Bau<u>forschung</u>

T 2706

Regularität von Stahlbauwerken

¹ Fraunhofer IRB Verlag

T 2706

Dieser Forschungsbericht wurde mit modernsten Hochleistungskopierern auf Einzelanfrage hergestellt.

Die in dieser Forschungsarbeit enthaltenen Darstellungen und Empfehlungen geben die fachlichen Auffassungen der Verfasser wieder. Diese werden hier unverändert wiedergegeben, sie geben nicht unbedingt die Meinung des Zuwendungsgebers oder des Herausgebers wieder.

Die Originalmanuskripte wurden reprotechnisch, jedoch nicht inhaltlich überarbeitet. Die Druckqualität hängt von der reprotechnischen Eignung des Originalmanuskriptes ab, das uns vom Autor bzw. von der Forschungsstelle zur Verfügung gestellt wurde.

© by Fraunhofer IRB Verlag

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Zustimmung des Verlages.

Fraunhofer IRB Verlag Fraunhofer-Informationszentrum Raum und Bau

Postfach 80 04 69 70504 Stuttgart

Nobelstraße 12 70569 Stuttgart

Telefon (07 11) 9 70 - 25 00 Telefax (07 11) 9 70 - 25 08

E-Mail irb@irb.fraunhofer.de

www.baufachinformation.de

Abschlußbericht zum Forschungsvorhaben

Regularität von Stahlbauwerken

Durchgeführt im Auftrag des Deutschen Instituts für Bautechnik Az: IV 1-5-717/93

Prof. Dr.-Ing. G. Sedlacek Lehrstuhl für Stahlbau RWTH-Aachen

Aachen, Oktober 1995

Inhaltsverzeichnis

1

2

3

Ein	leitung			1/1	
1.1	Bauw	verksregulari	tät	1/1	
1.2	Ziel o	les Vorhaber	ns	1/2	
Unt	ersuch	ıng der räi	umlichen Regelmäßigkeit	2/1	
2.1	Vorge	ehensweise		2/1	
2.2	Gena	ues Verfahre	n second s	2/1	
	2.2.1	Modellieru	ing	2/1	
	2.2.2	Durchlauft	trägerstatik	2/1	
	2.2.3	Erweiterte	Biege- und Torsionstheorie	2/2	
2.3	Unter	schiede zwis	schen dem genauen und vereinfachten Verfahren	2/4	
	2.3.1	Aufstellun	g der Fehlerfunktion	2/4	
	2.3.2	Mindestste	eifigkeit der Zwischendecke	2/4	
2.4	Paran	neterstudie		2/5	
	2.4.1	Einfluß de	r Auslegung der Gebäude	2/5	
	2.4.2	Näherungs	formel	2/7	
2.5	Schlu	ßfolgerunger	n	2/8	
Unte	ersuchu	ing der eb	enen Regelmäßigkeit	3/1	
3.1	Vorge	hensweise		3/1	
3.2	Seism	ische Einga	ngsgrößen	3/1	
3.3	Berec	hnungsmode	lle	3/2	
3.4	Berechnungsverfahren				
	3.4.1	FE Program	mm "DYNACS"	3/4	
	3.4.2	Verfahren	zur Bestimmung der Verhaltensbeiwerte	3/5	
		3.4.2.1	Verfahren nach Ballio	3/5	
		3.4.2.2	Erweiterung der Ballio Definition	3/6	
		3.4.2.3	Einschränkung der q-Faktoren durch das		
			Versagen einzelner Stockwerke	3/8	
		3.4.2.4	Einschränkung der q-Faktoren durch die		
			Anforderungen an die Trägerquerschnitte	3/9	

Seite

1. Einleitung

1.1 Bauwerksregularität

Nach Eurocode 8 [1-1] ist ein Bauwerk regulär gestaltet (Bild 1.1), wenn:

- es durch ein ebenes Modell abgebildet werden kann, d.h. die Massen- und Steifigkeitsmittelpunkte sind so ausgelegt, daß die Torsionswirkung vernachlässigt werden kann (Räumliche Regelmäßigkeit), und
- die Grundbiegemode aus der Modalanalyse für die Bemessung ausreicht und höhere Moden keinen Einfluß haben, d.h. die Steifigkeits- und Masseneigenschaften sind über die Höhe gleichmäßig (Ebene Regelmäßigkeit), und
 - die Energiedissipation möglichst gleichmäßig über die Struktur verteilt ist, d.h. die Festigkeitsverteilung entspricht etwa die Anforderung der Grundbiegemode (Festigkeitsverteilung).

Räumliche Regelmäßigkeit

Ebene Regelmäßigkeit

Festigkeitsverteilung

Bild 1.1 Bauwerksregularität

Die Konsequenzen aus der Bauwerksregularität (Bild 1.2) sind:

die vereinfachten Modellannahmen beim Antwortspektrumverfahren und

ungünstig

2. Untersuchung der räumlichen Regelmäßigkeit

2.1 Vorgehensweise

Die Vorgehensweise der Untersuchung ist wie folgt:

- Zunächst werden aus dem Vergleich Unterschiede zwischen dem genauen und vereinfachten Verfahren in Abhängigkeit von einem Parameter γ ermittelt, der aus der Betrachtung des "Genauen Verfahrens" aufgestellt wird.
 - Mit der zulässigen Differenz der Ergebnisse von 10% wird dann die Mindeststeifigkeit der Zwischendecken γ_{min} festgelegt.
 - Abschließend wird der Einfluß der Auslegung der Gebäude, Geschoßanzahl und Feldanzahl, auf die Mindeststeifigkeit der Zwischendecken in einer Parameterstudie untersucht.

2.2 Genaues Verfahren

2.2.1 Modellierung

Für das "Genaue Verfahren" wurde das Berechnungsmodell modifiziert (Bild 2.1). Die räumlichen Tragwerke werden mit ihrer Kombination von Stützen und Decken auf ebene Rahmentragwerke zurückgeführt, die quer zu ihrer Ebene belastet werden. Für die Belastung quer zur Ebene wird das System als Trägerrost betrachtet.

2.2.2 Durchlaufträgerstatik

Bei der Durchlaufträgerstatik [2-1] wird zunächst eine Modalanalyse in Längsrichtung - Stützenrichtung - durchgeführt und daraus werden Lastgruppen und zugehörige Verformungen bestimmt (Bild 2.2). Die Schnittgrößen werden dann mit den entsprechenden Ersatzträgern in Querrichtung - Deckenrichtung - bestimmt, wobei die elastische Bettung als Funktion von folgendem Steifigkeitsparameter γ beschrieben wird, der das Trägerrostverhalten zwischen den horizontalen Decken und den aufgehenden Traggliedern beschreibt.

$$\gamma = \frac{l_T^3 I_D}{l_D^3 I_T}$$

wobei l_D , l_T Länge der Zwischendecke bzw. des Traggliedes I_D , I_T Steifigkeit der Zwischendecke bzw. des Traggliedes

- 2/1 -

2.2.3 Erweiterte Biege- und Torsionstheorie

Bei der erweiterten Biege- und Torsionstheorie [2-2,2-3,2-4] wird die Gesamtheit aller Längstragglieder - Stützen - als ein einziger Stab mit verformbarem Querschnitt angesehen (Bild 2.3). Die Modalanalyse wird in diesem Fall in Querrichtung durchgeführt und daraus werden Querschnittsverformungen und zugehörige Belastungen bestimmt. Die Schnittgrößen werden dann in Längsrichtung mit den entsprechenden Ersatzträgern für Biegung, Torsion und Verwölbung bestimmt, wobei sich die Querbiegesteifigkeit der Decke als elastische Bettung des Ersatzträgers für Verwölbung auswirkt und als Funktion von γ beschreiben läßt.

Modalanaiyse

Erweiterte Biege- und Torsionstheorie

Bild 2.5 Fehlerfunktion $f(\gamma)$ und γ_{min}

2.4 Parameterstudie

2.4.1 Einfluß der Auslegung der Gebäude

Die Ergebnisse der Parameterstudie sind im Kapitel 1, Analge 1 angegeben. Als Beispiel ist im Bild 2.6 der Einfluß der Geschoßanzahl auf die Mindeststeifigkeit γ_{min} dargestellt, wobei nur die maximalen Fehlerfunktionen für die mittleren Stützen aufgetragen sind. Die Mindeststeifigkeit γ_{min} wird mit zunehmender Geschoßanzahl kleiner und damit der Anwendungsbereich des vereinfachten Verfahrens größer. Mit zunehmender Feldanzahl wird die Mindeststeifigkeit γ_{min} größer und damit der Anwendungsbereich des vereinfachten Verfahrens kleiner (Bild 2.7).

Einfluß der Geschoßanzahl auf γ_{min}

Bild 2.7 Einfluß der Feldanzahl auf γ_{min}

- 2/6 -

2.4.2 Näherungsformel

Für die Bestimmung der maximalen Fehlerfunktion wurde eine Näherungsformel entwickelt. Als Ausgangssystem wurde ein eingeschossiger Rahmen mit zwei Feldern genommen und durch Umformung der Fehlerfunktion eine Basisformel aufgestellt (Bild 2.8). Dabei wurde die Konstante A aus der Grenzwertüberlegung, $\gamma = 0$, gewonnen und das Verhältnis der Eigenvektoren wurde in Abhängigkeit vom γ beschrieben.

$$\varphi_{1} = 0,0$$

$$\varphi_{1} = 0,0$$

$$\varphi_{2} = 1,0$$

$$\varphi_{B} = 0,333$$

$$\varphi_{B} = 0,333$$

$$\varphi_{B} = 0,333$$

$$f_{\max}(\gamma) = A \left(1 - \frac{4\gamma}{\sqrt{16\gamma^2 + 1} + 1} \right) ; A = \frac{2}{3}$$

Bild 2.8 Basisformel für das Ausgangssystem

Die Basisformel für das Ausgangssystem wurde dann für beliebige Systeme erweitert (Bild 2.9). Die Konstante A für ein bestimmtes System wurde wie beim Ausgangssystem gewonnen und γ wurde mit zwei weiteren Variablen modifiziert, wobei B das Verhältnis der Feldanzahl und C das verhältnis der Grunfrequenzen zwischen dem Ausgangssystem und dem betrachteten System beschreiben.

$$f_{\max}(\gamma) = A \left(1 - \frac{4\gamma_E}{\sqrt{16\gamma_E^2 + 1} + 1}\right)$$

$$A = konstant \qquad Feidanzahi \qquad 2 \qquad 3 \qquad 4 \qquad 5$$

$$A = konstant \qquad 4 \qquad 667 \qquad 500 \qquad 517 \qquad 461$$

$$\gamma_E = \frac{C}{B} \cdot \gamma$$

Bild 2.9 Näherungsformel für beliebige Systeme

Bei der Untersuchung der Genauigkeit dieser Näherungsformel, siehe Kapitel 2, Analge 1, wurde festgestellt, daß der Unterschied zwischen den mit der Näherungsformel berechneten - gestrichelte Linien - und den genauen Fehlerfunktionen - durchgezogene Linien - maximal 3% ist (Bild 2.10).

