, wobei auch ein ggf. vorhandenes Hüllrohr berücksichtigt werden kann.

Theoretische Lösungen

Die strenge Lösung auf der Grundlage der Elastizitätstheorie gelang Iyengar für das ebene [23, 24] und das räumliche [25 - 27] Problem. Nicht voll befriedigende Lösungen hatten vorher Guyon [19] und Douglas u. Trahair [28] angegeben. Weitere Arbeiten stammen von Bleich [15], Magnel [18] und Schleeh [59].

Lösungen mit der Methode der Finiten Elemente

Das Lastausstrahlungsproblem wurde mit der FE-Methode u.a. von Yettram/Robbins [30 - 32], Stone/Breen [11, 33, 34], Fenwick/Lee [35], Samkari [36], Schlaich/Schäfer [10] und Ukhagbe [37] untersucht.

Untersuchungen mit spannungsoptischen Methoden

Kenntnisse über die Spannungsverhältnisse im Kraftausbreitungsbereich teilflächenbelasteter Scheiben wurden durch Anwendung spannungsoptischer Methoden erlangt. Ergebnisse wurden von Tesar [38], Hiltscher u. Florin [39 - 41], Christodoulides [43 - 46] und Rasheeduzzafar et al. [121] veröffentlicht.

Experimentelle Untersuchungen

Zielinski u. Rowe [12, 50, 51] und Taylor [75] ermittelten den Verlauf der Querzugspannungen aus Dehnungsmessungen an der Betonoberfläche von Versuchskörpern. Die so ermittelten Spannungen sind deutlich größer als die z.B. nach Iyengar errechneten.

4.2.3 Vergleichende Darstellung von Ergebnissen

In der Literatur werden die Spaltzugspannungen in Abhängigkeit von Körperund Lastfläche in unterschiedlicher Weise dargestellt. Während Guyon und Iyengar die Spaltzugspannung max σ_y , bezogen auf die mittlere Betonspannung q = F/A, in Abhängigkeit von a_1/a darstellen (Bild 4.3), wählten Hiltscher u. Florin die Darstellung der Spaltzugspannung, bezogen auf die Teilflächenpressung $q_1 = F/A_1$, in Abhängigkeit von a/a_1 (Bild 4.4).

Hiltscher u. Florin weisen darauf hin, daß bei der Darstellung nach Guyon-Iyengar ein konstruktiv wichtiges, relatives Maximum der auf die Lastintensität bezogenen Spaltzugspannung übersehen wird. Die Darstellung nach Hiltscher u. Florin macht dieses Maximum zwar sichtbar, erschwert aber die Ablesung der Werte für den bei der Prüfung von Verankerungszonen von Spannverfahren üblichen Bereich von $a/a_1 = 1$ bis 2. Die Verfasser halten daher die Darstellung der Spaltzugspannung, bezogen auf $q_1 = F/A_1$, in Abhängigkeit von A_1/A (entspricht a_1/a bei teilflächenbelasteten Scheiben) für am besten geeignet. Hinsichtlich der Größe der maximalen Spaltzugspannung max σ_y bei teilflächenbelasteten Scheiben stimmen die Ergebnisse von Guyon [20] und Iyengar [24] nahezu überein. Sie lassen sich sehr gut mit folgenden Gleichungen beschreiben:

$$\max \sigma_{y} = 0,44 \frac{F}{A} (1 - \frac{a_{1}}{a})$$
(4.1)

oder

$$\frac{\max \sigma_{y}}{q_{1}} = 0,44 \frac{A_{1}}{A} (1 - \frac{a_{1}}{a})$$
(4.2)

Im Bild 4.5 wird dieser Zusammenhang dargestellt. Es ergibt sich ein Maximum von max $\sigma_{\sqrt{q_1}} = 0,11$ für $a_1/a = 0,5$.

Bild 4.5: max σ_y , bez. auf $q_1 = F/A_1$, in Abhängigkeit von a_1/a bei Scheiben

Bild 4.6: $\max \sigma_y(y = 0, z = 0)$, bez. auf $q_1 = F/A_1$, in Abhängigkeit von A_1/A bei Zylindern bzw. quadrat. Prismen

Bei teilflächenbelasteten Zylindern oder quadratischen Prismen sind die Spaltzugspannungen nicht konstant über den Querschnitt verteilt. Die Ergebnisse der theoretischen Arbeiten unterscheiden sich zum Teil erheblich. In Bild 4.6 ist max σ_y/q_1 in Abhängigkeit von A₁/A in der Achse (y = 0, z = 0) des Körpers dargestellt. Hier ist kein großer Unterschied zwischen den Ergebnissen festzustellen. Zum Vergleich ist die Beziehung nach Gl. (4.2) eingetragen. Für A₁/A > 0,2 ergibt sich eine befriedigende Übereinstimmung mit den Ergebnissen von Hiltscher u. Florin [29].

Anders verhält es sich, wenn man die Ergebnisse für die Oberfläche (y = 0, z = 0, 5 a) betrachtet, die in Bild 4.7 dargestellt sind. Während nach Iyengar/Prabhakara [26] die maximalen Spaltzugspannungen an der Oberfläche kleiner sind als im Zentrum, ergibt sich nach Yettram/Robbins [30] der umgekehrte Fall. Die nach Yettram/Robbins ermittelten max. Spaltzugspannungen ergeben etwa doppelt so hohe Werte wie nach Iyengar/Prabhakara. Zum Vergleich ist in Bild 4.7 ebenfalls die Beziehung nach Gl. (4.2) dargestellt.

Bild 4.7: max $\sigma_y(y = 0, z = 0, 5 a)$, bez. auf $q_1 = F/A_1$, in Abhängigkeit von A_1/A bei guadratischen Prismen

Zusammenfassend erscheint es ausreichend, die maximalen Spaltzugspannungen im ungerissenen Zustand mit Hilfe von Gl. (4.1) zu ermitteln. Von Interesse ist außerdem die Kenntnis des Nulldurchgangs der Spaltzugspannungen sowie die Lage des Maximums. Die Forschungsarbeiten zeigen hier, insbesondere beim räumlichen Problem, unterschiedliche Ergebnisse. Sie sollen im einzelnen nicht dargestellt werden. Lediglich die vereinfachenden Annahmen von Guyon [21] seien hier angegeben. Für den Nulldurchgang der Spaltzugspannungen gibt Guyon an:

$$x_{\sigma_y=0} = 0,5 \ a \sqrt{\frac{a_1}{a}}$$
 (4.3)

und für den Ort des Maximums der Spaltzugspannungen:

$$x_{\max \sigma_y} = a (0, 2 + 0, 5 \frac{a_1}{a})$$
 (4.4)

Die Spaltzugspannungen sind an der Stelle x = a auf Null abgeklungen. Die Längsdruckspannungen sind ab hier gleichförmig verteilt.

4.3 Ermittlung der Gesamtspaltzugkraft

Eine befriedigende Übereinstimmung der theoretischen Ergebnisse ist bei der Gesamtspaltzugkraft festzustellen. Eine Gegenüberstellung erfolgt für teilflächenbelastete Scheiben in Bild 4.8 sowie für quadratische Prismen in Bild 4.9.

Mörsch gibt in [14] zur Ermittlung der Gesamtspaltzugkraft Z bei teilflächenbelasteten Scheiben folgende Beziehung an:

$$Z = \frac{0.25 \text{ F} (a-a_1)}{h}$$
(4.5)
Mit h \approx a folgt aus Gl. (4.5):

$$Z = 0.25 \text{ F} (1 - \frac{a_1}{a})$$
(4.6)

Wie aus den Bildern 4.8 und 4.9 ersichtlich ist, beschreibt Gl. (4.6) die theoretischen Ergebnisse für $a_1/a > 0,1$ hinreichend genau.

Bild 4.8: Spaltzugkraft Z, bez. auf F in Abhängigkeit von a₁/a bei Scheiben

1.0

Abschließend wird der Nutzen der Ermittlung von Spaltzugkräften nach E-Theorie für die Berechnung der Bewehrungsbeanspruchung über den gesamten Beanspruchungsbereich erläutert. Hierzu werden Messungen im Versuch den Ergebnissen nach E-Theorie bzw. Mörsch gegenübergestellt.

Wurm u. Daschner berichten in [47] u.a. über Ergebnisse von Versuchen an teilflächenbelasteten, quadratischen, wendelbewehrten Prismen. Mit Hilfe eines bügelförmigen Meßgerätes wurde die Durchmesseränderung der Wendel festgestellt, indem die Änderung der Entfernung zwischen auf zwei gegenüberliegenden Probekörperseiten an der Wendel angebrachten Meßpunkten gemessen wurde. Aus der gemessenen Durchmesseränderung wurde eine mittlere Stahlzugkraft der Wendel errechnet. In Bild 4.10 ist die Zugkraft in der gesamten Wendel in Abhängigkeit von der Belastung für Versuche mit A/A $_1$ = 4 dargestellt.

19

Bild 4.10: Zugkraft in der Wendel (β_{Wm} = 330 kp/cm²; BSt I), nach [47]

Bei geringer Beanspruchung ist der Betonkörper ungerissen. Der Beton beteiligt sich an der Zugkraftaufnahme. Bei beginnender Rißbildung nimmt der von der Bewehrung aufzunehmende Anteil an der Gesamtzugkraft zu. Der Übergang vom ungerissenen zum gerissenen Zustand wird im Z-F-Diagramm durch einen mehr oder weniger scharf ausgeprägten Knick gekennzeichnet. Unabhängig von der Bewehrungsmenge haben alle Z-F-Diagramme den gleichen Verlauf. Allerdings ist eine Tendenz erkennbar, daß hoch bewehrte Versuchskörper eine etwas größere Zugkraft in der Wendel aufweisen als schwächer bewehrte. Die Dehnsteifigkeit der Wendel hat demzufolge einen erkennbaren Einfluß auf die in der Wendel auftretenden Kräfte. Nach [47] setzt sich die Zugkraft aus drei Anteilen zusammen, die sich wie folgt beschreiben lassen:

 a) Die aus der Teilflächenbelastung herrührende Umlenkkraft (Spaltzugkraft) für die gekrümmten Druckspannungstrajektoren stellt den ersten Anteil dar. Diese Kraft kann mit Hilfe der E-Theorie berechnet werden.

- b) Die Lastplatte wird im Verlauf des Versuchs immer weiter in den Probekörper eingedrückt (Ausbildung eines Spaltkegels unter der Lastplatte). Aus geometrischen Gründen muß sich die Wendel beim Eindrücken der Lastplatte aufweiten.
- c) Durch die Wendel wird die Querdehnung des Kernbetons behindert, was zu Zugspannungen in der Wendel führt. Darüber hinaus muß die Wendel den nötigen Seitendruck liefern, um unter der Lastplatte den dreiachsigen Spannungszustand zu erzeugen. Diese Wirkung der Wendel tritt auch bei vollflächiger Belastung (A/A₁ = 1) auf.

Im gerissenen Querschnitt weist die Zugkraft im Versuch eine wesentlich steilere Gradiente auf als die nach E-Theorie bzw. nach Mörsch ermittelte Spaltzugkraft. Wie die vorstehenden Ausführungen zeigen, dienen die nach E-Theorie ermittelten Spaltzugkräfte und -spannungen allenfalls zur Bestimmung der Erstrißlast. Aus ihnen ist die Beanspruchung der Bewehrung, insbesondere im bruchkraftnahen Bereich, sowie die Versagenslast nicht zu ermitteln.

5 BRUCHMODELLE

5.1 Vorbemerkungen

Bruchmodelle sind Rechenmodelle zur Vorhersage der Tragfähigkeit. Bei der Verbindung Ankerkörper - Beton sind zwei Zonen zu unterscheiden: der unmittelbare an den Ankerkörper anschließende Bereich der Krafteinleitung und der untere, schwach bewehrte Bereich gleichmäßiger Druckspannungsverteilung.

Setzt man für den schwach bewehrten Bereich ein homogenes Druckspannungsfeld voraus, so ist für diesen ein einfaches Modell des Betondruckbruchs herleitbar. Der Bereich der Krafteinleitungszone ist hingegen erheblich schwerer faßbar. Viele Arbeiten haben sich mit den Spannungen im teilflächenbelasteten, ungerissenen Körper befaßt ([7 - 12], [14 - 80] u.a.). Damit kann man nur die Erstrißkraft und nicht das Versagen beschreiben. Im Bereich der Krafteinleitungszone ist das Versagen des unbewehrten Körpers unter konzentrierter Teilflächenpressung ein Zersprengen, Spalten unter mehrachsiger Beanspruchung. Eine umschlingende Bewehrung vermag diesen Vorgang zu bremsen oder zu verhindern.

Den bisherigen Modellen liegen unterschiedliche mechanische Konzepte zugrunde. Sie lassen sich wie folgt unterteilen:

- empirische Modelle,
- Stabwerksmodelle,
- Modell der umschnürten Säule,
- Erstrißmodelle, bei denen das Erreichen der Betonzugfestigkeit durch die Spannungen im Zustand I als Versagen charakterisiert wird, und
- Modelle, die die Bildung eines Bruchkeils unterstellen, der den Körper spaltet.

5.2 Rechenmodell des Betondruckbruchs

Tritt im oberen unmittelbaren Krafteinleitungsbereich der Verbindung Ankerkörper – Beton ein Versagen durch Sprengen des Betons und/oder Fließen der Spaltzugbewehrung nicht auf, so versagt der Versuchskörper in seinem unteren, schwach bewehrten Teil durch Betondruckbruch.

Weil der Versuchskörper nach den Prüfrichtlinien eine Schlankheit von h/a \geq 2 besitzt, ist der maßgebende Werkstoffwiderstand die Prismendruckfestigkeit des Betons B_{pr} zum Zeitpunkt der Bruchbelastung.

Um hierüber Auskunft zu erhalten, wird die Betondruckfestigkeit meist an Würfeln bestimmt, die ebenso wie der Versuchskörper nachbehandelt und gelagert werden (Erhärtungsprüfung). Dabei ist zu bedenken, daß der Beton des Versuchskörpers gegenüber jenem der Würfel hinsichtlich Verdichtung, Erhärtung und Beanspruchungsgeschichte etc. Unterschiede aufweist. Vernachlässigt man diese Einflüsse, so kann man den Rechenwert der Prismendruckfestigkeit des Betons des Versuchskörpers wie folgt schätzen:

$$B_{PE} \approx 0,85 B_{WE}$$

Der Gestaltfaktor 0,85 ist ein Rechenwert, der in vielen Normen verwendet wird. Es wird bezweifelt, daß er von der Betongüte völlig unabhängig sein soll.

(5.1)

Weil β_{WE} als Mittelwert des zugehörigen Satzes der 20 cm-Erhärtungswürfel definiert ist, ist auch β_{PE} als mittlere Festigkeit des unteren Bereichs zu verstehen. Damit ist die Tragfähigkeit

rechn $F_{\mu} \approx 0.85 \ B_{WE} \ A_{n}$ (5.2)

Mit A_n der Betonnettofläche, also nach Abzug des Hüllrohrquerschnitts, wird Gl. (5.2) zu verifizieren sein. Dies erfolgt in Abschn. 6.4.2.

5.3 Rechenmodelle des Versagens im Krafteinleitungsbereich unbewehrter Betonkörper

5.3.1 Überblick über Rechenmodelle

Der Krafteinleitungsbereich - unmittelbar anschließend an die Verankerung ist im Regelfall durch eine Spaltzugbewehrung umschlossen. Wenn hier auf das Tragverhalten unbewehrter Körper eingegangen wird, so dient das zum Aufzeigen jener Parameter, die das Zugversagen des Betons (Spalten) beeinflussen.

Mit dem Problem der aufnehmbaren Teilflächenpressung q_{iu} unterhalb der Ankerplatte haben sich zahlreiche Forscher sowohl experimentell als auch theoretisch befaßt [8], [9], [47], [48], [52], [53], [81 - 112], [116 - 120] u.a..

Die Rechenmodelle besitzen im allgemeinen die Form

$$q_{1\mu} = \beta_p \cdot f(A/A_1) \tag{5.3}$$

mit A der Querschnittsfläche des Körpers und mit A_1 der Ankerplattengrundrißfläche. Für den Körper mit einem Hüllrohr bzw. für die Ankerplatte mit Zentralloch treten an die Stelle dieser Flächen die Nettoflächen A_n bzw. A_{1n} . Hierüber folgt später mehr. Die aufnehmbare Teilflächenpressung q_{1u} ist selbst nur rechnerischer Ausdruck des Zugversagens durch Sprengen im Krafteinleitungsbereich und beschreibt nicht etwa primär das Zerdrücken des Betons unter der Ankerplatte. Mit Gl. (5.3) kann man einen Ausdruck für die Tragfähigkeit anschreiben:

$$F_{u} = q_{1u} A_{1} = B_{p} A \frac{A_{1}}{A} \cdot f(\frac{A}{A_{1}}), \qquad (5.4)$$

dessen Analogie zu Gl. (5.2) auffällt.

Fast alle Modelle stellen Kombinationen aus einem mechanisch begründeten Ansatz und einer aus dem Versuch abgeleiteten empirischen Korrektur dar. Im folgenden werden nur einige der Modelle näher behandelt. Es sind solche, die zum einen eine brauchbare Vorhersagefähigkeit und zum anderen die wesentlichen Parameter des Versagens aufzeigen.

5.3.2 Das Wurm/Daschner-Modell für den unbewehrten Körper

Es lautet nach [48]:

$$q_{1u} = B_p (0.85 + 0.15 \frac{A}{A_1}) \quad \text{mit } 2 \le \frac{A}{A_1} \le 9$$
 (5.5)

bzw.

$$F_{u} = B_{p} A \frac{A_{1}}{A} (0,85 + 0,15 \frac{A}{A_{1}}), \qquad (5.6)$$

bz₩.

$$F_{u} = B_{p} A (0, 15 + 0, 85 \frac{A}{A_{1}})$$
(5.7)

Die Prismendruckfestigkeit wurde aus der mittleren Würfeldruckfestigkeit von 20 cm-Würfeln mit $B_p \approx 0,76$ B_W abgeleitet. In Bild 5.1 erfolgt eine Gegenüberstellung der rechnerischen Linie nach Gl. (5.5) und von Versuchswerten zahlreicher Autoren (s. Tab. Al). Die Vorhersagefähigkeit von Gl. (5.5) ist sehr gut.

Bild 5.1: Tragfähigkeit des Krafteinleitungsbereichs eines unbewehrten Betonkörpers - Vergleich zwischen Versuchswerten und dem Wurm-Daschner-Modell

5.3.3 Das Hawkins-Modell

Hawkins betrachtet in [89] das Betonprisma unter einer mittigen Kraft auf eine quadratische Ankerplatte wirkend, s. Bild 5.2. Er unterstellt die Bildung eines Bruchkegels, dessen Form über das Mohr-Coulomb-Kriterium bestimmt wird. Prisma und Ankerplatte weisen kein Zentralloch auf. Hawkins umschließt den Bruchkegel durch übereinander liegende Betonscheiben. Wird in der obersten Scheibe die Betonzugfestigkeit β_{bZ} erreicht, so tritt Zugversagen des Systems ein. Sein Bruchmodell lautet:

$$q_{1u} = B_p \left[1 + \frac{B_{bZ}}{B_p} \cot^2 \alpha \left(\sqrt{\frac{A}{A_1}} - 1\right)\right]$$
 (5.8)

Hierin ist: $\alpha = 45^{\circ} - \varphi/2$, mit φ dem Winkel der inneren Reibung. α ist demnach der halbe Öffnungswinkel des Bruchkonus. Trotz mechanischer Schwächen vermag dieses Modell die bisherigen Versuche an unbewehrten Körpern gut zu beschreiben, wie Bild 5.2 zeigt. Dabei wurde wie zuvor $\beta_P \approx \beta_C \approx 0,76 \beta_W$ gesetzt, um bei A₁/A = 1 einzuhängen.

Bild 5.2: Tragfähigkeit des Krafteinleitungsbereichs eines unbewehrten Betonkörpers - Vergleich zwischen Versuchswerten und dem Hawkins-Modell

5.3.4 Das Shao-Huai-Modell

Shao-Huai et al. [130] geben folgende Beziehung für q_{1u} an:

$$q_{1u} = \beta_p \sqrt{\frac{A_1}{A}}$$
(5.9)

Gl. (5.9) wird in Bild 5.3 Versuchswerten gegenübergestellt. Die Prismen-= Zylinderfestigkeit wurde zu 0,7 B_W angesetzt. Die hier nicht näher behandelten Ansätze von Niyogi [105], Shengyuan et al. [131], Muguruma und Okamoto [103] sowie von Nelissen [104] sind der Gl. (5.9) ähnlich. Auch das MC-90-Modell folgt Gl. (5.9).

Bild 5.3: Tragfähigkeit des Krafteinleitungsbereichs eines unbewehrten Betonkörpers - Vergleich zwischen Versuchswerten und dem Shao-Huai-Modell

5.3.5 Das RVEM-Konzept

Reinke [8] hat für das Zugversagen von Beton im teilflächenbelasteten Körper das RVE-Konzept entwickelt (s. auch Iványi [150]). Hiernach tritt das Zugversagen des Betons dann ein, wenn sich in einer "Repräsentativen Volumeneinheit RVE" ein Mittelwert der Zugspannungen gleich der Betonzugfestigkeit einstellt. Damit wird der Plastizierung von gezogenem Beton in dessen post-kritischem σ - ε -Bereich Rechnung getragen. Die RVE kann als Betonwürfel mit der Kantenlänge d_{RVE} \approx 2,5 \div 3 max d_K, Größtkorndurchmesser, gedeutet werden.

Baumann [9] wendet dieses Konzept nun auch für die Druck-Zugbeanspruchung an, wobei er von der biaxialen Bruchumhüllenden des Betons mit Vereinfachungen ausgeht. Mit dem Verhältnis $\beta_{\rm bZ}/\beta_{\rm p} = 1/11$

mit β_{bZ} der zentrischen Zugfestigkeit des Betons, berechnet Baumann sogen. Tragfähigkeitslinien für Scheiben, wie in Bild 5.4 gezeigt. Die dick ausgezogene Linie für $d_{RVE}/a = 0,2$ ist für ein Größtkorn von 32 mm und für übliche Betonabmessungen a praxisrelevant. In Bild 5.4 wird auch ein Vergleich mit Versuchen vorgenommen.

Bild 5.4: Tragfähigkeitskennlinien einer unbewehrten Betonscheibe nach dem RVEM-Konzept [9]

Transformiert man Baumanns Kurve für $d_{RVE}/a = 0,2$ auf die in Bild 5.3 benutzte Darstellung, so erkennt man, daß sie die Versuchsergebnisse mit $1/a \ge 2$ im Bereich $A_1/A \ge 0,1$ gut beschreibt. Das rechnerische Tragfähigkeitsminimum von Bild 5.4 bei $a/a_1 = 1,5 \triangleq A_1/A = 0,667$ tritt in Bild 5.5 nur als sanfter "Hängebauch" zutage, der im übrigen von den Versuchen nicht bestätigt wird.

Bild 5.5: Tragfähigkeit des Krafteinleitungsbereichs eines unbewehrten Betonkörpers – Vergleich zwischen Versuchswerten und dem RVEM-Konzept

5.3.6 Bewertung der Modelle

Die hier beschriebenen Modelle sind Sprengbruchmodelle, wobei allerdings die Bruchart Sprengbruch bei Annäherung von $A_1/A \rightarrow 0$ in den Druckbruch übergeht. Die Modelle bauen auf einer mechanischen Basis auf und werden über das Experiment modifiziert. Die beste Vorhersage wird durch das Wurm-Daschner-Modell erzielt.

5.4 Rechenmodelle des Versagens im Krafteinleitungsbereich bewehrter Betonkörper

5.4.1 Vorbemerkung

Beginnend mit den ersten vertikalen Rissen im Krafteinleitungsbereich,

29

springt die umschlingende Bewehrung an. In Abhängigkeit zahlreicher Parameter vermag die Bewehrung das Sprengen zu verzögern, zu verhindern. Die Ableitung eines mechanisch begründeten Rechenmodells bereitet seit jeher Schwierigkeiten. In der Folge werden einige Modelle diskutiert, die zum Teil auf völlig unterschiedlichen Ausgangssituationen beruhen.

5.4.2 Das Szabo-Modell

Szabo entwickelte ein Modell [113] direkt für den Versuchskörper der Verbindung. Zusätzlich zur Drucktragfähigkeit im schwach bewehrten Teil befaßte er sich mit der Tragfähigkeit der Krafteinleitungszone, die von einer Wendel umschlossen sei. Bild 5.6 zeigt die Geometrie und die Definitionen des Modells. Die gelochte Ankerplatte ist kreisrund, der Versuchskörper ein guadratisches Prisma a x a mit Loch.

Bild 5.6: Szabo's Modell

Szabo geht davon aus, daß sich unter der Ankerplatte ein Bruchkegel bildet, der den Körper im Krafteinleitungsbereich auseinandertreibt. Versagen tritt ein, wenn die Wendelbewehrung über die Höhe 2c fließt, Bild 5.6. Dabei gleitet der Konus gerade. Ausgehend von der Annahme, daß die auf den Kegelmantel wirkenden Kräfte s über diesen gleichmäßig verteilt sind und mit der Flächennormalen auf den Kegelmantel den Winkel φ der inneren Reibung einschließen, bestimmt Szabo die Tragfähigkeit bei Stahlfließen über das Minimum der Formänderungsenergie.

Ohne weitere Ableitungen lautet nun die Tragfähigkeit bei Wendelfließen

$$F_{wu} = 4 \pi \beta_{Sw} a_{sw} [(e_u - e_o)(4,7 \varphi - 1,3) + (r_1 - e_o)(11,2 \varphi - 2,6)] , \qquad (5.10)$$

wobei φ im Bogenmaß einzusetzen ist. In Gl. (5.10) ist β_{Sw} die Streckgrenze des Wendelstahls. Dessen Querschnitt je cm oder mm Höheneinheit lautet:

$$a_{sw} = \frac{\pi d_{sw}^2}{4 s_w} , \qquad (5.11)$$

mit d_{sw} dem Stabdurchmesser und s_w der Ganghöhe der Wendel. Bezüglich der Bedeutung der Geometriegrößen e_o und e_u sei auf [113] verwiesen. Der Winkel φ wird wie folgt, abhängig von B_{Wm} angegeben: B_{Wm} = 22,5 Nmm⁻², $\varphi \approx 35,5^{\circ}$; B_{Wm} = 30 Nmm⁻², $\varphi \approx 36,5^{\circ}$; B_{Wm} = 45 Nmm⁻², $\varphi = 37,5^{\circ}$. Die Linienkräfte p₁ und p sind die Ersatzkräfte für F auf den äquivalenten Schwerlinienkreisen der runden Ankerplatte bzw. der Fläche b² - φ r²_t.

Szabos Auswertungen zeigen, daß der Basiswinkel α des Bruchkegels vom Winkel φ der inneren Reibung im angenommenen Wertebereich und damit von der Betondruckfestigkeit kaum beeinflußt wird. Außerdem hängt α in etwa linear vom Verhältnis

$$\frac{r_{1} - e_{o}}{e_{u} - e_{o}} \approx \frac{1}{2} \frac{1}{\sqrt{\frac{A_{w}}{A_{1}}} - 1}$$
(5.12)

ab, mit A_w der von der Wendel eingeschlossenen Betonfläche. Dieses Verhältnis, Gl. (5.12), bewegt sich für praktische Relationen von A_1/A_w im Wertebereich von 0,5 bis 2,0. Hierfür ist der Basiswinkel α i.M. 75°. Führt man ein, so läßt sich Gl. (5.10) wie folgt darstellen:

$$F_{wu} = \pi a_{w}^{2} \beta_{p} \omega_{w} [1,57 \varphi - 0,43 + \frac{a_{1}}{a_{w}} \cdot 0,3 \varphi]$$
(5.14)
oder

$$F_{wu} = 4 A_{w} B_{p} \omega_{w} [1,57 \varphi - 0,43 + \sqrt{\frac{A_{1}}{A_{w}}} \cdot 0,3 \varphi]$$
(5.15)

Der Tragfähigkeit der Verbindung infolge von Wendelfließen ist jene infolge von Betondruckbruch

$$F_{du} = A_{v} B_{p}$$
(5.16)

gegenüber zu stellen, wobei für den Betonquerschnitt vereinfacht der von der Wendel eingeschlossene Betonquerschnitt A_{w} angesetzt wird. Normiert man die Gln. (5.15) und (5.16) auf A_{w} β_{p} und wertet man diese z.B. für $\varphi = 37,5^{\circ}$ aus, so zeigt Bild 5.7 folgendes Ergebnis für verschiedene A_{w}/A_{1} -Werte.

Ab einem bestimmten Bewehrungsgrad ω_w (\approx 0,3) ist der Druckbruch maßgebend, darunter regiert Wendelfließen. Das Verhältnis A_w/A₁ ist von sehr geringem Einfluß.

Bild 5.7: Abhängigkeit der Tragfähigkeit infolge von Wendelfließen von ω_w und A_w/A₁ nach Szabo
Im folgenden wird Gl. (5.15) in der Form für unbewehrte Körper unter der aufnehmbaren Teilflächenpressung ausgedrückt

$$\frac{q_{1u}}{B_{W}} = 4 \frac{A_{w}}{A_{1}} \frac{B_{p}}{B_{W}} \omega_{w} (1,57 \varphi - 0,43 + \sqrt{\frac{A_{1}}{A_{w}}} 0,3 \varphi)$$
(5.17)

und für verschiedene Werte von A_w/A_1 in den Bildern 5.8 und 5.9 abhängig vom Bewehrungsgrad aufgetragen sowie mit Versuchen (s. Tab. A2) verglichen.

- Bild 5.8: Rechnerische Tragfähigkeit bei Wendelfließen für A/A₁ = 4 nach Szabo und Versuchsergebnisse
- Bild 5.9: Rechnerische Tragfähigkeit bei Wendelfließen für $A/A_1 = 9$ nach Szabo und Versuchsergebnisse

Hierbei wurden nur solche Versuche ausgewählt, bei denen das Versagen im oberen Bereich bei Fließen der Bewehrung eintrat. Man erkennt, daß Szabos Modell eine recht unbefriedigende Vorhersagefähigkeit aufweist. Es ist als Rechenmodell zur Vorhersage einer wendelbewehrten Krafteinleitungszone nicht geeignet. Auf einige Gründe, weshalb dies so ist, wird im folgenden hingewiesen:

- a) Das Modell ist ein reines Zustand II-Modell. Der Beton ist durch radiale Risse in Segmente zerlegt. Druck wird weitergeleitet.
- b) Die lineare Abhängigkeit von F_{wu} und ω_w ist unzutreffend. Auch der Beton nimmt einen gewissen Teil der Kraft über Ringzug auf.

- c) Man kann zeigen, daß der Grenzzustand des Konusgleitens mit einem Bruchkriterium $\tau = \sigma_n \tan \varphi$ bei Vernachlässigung der Kohäsionsfestigkeit τ_o ermittelt wurde. Das ist sicher viel zu ungünstig. Bild 5.10 zeigt das Szabo'sche Gleitkriterium und das vereinfachte Coulomb'sche.
- d) Die zum Fließen der Wendel führenden Spannungskombinationen liegen weit unter der Coulomb-Geraden. Wie sich dieser Umstand in der Tragfähigkeit äußern würde, wurde nicht weiter verfolgt.

Die schlechte Vorhersagefähigkeit des Szabo-Modells läßt es nicht zu, weiter verwendet zu werden.

5.4.3 Das Shao-Huai-Modell

In [130] berichten die Autoren über Versuche an bewehrten teilflächenbelasteten quadratischen Prismen. Die Bewehrung bestand aus horizontal liegenden Bewehrungsgittern mit Bewehrungsmengen von 2,4 % bis 10,6 % des Betonvolumens. Ziel der Versuche war es, die Gültigkeit einer Formel zur rechnerischen Ermittlung der Tragfähigkeit, die von den Autoren bereits 1963 veröffentlicht worden war [147], hinsichtlich ihrer Vorhersagefähigkeit bei hohen Bewehrungsgraden zu überprüfen und ggf. zu modifizieren. Diese Formel wurde in die chinesische Stahlbetonnorm [148, 149] übernommen. Sie basiert auf Versuchsergebnissen aus den Fünfziger und Sechziger Jahren, die an Körpern mit einem Bewehrungsgehalt von weniger als 3 % gewonnen wurden. Die Veröffentlichungen [147 - 149] sind in chinesischer Sprache verfaßt und liegen den Verfassern nicht vor. Es ist daher an dieser Stelle nicht möglich zu klären, welche mechanische Idee der Formel zugrunde liegt. Die in [130] veröffentlichten neueren Versuchsergebnisse zeigen eine mit zunehmendem Bewehrungsgrad abnehmende tragfähigkeitserhöhende Wirkung. Die Autoren schlagen daher zur Ermittlung der Versagenslast folgende Beziehung vor:

$$F_{u} = 0,67 f_{cu} A_{1} \left[\sqrt{\frac{A}{A_{1}}} + 0,85 (\omega + \sqrt{\omega}) \sqrt{\frac{A_{k}}{A_{1}}} \right]$$
(5.18)

wobei

$$\omega = \mu \frac{B_{\rm s}}{0.67 f_{\rm cu}}$$
(5.19)

mit

 μ : Volumen der Querbewehrung, bezogen auf das Volumen des von Bewehrung umschlossenen Betons,

- A_{ν} : von Bewehrung umschlossene Betonquerschnittsfläche,
- f_{cu} : Betondruckfestigkeit, ermittelt an Würfeln mit 150 mm Kantenlänge. Die Lagerungs- und Prüfbedingungen werden in [130] nicht genannt.

Bild 5.11: Versuchsbruchlast [130], bezogen auf die nach [130] ermittelte rechnerische Bruchlast in Abhängigkeit vom volumetrischen mechanischen Bewehrungsgrad ω

Den Autoren [130] erscheint die Anwendung von Gl. (5.18) für teilflächenbelastete Körper mit $A_k/A_1 < 9$ zulässig. Sie ist zur Ermittlung der rechnerischen Bruchlast von unbewehrten und bewehrten Körpern geeignet. Die Körper können achsialsymmetrisch oder durch eine Streifenlast beansprucht sein. In Bild 5.11 sind die in [130] wiedergegebenen Versuchsbruchlasten, bezogen auf die mittels Gl. (5.18) ermittelten rechnerischen Bruchlasten, in Abhängigkeit von ω dargestellt. Für alle 47 Versuche ergaben sich i.M. im Versuch um 8 % höhere Bruchlasten als rechnerisch ermittelt. Der Variationskoeffizient betrug für achsialsymmetrisch belastete Körper 0,106 und für Körper mit Streifenlast 0,061. Es kann somit für das Rechenmodell eine sehr gute Vorhersagefähigkeit der Tragfähigkeit konstatiert werden. Mit Ausnahme des Einflusses der Steifigkeit des Ankerkörpers sowie eines ggf. vorhandenen Spannkanals sind die wesentlichen die Tragfähigkeit bestimmenden Parameter im Modell zutreffend berücksichtigt.

5.4.4 Das MC 90-Model1 [133]

Im CEP-FIP Model Code 1990 [133] werden die Versagensmechanismen angesprochen und Rechenmodelle angeboten. Nach [133] kann der Krafteinleitungsbereich in zwei Bereiche unterteilt werden (s. Bild 5.12).

Bild 5.12: Spannungen im teilflächenbelasteten Körper [133]

Im Bereich I, der sich etwa über die Tiefe von ~ 0,4 a erstreckt, herrschen unter der Ankerplatte Querdruckspannungen. In diesem Bereich kann der Körper auf Druck (crushing) oder durch Spalten (splitting) versagen. **Unterhalb** Bereich I schließt sich Bereich II an, in dem von Querzugspannungen auftreten. Hier kann Versagen infolge Erreichens der aufnehmbaren Querzugspannungen erfolgen (bursting). Die Krafteinleitung ist etwa in einer Tiefe a, die der Körperbreite entspricht, abgeschlossen.

Darunter können die Längsdruckspannungen als gleichförmig verteilt angenommen werden. Im folgenden werden die Rechenmodelle der einzelnen Versagensarten behandelt.

1. Versagensart "splitting"

Die Querdehnung des teilflächenbelasteten Betons wird durch den umgebenden Beton und ggf. durch umschnürende Bewehrung (Wendel, geschlossene Bügel) behindert. Die Querdehnungsbehinderung erhöht die Betondruckfestigkeit unter der Belastungsfläche. Die rechnerische Tragfähigkeit kann nach [133] mit folgender Formel bestimmt werden:

$$F_{u} = f_{ck,cf} A_{1} \sqrt{\frac{A}{A_{1}}}$$
(5.20)

Im Falle unbewehrter Körper ist für $f_{ck,cf} = f_{cc}/1,3$ einzusetzen, wobei f_{cc} die mittlere einaxiale Betondruckfestigkeit und $f_{ck,cf}$ bezeichnet.