2.5 Schlußfolgerungen

Aus der Untersuchung wurden folgende Schlußfolgerungen getroffen:

Ausreichende Regularität im Hinblick auf die Deckensteifigkeit kann durch den Parameter γ beschrieben werden.

Bild 2.10

- Genauigkeit der Näherungsformel
- Der zulässige Fehler von 10% bestimmt den für die ausreichende Regularität erforderlichen Mindestwert γ_{min} .
 - Für γ_{min} kann eine Näherungsformel abhängig von Geschoßanzahl und Feldanzahl angegeben werden.

3 Untersuchung der ebenen Regelmäßigkeit

3.1 Vorgehensweise

Die Vorgehensweise der Untersuchung in [1-2] war wie folgt:

- Zunächst wurden als dynamische Belastung die seismischen Eingangsgrößen festgelegt.

- Mit dem Ziel, praxisnahe Ergebnisse zu erlangen, wurde eine Auswahl typischer Stahlbaukonstruktionen des kerntechnischen Anlagenbaus getroffen.
- Zur Bestimmung der Systemverhalten wurden Eigenwertberechnungen durchgeführt, um das Systemverhalten hinsichtlich der Bedeutung der ersten und eventuell weiterer maßgebender Moden abzuschätzen. In einem weiteren Schritt wurden die nichtlinearen Verhalten unter den seismischen Eingangsgrößen ermittelt und daraus die Verhaltensbeiwerte bestimmt. Als Vorgehensweise zur Ermittlung der Zahlenwerte der Verhaltensbeiwerte q wurde das Verfahren nach Ballio gewählt und um die Festlegung der q-Faktoren für bestimmte Systeme zu vereinfachen, wurde die Ballio-Definition erweitert.
 - Abschließend wurden unter Berücksichtigung der Eigenschwingverhalten und der im Eurocode 8 vorgeschlagenen q-Faktoren Schlußfolgerungen getroffen.

3.2 Seismische Eingangsgrößen

Als Grundlage für die Erdbebengenerierung, künstlische Akzellerogramme, wurden das in KTA 2201 [3-1] angegebene Bodenantwortspektrum und das in [3-2] angegebenen Bodenantwortspektrums für den Standort Biblis gewählt (Bild 3.1). Der in Bild 3.1 dargestellte Beschleunigungswert von 1,0 m/s² für das Freifeld (max. Bodenbeschleunigung) stellt lediglich einen normierten Wert dar.

Bei den künstlichen Erdbebenzeitverläufen für das KTA - Spektrum betragen:

-	die Gesamtdauer des Erdbebens:	12 s,
-	die Anstiegzeit:	2 s,
_	die Starkbebendauer:	6 s,
**	die Abklingzeit:	4 s.

Bei den Biblis - kompatiblen Erdbebenzeitverläufen betragen:

die Gesamtdauer des Erdbebens:

.

12 s,

die Anstiegzeit:	2 s,	
die Starkbebendauer:	4 s,	
die Abklingzeit:	6 s.	

Bild 3.1 Bodenantwortspektren für Dämpfung D = 0.05

Im Kapitel 1, Anlage 2 sind die Zeitverläufe sowie die daraus resultierende Beschleunigungsantwortspektren für die Dämpfung 5 % angegeben.

3.3 Berechnungmodelle

Als typische Stahlbaukonstruktionen des kerntechnischen Anlagenbaus wurden ein Maschinenhaus, eine Reaktorhalle und ein Komponentengerüst gewählt, aus denen jeweils ebene Systeme in den Hauptrichtungen der Gebäude betrachtet wurden. Insgesamt ergaben sich:

- zwei Rahmensysteme (Maschinenhaus, Reaktorhalle)
 - eine Rahmen-Fachwerk-Mischkonstruktion (Komponentengerüst)
 - drei Fachwerksysteme (Maschinenhaus, Reaktorhalle und Komponentengerüst).

Die Modellgenerierung wurden unter Berücksichtigung der konstruktiven Ausbildung durchgeführt. Die statische Systeme sind in Bild 3.2 dargestellt.

Rahmen (Maschinenhaus)

Rahmen (Reaktorhalle)

Mischkonstruktion (Komponentengerüst)

Fachwerk (Reaktorhalle)

Fachwerk (Komponenetengerüst)

Bild 3.2 Fortsetzung

Detailierte Informationen über die Berechnungsmodelle, Angaben der unterschiedlichen Querschnittstypen sowie die Massenbelegung der Konstruktionen können [1-2] entnommen werden.

3.4 Berechnungsverfahren

3.4.1 FE Programm DYNACS

Zur Bestimmung der nichtlinearen Verhalten der Finite-Element-Modelle wurden die dynamischen Berechnungen mit dem Stabwerksprogramm DYNACS [3-3] durchgeführt. Detailierte Informationen über Grundlagen des Programms DYNACS bezüglich der Behandlung von Theorie 2. Ordnung, der Behandlung nichtlinearer Stabelemente, sowie der Lösungsalgorithmen für das nichtlinare Gleichungssystem können [3-4,3-5,3-6] entnommen werden. Bei der Berechnungen wurden die Stabilität von Einzelbauteilenenden (Beulen und Knicken) durch folgende nichtlineare Stabelemente berücksichtigt: Elasto-plastisches Element

Mit diesem Element, bei dem der Querschnitt über Lamellen beschrieben wird, wird die Bildung von Fließzonen (Biegung und Normalkraft) in Trägern oder Stützen sehr genau erfaßt [3-7].

Fachwerkstabelement

Für die Berechnung von Füllstäben in Fachwerkkonstruktionen oder Mischkonstruktionen existiert ein spezielles Element, welches das nichtlineare Verhalten, insbesondere das Stabilitätsverhalten der Stäbe im elastischen und im plastischen Bereich abbildet [3-8,3-9,3-10].

3.4.2 Verfahren zur Bestimmung der Verhaltensbeiwerte

3.4.2.1 Verfahren nach Ballio

Zur Bestimmung eines q-Faktors nach Ballio [3-11,3-12] für ein bestimmtes System und für einen vorgegebenen Beschleunigungszeitverlauf werden eine Reihe von nichtlinearen Zeitschrittberechnungen durchgeführt (Bild 3.3).

Bild 3.3 Definition des q-Faktors nach Ballio

Hierbei wird der Beschleunigungszeitverlauf jeweils mit einem Skalierfaktor a_i multipliziert und die zugehörige maximale Verschiebung v_i an einem Referenzpunkt (z.B. kann dies die obere Rahmenecke eines System sein) bestimmt. Nun werden die Wertepaare a_i und v_i zu einer Kurve aufgetragen, wobei sie normiert werden auf die Werte a_{el} und v_{el} , die die Stelle des ersten

Plastizierens (elastische Grenzlast) markieren. Im Schnittpunkt dieser Kurve mit der Kurve, die das linear-elastische Verhalten beschreibt (45°- Kurve) ist der q-Faktor definiert. Hierbei wird die Annahme getroffen, daß die Verformungen oberhalb des Schnittpunktes extrem anwachsen, und somit der Ort der dynamischen Instabilität näherungsweise gefunden wurde. Dieses Verfahren wurde auch bei der Festlegung der q-Faktoren von Stahlbaukonstruktionen für den Eurocode 8 herangezogen.

3.4.2.2 Erweiterung der Ballio Definition

Es zeigt sich, daß dieses Verfahrens dann zu falschen Ergebnissen führt, wenn die $q_a - q_v$ Kurve zwar in einem Bereich oberhalb der 45°- Kurve verläuft, aber dort keine Tendenz in Richtung einer Instabilität zeigt. Der Ort der dynamischen Instabilität wird also nicht richtig gefunden, und die daraus resultierenden q-Faktoren werden zu gering abgeschätzt (Bild 3.4).

Bild 3.4 Überschreitung der 45° Kurve ohne Anzeichen von Instabilität

Eine Möglichkeit, den Ort der Instabilität genauer zu erfassen, zeigt Nguyen in seiner Arbeit [3-10]. Er führt einen Multiplikator k für das Verhältnis q_v / q_a ein, mit dessen Hilfe es möglich ist, Zufallsschwankungen von q für k=1 zu reduzieren (Bild 3.5). Hiermit lassen sich Schnittpunkte bestimmen, die für verschiedene Größen k zugehörige q-Faktoren definieren. In Bild 3.6 sind die Ergebnisse einer Auswertung von q-Faktoren für unterschiedliche k-Werte bei Variation der Periodendauer T dargestellt.

Bild 3.5

Verwendung von k-Werten > 1

Bild 3.6

Auswertung für verschiedene k-Werte

Diesem Diagramm kann entnommen werden, daß die Ergebnisse für k=1 im gesamten Spektrum zu niedrig liegen und schon eine geringfügige Überschreitung von k=1 eine realistischere Abschätzung der dynamischen Instabilität und damit des q-Faktors ergibt. Es sollte beachtet werden, daß die zu erwartenden Verformungen von der Größe des k-Wertes abhängen. Für die Untersuchung wurde eine geringfügige Überschreitung von k=1 – d.h. etwa k=1,5 – zugelassen, und der q-Faktor an der Stelle bestimmt, wo die q_a - q_v Kurve eine eindeutige Instabilität aufweist.

3.4.2.3 Einschränkung der q-Faktoren durch das Versagen einzelner Stockwerke

Für die Untersuchung, inwieweit Stockwerkversagen maßgebend für die Größe der q-Faktoren ist, erfolgt die Auswertung der Berechnungsergebnisse in 2 Schritten:

1.

2.

Es werden q_a-q_v Diagramme für die einzelnen Etagen ermittelt (Bild 3.7). Der Minimalwert für q ist maßgebend für die Gesamtstabilität.

Es werden q_a - q_v Diagramme auf der Grundlage relativer Stockwerksverschiebungen ermittelt (Bild 3.8). Der Minimalwert für q ist maßgebend für die Stockwerksstabilität.

Ist der q-Faktor nach 2. geringer als nach 1., so ist zu untersuchen, ob es sich um ein Stockwerksversagen handelt. Ist dies der Fall, so ist der für das Stockwerk ermittelte q-Faktor maßgebend.