Für bewehrte Körper werden zur Ermittlung von $f_{ck,cf}$ folgende Beziehungen vorgeschlagen:

$$f_{ck} = \begin{cases} f_{ck} (1,00 + 5,0 \sigma_2/f_{ck}) , \text{ wenn } \sigma_2 < 0,05 f_{ck} \end{cases}$$
(5.21)

$$f_{ck,cf} = \begin{cases} f_{ck} (1,125 + 2,5 \sigma_2/f_{ck}) , \text{ wenn } \sigma_2 > 0,05 f_{ck} \end{cases}$$
 (5.22)

mit σ_2 der durch die Umschnürung unter Bruchlast erzeugten Querdruckspannung im Beton. Vereinfachend kann für

$$\sigma_2 / f_{ck} = 0.5 \alpha_s \alpha_n \omega_{wd}$$
(5.23)

angenommen werden. Die Bewehrung übt eine nicht gleichförmig über den Körper verteilte umschnürende Wirkung auf den Beton aus, wie schematisch in Bild 5.13 dargestellt ist. α_n und α_s sind Abminderungsfaktoren zur Berücksichtigung der umschnürenden Wirkung, wobei α_n den Einfluß von Form und Verteilung der Querbewehrung im Querschnitt und α_s den Einfluß der Ganghöhe bzw. des Bügelabstandes berücksichtigt. Angaben zur Ermittlung von α_s und α_n sind Bild 5.13 sowie [133] zu entnehmen. ω_{wd} bezeichnet den Bemessungswert des mechanischen volumetrischen Bewehrungsgrads der Querbewehrung und ist wie folgt zu ermitteln (s.Bild 5.13):

$$\omega_{wd} = \frac{W_{s,trans}}{W_{c,cf}} \frac{f_{yd}}{f_{cd}}$$

(5.24)

W_{s.trans} : Volumen der Querbewehrung

$$W_{c,cf}$$
$$f_{yd} = \frac{\beta_s}{1,15}$$
$$f_{cd} = \frac{0,85 f_{ck}}{1.5}$$

mit

: Volumen des von Bewehrung umschlossenen Betonquerschnitts
: Bemessungswert der Streckgrenze der Querbewehrung
: Bemessungswert der Betondruckfestigkeit

Bild 5.13: Ermittlung von $\omega_{\rm wd},~\alpha_{\rm s}$ und $\alpha_{\rm n}$ nach MC-90

Für achsialsymmetrisch teilflächenbelastete, zylindrische oder quadratische, wendelbewehrte Körper ergibt sich aus den vorstehenden Gleichungen nach einigem Umformen die rechnerische Tragfähigkeit zu:

$$\frac{q_{1u}}{B_W} = (0,77 \frac{f_{cc}}{B_W} + 3,85 \cdot \frac{B_p}{B_W} \alpha_s \alpha_n \omega_w) \sqrt{\frac{A}{A_1}} , \text{ wenn } \omega_w < \frac{0.05}{\alpha_s \alpha_n}$$
(5.25)

$$\frac{q_{1u}}{B_W} = (0,87 \frac{f_{cc}}{B_W} + 1,92 \cdot \frac{B_P}{B_W} \alpha_s \alpha_n \omega_w) \sqrt{\frac{A}{A_1}} , \text{ wenn } \omega_w > \frac{0,05}{\alpha_s \alpha_n}$$
(5.26)

wobei der volumenbezogene, mechanische Bewehrungsgrad ω_{w} :

$$\omega_{w} = \frac{4 A_{sw} B_{s}}{s_{w} a_{w} B_{p}}$$
(5.27)

Bereits bei einem Bewehrungsgrad von $\omega_w > 0,06$ wird Gl. (5.26) maßgeblich. Hierbei wurde α_n zu l und α_s zu 0,85 angenommen. Die rechnerische Tragfähigkeit ergibt sich unter Annahme von $\beta_p = f_{cc}$ und $\beta_p = 0,76$ β_w dann zu

$$F_{u} = 0,66 \ \beta_{w} \ A_{1} \sqrt{\frac{A}{A_{1}}} \ (1 + 1,88 \ \omega_{w})$$
(5.28)

In den Bildern 5.14 und 5.15 wurden die Rechenergebnisse für verschiedene Verhältnisse von A/A_1 aufgetragen und mit Versuchsergebnissen (s. Tab. A2) verglichen. Die rechnerische Beziehung beschreibt die Versuchsergebnisse recht gut. Bei geringem Bewehrungsgrad wird die Tragfähigkeit geringfügig unterschätzt, bei höherem Bewehrungsgrad geringfügig überschätzt.

Bild 5.14: Rechnerische Tragfähigkeit bei Wendelfließen für $A/A_1 = 4$ nach MC-90 und Versuchsergebnisse Bild 5.15: Rechnerische Tragfähigkeit bei Wendelfließen für $A/A_1 = 9$ nach MC-90 und Versuchsergebnisse

2. Versagensart "crushing"

Nach [133] läßt sich die Tragfähigkeit im Zusammenhang mit dem Druckversagen unter der Ankerplatte mit Modellen aus der Bodenmechanik abschätzen. Es wird angenommen, daß ein Gleitbruch eintritt (s. Bild 5.16), wobei bei der rechnerischen Ermittlung lediglich der Widerstand der Kohäsion c entlang der Oberfläche der Bruchfigur in Rechnung gestellt wird. Die widerstandserhöhende Wirkung der Reibungskomponente und der Vernadelung durch eventuell vorhandene Bewehrung wird vernachlässigt.

Bild 5.16: Bruchfigur beim Gleitbruch [133]

Ein ähnliches Versagensmodell wird auch in [100] vorgeschlagen.

In den Gln. (5.29) und (5.30) werden die Grenzen der aufnehmbaren Teilflächenpressung bei Annahme eines inneren Reibungswinkels zu φ = 30° und der Kohäsion c = 0,5 f_{cc} angegeben.

Für rechteckige Lastplatten:

$$q_{1u} = 2.5 f_{cc}$$
 (5.29)

Für quadratische oder runde Lastplatten:

$$q_{1\mu} = 3.5 f_{cc}$$
 (5.30)

In den Bildern 5.14 und 5.15 sind die Maximalwerte q_{1u}/B_W für den Versagensfall "crushing", ermittelt mit Gl. (5.30), dargestellt. Diese Gleichung unterstellt die vollständige Ausbildung der Bruchfigur. Bei kleinen Werten von A/A₁ kann sich jedoch die Bruchfigur nicht vollständig ausbilden, so daß die rechnerische Tragfähigkeit kleiner sein muß als nach Gl. (5.30). Angaben zur Ermittlung der Tragfähigkeit in Abhängigkeit von A/A₁ für die Versagensart "crushing" werden in [133] nicht gemacht. Bei zur Prüfung der Verbindung Ankerkörper – Beton üblichen Versuchskörpern ist die Versagensart "crushing" nicht relevant, da sie kleine A/A₁ aufweisen und entweder durch "splitting" oder Druckbruch im unteren schwach bewehrten Teil versagen.

3. Versagensfall "bursting"

Im Bereich II ist die Spaltzugkraft in jeder Richtung durch Bewehrung oder durch den Beton unter Inanspruchnahme der Betonzugfestigkeit aufzunehmen. Für jede der beiden Richtungen x und y wird die Gesamtspaltzugkraft rechnerisch abgeschätzt mit der bekannten Formel:

$$Z_x = 0,3 F (1 - \frac{a_1}{a})$$
 (5.31)

$$Z_y = 0.3 F (1 - \frac{b_1}{b})$$
 (5.32)

Der vorhandene Widerstand des Betons bzw. der Bewehrung im Bereich II wird beschrieben mit:

$$Z_{x} = f_{ct} 0,6 a b_{1} bzw. A_{sx} B_{s}$$
(5.33)

$$Z_{y} = f_{ct} 0,6 b a_{1} bzw. A_{sy} B_{s}$$
(5.34)

Hierbei ist f_{ct} die Betonzugfestigkeit und A_{sx} bzw. A_{sy} der Gesamtbewehrungsquerschnitt im Bereich II in x- bzw. y-Richtung. Für achsialsymmetrisch teilflächenbelastete zylindrische oder prismatische Körper ergibt sich aus den vorstehenden Gleichungen die rechnerische Tragfähigkeit wie folgt:

Für unbewehrte Körper:

$$\frac{q_{1u}}{B_W} = 2 \frac{f_{ct}}{B_W} \cdot \frac{A}{A_1} \cdot \frac{1}{\frac{a}{a_1} - 1}$$
(5.35)

Für bewehrte Körper:

$$\frac{\mathbf{q}_{1u}}{\mathbf{B}_{W}} = \frac{\mathbf{B}_{P} \mathbf{A} \mathbf{a}_{W}}{\mathbf{B}_{W} \mathbf{A}_{1} \mathbf{a}} \cdot \frac{\mathbf{\omega}_{W}}{1 - \frac{\mathbf{a}_{1}}{\mathbf{a}}}$$
(5.36)

mit

$$\omega_{\rm w} = \frac{4 \, A_{\rm sw} \, B_{\rm s}}{s_{\rm w} \, a_{\rm w} \, B_{\rm P}} \tag{5.37}$$

Aus Gl. (5.35) und (5.36) folgt, daß die Bewehrung rechnerisch erst wirksam ist, wenn

$$\omega_{\rm w} > 2 \frac{f_{\rm ct}}{\beta_{\rm p}} \frac{a_1}{a_{\rm w}}$$
(5.38)

ist. Die rechnerischen Beziehungen für die Tragfähigkeit werden für verschiedene Werte von A/A_1 in den Bildern 5.14 und 5.15 aufgetragen und mit Versuchsergebnissen verglichen. Man erkennt, daß – bei gleichmäßig im Krafteinleitungsbereich verteilter Bewehrung – für geringe Bewehrungsgrade der Versagensfall "bursting" maßgeblich wird. Bei höherem Bewehrungsgrad tritt der Versagensfall "splitting" ein. Die für den Fall "bursting" ermittelte rechnerische Tragfähigkeit weist eine unbefriedigende Vorhersagefähigkeit auf. Dies gilt insbesondere für die Versuchsreihe IV, bei der nennenswerte Spaltzugbewehrung lediglich nur im oberen Drittel von Bereich II eingebaut war. Offensichtlich wirkte sich dies kaum auf die Tragfähigkeit aus.

5.5 Einfluß der Schwächung des Versuchskörpers durch den Spannkanal

Ein im Versuchskörper vorhandener Spannkanal stellt ggf. eine Schwächung des Körpers dar und übt Einfluß auf den Spannungsverlauf sowie auf die Rißund Versagenslast aus. Der Hüllrohreinfluß wurde u.a. in [50] und [47] experimentell sowie in [32] spannungsoptisch untersucht.

Im Hinblick auf die Versagenslast kann nach [56] das Verhältnis A/A_1 mit Bruttoflächen, die Versagenslast jedoch durch Verwendung der Ankerplattennettofläche ermittelt werden. Hieraus folgt

$$F_{u} = A_{1n} q_{1u},$$
 (5.39)

wobei q_{1u} wie bei einem Körper, der kein Hüllrohr aufweist, zu ermitteln ist.

In [47] wird über vergleichende Untersuchungen an Körpern mit und ohne Hüllrohr berichtet. Die Versuchskörper sind in Bild 5.17 dargestellt. Sie waren mit einer Spaltzugbewehrung von 180 kg Stahl/m³ Beton bewehrt. Die Höhe betrug bei allen Versuchskörpern 60 cm. Die Körper- und Ankerplattenbreite wurde so vergrößert, daß die Querschnittsflächen nach Abzug der Hüllrohrfläche den Querschnittsflächen der Körper ohne Loch entsprachen. Für alle Körper galt also: $A_n \approx 900 \text{ cm}^2$ und $A_{1n} \approx 225 \text{ cm}^2$.

Bild 5.17: Versuchskörper mit und ohne Aussparung [47]

Durch die Veränderung der Querschnittsabmessungen wurde damit auch das Verhältnis a/a_1 bzw. A/A_1 verändert, so daß sich die Versuchsergebnisse q_{1u}/B_w etwa um den Faktor a/a_1 bzw. $\sqrt{A/A_1}$ unterscheiden müßten, um die eingangs des Abschnitts getroffene Aussage zu bestätigen. In Tabelle 5.1 wird dieses überprüft.

Durch die in der vorstehenden Tabelle durchgeführte Auswertung wird die in [56] gegebene Aussage bestätigt, daß bei Ermittlung der aufnehmbaren Teilflächenpressung rechn q_{1u} die Bruttoquerschnittswerte verwendet werden können. Zur Ermittlung der rechnerischen Bruchlast rechn F_u wird rechn q_{1u} mit der Ankerplattennettofläche multipliziert.

0	1	2	3	4	5	6	7	8	9	10	11
	Körper Nr.	Aus- sparung	₿ _₩	F u	A _{1n}	q _{1u}	<u>91u</u> β _₩	Mittelwerte Spalte 7	a a ₁	8 - 9	Abweichung gegenüber Zeile 1
-	-		MPa	kN	mm ²	MPa		-	-	-	-
1	59 60 61	ohne	33,2 29,5 33,2	1950 1800 2000	22500 22500 22500	86,7 80,0 88,9	2,61 2,71 2,68	2,67	2,0	1,34	-
2	82 85 86	klein	30,4 32,1 27,1	1580 1890 1670	22435 22435 22435	70,4 84,2 74,4	2,32 2,62 2,75	2,56	1,95	1,31	- 2,3 %
3	83 84 87	groß	30,4 32,1 27,1	1500 1670 1480	22679 22679 22679	66,1 73,6 65,3	2,18 2,29 2,41	2,29	1,67	1,37	+ 2,3 %

Tabelle 5.1: Berücksichtigung des Spannkanaleinflusses: Vergleich von Versuch [47] und Rechnung

5.6 Einfluß der Ankerkörper- und Ankerbüchsengeometrie bei Verankerungen mit Ankerplatten

Die bisherigen Rechenmodelle unterstellen eine konstante Pressungsverteilung unter der Ankerplatte. Diese Annahme ist nur gerechtfertigt, wenn die Ankerplatte vollflächig belastet wird oder wenn die Ankerplatte ausreichend steif ist. Im allgemeinen wird jedoch bei einer Plattenverankerung die Vorspannkraft über eine steife Ankerbüchse eingetragen, die sich auf die weniger steife Ankerplatte absetzt. Der Durchmesser der Ankerbüchse ist meist deutlich kleiner als jener der Ankerplatte. Hierdurch stellt sich, wie im Bild 5.18 schematisch dargestellt, eine ungleichmäßige Pressungsverteilung unter der Ankerplatte ein, die eine Zunahme der Querzugspannungen und der Gesamtspaltzugkraft gegenüber dem Fall mit konstanter Pressung bewirkt.

Bild 5.18: Pressungsverteilung unter der Ankerplatte (schematisch)

Der Einfluß der Steifigkeit der Ankerplatte auf die Versagenslast von teilflächenbelasteten unbewehrten Körpern wurde von Hawkins [90] experimentell und theoretisch sowie von Ukhagbe/Mehlhorn [134] mit Hilfe von Berechnungen mit der Methode der Finiten Elemente untersucht.

5.6.1 Hawkins-Ansatz

Hawkins stellt in [90] theoretische Überlegungen für unbewehrte Körper an, wobei Körper, Ankerplatte und Druckstempel quadratisch angenommen werden. Für diejenige Last, die gerade vollständige Plastizierung der Ankerplatte verursacht, stellt sich eine Pressung ein, die in Verlauf und Größe u.a. abhängig von der Steifigkeit der Ankerplatte ist. Es werden drei Bereiche unterschieden:

- Flexibler Bereich

Die Ankerplatte ist "weich". Unterhalb des Druckstempels ist die Pressung konstant, außerhalb dreiecksförmig über die Breite a_o (s. Bild 5.19a). Die Ränder heben ab. Der Übergang zum semi-flexiblen Bereich wird erreicht, wenn a_o gleich a_1 ist.

- Semi-flexibler Bereich

Bei steiferer Ankerplatte wird die Pressungsverteilung wie folgt idealisiert. Unter dem Druckstempel wird eine konstante, auf der übrigen Fläche eine trapezförmige Pressung angenommen (s. Bild 5.19b). Mit zunehmender Ankerplattensteifigkeit nähert sich die Pressung einem konstanten Verlauf über die gesamte Ankerplattenfläche.

- Steifer Bereich

Die Pressung ist über die gesamte Ankerplattenfläche konstant (s. Bild 5.19c). Eine Erhöhung der Steifigkeit führt nicht zu einem weiteren Anstieg der Tragfähigkeit.

Hawkins ermittelt für die einzelnen Bereiche die Pressungen q_{1u} , die Plastizierung der Ankerplatte erzeugen, und stellt sie der vom Beton aufnehmbaren Pressung gegenüber. Er erhält so Beziehungen zur Bestimmung der Tragfähigkeit in Abhängigkeit von der Plattendicke t.

Bild 5.19: Idealisierte Pressungsverteilungen zur Berücksichtigung der Ankerplattensteifigkeit nach Hawkins [90]

Für den flexiblen Bereich werden folgende Beziehungen angegeben: Die Pressung q_{1u}, die zum Plastizieren der Platte führt, läßt sich ausdrükken mit

$$q_{1u} = \frac{12 m [\pi(a_1 - d) + 4d]}{(a_0 - d)^2 [\frac{\pi}{4}(a_0 - d) - 4d]}$$
(5.40)

wobei m das aufnehmbare Moment je Längeneinheit bei vollständiger Plastizierung bezeichnet.

Unter Berücksichtigung der Querkraftwirkung lautet m :

$$m = \frac{\beta_{s} t^{2}}{4} \left[1 - \frac{0.11 q_{1u}^{2} (a_{o} - d)^{2}}{(\beta_{s} t)^{2}}\right] = \frac{\beta_{s} t^{2}}{4} \kappa$$
(5.41)

46

Für die in [90] durchgeführten Versuche nimmt κ Werte zwischen 0,85 und 0,95 an.

Zur Vereinfachung schlägt Hawkins die Berücksichtigung der Querkraftwirkung durch Einführung eines konstanten Reduktionsfaktors $\kappa = 0.8$ vor.

Die Pressung q_{1u} , die zum Versagen des Versuchskörpers führt, lautet:

$$q_{1u} = \beta_{p} + K \sqrt{\beta_{p}} \frac{1}{\frac{d}{a-d} + \frac{a_{o}^{-} d}{2(a-a_{o})}}$$
(5.42)

mit B_p in $1b/in^2$ und $K \approx 60$.

Die Tragfähigkeit ${\rm F}_{_{\rm II}}$ wird bestimmt durch

$$F_{u} = q_{1u} \left[d^{2} + d(a_{o} - d) + \frac{\pi}{12} (a_{o} - d)^{2} \right]$$
 (5.43)

Aus den Gleichungen 5.40 bis 5.43 ergibt sich keine leicht handhabbare Beziehung zwischen t und a_o . Für den semi-flexiblen Bereich werden in [90] ebenfalls Gleichungen angegeben, die hier im einzelnen nicht wiedergegeben werden sollen.

Die Ankerplatte ist als steif anzusehen, wenn vorh $t^2 > t_s^2$, mit

$$t_{s}^{2} = \frac{\frac{4}{B_{s}} \left[B_{p} + K \sqrt{B_{p}} \left(\frac{a}{a_{1}} - 1 \right) \right] \cdot \left[d \left(a_{1} - d \right) + \frac{\pi}{8} \left(a_{1} - d \right)^{2} \right]}{2 \pi + \frac{2d}{a_{1} - d}}$$
(5.44)

Die Tragfähigkeit ist dann nach [89] zu ermitteln mit

$$q_{1u} = B_p \left[1 + \frac{K}{\sqrt{B_p}} \left(\frac{a}{a_1} - 1 \right) \right]$$
 (5.45)

und damit

$$F_{u} = q_{1u} a_{1}^{2}$$
 (5.46)

Das Ergebnis der Ableitungen ist in Abhängigkeit von der Plattendicke t für ein Beispiel in Bild 5.20 dargestellt.

Bild 5.20: Rechnerische Bruchlast F_u in Abhängigkeit von der Plattendicke t anhand eines Beispiels in [90]

Wie schon erwähnt, wurden zur Verifikation der theoretischen Überlegungen Versuche durchgeführt. Theorie und Versuch stimmten gut überein. Die Steifigkeit der Ankerplatte beeinflußt die Tragfähigkeit merklich (s. Bild 5.20). Die Durchführung der Berechnung anhand der angegebenen Formeln ist jedoch aufwendig, so daß eine Vereinfachung wünschenswert erscheint.

5.6.2 Modifizierter Ansatz zur Berücksichtigung der Ankerplattensteifigkeit

Zunächst ist es wünschenswert, die von Hawkins für t_s angegebene Beziehung zu vereinfachen. Dies ist leicht möglich, wenn vereinfachend die Gleichgewichtsbedingungen analog zu [90] für einen schmalen herausgeschnittenen Sektor entsprechend Bild 5.21 angeschrieben werden.

48

Bild 5.21: Idealisierte Annahmen bei steifer Ankerplatte

Die Pressung q_{1f} , bei der die Ankerplatte vollständig plastiziert, lautet:

$$q_{1f} = \frac{24 \text{ m}}{(a_1 - d)^2 (\frac{d}{a_1} + 2)}$$
(5.47)
mit m = $\frac{\beta_s t^2}{4} \kappa$ (5.48)

In Gl. (5.48) ist κ der Faktor zur Berücksichtigung des Querkrafteinflusses. Er darf zu 0,83 angenommen werden. Die Tragfähigkeit des Versuchskörpers ist erreicht, wenn die aufnehmbare Teilflächenpressung q_{1u} , ermittelt für die steife Ankerplatte, gleich q_{1f} ist. Somit ergibt sich die erforderliche Ankerplattendicke t_s , die als steif zu bezeichnen ist, aus Gl. (5.47) und (5.48) zu

$$t_s = (a_1 - d) \sqrt{0, 2 \frac{q_{1u}}{\beta_s} (\frac{d}{a_1} + 2)}$$
 (5.49)

mit d der Kantenlänge des Druckstempels. Für einen runden Druckstempel kann d zu 0,89 d_d , mit d_d , dem Durchmesser des Druckstempels, angenommen werden.

Für unbewehrte Körper kann q_{1u} z.B. mit Gl. (5.45) ermittelt werden. Für Ankerplatten mit der Dicke t < t_s wird angenommen, daß sich die Tragfähigkeit mit dem Quadrat der Plattendicke erhöht. Die Tragfähigkeit für Plattendicken 0 < t < t $_s$ lassen sich dann ermitteln mit:

$$F_{u}(t) = F_{u}(t=0) + \frac{t^{2}}{t_{s}^{2}} [F_{u}(t=t_{s}) - F_{u}(t=0)]$$
(5.50)

Mit den Proportionalitäten

$$F_{\mu}(t=0) \sim \beta_{p} a d$$
 (5.51)

$$F_{u}(t=t_{s}) \sim \beta_{p} a a_{1}$$
(5.52)

$$F_{u}(t) \sim \beta_{p} a a_{1}$$
(5.53)

$$u(t) \qquad b_p \ u \ u_1 \qquad (3.33)$$

und Gl. (5.50) kann die Kantenlänge a_1' einer Ersatzplattenfläche A_1' ermittelt werden. Sie ergibt sich zu

$$a'_1 = d + (a_1 - d) \frac{t^2}{t_s^2}$$
 (5.54)

Die Ermittlung der rechnerischen Tragfähigkeit erfolgt dann, wenn z.B. in die z.B. Gln. (5.45) und (5.46) die Ersatzkantenlänge a'_1 anstatt a_1 eingesetzt wird. Zur Überprüfung der vorstehenden vereinfachenden Gleichungen werden die in [90] wiedergegebenen Versuchsergebnisse der Versuchsreihen F und G herangezogen. Die Gegenüberstellung wird in Tabelle 5.2 durchgeführt. Rechnung und Versuch stimmen gut überein.

Tabelle	5.2:	Ermittlung	der	rechnerischen	Tragfähigkeit	unter	Berücksicht-
		igung der /	hkei	rplattensteifig	jkeit		

Vers bez.	β _p	β _S	a	^a 1	t	d	q _{1u}	t _s	aʻi	rechn F _u	exp F _u	exp F rechn F _u
-	lb/in²	1b/in²	in	in	in	in	lb/in²	in	in	16∙10³	1b•103	-
F 1	3020	90•10°	8	6,0	0,25	2,28	4119,1	0,58	3,05	77,9	79,0	1,01
F 2	3020	40·103	8	5,9	0,35	2,28	4193,6	0,81	2,96	75,7	84,4	1,11
F 3	3020	75∙10³	8	5,9	0,498	2,28	4193,6	0,59	4,86	121,6	105,2	0,87
F 4	3020	42·10³	8	5,9	0,681	2,28	4193,6	0,79	4,50	113,1	107,4	0,95
F 5	3020	38•10³	8	5,9	0,727	2,28	4193,6	0,83	5,06	126,4	119,1	0,94
F 6	3020	∿ 40·10³	8	5,9	1,0	2,28	4193,6	0,81	5,9	146,0	158,0	1,08
G 1	4190	90·10 ³	8	6,0	0,25	2,28	5484,6	0,63	2,87	91,7	97,0	1,06
G 2	4190	40·10 ³	8	5,9	0,35	2,28	5572,4	0,93	2,79	89,1	99,0	1,11
G 3	4190	42·10 ³	8	5,9	0,618	2,28,	5572,4	0,91	3,95	127,5	120,4	0,94
G 4	4190	∿ 40•10³	8	5,9	1,0	2,28	5572,4	0,93	5,9	194,0	198,0	1,02
	A										i.M.	1.009

5.6.3 Überschlägige Berücksichtigung der Ankerplattensteifigkeit

Wird der Einfluß der Streckgrenze der Ankerplatte sowie der Betondruckfestigkeit auf den Verlauf der Spannungen unter der Ankerplatte nicht berücksichtigt, kann die Kantenlänge a'_1 der Ersatzplattenfläche A'_1 überschlägig wie folgt angenommen werden:

$$a'_1 = d + 2t \cdot tan 60^\circ = d + 3,5t$$
 (5.55)

Die rechnerische Tragfähigkeit kann mit Gl. (5.45) und (5.46) ermittelt werden, wenn statt a_1 die Ersatzkantenlänge a'_1 eingesetzt wird. Zur Überprüfung dieser überschlägigen Methode werden wieder die Versuchsreihen F und G aus [90] verwendet. Die Ergebnisse von Rechnung und Versuch sind in Tabelle 5.3 dargestellt. Sie zeigen annehmbare Übereinstimmung. Für die Versuchsreihe G ergeben sich i.M. etwa um 7 % zu hohe Werte.

Vers bez.	β _p	a	^a 1	t	d _d	A	A ₁	Aʻi	exp F _u	rechn F _u	exp F _u rechn F _u
-	lb∕in²	in	in	in	in	in²	in²	in²	lb/.10³	lb/.10³	-
F 1	3020	8	6,0	0,25	2,28	64	36	9,95	79,0	80,4	0,98
F 2	3020	8	5,9	0,35	2,28	64	34,81	12,29	84,4	89,1	0,95
F 3	3020	8	5,9	0,498	2,28	64	34,81	16,18	105,2	101,6	1,04
F 4	3020	8	5,9	0,618	2,28	64	34,81	19,74	107,4	111,7	0,96
F 5	3020	8	5,9	0,727	2,28	64	34,81	23,28	119,1	120,8	0,99
F 6	3020	8	5,9	1,00	2,28	64	34,81	33,41	158,0	143,2	1,10
G 1	4190	8	6,0	0,25	2,28	64	36	9,95	97,0	101,0	0,96
G 2	4190	8	5,9	0,35	2,28	64	34,81	12,29	99,0	112,7	0,88
G 3	4190	8	5,9	0,618	2,28	64	34,81	19,74	120,4	144,1	0,84
G 4	4190	8	5,9	1,0	2,28	64	34,81	33,41	198,0	189,8	1,04

Tabelle 5.3: Ermittlung der rechnerischen Tragfähigkeit bei überschlägiger Berücksichtigung der Ankerplattensteifigkeit

Abschließend werden in Bild 5.22 die in Abschn. 5.6.1 - 5.6.3 vorgestellten Wege zur rechnerischen Berücksichtigung der Ankerplattensteifigkeit anhand des in [90] verwendeten Beispiels im Vergleich dargestellt. Für dieses Beispiel unterscheiden sich die Ergebnisse aller drei Wege nicht wesentlich voneinander. Für andere Beton- und Stahlgüten kann das Ergebnis der überschlägigen Ermittlung nach Abschnitt 5.6.3 deutlicher von den beiden anderen abweichen.

Bild 5.22: Rechnerische Berücksichtigung der Ankerplattensteifigkeit im Vergleich

5.7 Rechenmodell zur Ermittlung der Erstrißkraft

Obwohl im Kapitel 5 nur Bruchmodelle behandelt werden, beschäftigt sich dieser Abschnitt mit Modellen zur rechnerischen Ermittlung der Erstrißkraft. Dies deshalb, weil die Verwendung des Hawkins-Modells zur Ermittlung der Tragfähigkeit unbewehrter Körper (s. Abschn. 5.3.3) auch zur rechnerischen Ermittlung der Erstrißkraft empfohlen wird. Diese Empfehlung erscheint gerechtfertigt, da Versuchsergebnisse zeigen, daß bei unbewehrten Körpern die Erstrißkraft nur geringfügig niedriger ist als die Bruchkraft. Ein zutreffenderes, einfach zu handhabendes Modell, das z.B. auch den Einfluß von Querbewehrung berücksichtigt, ist den Verfassern nicht bekannt.

Zur Ermittlung der Erstrißkraft erscheint es mechanisch schlüssig, wenn angenommen wird, daß der Erstriß auftritt, wenn eine $\sigma_x - \sigma_y$ -Kombination des ungerissenen Körpers die biaxiale Bruchumhüllende des Betons erreicht.

Bild 5.23 zeigt schematisch den Verlauf der Längsdruckspannungen σ_x und der Spannungen in y-Richtung in der Körperachse. Die Hauptspannungsdrucktra-

52

jektorie verläuft hier aus Symmetriegründen vertikal. Hieraus folgt, daß $\tau_{xy} = \tau_{yx} = 0$ ist und damit σ_x die Hauptdruckspannung sowie σ_y die Hauptzugspannung darstellen. Die biaxiale Bruchumhüllende kann vereinfachend durch folgende Gleichung beschrieben werden:

(5.56)

$$\frac{\sigma_{x}}{\beta_{p}} = 1 - \frac{\sigma_{y}^{2}}{\beta_{bZ}^{2}}$$

Bild 5.23: Verlauf von $\sigma_{\rm x}{\mathchar`-}$ und $\sigma_{\rm y}{\mathchar`-}$ Spannungen in einer teilflächenbelasteten Scheibe

In Bild 5.23 sind für verschiedene Horizonte $\sigma_x - \sigma_y$ -Kombinationen im $\sigma_x - \sigma_y$ -Diagramm dargestellt. Der für die Rißbildung maßgebliche Horizont liegt in der Nähe des Querzugspannungsmaximums, da hier hohe Querzugspannungen in Verbindung mit Längsdruckspannungen auftreten. Für das Rechenmodell kann näherungsweise angenommen werden, daß die Rißbildung am Ort der maximalen Querzugspannung beginnt. Für teilflächenbelastete Scheiben kann die maximale Querzugspannung entsprechend Abschn. 4.2.3 beschrieben werden mit

$$\max_{y} \sigma_{y} = 0,44 q_{1} \frac{A_{1}}{A} (1 - \frac{a_{1}}{a})$$
(5.57)

Die zugehörige Längsdruckspannung wurde [24] entnommen. Sie läßt sich näherungsweise ausdrücken durch:

$$\sigma_{x}(x=x_{\max \sigma_{y}}) = q_{1} \left[1 - \left(1 - \frac{a_{1}}{a}\right)^{2} \right]$$
(5.58)

Der Fall, daß die $\sigma_x - \sigma_y$ -Kombination die Bruchumhüllende erreicht, markiert das Auftreten des Erstrisses. Man erhält durch Einsetzen von Gln. (5.57) und (5.58) in Gl. (5.56):

$$\frac{q_{1r}}{\beta_{p}} = C_{1} C_{2} \left(\sqrt{1 + \frac{2}{C_{1} C_{2}^{2}}} - 1 \right)$$
(5.59)

mit

$$C_{1} = 2,58 \left(\frac{\beta_{bZ} A}{\beta_{p} A_{1} (1 - \frac{a_{1}}{a})} \right)^{2}$$
(5.60)

$$C_{2} = 1 - \left(1 - \frac{a_{1}}{a}\right)^{2}$$
(5.61)

G1. (5.59) ist in Bild 5.24 in Abhängigkeit von a_1/a dargestellt, wobei B_{bZ} zu $B_p/11$ angenommen wurde. Zum Vergleich ist das in Abschn. 5.3.5 vorgestellte Ergebnis des RVEM-Konzepts ins Bild eingetragen worden. Beide Kurven weisen einen "Hängebauch" auf, der, wie bereits in Abschn. 5.3.5 erwähnt, von den Versuchen nicht bestätigt wird.

Da das vorstehend vorgestellte Rechenmodell die Versuchsergebnisse nicht befriedigend beschreibt, wird vorgeschlagen, die Rißkraft in Anlehnung an die Bestimmung der Tragfähigkeit unbewehrter Körper abzuschätzen. Hierzu wird das in Abschnitt 5.3.3 vorgestellte Hawkins-Modell verwendet. Mit Einführung der "effektiven" Ankerplattenfläche A'₁ ergibt sich aus Gl. (5.8) mit $\alpha = 23^{\circ}$, $\beta_{p} = 0,76 \beta_{W}$ und $\beta_{bZ} = 0,24 \beta_{W}^{2/3}$ die rechnerische Rißkraft zu

$$F_{r} = 0,76 \ \beta_{W} \ A_{1n}' \left(1 + \frac{1.75}{\beta_{W}^{1/3}} \left(\sqrt{\frac{A}{A_{1}'}} - 1 \right) \right)$$
(5.62)

Die Ermittlung von Mittelwertkorrekturgrößen sowie charakteristischer Werte erfolgt im Abschnitt 7 durch Auswertung von Versuchsergebnissen.

Bild 5.24: Teilflächenpressung bei Erstrißbildung, bezogen auf die Prismendruckfestigkeit, in Abhängigkeit von a_1/a

5.8 Näherungsansatz für ein Rißmodell

5.8.1 Ziel und Vorgehen

Es besteht kein Zweifel daran, daß die Entwicklung eines einfachen Ingenieurmodells zur Beschreibung der Rißbildung und Verformungsverhaltens des Betons in der Krafteinleitungszone äußerst schwierig und bis heute noch nicht gelungen ist. Wesentliche Aufgabe eines solchen Modells wäre die Vorhersage der Rißbreite im höchstbeanspruchten Bereich der Krafteinleitungszone unter der zulässigen Vorspannkraft einschließlich des Überspannens, also folgend der Beanspruchungsgeschichte des Druckschwellversuchs. Abgesehen von der nur unsicheren Einschätzbarkeit der Erstrißkraft F_r erscheint die geometrische und mechanische Modellierung der Ausbreitung der Kraft und deren Zuweisung zur Bewehrung mit vertretbarer Vorhersagegenauigkeit als sehr kompliziert. Wenn hier im folgenden trotzdem ein Näherungsweg zur Abschätzung der Rißbreite vorgestellt wird, so soll damit nicht ein autarkes Modell verstanden werden. Dieses Rißmodell baut auf der experimentellen Beobachtung auf. Die von Wurm und Daschner [47] gemessene Aufweitung der Wendel wird als Modellbasis verwendet, liefert also die Antwort des unbekannten mechanischen/geometrischen Modells auf die Belastung. Zur Umsetzung des beobachteten Verhaltens wird ein Näherungsansatz für die maßgebende mittlere Stahldehnung entwickelt. Schließlich wird durch Vergleich von gemessenen und berechneten Rißbreiten die Plausibilität des Rißmodells überprüft.

Mit diesem Vorgehen können Modellunsicherheiten nicht beseitigt werden. Aus diesem Grund kann mit dem Rißmodell eine Vorhersage der Rißbreite ohne jedwede Vorinformation nicht erfolgen. Als Vorinformation sind bedingungsgemäße Versuchsergebnisse anzusehen, die an geometrisch ähnlichen Körpern gewonnen worden sind. Durch Gleichsetzen der gemessenen Rißbreite mit der vorhergesagten sind jene Bewehrungs- und Verbundparameter herausfilterbar, die die Rißbildung kontrollieren. Dieses Vorgehen stellt eine Maßstabsanalyse dar.

5.8.2 Die Versuchsbeobachtung

Hier sei noch einmal auf die Versuche von Wurm und Daschner [47] eingegangen, s. Abschn. 4.3. Die Autoren bestimmten die sogen. mittlere Stahlzugkraft tot Z_{sm} , indem sie über die Aufweitung des jeweiligen Wendelganges i die mittlere Stahldehnunge ε_{smi} und daraus die individuelle Wendelzugkraft Z_{smi} ermittelten.

Unter Annahme einer bilinearen σ - ϵ -Linie des Wendelstahls erhält man dann mit Bild 5.25 die totale mittlere Zugkraft

tot
$$Z_{sm} = \sum_{1}^{j} Z_{smi} = A_s \sum_{1}^{j} \sigma_{smi} = j A_s \hat{\sigma}_{sm}$$
 (5.63)

Sobald die mittlere Dehnung ε_{smi} die Streckdehnung β_S/E_s erreicht, ist für σ_{smi} die Streckgrenze einzusetzen. Die Summation erfolgte über die j Wendelgänge, die im Krafteinleitungsbereich a = h/2 angeordnet sind.

Bild 5.25: Mittlere Stahldehnung - über die Risse hinweg - abhängig von der Lage der Querbewehrung (schematisch)

Die mittlere Gesamtkraft gibt noch keine Auskunft über die mittlere Zugkraft Z_{sm} an beliebiger Stelle. In Bild 5.26 ist die sich ausprägende Plastizierung des Wendelstahls mit Zunahme der Kraft ab der Erstrißkraft F_r bis zum totalen Fließen unter F_u schematisch dargestellt.

Bild 5.26: Mittlere Stahlspannung, abhängig von der Höhe und Beanspruchung

Man erkennt, daß die mittlere Stahlspannung $\hat{\sigma}_{\rm sm}$ über die Höhe a der Wendel -Basis zur Bestimmung von tot Z_{sm} – umso mehr von der für die Rißbreite maßgebenden mittleren Stahlspannung $\sigma_{\rm smi}$ abweicht, je geringer die Kraft F – gemessen an F_u - ist. Diese Tatsache ist die Konsequenz der Ausprägung des Rißbilds und der zunehmenden Plastizierung des Wendelstahls im Krafteinleitungsbereich. Die mittlere Zugkraft Z_{sm} im höchstbeanspruchten Gang wird den zur Kraft F gehörenden Rechenwert der mittleren Zugkraft übertreffen und bei Annäherung an F_u mit dieser gleichziehen:

$$Z_{\rm sm} = \sigma_{\rm sm} A_{\rm s} > \hat{\sigma}_{\rm sm} A_{\rm s}$$
(5.64)

mit $\sigma_{sm} = E_s \epsilon_{sm}$, der mittleren Stahlspannung über die Risse hinweg. Diese ist bei Erstrißbildung ungefähr

$$\sigma_{\rm sm}(F_{\rm r}) \approx 2 \, \hat{\sigma}_{\rm sm} \tag{5.65}$$

und beim Wendelfließen unter F"

$$\sigma_{\rm sm}(F_{\rm u}) = \beta_{\rm S} \tag{5.66}$$

Ein exakter Zusammenhang zwischen der Kraft und der mittleren Stahlspannung ist nicht angebbar.

5.8.3 Näherungsansatz für die mittlere, gesamte Stahlzugkraft

In Bild 4.10 ist exemplarisch der gemessene Zusammenhang zwischen tot Z_{sm} und F nach [47] dargestellt. Er stellt die Basis für die Entwicklung einer vereinfachten Beziehung dar, die in Bild 5.27 gezeigt ist. Vernachlässigt man den sanften Übergang von Zustand I ind II und die kleine Zugkraft Z_{smr} beim Erstriß, so erhält man als Näherung:

tot
$$Z_{sm} \approx \text{tot } A_s \ B_s \ \frac{F - F_r}{F_u - F_r}$$
 (5.67)

Beim Erreichen der Bruchkraft F_u fließen alle Wendelgänge im Bereich a, wie die Versuche beweisen. Die Kräfte F_u und F_r sind mit den Beziehungen (5.18) bzw. (6.27) und (5.62) als Rechenmodelle bereits bekannt. Natürlich wird vorausgesetzt, daß der untere, schwach bewehrte Teil des Versuchskörpers fester ist als der Krafteinleitungsbereich: $F_u \leq 0.85 \beta_W A_n$.

Die Kraft tot Z_{sm} ist ein Rechenwert, der über mittlere Dehnungen (bzw. mittlere Stahlspannungen $\sigma_{smi} \leq \beta_s$) bestimmt wurde. Damit ist sie eher Verformungs- als Kraftgröße (Mitwirkung).

Bild 5.27: Gemessener Verlauf der gesamten, mittleren Stahlzugkraft und Näherung

5.8.4 Ansatz für die mittlere Stahldehnung des höchstbeanspruchten Wendelganges oder Bügels

Die mittlere Rißbreite $\mathbf{w}_{\!_{\rm M}}$ wird im allgemeinen durch die Beziehung

$$w_{\rm m} = 2 \,\ell_{\rm em} \,\varepsilon_{\rm sm} \tag{5.68}$$

beschrieben. Hierin bedeuten: $\ell_{\rm em}$, maßgebende Länge zu beiden Seiten des Risses, entlang der Relativverschiebungen zwischen Stahl und Beton auftreten; und $\varepsilon_{\rm sm}$, mittlere Stahldehnung entlang der Länge 2 $\ell_{\rm em}$. Bei der Erstrißbildung wird $\ell_{\rm em}$ über die Einleitungslänge $\ell_{\rm el}$ ausgedrückt. Im Bereich der Gebrauchsbeanspruchung entspricht 2 $\ell_{\rm em} \approx a_{\rm m}$, dem mittleren Rißabstand (s. DAfStb-Heft 400).

Beim vorliegenden Problem ist die mittlere Stahldehnung ε_{sm} – über die Risse hinweg – des am höchsten beanspruchten Wendelganges oder Bügels maßgebend. Diese ist in den Bildern 5.28 und 5.29 auf Basis der Versuche [47] für BSt I und BSt IIIb abhängig von der Kraft F dargestellt. Die Dehnung ε_{sm} springt bei der Erstrißbildung unter F_r an und nimmt dann schwach nichtlinear mit der Kraft zu. Mit F_u wird die Versagenskraft des Körpers verstanden. Das Verhältnis A/A₁ äußert sich nur undeutlich. Der Einfluß des Bewehrungsgrads ist sichtbar, aber nicht groß.

Bild 5.28: Mittlere Stahldehnung des höchstbeanspruchten Wendelganges abhängig von der Kraft bei Verwendung von BSt III RK, Versuche von [47]

Bild 5.29: Mittlere Stahldehnung des höchstbeanspruchten Wendelganges abhängig von der Kraft bei Verwendung von BSt I G, Versuche von [47]

Zur Beschreibung der mittleren Stahldehnung in der Zugzone von Dehn- und Biegestäben existieren zahlreiche Ansätze. Der Ansatz nach MC 90 [133] lautet:

$$\varepsilon_{\rm sm} = \frac{\sigma_{\rm s}}{E_{\rm s}} \left[1 - \beta_1 \beta_2 \left(\frac{\sigma_{\rm sr}}{\sigma_{\rm s}}\right)^2\right]$$
(5.69)

Hierin berücksichtigt der Faktor β_1 die Verbundeigenschaften der Bewehrung: $\beta_1 = 0,5$ für glatten Stahl; $\beta_1 = 1$ für Rippenstahl. Mit dem Faktor β_2 wird der Abbau der Mitwirkung durch Dauer- und/oder schwellende Last berücksichtigt: $\beta_2 = 1$ für Kurzzeitbelastung; $\beta_2 = 0,5$ für Dauer- oder Schwellzug. Die Gesamtklammer beschreibt die Mitwirkung des Betons auf Zug zwischen den Rissen. Weiter ist σ_s die Stahlspannung im Riß und σ_{sr} jene bei Erstrißbildung. Die Gl. (5.69) weist Schwächen auf. Bei Kurzzeitbeanspruchung und bei Verwendung von Rippenstahl ist ε_{smr} bei Erstrißbildung Null. Dies widerspricht aber der Beobachtung. Es wird stets eine zur Erstrißkraft gehörende Erstrißbreite festgestellt.

Zur Überprüfung der generellen Eignung der Gl. (5.69) für das vorliegende Problem wird sie in eine hierfür geeignete Form umgeformt und formal so ergänzt, daß bei Erstrißbildung eine mittlere Stahldehnung $\varepsilon_{\rm smr}$ entsteht. Die Umformung erfolgt für den mittig beanspruchten Zugstab, weil man sich auch die Krafteinleitungszone aus Zugringen bestehend vorstellen kann. Versuche zeigen, daß die Dehnung $\varepsilon_{\rm smr}$ bei Erstrißbildung wie folgt ausgedrückt werden kann:

$$\varepsilon_{\rm smr} \approx \frac{\sigma_{\rm sr}}{3 E_{\rm s}} \approx \frac{\beta_{\rm bZ}}{3 \mu E_{\rm s}}$$
 (5.70)

mit β_{bZ} der mittleren zentrischen Zugfestigkeit des Betons und mit μ dem Bewehrungsgrad. Nach Umformung von Gl. (5.69) und Ergänzung durch Gl. (5.70) ist nun die mittlere Stahldehnung des Zugstabes mit $\beta_1 = \beta_2 = 1$:

$$\frac{\varepsilon_{\rm sm} E_{\rm s}}{B_{\rm s}} = \frac{F}{F_{\rm u}} \left(1 - \left(\frac{F_{\rm r}}{F}\right)^2 \right) + \frac{B_{\rm bZ}}{3 \,\mu \,B_{\rm s}}$$
(5.71)

Diese Beziehung und jene für die Dehnung ε_{s} ist in Bild 5.30 beispielhaft dargestellt. Vergleicht man die rechnerische Linie $\varepsilon_{sm}(F)$ des Stahlbetonzugstabs mit den Meßwerten des höchstbeanspruchten Wendelganges, Bilder 5.28 und 5.59, so erkennt man, daß die Gln. (5.69) und (5.71) ungeeignet sind, unser Problem zu beschreiben. Aus diesem Grund wird die mittlere Stahldehnung der Versuche [47] durch folgenden Ansatz angenähert:

$$\frac{\varepsilon_{\rm sm} E_{\rm s}}{B_{\rm S}} = \frac{F - F_{\rm r}}{F_{\rm u} - F_{\rm r}} \left(1 + \frac{F - F_{\rm r}}{F_{\rm u} - F_{\rm r}}\right) + \frac{B_{\rm bZ}}{3 \,\mu \,B_{\rm S}}$$
(5.72)

In Bild 5.30 sind die Beziehungen Gln. (5.71) und (5.72) für ein Beispiel ausgewertet worden. Die Gl. (5.72) beschreibt die Versuche brauchbar. Die Betonzugfestigkeit und damit die Rißkraft sind mit den bekannten Unsicherheiten behaftet.

Bild 5.30: Näherungsansatz für die mittlere Stahldehnung und Vergleich mit der üblichen Beziehung

5.8.5 Ansatz für die Rißbreite

Man beobachtet beim Druckschwellversuch, daß sich die ersten Risse etwa in der Mitte der Seitenflächen des prismatischen Versuchskörpers bilden. Dies erfolgt bei Kräften zwischen 0,4 bis 0,7 F_N . Während der Lastwechsel gesellen sich weitere Risse hinzu. Bezeichnet man die Seitenlänge des quadratischen Körperquerschnitts mit a, so stellt man fest, daß sich die vertikalen Risse im mittleren Bereich der Körperseite von der Breite a/2 konzentrieren, die Eckbereiche des Prismas, mit einer Breite von rd. a/4, rißfrei bleiben. Die Verteilung der Stahlspannung entlang des höchstbeanspruchten Bügels oder Wendelganges wird also ungleichmäßig sein. Aus diesem Grund wird die Beschreibung der Rißbreite mit Gl. (5.68) mit Modellunsicherheiten behaftet sein.

Trotzdem ist nicht von der Hand zu weisen, daß die Verbundqualität des Stahls und das Verhältnis d_s/μ_{ef} die Rißbreite nachhaltig beeinflussen werden. Zur Berücksichtigung dieser Parameter wird vom Rißabstand a_m , wie im DAfStb-Heft Nr. 400 gezeigt, ausgegangen:

$$2 \ell_{em} \approx a_m = 50 + \frac{k_2 k_3}{4} \cdot \frac{d_s}{\mu_{ef}}$$
 (5.73)

Hierin kann der Faktor k_3 zu 1 gesetzt werden, betrachtet man den Betonzugring mit dem Querschnitt A_{ef} (s. Bild 5.25) als mittig gezogen. Der Verbundfaktor k_2 beträgt 1,6 für glatten bzw. 0,8 für gerippten Betonstahl. Die wirksame Betonzugzone ist wie folgt definiert:

$$A_{pf} = 2.5 s_w (c + 0.5 d_s)$$
 (5.74)

Mit G1. (5.74) ist dann der wirksame geometrische Bewehrungsgrad:

$$\mu_{\rm ef} = \frac{\pi \, d_{\rm s}^{\,2}}{10 \, (c + 0.5 \, d_{\rm s}) \, s_{\rm w}}$$
(5.75)

Mit den Gln. (5.68) bis (5.75) kann man nun folgenden Näherungsansatz für die mittlere Breite des den höchstbeanspruchten Wendelgang oder Bügel kreuzenden Risses anschreiben:

$$\frac{W_{m}E_{s}}{a_{m}B_{s}} = \frac{F - F_{r}}{F_{u} - F_{r}} \left(1 + \frac{F - F_{r}}{F_{u} - F_{r}}\right) + \frac{B_{bZ}}{3 \mu B_{s}}$$
(5.76)

Diese Beziehung ist in Bild 5.31 dargestellt und wird mit der auf der modifizierten Beziehung Gl. (5.71) verglichen.

Bild 5.31: Näherungsansatz für die mittlere Rißbreite und Vergleich mit dem modifizierten MC 90 - Ansatz

5.8.6 Überprüfung des Rißmodelles und Kalibrierung

Wie bereits erwähnt, weisen die mittlere Stahldehnung $\varepsilon_{\rm sm}$, Gl. (5.72), und die darauf aufbauende mittlere Rißbreite, Gl. (5.76), Modellunsicherheiten auf. Die Modellunsicherheiten können durch den Vergleich mit Meßwerten z.T. kompensiert werden. In Abschn. 6 wird gezeigt, wie hierbei vorgegangen wird, wenn zwischen den Meßwerten exp w und den vorhergesagten Rißbreiten rechn w ein linearer Zusammenhang besteht.

Als Versuchsmaterial steht eine Reihe von Zulassungsversuchen zur Verfügung, die in Tabelle 5.4 aufgeführt sind: Die laufenden Nummern der Versuche entsprechen auch jenen in den Tabelle A 7/1 ff, die weitere Angaben enthalten. Bei den Zulassungswerten ist zu beachten, daß die gemessenen Rißbreiten w die jeweils in der Laststufe größten Werte darstellen.

64

Vers.	d _{sbü}	d _{sw}	Ψw	μ _μ bü	ч	ßsw	^B Sbü	ß _{bZ}	exp F _u	exp F _r	exp F	F - F _r F _u - F _r	exp W	rechn w
-	ETTERN	mm	mm	mm	-	MPa	MPa	MPa	kN	kN	kN	-	mm	mm
11	-	14	0,0135	-	0,0135	420	-	2,4	3222,5	790,8	1383,9	0,2437	0,19	0,199
74	-	14	0,0135	-	0,0186	420	-	2,2	2965,5	790,8	1383,9	0,2727	0,15	0,144
75	-	14	0,0231	-	0,0360	420	-	2,6	2234	790,8	1383,9	0,4110	0,10	0,107
81a	-	8	0,0229	-	0,0228	220	-	2,2	762	324	324	0	0,01	0,016
815	-	8	0,0228	-	0,0228	220	-	2,2	762	324	412	0,2009	0,03	0,041
82a	æ	8	0,0228	-	0,0228	220	-	2,3	718	324	324	0	0,02	0,021
82Ъ	-	8	0,0228	-	0,0228	220		2,3	718	324	412	0,2234	0,07	0,057
83a	-	16	0,0310	-	0,0310	240	-	2,2	2745	804	1105	0,1551	0,05	0,049
83b	-	16	0,0310	-	0,0310	240	-	2,2	2745	804	1407	0,3107	0,07	0,087
84ь	-	16	0,0310	-	0,0310	240	-	2,2	2775	1105	1407	0,1808	0,07	0,054
85	-	8	0,0241	-	0,0241	420	-	2,2	750	392	457	0,1816	0,04	0,041
86	-	10	0,0251	-	0,0251	420	-	2,3	656	392	457	0,2462	0,07	0,065
87	-	12	0,0406	-	0,0406	420	-	2,2	727	261	457	0,4206	0,06	0,059
109a	8	18	0,0469	0,0087	0,0556	220	420	2,2	3590	1500	1940	0,2105	0,04	0,032
109Ь	8	18	0,0469	0,0087	0,0556	220	420	2.2	3590	1500	2469	0,4636	0,07	0,077
110a	8	18	0,0469	0,0087	0,0556	220	420	2,1	3560	1500	1940	0,2136	0,04	0,032
110ь	8	18	0,0469	0,0087	0,0556	220	420	2,1	3560	1590	2469	0,4704	0,10	0,078
115	6	14	0,0273	0,0050	0,0323	420	420	2,6	3935	1636	2082	0,1940	0,04	0,052
145	8	12	0,0266	0,0118	0,0384	220	420	2,6	3460	1426	2495	0,5256	0,10	0,094
154a	14	14	0,0283	0,0283	0,0566	420	420	2,5	2920	1126	1971	0,4710	0,06	0,078
154ь	14	14	0,0283	0,0283	0,0566	420	420	2,5	2920	1126	2253	0,6282	0,10	0,113
156	14	14	0,0283	0,0283	0,0566	420	420	2,2	2740	1180	1971	0,5071	0,10	0,085

Tabelle 5.4: Ermittlung rechnerischer Rißbreiten bei Zulassungsversuchen

Liegt zwischen dem Meßwert exp w und dem Rechenwert rechn w_m ein streng linearer Zusammenhang vor, so ermöglicht die Mittelwertkorrektur zum einen die Beseitigung der unbekannten Modellunsicherheiten und zum anderen den Übergang von der mittleren auf die größte Rißbreite im Rißmodell. Zuvor jedoch wird die Gl. (5.76) modifiziert. Diese Modifikation betrifft den mittleren Rißabstand a_m , Gl. (5.73), der die Rißteilung von Zugzonen von Biegebauteilen und Zugstäben i.M. zutreffend beschreibt, auf den gerissenen Zugring aber nicht ohne weiteres übertragen werden kann. Andererseits ist es unstrittig, daß die Rißbreite mit dem Verhältnis d_s/μ zunimmt. Diese Überlegungen führen zu folgender Beziehung für die größte rechnerische Rißbreite bei Verwendung von Betonrippenstahl und bei Kurzzeitbelastung:

rechn w =
$$\vec{b}_{R} \cdot 0.2 \frac{d_{s}}{\mu} \left(\frac{B_{s}}{E_{s}} \frac{F - F_{r}}{F_{u} - F_{r}} \left(1 + \frac{F - F_{r}}{F_{u} - F_{r}} \right) + \frac{B_{bZ}}{3 \mu E_{s}} \right)$$
 (5.77)

bzw. bei Verwendung von glattem Betonstahl

rechn w =
$$\overline{b}_{g} \cdot 0, 2 \frac{d_{s}}{\mu} \left(\frac{\beta_{s}}{E_{s}} \frac{F - F_{r}}{F_{u} - F_{r}} \left(1 + \frac{F - F_{r}}{F_{u} - F_{r}} \right) + \frac{\beta_{bZ}}{3 \mu E_{s}} \right)$$
 (5.78)

Hierin betragen die Mittelwertskorrekturgrößen: $\overline{b}_{R}\approx1,08$ und $\overline{b}_{G}\approx1,46.$ Weiter ist

$$\mu = \frac{A_s}{s_w (0,5 a - r_o)} , \qquad (5.79)$$

mit A_s ... Querschnitt der Wendel oder des Bügels; s_w ... Bügelabstand bzw. Ganghöhe; a ... minimaler Achsabstand; und r_o ... Halbmesser des Hüllrohres. Für B_s ist die tatsächliche Streckgrenze bzw. die Nennstreckgrenze einzusetzen, sofern erstere unbekannt ist. Die Betonzugfestigkeit kann zu

$$\beta_{bZ} \approx 0,25 \beta_{Wm}^{2/3}$$
 (5.80)

geschätzt werden.

In vielen Fällen werden Rippenstahl und glatter Betonstahl (für die Wendel) gemeinsam verwendet. Damit wird es erforderlich, die Wirksamkeit beider Stahlarten zu beschreiben. Mit

$$\mu = \mu_{\rm G} + \mu_{\rm R} \tag{5.81a}$$

$$B_{\rm S}^{\star} = \frac{\mu_{\rm G} B_{\rm SG} + \mu_{\rm R} B_{\rm SR}}{\mu}$$
(5.81b)

und

$$d_{s}^{\star} = \sqrt{\frac{1,82 \ \mu_{G}}{\mu} \ d_{sG}^{2} + \frac{\mu_{R}}{\mu} \ d_{sR}^{2}}$$
(5.81c)

ergibt sich bei einer Mischbewehrung

rechn w = 1,08 · 0,2
$$\frac{d_{s}^{*}}{\mu} \left(\frac{B_{s}^{*}}{E_{s}} \frac{F - F_{r}}{F_{u} - F_{r}} \left(1 + \frac{F - F_{r}}{F_{u} - F_{r}} \right) + \frac{B_{bZ}}{3 \mu E_{s}} \right)$$
 (5.82)

In Bild 5.32 sind die gemessenen und die nach den Gl. (5.77), (5.78) und (5.82) Größtwerte der Rißbreite einander gegenübergestellt. Man stellt eine gute Vorhersage fest.

6. ABLEITUNG CHARAKTERISTISCHER WERTE DER TRAGFÄHIGKEIT

6.1 Zusammenstellung der Versuchsdaten und -ergebnisse

Die Zusammenstellung der Daten und der Ergebnisse der verwertbaren, nach der Prüfrichtlinie ausgeführten Versuche verfolgt zwei Absichten. Zum einen dient sie der Verifizierung der Brauchbarkeit der entwickelten Rechenmodelle und zum anderen der Ableitung von charakteristischen Werten bzw. Beziehungen der Tragfähigkeit mit der Hilfe statistischer Auswerteverfahren. Insgesamt 221 Versuche werden betrachtet. Zur Erläuterung der in den Tabellen A7/1-A7/21 verwendeten Bezeichnungen dient Bild A1 des Anhangs, in dem die geometrischen Daten erklärt werden. Zusätzlich wurden folgende Daten in die Tabellen A7/1-A7/21 aufgenommen:

- β_{s_w} : Streckgrenze des Wendelstahls
- B_{shii} : Streckgrenze des Bügelstahls
- β_{wa} : Würfeldruckfestigkeit des Betons zu Beginn des Versuchs
- B_{WF} : Würfeldruckfestigkeit des Betons am Ende des Versuchs
- F_{N} : Nennbruchlast des Spannglieds

Bewehrung im unteren Teil:

Es wird sowohl die Bewehrung im unteren schwach bewehrten Teil des Versuchskörpers als auch deren Menge in kg Stahl/m³ Beton angegeben.

Erstrißlast:

Die Last, bei der der erste sichtbare Riß beobachtet wurde, wird als Teil von F_N sowie als Kraft in kN angegeben. Die Erstrißlast wurde nicht in allen Versuchen registriert.

Rißbreite:

Die größte Rißbreite max w_{o1} , die beim ersten Erreichen der Oberlast im Druckschwellversuch gemessen wurde, wird mit der zugehörigen Last F_{o1} angegeben. Für Dauerstandversuche wird die größte Rißbreite, die bei Erreichen einzelner Laststufen gemessen wurden, mit der dazugehörigen Last aufgeführt. Für Druckschwellversuche wird außerdem die größte im letzten Lastwechsel unter Unterlast gemessene Rißbreite max w_{u1} und die dazugehörige Last wiedergegeben.

Versuchsbruchlast F_u: Im Versuch gemessene Maximallast

Versuchsart VA: Bezeichnet die Versuchsart (statischer Bruchversuch, Dauerstand- versuch (D), Druckschwellversuch (S)).

Ort des Versagens:

Hier wird genannt, ob der Körper im Bereich der Krafteinleitung (oben), im unteren schwach bewehrten Teil (unten) oder etwa gleichzeitig oben und unten (ganze Höhe) versagte. Die Angaben entstammen den Versuchsberichten.

In die Tabellen wurden zum einen die in [47] berichteten Versuche, zum anderen Versuche, die im Rahmen von Eignungsprüfungen für Spannverfahren nach IfBt-Richtlinie [1] durchgeführt wurden, aufgenommen. Die Daten und Ergebnisse wurden den Berichten entnommen, wobei bei fehlenden geometrischen Angaben die Maße aus den Anlagezeichnungen herausgegriffen wurden. Auch Fotos wurden zur Entscheidung verwendet.
Bei der Zusammenstellung der Daten ergaben sich im Hinblick auf die spätere Auswertung folgende Probleme:

- Die Streckgrenze des Bewehrungsstahls wurde bei vielen Versuchen nicht ermittelt, so daß hier der Nennwert verwendet wird.
- Die Belastungsgeschwindigkeit wird nicht genannt. Sie übt jedoch einen Einfluß auf das Ergebnis aus.
- Die genaue Bewehrungsanordnung wurde in einigen Fällen nur unzureichend dokumentiert.
- Bei einigen Systemen (Mehrflächenverankerungen, Glockenverankerungen, Gußankerkörper) sind zusätzlich zu den Angaben der Tabellen weitere in den Versuchsberichten enthaltene Daten erforderlich, um die rechnerische Bruchlast abschätzen zu können.
- Bei den Eignungsversuchen wird die Laststufe angegeben, bei der der erste sichtbare Riß auftritt. Aufgrund der groben Abstufung der Laststufen wird daher die Erstrißlast nur sehr ungenau bestimmt.

6.2 Basis der statistischen Auswertung

Auch wenn die Verbindung Ankerkörper – Beton für eine Spanngliedreihe in Eignungsversuchen untersucht wird, handelt es sich doch stets um Einzelergebnisse, deren geringe Zahl die Bestimmung von charakteristischen Werten der Tragfähigkeit nicht erlaubt. Hier Abhilfe zu schaffen, ist Ziel dieser Arbeit. Durch Rechenmodelle und durch die Anwendung von statistischen Verfahren sollen Schätzwerte der charakteristischen Kennwerte gewonnen werden.

Die hier angewandte Auswertung beruht auf den "Grundlagen zur Beurteilung von Baustoffen, Bauteilen und Bauarten im Prüfzeichen- und Zulassungsverfahren" [145], die selbst auf der GRUSIBAU [146] basieren.

Die Merkmale (Ergebnisse) der Beanspruchbarkeit (Tragfähigkeit) sind entweder als ein Versuchswert R_v oder als ein mit dem Rechenmodell gewonnener theoretischer Wert R_t bekannt. Natürlich muß die Eignung des Rechenmodells a priori erwiesen sein. Damit ist zwischen R_v und R_t eine Beziehung gegeben, die als linear vorausgesetzt wird. Die Zahlenwerte der Versuchswerte r_v streuen. Angaben zur Merkmalsverteilung liegen meist nicht vor. Nach [145] ist im allgemeinen von einer logarithmischen Normalverteilung der Merkmale auszugehen. Bei geringer Streuung ($v \le 0,10$) ist bei der Schätzung weiterer Fraktilwerte die Annahme einer Normalverteilung gleichwertig. Zur Berücksichtigung der statistischen Unsicherheiten kann nach [145] eine Aussagewahrscheinlichkeit von W = 75 % gewählt werden.

6.3 Statistische Auswerteverfahren

Bei der Verwendung von Rechenmodellen beschränkt sich die Schätzung von Kennwerten auf die Schätzung des Fraktils von Korrekturgrößen im Modell. Stichproben müssen nunmehr bezüglich jener Einflußgrößen, welche die Korrekturgrößen beeinflussen können, repräsentativ sein, sofern auch die Streuungen der anderen Einflußgrößen bei der Schätzung von Bemessungswerten berücksichtigt werden [145].

Bei der statistischen Auswertung ist zwischen einfachen Korrekturgrößen (Auswertung ohne Regression) und der Auswertung mit linearer Regression zu unterscheiden. Beide Verfahren werden im folgenden vorgestellt.

a) Auswertung ohne Regression

Zwischen der im Versuch bestimmten Beanspruchbarkeit R_v und jener mit dem Rechenmodell bestimmten R_t herrscht die Beziehung:

$$R_{v} = R_{t} \overline{b} \Delta$$
 (6.1)

mit \overline{b} der Mittelwertkorrekturgröße und mit Δ der Streukorrekturgröße.

Für jeden Versuchskörper i ist durch Vergleich von Rechenwert r_{ti} und Versuchswert r_{vi} die Größe b_i zu bestimmen. Daraus ergeben sich die Mittelwertkorrekturgröße b und die einzelne Abweichung δ_i :

$b_i = r_{vi}/r_{ti}$	(6.2a)
$\overline{\mathbf{b}} = \frac{1}{2} \Sigma \mathbf{b}$	(6.2b)

$$\delta_{i} = b_{i}/\overline{b}$$
(6.2c)

Mittelwert und Standardabweichung von $\delta' = \ln \delta$ errechnen sich mit v = n-1(n = Anzahl der Versuche) aus

$$\overline{\delta'} = \frac{1}{n} \sum \delta_i'$$
(6.3)

$$s'_{\Delta} = \sqrt{\frac{1}{\upsilon} \Sigma (\delta_{i} - \overline{\delta'})^{2}}$$
(6.4)

Der charakteristische Wert δ_k der Streukorrekturgröße Δ wird als p%-Fraktil anhand folgender Beziehung statistisch geschätzt:

$$\delta_{k} = \exp\left(\overline{\delta'} - K_{s} s_{\Delta}'\right) \quad . \tag{6.5}$$

In der Regel ist δ_k als 5 %-Fraktil für eine Aussagewahrscheinlichkeit W = 0,75 zu bestimmen. Der Wert K_s ist der Tabelle A6 von [145] für v = n-1 zu entnehmen.

Der charakteristische Wert der Beanspruchbarkeit (5 %-FW) ist mit folgender Gleichung zu berechnen:

$$r_{k} = r_{tk} \overline{b} \, \widehat{\delta}_{k}. \tag{6.6}$$

Hierin ist r_{tk} der mit charakteristischen Werten des Werkstoffwiderstands, der Versuchskörpergeometrie etc. bestimmte charakteristische Wert der Beanspruchbarkeit des Modells. Der Zusammenhang ist in Bild 6.1 dargestellt.

Bild 6.1: Darstellung von Rechenwerten r_{ti} und der zugehörigen Versuchswerte r_{vi} bei Auswertung ohne Regression [145]

b) Auswertung mit linearer Regression

Wird die Beanspruchbarkeit R systematisch in Abhängigkeit eines oder mehrerer Parameter untersucht, erfolgt die Auswertung mit linearer Regression wie folgt:

Mit Hilfe von

$$\overline{r}_{v} = \frac{1}{n} \Sigma r_{vi}, \qquad (6.7)$$

$$s_{Rv} = \sqrt{\frac{1}{n-1} \left(\sum r_{vi}^2 - n \ \overline{r}_v^2 \right)}$$
 (6.8)

$$\overline{r}_{t} = \frac{1}{n} \Sigma r_{ti}, \qquad (6.9)$$

$$S_{Rt} = \sqrt{\frac{1}{n-1} (\Sigma r_{ti}^2 - n r_t^2)^{1}}$$
 (6.8)

wird der Korrelationskoeffizient zwischen R_v und R_t wie folgt abgeschätzt:

$$\widehat{\rho} = \frac{\sum r_{vi} r_{ti} - n \overline{r_v} \overline{r_t}}{(n-1) s_{Rv} s_{Rt}}$$
(6.11)

Die Auswertung darf unter Verwendung der Regressionsgeraden

$$R_v = a + b R_t \tag{6.12}$$

erfolgen, wobei die Mittelwertkorrekturgröße a und b wie folgt ausgedrückt werden:

$$b = \hat{\rho} \frac{s_{Rv}}{s_{Rt}}$$
(6.13)

$$a = \overline{r_v} - b \overline{r_t}$$
(6.14)

Im allgemeinen ist eine Streukorrekturgröße Δ in folgender Form einzuführen:

$$R_v = (a + b R_t) \Delta \tag{6.15}$$

Die Einführung der Streukorrekturgröße Δ in der obigen Form ist gerechtfertigt, wenn angenommen werden kann, daß R mit einem konstanten Variationskoeffizienten behaftet ist. Für jede Probe i erhält man die zugehörige Abweichung von der Mittelwertkorrektur δ_i aus:

$$\delta_{i} = \frac{r_{vi}}{a + b r_{ti}}$$
(6.16)

Mittelwert und Standardabweichung von $\delta' = \ln \delta$ errechnen sich mit v = n-2(n = Anzahl der Versuche) aus

$$\overline{\delta}' = \frac{1}{n} \Sigma \, \delta'_{i}, \qquad (6.17)$$

$$s'_{\Delta} = \sqrt{\frac{1}{\upsilon} \Sigma (\delta'_{i} - \overline{\delta}')^{2}}$$
(6.18)

Der charakteristische Wert δ_k der Streukorrekturgröße Δ wird als p%-Fraktil anhand folgender Beziehung statistisch geschätzt:

$$\delta_{k} = \exp\left(\overline{\delta}' - K_{s} s_{\Delta}'\right)$$
(6.19)

 K_s ist Tabelle A6 von [145] für v = n-2 zu entnehmen.

Der charakteristische Wert der gesuchten Größe der Beanspruchbarkeit ist dann aus folgender Gleichung zu berechnen (Bild 6.2):

$$\mathbf{r}_{k} = (\mathbf{a} + \mathbf{b} \mathbf{r}_{tk}) \,\widehat{\boldsymbol{\delta}}_{k}. \tag{6.20}$$

Bild 6.2: Darstellung von Rechenwerten r_{ti} und zugehörigen Versuchswerten r_{vi} bei Auswertung mit linearer Regression [145]

6.4 Ermittlung von charakteristischen Werten der Tragfähigkeit

6.4.1 Vorgehen

Im folgenden werden die charakteristischen Werte der Tragfähigkeit mit Hilfe der in Abschn. 5 entwickelten Rechenmodelle und auf Basis der Versuche abgeleitet. Es ist dabei notwendig, zwischen den wesentlichen Arten der Krafteinleitung, sprich Verankerungen, zu unterscheiden. Von den in Abschn. 5 behandelten Rechenmodellen werden nur jene ausgewählt, die zum einen mechanisch schlüssig sind und zum anderen eine gute Vorhersagefähigkeit besitzen.

6.4.2 Charakteristische Drucktragfähigkeit im unteren, schwach bewehrten Teil der Verbindung

Nach Abschn. 5.2 lautet das Rechenmodell

$$\operatorname{rechn} F_{\mu} = 0,85 \ \beta_{\mu F} A_{\mu} \tag{6.21}$$

Nach Abschn. 6.3 kann der Mittelwert der Tragfähigkeit wie folgt geschätzt werden:

$$F_{um} = b \operatorname{rechn} F_{u}$$
(6.22)

mit b, der Mittelwertkorrekturgröße. Die Bestimmung von b erfolgt mit solchen Zulassungsversuchen, bei denen das Versagen im unteren Teil auf Druck eintrat. Die Auswertung erfolgt getrennt für Druckschwell- und Dauerstandversuche (Tab. A4a und A4b).

Für die Dauerstandversuche (n = 22) ergab sich \overline{b} = 1,0159, für die Dauerstandversuche (n = 24) war \overline{b} = 1,0208, und für alle Versuche zusammen (n = 46) ergab sich \overline{b} = 1,0185. Beide Versuchsarten sind als gleichwertig zu bewerten, da sich annähernd gleiche Korrekturgrößen \overline{b} ergeben. Der Mittelwert der Tragfähigkeit ergibt sich somit zu:

$$F_{\mu m} \approx 0.85 \ \beta_{WF} \ A_{n} \tag{6.23}$$

Der charakteristische Wert der Tragfähigkeit als 5 %-Fraktil bei 75 %iger Aussagewahrscheinlichkeit ergibt sich bei Annahme einer logarithmischen Normalverteilung und bei Berücksichtigung aller Versuche entsprechend den Gln. (6.1) und (6.6) zu

$$F_{\mu k} \approx 0.85 \ \beta_{WF} A_n \cdot 1.0185 \cdot 0.82 = 0.835 \ rechn F_{\mu}$$
 (6.24)

bzw.

$$F_{uk} \approx 0.7 \ \beta_{WE} \ A_n \tag{6.25}$$

In Bild 6.3 sind die Versuchsbruchkräfte den rechnerischen Bruchkräften gegenübergestellt.

Bild 6.3: Gegenüberstellung von Versuchsbruchlasten und rechnerischen Bruchlasten von Versuchen, die im unteren schwach bewehrten Teil versagten

6.4.3 Charakteristische Tragfähigkeit des Krafteinleitungsbereichs der Verbindung Plattenverankerung - Beton

Die Mehrzahl der Spannverfahren verwendet als unmittelbares Kraftübertragungsglied die im Konstruktionsbeton eingebettete oder gegen diesen anliegende, meist quadratische, seltener runde Platte.

In den vorangegangenen Abschnitten wurden die wichtigsten tragfähigkeitsbestimmenden Parameter und ihre rechnerische Berücksichtigung im Modell aufgezeigt. Sie seien noch einmal genannt:

- Der Verhältnis Körperquerschnittsfläche/Lastfläche
- die Betongüte
- die Menge und Art der Querbewehrung
- die Steifigkeit der Ankerplatte
- die Querschnittsfläche des Spannkanals

Wie bereits gezeigt, wird mit dem Modell von Shao-Huai et al [130] eine gute Vorhersagegenauigkeit erreicht. Der Einfluß der Ankerplattensteifigkeit läßt sich berücksichtigen, wenn anstatt der Ankerplattenfläche A_1 die entsprechend Abschnitt 5.6 ermittelte wirksame Lastfläche A_1' in Gl. (5.18) eingeführt wird. Die Tragfähigkeitsverminderung infolge eines vorhandenen Spannkanals wird durch Multiplikation der rechnerisch aufnehmbaren Teilflächenpressung mit der effektiven Ankerplattennettofläche A_{1n}' berücksichtigt.