Beispiel q_a-q_v Diagramm für einzelne Stockwerksverschiebungen

Bild 3.8 Beispiel q_a-q_v Diagramm für relative Stockwerksverschiebung

3.4.2.4 Einschränkung der q-Faktoren durch die Anforderungen an die Trägerquerschnitte

Die Bestimmung des q-Faktors ist darauf ausgelegt, den Ort der dynamischen Instabilität zu finden. Ist dieser Ort gefunden, so muß kontrolliert werden, ob die hierbei auftretenden Anforderungen an die Querschnitte auch eingehalten werden können. Weil keine Werte für die Rotationskapazität von Trägern unter dynamischen Lasten zur Verfügung stehen, wird innerhalb diesr Untersuchung als konservative Annahme eine Dehnungsbegrenzung von 5 % vorgesehen. Gleichzeitig werden für die Fachwerkstäbe die zugehörige Rotationsanforderung und plastische Längenänderungen notiert:

Die Rotationsanforderung für den Fachwerkstab wird definiert über das Verhältnis der plastischen Stabverdrehungen ϑ bezogen auf die Verdrehungen an der Grenze zum plastischen Bereich φ_{pl} (Bild 3.9):

$$R = \frac{\vartheta}{\varphi_{pl}}$$

Die plastischen Dehnungen, die im Fachwerkstab die plastischen Längenänderungen aus Zug repräsentieren, werden folgendermaßen ausgewertet:

$$\varepsilon_{vergl} = \frac{\varepsilon_{pl}}{\varepsilon_{el}} = \frac{\varepsilon_{pl}}{f_y / E}$$

- 3/9 -

Bild 3.9 N - φ Beziehung für den Fachwerkstab im Bereich des Knickens

3.5 Berechnungsergebnisse

3.5.1 Eigenschwingverhalten der Berechnugsmodelle

Zur Untersuchung des Eigenschwingverhaltens der represäntativen Stahlbaukonstruktionen wurden für die im Abschnitt 3.3 beschriebenen Berechnungsmodelle jeweils die ersten 20 Eigenfrequenzen berechnet.

Aus dem Eigenschwingverhalten läßt sich die ebene Regelmäßigkeit eines Systems anhand der Beteiligungsfaktoren der einzelnen Moden feststellen. Weiterhin ist mit Kenntnis der maßgebenden Eigenfrequenzen die Festlegung der Rayleigh-Dämpfungskoeffizienten für die nichtlinearen dynamischen Zeitverlaufsberechnungen möglich.

Im Kapitel 2, Anlage 2 sind die Berechnungsergebnisse angegeben. Die einzelnen Systeme zeigen das folgende Eigenschwingverhalten:

Rahmen des Machinenhauses

Der Anteil von über 90% ($\epsilon_1 = 91\%$) mitschwingender Masse für die maßgebende erste Mode läßt auf ein regelmäßiges System schließen.

Rahmen der Reaktorhalle

Hierbei handelt es sich um ein System, das wegen der seitlichen unverschieblichen Lagerung in Höhe 33,00 m hinsichtlich seines dynamischen Verhaltens als nicht regelmäßig angesehen werden kann. Dies zeigt auch die Auswertung der Eigenwertanalyse wo eine Summe von 88% mitschwingender Masse erst bei Einbeziehung von vier Moden ($\epsilon_1 = 6\%$, $\epsilon_4 = 56\%$, $\epsilon_5 = 18\%$, $\epsilon_{14} = 8\%$) erreicht werden kann.

Rahmen-Fachwerk-Mischkonstruktion des Komponentengerüstes

Augrund des großen Anteils (ϵ_2 = 90%) mitschwingender Masse für die maßgebende zweite Mode kann das System als regelmäßig eingestuft werden. Wegen der verwendeten Füllstäbe ist mit einem fachwerkähnlichen Verhalten im nichtlinearen Bereich zu rechnen.

Fachwerk des Maschinenhauses

Durch den Anteil der mitschwingenden Masse von 74% ($\epsilon_1 = 74\%$, $\epsilon_2 = 21\%$) kann das System aufgrund des dynamischen Verhaltens im linear-elastischen Bereich als mäßig regulär eingestuft werden.

Fachwerk der Reaktorhalle

Hierbei handelt es sich, wie auch beim Rahmen der Reaktorhalle, um ein System, das wegen der seitlichen unverschieblichen Lagerung in Höhe 33,00 m hinsichtlich seines dynamischen Verhaltens im linear-elastischen Bereich als nicht regelmäßig angesehen werden kann. Dies zeigt auch die Auswertung der Eigenwertanalyse wo eine Summe von 89% mitschwingender Masse erst bei Einbeziehung von vier Moden ($\epsilon_2 = 26\%$, $\epsilon_3 = 37\%$, $\epsilon_7 = 16\%$, $\epsilon_{11} = 10\%$) erreicht werden kann.

Fachwerk des Komponentengerüstes

Augrund des großen Anteils (ϵ_1 = 90%) mitschwingender Masse für die maßgebende Mode kann das System als regelmäßig eingestuft werden.

3.5.2 Nichtlineare Verhalten der Berechnugsmodelle

In den dynamischen Berechnungen werden sechs statistisch unabhängige künstliche Erdbebenzeitverläufe eingesetzt, wovon jeweils 3 zum KTA-Spektrum und 3 zum Biblis-Spektrum kompatibel sind. Davon werden jeweils alle drei als horizontale Fußpunkterregung verwendet. Die Ergebnisse der dynamischen Berechnungen können [1-2] entnommen werden. Die Vorgehensweise zur Bestimmung der Verhaltensbeiwerte sind folgende:

Die äußeren Weggrößen (absolute und relative Stockwerksverschiebungen) wurden in Form von q_a-q_v Diagrammen dargestellt. In weitergehenden Untersuchungen wurden dann die inneren

Weggrößen (Dehnungen und Rotationen), die infolge Low - Cycle -Fatigue oder begrenzter Rotationsfähigkeit von Querschnitten Einfluß auf die Standsicherheit haben können, ausgewertet. Dabei wurde nach Balkenelementen und Fachwerkstäben unterschieden:

> Für Balkenelemente wird die maximal auftretende plastische Dehnung ϵ_{pl} ermittelt und im Verhältnis zu den elastischen Dehnungen ϵ_{el} ausgewertet. Als elastischer Anteil wird dabei unter Annahme einer Fließgrenze von $\sigma_F = 24$ kN/cm² für ST 37 und eines Elastizitätsmodul von E = 210 000 MN/m² eine Dehnung von 1,143 ‰ angesetzt. Unter Zugrundelegung einer Gleichmaßdehnung von 5 % als obere Schranke der akzeptablen Dehnungen, folgt als Begrenzung des Dehnungsverhältnisses ein Wert von $\epsilon_{vergl} = 43,75$. Die Beschränkung der maximalen Dehnung auf 5 % erweist sich auch mit Blick auf die hier nicht näher erläuterten Einflüsse der Low -Cycle - Fatigue als sinnvoll.

> Für Fachwerkelemente werden die maximalen plastischen Rotationen ϑ sowie die maximalen plastischen Dehnungen ϵ_{pl} ermittelt. Anhand der plastischen Rotationen lassen sich Aussagen über das Verhalten der Füllstäbe unter Druckbelastung in Form der Rotationsanforderung R bestimmen. Anhand der plastischen Dehnungen lassen sich Aussagen über das Verhalten unter Zugbelastungen als Vergleichswert ϵ_{vergl} formulieren.

Daraufhin konnten die Größen der q-Faktoren der einzelnen Systeme festgelegt werden. Die Auswertungsergebnisse sin im Kapitel 3, Anlage 2 angegeben. Im einzelnen wurde das nachfolgend erläuterte Sytemverhalten festgestellt:

Rahmen des Maschinenhauses

Das System ist in der Lage, einen großen Anteil der durch ein Erdbeben eingetragenen Energie zu dissipieren. Aufgrund der vorherrschenden 1. Mode sind relative Stockwerksverschiebungen, die durch die Einflüsse höherer Moden auftreten können, gering.

Rahmen der Reaktorhalle

Es zeigte sich, daß die Ergebnisse für verschiedene Akzellerogramme relativ weit streuten, was eine Reduzierung der Größe des q-Faktors zur Folge hat. Die Streuungen resultieren zum großen Teil aus dem statischen System, das wie oben erläutert nicht als regelmäßig angesehen werden kann. Rahmen-Fachwerk-Mischkonstruktion des Komponentengerüstes

Dieses System verhielt sich im wesentlichen wie ein regelmäßiges Fachwerksystem. Die Streuungen der relativen Stockwerksverschiebungen lagen deutlich höher als die der absoluten Stockwerksverschiebungen. Dieses Verhalten ist typisch für Fachwerksysteme, da beim Ausknicken von Füllstäben lokale Störungen auftreten, die zu einer Vergrößerung der gegenseitigen Stockwerksverschiebungen führen können.

Fachwerk des Maschinenhauses

Die Streuungen der relativen Stockwerksverschiebungen waren deutlich größer als die Streuungen der absoluten Stockwerksverschiebungen. Die Begründung entspricht der für das Mischsystem des Komponentengerüsts.

Fachwerk der Reaktorhalle

Dieses System, das auf der Grundlage der elastischen Eigenwertanalyse als nicht regelmäßig eingestuft wurde, zeigte auch im nichtlinearen Bereich Besonderheiten. Die Definition der elastischen Grenze, von der ab q-Faktoren gerechnet werden, durch das erste Auftreten von plastischen Dehnungen in einem Element ist bei diesem System nicht anwendbar, da ein Füllstab bereits bei einer sehr geringen Erdbebenbeschleunigung ausfiel, womit der Anfangspunkt für die Berechnung von q festgelegt war. Wegen der vorhandenen Systemredundanz hatte dieser Ausfall jedoch auf das weitere Verhalten unter gesteigerten Bechleunigungsfaktoren nur geringen Einfluß. Somit würde sich für dieses System ein q-Faktor größer 8 ergeben, der als unrealistisch hoch für ein nicht regelmäßiges Fachwerksystem angesehen werden muß. Deswegen wurde für dieses System die Definition der elastischen Grenze derart modifiziert, daß sie für den Beschleunigungsfaktor, bei dem erste plastische Dehnungen in einem Biegeträger auftraten, festgelegt wurde. Die auf der Grundlage dieser Definition durchgeführten Auswertungen ergaben eine realistischere Abschätzung des dynamischen Verhaltens des Systems im nichtlinearen Bereich.

Fachwerk des Komponentengerüstes

Hier gelten die gleichen Aussagen wie für das Fachwerk des Maschinenhauses.

Bestimmt man die q-Faktoren (Tab 3.1) auf der Basis der äußeren Weggrößen, so zeigt sich, daß eine als obere Grenze der Dehnung festgelegter Wert von 5% bei keinem System überschritten wird.

System	q
Maschinenhaus, Rahmen	8
Reaktorhalle, Rahmen*	4
Komponentengerüst, Mischsystem	3
Maschinenhaus, Fachwerk	2.5
Reaktorhalle, Fachwerk [*] **	2.5
Komponentengerüst, Fachwerk	3

*) nicht regelmäßig

**) modifizierte Definition der elastischen Grenze

Tab. 3.1 q-Faktoren für die untersuchten Systeme

3.6 Schlußfolgerungen

Aus der Untersuchung wurden folgende Schlußfolgerungen getroffen:

Es zeigte sich, daß der als regelmäßig eingestufte Rahmen des Machinenhauses im Vergleich zu dem als nicht regelmäßig eingestuften Rahmen der Reaktorhalle größeren q-Faktor aufweist.