Somit ergibt sich die rechnerische Tragfähigkeit zu:

rechn
$$F_u = 0,67 f_{cu} A'_{1n} (\sqrt{\frac{A}{A'_1}} + 0,845 (\omega + \sqrt{\omega}) \sqrt{\frac{A_{\kappa}}{A'_1}})$$
 (6.26)

Für quadratische oder runde wendel- oder bügelbewehrte Körper läßt sich Gl. (6.26) mit $f_{cu} = \beta_{WE}$ und $\beta_P = 0.85 \beta_{WE}$ mit $A_K \approx A$ wie folgt vereinfacht ausdrücken:

rechn
$$F_u = 0,67 \ B_{WE} \ A'_{1n} \sqrt{\frac{A}{A'_1}} (1 + 0,845 \ (\omega + \sqrt{\omega}))$$
 (6.27)

wobei

$$\omega = \frac{4}{a \beta_{p}} \left(\frac{A_{sw} \beta_{sw}}{s_{w}} + \frac{A_{sb\ddot{u}} \beta_{sb\dot{u}}}{s_{b\ddot{u}}} \right)$$
(6.28)

Hierbei wird vorausgesetzt, daß Wendel und Bügel bei gleichem mechanischen Bewehrungsgrad die gleiche tragfähigkeitserhöhende Wirkung erbringen. Die Gl. (6.27) und (6.28) können auch auf rechteckige Versuchskörper angewendet werden, wobei für a die größere der beiden Kantenlängen einzusetzen ist. Nach Abschn. 6.3b kann der Mittelwert der Tragfähigkeit wie folgt geschätzt werden:

$$F_{um} = 0,67 \ B_{WE} \ A'_{1n} \sqrt{\frac{A}{A'_{1}}} \ (a + b \ 0,845 \ (\omega + \sqrt{\omega}))$$
 (6.29)

mit den Mittelwertkorrekturgrößen a und b.

Die Mittelwertkorrekturgrößen sind nach Abschnitt 6.3b zu bestimmen. Hierzu werden die Ergebnisse von 76 Versuchen ausgewertet, die im oberen Teil versagten (Tab. A5). Hierin sind rechteckige sowie quadratische Körper mit Ankerplatten unterschiedlicher Steifigkeit, mit oder ohne Hüllrohr enthalten. Die Versuchskörper sind bewehrt oder unbewehrt. Die Querbewehrungen bestehen aus Wendeln, Bügeln oder aus beiden. Zur Durchführung der linearen Regression werden die Versuchsbruchkräfte als bezogene Werte ausgedrückt. Somit ergibt sich

$$R_v = a + b R_t \tag{6.30}$$

mit

$$R_{v} = \frac{\exp F_{u}}{0,67 \ B_{WE} \ A_{1n}' \sqrt{\frac{A}{A_{1}'}}}$$
(6.31)

$$R_{t} = 0,845 \ (\omega + \sqrt{\omega}) \tag{6.32}$$

Die effektive Lastplattenfläche A'₁ wird nach Abschnitt 5.6.3 ermittelt, die Ankerplattennettofläche A'_{1n} durch Subtraktion der Fläche des Ankerplattenlochs von der effektiven Lastplattenfläche bestimmt. Die Auswertung ist in Tab. A5a zusammengestellt. Die Versuchsergebnisse rechteckiger Versuchskörper, die auch in Tab. A5a enthalten sind, wurden in Tab. A5b gesondert betrachtet. In Bild 6.4 ist R_v in Abhängigkeit von R_t dargestellt. Folgende Standardabweichung s'_Δ und Mittelwertkorrekturgrößen a und b wurden ermittelt:

sämtliche Versuche: $a = 1,001069, b = 0,999724, s'_{\Delta} = 0,122106$ Versuche an Rechteck-
körpern: $a = 0,924796, b = 0,981132, s'_{\Delta} = 0,119749$

Es ergibt sich damit der Mittelwert der Versagenslast zu:

 $F_{im} \approx \text{rechn } F_{ii}$

(6.33)

Bild 6.4: Beziehung zwischen R_v und R_t bei Versuchskörpern, die im oberen Teil versagten

Der charakteristische Wert δ_k der Streukorrekturgröße Δ wird als 5 %-Fraktil für eine Aussagewahrscheinlichkeit von 75 % statistisch geschätzt zu:

 $\delta_k = \exp(-0.007403 - 1.78 \cdot 0.122106) = 0.8$

Damit ergibt sich der charakteristische Wert der Versagenslast mit rechn F_u nach Gl. (6.29) zu

$$F_{\mu\nu} = 0.8 \text{ rechn } F_{\mu\nu}$$
 (6.34)

In Bild 6.5 sind die Versuchsbruchlasten von Versuchen, die im oberen Teil versagten, in Abhängigkeit von rechn ${\rm F_u}$ dargestellt.

Bild 6.5: Gegenüberstellung von $\exp F_u$ und rechn F_u für Versuchskörper, die im oberen Teil versagten

In den Bildern 6.6 a) – c) ist für Versuchskörper, die im oberen Teil versagten, exp F_u /rechn F_u in Abhängigkeit von A/A'_1, 0,845($\omega + \sqrt{\omega}$) sowie β_{WE} dargestellt. Hier soll überprüft werden, ob eine systematische Abweichung in Abhängigkeit von der Variablen vorhanden ist.

Aus den Bildern 6.6 a) und b) wird deutlich, daß rechn F_u den Einfluß von A/A'_1 sowie von ω in der richtigen Weise berücksichtigt. Dagegen nimmt exp F_u /rechn F_u mit zunehmendem β_{WE} , wie im Bild 6.6 c) erkennbar, geringfügig ab. Diese Feststellung stimmt mit der in der Literatur vielfach beschriebenen Beziehung zwischen Prismen- und Würfeldruckfestigkeit überein und wird im deutschen Normenwerk zusammen mit dem Dauerstandseinfluß durch Angabe der Rechenfestigkeit β_R für die jeweilige Betonfestigkeitsklasse berücksichtigt.

6.4.4 Zusammenfassende Auswertung

Abschließend werden zusammenfassend 198 der im Anhang zusammengestellten Versuche, unabhängig vom Versagensort, ausgewertet. Lediglich Versuchskörper mit Glockenankern, Mehrflächenverankerungen und sog. Ankertöpfen wurden nicht aufgenommen. Mit Hilfe eines Rechenprogramms wurden die rechnerischen Bruchlasten nach Abschn. 6.4.2 und 6.4.3 ermittelt und miteinander verglichen. Der kleinere der beiden Werte ist maßgebend. Die so ermittelten Werte für rechn F_u werden im Bild 6.7 den Versuchsbruchlasten gegenübergestellt. Es ergibt sich eine gute Übereinstimmung, die sich mit der in Abschn. 6.4.2 und 6.4.3 ermittelten wirden der in Abschn. 6.4.2 und 6.4.3 ermittelten werte für rechn Fullen eine gute Übereinstimmung, die sich mit der in Abschn. 6.4.2 und 6.4.3 ermittelten etwa deckt.

Bild 6.7: Vergleich zwischen rechnerischen Bruchlasten und Versuchsbruchlasten

Kürzel	Körper- querschnitt	Hüllrohr	Wendel	Bügel	
q	quadratisch	nein	nein	nein	
qb	quadratisch	nein	nein	ja	
qw	quadratisch	nein	ja	nein	
qhb	quadratisch	ja	nein	ja	
qhw	quadratisch	ja	ja	nein	
qwb	quadratisch	nein	ja	ja	
qhwb	quadratisch	ja	ja	ja	
rhb	rechteckig	ja	nein	ja	

Die im Bild 6.7 in der Legende neben den Symbolen verwendeten Kürzel stehen dabei für folgende Typen von Versuchskörpern:

In Bild 6.8 ist die mittlere rechnerisch aufnehmbare Teilflächenpressung q_{1u} , bezogen auf B_{WE} in Abhängigkeit von A'_1 /A dargestellt, und zwar zum einen diejenige, die sich infolge Versagens im unteren Teil, zum anderen diejenige, die sich infolge Versagens im oberen Teil (abhängig von ω) ergibt. Hieraus läßt sich bei vorgegebenen A'_1 /A der notwendige Bewehrungsgrad ermitteln.

Bild 6.8: Mittlere rechnerisch aufnehmbare Teilflächenpressung q_{1u} , bezogen auf die Betondruckfestigkeit β_{WF} in Abhängigkeit von A'₁ /A

6.4.5 Tragfähigkeit des Krafteinleitungsbereichs der Verbindung Mehrflächenverankerung - Beton

Eine sogenannte "Mehrflächenverankerung" ist in Bild 6.9 gezeigt.

Bild 6.9: "Mehrflächenverankerung, System DYWIDAG"

Es handelt sich dabei um steife Ankerkörper aus Sphäro- oder Temperguß, auf die als Keilträger eine Verankerungsscheibe gesetzt wird. Der Gußkörper weist mehrere Ringrippen auf, über die die Kraft in den Beton eingetragen wird.

Die genaue Bestimmung der Kraftabtragung ist kompliziert und mit einfachen Beziehungen nicht möglich. Um die Bruchlast in etwa abzuschätzen, wird folgendes Vorgehen vorgeschlagen:

Bild 6.10: Verankerungsbereich mit Mehrflächenverankerung (schematisch)

Die Wirkung der Ringe auf die Traglast wird einzeln betrachtet. Zur Ermittlung der rechnerischen Bruchlast jedes Ringes wird die für die Plattenverankerung angegebene Beziehung verwendet. Allerdings ist davon auszugehen, daß die auftretende Pressung unter den Ringen mit zunehmender Tiefe abnimmt. Für jeden Ring wird daher entsprechend Bild 6.10 ein Wirksamkeitsfaktor k ermittelt. Die für die einzelnen Ringe ermittelte rechnerische Bruchlast wird mit dem zugehörigen Wirksamkeitsfaktor multipliziert.

Die Summation der so ermittelten Werte ergibt die rechnerische Bruchlast. Bei diesem Vorgehen wird vorausgesetzt, daß eine ggf. vorhandene umschnürende Bewehrung gleichmäßig im Krafteinleitungsbereich verteilt ist. Die rechnerische Bruchlast ergibt sich damit zu (Erläuterung s. Bild 6.10):

rechn
$$F_u = 0,67 \ \beta_{WE} \left[\sum_{i=1}^{n} \left(k_i \ A_{1ni} \sqrt{\frac{A}{A_{1i}}} \right) \right] \cdot (1 + 0,845 \left[\omega_w + \omega_{b\ddot{u}} + \sqrt{\omega_w + \omega_{b\ddot{u}}} \right] \right]$$
 (6.35)

mit

$$\omega_{w} = \frac{4 A_{sw} B_{Sw}}{s_{w} a 0,85 B_{wE}}$$
(6.36)

und

$$\omega_{b\ddot{u}} = \frac{4 A_{sb\ddot{u}} B_{Sb\ddot{u}}}{s_{w} a 0,85 B_{WE}}$$
(6.37)

n : Anzahl der Ringrippen

 $\begin{array}{ll} k_{i} & : \mbox{Wirksamkeitsfaktor des Ringes i; } k_{i} = 1 - x_{i}/d_{a} \\ A_{1i} & : \mbox{Bruttofläche des Ringes i; } A_{1i} = \pi r_{i}^{2} \\ A_{1ni} & : \mbox{Belastungsfläche des Ringes i; } A_{1ni} = \pi (r_{i}^{2} - e_{i}^{2}) \end{array}$

Der Vorschlag zur Ermittlung der rechnerischen Bruchlast wird mit Hilfe der im Anhang zusammengestellten Ergebnisse von Versuchen an Mehrflächenverankerungen überprüft. Dabei werden nur Versuche verwendet, bei denen das Versagen im oberen Teil erfolgte. Die Auswertung ist in Tab. 6.1 zusammengestellt.

Bei Versuch Nr. 174 wird die tatsächlich erreichte Bruchlast rechnerisch deutlich unterschätzt. Allerdings ist hier zu beachten, daß die rechnerische Bruchlast sich infolge Druckbruch im unteren schwach bewehrten Teil zu rechn $F_u = A_n B_p = (480^2 - \pi 50^2) \cdot 0,85 \cdot 21,2 = 4010$ kN ergibt und damit deutlich kleiner als die tatsächlich erreichte Bruchlast ist, was zu der Vermutung Anlaß gibt, daß die Betondruckfestigkeit im Versuchskörper einen höheren Wert erreichte als das angegebene β_{WE} . Im übrigen überschätzten die rechnerischen Werte die Versuchswerte um ca. 7 %. Die Rechenwerte korrelieren mit den Versuchswerten jedoch gut. Der Vorschlag zur Ermittlung der rechnerischen Bruchlast bei Mehrflächenverankerungen erscheint ausreichend zutreffend. Sinngemäß könnte auch bei anderen Formen von Gußverankerungen vorgegangen werden, wobei die Anwendbarkeit bei diesen noch durch Vergleich mit Versuchsergebnissen zu überprüfen wäre.

Tabelle 6.1:Gegenüberstellung von Versuchsbruchkräften und rechnerischen Bruchkräften für Mehrflächenverankerungen

Vers Nr.	^B WE	а	ω _w	ω _{bü}	d a	r ₁	e ₁	۲ ₂	e_2	٢3	• <u>3</u>	×2	×3	exp F	rechn F u	exp F rechn F u
-	MPa	mm	-	-	mm	mm	mm	៣៣	៣៣	ជាបា	mm	mm	mm	kN	kN	-
173	39,0	420	0,19	0,21	280	140	89	115	89	100	75	90	193	4920	5220	0,94
174	21,2	480	0,32	0,24	280	140	89	115	89	100	75	90	193	4815	3646	1,32
175	19,3	380	0,43	0,30	250	125	82	105	79	90	68	79	175	2910	2610	1,11
177	36,0	320	0,22	0,22	250	125	82	105	79	90	68	79	175	3190	3387	0,94
178	35,3	320	0,23	0,23	250	125	82	105	79	90	68	79	175	3140	3372	0,93
183	38,1	600	0,02	0,03	315	157,5	103	132,5	96	115	86	102	210	4605	5860	0,79
184	36,1	480	0,03	0,04	250	125	82	105	79	90	68	79	175	3050	3382	0,90

7 ABLEITUNG CHARAKTERISTISCHER WERTE DER ERSTRISSKRAFT

Als Rechenmodell wird in Ermangelung eines geeigneteren Gl. (5.62) verwendet. Es handelt sich hierbei eigentlich um ein Bruchmodell für unbewehrte teilflächenbelastete Körper. Nach Abschnitt 6.3b kann der Mittelwert der Erstrißkraft wie folgt geschätzt werden:

$$F_{rm} = 0,76 \ B_W \ A'_{1n} \ \left[a + b \ \frac{1,75}{B_W^{1/3}} \ (\sqrt{\frac{A'}{A'_1}} - 1)\right]$$
(7.1)

mit a und b den Mittelwertkorrekturgrößen.

Zur Bestimmung der Mittelwertkorrekturgrößen entsprechend Abschn. 6.3b werden die Ergebnisse von 84 Zulassungsversuchen ausgewertet (Tab. A6). Die Versuchskörper sind quadratisch oder rechteckig und bewehrt. Die Querbewehrungen bestehen aus Bügeln, Wendeln oder aus beiden. Als Würfeldruckfestig keit wurde die an Begleitwürfeln zum Zeitpunkt des Versuchsbeginns ermittelte eingesetzt.

Als Mittelwertkorrekturgrößen werden ermittelt:

$$a = 0,8977$$

b = 0,8319

Die Standardabweichung beträgt s^\prime_{Λ} .

Die Korrekturgrößen a und b in Gl. 7.1 eingesetzt, ergibt:

$$F_{rm} = 0,68 \ \beta_{w} \ A'_{1n} \ \left[1 + \frac{1,62}{\beta_{w}^{1/3}} \left(\sqrt{\frac{A}{A'_{1}}} - 1\right)\right]$$
(7.2)

Der charakteristische Wert δ_k der Streukorrekturgröße Δ wird als 5 %-Fraktil für eine Aussagewahrscheinlichkeit von 75 % statistisch geschätzt zu:

 $\delta_k = \exp(-0,007403 - 1,76 \cdot 0,2646) = 0,62$

Damit ergibt sich der charakteristische Wert der Erstrißkraft zu

$$F_{rk} = 0,62 F_{rm}$$
 (7.3)

Die wenig befriedigende Übereinstimmung zwischen rechnerischer Rißkraft und der im Versuch ermittelten war aus folgenden Gründen zu erwarten:

- Die Erstrißkraft ist maßgeblich von der Betonzugfestigkeit abhängig, der ren Variationskoeffizient etwa v \approx 0,17 beträgt.
- Wie im Abschnitt 6.1 bereits erwähnt, wird die Erstrißkraft in den Zulassungsversuchen nur sehr ungenau bestimmt.
- Das verwendete Rechenmodell beschreibt das tatsächliche Verhalten nur ungenau.

In Bild 7.1 sind die rechnerisch ermittelten Erstrißkräfte den im Versuch ermittelten gegenübergestellt.

Bild 7.1: Gegenüberstellung der Rißkraft im Versuch und der rechnerisch ermittelten

In den Bildern 7.2 a) - c) ist exp F_r/F_{rm} in Abhängigkeit von β_{WA} , $\omega = \omega_w + \omega_{b\bar{u}}$ und A/A'_1 dargestellt. Es wird erkennbar, daß mit zunehmender Betondruckfestigkeit exp F_r/F_{rm} geringer wird. Weiterhin steigt exp F_r/F_{rm} mit zunehmendem Bewehrungsgrad leicht an. Bei der Betrachtung von exp F_r/F_{rm} in Abhängigkeit von A/A'_1 ist keine Tendenz erkennbar.

Bild 7.2: exp F_r/F_{rm} in Abhängigkeit von a) B_{WA} , b) ω , c) A/A'_1

8 ZUSAMMENFASSUNG

Die rechnerische Vorhersage der Tragfähigkeit sowie der Rißbildung und des Verformungsverhaltens der Verbindung Ankerkörper/Beton gelingt nur sehr unvollkommen. Aus diesem Grund muß die Eignung der Verbindung durch den Versuch nachgewiesen werden. Rechenmodelle üben dabei eine unterstützende Funktion aus, auf die noch eingegangen wird.

Im vorliegenden Bericht werden aus der Literatur bekannte Rechenmodelle für die Tragfähigkeit dargestellt, bewertet und modifiziert. Sie gelten im wesentlichen für plattenförmige Ankerkörper, deren Biegesteifigkeit sich deutlich auf die Tragfähigkeit auswirkt und die deshalb im Rechenmodell erfaßt werden mußte. Beim Rechenmodell der Tragfähigkeit ist zwischen jenem des Druckversagens im schwach bewehrten, unteren Teil des Versuchskörpers und jenem des kombinierten Versagens m wendel- und/oder kugelbewehrten Krafteinleitungsbereich zu unterscheiden. Das Rechenmode1 für die Erstrißkraft ist erforderlich, um für das vorgestellte Rißmodell den Übergang vom Zustand I auf den Zustand II einzugrenzen. Für die Haftverankerung wurde kein Modell entwickelt.

Die hier entwickelten Rechenmodelle sind deterministische Ingenieurmodelle, die das mittlere Verhalten beschreiben. Sie sind bewußt überschaubar angelegt und enthalten jene Parameter, die das Verhalten aufgrund der Versuchserfahrung nachhaltig steuern.

Rechenmodelle weisen zahlreiche, nicht einzeln quantifizierbare Modellunsicherheiten stofflicher, geometrischer und mechanischer Herkunft auf. Aus diesem Grunde mußte die Vorhersagefähigkeit der Modelle an Hand von gut dokumentierten Zulassungsversuchen überprüft werden. Zu dieser Überprüfung wurde eine vom IfBt herausgegebene, auf der GRUSIBAU basierende Richtlinie verwendet. Die Überprüfung zeigte, daß Versuchsergebnisse und Vorhersage mit befriedigender Genauigkeit miteinander linear verknüpft sind. Dies erlaubte die Bestimmung von die Modellunsicherheiten kompensierenden Korrekturgrößen und die Ableitung von charakteristischen Werten der Tragfähigkeit.

Die hier vorgestellten Rechenmodelle sind keine autarken Modelle, die künftige Versuche überflüssig werden lassen. Sie sind stets im Zusammenhang mit Stützversuchen anzuwenden, die eine problemspezifische Kalibrierung ermöglichen. Liegen für einen Typ einer Verankerung (Spanngliedreihe) ein oder mehrere bedingungsmäßige Stützversuche für eine oder mehrere Betongüten bzw. zul. Vorspannkräfte vor, so kann man mit den Rechenmodellen die Achs- und Randabstände, die Ankerplattengeometrien und Bewehrungen zuverlässig bestimmen. Ein künftiger Bericht wird hierzu einen Leitfaden geben.

9 LITERATUR

- /1/ INSTITUT FÜR BAUTECHNIK: Richtlinien für die Eignung von Spannverfahren mit nachträglichem Verbund - Fassung Februar 1976. Mitteilungen des Instituts für Bautechnik, Heft 5, S. 146-149, 1976
- /2/ INSTITUT FÜR BAUTECHNIK: Aus der Arbeit der Sachverständigenausschüsse - SVA "Spannbeton-Spannverfahren". Mitteilungen des Instituts für Bautechnik, Heft 4, S. 99-101, 1980
- /3/ INSTITUT FÜR BAUTECHNIK: SVA "Spannbeton-Spannverfahren", Niederschrift der 5. Sitzung am 18.4.1975.
- /4/ INSTITUT FÜR BAUTECHNIK: SVA "Spannbeton-Spannverfahren", Niederschrift der 8. Sitzung am 28.6.1979.
- /5/ INSTITUT FÜR BAUTECHNIK: SVA "Spannbeton-Spannverfahren", Niederschrift der 9. Sitzung am 28.4.1981.
- /6/ MEHLHORN, G.; MEHMEL, H.-C.: Vergleich zwischen Dauerstand- und Schwellversuchen für Spannglieder. Forschungsbericht, Institut für Massivbau, TH Darmstdt, Heft 43, 1973
- /7/ LEONHARDT, F.; MÖNNIG, E.: Vorlesungen über Massivbau, 2. Teil. Springer-Verlag, 1975
- /8/ SCHÄFER, K.; BAUMANN, P.: Ausbreitung von Druckkräften in Betonscheiben – Vergleichende Versuche mit Lasteinleitungen über Lastplatten, Bewehrungsstabumlenkungen und Bewehrungsknoten. Versuchsbericht, Institut für Massivbau, Universität Stuttgart, 1986
- /9/ BAUMANN, P.: Die Druckfelder bei der Stahlbetonbemessung mit Stabwerkmodellen. Dissertation, Universität Stuttgart, 1988
- /10/ SCHLAICH, J.; SCHÄFER, K.: Konstruieren im Stahlbetonbau. In: Betonkalender, Teil II. Wilhelm Ernst & Sohn, S. 563-715, 1989
- /11/ STONE, W.C.; BREEN, J.E.: Design of post-tensioned girder anchorage zones. Center of Transportation Research, University of Texas, Research Report, Heft 208-3, 1981
- /12/ ZIELINSKI, J.; ROWE, R.E.: The stress distribution associated with groups of anchorages in post-tensioned concrete members. Cement and Concrete Association, London, Research Report, Band 13 (Publication 41.013), S. 39 ff, 1962
- /13/ BAUSCHINGER, J.: Versuche mit Quadern aus Naturstein. Mech.-Techn. Laboratorium der TH München, Band 6, 1876
- /14/ MÖRSCH, E.: Über die Berechnung der Gelenkquader. Beton und Eisen, Band 23, Heft 12, S. 156-161, Berlin, 1924

- /15/ BLEICH, F.: Der gerade Stab mit Rechteckquerschnitt als ebenes Problem. Der Bauingeniuer, Band 4, S. 255, 1923
- /16/ SIEVERS, H.: Die Berechnung von Auflagerbänken und Auflagerquadern von Brückenpfeilern. Der Bauingenieur, Band 27, Heft 6, S. 209-213, Juni 1952
- /17/ SIEVERS, H.: Über den Spannungszustand im Bereich der Ankerplatten von Spanngliedern vorgespannter Stahlbetonkonstruktionen. Bauingenieur, Band 31, Heft 4, S. 134-135, 1956
- /18/ MAGNEL, G.: Prestressed concrete. McGraw-Hill Book Co., New York, 1954
- /19/ GUYON, Y.: Contraintes dans les pièces prismatiques soumises à des forces appliquées sur leurs bases, au voisinage de ces bases. Internationale Vereinigung für Brückenbau und Hochbau, Band 11, S. 165-226, 1951
- /20/ GUYON, Y.: Beton precontraint Kapitel VI im Auszug in: Leonhardt, "Spannbeton für die Praxis", Kapitel 9. 3. Aufl., Band 1, Editions Eyrolles, Paris, 1958
- /21/ GUYON, Y.: Prestressed concrete. Contractors Record Ltd, London, 1946
- /22/ GUYON, Y.: Constructions en beton precontraint. Band II, Etude de la poutre., Paris, S. 259-280, 307-323, 1968
- /23/ IYENGAR, K.T.: Der Spannungszustand in einem elastischen Halbstreifen und seine technischen Anwendungen. Dissertation TH Hannover, 1960
- /24/ IYENGAR, K.T.: Two-dimensional theories of anchorage zone stresses in post-tensioned prestressed beams. Journal of the American Concrete Institute, Proceedings, Band 59, Heft 10, S. 1443-1446, 1962
- /25/ IYENGAR, K.T.; PRABHAKARA, M.K.: A three dimensional elasticity solution for rectangular prism under end loads. ZAMM, Band 49, Heft 6, S. 321-332, 1969
- /26/ IYENGAR, K.T.; PRABHAKARA, M.K.: Anchor zone stresses in prestressed concrete beams. Proc. of the ASCE, S. 807-824, März 1971
- /27/ IYENGAR, K.T.; YOGANADA, C.V.: A three dimensional stress distribution problem in the anchorage zone of a post-tensioned concrete beam. Magazine of Concrete Research, Band 18, Heft 55, S. 75-84, 1966
- /28/ DOUGLAS, D.J.; TRAHAIR, N.S.: An examination of the stresses in the anchorage zone of a post-tensioned prestressed concrete beam. Magazine of Concrete Research, Band 12, Heft 34, S. 9-18, März 1960

- /29/ HILTSCHER, R.; FLORIN, G.: Spaltzugspannungen in kreiszylindrischen Säulen, die durch eine kreisförmige Flächenlast zentrisch-axial belastet sind. Die Bautechnik, Heft 3, S. 90-94, 1972
- /30/ YETTRAM, A.L.; ROBBINS, K.: Anchorage zone stresses in axially post-tensioned members of uniform rectangular section. Magazine of Concrete Research, Heft 67, S. 103-112, 1969
- /31/ YETTRAM, A.L.: Anchorage zone stresses in axially post-tensioned Isection members with end-blocks. Magazine of Concrete Research , Band 23, Heft 74, S. 37-42, 1971
- /32/ YETTRAM, A.L.: Anchorage zone stresses in post-tensioned uniform members with excentric and multiple anchorage. Magazine of Concrete Research, Band 22, Heft 73, S. 209-218, 1972
- /33/ STONE, W.C.; BREEN, J.E.: Analyses of post-tensioned girder anchorage zones. Center of Transportation Research, University of Texas, Research Report, Heft 208-1, 1981
- /34/ STONE, W.C.; BREEN, J.E.: Behaviour of post-tensioned girder anchorage zones. Center of Transportation Research, University of Texas, Research Report, Heft 208-2, 1981
- /35/ FENWICK, R.C.; LEE, S.C.: Anchorage zones in prestressed concrete members. Magazine of Concrete Research, Band 38, Heft 135, S. 77-89, June 1986
- /36/ SAMKARI, M.: Vorspannkrafteintragung im Spannbetonbau. Dissertation, Univ.-Gesamthochschule Kassel, 1987
- /37/ UKHAGBE, J.: Ausgewählte Probleme zur Vorspannkrafteinleitung im Spannbeton. Dissertation, Gesamthochschule Kassel, 1990
- /38/ TESAR, M.: Détermination expérimentale des tensions dans les extrémités des pièces prismatiques munies d'une semi-articulation. IVBH, Abh., Heft 1, S. 497-506, 1932
- /39/ HILTSCHER, R.; FLORIN, G.: Die Spaltzugkraft in einseitig eingespannten, am gegenüberliegenden Rande belasteten rechteckigen Scheiben. Die Bautechnik, Heft 10, S. 325-328, 1962
- /40/ HILTSCHER, R.; FLORIN, G.: Spalt- und Abreißzugspannungen in rechteckigen Scheiben, die durch eine Last in verschiedenem Abstand von einer Scheibenecke belastet sind. Die Bautechnik, Heft 12, S. 401-408, 1963
- /41/ HILTSCHER, R.; FLORIN, G.: Darstellung der Spaltzugspannungen unter einer konzentrierten Last (Druckplatte), nach Guyon-Iyengar und nach Hiltscher und Florin. Die Bautechnik, Heft 6, S. 196-200, 1968

- /42/ SARGIOUS, M.: Beitrag zur Ermittlung der Hauptzugspannungen am Endauflager vorgespannter Betonbalken. Dissertation TH Stuttgart, 1960
- /43/ CHRISTODOULIDES, S.P.: Three dimensional investigation of the stresses in the end anchorage block of a prestressed concrete gantry beam. The Structural Engineer, Band 35, Heft 9, S. 349-356, Sept.1957
- /44/ CHRISTODOULIDES, S.P.: A two-dimensional investigation of the end anchorages of post-tensioned concrete beams. The Structural Engineer, S. 120-123, 1955
- /45/ CHRISTODOULIDES, S.P.: A photoelastic investigation of prestressed concrete anchorage. Civil Engineering and Public Review, Heft 51, S. 994-997, 1956
- /46/ CHRISTODOULIDES, S.P.: Dreidimensionale Spannungsverteilung im Bereich der Endverankerung eines Spannbetonträgers. Beton- und Stahlbetonbau, Heft 2, S. 44, Februar 1959
- /47/ WURM, P.; DASCHNER, F.: Versuche über Teilflächenbelastung von Normalbeton. DAfStb, Heft 286, 1977
- /48/ WURM, P.; DASCHNER, F.: Teilflächenbelastung von Normalbeton. Versuche an bewehrten Scheiben. DAfStb, Heft 344, 1983
- /49/ BAN, S.; MUGURUMA, H.; OGAKI, Z.: Anchorage zone stress distribution in post-tensioned concrete members. Proc. World Conference on Prestressed Concrete, San Francisco, Heft 16, S. 1-14, 1957
- /50/ ZIELINSKI, J.; ROWE, R.E.: An investigation of the stressdistribution in the anchorage zones of post-tensioned concrete members. Research Report 9, Cement and Concrete Association, London, 1960
- /51/ ROWE, R.E.: End block stresses in post-tensioned concrete members. The Structural Engineer, Band 41, Heft 2, S. 54-68, Februar 1963
- /52/ SPIETH, H.-P.: Das Tragverhalten von Beton unter hoher örtlicher Pressung und Teilbelastung unter besonderer Berücksichtigung von Spannbetonverankerungen. Dissertation, Stuttgart, 1959
- /53/ SPIETH, H.-P.: Das Verhalten von Beton unter hoher örtlicher Pressung. Beton- und Stahlbetonbau, Heft 11, 1961
- /54/ DOWRICK, D.J.: Anchorage zone reinforcement for post-tensioned concrete. Civil Engineering and Public Works Review, September 1964
- /55/ DOWRICK, D.J.: Anchorage zone reinforcement for post-tensioned concrete. Civil Engineering and Public Works Review, London, Band 62, Heft 726, S. 51-53, 1967

- /56/ RHODES, B.; TURNER, FH.: Design of end-blocks for post-tensioned cables. Concrete, December 1967
- /57/ FEIX, J.: Spannverfahren mit Ankerplatten: Überleitung der Spannkräfte auf den Bauwerksbeton. Diplomarbeit Nr. 212, Lehrstuhl f. Massivbau der TU München, 1986
- /58/ GAYNOR, M.: A simplified analysis of the bursting force due to a single prestressing anchorage. The Structural Engineer, Band 44, Heft 8, S. 271-276, August 1966
- /59/ SCHLEEH, W.: Die Rechteckscheibe mit beliebiger Belastung der kurzen Ränder. Beton- und Stahlbetonbau, Band 56, Heft 3, S. 72-83, 1961
- /60/ ARTHUR, P.D.; GANGULI, S.: Test on end zone stresses in pretensioned concrete beams. Magazine of Concrete Research, Band 17, Heft 51, S. 85, 1965
- /61/ BORTSCH, R.: Spannungen in Wälzgelenkquadern. Beton und Eisen, Berlin, Heft 4, S. 61, 1935
- /62/ BOUSSINESQ, J.: Application des potentiels à l'etude de l'equilibre et du mouvement des solids elastiques. Gauthiers-Villars, 1885
- /63/ GERGELY, P.; SOZEN, M.A.: Design of anchorage-zone reinforcement in prestressed concrete beams. Journal of the Prestressed Concrete Institute, Band 12, Heft 2, S. 63-75, 1967
- /64/ GERSTNER, R.W.; WRONKIEWICZ, J.H.: Pretension anchorage zone stresses. Proc. ASCE, Struct. Div., Band 95, Heft ST9, 1969
- /65/ GRAF, O.: Versuche mit Beton- und Eisenquadern zu Brückengelenken und Auflagern. Mitteilungen aus der Materialprüfungsanstalt der TH Stuttgart und VDI Zeitschrift, 1921, Heft 232, 1921
- /66/ TRINH, J.: Resistance du beton aux forces concentres. Annales No. 439 , S. 97-120, November 1985
- /67/ HUANG, T.: Stresses in end blocks of post-tensioned prestressed beams. ACI-Journal, Band 61, S. 589-602, 1964
- /68/ KÖCHEL, M.: Die Berechnung der Spaltzugspannungen hinter den Ankerplatten vorgespannter Balken. Wissenschaftliche Zeitschrift der Hochschule für Architektur und Bauwesen, Weimar, Heft 3, 1965
- /69/ KUPFER, H.; RUHNAU, J.: Spaltzug- und Schubbewehrung im Eintragungsbereich vorgespannter Fertigteilträger. Forschungsbericht, München, 1976
- /70/ LENSCHOW, R.J.; SOZEN, M.A.: Practical analysis of the anchorage zone problem in prestressed beams. ACI-Journal, November 1965

- /71/ PATSCH, A.: Der Krafteinleitungsbereich (Endauflagerbereich) von vorgespannten Trägern. Diplomarbeit am Inst. für Massivbau, Univ. Stuttgart, 1985
- /72/ SCHLAICH, J.; SCHÄFER, K.: Bemessen und Konstruieren mit Stabwerkmodellen. DAfStb-Kolloquium 23. und 24. Februar 1987 in Stuttgart
- /73/ SOM, P.K.; GOSH, D.: Anchor zone stresses in prestressed concrete beams. Proceedings of ASCE, August 1964
- /74/ STONE, W.C.; BREEN, J.E.: Design of post-tensioned girder anchorage zones. PCI Journal, Band 29, Heft 1, S. 28-61, March-April 1984
- /75/ TAYLOR, S.J.: Anchorage bearing stresses. Conference on prestressed concrete pressure vessels, 1967, London, Institution of Civil Engineers, Group H, Paper 49, S. 563-576, 1968
- /76/ WELSH, W.A.; SOZEN, M.A.: Analysis and control of anchorage-zone cracking in prestressed concrete. Strucural Research Series, University of Illinois, Band 309, Juni 1966
- /77/ BURDET, O.L.: Analysis and design of anchorage zones in posttensioned concrete bridges. Ph.D dissertation, University of Texas at Austin, May 1990
- /78/ SANDERS, D.H.: Design and behaviour of post-tensioned concrete anchorage zones. Ph.D dissertation, University of Texas at Austin, May 1990
- /79/ ROBERTS, C.L.: Behaviour and design of the local anchorage zone in post-tensioned concrete. Master's thesis, University of Texas at Austin
- /80/ CEB: Anchorage zones of prstressed concrete members. State-of-the Art-Report, CEB-Bulletin d'information, Heft 181, Mai 1987
- /81/ AU, T.; BAIRD, D.L.: Bearing capacity of concrete blocks. Journal of the American Concrete Institute, Band 56, Proceedings, Heft 9, S. 869-879, March 1960
- /82/ AU, T.; BAIRD, D.L.: Bearing capacity of concrete blocks. Journal of the American Concrete Institute, Band 56, Proceedings, Part 2, S. 1467-1479, September 1960
- /83/ CHEN, W.F.; COVARRUBIAS, S.: Bearing capacity of concrete blocks. Proceedings of the American Society of Civil Engineers, Journal of the Engineering Mechanics Division, Band 97, Heft EM5, S. 1413-1430, Oct.1971