Bei den Fackwerken ist der Einfluß der Regelmäßigkeit unbedeutend. Die Effekte aus Stabilitätsversagen sowohl des Gesamtsystems als auch einzelner Systemkomponenten sind von großer Bedeutung auf das Tragverhalten eines Bauwerks unter zyklischer Belastung. Es wurde entschieden, für die dynamischen Berechnungen ein besonderes Knickstabelement zu verwenden, um die in den Füllstäben der Misch- und Fachwerksystemen auftretenden Stabilitätseffekte möglichst genau wiederzugeben.

Die in Eurocode 8 vorgegebenen Werte für die q-Faktoren für Rahmen wurden bestätigt und liegen auf der sicheren Seite. Die Werte, die der Eurocode 8 für Fachwerke angibt, liegen im Verhältnis zu den in dieser Untersuchung ermittelten Größen (2,5 < q < 3) zu hoch und sollten modifiziert werden.

4 Untersuchung der Festigkeitsverteilung

4.1 Vorgehensweise

Zur Bestimmung der Grenzen für die Festigkeitsverteilung von Stahlrahmen ist es erforderlich, umfangreiche Simulationen und dynamische Analysen von verschiedenen Modellen durchzuführen. Mit den üblichen dynamischen Verfahren ist aber eine solche Untersuchung hinsichtlich der Zeit und rechenkosten nicht vertretbar. Um diese Untersuchungen schnell und wirtschaftlich durchführen zu können, werden die Berechnungen der Tragwerke nicht mit Hilfe einer vollständigen dynamischen Berechnung am Gesamttragwerk (z.B. FE-Methode) durchgeführt, sondern es wird ein vereinfachtes Verfahren angewendet, mit dem die Modellierung des nicht-linearen Verhaltens des gesamten Bauwerkes mit ausreichender Genauigkeit auf die Modellierung eines nichtlinearen Einmassenschwingers zurückgeführt werden kann. Die Vorgehensweise der Untersuchung ist wie folgt:

- Zunächst werden als Eingangsgrößen Datensätze von zufälligen Festigkeiten und künstliche Akzellerogramme festgelegt.
- Mehrfeldrige und mehrgeschossige Stahlrahmen mit möglichen Fließgelenken werden dann anhand dieser Datensätze modelliert.
- Um die Untersuchungen schnell und wirtschaftlich durchführen zu können, wird die "Dynamischen Fließgelenkmethode" aufbereitet.
- In einem nächsten Schritt werden die dynamischen Systemantworten für die Akzellerogramme mit Hilfe der "Dynamischen Fließgelenkmethode" ermittelt und daraus die Verhaltensbeiwerte bestimmt.
- Abschließend wird eine statistische Auswertung der Berechnungsergebnisse vorgenommen.

4.2 Festlegung der Eingangsgrößen

4.2.1 Zufällige Festigkeiten

Für die Festlegung der zufälligen Festigkeiten als Eingangsgrößen wurde eine realistische Festigkeitsverteilung gewählt, für die die Verteilungsfunktion auf dem Wahrscheinlichkeitspapier dargestellt ist (Bild 4.1). Diese kommt aus der Qualitätssicherung von ARBED [4-1]. Die gewählte Festigkeitsverteilung wurde als eine Mischverteilung mit zwei Normalverteilungen angenähert und Mittelwerte und Standardabweichungen wurden abgeschätzt. Für die Generierung der zufälligen Festigkeiten wurde die Monte-Carlo-Methode [4-2,4-3] verwendet (Bild 4.2).

Bild 4.1

Realistische Festigkeitsverteilung

Bild 4.2

Monte-Carlo-Methode

Mit einem Zufallsgenerator werden zunächst echte Zufallszahlen generiert, die in einem Interval gleichverteilt sind, und mit Hilfe der Polarmethode werden normalverteilte Zufallszahlen gewonnen. Anschließend werden lognomalverteilte Zufallszahlen durch die Kenngrößentransformation erzielt, da die Festigkeiten in der Praxis keine negativen Werte annehmen können. Die Ergebnisse für die Generierung der zufälligen Festigkeiten sind im Kapitel 1, Anlage 3 angegeben. Als Beispiel werden das Histogramm und die zugehörige Verteilungsfunktion für die Festigkeitsverteilung von Walzprofile HEA 240 dargestellt (Bild 4.3). Um eine befriedigende Näherung an die realistische Festigkeitsverteilung zu erzielen, wurde die Anzahl der zufälligen Festigkeitswerte auf 5000 festgesetzt. Der Vergleich mit den angenäherten zwei Normalverteilungsfunktionen zeigt, daß die Generierung ausreichend für die Untersuchung durchgeführt wurde.

- 4/3 -

4.2.2 Dynamische Belastungen

Für die dynamischen Belastungen wurden 4 künstliche Zeitverläufe gewählt, die mit KTA Bodenantwortspektrum generiert wurden (Zusätzlich zu den drei im Kapitel 1, Anlage 2 angegebenen Zeitverläufe ist die vierte Zeitverlauf im Kapitel 2, Anlage 3 angegeben.)

4.3 Modellierung der Stahlrahmen

Für die Untersuchung wurden 7 Systeme, vier eingeschossige und drei mehrgeschossige Stahlrahmen, modelliert, wobei HEA 240 Profile als Stützen und IPE 240 Profile als Riegel gewählt wurden (Bild 4.4).

Bild 4.4

Untersuchte Systeme

Für die untersuchten Systeme wurden die möglichen Positionen der Fließgelenke am Fußpunkt der Stütze und an den beiden Enden des Riegels angesetzt (Bild 4.5). Dafür wurde die Überfestigkeit der Stütze gegenüber dem Riegel, der sogenannte Column-Overdesign-Factor (COF), überprüft, der aus dem Verhältnis der Festigkeiten der beiden Elemente bestimmt wird. Bei den Untersuchungen von Kato wurde der Mindestwert von 1,2 für den Ansatz festgestellt. Aus den Ergebnissen der Festigkeitsverteilungen wurde der minimale Faktor:

$$COF_{min.} = \frac{5\% \ Fraktilenwert \ für \ die \ Stütze}{95\% \ Fraktilenwert \ für \ den \ Riegel} = \frac{189,8}{127,5} = 1,48$$

gefunden, mit dem der Ansatz als berechtigt angesehen wurde.

Bild 4.5 Mögliche Positionen der plastischen Gelenke

Für jedes System wurden 200 Zufallssysteme simuliert, die an den möglichen Fließgelenken unterschiedliche Festigkeitswerte besitzen, die wiederum durch einen Zufallsprozeß aus den beiden vorbereiteten Festigkeitsverteilungen gewonnen wurden.

4.4 Dynamische Fließgelenkmethode

4.4.1 Aufbereitung der Dynamischen Fließgelenkmethode

Für die Ermittlung der dynamischen Systemantworten wurde die "Dynamische Fließgelenkmethode" [4-4,4-5] angewendet, wobei die Berechnungen sowohl mit einer Mode als auch mit mehreren Moden durchgeführt wurden. Im Bild 4.6 ist ein Zeitschritt der "Dynamischen Fließgelenkmethode" dargestellt. Der Ablauf wurde so gestaltet, daß nach jedem Zeitschritt kontrolliert werden konnte, ob sich neue Fließgelenke bilden, oder ob bereits vorhandene Fließgelenke inaktiv werden. Das statische System wird dann innerhalb des Zeitschrittes je nach Aktivierung und Deaktivierung der Fließgelenke modifiziert. Bei der Einmodalen-Fließgelenkmethode wurde unabhängig von der Anzahl von Freiheitsgraden der Konstruktion nur die 1. Mode verwendet und bei der Mehrmodalen-Fließgelenkmethode wurden alle aus den Freiheitsgraden resultierenden Moden mitgeführt.

4.4.2 Anwendungsuntersuchung der Dynamischen Fließgelenkmethode

Um die Zuverlässigkeit der "Dynamischen Fließgelenkmethode" zu überprüfen und die erforderlichen Anzahl der zu berücksichtigenden Moden festzustellen, wurden Vergleichsberechnungen [4-6] durchgeführt. Für die genauere Finite-Element-Methode wurde das Zeitschrittverfahren mit Fließzonen "DYNACS" verwendet.

Bild 4.6 Flußdiagramm für einen Zei tschritt Δt

Die Ergebnisse der Vergleichsuntersuchung sind folgende:

- Liegt das Systemverhalten im elastischen Bereich, d.h. bei niedriger Beschleunigung kommt es nicht bis zur Bildung des ersten Fließgelenkes, dann liefert die Mehrmodale-Fließgelenkmethode praktisch die gleichen Ergebnisse wie DYNACS (Bild 4.7). Die Ergebnisse aus der Einmodalen-Fließgelenkmethode sind dann gegenüber DYNACS mit kleinen Fehlern behaftet.
- Wenn das Systemverhalten im elastisch-plastischen Bereich, d.h. bei hoher Beschleunigung mit Bildung von Fließgelenken, liegt, dann führt die Einmodale-Fließgelenkmethode zu genaueren Ergebnissen als die Mehrmodale-Fließgelenkmethode (Bild 4.8).

- 4/7 -

Aufgrund der Ergebnisse der Vergleichsberechnungen wurde für die weiteren Untersuchungen beschlossen, die Einmodale-Fließgelenkmethode wegen genügender Genauigkeit anzuwenden.

4.5 Bestimmung der Verhaltensbeiwerte

Für die Bestimmung der Verhaltensbeiwerte wurde das Verfahren nach Ballio angewendet. Bei der üblichen Verfahrensweise wird die Verformungsantwort als die maximale während der Zeitschrittberechnung ermittelten einseitige Verformung von der Nulllage aus unabhängig von der Verformungsrichtung bestimmt. Für die hier untersuchten Systeme wurde eine weitere Definition untersucht, bei der die Summe der ermittelten maximalen Verformungen in positiver und negativer Richtung gebildet wird. Die beiden Definitionen wurden in dieser Arbeit Definition a und Definition b genannt (Bild 4.9).

Zwei Definitionen

4.6 Darstellung der Ergebnisse

Die statistische Auswertung der ermittelten Verhaltensbeiwerte sind im Kapitel 3, Anlage 3 angegeben. Als Beispiel der statistischen Auswertung sind im Bild 4.10 die Berechnungsergebnisse für die beiden Definitionen dargestellt. Die aus den Bestimmungskurven ermittelten Verhaltens-beiwerte von 200 Zufallssysteme und einem System mit nominalen Festigkeiten wurden statistisch ausgewertet und als Häufigkeitsverteilung angegeben, wobei die gestrichelten Linien die Verhaltensbeiwerte des Systems mit nominalen Festigkeiten zeigen. Aus dieser Darstellung wurde festgestellt, daß die nach der <u>Definition a</u> ermittelten Verhaltensbeiwerte auf der sicheren Seite liegen.

Die Streuungen der Verhaltensbeiwerte sowohl infolge der Festigkeitsverteilung als auch infolge verschiedener Akzellerogramme sind im Bild 4.11 für alle untersuchten Systeme in gleichem Maßstab zusammengestellt. Die vertikal durchgehende Linie stellt den Streuungsbereich als ± 1 mal Standardabweichung dar und die horizontal durchgezogene Linie zeigt den Mittelwert. Die gestrichelte Linie zeigt, wo sich der Verhaltensbeiwert des Systems mit nominalen Festigkeiten befindet. Aus dieser Darstellung ist zu erkennen, daß der Einfluß der Streuung der Festigkeiten im Vergleich zu der Streuung, die durch die verschiedenen Akzellerogramme hervorgerufen wird, relativ gering ist und deshalb vernachlässigt werden kann.

	Akzellerogram Nr.				
-9	1234	1234	1234	1234	
15 10 5 -		+ ⁺ ± +	∓+ +		
-	П				

		Akzellerogram Nr.				
<i>q</i>	1234	1 2 3 4	1 2 3 4	1 2 3 4		
15 -		- -				
10 -		+ +	±. +	•		
5 -	± = ±	± +	# #	+ +		
₀⊥		Ē				

Streuung der Verhaltensbeiwerte nach der Definition a

4.7 Schlußfolgerungen

Aus der Untersuchung wurden folgende Schlußfolgerungen getroffen:

- Die Einmodale-Dynamische-Fließgelenkmethode ist im elastisch-plastischen Bereich ausreichend.
 - Zur Bestimmung gesicherter Verhaltensbeiwerte gilt die <u>Definition a</u>, da sie auf der sicheren Seite liegende Verhaltensbeiwerte liefert und für die Bestimmung der maximalen Verformung verwendet werden kann.
- Die Streuung der Verhaltensbeiwerte q infolge verschiedener Akzellerogramme ist wesentlich größer als infolge der zufälligen Streckgrenzenstreuung.
 - Die Streckgrenzenstreuung über die Tragwerke ist für die Bestimmung der Verhaltensbeiwerte q ohne signifikante Bedeutung. Deshalb darf bei der Bestimmung der Verhaltensbeiwerte mit den nominalen Festigkeiten gerechnet werden. Bei der Kapazitätbemessung der Anschlüsse muß jedoch die Streckgrenzenstreuung berücksichtigt werden.

5 Schlußfolgerungen

Folgende Schlußfolgerungen für die Regularität von Stahlbauwerken wurden getroffen:

Räumliche Regelmäßigkeit

Ausreichende Regularität im Hinblick auf die Deckensteifigkeit kann durch den Parameter γ beschrieben werden. Der zulässige Fehler von 10% bestimmt den für die ausreichende Regularität erforderlichen Mindestwert γ_{min} . Für γ_{min} kann eine Näherungsformel abhängig von der Geometrie, Geschoßanzahl und Feldanzahl, angegeben werden.

Ebene Regelmäßigkeit

Es wurde festgestellt, daß bei den Rahmenkonstruktionen der Einfluß der ebenen Regelmäßigkeit entscheidend ist. Bei den Fackwerken ist dieser Einfluß unbedeutend sondern die Effekte aus Stabilitätsversagen sowohl des Gesamtsystems als auch einzelner Systemkomponenten sind von großer Bedeutung auf das Tragverhalten eines Bauwerks unter zyklischer Belastung. Für die dynamischen Berechnungen sollte deshalb ein besonderes Knickstabelement verwendet werden, um die in den Füllstäben der Mischund Fachwerksystemen auftretenden Stabilitätseffekte möglichst genau wiederzugeben. Die in Eurocode 8 vorgegebenen Werte für die q-Faktoren für Rahmen wurden bestätigt und liegen auf der sicheren Seite. Die Werte, die der Eurocode 8 für Fachwerke angibt, liegen im Verhältnis zu den in dieser Untersuchung ermittelten Größen (2,5 < q < 3) zu hoch und sollten modifiziert werden.

Festigkeitsverteilung

Die Streuung der Verhaltensbeiwerte q infolge verschiedener Akzellerogramme ist wesentlich größer als infolge der zufälligen Streckgrenzenstreuung. Die Streckgrenzenstreuung über die Tragwerke ist für die Bestimmung der Verhaltensbeiwerte q ohne signifikante Bedeutung. Deshalb darf bei der Bestimmung der Verhaltensbeiwerte mit den nominalen Festigkeiten gerechnet werden. Bei der Kapazitätbemessung der Anschlüsse muß jedoch die Streckgrenzenstreuung berücksichtigt werden.

- 5/1 -

6 Literaturhinweise

zu Kapitel 1

- [1-1] Eurocode 8: Bauten in Erdbebengebieten Entwurf und Bemessung, Teil 1 Allgemeines und Gebäude: Kommission der Europäischen Gemeinschaften, Mai 1988
- [1-2] Sedlacek, G.: Abschlußbericht zum Forschungsvorhaben "Studie zur Sicherheit von Stahlkonstruktionen mit plastischem Verformungsvermögen bei Erdbeben und anderen äußeren Sonderlastfällen", Sep. 1992

zu Kapitel 2

- [2-1] Roik, K., Sedlacek, G.: Berechnung stählerner Fahrbahnkonstruktionen: MAN-Gustavsburg
- [2-2] Melan, E., Schindler, R.: Die genaue Berechnung von Trägerrosten: Wien, Springer-Verlag 1942
- [2-3] Sedlacek, G.: Zur Berechnung der Spannungsverteilung in dünnwandigen Stäben unter Berücksichtigung der Profilverformungen: Der Stahlbau 10/1969
- [2-4] Bornscheuer, F. W.: Systematische Darstellung des Biege- und Verdrehvorganges unter besonderer Berücksichtigung der Wölbkrafttorsion: Der Stahlbau 21/1952

zu Kapitel 3

- [3-1] KTA 2201.3: Auslegung von Kernkraftwerken gegen seismische Einwirkungen, Teil 3: Bemessung der baulichen Anlagen. Fassung 6/91.
- [3-2] Hosser, D.: Realistische seismische Lastannahmen f
 ür die Bauwerke des Kernkraftwerks Biblis, Block A. Gutachtliche Stellungnahme G 88 069 vom Januar 1989 (Revision April 1989).
- [3-3] FE-Programm DYNACS: Dynamic Analysis of Composite and Steel Structures: Stahlbau RWTH Aachen, 1989
- [3-4] A. Saleh: Traglastberechnung von räumlichen Stabwerken mit großen Verformungen und Plastizierung, Heft 4 der Schriftenreihe des Lehrstuhls für Stahlbau der RWTH Aachen, 1982.

- [3-5] C. Stutzki: Traglastberechnung räumlicher Stabwerke unter Berücksichtigung verformbarer Anschlüsse, Heft 3 der Schriftenreihe des Lehrstuhls für Stahlbau der RWTH Aachen, 1982.
- [3-6] J. Lopetegui: Verfahren der orthogonalisierten Last-Verformungszustände zur Lösung nichtlinearer Probleme der Stabstatik, Heft 2 der Schriftenreihe des Lehrstuhls für Stahlbau der RWTH Aachen, 1983.
- [3-7] H.N. Wiedeck: Beitrag zur Ermittlung der Bauwerksantworten von Stahlbauten auf dynamische Erregungen bei Annahme elastisch-plastischen Materialverhaltens; Heft 1 der Schriftenreihe des Lehrstuhls für Stahlbau der RWTH Aachen, 1982.
- [3-8] M.S. Koo: Untersuchung zum Einfluß der Bebendauer, Strukturausbildung und des Verhaltens von Verbindungen auf die Sicherheit von Stahlbauten bei Erdbebenbeanspruchung; Heft 14 der Schriftenreihe des Lehrstuhls für Stahlbau der RWTH, Aachen, 1987.
- [3-9] U.E. Dorka: Ein Beitrag zur Beurteilung und vereinfachten Berechnung von Bauwerken unter Berücksichtigung der Hystereseevolution; Tech.-wiss. Mitteilungen des Institutes für konstruktiven Ingenieurbau, Ruhr-Uni. Bochum, Nr. 88-10.
- [3-10] B.T. Nguyen: Beitrag zur Bestimmung der maximalen Bauwerksverformung bei der Erdbebenbelastung von Stahlbauten mit Berücksichtigung der Duktilität; vorgelegte Dissertation, Aachen, 1992.
- [3-11] Ballio, G., Perotti, F.: Determinazione del coefficiente di struttura per costruzioni metalliche soggette a carichi assiali: 2. convegno nazionale l'ingegneria sismica in italia, Rapallo, 1984
- [3-12] Cosenza, E., De Luca, A., Faella, C., Piluso, V.: A Rational Formulation for the q Factor in Steel Structures: 9th W.C.E.E., Tokyo, Kyoto, 1988

zu Kapitel 4

- [4-1] Sedlacek, G., Spangemacher, R., Hensen, W., ARBED: Background Document 5.01 for Chapter 5 of Eurocode 3: Aachen, Apr. 1989
- [4-2] Schmitz, N., Lehmann, F.: Monte-Carlo-Methode I (Erzeugen und Testen von Zufallszahlen): Verlag Anton Hain, Meisenheim am Glan, 1976
- [4-3] Knappe, O.: Einführung in die Monte-Carlo-Methode (Methode der statistischen Versuche): Arbeitsbericht zur Sicherheitstheorie der LKI, München (SFB 96), Heft 1, 1972

- [4-4] Wörner, J.D.: Ein Beitrag zur realistischen Beschreibung der Komponenten-Bauwerk-Wechselbeziehung bei Erdbeben: Mitteilungen aus dem Institut für Massivbau, TH Darmstadt, Heft 36, Verlag Ernst & Sohn, 1986
- [4-5] Kuck, J.: Dynamic Analysis of Structures using "Dynamic Plastic Hinge Method", Annex to Eurocode 8, Part 2 - Bridges: Lehrstuhl f
 ür Stahlbau, RWTH Aachen, Dezember 1990
- [4-6] Sedlacek, G., Kook, S.K.: Vergleichsuntersuchungen zur Anwendung der dynamischen Fließgelenktheorie: Bericht aus BM Bau-Forschungsprojekt (RS II 2-674102-92.27), 1992

Anlage 1

Ergebnisse der Untersuchung der räumlichen Regelmäßigkeit

Inhaltverzeichnis

Seite

1	Ergebnisse der Parameterstudie		
	1.1	Einfluß der verschiedenen Feldanzahl	A1/1
	1.2	Einfluß der verschiedenen Geschoßanzahl	A1/4