- /84/ CHEN, W.F.; DRUCKER, D.C.: Bearing capacity of concrete blocks or rock. Proceedings of the American Society of Civil Engineers, Journal of the Engineering Mechanics Division, Band 95, Heft EM4, S. 955-978, Aug.1969
- /85/ COWAN, H.J.: The strength of plain, reinforced and prestressed concrete under the action of combined stresses, with particular reference to the combined bending and torsion of rectangular sessions. Magazine of Concrete Research, Band 5, Heft 14, S. 75-86, December 1953
- /86/ DRUCKER, D.C.; PRAGER, W.; GREENBERG, H.J.: Extended limit design theorems for continuous media. Quarterly Journal of Applied Mathematics, Band 9, 1952
- /87/ ERSOY, U.; PERCINEL, Ö.: Bearing capacity of concrete. Bericht der Middle East Technical University, Ankara, 1967
- /88/ HAAGSMA, T.: De bezwijkbelasting von ongewapende betonprisma's onderworpen aan geconcentreerde drukkrachten. Stevin Laboratory, Technische Hogeschool Delft, February 1969
- /89/ HAWKINS, N.M.: The bearing strength of concrete loaded through rigid plates. Magazine of Concrete Research, Band 20, Heft 62, S. 31-40, March 1968
- /90/ HAWKINS, N.M.: The bearing strength of concrete loaded with flexible plates. Magazine of Concrete Research, Band 20, Heft 63, S. 95-102, June 1968
- /91/ HAWKINS, N.M.: The bearing strength of concrete for strip loadings. Magazine of Concrete Research, Band 22, Heft 71, S. 87-98, June 1970
- /92/ HYLAND, M.W.; CHEN, W.F.: Bearing capacity of concrete blocks. Journal of the American Concrete Institute, Proceedings, Band 67, Heft 3, S. 228-236, March 1970
- /93/ JENNEWEIN, M.: Zum Bemessen des Stahlbetons mit Stabwerkmodellen. Dissertation, Universität Stuttgart, 1989
- /94/ KAMESAWARA RAO, C.V.S.; SWAMY, R.N.: Bearing strength of steel fibre reinforced concrete. Building Science, Band 9, Heft 4, S. 263-268, 1974
- /95/ KARR, P.H.; LA FRAUGH, R.W.; HASS, M.A.: Influence of concrete strength on transfer length. PCI Journal, Heft October, 1963
- /96/ LÄCHLER, W.: Beitrag zum Problem der Teilflächenbelastung bei Beton am Beispiel der Pfahlkopfanschlüsse. Institut für Grundbau und Bodenmechanik, Universität Stuttgart, 1977

- /97/ MARSHALL, W.T.; MATTOCK, A.H.: Control of horizontal cracking in the ends of pretensioned prestressed concrete girders. PCI Journal, Band 7, Heft 5, S. 56, 1962
- /98/ MEHLHORN, G.; RÜHLE, H.; ZERNA, W.: Nonlinear behaviour of reinforced concrete spatial structures. Werner-Verlag, Düsseldorf, 1978
- /99/ MEHLHORN, G.; SCHMIDT-GÖNNER, G.: A calculation for RC beams under bending and torsion using three-dimensional finite elements. IABSE Colloquium on Advanced Mechanics of RC, Delft, Final Report, S. 591-601, June 1981
- /100/ MEYERHOF, G.G.: The bearing capacity of concrete and rock. Magazine of Concrete Research, Band 4, Heft 12, S. 107-116, April 1953
- /101/ MIDDENDORF, K.H.: Anchorage Bearing Stresses in Post-tensioned Concrete. ACI-Journal, November 1960
- /102/ MIDDENDORF, K.H.: Practical aspects of end zone bearing of posttensioning tendons. Journal of the Prestressed Concrete Institute, Band 8, S. 57-62, August 1963
- /103/ MUGURUMA, H.; OKAMOTO, S.: Study on bearing capacity of concrete. Proc. of the 8th Japanese Congress on testing materials, Kyoto, 1965
- /104/ NELISSEN, L.J.M.: Het gedrag von ongewapende en gewapende betonblokken onder geconcetreerde belasting. Rapport 5-73-7-GB-4 Stevin-Laboratorium Delft, Juli 1973
- /105/ NIYOGI, S.K.: Bearing strength of concrete geometric variations. Proceedings of the American Society of Civil Engineers, Journal of the Structural Division, Band 99, Heft ST7, S. 1471-1490, July 1973
- /106/ NIYOGI, S.K.: Concrete bearing strength support, mix, size effect. Proceedings of the American Society of Civil Engineers, Journal of the Structural Division, Band 100, Heft ST8, S. 1685-1702, November 1974
- /107/ NIYOGI, S.K.: Bearing strength of reinforced concrete blocks. Proceedings of the American Society of Civil Engineers, Journal of the Structural Division, Band 101, Heft ST5, S. 1125-1137, May 1975
- /108/ REINKE, H.-G.: Zum Ansatz der Betonzugfestigkeit bei der Stahlbetonbemessung. Diss., Institut für Massivbau, TU Stuttgart, 1986
- /109/ REINECK, K.-H.: Part 2: Models for the design of reinforced and prestressed concrete members. CEB, Paris, Heft 146, S. 43-96, Januar 1982
- /110/ RIESSAW, F.G.; PASSALESCQ, D.A.: Essais sur les articulations en béton armé. Annales des Travaux Publics de Belgique, Brüssel, 1948

- /111/ SCHLAICH, J.; WEISCHEDE, D.: Ein praktisches Verfahren zum methodischen Bemessen und Konstruieren im Stahlbetonbau. CEB, Heft 150, 1982
- /112/ SHELSON, W.: Bearing capacity of concrete. Journal of the American Concrete Institute; Proceedings, Band 29, Heft 5, S. 405-414, November 1957
- /113/ SZABO, G.: Über die Berechnung der Bruchlast örtlich belasteter Stahlbetonkörper. Betonstein-Zeitung, Heft 2, S. 51-53, 1963
- /114/ ROSTASY, F.S.: Modifizierung von Szabos Weg (unveröffentlichtes Manuskript).
- /115/ VAN LANGENDONCK, T.: Resistenca de blocos parcialmente carregados. Assoc. Brasileira de Cimento Portland, Sao Paolo, 1952
- /116/ WEISCHEDE, D.: Methodisches Konstruieren im Stahlbetonbau mit Hilfe von Stabwerkmodellen. Dissertation, Inst. für Massivbau, TU Stuttgart, 1983
- /117/ WILLIAMS, A.: The bearing capacity of concrete loaded over a limited area. In: Cement and Concrete Association, Technical Report. Band 526, 1979
- /118/ ZIELINSKI, J.; KNAUFF, M.: Bearing capacity of anchorage zone of prestressed concrete members. VI. FIP Congress, Prag, 1970
- /119/ ZIELINSKI, J.; SCIBAK, W.: Anchorage zone of post-tensioned concrete members - recent tests and design provisions. FIP Congress, New Dehli, 1986
- /120/ SCHLAICH, J.; SCHÄFER, K.; JENNEWEIN, M.: Towards a consistent design of structural concrete. PCI-Journal, Band Vol. 32, Heft 3, S. 74-151, May-June 1987
- /121/ RASHEEDUZZAFAR; ALLSION, I.M.; AL-SAADOUN, S.S.: A photoelastic investigation of anchorage bearing stresses. Magazine of Concrete Research, Band 36, Heft 127, S. 81-91, June 1984
- /122/ STONE, W.C.; BREEN, J.E.: Behaviour of post-tensioned girder anchorage zones. PCI Journal, Band 29, Heft 1, S. 64-109, Jan.-Feb. 1984
- /123/ WHEEN, R.J.; ROGERS, D.F.: The bearing strength of plain concrete. Matériaux et Constructions, Band 11, Heft 61, S. 11-20, Jan.-Feb. 1978
- /124/ KUYT, B.: De bezwijklast van partieel belaste oplegblokken van ongewapend beton. Cement, Band XXI, Heft 7, S. 316-320, 1969

- /125/ HAUPT, W.; NASSER, M.: Präzisierung der Schnittgrößenberechnung und Bemessung von Bereichen mit örtlicher Lasteintragung in Stahlbetonund Spannbetonkonstruktionen. Bauplanung-Bautechnik, Band 44, Heft 8, S. 368-373, August 1990
- /126/ NASSER, M.: Beitrag zur Schnittgrößenberechnung und Nachweisführung bei örtlicher Lasteintragung insbesondere von Verankerungsbereichen der Spannglieder in Spannbetonkonstruktionen. Dissertation A, Technische Universität Dresden, Sektion Bauingenieurwesen, 1989
- /127/ DRIGERT, K.A.; ZUHRT, A.: Zur Bestimmung der Einleitungskräfte bei örtlicher Krafteintragung. Bauplanung-Bautechnik, Band 41, Heft 6, S. 270-273, 1987
- /128/ LIEBERUM, K.H.; REINHARDT, H.W.; WEIGLER, H.: Das Tragverhalten von Beton bei extremer Teilflächenbelastung. Beton- und Stahlbetonbau, Band 84, Heft 1, 1989
- /129/ SPITZ, H.: Beitrag zur Untersuchung von Krafteinleitungsproblemen des Stahlbetons im Zustand II mit Hilfe finiter Elemente. Dissertation, TH Aachen, 1977
- /130/ SHAO-HUAI, C.; SHANG-MIN, W.; ZHAN-SHUAN, J.: Bearing strength of confined concrete with transverse net reinforcement. Int. Symposium on Fundamental Theory of Reinforced and Prestressed Concrete, NIT, Nanjing, China, S. 417-424, 1986
- /131/ SHENGYUAN, C.; XIKUN, Y.; KAIYI, X.: The wedge theory of concrete and reinforced concrete under local bearing. Int. Symposium on Fundamental Theory of Reinforced and Prestressed Concrete, NIT, Nanjing, China, S. 425-431, 1986
- /132/ NAWY, E.G.; YONG, Y.-K.: Anchorage zone stresses of post-tensioned prestressed beams subjected to shear forces. Int. Symposium on Fundamental Theory of Reinforced and Prestressed Concrete, NIT, Nanjing, China, S. 398-405, 1986
- /133/ CEB: CEB-FIP Model-Code 1990, First Draft, Chapters 1-5. CEB-Bulletin d'Information No. 195, Paris, März 1990
- /134/ UKHAGBE, J.; MEHLHORN, G.: FE- Anwendungen zur Untersuchung des Eintragungsbereiches von Vorspannkräften bei Spannbeton mit nachträglichem Verbund (Quelle nicht bekannt).
- /135/ J. VAN MIER: Fracture of concrete under complex stress. Heron, Band 31, Heft 3, 1986
- /136/ SCHICKERT, G.: Formfaktoren der Betondruckfestigkeit. Die Bautechnik, Heft 2, S. 52-57, 1981
- /137/ DIN 1045: Beton und Stahlbeton, Bemessung und Ausführung. , Ausgabe Juli 1988

- /138/ BONZEL, J.: Zur Gestaltsabhängigkeit der Betondruckfestigkeit. Beton- und Stahlbetonbau, Band 54, Heft 10, S. 247-248, 1959
- /139/ GAEDE, K.: Über den Einfluß der Größe der Proben auf die Würfeldruckfestigkeit von Beton. Deutscher Ausschuß für Stahlbeton, Heft 144, 1962
- /140/ NEVILLE, A.: A general relation for strengths of concrete specimens of different shapes and sizes. Journal of the American Concrete Institute, Band 63, Heft 10, S. 1095-1109, 1966
- /141/ SCHICKERT, G.: Schwellenwerte beim Betondruckversuch. DAfStb, Heft 312, 1980
- /142/ ROSTASY, F.S.: Baustoffe. W. Kohlhammer, Stuttgart, 1983
- /143/ BLANKS, R.F.; VIDAL, E.W.; PRICE, W.H.; RUSSELL, F.M.: The properties of concrete mixes. Proceedings A.C.J, Band 36, S. 433, 1940
- /144/ DIN 1048: Prüfverfahren von Beton; Frischbeton, Festbeton gesondert hergestellter Probekörper., Dezember 1978
- /145/ INSTITUT FÜR BAUTECHNIK: Grundlagen zur Beurteilung von Baustoffen, Bauteilen und Bauarten im Prüfzeichen- und Zulassungsverfahren. Berlin, Fassung Mai 1986
- /146/ Grundlagen zur Festlegung von Sicherheitsanforderungen für bauliche Anlagen. Beuth Verlag GmbH, 1981
- /147/ SHAO-HUAI, CAI (TSAI): The bearing strength of concrete and reinforced concrete.. Chinese Journal of Civil Engineering (in Chinese), Band 9, Heft 6, S. 1-10, Nov. 1963
- /148/ Chinese Design Code of Reinforced Concrete Structures (BJG 21-66). Beijing, Technical Standards Press (in Chinese), 1966
- /149/ Chinese Design Code of Reinforced Concrete Structures (TJ 10-74).. Beijing, China Building Industry Press (in Chinese), 1974
- /150/ IVANYI, G.: Zugfestigkeit von Beton in örtlich veränderlichen Beanspruchungszuständen - Gradientenwirkung.. Institut für Baustoffe und Stahlbetonbau, TU Braunschweig, 1976

ANHANG

Bild A1 : Versuchskörper (schematisch)

Quelle	VersKörper Nr.	B _W	b	a	^b 1	^a 1	h	Fu
40)	an a	MPa	mm	mm	mm	mm	mm	kN
	quad	ratische	Körper/c	uadratis	che Last			
Wurm/Daschner (aus /41/)	5 8 1 11 2 9 3 12 6 10	31,4 33,6 -33,1 33,6 33,1 33,6 33,1 33,6 31,4 33,6	300 300 300 300 300 300 300 300 300 300	300 300 300 300 300 300 300 300 300 300	300 300 250 250 200 150 150 150 100	300 300 250 250 200 200 150 150 100 100	600 600 600 600 600 600 600 600 600	2020 2230 1760 1820 1310 1290 920 960 580 610
Niyogi /105/ (aus /117/, Tab. A 26)	11 12 16 17 21 22 26 27 31 32	27,8 25,3 25,3 28,7 29,2 30,9 31,5 29,2 32,1 29,2	203 203 203 203 203 203 203 203 203 203	203 203 203 203 203 203 203 203 203 203	25 25 36 51 51 72 72 102 102	25 25 36 51 51 72 72 102 102	406 406 610 406 610 406 610 406 610	125,4 111,1 183,9 170,4 239,8 257,0 305,3 288,2 445,3 395,4
Niyogi /118/ (aus /117/ Tab. A 29)	17 18 19 20 21	11,9 13,8 11,3 13,8 11,3	102 203 203 203 203 203	102 203 203 203 203 203	25 36 51 72 102	25 36 51 72 102	406 406 406 406 406	61,8 84,8 104,8 134,3 162,3
Zielinski/ Rowe /50/	3 4 5 6	49,9 56,9 56,9 56,9	203 203 159 152	203 203 159 152	63 107 98 108	63 107 98 108	406 406 406 406	370,3 616,0 447,5 510,9
Muguruma/Oka- moto /103/ (aus /117, Tab. A10)	25 26 27 28 33	52,6 52,6 52,6 52,6 52,6 52,6	200 200 200 200 200 200	200 200 200 200 200 200	30 50 100 150 200	30 50 100 150 200	400 400 400 400 400	235,7 328,0 620,0 1021,5 1364

Tabelle Ala : Versuchsergebnisse von teilflächenbelasteten unbewehrten Körpern nach verschiedenen Autoren

Quelle	VersKör- per-Nr.	ß _W	b	a	b ₁	a ₁	h	F _u
-		MPa	mm	៣៣	mm	mm	mm	kN
		qua	Iratische	Körper/	Streifen	last		
Niyogi /105/ (aus /117/, Tab. A 22)	18 19 20 21 22 23 24 25 26 27	32,7 31,1 27,8 31,2 29,9 31,0 28,4 27,7 28,2 28,8	203 203 203 203 203 203 203 203 203 203	203 203 203 203 203 203 203 203 203 203	203 203 203 203 203 203 203 203 203 203	13 25 34 51 102 13 25 34 51 102	406 406 406 406 610 610 610 610 610	220,9 270,9 287,8 369,6 532,1 - 214,8 231,4 248,5 307,5 470,0
Kriz/Raths /95/ (aus /117/ Tab. A 9	11	35,0	203	203	203	25	762	248,2
		quadratis	sche Körp	er/recht	eckige La	ist		
Niyogi /105/ (aus /117/ Tab. A 24)	8 9 10 11	31,4 32,0 29,0 31,6	203 203 203 203 203	203 203 203 203 203	102 152 102 152	51 51 51 51	406 406 610 610	316,3 360,5 272,1 319,4
		rechted	ckige Kör	per/Stre	ifenlast			
Wurm/Daschner /48)	1 2 3 4 5 6 7 8 57 58 59 60 61 62 63 64	25 25 25 25,6 25,6 25,6 25,6 44,7 44,7 44,7 44,7 44,7 25,8 24,2 43,9 42,6	120 120 120 120 120 120 120 120 120 120	400 400 400 400 400 400 400 400 400 400	120 120 120 120 120 120 120 120 120 120	400 400 200 200 100 100 44,4 44,4 400 200 100 44,4 200 44,4 200 44,4 200 100	800 800 800 800 800 800 800 800 800 800	924 886 510 474 358 358 237 223 1537 915 563 368 510 238 787 543
Muguruma/Okamoto /113/ (aus /117/, Tab. A 10)	1 2 3 4 5 6 7 8	52,2 52,2 52,2 52,2 52,2 52,2 52,2 52,2	150 150 150 150 150 150 150 150	250 250 250 250 250 250 250 250 250	150 150 150 150 150 150 150 150	10 25 50 75 100 150 200 250	500 500 500 500 500 500 500 500	276 344,3 510 600,8 697,5 897,8 1170 1395
Kriz/Raths /95/ (aus /117/Tab. A 9	20	34,5	305	102	• 305	51	762	440,2

Tabelle Alb : Versuchsergebnisse von teilflächenbelasteten unbewehrten Körpern nach verschiedenen Autoren

Vers reihe	Vers. körper Nr.	$\frac{A}{A_1}$	B _W	β _S	Sw	Asw	a _w	ωw	Fu	$\frac{q_{1u}}{B_W}$	L _w
-	-560		MPa	MPa	mm	mm²	mm	ca.	kN		ст
XIII	115 116 117 119 120 121 123 124 125 127 128 129	4 4 4 4 4 4 4 4 4 4 4	32,1 38,5 38,8 32,1 38,5 38,8 32,1 38,5 38,8 32,1 38,5 38,8 32,1 38,5 38,8	496 496 505 505 525 525 525 525 525 471 471 471	42 42 42 42 42 42 42 42 42 42 42 42 42 4	50,3 50,3 50,3 78,5 78,5 113,1 113,1 113,1 153,9 153,9 153,9	270 270 270 270 270 270 270 270 270 270	0,36 0,30 0,57 0,48 0,47 0,86 0,72 0,71 1,05 0,87 0,87	1760 1710 1860 1990 2280 2240 2570 2590 2590 2520 2690 2490 2750	2,44 1,97 2,13 2,75 2,63 2,56 3,56 2,99 2,89 3,73 2,88 3,17	60 60 60 60 60 60 60 60 60 60 60
II	3 12	4 4	33,1 33,6				-	0 0	920 920	1,24 1,27	-
XIV	118 122 126 130	9 9 9 9	37,9 37,9 37,9 37,9 37,9	496 505 525 471	42 42 42 42 42	50,3 78,5 113,1 153,9	270 270 270 270 270	0,31 0,49 0,73 0,89	1280 1550 1720 1810	3,38 4,09 4,54 4,78	60 60 60 60
II	6 10	9 9	31,4 33,6	-		-	-	0 0	580 610	1,85 1,82	-
IV	36 37 38 35 39 40 33 34 41 31 32 42	4 4 4 4 4 4 4 4 4 4 4 4 4	31,2 36,3 36,3 31,2 36,3 35,0 32,8 31,2 35,0 32,8 32,8 32,8 35,0	286 286 297 297 297 244 244 244 255 255 255	50 50 51 51 51 49 49 49 47 47 47	50,3 50,3 50,3 78,5 78,5 78,5 113,1 113,1 113,1 113,1 201,1 201,1 201,1	270 270 270 270 270 270 270 270 270 270	0,18 0,15 0,29 0,25 0,25 0,33 0,35 0,31 0,65 0,65 0,61	1400 1490 1600 1550 1620 1640 1980 1890 2000 2040 1990 2040	1,99 1,82 1,96 2,21 1,98 2,08 2,68 2,69 2,54 2,77 2,70 2,59	18 18 18 18 18 18 18 18 18 18 18 18

Tabelle A2 : Zusammenstellung von Versuchsergebnissen aus [47]

Der Einfluß der zusätzlich zur Wendel geringen Bügelbewehrung wurde bei der Ermittlung des Bewehrungsgrads vernachlässigt.
Vers	Vers	a	aı	b=b1	h	A	β. W	Bewehrung	Stahl-	Stah	lstre	ckgre	nze	St	tabquer	schni	tt	μ	Bewehr	β *	ω	Fu	Fu
reine	Nr.					^1			güte	Ø6	Ø 8	Ø10	Ø12	Ø6	Ø 8	Ø10	Ø12		menge				A ₁ • β _W
-	-	mm	mm	mm	mm	-	MPa	-	-	MPa	MPa	MPa	MPa	mm 2	mm ²	mm ²	mm ²	B	kg/m³	MPa	-	kN	-
1	9 10 11 12 13 14 15 16 17 18 19 20	400 400 400 400 400 400 400 400 400 400	200 200 100 44,4 44,4 200 200 400 100 44,4 44,4	120 120 120 120 120 120 120 120 120 120	800 800 800 800 800 800 800 800 800 800	2 2 4 9 9 2 2 4 9 9 9	24,7 24,7 24,7 24,6 24,7 24,6 42,8 42,8 42,8 42,8 42,8 43,8 43,8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111 111 111 111 111 111 111 111 111 11	536 536 536 536 536 536 536 536 536 536	- - 502 502 502 502 502 502	-	-	28,6 28,6 28,6 28,6 28,6 28,6 28,6 28,6	- - - 48,6 48,6 48,6 48,6 48,6 48,6	-		0,35 0,35 0,35 0,23 0,23 0,45 0,45 0,54 0,54 0,45 0,45	28 28 28 18 18 35 35 42 42 35 35	536 536 536 536 536 520 520 510 510 520 520	0,076 0,076 0,076 0,050 0,055 0,055 0,055 0,064 0,063 0,055 0,054	606 575 397 383 257 258 1015 1015 673 702 455 440	1,02 0,97 1,34 1,30 1,95 1,97 0,99 0,99 1,31 1,33 2,00 1,89
2	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	400 400 400 400 400 400 400 400 400 400	200 200 100 44,4 200 200 400 100 44,4 44,4 200 200 200 100 44,4 44,4 200 200 200	120 120 120 120 120 120 120 120 120 120	800 800 800 800 800 800 800 800 800 800	22449922449922449922	25,2 25,2 24,1 24,1 25,2 25,2 25,8 24,2 25,8 24,2 25,8 24,2 25,8 24,2 43,2 43,2 43,2 43,8 43,9 43,9 42,6	$\begin{array}{c} 8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	III III		- - 459 - 459 - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	433 433 433 433 433 433 - 462 - 462 433 433 433 433 433 - 462		- - 50,1 50,1 - - - - - - - - - - - - - - - - - - -	- - - 78,6 78,6 78,6 78,6 78,6 78,6 78,6 78,6	118,5 118,5 118,5 118,5 118,5 118,5 118,5 111,2 111,2 111,2 111,2 118,5 111,2 111,2 111,2 111,2 118,5	1,80 1,80 1,80 1,80 1,80 0,86 1,27 0,86 1,27 0,86 1,27 1,80 1,80 1,80 1,80 1,80 1,80 1,27	148 148 148 148 148 148 148 69 100 69 100 69 100 148 148 148 148 148 148 148 148 148 148	433 433 433 433 433 433 406 443 406 443 433 433 433 433 433 433 433 433 43	0,309 0,323 0,323 0,309 0,309 0,309 0,135 0,232 0,135 0,232 0,135 0,232 0,135 0,232 0,180 0,180 0,180 0,178 0,180 0,178 0,080 0,132	683 641 440 295 194 692 693 434 441 304 305 1172 1217 758 727 498 506 1120 1160	1,13 1,06 1,52 1,45 2,20 2,19 1,12 1,19 1,40 1,52 2,21 2,37 1,13 1,17 1,46 1,38 2,16 2,17 1,06 1,13

Tabelle A3a : Versuchsergebnisse von teilflächenbelasteten Scheiben mit Streifenlast [48]

Tabelle A3b : Versuchsergebnisse von teilflächenbelasteten Scheiben mit Streifenlast [48]

Vers	Vers			1_1		A	0	Bewehrung	Stahl-	Sta	hlstr	eckgre	nze		Stabqu	erschni	itt		Bewehr	β *	(1)	F.,	F _u
reihe	körper Nr.	а	a ₁	^{b=b} 1	n	A ₁	ы W		güte	Ø 6	ø 8	ø 10	Ø 12	Ø 6	ø 8	ø 10	Ø 12	μ	menge	S	ω	ŭ	A ₁ ·B _W
"	-	mm	mm	mm	mm	-	MPa	-	-	MPa	MPa	MPa	MPa	mm²	mm²	mm²	mm²	%	kg/m³	MPa	-	kN	-
2	41 42 43 44	400 400 400 400	100 100 44,4 44,4	120 120 120 120 120	800 800 800 800 800	4 4 9 9	43,9 42,6 43,9 42,6	4 Ø 10 + 2 Ø 8 4 Ø 12 + 2 Ø 10 4 Ø 10 + 2 Ø 8 4 Ø 12 + 2 Ø 10		-	459 459 -	389 389 389 389 389	462 462		50,1 50,1	78,6 78,6 78,6 78,6	111,2 111,2	0,86 1,27 0,86 1,27	69 100 69 100	406 443 406 443	0,080 0,132 0,080 0,132	713 711 497 478	1,35 1,39 2,12 2,11
3	45 46 47 48 49 50	400 400 400 400 400 400 400	100 100 100 100 100 100	120 120 120 120 120 120 120	800 800 800 800 800 800 800	4 4 4 4 4 4	24,1 24,1 24,4 24,4 24,4 24,4 24,4	8 Ø 12 8 Ø 12 8 Ø 12 8 Ø 12 8 Ø 12 8 Ø 12 8 Ø 12	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		-		433 433 433 433 433 433 433	-		-	118,5 118,5 118,5 118,5 118,5 118,5 118,5	1,80 1,80 1,80 1,80 1,80 1,80	148 148 148 148 148 148 148	433 433 433 433 433 433 433	0,323 0,323 0,319 0,319 0,319 0,319	428 438 421 426 424 436	1,48 1,51 1,44 1,45 1,45 1,49
4	51 52 53 54 55 55 56	400 400 400 400 400 400 400	100 100 100 100 100 100	120 120 120 120 120 120 120	800 800 800 800 800 800 800	4 4 4 4 4 4	24,6 24,8 24,6 24,8 24,8 24,8 24,8	8 Ø 12 8 Ø 12 8 Ø 12 8 Ø 12 8 Ø 12 8 Ø 12 8 Ø 12			-	-	433 433 433 433 433 433 433				118,5 118,5 118,5 118,5 118,5 118,5 118,5	1,80 1,80 1,80 1,80 1,80 1,80 1,80	148 148 148 148 148 148 148	433 433 433 433 433 433 433	0,317 0,314 0,317 0,314 0,314 0,314 0,314	443 425 478 478 407 406	1,50 1,43 1,62 1,61 1,37 1,37

$$\mu = \frac{\Sigma A_{s}}{b \cdot a} \cdot 100; \qquad \beta_{s}^{\star} = \frac{\Sigma A_{s} \cdot \beta_{s}}{\Sigma A_{s}}; \qquad \omega = \frac{\mu \cdot \beta_{s}^{\star}}{100 \cdot \beta_{W}}$$

1	2	3	4	5	6	7	8	9	10	(1)	12	13
Vers Nr.	₿ _{WE}	A	π•r² ḥ	π∙r² u	3 - 4	3 - 5	expF u	rechn F = u 0,85 · ⑦ · ②	b _i = (8) (9)	$\delta_i = \frac{\widehat{10}}{\overline{b}}$	δ¦ = ln(δ _i) ,	$\left(\delta_{i}^{\dagger} - \overline{\delta}^{\dagger}\right)^{2}$
-	MPa	cm²	cm²	cm²	cm ²	cm ²	kN	kN	-	*	-	*
111	27,8	1444	44,2	143,1	1399,8	1300,9	2944	3074,0	0,96	0,9426	- 0,0591	0,00463
112	28,5	1444	44,2	143,1	1399,8	1300,9	2855	3151,4	0,91	0,8935	- 0,1126	0,01477
113	28,0	1444	44,2	143,1	1399,8	1300,9	2974	3096,1	0,96	0,9426	- 0,0591	0,00463
114	21,4	1936	44,2	138,9	1891,8	1797,1	3810	3268,9	1,17	1,1488	0,1387	0,01684
118	18,0	1936	38,5	78,5	1897,5	1857,5	3070	2842,0	1,08	1,0604	0,0587	0,00248
119	22,6	1936	38,5	78,5	1897,5	1857,5	3930	3568	1,10	1,0800	0,0770	0,00463
123	34,7	1444	44,2	95,0	1399,8	1349,0	3395	3978,9	0,85	0,8346	- 0,1808	0,03599
125	35,0	1444	84,9	102,1	1359,1	1341,9	3310	3992,2	0,83	0,8149	- 0,2046	0,04559
126	29,3	2209	78,5	153,9	2130,5	2055,1	4430	5118,2	0,87	0,8542	- 0,1576	0,02773
127	27,6	2209	78,5	153,9	2130,5	2055,1	4820	4821,3	1,00	0,9819	- 0,0183	0,00074
128	26,2	2209	78,5	153,9	2130,5	2055,1	4620	4576,7	1,01	0,9917	- 0,0084	0,00030
129	36,0	1936	95,0	172,0	1841,0	1764,0	4740	5397,8	0,88	0,8640	- 0,1461	0,02403
130	40,0	1936	95,0	172,0	1841,0	1764,0	4750	5997,6	0,79	0,7757	- 0,2540	0,06913
131	29,4	2116	88,2	105,7	2027,8	2010,3	5850	5023,7	1,16	1,1390	0,1301	0,01468
133	31,6	2401	81,7	81,7	2319,3	3419,3	6514	6229,6	1,05	1,0309	0,0305	0,00047
135	20,0	3481	107,5	126,7	3373,5	3354,3	6540	5702,3	1,15	1,1291	0,1215	0,01267
136	21,4	3481	107,5	126,7	3373,5	3354,3	7146	6101,5	1,17	1,1488	0,1387	0,01684
137	20,4	3481	107,5	160,6	3373,5	3320,4	6525	5757,6	1,13	1,1095	0,1039	0,00902
138	21,8	3481	107,5	160,6	3373,5	3320,4	6350	6152,7	1,03	1,0113	0,0112	0,00001
143	22,3	441	15,9	15,9	425,1	425,1	835	805,8	1,04	1,0211	0,0209	0,00014
146	32,9	1156	50,3	91,6	1105,7	1064,4	3345	2976,6	1,12	1,0997	0,0950	0,00741
149	20,7	1849	50,3	91,6	1798,7	1757,4	3480	3092,1	1,13	1,1095	0,1039	0,00902
150	20,2	1849	50,3	91,6	1798,7	1757,4	3260	3017,5	1,08	1,0604	0,0587	0,00248
155	27,3	1225	38,5	136,8	1186,5	1088,2	2590	2525,2	1,03	1,0113	0,0112	0,00001
n=24									Σ24,5	Σ24,0555	Σ 0,5924	Σ 0,32424

Tabelle A4a : Statistische Auswertung von Druckschwellversuchen, die im unteren Teil versagten

1	2	3	4	9	6	\bigcirc	8	9	10	(1)	12	(13)
Vers. Nr.	^B WE	A	^{π•} ^{π°} h	π∘r <mark>2</mark> u	3 - 4	3 - 5	exp F u	rechn F = u 0,85·6·2	$b_i = \frac{\$}{9}$	$\delta_i = \frac{(10)}{\overline{b}}$	$\delta_i = \ln(\delta_i)$	$(\delta_i^{\dagger} - \overline{\delta}^{\dagger})^2$
-	MPa	cm²	cm ²	Cm ²	cm²	cm²	kN	kN	-	-	57	
76	26,0	529	44,2	44,2	484,8	484,8	1137	1071,4	1,06	1,0408	• 0,0400	0,00097
77	26,0	529	44,2	44,2	484,8	484,8	1208	1071,4	1,13	1,1095	0,1039	0,00902
88	29,0	1521	122,7	122,7	1398,3	1398,3	3020	3446,8	0,88	0,8640	- 0,1461	0,02403
89	29,0	1521	122,7	122,7	1398,3	1398,3	3120	3446,8	0,91	0,8935	- 0,1126	0,01477
90	29,0	1521	122,7	122,7	1398,3	1398,3	2970	3446,8	0,86	0,8444	- 0,1691	0,03169
93	29,0	1521	122,7	122,7	1398,3	1398,3	3170	3908,2	0,81	0,7953	- 0,2290	0,05661
94	38,0	1521	122,7	122,7	1398,3	1398,3	2880	3228,5	0,89	0,8739	- 0,1348	0,02066
95	38,0	1521	122,7	122,7	1398,3	1398,3	2870	3228,5	0,89	0,8739	- 0,1348	0,02066
96	30,0	784	122,7	122,7	661,3	661,3	1914	1686,3	1,14	1,1193	0,1127	0,01077
97	30,0	784	122,7	122,7	551,3	661,3	1950	1686,3	1,16	1,1390	0,1301	0,01468
98	30,0	784	122,7	122,7	661,3	661,3	1840	1686,3	1,09	1,0702	0,0679	0,00348
99	30,0	784	122,7	122,7	661,3	661,3	1800	1686,3	1,07	1,0506	0,0493	0,00163
103	23,4	1089	122,7	122,7	966,3	966,3	2140	1922,0	1,11	1,0899	0,0861	0,00596
104	23,4	1089	122,7	122,7	966,3	966,3	2165	1922,0	1,13	1,1095	0,1039	0,00902
105	23,4	1089	122,7	122,7	966,3	966,3	2140	1922,0	1,11	1,0899	0,0861	0,00596
120	24,1	1936	38,5	78,5	1897,5	1857,5	4090	3805,1	1,07	1,0506	0,0493	0,00163
121	24,2	1936	38,5	78,5	1897,5	1857,5	3550 ·	3820,9	0,93	0,9131	- 0,0909	0,00996
124	27,7	1444	84,9	102,1	1359,1	1341,9	3550	3159,5	1,12	1,0997	0,0950	0,00741
144	24,0	441	15,9	15,9	425,1	425,1	823	867,2	0,95	0,9328	- 0,0696	0,00617
147	39,8	1156	50,3	91,6	1105,7	1064,4	3500	36009	0,97	0,9524	- 0,0488	0,00333
148	39,8	1156	50,3	91,6	1105,7	1064,4	3520	3600,9	0,98	0,9622	- 0,0385	0,00225
151	21,7	1849	50,3	·91 , 6	1798,7	1757,4	3530	3241,5	1,09	1,0702	0,0679	0,00348
n=22									Σ 22,35	Σ 21,9447	Σ - 0,182	Σ 0,26414

Tabelle A4b : Statistische Auswertung von Dauerstandversuchen, die im unteren Teil versagten

$$\overline{b} = \frac{24,5+22,35}{46} = 1,0185$$
 $\overline{b}' = \frac{0,5924-0,182}{46} = 0,0089217$

 $s_{\Delta}^{*} = \frac{1}{46 - 1}$. (0,26414 + 0,32424) = 0,114 $\delta_{k} = \exp(\overline{\delta'} - k_{s} \cdot s_{\Delta}') = \exp(0,0089217 - 1,819 \cdot 0,114) = 0,82$