2 Untersuchung der Genauigkeit der Näherungsformel A1/6

1 Ergebnisse der Parameterstudie

idria

dric

Idria

Abb.1.1 eingeschossige Rahmen

Abb.1.2 zweigeschossige Rahmen

- A1/1 -

Abb.1.3 dreigeschossige Rahmen

Abb.1.4 viergeschossige Rahmen

Abb.1.5 fünfgeschossige Rahmen

Abb.1.6 zweifeldrige Rahmen

Abb.1.7 dreifeldrige Rahmen

- A1/4 -

nossia

Abb.1.9 fünffeldrige Rahmen

- A1/5 -

				_			
	sechsfeldr eingescho	iger ssiger Rahm	en		neunfeldri eingescho	iger ssiger Rahm	en
	 P		a	7			
γ(-)	1	2	3] .	1	2	3
					Constant and and a second s		a the state of the
1 x 10 ⁻³	46,6	46,7	0,1		42,3	42,4	0,1
3 x 10 ⁻³	 46,6	46,7	0,1		42,3	42,4	0,1
6 x 10 ⁻³	46,6	46,7	0,1		42,3	42,4	0,1
1 x 10 ⁻²	46,6	46,6	0,0		42,3	42,4	0,1
3 x 10 ⁻²	46,5	46,6	0,1		42,2	42,4	0,2
6 x 10 ⁻²	46,4	46,5	0,1		42,2	42,4	0,2
1 x 10 ⁻¹	46,2	46,3	0,1		42,2	42,3	0,1
3 x 10 ⁻¹	45,3	45,6	0,3		41,9	42,1	0,2
6 x 10 ⁻¹	44,1	44,6	0,5		41,6	41,9	0,3
1 x 10°	42,5	43,2	0,7		41,1	41,5	0,4
3 x 10°	35,7	36,8	1,1		38,8	39,6	0,8
6 x 10 ⁰	28,5	28,9	0,4		35,8	36,9	1,1
1 x 10 ¹	22,2	21,9	0,3		32,3	33,3	1,0
3 x 10 ¹	10,3	9,3	1,0		21,3	21,4	0,1
6 x 10 ¹	5,7	5,0	0,7		13,9	13,1	0,8
1 x 10 ²	3,6	3,0	0,6		9,4	8,6	0,8
3×10^2	1,2	1,0	0,2		3,6	3,1	0,5
6 x 10 ²	0,6	0,5	0,1		1,8	1,6	0,2
1×10^{3}	0,3	0,3	0,0		1,1	1,0	0,1

Fußnote:

1 2

3

mit einem Stabwerksprogramm ermittelte Fehlerwerte (%)

mit der Gleichung (3-74) bestimmte Fehlerwerte (%)

Differenz (%) zwischen den Werten der beiden Spalten 1 und 2

Tabelle 2.2 sechs- und neunfeldriger eingeschossiger Rahmen

			dreifeldrig zweigesch	ger ossiger Rahr	nen		dreifeldrig dreigescho	er össiger Rahm	ien
	γ(-)		1	2	3]	1	2	3
		_		and a start of the program of the spectrum of the start o	and Access / Access / Access	*	g-10-11-11-11-11-11-11-11-11-11-11-11-11-		
	1 x 10 ⁻³		49,6	49,7	0,1		48,6	49,0	0,4
	3 x 10 ⁻³		49,0	49,2	0,2		46,0	46,9	0,9
	6 x 10 ⁻³		47,9	48,4	0,5		42,4	43,9	1,5
	1 x 10 ⁻²		46,6	47,4	0,8		38,1	40,0	1,9
	3 x 10 ⁻²		40,6	42,4	1,8		24,3	26,0	1,7
	6 x 10 ⁻²		33,5	35,6	2,1		15,3	16,2	0,9
-	1 x 10 ⁻¹		26,8	28,7	1,9		10,2	10,6	0,4
	3 x 10 ⁻¹		12,8	.13,5	0,7		3,8	3,8	0,0
	6 x 10 ⁻¹		7,1	7,4	0,3		1,9	2,0	0,1
	1 x 10°		4,4	4,6	0,2		1,2	1,2	0,0
	3 x 10°		1,5	1,6	0,1		0,4	0,4	0,0
	6 x 10°		0,8	0,8	0,0		0,2	0,2	0,0
	1 x 10 ¹		0,5	0,5	0,0		0,1	0,1	0,0
	3 x 10 ¹		0,2	0,2	0,0		0,0	0,0	0,0
	6 x 10 ¹		0,1	0,0	0,1		0,0	0,0	0,0
	1 x 10 ²		0,0	0,0	0,0		0,0	0,0	0,0
	3 x 10 ²	4 A.	0,0	0,0	0,0		0,0	0,0	0,0
	6 x 10 ²		0,0	0,0	0,0		0,0	0,0	0,1
	1×10^{3}		0,0	0,0	0,0		0,0	0,0	0,0

Fußnote:

1 2

3

mit einem Stabwerksprogramm ermittelte Fehlerwerte (%)

mit der Gleichung (3-74) bestimmte Fehlerwerte (%)

Differenz (%) zwischen den Werten der beiden Spalten 1 und 2

Tabelle 2.3

zwei- und dreigeschossiger dreifeldriger Rahmen

		fünffeldriger fünfgeschossiger Rahmen		
γ(-)		1	2	3
1 x 10 ⁻³		45,0	44,8	0,2
3 x 10 ⁻³		42,0	42,2	0,2
6 x 10 ⁻³		38,0	38,5	0,5
1 x 10 ⁻²		33,2	34,1	0,9
3 x 10 ⁻²		20,2	19,9	0,3
6 x 10 ⁻²		12,5	11,7	0,8
1 x 10 ⁻¹		8,2	7,5	0,7
3 x 10 ⁻¹		3,0	2,7	0,3
6 x 10 ⁻¹		1,5	1,4	0,1
1 x 10 [°]		0,9	0,8	0,1
3 x 10°		0,3	0,3	0,0
6 x 10°		0,2	0,1	0,1
1×10^{1}		0,1	0,0	0,1
3 x 10 ¹		0,0	0,0	0,0
6 x 10 ¹	÷	0,0	0,0	0,0
1 x 10 ²		0,0	0,0	0,0
3×10^2		0,0	0,0	0,0
6 x 10 ²		0,0	0,0	0,0
1 x 10 ³		0,0	0,0	0,0

Fußnote:

mit einem Stabwerksprogramm ermittelte Fehlerwerte (%) 1

mit der Gleichung (3-74) bestimmte Fehlerwerte (%) 2

3 Differenz (%) zwischen den Werten der beiden Spalten 1 und 2

Tabelle 2.4 fünffeldriger fünfgeschossiger Rahmen

Anlage 2

Ergebnisse der Untersuchung der ebenen Regelmäßigkeit

In	haltverzeichnis	Seite
1	Künstliche Zeitverläufe und resultierende Antwortspektren	A2/1
2	Eigenschwingverhalten der Berechnungsmodelle	A2/7
3	Ergebnisse der nichtlinearen Berechnungen	A2/13

1 Künstliche Zeitverläufe und resultierende Antwortspektren

- A2/1 -

- A2/2 -

Künstlicher Zeitverlauf 3 (KTA) und resultierendes Antwortspektrum

- A2/4 -

Abb.1.5 Künstlicher Zeitverlauf 5 (Biblis) und resultierendes Antwortspektrum

- A2/5 -

2 Eigenschwingverhalten der Berechnungsmodelle

Frequenz	berechnete	mitschwingende	mitschwingende
Nr.	Frequenz	Masse in x-Richtung	Masse in z-Richtung
	[Hz]	[%]	[%]
1	0,73	90,72	0,00
2	2,26	7,80	0,06
3	3,49	0,16	6,82
4	5,03	0,03	49,20
5	5,13	0,29	2,20
6	5,74	0,12	0,23
7	7,18	0,00	9,16
8	8,45	0,01	0,00
9	8,84	0,00	0,85
10	8,95	0,00	3,64
11	9,21	0,00	0,19
12	9,34	0,00	0,00
13	10,04	0,00	0,92
14	10,23	0,00	4,02
15	11,69	0,00	0,91
16	11,79	0,11	3,64
17	12,64	0,14	0,14
18	12,88	0,00	0,13
19	13,49	0,02	0,20
20	14,57	0,10	0,05

Tabelle 2.1 Rahmen des Maschinenhauses

Frequenz	berechnete	mitschwingende	mitschwingende
Nr.	Frequenz	Masse in x-Richtung	Masse in z-Richtung
	[Hz]	[%]	[%]
1 ·	1,28	5,85	0,00
2	1,79	0,08	0,00
3	2,51	0,00	0,00
4	2,74	55,56	0,00
5	4,43	18,03	2,75
6	4,71	1,06	78,52
7	.5,07	1,16	4,69
8	6,10	0,01	0,09
9	6,88	0,36	0,11
10	7,59	1,38	0,01
11	7,88	0,01	0,01
12	12,69	0,00	0,59
13	13,67	0,08	1,71
14	14,58	8,18	0,19
15	14,85	0,03	0,08
16	15,66	0,14	0,95
17	16,44	0,48	4,23
18	17,35	0,51	1,73
19	20,08	0,00	0,63
20	21,51	2,19	0,02

 Tabelle 2.2
 Rahmen der Reaktorhalle

Frequenz	berechnete	mitschwingende	mitschwingende
Nr.	Frequenz	Masse in x-Richtung	Masse in z-Richtung
	[Hz]	[%]	[%]
1	1,40	89,81	0,00
2	7,03	0,00	87,82
3	9,00	5,12	0,00
4	10,17	1,17	0,00
5	15,78	0,00	6,61
6	16,06	0,62	0,00
7	19,31	2,22	0,00
8	28,69	0,00	0,00
9	30,34	0,01	0,00
10	32,42	0,00	0,01
11	40,58	0,34	0,00
12	41,52	0,00	2,35
13	44,56	0,00	0,00
14	45,61	0,00	0,00
15	46,79	0,00	0,00
16	47,38	0,01	0,00
17	48,42	0,00	0,00
18	49,21	0,00	0,00
19	50,54	0,00	0,00
20	51,48	0,00	0,76

 Tabelle 2.3
 Rahmen des Komponentengerüstes

Frequenz	berechnete	mitschwingende	mitschwingende
Nr.	Frequenz	Masse in x-Richtung	Masse in z-Richtung
	[Hz]	[%]	[%]
1	0,66	74,40	0,00
2	1,68	21,39	0,00
3	2,10	0,28	0,00
4	2,74	1,60	0,00
5	3,15	0,00	0,01
6	3,59	0,00	0,00
7	3,85	0,02	0,01
8	4,45	0,02	0,02
9	4,95	0,01	0,00
10	5,29	0,00	0,31
11	5,46	0,00	31,85
12	6,00	0,32	26,59
13	6,10	1,30	7,02
14	6,64	0,00	22,77
15	6,66	0,01	0,16
16	6,75	0,02	0,05
17	7,45	0,02	0,00
18	7,93	0,05	0,03
19	8,20	0,00	0,00
20	8,41	0,13	0,03