46

0	1	2	3	4	5	6	7	8	9	10	11	12	13
VersNr.	A	A ₁	A'1	ß₩E	<u>A</u> A'1	A' _{1n}	ωw	ω _{bü}	exp F	r _{ti}	r _{vi}	$\boldsymbol{\delta}_i$	ln δ _i
-	mm²	mm²	mm²	MPa		mm²	—		kN				
1	90000.00	90000	90000.000000	31.4	1.000000	90000.000000	0.000000	0.000000	2020.0	0.000000	1.066853	1.065714	0.063645
2	90000.00	90000	90000.0000000	33.6	1.000000	62500.000000	0.000000	0.000000	2230.0	0.000000	1.100648	1.099472	0.094831
4	90000.00	62500	62500.000000	33.6	1.440000	62500.000000	0.000000	0.000000	1820.0	0.000000	1.077944	1.076793	0.073987
5	90000.00	40000	40000.000000	33.1	2.250000	40000.000000	0.000000	0.000000	1310.0	0,000000	0.984503	0.983452	-0.016686
6	90000.00	40000	40000.000000	33.6	2.250000	40000.000000	0.000000	0.000000	1290.0	0.000000	0.955046	0.954027	-0.047064
7	90000.00	22500	22500.000000	33.1	4.000000	22500.000000	0.000000	0.000000	920.0	0.000000	0.921876	0.920892	-0.082413
8	90000.00	22500	22500.000000	33.6	4,000000 9,000000	10000.000000	0.000000	0.000000	580.0	0.000000	0.94/043	0.946651	-0.054846
10	90000.00	10000	10000.000000	33.6	9,000000	10000.000000	0.000000	0.000000	610.0	0.000000	0.903222	0.902258	-0.102855
13	90000.00	90000	90000.000000	31.4	1.000000	90000.000000	0.000000	0.052870	2240.0	0.238970	1.183044	0.954089	-0.046998
14	90000.00	90000	90000.0000000	33.6	1.000000	90000.000000	0.000000	0.049408	2300.0	0.229577	1.135197	0.922488	-0.080681
15	90000.00	22500	22500.000000	31.4	4.000000	22500.000000	0.000000	0.460062	1430.0	0.961898	1.510494	0.769600	-0.261884
16	90000.00	22500	22500.000000	32.7	4.000000	22500.000000	8.000000	0.444491	1370.0	0.938957	1.308138	0.730013	-0.302/0/
74	144400.00	78400	65246.627590	28.2	2,213141	56751.741190	0.473209	0.000000	2966.0	0.981139	1.859360	0.938153	-0.063842
81	36100.00	18869	18869.000000	32.7	1.913191	13842.440000	0.209398	0.000000	762.0	0.563614	1.816522	1.161068	0.149340
82	36100.00	18869	18869.000000	31.3	1.913191	13842.440000	0.218764	0.000000	718.0	0.580082	1.788189	1.131057	0.123152
83	102400.00	90000	74493.074389	34.3	1.374624	65998.187989	0.344816	0.000000	2745.0	0.787563	1.543652	0.863140	-0.147178
100	94100.00	90000 62500	14493.014309 55666 352677	33.5	1.510787	43394 477477	0.241048	0.107133	2130.0	0.792821	1.779196	0.001030	-0.134270
100	84100.00	62500	55666.352477	33.5	1.510787	43394.477477	0.241048	0.107133	2200.0	0.792821	1.837668	1.024529	0.024233
102	84100.00	62500	55666.352477	33.5	1.510787	43394.477477	0.241048	0.107133	2190.0	0.792821	1.829315	1.019872	0.019677
109	144400.00	80425	80425.000000	29.0	1.795462	59557.707400	0.478132	0.170100	3590.0	1.228090	2.315238	1.038773	0.038041
110	144400.00	80425	80425.000000	28.2	1.795462	59557.707400	0.491696	0.174925	3560.0	1.253212	2.361022	1.047512	0.046418
115	129000.00	52000	52000 000000	30.4	2.185255	45044.000000	0.195116	0.165553	2735.0	0.812237	1.736603	0.910222	-0.06/490
142	115600.00	52900	52900.000000	35.3	2.185255	45046.000000	0.195116	0.165553	2680.0	0.812237	1.701680	0.938557	-0.063412
152	184900.00	102400	87343.307468	24.7	2.116934	64645.247468	0.220486	0.187079	3610.0	0.883848	2.319237	1.230578	0.207484
157	91506.25	24025	24025.000000	30.4	3.808793	22434.565000	0.288842	0.054158	1580.0	0.784719	1.771729	0.992248	-0.007782
158	91506.25	24025	24025.000000	32.1	3.808793	22434.565000	0.273545	0.051290	1890.0	0.756087	2.007108	1.142384	0.133117
159	91506.25	24025	37636 000000	27.1	3.808/93	22434.303000	0.324015	0.050564	1500.0	0.748785	1.044340	1.132430	0.12/01/
160	104976.00	37636	37636.000000	32.1	2.789244	22678.842400	0.255393	0.047886	1670.0	0.721620	2.050088	1.190189	0.174112
162	104976.00	37636	37636.000000	27.1	2.789244	22678.842400	0.302514	0.056721	1480.0	0.810015	2.152055	1.188417	0.172622
. 11	144400.00	72900	65246.627590	31.0	2.213141	65246.627590	0.430468	0.000000	3222.5	0.918150	1.598431	0.832965	-0.182764
24	90000.00	22500	22500.000000	33.1	4.000000	22500.000000	0.231205	0.050155	1810.0	0.685966	1.813691	1.075197	0.072504
25	90000.00	22500	22500.000000	35.0	4.000000	22500.000000	0.246868	0.053552	1910.0	0.717004	2.043544	1.189578	0.112040
20	90000.00	22500	22500.000000	31.4	4,000000	22500.000000	0.205520	0.052870	2020.0	0.647871	2.133705	1.294127	0.257836
28	90000.00	22500	22500.000000	32.7	4.000000	22500.000000	0.197350	0.050768	1950.0	0.630566	1.977878	1.212336	0.192549
29	90000.00	22500	22500.000000	32.5	4.000000	22500.000000	0.198564	0.051081	1930.0	0.633149	1.969639	1.205378	0.186793
30	90000.00	22500	22500.000000	31.2	4.000000	22500.000000	0.144555	0.053209	1400.0	0.542887	1.488285	0.964037	-0.036626
31	90000.00	22500	22500.000000	30.3 36.3	4,000000	22500.000000	0.124243	0.045733	1490.0	0.492013	1.461928	0.979224	-0.092222
58	90000.00	22500	22500.000000	32.1	4,000000	22500.000000	0.290080	0.051717	1760.0	0.782835	1.818529	1.019534	0.019346
59	90000.00	22500	22500.000000	38.5	4.000000	22500.000000	0.241859	0.043120	1710.0	0.691897	1.473154	0.870260	-0.138964
60	90000.00	22500	22500.000000	38.8	4.000000	22500.000000	0.239989	0.042787	1860.0	0.688288	1.589988	0.941286	-0.060509
61	90000.00	22500	22500.000000	32.1	4.000000	22500.000000	0.4614/5	0.051/1/	1990.0	1.038985	2.056178	1.008047	0.008015
63	90000.00	22500	22500.000000	38.8	4.000000	22500.000000	0.381787	0.042787	2240.0	0.909361	1.914825	1.002432	0.002429
64	90000.00	22500	22500.000000	32.1	4.000000	22500.000000	0.690841	0.051717	2570.0	1.355614	2.655466	1.126961	0.119524
65	90000.00	22500	22500.000000	38.5	4.000000	22500.000000	0.576000	0.043120	2590.0	1.188038	2.231268	1.019413	0.019227
66	90000.00	22500	22500.000000	38.8	4,000000	22500.000000	0.571546	0.042787	2520.0	1.181417	2.154178	0.987177	-0.012906
68	90000.00	22500	22500.000000	38.5	4.000000	22500.000000	0.703360	0.043120	2490.0	1.360848	2,145110	0.908354	-0_096119
69	90000.00	22500	22500.000000	38.8	4.000000	22500.000000	0.697922	0.042787	2750.0	1.353143	2.350789	0.998705	-0.001296
70	90000.00	10000	10000.000000	37.9	9.000000	10000.000000	0.245688	0.043803	1280.0	0.699266	1.680253	0.988302	-0.011767
71	90000.00	10000	10000.000000	37.9	9.000000	10000.000000	0.390853	0.043803	1550.0	0.924379	2.034681	1.056872	0.055313
73	90000.00	10000	10000.000000	37.9	9.000000	10000.000000	0.303119	0.043803	1810.0	1.376590	2 375083	1.025220	0.024907
196	44800.00	27000	27000.000000	24.3	1.659259	25982.121600	0.000000	0.285185	864.0	0.692235	1.585627	0.936516	-0.065589
197	44800.00	27000	27000.000000	26.5	1.659259	25982.121600	0.000000	0.261509	1044.0	0.653092	1.756904	1.062228	0.060369
206	44800.00	26945	26945.000000	23.0	1.662646	25750.406600	0.000000	0.433878	864.0	0.923224	1.688601	0.877634	-0.130525
207	44800.00	26945	26945.000000	23.0	1.662646	25750.406600	0.000000	0.433878	793.0	0.923224	1.549839	0.805514	-0.216275
210	52800 00	43445 47/15	*3443.000000 43445.000000	43.8 7.4 1	1.215330	41559,254600	0.000000	0.186150	1551.0	0.521872	1.300434	0.010102	-0.209407
212	68450.00	27225	17492.844238	38.8	3.913029	15202.617838	0.141599	0.135163	1310.0	0.678404	1.675675	0.997851	-0.002152
213	68450.00	27225	17492.844238	38.8	3.913029	15202.617838	0.141599	0.135163	1305.0	0.678404	1.669280	0.994042	-0.005976
214	88200.00	27225	17492.844238	28.5	5.042062	15202.617838	0.169825	0.162105	1196.0	0.767314	1.834801	1.037684	0.036991
215	88200.00	27225	17492.844238	28.5	5.042062	15202.617838	0.169825	0.162105	1170.0	0.767314	1.794914	1.015125	0.015012
210	52000.00	21600	21600.000000	20.3 21 K	2.407407	17299, 149000	0.000000	0.353805	788.0	0.80158/	2.002382	1.1254.84	0.085980
218	35200.00	21600	21600.000000	36.6	1.629630	17299.149600	0.000000	0.246767	740.0	0.628278	1.366491	0.838763	-0.175827
219	35200.00	21600	21600.000000	35.3	1.629630	17299,149600	0.000000	0.255855	760.0	0.643616	1.455107	0.884829	-0.122361
220	88800.00	45000	45000.000000	25.8	1.973333	40699.149600	0.000000	0.520367	1744.0	1.049263	1.764682	0.860803	-0.149890
L													

Tabelle A5a : Statistische Auswertung von Versuchen, die im oberen Teil versagten (quadratische und rechteckige Körper)

۲v	= 1,722317	S _{Rt}	= 0,373749	b	= 0,99724
۲ _t	= 0,721448	ô	= 0,870762	δ'	= -0,007403
Sp.	= 0,429102	a	= 1,001069	sλ	= 0,122106

0	1	2	3	4	5	6	7	8	9	10	11	12	13
VersN r .	Α	Α ₁	A' ₁	ßwi	$= \frac{A}{A'_1}$	A′ _{1n}	ω _w	ω _{bü}	exp F _u	ı r _{ti}	۲ _{vi}	δί	ln δ _i
\$1/48-1	mm²	۳W	² mm ²	MPo	1 —	mm²			kN	********			
196	44800	27000	27000.000000	24.3	1.659259	25982.121600	0.000000	0.285185	864	0.692235	1.585627	0.988564	-0.011502
197	44800	27000	27000.000000	26.5	1.659259	25982.121600	0.000000	0.261509	1044	0.653092	1.756904	1.122217	0.115307
206	44800	26945	26945.000000	23.0	1.662646	25750.406600	0.000000	0.433878	864	0.923224	1.688601	0.922430	-0.080743
207	44800	26945	26945.000000	23.0	1.662646	25750.406600	0.000000	0.433878	793	0.923224	1.549839	0.846629	-0.166493
210	52800	43445	43445.000000	43.8	1.215330	41559.254600	0.000000	0.153425	1501 •	0.460626	1.116393	0.810901	-0.209609
211	52800	43445	43445.000000	36.1	1.215330	41559.254600	0.000000	0.186150	1551	0.521872	1.399636	0.974119	-0.026221
212	68450	27225	17492.844238	38.8	3.913029	15202.617838	0.141599	0.135163	1310	0.678404	1.675675	1.053619	0.052231
213	68450	2 7225	17492.844238	38.8	3.913029	15202.617838	0.141599	0.135163	1305	0.678404	1.669280	1.049598	0.048407
214	8 8200	27225	17492.844238	28.5	5.042062	15202.617838	0.169825	0.162105	1196	0.767314	1.834801	1.093685	0.089553
215	88200	27225	17492.844238	28.5	5.042062	15202.617838	0.169825	0.162105	1170	0.767314	1.794914	1.069910	0.067574
216	52000	21600	21600.000000	20.3	2.407407	17299.149600	0.000000	0.376463	731	0.836574	2.002382	1.147112	0.137248
217	52000	21600	21600.000000	21.6	2.407407	17299.149600	0.000000	0.353805	788	0.801584	2.028608	1.185450	0.170122
218	35200	21600	21600.000000	36.6	1.629630	17299.149600	0.000000	0.246767	740	0.628278	1.366491	0.886630	-0.120328
219	35200	21600	21600.000000	35.3	1.629630	17299.149600	0.000000	0.255855	760	0.643616	1.455107	0.934997	-0.067212
220	8 8800	45000	45000.000000	25.8	1.973333	40699.149600	0.000000	0.520367	1744	1.049263	1.764682	0.902992	-0.102042

Tabelle A5b : Statistische Auswertung von Versuchen, die im oberen Teil versagten (nur rechteckige Körper)

٢ _٧	= 1,645929	SR	= 0,156261	D	= 0,981132
$\overline{\Gamma_{f}}$	= 0,735001	Ŷ	= 0,629855	δ΄	=-0,006914
s _{R≀}	, = 0,243410	۵	= 0,924796	s∆	= 0,119749

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Vers-Nr.	Α	Α1	Α'1	β₩₽	$\frac{A}{A'_1}$	Á _{1n}	ω~	ω _{bü}	exp Fr	r _{ti}	۲ _{vi}	δί	ln δ _i	ω	rechn Fr
	mm²	mm²	mm ²	MPa		mm²			kN				_		kN
85	32400	15394	15394.000000	27.4	2.104716	14073.742600	0.800000	0.671455	392.0	0.261660	1.337557	1.199209	0.181662	0.671455	326.882045
87	32400	15394	15394.000000	27.9	2.104716	14073.742600	0.000000	1.112774	261.0	0.260087	0.874607	0.785065	-0.241989	1.112776	332.456661
74	144400	78400	65246.627590	28.2	2.213141	56751.741190	0.473209	0.000000	790.8	0.280376	0.650167	0.574893	-0.553572	0.473209	1375.561349
75	84100	52900	52900.000000	36.6	1.589792	44405.113600	0.623161	0.000000	790.8	0.137499	9.640234	8.632595	-0.457925	0.623161	1250.089284
79	22500	7854	7854.000000	42.9	2.864782	5478,165000	0.105299	0.000000	242.0	0.346216	1.354907	1.142698	0.133392	0.105299	211.779461
80	22500	7854	7854.000000	43.9	2.864782	5478.165000	0.102901	8.800000	242.0	0.343567	1.324043	1.118748	0.112210	0.102901	216.313260
81	36100	18869	18869.000000	28.7	1.913191	13842.440000	0.209398	0.000000	324.0	0.219019	1.073092	0.993702	-0.006318	0.209398	326.053446
82	36100	18869	18869.000000	28.9	1.913191	13842.440000	0.218/64	0.000000	324.0	0.218513	0.574521	0.96/210	-0.012572	0.218/64	328.197511
84	102400	90000	74493.074389	28.3	1.374624	65998.187989	0.345825	0.000000	1105.0	0.099028	0.778449	0.794278	-0.230322	0.345825	1391.201215
106	115600	66052	66052.000000	28.4	1.750136	48380.500000	0.325152	0.202692	1350.0	0.185227	1.292800	1.229154	0.206326	0.527845	1098.316494
107	115600	66052	66052.000000 44053 800000	27.2	1.750136	48380,500000	0.321605	0.200481	1200.0	0.178188	1.023073	1.250002	-0 022091	0.52208/	1034.142329
109	144400	80425	80425.000000	27.0	1.795462	59557.707400	0.478132	0.170100	1940.0	0.198303	1.587400	1.493800	0.401323	0.648232	1298.701573
110	144400	80425	80425.000000	26.3	1.795462	59557.707400	0.491696	0.174925	1940.0	0.200047	1.629650	1.531468	0.426227	0.666622	1266.758627
111	\$44400	83469	83469.000000	27.8	1.729984	65797.500000	0.576022	0.075571	1656.0	0.182157	1.1/6835	1.121639	0.114791	0.651593	1458.589439
112	144400	83469	83469.000000	28.0	1.729986	65797,500000	0.571907	0.075032	1190.0	0.181702	0.849896	0.810313	-0.210334	0.646939	1468.567488
114	193600	80425	80425.000000	21.4	2.407212	66322.357600	0.646250	0.175850	1636.0	0.347638	1.516687	1.277865	0.245191	0.822101	1280,260198
115	129600	80425	80425.000000	36.4	1.611439	66322.357600	0.464369	0.085292	1636.0	0.142268	0.891679	8.877599	-0.130566	0.549662	1864.177969
116	291600	125664	125664.000000	21.4	2.320474	104796.707400	0.687771	0.145286	1883.0	0.329857	1.104779	0.942564	-0.059151	0.831056	1997.741904
117	193600	122000	100502.335425	18.0	1.926323	85108.495425	0.768320	0.164093	1189.0	0.259034	1.021228	0.917396	-0.086216	0.932413	1296.059369
119	193600	136900	100502.335425	22.6	1.926323	85108.495425	0.611936	0.232344	1635.5	0.240111	1.118808	1.019472	0.019285	0.844280	1604.262013
120	193600	136900	100502.335425	21.6	1.926323	85108.495425	0.573849	0.217883	1635.5	0.243760	1.170605	1.063727	0.061779	0.791732	1537.518903
121	193600	136900 85687	100502.335425	21.3	1.689146	85108.495425 72213.760000	0.420962	0.107388	1806.0	0.171686	1.154621	1.109661	0.104055	0.526351	1627.523365
123	144400	85487	85487.000000	26.7	1.689146	72213.740000	0.384568	0.096104	2298.0	0.175461	1.568214	1.502615	0.407207	0.482672	1529.333696
126	220900	101736	101736.000000	29.3	2.171306	76289.040000	0.687079	0.328778	2000.0	0.268803	1.177299	1.049933	0.048726	1.015857	1904.883515
127	220900	101736	101736.000000	27.6	2,171306	76289.040000	0.729399	0.349029	2140.0	0.279012	1.33/300	1.223602	0.172152	1.078427	1801.562375
120	193600	85487	85487.000000	36.0	2.264672	60040.040000	0.597333	0.304889	2380.0	0.267585	1.448838	1.293265	0.257170	0.902222	1840.302765
130	193600	85487	85487.000000	40.0	2.264672	60040.040000	0.537600	8.274400	2500.0	0.258350	1.369700	1.231067	0.207881	0.812000	2030.759164
131	211600	119400	119400.000000	29.4	1.772194	96701.960000	0.400828	0.374957	1883.0	0.187814	0.871474	0.826877	-0.190099	0.775785	2277.242999
132	422500	230400	230400.000000	37.2	1.855/6/	116793.760000	0.649641	0.143219	2867.0	0.179524	1.022133	0.976215	+0.024072	0.792859	2936.852795
134	240100	136900	136900.000000	31.8	1.753835	116793.760000	0.645555	0.142318	2867.0	0.179147	1.015704	0.970366	-0.030082	0.787873	2954.554849
135	348100	193600	193573.734265	20.0	1,798281	170338.460665	0.748388	0.175403	3271.0	0.219845	1.263352	1.169143	0.156271	0.923791	2797.776866
136	348100	193600	193573.734265	21.4	1.798281	115308.726400	0.419265	0.371442	2999.0	0.377221	1.711082	1.412365	0.345266	0.790707	2123 388926
138	348100	138544	138544.000000	19.9	2.512559	115308.726400	0.392340	0.347588	2999.0	0.377851	1.719680	1.418848	0.349845	0.739928	2113.687140
143	44100	25600	22428.212317	22.3	1.966274	20304.490717	0.277812	0.326380	285.0	0.250085	0.828198	0.749002	-0.289014	0.604192	380.506547
144	44100	25600	22428.212317	21.3	1.966274	20304.490717	0.258133	0.303262	392.0	0.079296	1.192010	1.0/3434	0.072743	0.561395	364.497297
145	115600	102400	87343.307468	32.9	1.323513	64643.247468	0.209350	0.177630	1960.0	0.082162	1.212579	1.255204	0.227298	0,386980	1561.498973
147	115600	102400	87343.307468	35.2	1.323513	64645.247468	0.173055	0.146835	1960.0	0.080332	1.133348	1.175040	0.161302	0.319890	1668.028775
148	115600	102400	87343.307468	35.2	1.323513	64645.247468	0.173055	0.146835	1960.0	0.080332	1.133348	1.175040	0.161302	0.319890	1668.028775
149	184900	102400	87343.307468	20.7	2.116934	64645.247468	0.269605	0.228755	1960.0	0.292350	1.974943	1.731045	0.548725	0.498360	1132.264363
151	184900	102400	87343.307468	19.3	2.116934	64645.247468	0.250968	0.212943	1426.0	0.296825	1.503876	1.313865	0.272973	0.463911	1085.347263
153	122500	70686	70686.000000	32.9	1.733016	57001.190400	0.496742	0.496742	1549.0	0.172822	1.086821	1.043554	0.042632	0.993485	1484.350763
154	122500	70686	70686.000000	33.6	1.733016	57001.190400	0.472443	0.472443	1098.0	0.183912	0.928415	0.883627	-0.123721	1.273698	1242.606299
156	122500	70686	70686.000000	28.0	1.733016	57001.190400	0.620928	0.620928	1180.0	0.182366	0.972806	8.927011	-0.075790	1.241856	1272.908408
11	144400	72900	65246.627590	31.0	2.213141	65246.627590	0.430468	0.000000	790.8	0.271667	0.514438	0.457811	-0.781298	9.430468	1727.349572
195	33600	44100 6957	44100.000000 6957.000000	38.1	\$.907029 & 820448	44100,000000	0.595627	0.000000	1385.9	0.198122	1.003/40	1.019985	0.019791	0.598627	1356.780972
196	-44800	27000	27000.000000	19.6	1.659259	25962.121600	8.000000	0.225185	501.9	0.187009	1.296800	1.231220	0.208006	0.285185	407.644350
198	36400	15514	15514.000000	37.0	2.346268	14319.406600	8.800000	0.268940	430.2	0.279264	1.068391	8.945470	-0.056073	0.268940	455.011892
200	36400	15514	15514.000000	36.7	2.346268	14319.406600	0.000000	0.271138	394.4	0.280022	0.987489	0.873388	-0.135375	0.271138	451.574748
201	68000	28714	28714.000000	37.4	2.368183	26828.254600	0.000000	0.213459	755.7	0.281999	0.990996	0.875217	-0.133284	0.213459	863.443178
202	36400	15514	15514.000000	37.2	2.346268	14319.406600	0.000000	0.267494	358.1	0.278762	0.884551	0.783070	-0.244533	0.267494	457.302561
203	36400	15514	15514.000000	37.6	2.346268	14319.406600	0.000000	0.264648	390.6	0.277770	0.954566	0.845670	-0.167626	0.264648	461.882094
204	68000	28714	28714.000000	37.2	2.368183	26828.254600	9.000000	0.212323	700.2	0.281498	0.913331	0.806923	-0.204571	0.214606	859,144150
206	44800	26945	26945.000000	17.8	1.662646	25750.406600	0.000000	0.433878	393.8	0.193992	1.130467	1.067412	0.065237	0.433878	368,929674
207	44800	26945	26945.000000	18.4	1.662646	25750.406600	0.000000	0.433878	393.8	0.191860	1.093604	1.034337	0.033761	0.433878	380.726852
208	28800	26945 24045	26945.000000	36.7 36 #	1.068844	25927.121600	0.000000	9.410667 8.410667	594.4 394.4	0.017825	0.545385	0.597669	-0.514718	0.410667	659.896696
210	52800	43445	43445.000000	36.9	1.215330	41559.254600	0.000000	0.153425	755.7	0.053837	0.648398	0.687972	-0.374007	0.153425	1098.446035
211	\$2800	43445	43445.000000	34.3	1.215330	41559.254600	0.000000	0.186150	687.0	0.055164	0.634134	0.672050	-0.397422	0.186150	1022.245005
212	68450	27225	17492.844238	37.7	3.913029	15202.617838	8.141599	0.135163	388.7	0.510494	0.892362	0.674820	-0.393310	0.276762	576.005760
213	88200	27725	(7492.844238 17692.844238	57.7	3.913029	15202.617838	0.141599	0.162105	388.7	0.727414	1.250634	0.6/4820	-0.183607	0.331020	5/6.005760 467.082174
215	88200	27225	17492.844238	26.9	5.042062	15202.617838	0.169825	0.162105	388.7	0.727414	1.250634	0.832188	-0.183697	0.331930	467.082176
216	52000	21600	21600.000000	20.3	2.407407	17299.149600	0.000000	0.376463	297.4	0.353848	1.114311	0.934780	-0.067444	0.376463	318.149603
217	52000 35200	21600 21600	21600.000000	21.6	2.407407	17299.149600	0.000000	0.353805	297.4 408.9	0.145775	1.047246	0.882986	-0.124446	0.353805	336.811838
219	35200	21600	21600.000000	35.3	1.629630	17299.149600	0.000000	0.255855	297.4	0.147543	0.640808	0.627978	-0.465251	0.255855	473.583845
220	88800	45000	45000.000000	25.8	1.973333	40699.149600	8.000000	0.520367	929.0	0.239712	1.164118	1.061080	0.059287	0.520367	875.523133
221	66866	45000	45000.000000	26.1	1.973333	40699.149600	0.514386	0.077158	143.4	u.258790	0.920838	0.839920	-0.174449	0.591544	885.084434

Tabelle A6 : Statistische Auswertung von Versuchen hinsichtlich der Erstrißkraft

Tabelle A7/1 :

Körper : quadratisch

Wendel : ohne

Bügel : ohne

Anker : quadratische Platte

		Körper-	a		a1							wend	el			Büge	21		BWA			Bew. im unt.	Teil	Erst	riß
Nr.	Quelle	bez.	Ь	n	b,	A1	٢o	LH	ר _ט	ľ	BSW	d _{sw}	- K.	PW	β _{SB}	0 _{SB} B	TAB	OB	BWE	FN	dd	Bewehrung	Stahl	bei	Erst-
_			៣៣ ៣៣	៣៣	៣៣ ៣៣	mm²	៣៣	mm	mm	mm	N/mm ²	៣៣ ៣៣	៣៣ ៣៣ ²		N/mm ²	៣៣ ៣៣	mm cm²		N/mm ²	kN	mm		kg/m ³		kN
1	286/I	5	300 300	600	300 300	90.000	-	-		30		~	-	U.S.		-			31,4	/	3002300	6	-	/	1900
2	286/I	B	۲	"	300 300	90.000	~	-	- -	4	-	-	-	•-	-	-	-	~	33,6	/	4		-	/	2100
3	286/II	1	η	8	250 250	62.500	~	_		4	-	-	-	-		4	-	***	33,1	/	250~250	Bitgas	_	/	1610
4	ų	11	4	ł	250 250	62.500	-	-	~	4	-	-	•	-1	-	-	-	-	33,6	1	41	i Baimag	-	7	1490
5	ĸ	2	ł	K	200 200	40.000	1	-	ij	¥	1	-	1	1	1	-	I	~	33,1	1	200 x 200	~		1	1100
6	ų	9	r	4	200 200	40.000	¥9	-	-	lt	-	-	-	3 -	-	-		~~	33,6	1	ų	agaaa	-	1	1160
7	¥	3	H	۲	150 150	22,500	F	1	ą,	ť	1	-	ł	ł	1	ł		جلير	33,1	/	150+150		-	1	830
8	яţ	12	h	11	150 150	22,500	ŝ	1	u an	t	-	-	-	49404		9 .	-	~	33,6	/	4	eStrace _e		1	820
9	ч	6	ų	u	100 100	10.000	•	-	•	4	-	-	-	-	-	-		~	37,4	/	100 = 100	ويسيع	-	1	580
10	ų	10	11	4	100 180	10.000	**	-	ł	¥	•	-	.	-	-	-	-	6 +-	33,6	/	ų		-	1	550
																						·			

	Rißbi	reite		c	1.1.4	Ort des	Bemerkungen	Ne
max Vo1	F _{o1}	Max Wu10	F _{u10}		VA	Versagens	Demerkungen	141.
mm	kN	៣៣	kN	kN	_			
/	1	/	/	2020	Bruch- Vensuch	oben		1
-	/	/	1	2230	4	k		2
/	1	/	/	1760	4	ų		3
/	1	/	/	1820	4	ù		4
1	1	1	/	1370	4	¥		5
1	1	/	/	1290	ų	ų		6
/	1	1	/	920	ų	ŧ		7
1	/	1	/	960	4	4		8
1	1	/	1	580	ų	¥		9
1	1	/	1	610	4	ų		10

Tabelle A7/2 :

Körper : quadratisch

Wendel : mit

Bügel : ohne

Anker : quadratische Platte

		Körper-	۵	Ι.	aı	Ι.				Ι.		Wend	el			Büge	2		BWA			Bew. im unt.	Teil	Ersti	riß
Nr.	Quelle	bez.	Ь	h	b	A1	Γο	ГH	r _u	f	β_{SW}	d _{sw} Sw	ΣÅsw	0w lw	β _{SB}	d _s B SB	k _B ΣAsB	0B LB	β _{WE}	FN	dd	Bewehrung	Stahl	bei	Erst- rißlast
_			៣៣ ៣៣	mm	៣៣ ៣៣	mm²	mm	mm	៣៣	mm	N/mm ²	៣៣ ៣៣	៣៣ ៣០	៣៣ ៣៣	N/mm²	៣៣ ៣៣	្រពាព ពារ	៣៣ ៣៣	N/mm ² N/mm ²	kN	mm		kg/m³		kN
11		0250	380 380	870	270 270	72900		_		35	III 42.0	-14 60	346 ~10,5	0 490	-	-	-	-	31,0	1977	ø 150	78gl Ø 10 as=50mm	~ 110	0,4F _N	799,8
12		0450	290 290	665	210 210	44100	~	-		35	¥	14 46	256 ~10,5	0 490		-	-		38,1	1977	ø150	4 Bgl \$ 10 as = 65 mm	ų	97FN	1383,9
		·																							

r			en na antipi para dalamba	P				
max	RIBDI F at	<u>max</u>	F10	Fu	VA	Ort des Versagens	Bemerkungen	Nr.
mm	kN	mm	kN	kN			nen en generalen haf generalen in den son de beneralegen af en an de beste de beste de beste de beste de beste Belgegen de beste her son de beste de be	
919	1383,3	-	-	3222,5	DIS	oben		11
0,04	1383,9	-	-	2649,2	DIS	unten/oben (nach Angabe unten)		12
							na na ana ama amin'ny fanisa amin'ny fanisa amin'ny fanisa amin'ny fanisa amin'ny fanisa amin'ny fanisa amin'ny	
							99999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999	
				erenankasi (keskiki rekisi) (ke			an a	
							n an	
						an the second	ann de ser her sen er ber er her efter en for en sen en sen er her her her her her her her her her	

Tabelle A7/3 :

Körper : quadratisch

Wendel : ohne

Bügel : mit

Anker : quadratische Platte

		Körper-	a	Ι.	a					Ι.		Wend	el			Büge	21		BWA			Bew. im unt.	Teil	Erst	riß
Nr.	Quelle	bez.	Ь	h	b	A1	ro	۲H	٢ _u	Ť	β_{SW}	d _{sw} Sw	EÅsv	0w lw	β_{SB}	d _s B SB	k _B ΣAsb	OB LB	β _{WE}	FN	dd	Bewehrung	Stahl menae	bei	Erst- rißlas
-			៣៣ ៣៣	៣៣	៣៣ ៣៣	mm²	mm	mm	mm	mm	N/mm²	៣៣ ៣៣	<u> </u>	៣៣ ៣៣	N/mm ²	៣៣ ៣៣	៣៣ ៣០	៣៣ ៣៣	N/mm² N/mm²	kN	mm		kg/m³		kN
13	286/I	4	300 300	600	300 300	90.000	-	-	-	30	~	-	-	-	I 220	7 80	270 ~1,5	20 580	37,4	/	300130	s.Bügel	~50	/	2030
14	2861 I	7	61	H	ţı	n		-	•••	k	-	-	-	-	к	11	н	n	33,6	/	"	łı	18	/	2080
15	2.86/耳	18	81	H	150 150	22.500	-	-	.56	91		-	-		I 382	5ø12. 52	270 · 6,5	30 270	31,4	/	150+150	ø7/80	at	/	1290
-16	2.86/耳	24	u	4	h	11	-	-	-	۷			`	-	16	11	n	•	32,7	/	1	Ħ	n	/	1250
17	2861耳	30	4	ŧ	11	n	-	-		¥	-		-	-	9L	8	Ŗ	14	32,5	/	B	ł	8	/	1180
			,																						
																			-						

	Rißb	reite		[T	Ort des	Demoder	
max Wo1	F _{o1}	max Wu10	F _{u10}	۲	A	Versagens	Bemerkungen	Nr.
mm	kN	mm	kN	kN		STATE STREET, STATE		
/	/	/	/	2240	Bruch- versuch	oben		13
/	/	/	/	2300	84	16		-14
/	/	/	/	-1430	ţı	91		15
/	/	/	/	1410	84) F		16
/	/	/	/	1370	11	þ		17
<u> </u>								

Tabelle A7/4 :

Körper : quadratisch

Wendel : mit

Bügel : mit

Anker : quadratische Platte

	[·	Körper-	a	Ι.	la.			[I	ŀ .		√end(<u>el</u>			Büge	2		∫β _{WA}			Bew. im unt.	Teil	Erst	<u> Nin</u>
Nr.	Quelle	bez.	Ь	h	b ₁	A ₁	Γo	ГH	۲ _u	†	β _{SW}	d _{sw} Sw	ΣÅsw	ŶŴ	β _{SB}	O _{sB} S _B	ΣA _s B	OB LB	β _{WE}	FN	dd	Bewehrung	Stahl menge	bei	Erst- rißlas
-			mm mm	mm	៣៣ ៣៣	mm²	mm	mm	mm	mm	N/mm ²	៣៣ ៣៣	mm cm²	៣៣ ៣៣	N/mm ²	៣៣ ៣៣	៣៣ ៣²	៣៣ ៣៣	N/mm² N/mm²	κN	mm		kg/m³		kN
18	2.86/11	13	300 300	600	150 150	22500	-			30	I 220	12 41	270 7,2	20 240	I 220	7 80	270 1,5	20 580	- 33,1	/	150x150	s.Bügel	~50	/	1370
19	11	19	1	11	11	11		-	-	11	11	4	n	11	11	SI	*	Ħ	33,0	/	11	н	11	/	1350
20	ti	25	11	11	U	N		-	ahones	1)	Ŋ	đ	n	ł	11	u	1	Ħ	31,0	/	n	¥	N	/	1430
21	H	-14	n	ų	ß	X	-	-	-	n	Ŋ	14 46	270 6,7	20 175	11	11	u	¥	33,1	/	P.	11	1	/	1490
22	K	20	11	11	1	ß	-	-		11	ŧ	11	ų	ł	#1	u	ħ	e/	33,0	/	n	N	¥	/	1500
23	4	26	u	N	8	N	-	-	-	11	R	٨	n	à	et.	11	u	łı	31,0	/	4	ų	4	/	1470
24	u	15	u	1	a	Ø	-	-		11	Ņ	12. 51	270 6,9	20 280	11	1/	ħ	\$1	33,1	/		4	ų	/	1440
25	u	21	11	N	Y	N	-	-		11	89	II	1	11	ų	11	9(ų	33,0	/	4	ų	k	/	1290
26	l	27	u	K	11	1	-	-	-	u	p	n u	n	ų	N	ų	2	ıł	31,0	/	4	u	u	/	1310
27	N	16	11	1	1	ß			-	N	11	10 42	270 6,0	20 360	ıl	H	11	h	31,4	/	4(ų	H	/	1290
28	tı	22.	u	N	11	u		-	-	u	It	11	4	ħ	U	V	ų	¥	32,7	/	łį	4	4	/	1410
29	1]	28	11	u	u u	11	-	-	-	H	u	11	11	ţı	W	11	tı	ų	32,5	/	4	ŝı	N	/	12.50
30	286/IV	36	11	11	N	u	6 10	-		11	I 286	8 50	270 2,1	20 180	u	K	ų	H	31,2	/	4	u	4	/	1150
31	P	37	11	N	N	lt	مى	-		u	11	11	u	H	ų	V	ų	h	36,3	/	ч	H	"	/	1250
32	N	38	sł	1	I(ł		-		11	N	II	R	ł	u	4	ii	li	36,3	/	4	u	u	/	1370
33	¥	35	k	11	1	V	~	-	-	u	1 2.97	10 51	270	11	ł	k -	b	ų	31,2	/	ų	ł	ł	/	1250

	Rißbi	reite		E.		Ort des	Remerkunnen	Nr	
max Vot	F ₀₁	max Wu10	F _{u10}	10		Versagens	Dementiongen		
៣៣	kN	mm	kΝ	kN		g por management	n and a second		
/	/	/	/	2720	Bruch- versuch	unten/oben		18	
/	/	/	/	7910	it	ħ		19	
/	/	/	/	1970	¥	N		20	
/	/	1	/	2020	4	unten		21	•
1	/	/	1	2060	ą	86		22	
1	/	/	/	1990	n	94		23	
/	/	/	/	1810	ĸ	oben		24	
/	1	/.	/	1880	1(11		25	
/	/	/	/	19-10	11	8ŧ		26	
/	/	/	/	2020	n	98		27	
/	/	/	1	1950	u	12		28	
/	/	/	/	1930	11	<u>ş</u> t		29	
1	/	/	/	1400	u	11		30	
/	/	/	/	1490	ų	K		31	
1	/	/	1	1600	n	80		32	
/	/	/	/	1550	n	unten/oben		33	

Tabelle A7/5 :

Körper : quadratisch

Wendel : mit

Bügel : mit

Anker : quadratische Platte

		Körper	- a	L	a1							Wend	<u>el</u>			Büge	el	-	β _{WA}		1.	Bew. im unt.	Teil	Erst	riß
INC.	uuelle	bez.	b		b ₁	A1	ľo	ГН	Γu	t	ßsw	Sw Sw	ΣÅš,	. °₩	β _{SB}	DsB SB	ΣAsB	0B LB	β _{WE}	FN	dd	Bewehrung	Stahl	bei	Erst-
-			៣៣ ៣៣	mm	mm mm	mm²	mm	mm	mm	mm	N/mm ²	ាកា កាកា	mm cm²	៣៣ ៣៣	N/mm ²	ាកា កាកា	mm cm²	mm mm	N/mm ² N/mm ²	kN	mm		kg/m ³		kN
34	2.86/IV	39	300 300	600	150 150	22500		-	-	30	I 297	10 51	270 3,2	20 180	I 220	7 80	270 1,5	20 580	36,3	/	150/15	s.Bügel	~50	/	1230
35	- 11	40	11	ĸ	h	ч	-	-	-	18	ji	11	11	11	u	LI LI	U	ŧ	35,0	/	h	1(ų	/	-
36	n	33	N	ľ	1	ч	_		-	4	I 244	12 49	270 4,8	11	u	(1	ų	n	32,8	/	11	11	ų	/	1450
37	. II	34	*	11	4	\$6	-	-		tt	H	8	11	ų	ŧ	N	u	88	31,2	/	W	h	u	/	1250
38	k	41	11	N	ų	1(-	-	-	u	ł	ĸ	11	81	N	u	R	11	35,0	/	ĸ	ł	u	/	
39	4	31	4	Ņ	h	u	ing	-	-	a	I 255	16 47	270 8,8	ų	u	n	ų	11	32,8	/	11	K	u	/	1410
40	n	32	u	n	u	ų	-		-	e	ır	51	1	u	и	11	ų	II	32,8	/	ų	11	lt	/	1400
41	11	42	"	ĸ	ĸ	ų		~	-	11	ł¢	ll	11	k	n	a	11	ŧ	35,0	/	ł	ų	ų	/	-
42	286/IZ	46	a	n	N	4	-		-	N	I. 297	14 59	270 6,5	20 210	u	11	ű	đ	26,3	/	u	11	u	/	1170
43	11	47	ß	u	и	ų		~	<u> </u>	ĸ	I 253	N	11 '	v	ţ	Ľ	ť	11	26,3	/	n	it .	ų	/	1170
44	u	48	u.	"	u	11	تح ت		~	I(I 237	11	K	u	4	h	ú	u	26,3	/	4	K	ų	/	1210
45	ti -	59	11	11	ĸ	4		•	-	1(I 220	K	ti	tl	I	11	h	V	33,2	/	11	4	4	/	1180
46	. I(60	ĸ	11	4	"	-	~	_	n	u	U	K	81	u	H	ł	4	29,5	/	4	ų	ų	/	1140
47	ч	61	K	lı .	u	ĥ		-	_	k	h	K	h	u	ų	4	lı	þ	33,2	/	4	ų	ų	/	1290
48	2.86/77	49	200 200	400	100 100	10.000		2008	-	u	I 326	10 40	170 2,6	20 110	11	ц	170 1,5	4	35,1	/	100-100	N	u	/	660
49	11	50	u	ų	ħ	ţi.		-	~	u	I. 257	ŧĮ	u	u	ł	4	٩	N.	351	/	11	11	n	/	515

	Rißbr	eite		e	1/4	Ort des	Bemerkunnen	Nr	
max Vot	F _{o1}	max Wu10	F_{u10}	۳U	VA	Versagens	Demerkungen		
mm	kN	៣៣	kΝ	kN		40	an an the second se		
~	/	/	/	1620	Bruch- versuch	unten/oben		34	
/	/	/	/	1640	1	11		35	
1	/	/	/	1980	N	unten		36	
1	/	/	/	1890	ıl	V		37	
1	/	/	/	2000	N	٤L		38	
1	/	/	/	2040	11	11		39	
1	1	1	1	1990	ti	A		40	
1	1	1	/	2040	11	11		41	
/	/	1	1	1890	11	ų		42	
1	/	1	1	1830	II.	11		43	
1	1	1	1	1840	n	84		44	
/	/	/	/	1950	R	11		45	
1	/	/	/	1800	11	4		46	
1	1	1	/	2000	1	I(47	
1	1	1	1	875	11	11		48	
1	1	7		875	11	ti i		49	

Tabelle A7/6 :

Wendel : mit

Bügel : mit

Anker : quadratische Platte

		Körper-	a		a 1							wend	el			Büge	<u>əl</u>		JβWA			Bew. im unt.	Teil	Erst	niß
Nr.	Quelle	bez.	Ь	n	b ₁	1:A1	, Г о	LH	Γ _U	ſ	ßsw	d _{sw} Sw	EASW	_l₩	β _{SB}	d _s B S _B	ΣÅsB	OB LB	BWE	FN	dd	Bewehrung	Stahl	bei	Erst-
-			៣៣ ៣៣	mm	៣៣ ៣៣	mm²	шw	mm	វា៣	ጠጠ	N/mm²	៣៣ ៣៣	ሰጠ ርመ ²	៣៣ ៣៣	N/mm ²	៣៣ ៣៣	៣៣ ៣៣²	mm mm	N/mm ²	kN	mm		kg/m ³		kN
50	2.86/VI	51	200 200	400	100 100	10.000			~	30	I 331	10 40	170 2,6	20 110	I 220	7 80	170 1,5	20 580	35,1	/	100-100	s.Bügel	-50	/	620
51	ų	52	lı	ħ	١	h	-	-	- .	Y	I 328	H	١	A	Ħ	ħ	M	ħ	37,1	/	11	h	ų	/	625
52	ĸ	53	1(N	ß	K		-	44	4	I 32.6	*	h	1(N	u	11	ħ	37,1	/	N	ą	ą	/	62.0
53	N.	54	L.	N	K	N	*	-	-	4	I 323	ł	Ħ	٩	k	ų	t	ų	37,1	/	11	11	k	/	540
54	ŧ	56	ĸ	ų	ŧ	4	-		-	ų	I 32.6	X	1	ł,	"	8	Ц	4	34,5	/	ł	Ą	ц	/	610
55	2.86/54	43	300 300	600	150 150	22.500	-	4	5 me	Ą	I 289	14 55	270 7,4	20 230	٩	N	270 1,5	٩	33,2	/	150-150	11	łı,	/	1480
56	IK IK	44	4	ų	11	ų			-	ł	I 244	h	ħ	âţ	ų	ħ	k	¥	33,2	/	u	ŧ.	u	/	1200
57	11	45	h	u	h	1	-	-	~	81	I 253	ļ	I	ł,	1 1	Ņ	ų	11	33,2	/	Ą	şt	ų	/	1280
58	286/200	115	8	11	u	R	-			ti	Щ 496	в 42	270 3,9	20 580	u(i(đ	ų	32,1	/	,۴	Wendelbigd	94	/	1100
59	N	116	q	9	11	81		-	-	ŝį	Щ 496	k	N.	11	ų	ĸ	14	ų	38,5	/	٩	ų	h	/	1250
60	ч	117	٩	11	4	u		1		ų	₩ 496	ł	٩	h	٩	1	il	ų	38,8	/	11	16	fi.	1	1200
61	K	119	1	N	ıl	li	سی ر			ħ	म 505	10 42	270 6,0	ų	N	1	ų	ų	32,1	1	ł	۲	148	/	1150
62	ĸ	12.0	4	ų	ų.,	ĸ	6 +	-	a	ų	Щ 505	u	16	lı	(1	4	1	ų	38,5	/		łı	٩	/	1240
63	1(121	4	11	11	1(-	9-m2	ų	Щ 505	4	Ħ	ų	4	N	q	N	38,8	/	N	ų	и	/	1290
64	lt	123	A	η	ų	H	e	-	-	ų	Щ 525	12 42	270 8,6	١	ų	٩	ų	ų	32,1	/	١	11	213	/	1200
65	h	124	ų	۲	મ	li			en .	۲	₩ 525	Ą	¥	ų	ų	ч	ц	1	38,5	/	٤	ų	N	/	1250

	Rißb	reite		Ţŗ		Ort des	Demesla	N-
max Vot	F _{o1}	Max Wut0	F _{u10}	r _u		Versagens	bemerkungen	Nr.
mm	kN	mm	kN	kN		dasterationalisation		
~	/	/	/	900	Bruch- Versuch	unten		50
	/	1	/	885	11	ł		51
/	/	1	/	905	1	86		52
/	/	1	/	910	11	ų		53
/	1	1	1	920	8	Ħ		54
/	/	/	/	1910	łı	unten/oben	Wendel am Lastfernen Ende nicht verschweißt	55
/	1	/	1	1710	11	N	ŧj	56
/	/	1	1	1870	11	ŧţ	\$1	57
/	/	/	/	1760	IJ	oben	Die Guerdehnungen nehmen bei zunehmenden Bedichrung in Bezun auf das	58
/	/	/	/	1710	1	ł	Verhältnis F/Fy ab (s. Wurm 5.67-70, Heft 286)	59
/	/	/	1	1860	ľ	Ħ	ų	60
/	/	/	/	1990	u	ąf	N	61
/	/	/	/	2280	u	4	łt	62
/	/	/	1	2240	11	l)	ł	63
/	/	/	/	2570	11	4	: h	64
/	/	1		2590	ч	łţ	js	65

Tabelle A7/7 :

Körper : quadratisch

Wendel : mit

Bügel : mit

Anker : quadratische Platte

		Körper-	a	Ι.	a,						<u> </u>	vende	21			Buge	<u>.</u> [AWE L			Bew. im unt.	Teil	Erst	riß
Nr.	Quelle	bez.	Ь	h	b	A1	٢o	LH	Γ _υ	t t	ßsw	d _{sw} Sw	ΣÅsw	ŶŴ	β _{SB}	0 _{sB} SB	k _B ΣAsb	OB LB	BWE	FN	dd	Bewehrung	Stahl menge	bei	Erst- riAlas
-			៣៣ ៣៣	៣៣	៣៣ ៣៣	mm²	mπ	៣៣	៣៣	mm	N/mm ²	៣៣ ៣៣	ሰጠ ርጠ²	៣៣ ៣៣	N/mm ²	៣៣ ៣៣	៣៣ ៣៣²	៣៣ ៣៣	N/mm ² N/mm ²	kN	mm	*******	kg/m³		kN
66	286/XII.	12.5	300 300	600	150 150	22500	~	_	-	30	H 525	12 42	270 8,6	2.0 580	I 220	7 80	270 1,5	20 580	38,8	/	150,150	Wendel+BigcL	213	/	1190
67	"	127	ų	łł	N	4		-	-	11	II 471	14 42_	270 11,8	, u	n	4	11	4	32,1	/	٧	h	291	/	12.00
68	k	12.8	ų	ų	4	ĸ			_	1	lı	ų	11	"	v	N	4	L	38,5	/		4	4	/	1030
69	ų	12.9	¥	h	1	ł	-	-	-	11	11	11	N	ч	ĸ	4	11	4	38,8	/	4	٩	11	/	12.50
70	2.86/217	118	k	u	100 100	10000		-	-	11	Щ 496	8 42	270 3,9	"	đ	H	11	Ę	37,9	/	100+100	ŝi	94	/	950
71	V	122	lı	4	11	ų	-	-	-	η	Щ 505	10 42	270 6,0	4	ų	4	11	ų	37,9	/	4	4	148	/	920
72	ų	126	("	N	gt	-	-	-	II.	Щ 525	12. 42	270 B,6	11	u	ıl	4	4	37,9	/	11	ų	213	/	880
73	łł	130	ų	H	li	11			-	11	II 471	14 42	270 11,8	11	4	H	11	ų	37,9	/	1	4	291	/	880
							- Magazine																		
																					ļ				
																								. <u></u>	

	Rißb	<u>reite</u>		L c		Ort des	Banaslausaas	
mäx ∀₀1	F ₀₁	max Wu10	Futo			Versagens	Demerkungen	Nr.
mm	kN	mm	kN	kN	_			
1	2	/	~	2520	Bruch- versuch	oben	s.Bcm zu Nr.58	66
/	\leq	/	/	2690	11	11	ŧ	67
	/	/	/	2490	4	1(ы	68
/			/	2750	łį	ſ	ŧş	69
/	/	/	/	12.80	11	N	łş	70
/	/	/	/	1550	11	1(ŧ	71
/	/	/	/	1720	H	ł	î;	72
/	/	/	/	1810	îı	ŧ	\$1	73

Tabelle A7/8 :

Körper : quadratisch

Wendel : mit

Bügel : ohne

Anker : quadr. oder runde Platte

[Körper-	a	Ι.	a1					Ι.		Wend	el 🔄			Büge	2[i kwa constantia tak	BWA		Ι.	Bev. im unt.	Teil	Erst	riß
Nr.	Quelle	bez.	Ь	h	b ₁	A ₁	٢o	ГH	۲ _u	T	ßsw	d _{sw}	ΣÅsw	₽ ₩	β _{SB}		κ _B ΣAsb	0g lB	β _{WE}	FN	d _d	Bewehrung	Stahl	bei	Erst-
-			៣៣ ៣៣	mm	៣៣ ៣៣	mm²	mm	ՠՠ	mm	mm	N/mm ²	2 ៣៣ ៣៣	៣៣ ៤៣²	៣៣ ៣៣	N/mm ²	៣៣ ៣៣	mm cm²	៣៣ ៣៣	N/mm ²	kN	mm		kg/m ³	1	kN
74			380 380	870	280 280	78400	52	36	36	35	Щ 420	14 60	346 v10,5	0 490	-	-	-		28,2 	1977	ø150	7-Bglø 10 08=50	~72	94FN	790,8
75			290 290	665	230 230	52900	52	36	36	35	11	14 46	256 ~10,5	375	-	_	_	-	36,6	ц	¢ 150	4 BgL \$ 10 98=65	276	4	11
76			230 230	430	190 190	36100	37,5	37,5	37,5	30	I 22.0	62¢10 40	220 ~5,1	10 200	-		_	_	23,3 26,0	1076	ø 78	3 BgL Ø5 9 =40	~26	/	/
77			11	11	11	ч	11	н	ų	H	k	11	11	ч		_	-		ų	11	ø 78	ł.	u	/	1
78			150 150	300	¢100	7854	27,5	27,5	27,5	40	H	5 30	125 1,0	0 120	-	-	-	(43,8	346	ø 35	1BgLø6	130	0,7FN	242
79			n	ų	H	14	ų	u	11	al	¥	81	ų	ų	~	-		~	42,9	u	\$ 35	11	ч	۲	4
80			ų	4	11	k	K	ų	\$1	81	t(٤	ų	ų	-	-	~	-	43,9	H	ø 35	ł	٩٢	ų	ti
81			190 190	460	ø 155	18869	40	25	40	25	u	8ø8 40	162 3,0	0 255	1	-	^	•	28,7 32,7	589	¢110	3Bglø6 II 9 = 47	~50	0,55F _N	324
82.			łi	Ŋ	ų	ų	ų	11	8	4	ų	ų	ч	£	-	-	-	-	28,9 31,3	4	Ø110	N	ł	1	4
83			320 320	640	300 300	90000	52	38,5	38,5	40	5137 240	7116	284 14,1	0 332	-	١	-	~	27,9 34,3	2010	Ø150	$489L \neq 8$ q = 85	lı	0,4FN	804
84			¥	¥	lı	b	١	ų	ų	ł	Ŋ	11	ų	4	-	1	-		28,3 34,2	4	ø150	łş	4	QSSF _N	1105
																				- 74,494					

	Rißb	reite		L C		Ort des	Remarkungan	No
max Vot	F 01	max Wu10	F _{u10}	ΓU		Versagens	Demenkungen	
mm	kN	mm	kN	kN		*		
0,15	1383,9	-	-	2965,5	D/5	oben	Trompete	74
0,10	ų	-	-	2234	DIS	unten/oben (nach Ang. obcy)	ų	75
0,06 0,08	592 710	/	/	1137	Daver- stanct- rersuch	unten		76
0,07 0,09	N,	/	/	12.08	¥	ų	r	77
9,02	242	9,02	34,6	481	Schwell- Versuch	unten/oben?		78
901	¥	9,01	11	499	N	68		79
0,01	ą	0,01	¥	476	11	đ		80
0,01 0,03	324 412	/	/	762	Daver. Stand- versuch	oben		81
902 0,07	ų	/	/	718	t)	ts .		82
0,05 907	1105 1407	/	/	2745	¥	li	Trompete	83
4	ų	/	7	2775	u	łı	4	84
							Northern Market and a state of the	
	T							

Tabelle A7/9 :

Körper : quadratisch

Wendel : ohne

Bügel : mit

Anker : quadrat. oder runde Platte

		Körper-	a		a1	Ι.				Ι.		Nend	el			Buge	2		BWA	_	.	Bew. im unt.	Ťeil	Erst	riß
Nr.	Quelle	bez.	Ь	h	b ₁	A 1	ro	ſН	Γ _υ		β_{SW}	d _{s₩} S _₩	EAsw	ŶŴ	β _{SB}	d _s B SB	EASB	OB LB	BWE	FN	dd	Bewehrung	Stahl menge	bei	Erst- rißlas
-			៣៣ ៣៣	៣៣	៣៣ ៣៣	mm²	ጠጠ	mm	៣៣	mm	N/mm²	៣៣ ៣៣	mm cm²	៣៣ ៣៣	N/mm²	mm mm	៣៣ ç៣²	ጠጠ ጠጠ	N/mm ² N/mm ²	kN	mm		kg/m³		kN
85			180 180	360	\$140	15394	20,5	20,5	20,5	35		-	-	-	耳 420	4ø8 30	152 2,0	30 120	27,4	653	ø 55	2 Bg 6	~43	0,6 F _N	392
86			1	K	N	ų	¥	q	Ŋ.	ų	_	-	-	1	Ħ	198 *2010 45	150 2,1	ų	29,0	h	N	1	4	ĸ	4
87			tı	ų	ł	k	ł	ĸ	l	¥	-	-	-		١	3ø12 40	148 3,4	40 120	27,9	4	4	4	4	0,4 F.	261
													i												

	Rißb	reite		C C	1/4	Ort des	Remarkungen	No
max Wo1	F _{o1}	max Wu10	F _{u10}	ΓU	VA	Versagens	Demerkungen	
mm	kN	mm	kN	kN			descurates and an analysis and an angle of the second s	_
0,04	457	0,07	65	750	5	nicht ein- deutig erkonn- bar		85
0,02	11	910	ŧı	656	S	ŝ		86
0,06	B	0, 08	ł	727	S	81		87
				F				
						and the second desired second of the		
				·····				

Tabelle A7/10 :

Körper : quadratisch

Wendel : mit

Bügel : mit

Anker : quadrat. oder runde Platte

		Körper-	a	1.	a1	Ι.	1		1	Ι.		Wend	el			Ride	5[1 BWA			Bew. im unt.	Teil	Erst	riß
Nr.	Quelle	bez.	b	h	bı	A ₁	٢o	LH	Γ _u	T	ßsw	dsw Sw	ΣÅsw	l₩ l₩	β _{SB}	0 _s B SB	ΣA _B ΣA _s B	OB LB	BWE	۲N	dd	Bewehrung	Stahl menae	bei	Erst- rißlas
_			៣៣ ៣៣	mm	៣៣ ៣៣	mm²	mm	mm	mm	mm	N/mm²	៣៣ ៣៣	ጠጠ ርጠ²	៣៣ ៣៣	N/mm ²	៣៣ ៣៣	mm cm²	mm mm	N/mm ²	ĸN	mm		kg/m³		kN
88			390 390	630	300 300	90.000	63,5	62,5	62,5	50	I 22.0	52ø14 85	366 8,5	20 300	I 220	5ø10 80	370 4,3	0 32.0	23,6 29,0	2769	ø 160	9 Bgl \$5 9 = 40	~33	/	/
89			R	*	ų	ŧ	A	ų	4.	4	١	11	ų	ų	ų	1	ų	4	23,6 29,0	۲.	ø 160	11	11	/	1
90			91	¥	v	11	ų	ų	1(4	Ħ	ĸ	4	*	4	ĸ	ĸ	1	25,6 29,0	۱	Ø126	ĸ	ų	/	/
91			ų	t	١	4	N	Ŋ	r	ł	ł	1	41	u	·	ł	4	ĸ	25,6 29,0	k	Ø 126	L V	4	~	1
92			335 335	530	300 300	90.000	63,5	62,5	62,5	50	I 220	6ø14 50	296 ~9,2	10 250	I 220	6ø 8 50	307 3,0	10 250	45,5 46,0	2769	ø180	7Bg6ø5 a=40	~35	/	/
93			N	11	h	4	H	ų	8	ų	ų	đ	ķ	k	ti	¥	t	ĸ	45,5 46,0	N	ø 180	k	4	/	/
94			łı	ŧ	81	N	K	ų	Y	1	4	ų	łi	۲	Ц	H	4	4	35,0 38,0	4	Ø180	1(n	/	/
95			1	ų	11	٩	u	ų	٩	4	ķ	ŧ	41	ł	ų	ł	ų	ł	35,0 38,0	۲	ø180	N	łı	/	/
96			280 280	500	250 250	62.500	63,5	62,5	62,5	40	I 220	5łø12 50	248 6,2	0 240	I 220	5ø8 50	252 2,5	0 240	29,0 30,0	1846	Ø160	5BgLØ5 4=45	~40	/	/
97			H	v	¥	4	k	ų	ų	ų	ĸ	h	ų.	ł	1	ł	łı	r	29,0 30,0	ų	\$160	u	8(/	/
98			ł	N	h	11	N	ų	ų	ų	4	ą	ł	٩	K	ţ,	ų	ų	28,0 30,0	q	\$160	ł	n	/	/
99			k	tı	lı	4	¥	ł	ŧ	V	ł	łı	ŧ	4	ł	ir	h	ų	28,0 30,0	1	Ø160	N N	ł	/	/
100			290 290	565	250 250	62.500	63,5	62,5	62,5	35	I 220	5ø12 50	258 5,6	18 268	I 220	5ø8 50	262 2,5	50 250	31,0 33,5	1846	ø128	5Bglø 4 50	~24	/	/
101			łį,	Ŋ	ij	I(٩	٩	k	Ą	4	4	¥	1	ł	ł	4	۱	31, 0 33, 5	11	Ø128	4	4	/	/
102			ų	h	ĥ	ų	ų	۲	11	11	j,	ł	ł	ų	ц	ų	K	4	31,0 33,5	١	ø128	ł	¥	/	/
103			330 330	625	ŋ	h	62,5	u	ł	ŧ,	ų ·	N	298 5,7	0 268	ł	4	302. 2,5	11	20,7 23,4	ł	A	8 BgL. Ø4 9 = 40	~30	/	-

	Rißt	reite			1	Ort des		<u> </u>
max Vot	F _{o1}	max Wu10	Full	r _U		Versagens	Bemerkungen	Nr.
mm	kN	mm	kN	kN	-	-		-
0,05 0,06	1523 1828	/	1	3020	Dover - Stand- versuch	unten		88
0,06 0,08	ĸ	1	/	312.0	łt	i		89
0,04 0,05	h	1	1	2970	•	ŝç		90
0,04 0,05	1	/	1	2865	ű	40		91
0,05 0,07	4	/	1	3255	Ľ	unter/oben		92
0,04	h	/	/	3170	۲	ų		93
0,07 907	ĸ	/	/	2880	۴	unten		94
0,05 0,08	1.	/	/	2870	H	ŧ,		95
0, 11 0, 14	1015 1218	/	/	1914	ų	ł		96
0,08 0,14	ł	/	/	1950	۲	(ı		97
0,05 0,09	4	/	/	1840	ţ	١	Weggen i den i for (1996 - personal actor, 1997 formana da 1995 <u>form</u> ana da 1995 <u>forma</u> na da 1995 <u>forma</u> na da 1995 formana da	98
0,06 0,08	ų	/	/	1800	۲	Ч		99
0,05 0,09	ų	/	/	2130	ų	oben		100
0,05 0,08	ł	/	/	2200	4	i(101
0,06 0,08	١	/	/	2190	4	lı.		102
0,05 0,09	ų	-	~	2140	ų	untcn	an	103

Tabelle A7/11 :

Körper : quadratisch

Wendel : mit

Bügel : mit

Anker : quadrat. oder runde Platte

. .		Körper-	a		a ₁							Wend	el	-		Büge	2		β _{WA}			Bev. im unt.	Teil	Erst	nß
Nr.	uuelle	bez.	Ь	n	b ₁	A1	Γo	ГН	Γ _u	T	ßsw	d _{sw} Sw	EÅsw	l w	β _{SB}	d _{sB} S _B	ΣA _s B	OB LB	β _{WE}	FN	dd	Bewehrung	Stahl	bei	Erst- rißlas
-	rimitian		៣៣ ៣៣	mm	៣៣ ៣៣	mm²	mm	mm	កាកា	mm	N/mm ²	៣៣ ៣៣	៣៣ ៣²	៣៣ ៣៣	N/mm ²	 	mm cm²	៣៣ ៣៣	N/mm ² N/mm ²	kN	mm		kg/m ³	-	kN
104			330 330	625	.250 250	62500	62,5	62,5	62,5	35	I 220	5¢12 50	29B 5,7	0 268	I 220	5ø8 50	302 2,5	50 250	20,7 23,4	1846	Ø128	8 Bg(\$ 4 q = 40	~30	/	/
105			11	ĸ	u	ų	u	и	¥.	61	u	11	H	Ħ	¥	Ħ	H	81	ч	4	¥	K	\$1	/	/
106	-201-201		340 340	640	Ø290	66 <i>0</i> 52	75	35	72,5	50	Y	9ø14 53	306 13,8	0 300	Ш 420	5ø8 53	312 2,5	20 230	2.84 27,2	2727	ø 180	4 BgL Ø6 +Netz	250	9,9zd.F	1350
107			4	11	H	H	k	k	4	v	4	u	łı	¥	14	11	N	4	27,2 27,5	ч	۲	k	4	11	k
108			4	N	ų	eı	×	61	4	ų	ų	R	¥	şı	tr	ĸ	ţ¢.	8	37,9 33,1	v	96	36	4	0,821L.F	12.00
109			380 380	760	Ø320	80425	81,5	42,5	80	59	tı	9ø18 50	347 22,9	0 318	#	4	357 2,5	60 260	27,0 29,0	3527	\$200	5 BgLø6 II + Gitterø6 II	М	0,55 F _N	~1500
110			4	u	4	Ħ	4	ĸ	1/	K	ď	lı	\$1	u	61	¥	11	ţ	26,3 28,2	ų	II.	k	ł	ų	N/500
111			H	ų	Ø326	83469	75	37,5	67,5	50	耳 420	7ø14 50	346 10,8	20 270	4	5ø6 70	346 1,4	5 315	27,8	2974	ø180	Ņ	~47	1(1636
112			ų	n	4	u	11	4	ų	ţ	11	ч	\$1	ţı	H	H	tt	¥	28,5	K	u	H	ų	ł	H
113			l	Ц	ŝį	Ą	u	٩	ų	și,	N	¥	11	4	ų	ų	¥/	м	28,0	1ı	k	tı	¥	0,4.FN	1190
114			440 440	880	ø320	80425	67	37,5	66,5	60	n	k	386 10,8	0 300	N	9ø8 60	412 4,5	0 440	21,4	lı	¢190	8 DgL ø8 a = 70	49	0,55 F _N	1636
115			360 360	720	ij	H	h	ų	ij	N	ł	R	306 10,8	51	u	8ø6 50	334 2,3	0 360	36,4	4	ų	8 BgL\$6 a= 50	-52	ŧj	4
116			540 540	1080	Ø400	125664	81,5	45	81	75	ł	8ø16 50	484 16,1	0 350	۲	12ØB 60	512 6,0	0 540	21,4	4708	ø230	12 Bg(\$B q=60	51	0,4 · FN	1883
117			440 440	880	4	u	u	81,5	11	4	ų	H	384 16, 1	66	ц	10ø6 50	414 2,8	0 440	39,1	4	4	10 Bg(\$6 el=50	43	0,55 F.	2589
													-2,												

	Rißb	reite			1	Ort des	Desertion	1.
max Vo1	F 01	max Wu10	F _{u10}	Γυ	VA	Versagens	Demerkungen	
mm	kN	mm	kN	kN	_	alle committe	Our contraction of the contraction	-
0,06 0,09	1015 12.18	/	-	2165	D	unten		104
0,06 0,10	q	/	/	2140	D	84		105
908 910	1800 2100	/	/	2.190	D	unten/oben		106
9,10 9,12	11	/	/	2110	D	И		107
908 0,12	u	/	/	2000	D	ł		108
0,04 0,07	1940 2469	/	/	3590	D	oben	Bügel im oberen Teil als quadr. Wendel ausgebildet	109
9,04 9,10	u	1	/	3560	D	ų	ŧį .	110
0,14	2.082	0,14	297	2944	5	unten		111
0,08	N	0,10	ł	2.855	5	ł		112
<i>to</i> ,07	u	0,07	A	2974	S	ł		113
904	ł	0,03	4	3810	5	¥		114
904	u	ų	ų	3935	5	oben		115
0,08	3296	0,07	471	5170	S	oben Gigch Angabe)		116
7,07	u	ų	۲	52.80	S	unten/oben		117

Tabelle A7/12 :

Körper : quadratisch

Wendel : mit

Bügel : mit

Anker : quadratische Platte

1		Körper-	a		a,							vend	el		<u> </u>	Bride	2[BWA			Bew. im unt.	Teil	Erst	niß
Nr.	Quelle	bez.	Ь	n	b ₁	A1	Γο	ГН	r _u	T	ßsw	d _{sw} Sw	ΣÅsw	₽₩ Į₩	β _{SB}	DsB SB	ΣA _s B	OB LB	β _{WE}	FN	dd	Bewehrung	Stahl	bei	Erst- rifilas
-			៣៣ ៣៣	mm	ភាព ៣៣	mm²	mm	mm	៣៣	mm	N/mm²	៣៣ ៣៣	ΠΠ CΠ ²	៣៣ ៣៣	N/mm ²	៣៣ ៣៣	ጠጠ ርጠ ²	៣៣ ៣៣	N/mm ² N/mm ²	kN	mm	Aliani, Sprawnek	kg/m ³		kN
118			440 440	900	370 370	136.900	70	35	50	45	III 42.0	7 ,5ø 14 50	356 11,54	~5 385	Щ 420	10ø6 43	414 2,83	20 407	18,0 18,0	2973,6	¢180	11 BgL.ø6 a=43mm	r 42	0,4 FT	1189
179			4	"	u	ø	4	đ	N.	41	11	4	11	ų	4	9ø8 43	412 4,52	u	22,6 22,6	n	n	6 Bg(\$8 a= 86mm	N	0,55F _N	1835,5
120			"	2/	ų	ศ	4	1	ų	sı		ų	ŋ	4	u	4	n	11	2.1.6 2.4, 1	11	11	n	41	10	11
121			ĸ	4	9	14	N	8	ţr.	47	h	ŕ	u	4	46	ų	4	4	21,3 24,2	Ŀ	11	ŧe	11	n	11
												an Alasha Mayor, 1 a bar abaa										www.charlow.charlow.charlow.charlow.charlow.charlow.charlow.charlow.charlow.charlow.charlow.charlow.charlow.ch			
																				مەركەر چەملىرى تەرەپىيەن تەرەپىدىد					
																					makain temberi				
											•														

	Rißbr	eite		F	VA	Ort des	Bemerkungen	Nr
max Wo1	F _{o1}	mcix ₩u10	F _{u10}			Versagens	Benernangen	
mm	kN	mm	kN	kN			an sa ang ang ang ang ang ang ang ang ang an	
0,06	20815	q05	297	3070	5	unten	Trompete	118
0,04	ų	0,04	ų	3930	5	61	. 11	119
0,03	1635,5 2001,5	/	/	4090	Ð	k	8	120
0,03	4	1	/	3550	D	81	۱(.	127
							en anna an Anna a ruin 1979 an Anna an Anna Anna Anna Anna Anna An	
							engagina ka ka ka den daga managan ka ka "No Grand da ka	
							nen de la constante de la constante en constante en constante en constante de la constante de la constante de	
							en Salashirida ing manganan kanang	
							ىلى ئەرىلەرلىكى كەرىكىيە بىلىغىنىڭ ئىلىنىڭ ئىلىكى ئەرىپىيەت تۇرىغان ئىرىتىرىكى ئىلى ئىرى ئىلى ئىلى ئىلى ئىلى ئى ئىلى ئەرىلەرلىكى كەرىكى ئىلى ئىلى ئىلى ئىلى ئىلى ئىلى ئىلى ئ	
							and years and a log of the log of the set of	
							an a	
							and and an and a set of the provide set of the prov	

Tabelle A7/13 :

Körper : quadratisch

Wendel : mit

Bügel : mit

Anker : runde Platte

1.		Körper-	a		a ₁	Ι.						Wend	el			Buge	2[β _{WA}			Bev. im unt.	Teil	Erst	riß
Nr.	Quelle	bez.	b	n	b	A1	٢ _٥	ГН	Γ _υ		BSW	dsw Sw	ΣÅsw	₽₩ Į₩	β _{SB}	d _{sB} S _B	k _B ΣAsb	OB LB	BWE	FN	dd	Bewehrung	Stahl	bei	Erst- rißlas
_			ភាពា ៣៣	៣៣	៣៣ ៣៣	mm²	mm	៣៣	៣៣	۳Ŵ	N/mm ²	mm mm	ጠጠ ርጠ²	៣៣ ៣៣	N/mm ²	្គាំពា ៣៣	ጠጠ ርጠ²	៣៣ ៣៣	N/mm ² N/mm ²	kΝ	mm		kg/m³		kN
122			380 380	900	ø330	85.487	~ 65	~37,5	~55	75	Ш 42.0	9ø14 60	346 123	5 455	H 420	5ø 10 60/120	350 3,1	60 42.0	28,5 31,7	3283	Ø180	5 Bgl.ø8 a=80mm	~ 50	0,55F _N	1806
123			Ħ	4	¥	¥ .	ĸ	¥	4	11	56	n	H		*	u	"	11	26,7 34,7	*	4	4	4	0,7F _N	2298
124			٩	820	ø330	¥	~70	~52	57	4	11	7014	346 10,8	30 420	N	4ø10 65/130	u	60 320	25,4 27,7	11	1	le	1	/	-
125			11	ł	51	8	4	N	¥	ĸ	u	10	ų	4	u	Y	1	4	27,9 35,0	H	N	4	1	/	1
12.6			470 470	900	ø360	101,73	~90	~50	~70	250	IV 500	8ø16 50	420 16	10 360	IV 500	5ø14 80	436 7,7	40 360	29,3	4708	ø220	8 Bğl.ø8 a.=65mm	4	0,42.F _N	2000
127			H	11	b	ĸ	6	11	h	u	11	11	11	1	v	ŝi	\$1	"	27,6	4	4	+	4	945F _N	2140
128			8	Ņ	۲	ų	v	9	f1	A	H	8ø14 50	400 12,3	0 370	U	5ø14 75	¥	40 340	26,2	¥	d	4	h	4	2100
129			440	850	ø330	85,487	"	~55	~74	50	11	8ø16 50	360 16	ŧı.	u	81	4 <i>0</i> 6 7,7	10 310	36,0	Ħ	\$2.40	7 Bgl. Ø 8 2=70mm	4	95FN	2380
130			11	u		n	ų	¥	¥	8	4	ú	ł	ų	u	t t	ų	ø	40,0	Ħ	ų	łį	ų	Q53F,	2500
137			460 460	960	\$390	119.400	~85	53	~58	60	I 2.2.0	10ø2.0 60	410. 27,2	0 540	II 42.0	7ø14 60	404 10,8	30 390	29,4	ł	\$230	4 B gl ø 12 9 = 120rnm	97	94 FN	1883
																						n Den sieren Riteriteren anzen es konten konten			
																						alara wata bata a daga ka ta bata ka ta ba			
																		cartal de la carta de la c		#151715#241035#44					
											•														

·				Nangalistic Integrational			, 	2 1-100
max Vol		max Wu10	Full	Fu	VA	Ort des Versagens	Bemerkungen	Nr:
mm	kN	mm	kN	kN	-		n (n (n Martin) 1994) and a construction of the second state of t	1-
0,01 0,03	1806 2298	~	/	3640	P	Schlagartiges Versägen der Ankerplatte	Trompete sechseckig	122
0,03	2298	0,03	32 8 ,30	3395	S	unten	ę	123
0,03	1806 2298	1	-	3550	\mathcal{D}	81	ų	124
0,06	22.98	Q 06	328,30	3370	5	ŝ	ł,	125
0,10	32.95	0,10	470,8	4430	S	a de la companya de la company	Trompete, achteckige Plutte	126
ų	N	9 <i>05</i>	11	4820	S	ŝt	12. ¹ 4	127
ч	3639	£q10	546	4620	S	4	. 4 K	128
11	3296	<0,10	470,8	4740	S	łı	14 BL	129
< ٩	٨	<i>20</i> ,10	٩	4750	S	11	K ir	130
4	4	.0,10	4	5850	S	4	Trompete Rijbreite bei For leicht überschritten	137

Tabelle A7/14 :