Tabelle 2.4 Fachwerk des Maschinenhauses

			,
Frequenz	berechnete	mitschwingende	mitschwingende
Nr.	Frequenz	Masse in x-Richtung	Masse in z-Richtung
	[Hz]	[%]	[%]
	0,97	0,26	0,00
2	1,42	26,34	0,00
3	1,74	36,96	0,00
4	1,80	0,00	0,03
5	3,08	3,41	0,00
6	3,66	0,10	0,04
7	3,71	16,15	0,01
8	4,96	0,00	79,62
9	5,96	0,00	3,68
10	6,14	0,06	0,89
11	7,41	9,52	0,00
12	8,77	0,38	0,00
13	8,93	0,00	0,48
14	11,60	3,14	0,00
15	12,56	2,97	00,0
16	12,99	0,00	0,04
17	15,11	0,26	0,34
18	15,70	0,04	3,28
19	16,46	0,00	5,47
20	19,86	0,00	1,87
1	1		

 Tabelle 2.5
 Fachwerk der Reaktorhalle

Frequenz	berechnete	mitschwingende	mitschwingende
Nr.	Frequenz	Masse in x-Richtung	Masse in z-Richtung
	[Hz]	[%]	[%]
1	1,12	90,47	0,00
2	2,81	4,55	0,17
3	4,59	3,61	0,07
4	6,64	0,19	0,32
5	8,48	0,00	60,94
6	9,88	0,15	1,35
7	11,05	0,00	18,86
8	13,76	0,06	10,58
9	14,93	0,05	0,03
10	18,34	0,64	0,36
11	20,88	0,00	0,00
12	21,79	0,00	0,00
13	21,90	0,00	0,00
14 .	23,16	0,00	0,01
15	23,66	0,00	0,00
16 .	24,60	0,03	0,01
17	26,71	0,00	0,06
18	27,86	0,02	0,00
19	29,72	0,00	0,02
20	31,75	0,00	0,02
·	[

Tabelle 2.6 Fachwerk des Komponentengerüstes

3 Ergebnisse der nichtlinearen Berechnungen

Zeitverlauf Nr.	q- Faktor aus Absolutver- schiebung	zugehöriges ^E vergt	q - Faktor aus Relativver- schiebung	zugehöriges ^E vergl
1	4,5	20,6	4,0	19,1
2	8,0	32,7	8,0	32,7
3	8,0	38,0	8,0	38,0
4	8,0	23,8	8,0	23,8
5	5,5	17,6	5,5	17,6
6	8,0	28,7	8,0	28,7

 Tabelle 3.1
 Rahmen des Maschinenhauses

Zeitverlauf Nr.	q - Faktor aus Absolutver- schiebung	zugehöriges ^E vergt	q - Faktor aus Relativver- schiebung	zugehöriges ^E wrgt
1	2,0	2,5	8,0	31,8
2	2,5	2,9	8,0	18,0
3	3,5	5,6	8,0	29,1
4	5,0	8,6	8,0	29,4
5	8,0	22,9	8,0	22,9
6	8,0	17,4	8,0	17,4

 Tabelle 3.2
 Rahmen der Reaktorhalle

Zeitverlauf Nr.	Absolutver-	zugehõrige	Relativver-	zugehörige
	schiebung	Rotationsan-	schiebung	Rotationsan-
	q - Faktor	forderung	q - Faktor	forderung
1	3,0	13,5	1,0	0
2	3,0	13,5	1,0	0
3	2,5	11,4	1,0	0
4	4,0	14,0	1,0	0
5	3,0	12,4	1,0	0
6	5,0	15,2	1,0	0

Tabelle 3.3 Rahmen des Komponentengerüstes

Zeitverlauf Nr.	q - Faktor aus	zugehörige	q - Faktor aus	zugehörige
	Absolutver-	Rotationsan-	Relativver-	Rotationsan-
	schiebung	forderung	schiebung	forderung
1	2,5	8,6	2,0	8,1
2	2,0	3,2	2,0	3,2
3	2,0	5,0	2,0	5,0
4	2,5	10,5	2,5	10,5
5	3,0	5,5	3,0	5,5
6	3,5	10,0	3,5	10,0

Tabelle 3.4 Fachwerk des Maschinenhauses

Zeitverlauf Nr.	Absolutver-	zugehörige	Relativver-	zugehörige
	schiebung	Rotationsan-	schiebung	Rotationsan-
	q - Faktor	forderung	q - Faktor	forderung
1	8,0	3,6	6,0	2,4
2	8,0	3,6	6,0	2,3
3	8,0	4,3	4,0	1,8
4	8,0	4,3	5,5	2,8
5	8,0	3,7	5,5	2,3
6	8,0	3,8	7,0	3,3

Tabelle 3.5 Fachwerk der Reaktorhalle

Zeitverlauf Nr.	q - Faktor aus	zugehörige	q - Faktor aus	zugehörige
	Absolutver-	Rotationsan-	Relativver-	Rotationsan-
	schiebung	forderung	schiebung	forderung
1	1,5	8,1	1,5	8,1
2	3,0	8,8	1,5	7,6
3	2,5	9,6	1,0	5,7
4	3,0	8,4	1,5	7,3
5	3,0	9,5	1,0	5,6
6	2,0	7,9	1,0	5,3

Tabelle 3.5	Fortsetzung	(Definition de	er elstischen	Grenze als	Plastizieren	in den	Stützen)
-------------	-------------	----------------	---------------	------------	--------------	--------	----------

Zeitverlauf Nr.	q - Faktor aus	zugehörige	q - Faktor aus	zugehörige
	Absolutver-	Rotationsan-	Relativver-	Rotationsan-
	schiebung	forderung	schiebung	forderung
1	3,5	21,4	1,0	0
2	2,0	17,1	1,0	0
3	2,5	20,0	1,0	0
4	5,5	25,6	1,0	0
5	5,5	18,0	1,0	0
6	2,0	18,5	1,0	0

Tabelle 3.6 Fachwerk des Komponentengerüstes

Anlage 3

Ergebnisse der Untersuchung der Festigkeitsverteilung

T T T /	• v	•
In haityawa	nrnn	7310
Innanveiz	сны	1115

Seite

1	Ergebnisse der Generierung der Festigkeitsverteilung		
	1.1	Streuung der Querschnittsfestigkeit M_{pl}	
		der Stütze HEA 240	A3/1
	1.2	Streuung der Querschnittsfestigkeit M_{pl}	
		des Riegels IPE 240	A3/2
2	Kün	stlicher Zeitverlauf und resultierendes Antwortspektrum	A3/4
3	Stati	stische Auswertung der ermittelten Verhaltensbeiwerte	A3/5

1 Ergebnisse der Generierung der Festigkeitsverteilung

Merkmale	Verteilungsbereich: Unten Anzahl: 4000		Verteilungsbereich: Oben Anzahl: 1000		Gesamtbereich Anzahl: 5000	
	Vorgabe	Ergebnisse	Vorgabe	Ergebnisse	Wert	Logwert
Mittelwert (mean)	209,81	209,974	247,40	246,847	217,348	5,378
Varianz		88,673		214,146	331,314	0,006
Standardabweichung	9,441	9,417	14,861	14,634	18,202	0,080
Variationskoeffizient		0,045		0,059	0,084	0,015
Schiefe		0,135	1.	0,178	0,252	0,989
Exzeß		0,032		0,056	0,113	0,678
5% Fraktilenwert		-		-	189,799	5,246
Nominal- bzw. Fraktilenwert	174,84	-	174,84	-	-2,666	-2,666
Zentralwert (median)		209,764		246,416	216,629	
häufigster Wert (mode)		209,342		245,554	215,234	

1.1 Streuung der Querschnittsfestigkeit M_{pl} der Stütze HEA 240

Tabelle 1.1 Vorgaben und Simulationsergebnisse für die Stütze

Abb.1.1 Histogramm der M_{pl} -Werte aus der Simulation für die Stütze

- A3/1 -

1.2	Streuung	der (Querschr	ittsfestigkeit	M_{pl}	des	Riegels	IPE 240
-----	----------	-------	----------	----------------	----------	-----	---------	---------

Merkmale	Verteilungst Anzal	ereich: Unten al: 4000	Verteilungsl Anzal	pereich: Oben nl: 1000	Gesamtbereich Anzahl: 5000	
	Vorgabe	Ergebnisse	Vorgabe	Ergebnisse	Wert	Logwert
Mittelwert (mean)	103,21	103,106	121,70	121,688	106,823	4,668
Varianz		21,395		54,958	83,351	0,007
Standardabweichung	4,645	4,625	7,311	7,413	9,130	0,082
Variationskoeffizient		0,045		0,061	0,085	0,018
Schiefe		0,135		0,183	0,257	1,006
Exzeß		0,032		0,060	0,118	0,690
5% Fraktilenwert		-		-	93,036	4,533
Nominal- bzw. Fraktilenwert	86,01	-	86,01	-	-2,603	-2,603
Zentralwert (median)		103,002		121,461	106,455	
häufigster Wert (mode)		102,794		121,008	105,753	

Tabelle 1.2Vorgaben und Simulationsergebnisse für den Riegel

Abb.1.3 Histogramm der M_{pl} -Werte aus der Simulation für den Riegel

Verteilungsfunktion der M_{pl} -Werte aus der Simulation für den Riegel

Künstlicher Zeitverlauf 4 (KTA) und resultierendes Antwortspektrum

2
3 Statistische Auswertung der ermittelten Verhaltensbeiwerte

Definition			8			1	b .	
Akzellerogramm	Akz. 1	Akz. 1 Akz. 2 Akz. 3 Akz. 4				Akz. 2	Akz. 3	Akz. 4
q - Faktor	3,844	5,779	4,850	4,530	5,841	10,848	7,473	10,482

Tabelle 3.1 q-Faktoren für die nominalen Festigkeiten (1 feldriger, 1 geschossiger Rahmen)

		Defin	ition a		Definition b				
Merkmale	Akz. 1	Akz. 2	Akz. 3	Akz. 4	Akz. 1	Akz. 2	Akz. 3	Akz. 4	
Mittelwert (mean)	4,181	6,080	5,014	4,916	6,088	10,843	8,157	10,641	
Varianz	0,170	0,234	0,058	0,128	0,105	0,463	1,940	0,343	
Standardabweichung	0,412	0,484	0,240	0,358	0,324	0,680	1,393	0,586	
Variationskoeffizient	0,099	0,080	0,048	0,073	0,053	0,063	0,171	0,055	
Fraktilenwert	-0,856	-0,623	-0,682	-1,117	-0,772	0,039	-0,431	0,366	
Zentralwert (median)	4,163	6,062	5,008	4,904	6,080	10,822	8,041	10,625	
häufigster Wert (mode)	4,127	6,027	4,997	4,879	6,063	10,781	7,812	10,593	

Tabelle 3.2	g-Faktoren	für	die	Festigkeitsverte	ilung (1	feldriger,	1	geschossiger	Rahmen))
-------------	------------	-----	-----	------------------	----------	------------	---	--------------	---------	---

Definition	n a b							
Akzellerogramm	Akz. 1	Akz. 1 Akz. 2 Akz. 3 Akz. 4				Akz. 2	Akz. 3	Akz. 4
q - Faktor	7,044	10,632	11,061	10,023	8,225	17,687	13,265	16,444

Tabelle 3.3 q-Faktoren für die nominalen Festigkeiten (2 feldriger, 1 geschossiger Rahmen)

		Defin	ition a		Definition b				
Merkmale	Akz. 1	Akz. 2	Akz. 3	Akz. 4	Akz. 1	Akz. 2	Akz. 3	Akz. 4	
Mittelwert (mean)	7,251	10,294	11,603	10,883	9,072	17,687	14,168	15,758	
Varianz	0,698	0,743	1,789	1,516	0,834	2,468	2,536	1,233	
Standardabweichung	0,836	0,862	1,337	1,231	0,913	1,571	1,593	1,111	
Variationskoeffizient	0,115	0,084	0,115	0,113	0,101	0,089	0,112	0,070	
Fraktilenwert	-0,194	0,427	-0,358	-0,670	-0,922	0,157	-0,538	0,640	
Zentralwert (median)	7,203	10,259	11,527	10,814	9,027	17,617	14,081	15,719	
häufigster Wert (mode)	7,108	10,187	11,375	10,676	8,935	17,476	13,909	15,641	

Tabelle 3.4 q-Faktoren für die Festigkeitsverteilung (2 feldriger, 1 geschossiger Rahmen)

Definition	-	:	a			I	>	-
Akzellerogramm	Akz. 1	Akz. 2	Akz. 3	Akz. 4	Akz. 1	Akz. 2	Akz. 3	Akz. 4
q - Faktor	7,758	12,401	11,339	9,255	8,771	19,258	15,421	14,058

Tabelle 3.5 q-Faktoren für die nominalen Festigkeiten (3 feldriger, 1 geschossiger Rahmen)

		Defin	ition a		Definition b				
Merkmale	Akz. 1	Akz. 2	Akz. 3	Akz. 4	Akz. 1	Akz. 2	Akz. 3	Akz. 4	
Mittelwert (mean)	7,930	11,330	11,200	9,576	9,609	19,219	16,067	14,535	
Varianz	0,612	0,678	1,673	0,853	0,809	2,186	3,026	0,930	
Standardabweichung	0,782	0,824	1,294	0,924	0,899	1,479	1,739	0,964	
Variationskoeffizient	0,099	0,073	0,115	0,096	0,094	0,077	0,108	0,066	
Fraktilenwert	-0,177	1,276	0,164	-0,311	-0,948	0,064	-0,328	-0,473	
Zentralwert (median)	7,893	11,301	11,126	9,532	9,569	19,163	15,974	14,504	
häufigster Wert (mode)	7,818	11,241	10,978	9,447	9,488	19,049	15,791	14,441	

Tabelle 3.6 q-Faktoren für die Festigkeitsverteilung (3 feldriger, 1 geschossiger Rahmen)

Definition		:	1		b				
Akzellerogramm	Akz. 1	Akz. 2	Akz. 3	Akz. 4	Akz. 1	Akz. 2	Akz. 3	Akz. 4	
q - Faktor	8,605	11,538	10,728	9,267	10,816	19,585	20,190	15,664	

Tabelle 3.7 q-Faktoren für die nominalen Festigkeiten (4 feldriger, 1 geschossiger Rahmen)

		Defir	ition a		Definition b				
Merkmale	Akz. 1	Akz. 2	Akz. 3	Akz. 4	Akz. 1	Akz. 2	Akz. 3	Akz. 4	
Mittelwert (mean)	9,795	12,023	12,501	10,354	12,469	20,074	19,554	15,154	
Varianz	1,092	0,770	2,907	0,915	2,664	2,420	4,596	1,282	
Standardabweichung	1,045	0,878	1,705	0,957	1,632	1,556	2,144	1,132	
Variationskoeffizient	0,107	0,073	0,136	0,092	0,131	0,077	0,110	0,075	
Fraktilenwert	-1,170	-0,532	-1,034	-1,174	-1,070	-0,282	0,353	0,482	
Zentralwert (median)	9,740	11,991	12,384	10,312	12,369	20,015	19,441	15,112	
häufigster Wert (mode)	9,631	11,929	12,148	10,227	12,176	19,896	19,220	15,028	

Tabelle 3.8 q-Faktoren für die Festigkeitsverteilung (4 feldriger, 1 geschossiger Rahmen)

Definition	-	:	a			1	b .	
Akzellerogramm	Akz. 1	Akz. 2	Akz. 3	Akz. 4	Akz. 1	Akz. 2	Akz. 3	Akz. 4
q - Faktor	8,815	9,394	3,840	4,966	8,772	15,390	4,844	7,767

Tabelle 3.9 q-Faktoren für die nominalen Festigkeiten (1 feldriger, 2 geschossiger Rahmen)

		Defin	ition a		Definition b				
Merkmale	Akz. 1	Akz. 2	Akz. 3	Akz. 4	Akz. 1	Akz. 2	Akz. 3	Akz. 4	
Mittelwert (mean)	8,685	9,572	4,145	5,056	8,654	16,143	5,411	8,494	
Varianz	0,377	1,379	0,145	0,223	0,360	6,227	0,295	1,319	
Standardabweichung	0,614	1,175	0,380	0,472	0,600	2,495	0,544	1,148	
Variationskoeffizient	0,071	0,123	0,092	0,093	0,069	0,155	0,100	0,135	
Fraktilenwert	0,244	-0,088	-0,773	-0,137	0,231	-0,238	-1,048	-0,595	
Zentralwert (median)	8,664	9,499	4,127	5,033	8,633	15,958	5,384	8,417	
häufigster Wert (mode)	8,620	9,350	4,091	4,985	8,592	15,594	5,329	8,265	

Tabelle 3.10 q-Faktoren für die Festigkeitsverteilung (1 feldriger, 2 geschossiger Rahmen)

Definition a b					0			
Akzellerogramm	Akz. 1	Akz. 1 Akz. 2 Akz. 3 Akz. 4				Akz. 2	Akz. 3	Akz. 4
q - Faktor	8,311	10,731	4,146	6,042	10,111	15,537	6,901	8,253

Tabelle 3.11 q-Faktoren für die nominalen Festigkeiten (1 feldriger, 3 geschossiger Rahmen)

		Definition a				Definition b				
Merkmale	Akz. 1	Akz. 2	Akz. 3	Akz. 4	Akz. 1	Akz. 2	Akz. 3	Akz. 4		
Mittelwert (mean)	8,521	11,447	4,509	6,373	10,678	16,783	7,077	8,373		
Varianz	0,271	0,619	0,248	0,262	0,492	1,195	0,755	0,308		
Standardabweichung	0,520	0,787	0,498	0,512	0,702	1,093	0,869	0,555		
Variationskoeffizient	0,061	0,069	0,110	0,080	0,066	0,065	0,123	0,066		
Fraktilenwert	-0,375	-0,921	-0,735	-0,635	-0,813	-1,173	-0,165	-0,184		
Zentralwert (median)	8,505	11,421	4,483	6,353	10,655	16,748	7,030	8,355		
häufigster Wert (mode)	8,473	11,369	4,433	6,313	10,611	16,680	6,942	8,318		

Tabelle 3.12 q-Faktoren für die Festigkeitsverteilung (1 feldriger, 3 geschossiger Rahmen)

Definition	a				b				
Akzellerogramm	Akz. 1	Akz. 2	Akz. 3	Akz. 4	Akz. 1	Akz. 2	Akz. 3	Akz. 4	
q - Faktor	4,638	6,429	4,072	7,361	5,753	14,827	15,672	15,328	

Tabelle 3.13 q-Faktoren für die nominalen Festigkeiten (1 feldriger, 4 geschossiger Rahmen)

	Definition a				Definition b				
Merkmale	Akz. 1	Akz. 2	Akz. 3	Akz. 4	Akz. 1	Akz. 2	Akz. 3	Akz. 4	
Mittelwert (mean)	4,640	6,271	4,063	7,055	6,141	12,225	13,768	15,206	
Varianz	0,109	0,662	0,219	0,458	0,138	2,175	5,038	6,149	
Standardabweichung	0,330	0,813	0,468	0,677	0,371	1,475	2,244	2,480	
Variationskoeffizient	0,071	0,130	0,115	0,096	0,060	0,121	0,163	0,163	
Fraktilenwert	0,028	0,250	0,077	0,473	-1,063	1,711	0,888	0,130	
Zentralwert (median)	4,629	6,216	4,039	7,022	6,130	12,141	13,591	15,005	
häufigster Wert (mode)	4,606	6,104	3,995	6,952	6,108	11,976	13,246	14,606	

Tabelle 3.14	q-Faktoren	für die	Festigkeitsverteilung	(1	feldriger,	4	geschossiger	Rahmen)
--------------	------------	---------	-----------------------	----	------------	---	--------------	---------

2 Untersuchung der Genauigkeit der Näherungsformel

		zweifeldri eingescho	ger ssiger Rahm	en
		-		
γ(-)		1	2	3
1 x 10 ⁻³		66,5	66,5	0,0
3 x 10 ⁻³		66,3	66,3	0,0
6 x 10 ⁻³		65,9	65,9	0,0
1 x 10 ⁻²		65,3	65,3	0,0
3 x 10 ⁻²		62,7	62,7	0,0
6 x 10 ⁻²		58,8	58,8	0,0
1 x 10 ⁻¹	-	53,8	53,8	0,0
3 x 10 ⁻¹		35,4	35,4	0,0
6 x 10 ⁻¹		22,0	22,0	0,0
1 x 10 ⁰		14,6	14,6	0,0
3 x 10°		5,6	5,6	0,0
6 x 10°		2,7	2,7	0,0
1 x 10 ¹		1,7	1,6	0,1
3 x 10 ¹		0,6	0,6	0,0
6 x 10 ¹		0,3	0,3	0,0
1 x 10 ²		0,2	0,2	0,0
3 x 10 ²		0,0	0,0	0,0
6 x 10 ²		0,0	0,0	0,0
1×10^{3}		0,0	0,0	0,0

1	2	3
50,0	50,0	0,0
49,9	49,9	0,0
49,8	49,8	0,0
49,6	49,7	0,1
48,8	49,1	0,3
47,7	48,2	0,5
46,2	47,0	0,8
39,5	41,4	1,9
31,9	34,0	2,1
25,0	26,8	1,8
11,6	12,1	0,5
6,3	6,5	0,2
3,9	4,0	0,1
1,4	1,4	0,0
0,7	0,7	0,0
0,4	0,4	0,0
0,1	0,1	0,0

0,0

0,0

0,1

0,0

0,1

0,0

dreifeldriger

eingeschossiger Rahmen

Fußnote:

mit einem Stabwerksprogramm ermittelte Fehlerwerte (%) 1

2 mit der Gleichung (3-74) bestimmte Fehlerwerte (%)

3 Differenz (%) zwischen den Werten der beiden Spalten 1 und 2

Tabelle 2.1

zwei- und dreifeldriger eingeschossiger Rahmen

- A1/6 -