Körper : quadratisch

Wendel : mit

Bügel : mit

Anker : quadrat. oder runde Platte

l		Körper-	a							Ι.		Wend	el		<u>i</u>	Büge	<u>s</u> [β _{WA}			Bew. im unt.	Teil	Erst	riß
Nr.	uuelle	bez.	b		b ₁	A1	Γo	LH	Γu	T	β _{sw}	d _{sw} Sw	EASW	l _w	β _{SB}	d _{sB} S _B	ΣA _s B	OB LB	BWE	FN	dd	Bewehrung	Stahl	bei	Erst-
_			៣៣ ៣៣	шŵ	៣៣ ៣៣	mm²	mm	mm	mm	mm	N/mm ²	2 ៣៣ ៣៣	ጠጠ ርጠ²	៣៣ ៣៣	N/mm ²	កាកា កាកា	mm cm²	៣៣ ៣៣	N/mm² N/mm²	kN	mm		kg/m ³		kN
132			650 650	1300	480 480	230.400	115	75	90	70	III 42.0	8ø22 65	598 3940	0 520	Ш 420	9ø10 70	610 7,1	~ 60 520	37,2	10155	¢320	9 Bgl. \$10 a= 70mm	~50	0,7FN	7108
133			490 490	1085	370 370	136.90	80	51	51	55	11	11 <i>51</i> 18 50	432. ~29,3	0 540	ų	8¢10 70	460 6,3	~60 550	31,6	4779	ø210	7Bgl\$10 a=70mm	"	0,6FN	2867
134			ų	ų	4	11	¥	H	H	ĸ	u	¥	14	N	u	ų	ч	11	31,8 [!]	4	4	ų	1	ų	ł
135			590 590	1210	440 440	193.60	86	~58,5	~63,5	70	11	14ø16 45	544 28,1	0 62.0	4	8ø10 75	560 6,3	~40 604	20,0	5452	ø22.0	7 BgL Ø 10 9 = 75mm	~49	ų	3271
136			1	u	¥	ł	N	м	۲	۲	4	ŧ	u	4	4	4	H	Ħ	21,4	4	1	h	1(9,4 FN	2781
137			ĸ	970	\$420	138,54	4	ĸ	41,5	60	5t37-2 240	9ø16 45	514 18,1	0 392	4	9ø12 +1ø10 50	\$58 ~11	30 430	20,0 20,4	١	¢200	7 Bgl ø 10 a=70mm	~50	0,55Fm	2999
138	*****		4	4	H	u	4	*	ы	+	u	n	ч	0 392	ų	tı	lı	¥	19,9 21,8	ų	h	4	4	4	4
																		indet en de Klandita be				a de la companya de l			
								1																	

	Rißb	reite		c		Ort des	Bamarkungan	NIC	
max Wot	F _{o1}	max Wu10	F _{u10}		VA	Versagens		111.	
mm	kN	mm	kN	kN	_	CILICATION			
0,08 0,12		-	-	10.510	D	Mitte/unten	Druckvoruch mit Scest Trompete Suber 92.94; 9,597.08 Fr 197408 Fr auch 14 Devolast	132	
0,3	3584	0,3	478	6574	S	unten	ч ;	137	
0,2	11	0,1	۲	6516	S	oben + unten	5 ,	134	
0,09	4362	0,07	654	6540	S	unten	el.	135	
0,08	u	0,08	4	7146	S	ų	41	136	
0,05	3816	9.05	545,2	652.5	S	ŧ.	ų	137	
0,07	v	0,07	ų	6350	S	4	١	138	
				:					
							: : :		

Tabelle A7/15 :

Wendel : mit

Bügel : mit

Anker : quadratische Platte

	Quelle	Körper- bez.	b b	h	a1 b1	Aı	٢o	۲H	r _u	t		Wendel			Bügel				BWA	-		Bew. im unt.	Teil	Erst	riß
INC.											ßsw	d _{sw} Sw	ΣÅs.	PW W	β _{SB}	d _s B SB	ΣA _s B	08 18	β _{WE}	FN	dd	Bewehrung	Stahl	bei	Erst-
-			៣៣ ៣៣	mm	៣៣ ៣៣	mm²	mm	mm	mm	mm	N/mm ²	2 mm mm	mm cm²	៣៣ ៣៣	N/mm ²	៣៣ ៣៣	៣៣ ៣²	៣៣ ៣៣	N/mm² N/mm²	kN	mm		kg/m ³	1	kN
139			290 290	580	230 230	52.900	~50	33	33	30	I 220	6,5ø12 50	258 ~ 7,4	0 260	Щ 42.0	6¢8 50	262 3,0	0 240	35,1 37,0	212.0	150	3 Pg \$ 8 a=100mm	45,8	1	~
140			ų	4	69	Ą	ŋ	4	ų	ai	41	#	N	4	4	8(v	H	ų	k	ţ	ų	4	/	/
141			340 340	680	11	đ	ł	ų	ų	ų	k	h	308 ~7,4	ų	٩	7ø8 50	312 3,5	0 310	397 35,3	ĸ	4	4 Bgl Ø 8 2=100mm	50,8	/	/
142			ł	ų	ų	n	ų	H	¥	ų	4	u	q	4	ų	ŝį.	H	8	Ņ	u	ł	ų	ų	/	/
143			210 210	430	160 160	25.600	~26	22,5	22,5	20	ų	45ø8 40	182. ~2,3	10 150	ų	3ø8 ~65	185 1,5	40 170	22,3	713	ø90	3 Bg(ø a=90mm	~50	0,4FN	285
144		,	u	Ħ	11	ŧ	t	14	N	N	٩	31	ŧ	H	ų	N	n	R	27,3 24,0	4	ų	4	*	OSSEN	392
145	on har for the second secon		340 340	670	320 320	102:400	~85	40	~54	30	61	6,5Ø12 50	308 ~74	~10 300	4	5ø8 50	308 2,5	45 245	36,6	3584	ø215	4 Bglø8 a=100mm	lı	94FN	1426
146			N Î	٧	¥	Ŋ	łį	u	n	۲	n	61	¥	9	44	¥	u	tt	32,9	ł	k	¥	W	0,55F	1960
147			¥	٩	þ	k	ł	ų	n	۹	đ	U.	V	¥	ų	ł	¥	ų	35,2. 39,8	¥	ŧ	N	11	K	4
148			4	u	ų	đ	ų	ų	٩	Ħ	ų	ų	Ŋ.		٩	1/	4	ų	4	ŧ	ų	ų	4	H	H
149			430 430	870	Şı.	ŧĮ	ų	N	4	It	Ħ	11	318 ~7,4	~10 295	Ą	8ø8 50	402 4,0	30 435	20,7	3564	ų	6 Baf Ø B 9 = 70 mm	ч	4	H
150			1	8[4	Ņ	ų	89	4	ų	4	Ą	ł	ų	Ħ	ų	\$1	u	20,2	4	ł	ų	4	¥	K
151			¥	· 1J	q	٩	ų	11	۲	ł	4	Ą	4	4	٩	N	ķ	¥	19,3 21,7	K	ų	Ŕ	4	0,4Fn	1426
152			ł	ų	٩	4	ų	W	łą	ų	ł	١	9	•	ţ	ŧ	4	ł	21,7 24,7	ł	١	¥	Y	-	-
	Rißb	reite				Ort des		1																	
--------------	-----------------------------	--------------	------------------	------	----	------------	---------------------------------------	------																	
max Vot	F _{o1}	max Wu10	F _{u10}	Fu	VA	Versagens	Bemerkungen	Nr.																	
mm	kN	mm	kN	kN	-			-																	
908 0,13	1166 1484	-	/	2290	D	oben/unten	(Ripbreite etwas zu Trompete groß)	139																	
0,04 0,07	4	/	-	2340	D	ł	14	140																	
0,03 0,06	4	/	1	2735	D	oben	"	141																	
0,03 0,05	u	1	~	2680	D	11	Ę	142																	
0,04	499 902 713 392 499			835	S	unten	\$ <u>ę</u>	143																	
903 0,04	499 902 713 392 499			823	D	ł	łr	144																	
0,10	392 499 2495 9.10 356			3460	S	oben/unten	٩	145																	
0,07	ų	0,05	356,4	3345	3	unten	4	14,6																	
0,02 905	1960 2495	/	-	3500	D	81	17	147																	
903 906	4	/	/	3520	D	ų	q	148																	
907	2495	<i>0</i> ,05	3564	3480	S	V	11	149																	
0,10	11	0,06	н	3260	S	eq	ų	150																	
9,05 907	1960 2495	/	-	3530	D	îı	61	151																	
0,04 0,09	4	/	-	3670	D	oben		152																	
							ļ																		

Tabelle A7/16 :

Körper : quadratisch

Wendel : mit

Bügel : mit

Anker : quadrat. oder runde Platte

		Körper-	a	Ι.	la₁					Ι.		wend	el			Buge	2[BWA			Bew. im unt.	Teil	Erst	riß
Nr.	Quelle	bez.	Ь	n	b	A ₁	Γo	ГН	۲ _u	f	β _{SW}	d _{sw} Sw	EĂŠW	ŶŴ	β _{SB}		ΣÅ _B ΣÅ _{SB}	OB LB	BWE	FN	dd	Bewehrung	Stahl	bei	Erst- rißlas
			៣៣ ៣៣	mm	៣៣ ៣៣	mm²	mm	mm	៣៣	ΜŴ	N/mm²	៣៣ ៣៣	mm cm²	៣៣ ៣៣	N/mm ²	ភាព ៣៣	៣៣ c៣²	៣៣ ៣៣	N/mm ² N/mm ²	kN	mm	-	kg/m ³		kN
153			350 350	845	ø300	70.686	66	35	66	55	耳 42.0	9ø14 50	316 12,3	0 400	Щ 42.0	4#14 1#8 50	316 6,7	30 180	32,9 35,0	2816	180x12.0 2 166	6 Bgl ø 8 III	~50	0,5SFN	1549
154			ť	и	٩	۷	ų	11	n	11	Ħ	ч	ĸ	4	•	n	u	Ŋ	33,6 36,8	1(4	ц	4	0,4 FN	1126
155			۲	<u>м</u>	4	1	*	v	4	\$1	•1	N	. 4	*	98	łı		n	27,3	4	ų	¥	•	0,39FN	1098
156			ų	۹.	4	ŀ	4	¥	ų	ų	¥	¥	ų	•	8	4	ч	ų	28,0	¥	4	6	4	9425	1180
157	286/ <u>V</u> III		302,5 302,5	600	155 155	24025	22,5	22,5	22,5	30	I 220	4,5ø14 60	2.68 6,9	20 180	I 22.0	4ø7 80	275 1,5	20 260	30,4	/	1551155 \$175	4ø7 I	4	/	/
158	и		4	q	A	K	9	N	ų	u .	v	ų	4	n	4	n	11	4	32,1	/	4	4	ч	/	1
159	ч		ŧ	٩	ţ	¥	ų	ų	N	16	81	¥	¥	ł	થ	ų	þ	*	27,1	/	•	Ą	4	-	/
160	ч		324 324	¥	194 194	37636	69	35	69	٩	4	٩	290	1	4	11	297 1,5	81	30,4	/	194+194 9 \$219	ł	r	/	1
161	ų		u	ų	¥	ł	1	N	4	#	H	4	•	"	ų	Ŋ	ł	4	32,1	/	4	4	4	/	1
162	٩		٩	1	ţ	h	4	٩	ų	ŝį	4	ų	١.	4	ł	80	١	ł	27,1	/	4	4	4	/	/
																				erus alterassiste					
																				www.					ļ
													en de la companya de									- M (Top) & Lasty and colored by spin-star spin-star spin-			

	Rißb	reite		L C	1.14	Ort des	Bomoskupgop	Mo
max Voi	F _{o1}	max Wu10	F _{u10}	<u>'</u> U		Versagens		
ΜM	kN	៣៣	kN	kN	-			
0,08 0,14	1971 2253	/	/	3160	D	oben	achteckige Übergengshülse (Anker (zu hohe Würfeldrucksestigkeis)	153
0,06 0,10	u	/	/	292.0	D	11	11 Ly	154
0,20	1971	0,30	282	2590	s	unten	a " zygroße Rißbreiten	155
0,10	4	0,16	282	2740	5	oben	v zu große Rijsbreite unter Fuzo	156
/	/	/	/	1580	Brvch- versuch	. b		157
/	/	/	/	1890	4	H		158
/	/	/	/	1670	4	ų		159
/	/	/	/	1500	ų	unten/oben		160
/	/	/	/	1670	<u>ر:</u>	oben		167
/	/	/	/	1480	۲	11		162
				and the state of the state of the state				
						- <u>.</u>		
							· · · ·	

Tabelle A7/17 :

Körper : quadratisch

Wendel : ohne

Bügel : mit

Hüllrohr : mit Т

Anker : Glockenverankerung

	-	12.5							<u>г</u>	<u> </u>		vend	el			Büge	el 🛛		BWA	C.		Bew. im unt.	Teil	Erstr	<u>iß</u>
Nr.	Quelle	Korper- hez	La b	h	b1	Α ₁	۲o	ГН	Γu	†	BSW	d _{sw}	ΣÅsw	٩w	β _{SB}	d _s B SB	ΣÅsB	OB LB	BWE	Γ _N	04	Bewehrung	Stahl menge	bei	Erst- rißlas
			mm	៣៣	៣៣	mm²	mm	៣៣	៣៣	mm	N/mm ²	៣៣ ៣៣	៣៣ ៣០	៣៣ ៣៣	N/mm²	៣៣ ៣៣	៣៣ ៤៣²	mm mm	N/mm ²	kN	mm		kg/m³		kN
			300	600	delocke	Glocker	46	22,5	22,5	héincke [°] 80	-	/	/	/	II 420	4,14	266	35 105	21,5 24,9	1377		48gl. \$ 6 44 9 = 75	<50	0,55FN	757
166			300	600	220	30012	46	4	4	+	1	1	1	1	1	¥.	ł	¥	27,7 25,5	4		4	<50	*	757
165			300	600	220	28042	46	 1	4	r		-	1	~	ų	1	4	¥	22, 1 21, 1	1		۲	4	9,4 FN	551
165			300	600	220	20017	46	.4	4	4	1	1	1	/	4	4	Y	4	24,8 24,8	4		4	4	4	551
100			32.0	640	220	2001)	46	r	4	4		1	-	1	4	ų	286	4	25,7	4		4 831.06 II q = 80	4	0,6FN	826
102			220	440	delooke	Glocke	36	19	19	haadei		1	-	1	II- 420	4 12	188	25	18,2 21,3	717		3836.#6 # 9 = 75	250	0,55 FN	394
160			220	440	160	20106	4	4	1	1		1	-	1	1	4	188	4	22,2 26,3	١		11	*	ч	394
101			220	440	100	20106	4	4	 1	ir			1	1	*	ų	188	¥	24,7	4		K	4	0,7FN	502
			140		100	20100	<u></u>				+			1		1									
	<u> </u>										+-						1	1							
-	<u> </u>															+	1		-						
						+						-		+					-	1					
<u> </u>		_				-											-	-		1	-				
								+							_			+							
					-							+	-			+-				$\left \right $	1			1	
					_								_	-	+			+-	-		+				-
			l																						

	Γ	PiRh	roita	<u>.</u>	<u> </u>	1	Ort des	an a	T
	max	F	max	F.,10	Fu	·VA	Versagens	Bemerkungen	Nr.
;	mm	kN	mm	kN	kN	-			1-
, is	0,03 0,07	757 964	-	1	1397	Daver- stand- versuch	овеч	Glockenverackerving Glocke: Ø 2204 12x80, St 37	163
	0,05 0,10	757 964	1	/	1380	u	34	4	164
•	0,05 0,13	757 964		1	1265	Schwell versuch	÷ ĝ	ł	165
	0,05	05 757 23 964 02 826 06 964			1325	u	1	ч	166
• •	0,02	826 964	/	1	1472	A	4	ų	167
	0,05	502	1	/	745	Dauer · stand · versuch	Ÿ	Glockenverankerung Glocke: Ø 160 x 8 x 65, 5t 37	168
	0,03	502	\sim	/	915	ţ	Ŷ	¥ .	169
	0,05 0,05	394 502	1	/	778	lı	۴.	ų	170
÷									
ĺ								nan an tao ang	

Tabelle A7/18 :

Körper : quadratisch

Bügel : mit

Anker : mehrflächiger Verankerungskörper

		Körper-	a		a ₁							<u>wend</u>	el			Bug	el	eter man a tradicioni	_]β _{WA}			Bev. im unt.	Teil	Erst	riß
Nr.	uuelle	bez.	b		b ₁		Γ ₀	L L H	Γu	ſ	ßs₩	d _{sw} Sw	EAsu	l v	β _{SB}	d _s B SB	ΣAst	OB IB	β _{WE}	FN	dd	Bewehrung	Stahl	bei	Erst-
_			៣៣ ៣៣	mm	៣៣ ៣៣	mm²	mm	៣៣	mm	шш	N/mm ²	m m_m	mm cm²	៣៣ ៣៣	N/mm ²	៣៣ ៣៣	mm cm²	mm mm	N/mm ² N/mm ²	kN	៣៣		kg/m	3	kN
171			32.0 32.0	640	Ø220	38013	, 60	~57	45	Gu ß- anker	5t37 240	5ø12 50	268	40 2.00	耳 420	5ø10 60	2.90	35 240	36,8 36,8	2974		6\$8 9=80	~90	0,4 FN	1189,
172.			380 380	760	0220	38013	, 60	~57	45	11	11	5ø14 55	32.6	40 22.0	4	5 <i>0</i> 12 70	348	35 280	22,2	2974		8ø8 9=85	295	04 FN	1189,
173			42.0 42.0	840	\$280	61575	72,5	262	50	u	K	6,014 55	366	40 275	11	6.012 65	388	35 325	39,0 39,0	4708		6ø8 a=70	279	0,4 FN	1883,
174			480 480	960	ø 2,80	61575	72,5	~62	50	¢ť	1	6ø16 70	414	40 350	¥	5012 90	448	35 360	21,2	4708		808 a=70	~92	0,4 FN	1883,
175			380 380	760	ø250	49087	65	260	45	N	4	5ø14 55	326	40 220	U	5.010 70	350	35 280	19,3 19,3	2974		8\$8 a=85	~95	94 FN	1790
176			380 380	760	@250	49087	65	~60	45	ıl	n	5ø14 55	326	40 220	r	5010 70	350	35 280	21,4 21,4	2974		6#B a=85	~71	9,4 FN	119(
177			320 320	640	ø250	49087	65	~60	45	N	4	5ø12 50	2.68	40 200	Ħ	5Ø10 60	290	35 240	36,0 36,0	2974		8ø8 9=80	~120	94 F.	1190
178			320 320	640	ø250	49087	65	260	45	11	at .	5ø12. 50	268	40 200	a	5ø10 60	290	35 240	35,3 35,3	2974		6,080 a = 80	~90	9,4 Fi	1190
179			320 320	640	Ø250	49087	65	~60	45	n	IJ	5ø12 50	268	40 200	U	5,010 60	290	35 240	37,7 37,7	2974		6.06 a=80	~50	9,4 F.	1190
180			480 480	960	ø315	77937	85	~75	50	ų	ų	6ø16 70	414	40 350	ł	5ø12 90	448	35 360	19,7 19,7	4708		6ø8 a=70	~69	9.4 F.	188
181			420 420	840	Ø315	77937	85	~75	50	N	ų	6ø14 55	366	40 275	¥	6ø12 65	388	35 325	38,4 38,4	4708		8 <i>9</i> 8 a =70	~ 105	94 FN	1883
182			420 420	840	Ø315	77937	85	~75	50	ų	ŧ	6ø14 55	366	40 275	I	6,012 65	388	35 325	37,3 37,3	4708		6#8 a=70	~79	94 F.	1883
183			600 600	1200	Ø 315	77937	85	~75	50	ų	a	4,08 100	492	70 300	u	4ø8 130	57Z	50 390	38,1 38,1	4708		8 <i>08</i> 2 = 85	n 60	0,6 FN	2825
184			480 480	960	@250	49087	65	~53	45	и	u	408 100	472	70 300	¥	3Ø8 150	432	50 300	36,7 36,7	2974		8 ø 8 a = 70	~92	9.7 FN	2028
185			360 360	720	Ø280	77937	72,5	~68	48	ų	H	5014 50	306	50 2.00	4	57010 70	330	30 280	34,5 34,5	3717		Bgl#8 a=70	~59	9,55 F _N	2.044
											•														

								the second s
	Rißb	reite				Ort des	Persekungen	Ma
max Vot	F _{o1}	max Wu10	F _{u10}	ΓU		Versagens	Deinerkungen	
mm	kN	۳M	kN	kN			e dia mandritra dia mandritra dia mandritra di kaominina dia mandritra di kaominina di kaominina dia mandritra di kaominina dia kaomi	
0,09	2081,8	0,07	297,4	3310	Schvell- versuch	unten		171
0,08	2081,8	0,07	297,4	32.00	n	ges. Höhe		172
0,09	3295,6	0,07	470,8	4920	ų	oben		173
0,10	32956	907	470,8	4815	đ	oben		174
0,10	2082	0,09	297	2910	8	oben		175
0,06	2082	0,04	297	3415	ų	oben/unten		176
0,06	2082	0,05	297	3190	8	oben		177
0,10	2082	0,06	297	3140	u	oben		178
 0,06	2082	0,05	297	3400	N	ges.Höhe		179
0,08	32.96	0,08	471	4672	ĸ	ges. Hõhe		180
 0,05	3296	0,04	471	5993	d	ges.Höhe		181
 0,06	3296	0,04	471	5583	9	ges.Hőhe		182
 0,12	3296	0,10	471	4605	ÿ	oben		183
0,10	2982	9,07	297	3050	II	oben		184
0,06	2602	0,03	372	3765	4	unten		185
					- 1			

Tabelle A7/19 :

Körper : rechteckig

Wendel : ohne

Bügel : mit

Anker : rechteckig (Ankertöpfe)

		Körper-	a	Γ.	aı			I				Wend	el			Büge	2	والمتلك المحمد معرات	BWA			Bev. im unt.	Teil	Erst	<u>niß</u>
Nr.	Quelle	bez.	Ь	h	b ₁		٢o	ГН	ſſ	T	BSW	dsw Sw	EASW	Ŷ₩	β _{SB}	O _S B SB	ΣA _s B	OB IB	β _{WE}	FN	dd	Bewehrung	Stahl	bei	Erst- rifilas
	nen innet an		៣៣ ៣៣	mm	ጠጠ ጠ ጠ	mm²	mm	mm	mm	mm	N/mm²	. ៣៣ ៣៣	mm cm²	៣៣ ៣៣	N/mm ²	៣៣ ៣៣	տ ր շտ²	៣៣ ៣៣	N/mm ² N/mm ²	kN	mm	-	kg/m³		kN
186			240 180	480	130 90	10648	13,5	13,5	13,5	Gup - körper	/	/	1	/	/	/	1	1	36,4 36,4	354	fiktiv 130		<50	0,55F _N	195
187			220 160	480	11	u	11	u	1	u	1	/	/	/	II 420	1ø6 /	12.4	55 1	38,0 38,0	u	11		11	945 FN	159
188			180 120	360	81	ų	4	þi	ţt	ø	1	/	1	/	11	1,06 * +3010 30	12.4	50 60	36,4 36,4	u	11		"	9,45 FN	159
189			180 120	360	u	81	N	I	đ	ĸ	/	/	/	/	\$1	IJ	11	11	36,4 36,4	٩	4		I II	0,45 F.	159
190			220 140	440	lt	u	1	ł	u	R	1	/	/	1	U	106 % +408 30	114	50 90	20,1 20,1	sf	a		8	97 F.	248
197			220 140	440	u	ų	ų	4	u	u	/	/	/	/	ą	108 # +308 30	124	50 60	20,0	N	11		A	0,55Fn	195
192			300 220	600	u	şt	1	ł	r	u	/	/	/	/	1	/	1	1	18,1 18,1	N	u		99	/	/
193			320 220	640	ų	u	N	şi	1	ú	/	1	/	/	1	/	1	1	21,6 21,6	şi	Ц		A	/	1
194			300 200	600	ŝį	4	ĸ	1	u	1	/	/	/	/	II- 420	1ø6 -	124	55 -	21,5 21,5	ł	11		ų	9,7FN	248
										-															

	Rißb	reite		c	1.14	Ort des	Bemorkungen	No
max Vot	F 01	max Wu10	F _{u10}	10		Versagens	Demerkungen	1.
៣៣	kN	៣៣	kN	kN				
0,12	265	0,10	53	412	Schwell versich	oben	Vergleichskörper	186
0,07	265	0,07	53	434	u	oben		187
0,05	265	0,06	53	430	11	oben	#2x3ø10als Längsstäbe	188
0,06	265 0,06 53 265 0,02 53			416	ĮI	oben	* 14	189
0,02	265 0,06 53 265 0,02 53 265 0,05 53			435	ц	oben/unten	*2×408 als Längsstäbe	190
0,05	265	0,05	53	434	ıt	oben/unten	*2×3ø8 als Längsstäbe	191
1	/	265 0,05 53 / / /		442	ĸ	oben	Vergleichskörper	192
/	/	1	1	665	u	oben	Vergleichskörper	193
0,06	265	0,07	5 3	400	¥	oben		194
<u>.</u>								
				1				
		,			i		÷	

Tabelle A7/20 :

Körper : rechteckig

Bügel : mit

Anker : rechteckige Platte

		Körper-	l a	Τ.	a,	Γ.	Γ			Γ.		Wend	el			Büge	el	ang a caracterization of the	BWA			Bew. im unt.	Teil	Erst	<u>niß</u>
Nr.	Quelle	bez.	b	h	b ₁	A ₁	٢o	۲H	۲ _u	t	β _{SW}	d _{sw} Sw	EÅsw	₽₩ Į₩	β_{SB}	D _s B SB	k _B ΣAsb	OB LB	BWE	FN	dd	Bewehrung	Stahl menge	bei	Erst- rißlas
			៣៣ ៣៣	៣៣	៣៣ ៣៣	mm²	mm	៣៣	mm	mm	N/mm ²	2 MM MM	mm cm²	៣៣ ៣៣	N/mm²	៣៣ ៣៣	ጠጠ ርጠ²	mm mm	N/mm² N/mm²	kN	mm		kg/m³		kN
195			240 140	480	130 55	6957	17	11	11	Guð- Körper	1	/	/	/	o.Ang. (240)	1ø8 -⁄	192 X 72	40	28,5 28,5	247,8	fiktiv 130	2Bglø?	~50	0,7FN	173,5
196			280 160	560	180 150	27000	18	18	18	40	/	/	/	/	皿 42.0	3.010 80	250x 130	40 160	19,6 14,3	717	Ø 72	3BgLø6 II- a=90	44	0,7 FN	501,9
197			280 160	560	180 150	2.7000	18	18	18	40	/	/	/	/	11	3ø10 80	250× 130	40 160	20,8 26,5	717	Ø 72	3Bg1Ø6 II 9=90	44	Risse unter O. 7FN	/
198			260 140	520	130 120	15514	19,5	19,5	19,5	30	/	/	/	/	ą	4,ø10" 60	/ /	25 180	37,0	717	0 72	3Bglø6 14 a=85	~50	0,6 FN	430,2
19.9			260 140	52.0	130 120	153714	19,5	19,5	19,5	30	/	/	/	/	ц	4 010 * 60	1	25 180	36,7 36,7	717	ø 72	3BgL#6 II a=85	~50	0,55 FN	394,4
200			400	800	180 160	28714	24,5	24,5	24,5	40	/	/	/	/	ti -	5.012.* 70	/	35 280	36,7 36,7	1374	ø 92	4 Bglø6 II a= 100	35	0,55 F.	755;
201			400 170	800	180 160	28714	24,5	24,5	24,5	40	/	/	/	1	u	5ø12 70	/	35 280	37,4 37,4	1374	\$ 92	4 BgL96 II a=100	35	0,55 F.	755;
202			260 140	520	130 120	15514	19,5	19,5	19,5	45	/	/	/	/	a	4 01 0 60	/	25 180	37,2 37,2	651	\$ 39	3 Bglø6 Ⅲ 9=85	~50	9,557,	358,-
203			260 140	52.0	130 120	15374	19,5	19,5	19,5	45	/	/	1	1	۵	4,010 * 60	/	25 180	37,6 37,6	651	ø 39	3Bg196 II q=85	~50	0,6 FN	390,6
2.04			400 170	800	180 160	28714	245	24,5	24,5	60		/	1.	/	ß	5,012. ⁴ 70	/	35 280	37,2 37,2	1273	ø50	4 Bglø6 II a=100	35	9,55F,	700,2
205			400	800	180 160	28714	24,5	24,5	24,5	60	/	/	/	/	ĸ	5,012* 70	/	35 280	37,6 37,6	1273	\$ 50	4.Bg(\$6 II a=100	35	0,55F	700,2
206	ana (para)		2.80 160	560	180 150	26945	19,5	19,5	19,5	40	1	/	/	/	K	3øn 80	248× 128	40 160	178 23,0	776	ø 72	3 Bg1Ø6 II 9=90	44	0,55F,	393,8
207			280 160	560	180 150	26945	19,5	19,5	19,5	40	/	/	/	/	4	3ø12 80	248× 128	40 160	18,4 23,0	716	Ø 72	3Bg1ø6 ∏ q=90	44	0,55F,	393
208			180 160	380	180 150	26945	18	18	1B	40	1	/	/	/	a	3, 9 10 50	150x 130	25 100	36,7 42,0	717	Ø 72	2Bgl#6 II 9= 90	~50	0,55F _N	394,4
209	<u></u>		180 160	380	180 150	26945	18	18	18	40	/	/	/	1	1	3,910' 50	150x 130	25 100	35,8 42,0	717	ø 72	2Bglø6 II a=90	~50	0,55F _N	394

	Rißt	oreite			1.14	Ort des	0	[
max Vo1	F 01	max Wu10	F _{u10}	ΓU		Versagens	bemerkungen	Nr.
mm	kN	mm	kN	۴N				-
0,03	186	0,06	27,0	330	Schwell Versuch	oben		195
0,02.	501,9	/	/	864	Dauer- Stand- versuch	11		196
/	1	1	1	1044	ıt	ţ		197
0,03	501,9	0,04	71,7	797	Schwell- versich	¥	# Bewahrung: 2x4Längsstäbe#10	198
0,05	507,9	0,04	71,7	730	ļ		** u : 11	199
0,06	961,8	0,05	137,4	1346	ıl	34	u :2x5Längsstäber 12	200
0,06	961,8	0,05	137,4	1366	11	it.	₩ n : 11	201
0,05	455,7	0,04	65,1	775	et	ų	** 10 :2×4Långsståbeø 10	202
0,04	455,7	0,03	65,7	775	h	FÊ	* n ; il	203
0,03	891,1	0,04	127,3	1385	11	ŝi,	* :2x5Längsstäber 12	204
0,06	891,1	0,05	127,3	1455	۹	ł	ή μ	205
0,04	501,2	/	/	864	Daver - stand- versich	<u>ş</u> t		206
9,07	501,2	/	1	793	u	ध		207
0,06	501,9	/	/	884	ţt	¥ .		208
0,03	501,9	/	/	870	¥	ŝ		209

.

Tabelle A7/21 :

Körper : rechteckig

Wendel : ohne od. mit

Bügel : mit

Anker : rechteckig oder quadratisch

		Körper-	a	Ι.	la,	Ι.				Ι.		<u>vend</u>	el			Bude	2		BWA			Bew. im unt.	Teil	Erst	riß
Nr.	Quelle	bez.	Ь	h	b ₁	A ₁	٢ _٥	LΗ	Γ _υ	T	β _{SW}	d _{sw} Sw	EÅsw	Ŷ₩	β _{SB}	d _s B SB	ΣÅ _B ΣÅse	OB LB	BWE	FN	dd	Bewehrung	Stahl	bei	Erst- rifilas
-			កាកា កាកា	mm	៣៣ ៣៣	2	mm	៣៣	mm	mm	N/mm ²	៣៣ ៣៣	ጠጠ ርጠ²	ጠጠ ጠጠ	N/mm²	៣៣ ៣៣	៣៣ ៣៣²	៣៣ ៣៣	N/mm ² N/mm ²	kN	mm	e provinsion in the second	kg/m³		kN
210			330 160	660	290 150	43445	24,5	24,5	24,5	65	1	/	/	/	耳 420	4ø10 70	300x 130	25 210	36,9 43,8	1374	Ø92	48g196 II 9 = 80	47	0,5SF	755,
211			330 160	660	290 150	43445	μ	11	9.	11	/	-	/	/	31	4 <i>110</i> 70	300r 130	25 210	34,3 36,1	1374	Ø92	u	47	9,5 FN	687
272			370 185	760	165 165	27225	27	20	20	15	I 220	10 40	155	15 220	H	3¢10 80	340× 155	40 160	37,7 38,8	706,8	\$90	8gl\$6 II a=65	~50	0,557FN	388,
213			H	x	à	8	þ	ĸ	ł	¥	k	ĥ	b	şı	u	ţI	8	ta	37,7 38,8	706,8	\$90	1	~50	0,555FN	388, 7
214			42.0 210	885	165 165	2725	27	20	20	15	I 220	10 40	180	15 22.0	ŧ	3ø10 80	390 <i>x</i> 180	40 160	26,9 28,5	706,8	u	Bg1\$6 IF a=60	~47	0,55Fh	388,
215	<u>, , , , , , , , , , , , , , , , , , , </u>		11	11	61	4	'n	ł	ĥ	8	11	ÿ	×	t	ł	٩	64	¥	26,9 28,5	706,8	*	n	~47	0,55F	388 :
2.16			260 200	520	180 120	27600	37	20	20	53	/	/	/	/	ŧ	4ø8 50	232x 172	20 150	20,3 20,3	743,4	44	4BgL\$6 II 9=90	40	0,4FM	297,4
217			u	W	4	H	11	n	8	N	1	/	/	/	81	11	N	1	27,6 27,6	7434	44	Ŋ	40	0,4 F _N	297,4
218			220 160	440	180 12.0	21600	37	20	20	53	1	/	/	/	u	3ø8 50	192 <i>x</i> 132	20 100	36,6 36,6	743,4	44	4 Bgl 96 III q = 75	~50	0,55Fn	408,9
219			7 11	Ŗ	k	ß	Ŋ	ţt	H	8	/	/	/	/	ø	11	11	a	35,3 35,3	743,4	44	11	~50	9,4 FN	297,4
220			370 240	740	25d 180	45000	37	30	30	35	/	1	/	1	ŧ	5Ø12 45	338× 208	65x 180	25,8 25,8	1239	110	89698 II a = 75	~68	0,75F _N	929
221			11	8	11	ł	8	11	81	ł	Ш 42.0	12 45	208	35 350	ŀ	5ø6 75	344× 274	35× 375	26,1 26,1	1239	110	h	~68	0,6 F _N	743,4
																				_					
													ana ayo ayartabasa	-											
										- in the relation		ATTACKEDOPTIC								NORMAL TRANSPORT					
											•														

	Rißt	oreite	· · · · · · · · · · · · · · · · · · ·	Fu	VA	Ort des Versagens		Τ	<u> </u>
max Vol	F _{o1}	max Wy10	F _{u10}				Bemerkungen	Nr.	
mm	kN	mm	kN	kN				-	
0,06	961,8	3 /	/	1501	Daver- Stand- versuch	oben		210	
0,07	961,8	/	/	1551	h	ł,		211	
0,02	494,8	1	1	1310	4	80		212	
0,02	494,8	-	/	1305	lt	11		213	
0,03	494,8	1	/	1196	1	¥		274	
0,01	494,8	1	/	1170	11	p		215	
0,10	520,4	0,09	74,3	731	schwell- versuch	S		216	
0,07	5204	907	74,3	788	A	h		217	
0,08	52.94	<i>0</i> , 10	74,3	740	N	ti		218	
0,07	520,4	0,08	74,3	760	11	ŧı		279	
0,05	929	0,05	124	1744	11	h		220	
Q05	929	0,12	124	2023	łı	unten		227	

T 2502/1-2

Résumé

La délivrance d'un agrément technique général pour un procédé de précontrainte exige la preuve de son aptitude à l'emploi prévu qui est en général fournie à l'aide de l'exécution des essais d'aptitude à l'emploi. Parmi ces essais, il y en a aussi quelques-uns pour vérifier la liaison entre l'élément d'ancrage et le béton.

Dans la première partie du rapport on présente des modèles de calcul pour déterminer la capacité portante, la charge de fissuration primaire et la largeur maximale des fissures. Il s'agit de modèles déterministes d'ingénieur décrivant le comportement moyen et comprenant les paramètres qui contrôlent le comportement de façon durable. Les modèles sont soumis à un contrôle statistique dans la mesure où il y a un nombre suffisant de résultats d'essais. Pour la vérification, on a appliqué une directive publiée par l'IfBt (Institut für Bautechnik) et basée sur le GRUSIBAU. Les modèles de calcul présentés ne sont pas des modèles autarciques; ils doivent toujours être appuyés par des essais.

Dans la deuxième partie du rapport, on a fourni la preuve de l'aptitude de principe de la méthode des éléments finis (FEM) à déterminer la capacité portante et le comportement à la déformation, y-inclus la formation de fissures, de la liaison entre l'élément d'ancrage et le béton. On a examiné l'influence de l'épaisseur et de la largeur de la plaque d'ancrage, de l'excentricité de la force ainsi que de la quantité de l'armature transversale et hélicoidale sur la capacité portante.

Dans l'un des chapitres on démontre à l'aide d'un exemple qu'en appliquant la méthode FEM le calcul des éléments d'ancrage à plusieurs surfaces fournit des résultats exacts. En outre, un modèle de calcul simplifié est présenté destiné à pré-dimensionner les systèmes d'ancrage spéciaux en question.